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We give graphical rules, based on earlier work for the functional Sithger equation, for constructing the
density matrix for scalar and gauge fields in equilibrium at finite temperatuvore useful is a dimensionally
reduced effective actiofDREA) constructed from the density matrix by further functional integration over the
arguments of the density matrix coupled to a source. The DREA is an effective action in one less dimension
which may be computed order by order in perturbation theory or by dressed-loop expansions; it encodes all
thermal matrix elements. We term the DREA procedalternative dimensional reductiono distinguish it
from the conventional dimensionally reduced field the@RFT) which applies at infinitel. The DREA is
useful because it gives a dimensionally reduced theory usable af amyuding infinity, where it yields the
DRFT, and because it does not and cannot have certain spurious infinities which sometimes occur in the
density matrix itself or the conventional DRFT; these come fror factors at infinite temperature. The
DREA can be constructed to all ordefi® principle) and the only regularizations needed are those which
control the ultraviolet behavior of the zefotheory. An example of spurious divergences in the DRFT occurs
in d=2+1¢* theory dimensionally reduced @=2. We study this theory and show that the rules for the
DREA replace these “wrong” divergences in physical parameters by calculable powersTpiva also
compute the phase transition temperature of @fisheory in one-loop order. Our density-matrix construction
is equivalent to a construction of the Landau-Ginzburg “coarse-grained free energy” from a microscopic

Hamiltonian.
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I. INTRODUCTION function! We begin by finding rules for describing the den-

sity matrix as the negative exponent of a dimensionally re-
duced actionSy. These rules follow from a microscopic

The study of relativistic field theories at finife[ 1] and/or . . .
. ; e . . theory by the usual procedure of integrating over Euclidean
density[2], in or out of equilibrium[3], is quite mature but . . . ) : .
time evolution. This action, however, is not our final goal,

continues to be of great interest, for example, in ConneCtio%ecause it may contain spurious ultraviolet divergences. If
with BNL. Relativistic Heavy lon Collider(RHIC) and y P g .

L . . i .spurious divergences do occur, they will also occur in the
CERN relativistic heavy-ion collision experiments searchlngusual dimensionally reduced field theai®RFT) arrived at

for the QCD transition from a hadronic to a quark-gluon e standard proceduf8] of going to infiniteT. So while
plasma phase, a possible color-flavor locking transition t0 & s interesting to know how to construct the density matrix
superconducting phase of QCD at finite particle density, th&ystematically, it is of less use than the ultimate result of our
transition to a disoriented chiral condensate of pions thaprocedure, which is a dimensionally reduced effective action
could provide an explanation for the so-called CentaurQDREA) constructed by further functional integration over
events observed in cosmic rays, and cosmological transitionge density matrix, coupled to sources. The DREA has no
[4]. There is an equally extensive body of literature on non-spurious divergences and contains in it all possible thermal
relativistic systems at finitd and so forth, the preponder- matrix elements which could be constructed by conventional
ance of which deals with critical phenomeftd. means. The procedure adopted here is a natural extension of
In this paper we will be concerned with the description ofa construction usefi7] in the functional Schidinger equa-
all these systems via the density matrix and a related dimeriion.
sionally reduced effective action; the methods used can be In the case ofi=0+1 theories(quantum mechanigsn
easily extended to the closely related Wigner distributionmany situations the integral over the Euclidean time evolu-
tion can be done explicitly8—10], yielding integrals which
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manent address: Instituto déskia, UFRJ, C.P. 68528, Rio de Jan- distribution function is effectively an off-diagonal matrix element.

eiro, RJ 21945-970, Brasil. The reader will see that it is quite straightforward to extend the
"Email address: cornwall@physics.ucla.edu density-matrix rules to the Wigner distribution function; we will not
*Email address: ajsilva@if.usp.br discuss the Wigner distribution function rules in detail here.
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are complicated functions df; in field theory it is, of course, dence onT and, possibly, on external parameters is chosen
impossible to do the corresponding Euclidean time integralpurely phenomenologically; it is not derived from a funda-
exactly. But one must expect similarly complicated depenimental picture.
dences orT in the field-theoretic effective action, and these  This paper addresses the question of how actually to de-
dependences will be important in estimating such propertie§ve the DREA, starting from the microscopic Hamiltonian
of thermal field theories as phase transition temperatures. that describes a field theory. This question is essentially
For relativistic systems it is common to use the DRFT,equivalent to asking how to find the Landau-Ginzburg
which is appropriate in principle only for infinit€, at tem- ~ coarse-grained free energy, as the dimensionally reduced
peratures very high compared to typical energies of the zergheory whose matrix elements are those of the DREA itself.
T field theory. The DRFT maywe will study an example ~ One can thereby replace the phenomenology of the Landau-
have divergences which are not present at any fijitehile ~ Ginzburg free energy by explicit calculation of, say, the
this does not impair the essential correctness of the dimerfiépendence of this free energy. In the case we study in this
sionally reduced theory it does introduce arbitrary parampaper the underlying microscopic theory is considered to be
eters which should not be there. The point is that at &ny known (a relativistic quantum field theoryand the density
however large, a field theory may have no ultraviolet diver-matrix and the DREA are to be found. We will consider
gences not already contained in the z&réield theory; this ~ Scalar and gauge field theories; nothing much new is found
well-known consideration follows from the Feynman rulesbPy studying fermion$.Just as with any effective action, the
for finite-T field theory. But sometimes a dimensionally re- DREA contains in its infinitely many terms all th@ne-
duced field theory does have “wrong” divergenceghich particle |rredu0|.bl¢ matrix elements which can be con-
must, in fact, be absent in physical quantitieghich inter- ~ Structed by tracing time-independent operator products with
fere with the use of the DRFT as a good approximation forth€ density matrix. But actually constructing the density ma-
large but finiteT. An example is finiteFd=2+1¢* theory, X itself is not as useful, since this object contains the same

