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Alternative dimensional reduction via the density matrix
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We give graphical rules, based on earlier work for the functional Schro¨dinger equation, for constructing the
density matrix for scalar and gauge fields in equilibrium at finite temperatureT. More useful is a dimensionally
reduced effective action~DREA! constructed from the density matrix by further functional integration over the
arguments of the density matrix coupled to a source. The DREA is an effective action in one less dimension
which may be computed order by order in perturbation theory or by dressed-loop expansions; it encodes all
thermal matrix elements. We term the DREA procedurealternative dimensional reduction, to distinguish it
from the conventional dimensionally reduced field theory~DRFT! which applies at infiniteT. The DREA is
useful because it gives a dimensionally reduced theory usable at anyT including infinity, where it yields the
DRFT, and because it does not and cannot have certain spurious infinities which sometimes occur in the
density matrix itself or the conventional DRFT; these come from lnT factors at infinite temperature. The
DREA can be constructed to all orders~in principle! and the only regularizations needed are those which
control the ultraviolet behavior of the zero-T theory. An example of spurious divergences in the DRFT occurs
in d5211w4 theory dimensionally reduced tod52. We study this theory and show that the rules for the
DREA replace these ‘‘wrong’’ divergences in physical parameters by calculable powers of lnT; we also
compute the phase transition temperature of thisw4 theory in one-loop order. Our density-matrix construction
is equivalent to a construction of the Landau-Ginzburg ‘‘coarse-grained free energy’’ from a microscopic
Hamiltonian.
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I. INTRODUCTION

The study of relativistic field theories at finiteT @1# and/or
density@2#, in or out of equilibrium@3#, is quite mature but
continues to be of great interest, for example, in connec
with BNL. Relativistic Heavy Ion Collider~RHIC! and
CERN relativistic heavy-ion collision experiments search
for the QCD transition from a hadronic to a quark-glu
plasma phase, a possible color-flavor locking transition t
superconducting phase of QCD at finite particle density,
transition to a disoriented chiral condensate of pions t
could provide an explanation for the so-called Centa
events observed in cosmic rays, and cosmological transit
@4#. There is an equally extensive body of literature on no
relativistic systems at finiteT and so forth, the preponder
ance of which deals with critical phenomena@5#.

In this paper we will be concerned with the description
all these systems via the density matrix and a related dim
sionally reduced effective action; the methods used can
easily extended to the closely related Wigner distribut
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function.1 We begin by finding rules for describing the de
sity matrix as the negative exponent of a dimensionally
duced actionSD . These rules follow from a microscopi
theory by the usual procedure of integrating over Euclide
time evolution. This action, however, is not our final go
because it may contain spurious ultraviolet divergences
spurious divergences do occur, they will also occur in
usual dimensionally reduced field theory~DRFT! arrived at
by the standard procedure@6# of going to infiniteT. So while
it is interesting to know how to construct the density mat
systematically, it is of less use than the ultimate result of
procedure, which is a dimensionally reduced effective act
~DREA! constructed by further functional integration ov
the density matrix, coupled to sources. The DREA has
spurious divergences and contains in it all possible ther
matrix elements which could be constructed by conventio
means. The procedure adopted here is a natural extensio
a construction used@7# in the functional Schro¨dinger equa-
tion.

In the case ofd5011 theories~quantum mechanics! in
many situations the integral over the Euclidean time evo
tion can be done explicitly@8–10#, yielding integrals which

er-1The density matrix is a diagonal matrix element; the Wign
distribution function is effectively an off-diagonal matrix elemen
The reader will see that it is quite straightforward to extend
density-matrix rules to the Wigner distribution function; we will n
discuss the Wigner distribution function rules in detail here.
©2001 The American Physical Society21-1
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are complicated functions ofT; in field theory it is, of course,
impossible to do the corresponding Euclidean time integ
exactly. But one must expect similarly complicated dep
dences onT in the field-theoretic effective action, and the
dependences will be important in estimating such proper
of thermal field theories as phase transition temperature

For relativistic systems it is common to use the DRF
which is appropriate in principle only for infiniteT, at tem-
peratures very high compared to typical energies of the z
T field theory. The DRFT may~we will study an example!
have divergences which are not present at any finiteT; while
this does not impair the essential correctness of the dim
sionally reduced theory it does introduce arbitrary para
eters which should not be there. The point is that at anyT,
however large, a field theory may have no ultraviolet div
gences not already contained in the zero-T field theory; this
well-known consideration follows from the Feynman rul
for finite-T field theory. But sometimes a dimensionally r
duced field theory does have ‘‘wrong’’ divergences~which
must, in fact, be absent in physical quantities! which inter-
fere with the use of the DRFT as a good approximation
large but finiteT. An example is finite-Td5211w4 theory,
where the dimensionally reduced theory is justd52w4

theory. This latter theory has a one-loop logarithmic m
divergence which is absent in thed5211 theory, and we
will give rules for the density matrix for thed5211 theory
which automatically remove this divergence~replacing it by
a finite and calculable factor of lnT).

For nonrelativistic systems there are corresponding pr
lems of renormalization, but they are generally bypasse
the study of second-order phase transitions. In studying s
transitions, the need for ultraviolet renormalization and
fact that one has to start from a microscopic theory can
relegated to secondary status, because one is concerned
with long-range properties. Most treatments of nonrelativ
tic systems exhibiting phase transitions, such as in conde
matter physics, are not concerned with a detailed mic
scopic knowledge of the Hamiltonian, but rather with a u
versal description via the renormalization group that captu
the essence of the long-range collective behavior respon
for the transition and so renormalization is not intrinsica
required. The use of the renormalization group in such s
tems is a tool to extract the long-range behavior: it provid
a way of eliminating short-range scales in favor of collect
long-range parameters by integrating out short-dista
scales to obtain effective Hamiltonians, and investigating
appearance of fixed points associated with criticality. N
those fixed points, it allows for the calculation of the exp
nents that characterize the critical behavior of physical qu
tities. The theories studied can be~and often should be! de-
fined on a lattice; whether this is the correct microsco
description or not makes no difference to the long-ran
properties. In other words, the tools used to study long-ra
behavior are not capable of calculating parameters suc
phase-transition temperatures, whose values depend on
nomena at shorter distances and in particular on the deta
functional dependence of the Hamiltonian onT. This Hamil-
tonian is typically a Landau-Ginzburg phenomenologi
‘‘coarse-grained free energy,’’ whose parameters’ dep
02502
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dence onT and, possibly, on external parameters is cho
purely phenomenologically; it is not derived from a fund
mental picture.

This paper addresses the question of how actually to
rive the DREA, starting from the microscopic Hamiltonia
that describes a field theory. This question is essenti
equivalent to asking how to find the Landau-Ginzbu
coarse-grained free energy, as the dimensionally redu
theory whose matrix elements are those of the DREA its
One can thereby replace the phenomenology of the Land
Ginzburg free energy by explicit calculation of, say, theT
dependence of this free energy. In the case we study in
paper the underlying microscopic theory is considered to
known ~a relativistic quantum field theory!, and the density
matrix and the DREA are to be found. We will consid
scalar and gauge field theories; nothing much new is fo
by studying fermions.2 Just as with any effective action, th
DREA contains in its infinitely many terms all the~one-
particle irreducible! matrix elements which can be con
structed by tracing time-independent operator products w
the density matrix. But actually constructing the density m
trix itself is not as useful, since this object contains the sa
spurious infinities that the DFRT contains.

The technical reason why these spurious infinities occu
that the propagators to be used in integrating over Euclid
time dynamics to form the density matrix are not the sta
dard thermal propagators, and these non-standard prop
tors do lead to spurious ultraviolet divergences. However
constructing the partition function from the density matr
the density-matrix propagators combine with integrati
over certain source terms involving the time-independ
fields which are the argument of the density matrix and c
cellations occur; the result is equivalent to using the us
thermal propagators. As a result, the partition function c
only involve ultraviolet divergences~and subsequent renor
malization! of the T50 (d11)-dimensional theory. The
same combination of propagators and source terms occu
constructing the DREA, which therefore has only theT50
divergences.

We note here some general properties of the DREA: AT
large compared to any mass scalem in the original zero-
temperature theory,local terms3 in the DREA with large
powers of its argumentf(x) will be accompanied by large
negative powers ofT and vanish at infinite temperature; th
is the way that local terms in the DREA yield the DRFT. A
T→0, there will also be factors like exp(2m/T) along with
these powers ofT, and the zero-temperature limit is wel
defined. In this limit the DREA is precisely the~negative
logarithm of! the ground-state Schro¨dinger wave functional
@7#. The point which is of particular interest in the prese
paper is the appearance of marginal terms depending onT

2Except possibly for topological effects involving fermions, whic
we will not discuss here.

3Local terms in an effective action are candidates for the action
a field theory which could have the DREA as its effective actio
Non-local terms correspond to one-particle irreducible Gree
functions.
1-2
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ALTERNATIVE DIMENSIONAL REDUCTION VIA TH E . . . PHYSICAL REVIEW D 64 025021
which lead to the unwanted divergences in the DRFT at
finite temperature.