where the dimensionally reduced theory is jubt2¢*  SPurious infinities that the DFRT contains. .
theory. This latter theory has a one-loop logarithmic mass  The technical reason why these spurious infinities occur is
divergence which is absent in this=2+1 theory, and we that the propagators to be used in integrating over Euclidean
will give rules for the density matrix for thé=2+1 theory ~ time dynamics to form the density matrix are not the stan-
which automatically remove this divergen@eplacing it by ~ dard thermal propagators, and these non-standard propaga-
a finite and calculable factor of TH. tors do lead to spurious ultraviolet divergences. However, in

For nonrelativistic systems there are corresponding prc)b(_:onstructi_ng the partition function from. the d.ens?ty matr_ix,
lems of renormalization, but they are generally bypassed i€ density-matrix propagators combine with integration
the study of second-order phase transitions. In studying sucfver certain source terms involving the time-independent
transitions, the need for ultraviolet renormalization and thd'€lds which are the argument of the density matrix and can-
fact that one has to start from a microscopic theory can p&ellations occur; the result is equivalent t(_).usmg th_e usual
relegated to secondary status, because one is concerned oHigrMal propagators. As a result, the partition function can
with long-range properties. Most treatments of nonrelativis-2"lY involve ultraviolet divergencegand subsequent renor-
tic systems exhibiting phase transitions, such as in condenség@lization of the T=0 (d+1)-dimensional theory. The
matter physics, are not concerned with a detailed microS@me combination of propagators and source terms occurs in
scopic knowledge of the Hamiltonian, but rather with a uni-constructing the DREA, which therefore has only the 0
versal description via the renormalization group that capturegivergences.

the essence of the long-range collective behavior responsible e note here some general properties of the DREAT At
for the transition and so renormalization is not intrinsically large compared to any mass scatein the original zero-

required. The use of the renormalization group in such systémperature theorylocal term_s°’ in the DREA with large
tems is a tool to extract the long-range behavior: it providefowers of its argumeng(x) will be accompanied by large

a way of eliminating short-range scales in favor of collectiveN€gative powers of and vanish at infinite temperature; this
long-range parameters by integrating out short-distanc$ the way that local terms in the DREA yield the DRFT. As
scales to obtain effective Hamiltonians, and investigating thd —0. there will also be factors like expWT) along with
appearance of fixed points associated with criticality. Neafh€se powers off, and the zero-temperature limit is well-
those fixed points, it allows for the calculation of the expo-defined. In this limit the DREA is precisely th@egative
nents that characterize the critical behavior of physical quanif9arithm o the ground-state Schidinger wave functional
tities. The theories studied can tend often should bede- [7]. Th_e point which is of part|cu_lar interest in the_ present
fined on a lattice; whether this is the correct microscopicd®@pPer is the appearance of marginal terms depending ®n In
description or not makes no difference to the long-range

properties. In other words, the tools used to study long-range

behavior are not capable of calculating parameters such aggxcept possibly for topological effects involving fermions, which
phase-transition temperatures, whose values depend on phee will not discuss here.

nomena at shorter distances and in particular on the detailecPLocal terms in an effective action are candidates for the action of
functional dependence of the Hamiltonian DnThis Hamil-  a field theory which could have the DREA as its effective action.
tonian is typically a Landau-Ginzburg phenomenologicalNon-local terms correspond to one-particle irreducible Green’s
“coarse-grained free energy,” whose parameters’ depenfunctions.
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which lead to the unwanted divergences in the DRFT at inas an intermediate step which calculates the weights. In car-
finite temperature. rying out the functional integrals oves, one would notice
The paper is organized as follows: Sec. Il defines thecertain cancellations between divergences occurring in the
density matrix for a scalar field theory, shows how to com-construction ofSy and divergences in the functional integral.
pute the reduced theory perturbatively, discusses how its ulfhese cancellations remove the spurious ultraviolet diver-
traviolet behavior is related to the renormalization of thegencegthose not occurring in th&=0 theory.
original theory, and outlines the construction of the DREA. To complete the construction of the DREA it is only nec-
Section Ill discusses some general questions of gauge invafessary to introduce further sourcésx) coupled to the field
ance of the DREA for gauge theories. Section IV illustratesg(x) through the usual terniJ¢. The logarithm of the re-
how the dimensional reduction obtained via density matricesulting functional integral overp is then Legendre trans-
can be used in practical applications: a modified reduceformed to yield the DREA.
theory (defined by its Feynman ruless proposed, which Note that neither the density matrix nor the DREA is, in
should yield the same results as the one derived from thgeneral, of the forne A" with H being independent g8 as
density matrix, and a perturbative discussion of the phasg ordinary statistical mechanics; the dependence is far
transition for a scalar theory in two spatial dimensions ismore complicatedwhich justifies the “almost ordinary” of
presented. This last application is intended to emphasize tha@te previous section This had already been pointed out in
our approach reduces the discussion of the phase transition fige analogous discussion of the transfer matrix carried out in
the study of an(almos) ordinary system ind dimensions, Ref.[11]. The density matrix provides a direct but alternative
plus thed+1 subtractions required by the usual renormal-way of deriving a dimensionally reduced theory. We will