The paper is organized as follows: Sec. II defines
density matrix for a scalar field theory, shows how to co
pute the reduced theory perturbatively, discusses how its
traviolet behavior is related to the renormalization of t
original theory, and outlines the construction of the DRE
Section III discusses some general questions of gauge in
ance of the DREA for gauge theories. Section IV illustra
how the dimensional reduction obtained via density matri
can be used in practical applications: a modified redu
theory ~defined by its Feynman rules! is proposed, which
should yield the same results as the one derived from
density matrix, and a perturbative discussion of the ph
transition for a scalar theory in two spatial dimensions
presented. This last application is intended to emphasize
our approach reduces the discussion of the phase transiti
the study of an~almost! ordinary system ind dimensions,
plus thed11 subtractions required by the usual renorm
ization procedure.

II. THE DENSITY MATRIX FOR SCALAR THEORIES

The partition function for a self-interacting scalar fie
theory in contact with a thermal reservoir atT (b51/T) can
be written as a functional integral over the density matrixr:

Z~b!5E @Df#r@b;f,f#, ~1!

r@b;f,f#5 R @Dw#e2S[w] , ~2!

S@w#5E
0

b

dtE ddx~LF@w#1LI@w#!, ~3!

LF@w#5
1

2
$~]tw!21~¹w!21m2w2%. ~4!

Here LF and LI are, respectively, the free and interacti
Lagrangeans. We will be interested inw4 interactions~both
broken and unbroken!. The fieldf(x) is the boundary value
of w(t,x) at botht50 andt5b, that is, the integralr is to
be performed over allw that satisfy the boundary condition
w(0,x)5w(b,x)5f(x). The density matrix is a functiona
of f only. The remaining integral over thef ’s is unre-
stricted ~except for the vacuum boundary conditions th
must be imposed at spatial infinity!.

We may write r5e2SD, SD being a certain
T-dependent dimensionally reduced action. This action is
the DREA, whose construction needs further discussion.
field f which is the argument ofSD depends only on thed
spatial coordinates; all thet dependence of the originald
11 theory has been eliminated through thew integration.
The fieldsf(x) are the natural degrees of freedom of t
reduced theory. Any thermal observable can be constru
by integrating over the fieldsf(x) an appropriate function o
f weighted with the corresponding diagonal element of
density matrix. The Euclidean time evolution can be view
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as an intermediate step which calculates the weights. In
rying out the functional integrals overf, one would notice
certain cancellations between divergences occurring in
construction ofSD and divergences in the functional integra
These cancellations remove the spurious ultraviolet div
gences~those not occurring in theT50 theory!.

To complete the construction of the DREA it is only ne
essary to introduce further sourcesJ(x) coupled to the field
f(x) through the usual term*Jf. The logarithm of the re-
sulting functional integral overf is then Legendre trans
formed to yield the DREA.

Note that neither the density matrix nor the DREA is,
general, of the forme2bH with H being independent ofb as
in ordinary statistical mechanics; theirb dependence is fa
more complicated~which justifies the ‘‘almost ordinary’’ of
the previous section!. This had already been pointed out
the analogous discussion of the transfer matrix carried ou
Ref. @11#. The density matrix provides a direct but alternati
way of deriving a dimensionally reduced theory. We w
proceed to construct it perturbatively, and indicate where
propriate the generally straightforward generalization
dressed-loop expansions.

A. The perturbative construction for scalars

The integral over the fieldsw in Eq. ~2! has to respect the
boundary conditions. For the free theory, the integral is q
dratic and can be computed exactly by the saddle-p
method. We must solve the free field equation of motio
subject to the boundary conditions

~2]t
22¹21m2!w~t,x!50, ~5!

w~0,x!5w~b,x!5f~x!. ~6!

Fourier transforming inx leads to an ordinary differentia
equation. The solution satisfying the boundary conditions

ŵ~t,x!5E ddk

~2p!d

cosh@wk~t2b/2!#

cosh~bwk/2!
f̃~k!eik•x ~7!

f~x![E ddk

~2p!d
f̃~k!eik•x, ~8!

wherewk51@k21m2#1/2. It depends functionally onf(x).
Its t dependence, however, is completely specified.

We now expandw aroundŵ, treating it as a thermal back
ground for the free theory:

w~t,x!5ŵ~t,x!1h~t,x!, ~9!

h~0,x!5h~b,x!50. ~10!

~Similarly, thew propagator is the sum of theŵ propagator
and theh propagator.! As usual, the fluctuationh has to
vanish at t50 and t5b becauseŵ already satifies the
boundary conditions. The expression for the density ma
element becomes
1-3
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r@b;f,f#[e2SD5e2SF[ ŵ] R @Dh#e2SF[h] 2SI [ ŵ1h] ,

~11!

whereSF andSI refer to free and interacting actions, respe
tively, and the path integral sums over fluctuations that v
ish att50 andt5b.