ization procedure. proceed to construct it perturbatively, and indicate where ap-
propriate the generally straightforward generalization to
Il. THE DENSITY MATRIX FOR SCALAR THEORIES dressed-loop expansions.

The partition function for a self-interacting scalar field

theory in contact with a thermal reservoirii 8= 1/T) can A. The perturbative construction for scalars

be written as a functional integral over the density matrix The integral over the fieldg in Eq. (2) has to respect the
boundary conditions. For the free theory, the integral is qua-
_ : dratic and can be computed exactly by the saddle-point
Z(B) j[Dd)]p[’B'(ﬁ ¢] @ method. We must solve the free field equation of motion,

subject to the boundary conditions
plB; . 1= ﬂg [Dele Slel, (2 (— > V2+m?)p(7,X)=0, (5)
@(0X)=e(B,X)= ¢(X). (6)

Fourier transforming inx leads to an ordinary differential
equation. The solution satisfying the boundary conditions is

B
S[‘P]:JO er d%(Lel @]+ LiL@]), )

1
Lele]= 5{(0T¢)2+(V¢)2+ m?e?}. (4

A(TX)=f d9% coshiw,(7— B/2)]-

g (ke (7)
Here £ and £, are, respectively, the free and interacting (2m)4  coshBw/2)

Lagrangeans. We will be interested ¢t interactions(both
broken and unbrokenThe field ¢(x) is the boundary value
of ¢(7,x) at bothr=0 and7r= g, that is, the integra$ is to
be performed over alp that satisfy the boundary conditions
¢(0X)=o¢(B,X)= ¢(x). The density matrix is a functional
of ¢ only. The remaining integral over thé's is unre-
stricted (except for the vacuum boundary conditions that
must be imposed at spatial infinjty

We may write p=e , Sy, being a certain
T-dependent dimensionally reduced action. This action is not

) |k x (8)

(2m)

wherew, = +[k?+m?]*2 It depends functionally omb(x).
Its 7 dependence, however, is completely specified.

We now expandp arounde, treating it as a thermal back-
ground for the free theory:

the DREA, whose construction needs further discussion. The e(7,X)=¢(7,X)+ 7(7,X), 9
field ¢ which is the argument o8, depends only on thd
spatial coordinates; all the dependence of the original 7(0x)=7(B,x)=0. (10

+1 theory has been eliminated through theintegration.

The fields ¢(x) are the natural degrees of freedom of the(Similarly, the ¢ propagator is the sum of the propagator
reduced theory. Any thermal observable can be constructednd the 7 propagato). As usual, the fluctuation; has to

by integrating over the field$(x) an appropriate function of vanish at7=0 and 7= becauseg already satifies the
¢ weighted with the corresponding diagonal element of theboundary conditions. The expression for the density matrix
density matrix. The Euclidean time evolution can be viewedelement becomes
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o[ B, p]=e =g Sl¢] 3g [Dy]e St -Sle+nl, G, (X 7".x')
(11) :f d9 Sinf'(WkT<)Sim[Wk(,3_T>)]eik,(x,xr)
(2m)8 wy sinh( Swy) ’

whereSr andS, refer to free and interacting actions, respec-
tively, and the path integral sums over fluctuations that van- (16)
ish at7=0 and7=g. o , .

Note that Eq(11) is exactly of the same functional form yvherte T?(T>)I=t.mm.(ma)f){7f|:}‘ Not”e that E:“S propagator
as given for the functional Schdimger equation in Ref.7]; IS not 7-transiation nvariant. Formally, we have

it is a (d+1)-dimensional functional integralith an extra %

factor exp-S ¢]), with sources depending amthrough the pLBib.d1=pol Bib. b1+ 2 pulBidb. ], (1D

interaction termS[¢+ 7]. The free propagators used to m

evaluate the functional integral differ from those of the func- = A= V2o Selel (18)
Po F )

tional Schralinger equation, but the structure is exactly the
same, and so the remarks made in R&.concerning the
extension of perturbation theory to dressed-loop expansions
apply without change to the present case. We therefore need
not repeat those remarks here.

For the free theoryS,=0 and we can compute the inte-
gral exactly to obtain the fluctuation determindta power X{(7"(1)- - - 7"m(m))
—1/2) using the techniques of Ref8—10|. For the interact-
ing theory, we first perform a functional Taylor expansion of \yhere szfng.fdde' the argument ofp(j) stands for

the interacting action around the thermal background, so as_ (njg et _ At
to obtain a seriegor a polynomial in thep? case in powers %ST’ ), andL [ Hle]is th?n]th derlvz.;ltwe OfL;, computed
of 5. Then, we expand the exponenté&lS in a power se- at the thermal backgroung. Expression17) depends func-

ries. The integral over fluctuations will Wick-contract the tionally on ¢ through .

Pm= Po

(—pm mo M)
2 (,Hlf,- l”' )

m! ng, ..., Nm=0

, 19

various products ofy's which appear multiplied by deriva- The spatial integrations should be converted to momen-
tives of the interacting Lagrangean taken at the thermal backum space, where the propagator is diagdredd(k’ —k)].
ground. As a consequence, one is led to compute Performing the integral ovek will lead to ultraviolet diver-
gences. Therefore, we introduce a momentum cutoffit

(n(71,%X0) - (T, X)) will be convenient to think of such a cutoff as analogous to

an inverse lattice spacing in a lattice regularized version of

EA;W \(ﬁ [Dyle Sy, %) - p( 7, %) the theory. In the cutoff theory, we can compute each term in

the series and obtain thE and cutoff dependence of the

(12)  various coefficients of a functional expansion d{x) [or

) i $(k)]. The logarithm of Eq(17) will then be— Sy, a cutoff
A stands for the fluctuation determinant of the free theory, ction which will enter further functional integrals over
(infinite) normalization constant that depends @nThe re- H(x).

sult is simply
B. The ultraviolet behavior

(n(71,%0) - - (7, X)) . . . .
The construction of the previous section allows us to find

a cutoff reduced actiorsy order by order in perturbation

theory. We will now specialize our discussion t6,

(13 =\¢*/4!. As A—oe, the reduced theory exhibits the ultra-
violet divergences of botd+1 andd dimensionsthe Ap-

if k is even, and zero otherwis&p denotes sum over all Pendix shows this explicitly ford=2). When computing

possible pairings of théi;}. There remains to compute the correlation functions, the former are to be eliminated through

:; G”(Til'xil;Tiz’Xiz)' . 'Gﬂ(Tik—l’Xik—l;Tik'Xik)’

propagatoiG,, which must satisfy the usual renormalization procedure, which requires the
7 . . . . ..
same subtractions as in the=0, (d+ 1)-dimensional, origi-

(—ai—V2+ mZ)G”(T,X;T"X/)Zg(T_ ) 8%(x—x"), nal theory. Thed-dimensional divergences, however, are a

(14) consequence of failing to complete at the density-matrix
stage the two-step process of integrating over the fields
G, (07", x")=G,(B,x; 7" ,x")=0, (15) n(r,x) followed by integration over thep(x) fields which
are the arguments of the density matrix. Thegenerated
because of the vanishing boundary conditions for the flucdivergences should automatically cancel upon doing the final
tuations. If we Fourier transform the spatial coordinates, wentegration over the remainingy(x) which is necessary to
obtain an ordinary differential equation which leads tofind the partition functionZ(g). Indeed, this is what hap-
[7-10] pens, as
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we will show. There is no reason that these divergence€learly, adding they and ¢ lines reconstructs the thermal
should be absent frorgy itself. (finite T) propagator of the d+1)-dimensional theory,
We can find these cancellations by calculatf(gg). Af- which is 7-translation invariant. Every graph in the expan-
ter having done the integration over the fluctuation fiefgs sion in vacuum bubbles of the original theory with the propa-
we still have to integratéin momentum spageover the re-  gator(24) may have each of its lines replaced by the sum of

mainingé(p) in order to compute the vacuum bubbles in the@ 7 line plus a¢ line. This will generate all possible com-
expansion(17). The free part of the reduced acti@, for ~ binations ofy and¢ lines which appear théeutoff) reduced
%(p) is given bySF[gE]. An integration by parts, and use of theory. This proves that integrating the reduced theory over

th i £ moti tisfied b lead t ¢ will reproduce the results of perturbation theory to all
e equation of motion satisfied ly lead to orders, and that the only subtractions that are required are

10 dip those of theT =0 theory ind+ 1 dimensions.
Se[b]= _f B(p)[2w, tanh Bw,/2)]d(—p), The final step to the DREA is very easy: Instead of con-
; 2) (2m)¢ P P ¥ P structing the unadorned partition function by functional inte-

(200 gration, as in Eq(1), we construct the partition function in
_ the presence of a curred{x):
which defines the fre@ propagator as

é¢(p,p’)=(27T)d(5d(p+p’)[ZWptanI‘(ﬁWPIZ)]_l. Z[B,J]EQXF(_W[B,J])Z f 'D(ﬁeXF{ _SD
(21)
. (26)

+ f d9%J(x) p(x)

This propagator will be used to contract any té@dields. In
the language of Feynman graphs, any line representing
contraction of the corresponding fields appearing in Eq.
(12) will have a factor:

a
Now all the integrations over both and ¢ have been done,

so the same cancellations as in the partition function itself
still occur. One then only needs to Legendre-transform from

cosfiw, (7— BI2)] WI[ B;J] to the effective actiol’[ 8;(¢)]; this, the DREA, is
[2w,tanH Bw,/2)] 1 free of spurious ultraviolet divergences.
COSH fwi/2) Before applying these considerations to a specific field
costiw, (7' — B/2)] theory, we discuss how the general principles apply to gauge

cosh fw,/2) (220 theories.