Note that Eq.~11! is exactly of the same functional form
as given for the functional Schro¨dinger equation in Ref.@7#;
it is a (d11)-dimensional functional integral~with an extra
factor exp2SF@ŵ#), with sources depending onŵ through the
interaction termSI@ŵ1h#. The free propagators used
evaluate the functional integral differ from those of the fun
tional Schro¨dinger equation, but the structure is exactly t
same, and so the remarks made in Ref.@7# concerning the
extension of perturbation theory to dressed-loop expans
apply without change to the present case. We therefore n
not repeat those remarks here.

For the free theory,SI50 and we can compute the inte
gral exactly to obtain the fluctuation determinant~to power
21/2) using the techniques of Refs.@8–10#. For the interact-
ing theory, we first perform a functional Taylor expansion
the interacting action around the thermal background, so
to obtain a series~or a polynomial in thew4 case! in powers
of h. Then, we expand the exponentiale2SI in a power se-
ries. The integral over fluctuations will Wick-contract th
various products ofh ’s which appear multiplied by deriva
tives of the interacting Lagrangean taken at the thermal ba
ground. As a consequence, one is led to compute

^h~t1 ,x1!•••h~tk ,xk!&

[DF
21/2 R @Dh#e2SF[h]h~t1 ,x1!•••h~tk ,xk!.

~12!

DF stands for the fluctuation determinant of the free theor
~infinite! normalization constant that depends onb. The re-
sult is simply

^h~t1 ,x1!•••h~tk ,xk!&

5(
P

Gh~t i 1
,xi 1

;t i 2
,xi 2

!•••Gh~t i k21
,xi k21

;t i k
,xi k

!,

~13!

if k is even, and zero otherwise.(P denotes sum over al
possible pairings of the$ i j%. There remains to compute th
propagatorGh , which must satisfy

~2]t
22¹21m2!Gh~t,x;t8,x8!5d~t2t8!dd~x2x8!,

~14!

Gh~0,x;t8,x8!5Gh~b,x;t8,x8!50, ~15!

because of the vanishing boundary conditions for the fl
tuations. If we Fourier transform the spatial coordinates,
obtain an ordinary differential equation which leads
@7–10#
02502
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Gh~t,x;t8,x8!

5E ddk

~2p!d

sinh~wkt,!sinh@wk~b2t.!#

wk sinh~bwk!
eik•(x2x8),

~16!

wheret,(t.)[min(max)$t,t8%. Note that this propagato
is not t-translation invariant. Formally, we have

r@b;f,f#5r0@b;f,f#1 (
m51

`

rm@b;f,f#, ~17!

r05DF
21/2e2SF[ ŵ] , ~18!

rm5r0F ~21!m

m! (
n1 , . . . ,nm50

` S )
j 51

m E
j

L I
(nj )@ŵ#

nj !
D

3^hn1~1!•••hnm~m!&G , ~19!

where * j[*0
bdt j*ddxj , the argument ofh( j ) stands for

(t j ,xj ), andL I
(nj )@ŵ# is thenj th derivative ofLI , computed

at the thermal backgroundŵ. Expression~17! depends func-
tionally on f throughŵ.

The spatial integrations should be converted to mom
tum space, where the propagator is diagonal@}dd(k82k)#.
Performing the integral overk will lead to ultraviolet diver-
gences. Therefore, we introduce a momentum cutoffL. It
will be convenient to think of such a cutoff as analogous
an inverse lattice spacing in a lattice regularized version
the theory. In the cutoff theory, we can compute each term
the series and obtain theT and cutoff dependence of th
various coefficients of a functional expansion inf(x) @or
f̃(k)#. The logarithm of Eq.~17! will then be2SD , a cutoff
action which will enter further functional integrals ove
f(x).

B. The ultraviolet behavior

The construction of the previous section allows us to fi
a cutoff reduced actionSD order by order in perturbation
theory. We will now specialize our discussion toLI
5lw4/4!. As L→`, the reduced theory exhibits the ultra
violet divergences of bothd11 andd dimensions~the Ap-
pendix shows this explicitly ford52). When computing
correlation functions, the former are to be eliminated throu
the usual renormalization procedure, which requires
same subtractions as in theT50, (d11)-dimensional, origi-
nal theory. Thed-dimensional divergences, however, are
consequence of failing to complete at the density-ma
stage the two-step process of integrating over the fie
h(t,x) followed by integration over thef(x) fields which
are the arguments of the density matrix. Theh-generated
divergences should automatically cancel upon doing the fi
integration over the remainingf(x) which is necessary to
find the partition functionZ(b). Indeed, this is what hap
pens, as
1-4
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we will show. There is no reason that these divergen
should be absent fromSD itself.