For contractions of; fields, we must use th@,7 propagator. lll. DENSITY MATRIX FOR GAUGE THEORIES

Any line representing such a contraction will have a factor: Begin by introducing notation. We use the standard anti-
. . Hermitean matrix form of the gauge potentials, with the cou-
sinh(wy 7" )sinfwy(7— B12) 10 (7—7") gauge p

o pling constang absorbed in the potential:
W sinh( Bwy) '
(23) A
gA,(X)= Z—?A‘;; TrA Ap=2684p. (27)

Note that this not the usual thermal propagator. However, the

combination of the integration ovey and ¢ together leads Here the /2 are the group generators in conventional nor-
to a cancellation of the ultraviolet divergences appearing immalization. Gauge transformations act Ap via the opera-
the separate integrals, as we see by rewriting the products tbn of unitary matricesJ:

terms of sums of hyperbolic cosines of arguments—(7)

and (7' + 7+ B). The dependence on the latter cancels when A= UA#U*1+ Uaﬂufl. (28

we add Eq(22) to Eq.(23). The sum may be written 442]
It will sometimes be convenient to denote the time compo-

~ cosHw,[ 12— |7' — 7|1} nent of the @+ 1)-dimensional potentiah, as an adjoint
Cuin(r'— k)= 2w, sinh Bw,/2) scalar(in d dimensions field ®. Greek indices refer to the
(d+1)-dimensional theory and Latin indices to the dimen-
1 & co§2mnT(7 —1)] sionally reduced theory. The potentia), depends on both

(24) andx. There is a corresponding potentid), depending only
on x which is the argument of the density matrix or of the
DREA,; this can also be written as4(,®).

The extension of our formalism to gauge theories requires
some attention to questions of gauge invariance and gauge
fixing. The partition function can be written as the trace of
exp(—BH) where H is the microscopic time-independent
- _ . (25 Hamiltonian of the gauge theory, and the set of basis func-

2W\ 1—e A 1—ePW tions for the trace can be taken as the eigenfunctions of the

S BnEe (2mnT)2+wl

It is worth noting that the first form o6y, can be written in
a familiar form which Pisarsk[13] has advocated for its
practicality in calculations:

1 (e wdr -1 gwdr

Gy(7' —73k)
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functional Schrdinger equation. Since commutes with the whereU is an element of the center of the gauge group.
generator of time-independent gauge transformations, thislon-trivial elements of the center are important for discuss-
basis may be chosen to be invariant under such gaugeg such non-perturbative phenomena as center vortices and
transformationé. Therefore all matrix element&f gauge- confinement, but this will not be taken up here.

invariant operator produgtsound by tracing over the den- Now we can show that using Feynman gauge allows for a
sity matrix are gauge invariant. But this does not necessarilyrivial generalization of the construction of the density ma-
mean that it is convenient to calculate or present the densityrix for scalars. In this gauge, the density-matrix propagator
matrix as completely gauge invariant; it proves more conveg,(7,x;7',x’) ,, is very simply related to the scalar propa-
nient to present it in a form where there is a gauge-fixinggator of Eq.(16):

term. Thisd-dimensional gauge-fixing term is inherited from

a (d+ 1)-dimensional gauge-fixing term used to facilitate the G (1. X7 X") 4= 0,,G(T.%, 7" ,X"). (33
gauge-theoretic analogs of the manipulations of the previous

sections. It turns out that the Feynman gauge is the simplest gjmjlarly, the gauge potentia&ﬂ(ﬁ,x)=(Ai ,®) which

to use, and we will do so below. o enters into the construction of the densitiy matrix analo-
The next question to discuss is that of periodicity of thegously to the fieldp(B,x) of Eq. (7), is just

gauge potential; in principle, periodicity need only be main-
tained up to a gauge transformation. Because of the underly-
ing gauge invariance of the basis used to calculate the trace A :f d%  costiw(7— '8/2)]74 (K) (34)
in the partition function, one carfsee, e.g., Ref[14] for # o) (2md coshpw/2) "~
thermal gauge theory and] for the gauge-theory functional
Schralinger equatiopintroduce a projector which is an in- where A ,(k) is the Fourier transform of the fieldl,(x)
tegral over all appropriate-dimensional gauge transforma- \ynich is'the argument of the density matrix. Repegting the
tions into the functional integrals. Since small gauge ”ansarguments of Sec. 11 B then shows that the thermal propaga-
formations are generated by tor for the gauge theory is again related to that of the scalar
theory by a factor ob,,, .
_ : d E The free term of the density matrix, constructed analo-
2{AGO]) exp{J d xTr(AD,E,)} 29 gously to the scalar field density matrisee Eq.(20)], is
found to contain the Feynman gauge-fixing terndidimen-
whereE; is the electric fieldandi is ad-dimensional inde)  sions, as expected. As mentioned above, it is also necessary
one sees the well-known fact that gauge invariance is thé include periodic ghost contributions whose construction is
same as imposing Gauss’ law on the physical states occuentirely parallel to that of the scalar fields discussed above.
ring in the partition-function trace. As Reff14] shows, in-  Needless to say, the whole procedure can be carried out in
serting the projector any gauge, but certainly the simplest presentation of the
technigue is in the Feynman gauge.
We will postpone applications of this formalism in gauge
PEJ [DATO{A(X)} (300 theories to future work, and now turn to a simple application
in a scalar field theory.

into the trace defining the partition function shows that the
gauge partition function can be represented as a functional IV. APPLICATIONS TO SCALAR THEORIES
integral over alld+1 components oA, with strictly peri-
odic boundary conditions, just as for the scalar case:

The results of Sec. Il provide us with a constructive
method for deriving a DREA that can be interpreted as
equivalent to the Landau ‘“coarse-grained free energy” of
the original microscopic theory. Th& dependence of this

. . . . . . . free energy can be derived order by order. As long as we
After inserting the projectoP into the partition function, this keep a cutoffior use some other regularization methade

quantity has a factor of the volume of the gauge transformag ., 1o ceed to compute correlations in the same manner as

tions integrated over. The usual Faddeev-Popov gauge-fixing, »n ordinary statistical mechanics problem. The renormal-

procedur_e must be applied to isolate .th's factor, subject @ ation required to obtain physical quantities can performed
one _prowso..'l_'hese gauge tra_tnsformatpn; f"”St obey a Pet the very last step, and will reflect the ultraviolet behavior
odicity condition (which is simply periodicity of gauge- ot e original theory. On the other hand, the physical quan-
fixing ghosts: tities themselves will be those of @dimensional theory
whose statistical weights are dictated by the exponential of
U(B,x)=UcU(0x) (32 our reduced action.
For practical applications, it is convenient to use the re-
duced theory not only because it reduces the number of di-
“At least for so-called small gauge transformations, without topo-mensions, but also because it allows us to make contact with
logical properties; we will not discuss what happens with largethe vast literature on statistical mechanics. In this section, we
gauge transformations in this paper. will illustrate how this comes about.

AL(BX)=A,(0X). (31
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A. The DREA for ¢* theory B. The phase transition ind=2

In order to compute correlations, we need not literally go  We will illustrate at the one-loop level how the concept of
through the steps described in Sec. Il of adding souwieesl  dimensional reduction via the density matrix may be used to
integrating over both the; and ¢ fields, followed by Leg- study the phase structure ¢f theory, as an example of a
endre transformation, to actually find the DREA. A minor physical application. We will not be concerned with the fact
shortcut consists of obtaining the Feynman rules whickthat a one-loop calculation may not be an accurate descrip-
emerge as we match thg integrations with they integra-  tion as we approach a phase transition, but will use this as an
tions, resulting in a cancellation of ultraviolet divergences.illustration of the techniques to compute physical masses in
For example, if we choose to compu(ié(p,) #(p,)), p1= our scheme.. Accurate or not, we will derive a qriterion for a
—p,=p, the combination of the; and ¢ propagators which _phase transition by_demandlng that the phyS|caI_ mass, the
appear as internal lines in the various diagrams as a result §iverse of a correlation length, vanish at the transition point.
the integrations over those fields leads to a cancellation of The first nontrivial example we can treat is the case
divergences, and to the appearance of the usual thermai2. The cased=0 is just quantum mechanics, its dimen-
propagatoréth. As we will argue below, the resulting sional reduction leading to ordinary integrals, whereas the

. , . ~ ~ d=1 case can be reduced to an effective quantum-
graphically defined theory y'elds’.fé%pl) ¢(py)), the sum 0 panical problem, where no transition takes place.dror
of all graphs that would appear in#* theory ind dimen-

. ith hint L ¢ e di =2 the theory is super-renormalizable, and only requires a
sions, with each internal fine of momen orresponding  mass renormalization. It has been studied in approximations

to Gy(7,—71,k) (the thermal propagatprand with each involving both lattice computation§15,16 and analytic
external line given by theG,(p;) propagator (=1,2)  methods[17-20. Our discussion will make contact with
of Eg. (21 multiplied by the factor cos{ij(rj both. _ _ _
—BI2)] /cosh@vvpj /2), all this integrated over; and 7. We start from an interacting Lagrangean defined by
This is the field theory defin he DREA. _ 2_2\2 2 2

|?l grzjeer toesdhgv(\j?hétdtie Sgrt?};k:at?ve rules for the DREA Lile]=(Mah(e™—¢o)"~ (1/M7e". 39
are indeed the ones mentioned in the previous paragraph, Wgith realm the last term guarantees that the cutoff theory is

will consider then-point correlation in the broken symmetry phase. In order to derive the physical
~ ~ mass, we will compute the tadpole contribution to
(d(p1)- - b(Pn)) ($(p)d(—p)), and minimally subtract the equivalent term
of the T=0 theory(i.e., the tadpole i+ 1=3). The self-
=2%p) [ (D430 Bpopl 041, energy, to first order, is given by
(35