We can find these cancellations by calculatingZ(b). Af-
ter having done the integration over the fluctuation fieldsh,
we still have to integrate~in momentum space! over the re-
mainingf̃(p) in order to compute the vacuum bubbles in t
expansion~17!. The free part of the reduced actionSD for
f̃(p) is given bySF@ŵ#. An integration by parts, and use o
the equation of motion satisfied byŵ lead to

SF@f#5
1

2E ddp

~2p!d
f̃~p!@2wptanh~bwp/2!#f̃~2p!,

~20!

which defines the freef̃ propagator as

G̃f~p,p8!5~2p!ddd~p1p8!@2wptanh~bwp/2!#21.
~21!

This propagator will be used to contract any twof̃ fields. In
the language of Feynman graphs, any line representin
contraction of the correspondingŵ fields appearing in Eq
~11! will have a factor:

cosh@wk~t2b/2!#

cosh~bwk/2!
@2wktanh~bwk/2!#21

3
cosh@wk~t82b/2!#

cosh~bwk/2!
. ~22!

For contractions ofh fields, we must use theG̃h propagator.
Any line representing such a contraction will have a fact

sinh~wkt8!sinh@wk~t2b/2!#Q~t2t8!

wk sinh~bwk!
1@t8↔t#.

~23!

Note that this not the usual thermal propagator. However,
combination of the integration overh and f̃ together leads
to a cancellation of the ultraviolet divergences appearing
the separate integrals, as we see by rewriting the produc
terms of sums of hyperbolic cosines of arguments (t82t)
and (t81t1b). The dependence on the latter cancels wh
we add Eq.~22! to Eq.~23!. The sum may be written as@12#

G̃th~t82t;k![
cosh$wk@b/22ut82tu#%

2wk sinh~bwk/2!

5
1

b (
n52`

`
cos@2pnT~t82t!#

~2pnT!21wk
2

. ~24!

It is worth noting that the first form ofG̃th can be written in
a familiar form which Pisarski@13# has advocated for its
practicality in calculations:

G̃th~t82t;k!5
1

2wk
S e2wkut82tu

12e2bwk
2

ewkut82tu

12ebwk
D . ~25!
02502
s

a

:

e
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Clearly, adding theh and f lines reconstructs the therma
~finite T) propagator of the (d11)-dimensional theory,
which is t-translation invariant. Every graph in the expa
sion in vacuum bubbles of the original theory with the prop
gator~24! may have each of its lines replaced by the sum
a h line plus af line. This will generate all possible com
binations ofh andf lines which appear the~cutoff! reduced
theory. This proves that integrating the reduced theory o
f will reproduce the results of perturbation theory to
orders, and that the only subtractions that are required
those of theT50 theory ind11 dimensions.

The final step to the DREA is very easy: Instead of co
structing the unadorned partition function by functional in
gration, as in Eq.~1!, we construct the partition function in
the presence of a currentJ(x):

Z@b;J#[exp~2W@b;J# !5E DfexpF2SD

1E ddxJ~x!f~x!G . ~26!

Now all the integrations over bothh andf have been done
so the same cancellations as in the partition function its
still occur. One then only needs to Legendre-transform fr
W@b;J# to the effective actionG@b;^f&#; this, the DREA, is
free of spurious ultraviolet divergences.

Before applying these considerations to a specific fi
theory, we discuss how the general principles apply to ga
theories.

III. DENSITY MATRIX FOR GAUGE THEORIES

Begin by introducing notation. We use the standard a
Hermitean matrix form of the gauge potentials, with the co
pling constantg absorbed in the potential:

gAm~x!5
la

2i
Am

a ; Tr lalb52dab . ~27!

Here thela/2 are the group generators in conventional n
malization. Gauge transformations act onAm via the opera-
tion of unitary matricesU:

Am8 5UAmU211U]mU21. ~28!

It will sometimes be convenient to denote the time comp
nent of the (d11)-dimensional potentialA0 as an adjoint
scalar~in d dimensions! field F. Greek indices refer to the
(d11)-dimensional theory and Latin indices to the dime
sionally reduced theory. The potentialAm depends on botht
andx. There is a corresponding potentialAm depending only
on x which is the argument of the density matrix or of th
DREA; this can also be written as (Ai ,F).

The extension of our formalism to gauge theories requ
some attention to questions of gauge invariance and ga
fixing. The partition function can be written as the trace
exp(2bH) where H is the microscopic time-independen
Hamiltonian of the gauge theory, and the set of basis fu
tions for the trace can be taken as the eigenfunctions of
1-5
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functional Schro¨dinger equation. SinceH commutes with the
generator of time-independent gauge transformations,
basis may be chosen to be invariant under such ga
transformations.4 Therefore all matrix elements~of gauge-
invariant operator products! found by tracing over the den
sity matrix are gauge invariant. But this does not necessa
mean that it is convenient to calculate or present the den
matrix as completely gauge invariant; it proves more con
nient to present it in a form where there is a gauge-fix
term. Thisd-dimensional gauge-fixing term is inherited fro
a (d11)-dimensional gauge-fixing term used to facilitate t
gauge-theoretic analogs of the manipulations of the prev
sections. It turns out that the Feynman gauge is the simp
to use, and we will do so below.