2A(B:p)=F(B;p)

N[ d% -
(m2+)\<P§)—EJ WGm(O:k)

where p[ B; ¢, ¢] is given by Eq.(11). If we expand the

interacting part, and make use of Eq$2) and(13) in the (39
integral overy, thesen-» contractions will generate graphs B sinh( Aw,)

with internal lines which correspond 8, leaving theg F(B;p)= (1+ 1, (39
and ¢ fields uncontracted. The final integral owgris to be 2 cost( pw,/2) AWy

performed with the Gaussian weightrl?!, given by Eq.
(20). This last integral will introducep-¢, ande-¢ contrac-
tions. The former yield factors like those in E@22),
whereas the latter produce factors such as

where the last term of E(q38) is the result of adding the
tadpole with internaly lines (which appears in the Appen-
dix) to the one coming from contracting the first term in Eq.
(A1) of the Appendix with thep propagator. In fact, the sum
cancels the second term in EGA4) of the Appendix, re-
costiw, (7= B/2)] storesr-translation invariance, and eliminates the 2 di-
cosh w, /2) (36) vergences explicitly shown in Eq6A5)—(A7).

! We now choose& ,(B;p)=0 for B— so thatm is the

physical mass parameter of the zero-temperature theory.

for le_’ .-+ . Now, the sum'of Eqs(22) and (23 gVes  gince F—(1Mw,), we may infer theA dependence to be
I?q; (24); to every -, contraction there is a corresponding attributed to\ ¢ in order to eliminate thd =0 divergence.

¢-¢ contraction; and their weights are identical, as theyUsing the relation
come from thep? graphs, withp = ¢+ 7. All this shows that
we shall have the graphs @f*(x) theory, withGy, internal 1 B i+ 1
propagators, arld external I|nes.g|ven by E6), with the 7 2wytanh(wiB/2) 2wy, (eVhf—1) '
dependences db, and Eq.(36) integrated over.

In the sequel, we will give an explicit example of how this which splits theT=0 andT+# 0 parts of the last term of Eq.
works by examining the case of brokert theory and per- (38), andw,dw,=kdk, we find that the divergence goes like
forming a first order calculation. A, whereas the finite remaind&z contributes

(~3¢(pj)

(40)
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AT difficult to calculate than the density matrix, since as an ef-
ER:EIH(l_e_m/T)- (41)  fective action it has infinitely many terms involving all the
Green'’s functions of the full theory. We have discussed here
the graphical construction of the DREA correlations at the
one-loop level. It is clear that dressed-loop technidue®l]
apply for the DREA just as they do for any effective action;
AT this allows for non-perturbative phenomena such as phase
m?=——In(l—e ™), (42) transitions to be investigated with the DREA. For example,
corrections to the thermal propagaf®g,(7,— 71,k) can be
formally summed so that the DREA is expressed entirely in
terms of the dressed thermal propagator.
T) We saw that one important difference between the DRFT

The T-dependent correlation length=(m?+3g) Y2 be-
comes infinite whenever obeys

which, for T>m, becomes

AT

2
=—-In
4ar

m —. (43)  and the DREA theory is that the DRFT may have ultraviolet
m divergences which are not inherent in the finiterersion of

the originald+ 1 theory. These appear as finite and calcu-
lable terms, generally involving i, in the DREA theory
and become the DRFT divergences at infinite temperature.
We have studied an example of such divergences indthe
=2+1 ¢* model, studied by Einhorn and Jor{ds8] using

. . - the DRFT. A one-loop mass divergence in the DRFT is re-
The discussion above has centered on rules for finding thé:aced by a finite I term in the DREA theory. A very

DREA, or equivalently the matrix elements defined by the". | h tak | o241 Abeli
DREA. Once the DREA has been found, the whole theory jomiiar tE enominon Dangi' G.Lage th non- el I?jnt
known and no further work is necessary. However, it iggauge theory, wnose gauge theory coupied to

easier, in principle at least, to calculate the density matnix an adjoint scalatthe original time component of the gauge