The next question to discuss is that of periodicity of t
gauge potential; in principle, periodicity need only be ma
tained up to a gauge transformation. Because of the unde
ing gauge invariance of the basis used to calculate the t
in the partition function, one can~see, e.g., Ref.@14# for
thermal gauge theory and@7# for the gauge-theory functiona
Schrödinger equation! introduce a projector which is an in
tegral over all appropriated-dimensional gauge transforma
tions into the functional integrals. Since small gauge tra
formations are generated by

V$L~x!%5expF i E ddx Tr~LDiEi !G ~29!

whereEi is the electric field~andi is ad-dimensional index!,
one sees the well-known fact that gauge invariance is
same as imposing Gauss’ law on the physical states oc
ring in the partition-function trace. As Ref.@14# shows, in-
serting the projector

P[E @DL#V$L~x!% ~30!

into the trace defining the partition function shows that
gauge partition function can be represented as a functi
integral over alld11 components ofAm with strictly peri-
odic boundary conditions, just as for the scalar case:

Am~b,x!5Am~0,x!. ~31!

After inserting the projectorP into the partition function, this
quantity has a factor of the volume of the gauge transform
tions integrated over. The usual Faddeev-Popov gauge-fi
procedure must be applied to isolate this factor, subjec
one proviso. These gauge transformations must obey a
odicity condition ~which is simply periodicity of gauge
fixing ghosts!:

U~b,x!5UCU~0,x! ~32!

4At least for so-called small gauge transformations, without to
logical properties; we will not discuss what happens with la
gauge transformations in this paper.
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whereUC is an element of the center of the gauge grou
Non-trivial elements of the center are important for discu
ing such non-perturbative phenomena as center vortices
confinement, but this will not be taken up here.

Now we can show that using Feynman gauge allows fo
trivial generalization of the construction of the density m
trix for scalars. In this gauge, the density-matrix propaga
Gh(t,x;t8,x8)mn is very simply related to the scalar prop
gator of Eq.~16!:

Gh~t,x;t8,x8!mn5dmnGh~t,x;t8,x8!. ~33!

Similarly, the gauge potentialÂm(b,x)5(Ai ,F) which
enters into the construction of the densitiy matrix ana
gously to the fieldŵ(b,x) of Eq. ~7!, is just

Âm5E ddk

~2p!d

cosh@wk~t2b/2!#

cosh~bwk/2!
Ãm~k! ~34!

where Ãm(k) is the Fourier transform of the fieldAm(x)
which is the argument of the density matrix. Repeating
arguments of Sec. II B then shows that the thermal propa
tor for the gauge theory is again related to that of the sc
theory by a factor ofdmn .

The free term of the density matrix, constructed ana
gously to the scalar field density matrix@see Eq.~20!#, is
found to contain the Feynman gauge-fixing term ind dimen-
sions, as expected. As mentioned above, it is also neces
to include periodic ghost contributions whose construction
entirely parallel to that of the scalar fields discussed abo
Needless to say, the whole procedure can be carried ou
any gauge, but certainly the simplest presentation of
technique is in the Feynman gauge.

We will postpone applications of this formalism in gaug
theories to future work, and now turn to a simple applicati
in a scalar field theory.

IV. APPLICATIONS TO SCALAR THEORIES

The results of Sec. II provide us with a constructi
method for deriving a DREA that can be interpreted
equivalent to the Landau ‘‘coarse-grained free energy’’
the original microscopic theory. TheT dependence of this
free energy can be derived order by order. As long as
keep a cutoff~or use some other regularization method!, we
can proceed to compute correlations in the same manne
in any ordinary statistical mechanics problem. The renorm
ization required to obtain physical quantities can perform
at the very last step, and will reflect the ultraviolet behav
of the original theory. On the other hand, the physical qu
tities themselves will be those of ad-dimensional theory
whose statistical weights are dictated by the exponentia
our reduced action.

For practical applications, it is convenient to use the
duced theory not only because it reduces the number of
mensions, but also because it allows us to make contact
the vast literature on statistical mechanics. In this section,
will illustrate how this comes about.

-
e

1-6



go

or
ic

es

lt

rm

A
,

s

g
e

is

of
to

a
ct
rip-

s an
s in

a
the

int.

n-
the
m-
r
s a
ons

is
ical
to
m

-
q.

ory.

.
e

ALTERNATIVE DIMENSIONAL REDUCTION VIA TH E . . . PHYSICAL REVIEW D 64 025021
A. The DREA for w4 theory

In order to compute correlations, we need not literally
through the steps described in Sec. II of adding sourcesJ and
integrating over both theh and f fields, followed by Leg-
endre transformation, to actually find the DREA. A min
shortcut consists of obtaining the Feynman rules wh
emerge as we match thef integrations with theh integra-
tions, resulting in a cancellation of ultraviolet divergenc
For example, if we choose to compute^f̃(p1)f̃(p2)&, p15
2p25p, the combination of theh andf propagators which
appear as internal lines in the various diagrams as a resu
the integrations over those fields leads to a cancellation
divergences, and to the appearance of the usual the
propagatorG̃th . As we will argue below, the resulting
graphically defined theory yields, for^f̃(p1)f̃(p2)&, the sum
of all graphs that would appear in af4 theory in d dimen-
sions, with each internal line of momentumk corresponding
to G̃th(t22t1 ,k) ~the thermal propagator!, and with each
external line given by theG̃f(pj ) propagator (j 51,2)
of Eq. ~21! multiplied by the factor cosh@wpj

(t j

2b/2)#/cosh(bwpj
/2), all this integrated overt1 and t2.

This is the field theory defined by the DREA.
In order to show that the perturbative rules for the DRE

are indeed the ones mentioned in the previous paragraph
will consider then-point correlation

^f̃~p1!•••f̃~pn!&

[Z21~b!E @Df#f̃~p1!•••f̃~pn!r@b;f,f#,

~35!

where r@b;f,f# is given by Eq.~11!. If we expand the
interacting part, and make use of Eqs.~12! and ~13! in the
integral overh, theseh-h contractions will generate graph
with internal lines which correspond toG̃h , leaving theŵ
andf fields uncontracted. The final integral overf is to be
performed with the Gaussian weighteSF[f] , given by Eq.
~20!. This last integral will introduceŵ-ŵ, andŵ-f contrac-
tions. The former yield factors like those in Eq.~22!,
whereas the latter produce factors such as

G̃f~pj !
cosh@wpj

~t j2b/2!#

cosh~bwpj
/2!

, ~36!

for j 51, . . . ,n. Now, the sum of Eqs.~22! and ~23! gives
Eq. ~24!; to everyh-h contraction there is a correspondin
ŵ-ŵ contraction; and their weights are identical, as th
come from thew4 graphs, withw5ŵ1h. All this shows that
we shall have the graphs off4(x) theory, withG̃th internal
propagators, and external lines given by Eq.~36!, with thet

dependences ofG̃th and Eq.~36! integrated over.
In the sequel, we will give an explicit example of how th

works by examining the case of brokenw4 theory and per-
forming a first order calculation.
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B. The phase transition indÄ2

We will illustrate at the one-loop level how the concept
dimensional reduction via the density matrix may be used
study the phase structure ofw4 theory, as an example of
physical application. We will not be concerned with the fa
that a one-loop calculation may not be an accurate desc
tion as we approach a phase transition, but will use this a
illustration of the techniques to compute physical masse
our scheme. Accurate or not, we will derive a criterion for
phase transition by demanding that the physical mass,
inverse of a correlation length, vanish at the transition po

The first nontrivial example we can treat is the cased
52. The cased50 is just quantum mechanics, its dime
sional reduction leading to ordinary integrals, whereas
d51 case can be reduced to an effective quantu
mechanical problem, where no transition takes place. Fod
52 the theory is super-renormalizable, and only require
mass renormalization. It has been studied in approximati
involving both lattice computations@15,16# and analytic
methods@17–20#. Our discussion will make contact with
both.

We start from an interacting Lagrangean defined by

LI@w#5~l/4! !~w22w0
2!22~1/2!m2w2. ~37!

With realm the last term guarantees that the cutoff theory
in the broken symmetry phase. In order to derive the phys
mass, we will compute the tadpole contribution
^f(p)f(2p)&, and minimally subtract the equivalent ter
of the T50 theory~i.e., the tadpole ind1153). The self-
energy, to first order, is given by

SL~b;p!5F~b;p!F ~m21lw0
2!2

l

2E ddk

~2p!2
G̃th~0;k!G ,

~38!

F~b;p![
b

2 cosh2~bwp/2!
S 11

sinh~bwp!

bwp
D , ~39!

where the last term of Eq.~38! is the result of adding the
tadpole with internalh lines ~which appears in the Appen
dix! to the one coming from contracting the first term in E
~A1! of the Appendix with thef propagator. In fact, the sum
cancels the second term in Eq.~A4! of the Appendix, re-
storest-translation invariance, and eliminates thed52 di-
vergences explicitly shown in Eqs.~A5!–~A7!.