; : ; . tentia). This scalar in the DRFT has a logarithmic mass
the corresponding actio®; of Eq. (11)] by only integratin PO g -
over the npfields,gpostponing t?]eﬁ integ;/ratio>r/15 toga Iatgr divergence which is actually a Thterm at finite temperature,

step, such as numerical integration of the theory defined bgﬁ/;algrl;l::a;eclialosng \?s?ro itr)l}[/er[;gi?wkérﬂozll. i-r:huem;cé?;gt:é?r:c the
Sp on a lattice. In such a case there will remain spurious 9 play y g 9

ultraviolet divergences, which must go away when matrixf[ranSItlon fromd=2+1 gauge theory at zerd to the

elements are computed via thie functional integrals. This infinite-temperature limit, since thé=2+ 1 theory has zero

can be compared to a theory defined on a two—dimensionaﬁtring tensipn for adjoint and sim!lar. Wilsqn Ioops. but the
lattice. Its parameters depend on the physiaind on the corresponding DRFT has non-vanishing string tension for all

cutoff (i.e., the lattice spacingWe may then obtain the tem- representations of the Wilson loop. This question is under

perature where symmetry restoration occurs as a function o%tUdy by two of ug23]. There will be other important uses

the cutoff. Removing the cutoff, so as to recover the con—Of the DREA in investigations of =3+1 gauge theories as

tinuum limit, will yield the physical transitiofl of the con- well (see, e.g., Re[.24]). .

tinuum theory. Tze calculgtign we have shown corresponds We haye emp'hasmed that the DREA is capable of an-

to a one-loop realization of this process; according to Refs>Verng, In prmmp_le_z at Iea_st, questions a_bout cond_ensed-

[16] and[18], this is not terribly bad numerically. matter phase transitions which are not within the purview of
the usual renormalization-group approach to second-order

phase transitions, such as the value of the phase transition

V. CONCLUSIONS temperature. Evidently, one aspect of the extension of the
We first introduced the notion of using theegative loga- DREA to a dressed-loop expansion will continue to be the

rithm of) the density matrix as defining an actig which ~ US€ of the renormalization group, so that one hopes to get

would be a useful replacement for the usual DRFT, since ipoth critical expon_ents and phase-transition temperatures
would not only be a theory in a reduced dimensiaht( from the DREA. Ultimately one hopes that the DREA can be

—.d) but it would also be defined at all temperatures andruncated to relevant and marginal operaios purposes of
might furnish a workable definition of the Landau-Ginzburg C'itical exponentgsplus perhaps one or two more terms in the

free energy, complete with information on phase transitiorPREA expansion.

temperatures coming from integrating over the Euclidean Finally, we have noted but not explored at all the fact that
time dynamics. It then appeared that the acti& could the extension of the techniques used here for the density

have spurious ultraviolet divergences not allowed in the par[’natrix can be straightforwardly extended to objects like the

tition function and its matrix elements, since these spurioudVigner distribution function, which amounts to calculating
divergences were absent in the=0 theory. We showed that _off-dlagonal matrix elements. This will be further explored
one could define a dimensionally reduced effective action'” subsequent papers.
the DREA, which was free of these spurious divergences as
a result of cancellations between functional integrals over
fields defining the Euclidean time evolution and functional The authors acknowledge support from CN@gA.A.C.

integrals over the argument fields&f . The DREA is more and A.J.S, FAPERJ and FUJB/UFRJC.A.A.C), and

There is always a critical temperaturg satisfying this equa-
tion for any positive value oh, with T;>m if A<m. We
emphasize that E¢38) is exactly the same physical mass as
occurs in the DREA as calculated fro#j 8;J], as claimed

in Sec. IVA.
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APPENDIX

Let us compute the contribution to the reduced action i

first order ford=2, in order to illustrate how divergences
appear. From expressidt7), we have

"4 L1\ 02
LQD (1)+GLG77(1.1)<P (D

A
pl[ﬂi¢,¢]=—ﬂpo

. (A1)

+ [ ()

The last term in Eq(A1) is independent ofp. The term in

@2 corresponds to a tadpole graph which we will cal).
Then, using Eqs(7), (8), and(16) we arrive at

Tnzf

1(p.K)= J?d rcost[wy(7— B/2)]

d

d%  d(p)d(—p)
i AP (A2)

(27)9 cost(Bw,/2)

><sint(wkr)sinr'[wk(ﬂ— 7)]

WisinH Bwy) (A3

The integral overr is straightforward. It is convenient to use
the identity

PHYSICAL REVIEW D 64 025021

sinh(wy 7)sinj wy (8— 7)]= cosi( Bw,/2)
—cosH[wy(7—BI2)],

(Ad)
nd to splitl ,, into a sum of three contributiont; , 17, and
17 . Explicitly,
, _ BLL+sinh(Bwp)/(Bw,)]

b= 4w, tanH Bw,/2) (A5)

I//__i_ Sinr[B(Wp+Wk)]

7 aw? 8wy (Wt wi)sinh(Bwy)
sinf B(w,— wy)]

BWi (W~ Wi SInf( By (A9

m B[ 1+sinh(Bw,)/(Bwp) ]
= 4w, sinh( Bwy) ' (A7)

In d=2, we usew,dw,=kdk. The integrals go fronim| to
(A2+m?)!2 The contribution from | goes likeA, the one
from I’ goes like InA, whereas the one fror] is finite as
A—o. In fact, the two contributions that diverge for large
correspond to the tadpolesd 3 andd =2, respectively, if

we usek?®+m? as the inverse propagator. Although one
might feel tempted to use these two types of subtractions to
arrive at finite results, this is not what has to be done as

shown in Sec. Il B.
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