We now chooseSL(b;p)50 for b→` so thatm is the
physical mass parameter of the zero-temperature the
Since F→(1/wp), we may infer theL dependence to be
attributed tolw0

2 in order to eliminate theT50 divergence.
Using the relation

1

2wktanh~wkb/2!
5

1

2wk
1

1

wk~ewkb21!
, ~40!

which splits theT50 andT5” 0 parts of the last term of Eq
~38!, andwkdwk5kdk, we find that the divergence goes lik
L, whereas the finite remainderSR contributes
1-7
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SR5
lT

4p
ln~12e2m/T!. ~41!

The T-dependent correlation lengthj5(m21SR)21/2 be-
comes infinite wheneverT obeys

m252
lT

4p
ln~12e2m/T!, ~42!

which, for T@m, becomes

m25
lT

4p
lnS T

mD . ~43!

There is always a critical temperatureTc satisfying this equa-
tion for any positive value ofl, with Tc@m if l!m. We
emphasize that Eq.~38! is exactly the same physical mass
occurs in the DREA as calculated fromZ@b;J#, as claimed
in Sec. IV A.

The discussion above has centered on rules for finding
DREA, or equivalently the matrix elements defined by t
DREA. Once the DREA has been found, the whole theor
known and no further work is necessary. However, it
easier, in principle at least, to calculate the density matrix@or
the corresponding actionSD of Eq. ~11!# by only integrating
over theh fields, postponing thef integrations to a later
step, such as numerical integration of the theory defined
SD on a lattice. In such a case there will remain spurio
ultraviolet divergences, which must go away when mat
elements are computed via thef functional integrals. This
can be compared to a theory defined on a two-dimensio
lattice. Its parameters depend on the physicalT and on the
cutoff ~i.e., the lattice spacing!. We may then obtain the tem
perature where symmetry restoration occurs as a functio
the cutoff. Removing the cutoff, so as to recover the c
tinuum limit, will yield the physical transitionT of the con-
tinuum theory. The calculation we have shown correspo
to a one-loop realization of this process; according to R
@16# and @18#, this is not terribly bad numerically.

V. CONCLUSIONS

We first introduced the notion of using the~negative loga-
rithm of! the density matrix as defining an actionSD which
would be a useful replacement for the usual DRFT, sinc
would not only be a theory in a reduced dimension (d11
→d) but it would also be defined at all temperatures a
might furnish a workable definition of the Landau-Ginzbu
free energy, complete with information on phase transit
temperatures coming from integrating over the Euclide
time dynamics. It then appeared that the actionSD could
have spurious ultraviolet divergences not allowed in the p
tition function and its matrix elements, since these spuri
divergences were absent in theT50 theory. We showed tha
one could define a dimensionally reduced effective acti
the DREA, which was free of these spurious divergences
a result of cancellations between functional integrals o
fields defining the Euclidean time evolution and function
integrals over the argument fields ofSD . The DREA is more
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difficult to calculate than the density matrix, since as an
fective action it has infinitely many terms involving all th
Green’s functions of the full theory. We have discussed h
the graphical construction of the DREA correlations at t
one-loop level. It is clear that dressed-loop techniques@7,21#
apply for the DREA just as they do for any effective actio
this allows for non-perturbative phenomena such as ph
transitions to be investigated with the DREA. For examp
corrections to the thermal propagatorG̃th(t22t1 ,k) can be
formally summed so that the DREA is expressed entirely
terms of the dressed thermal propagator.

We saw that one important difference between the DR
and the DREA theory is that the DRFT may have ultravio
divergences which are not inherent in the finite-T version of
the originald11 theory. These appear as finite and calc
lable terms, generally involving lnT, in the DREA theory
and become the DRFT divergences at infinite temperat
We have studied an example of such divergences in thd
5211 w4 model, studied by Einhorn and Jones@18# using
the DRFT. A one-loop mass divergence in the DRFT is
placed by a finite lnT term in the DREA theory. A very
similar phenomenon takes place ind5211 non-Abelian
gauge theory, whose DRFT isd52 gauge theory coupled to
an adjoint scalar~the original time component of the gaug
potential!. This scalar in the DRFT has a logarithmic ma
divergence which is actually a lnT term at finite temperature
as calculated long ago by D’Hoker@22#. The logarithmic
divergence plays a very interesting role in understanding
transition from d5211 gauge theory at zeroT to the
infinite-temperature limit, since thed5211 theory has zero
string tension for adjoint and similar Wilson loops but th
corresponding DRFT has non-vanishing string tension for
representations of the Wilson loop. This question is un
study by two of us@23#. There will be other important use
of the DREA in investigations ofd5311 gauge theories a
well ~see, e.g., Ref.@24#!.

We have emphasized that the DREA is capable of
swering, in principle at least, questions about condens
matter phase transitions which are not within the purview
the usual renormalization-group approach to second-o
phase transitions, such as the value of the phase trans
temperature. Evidently, one aspect of the extension of
DREA to a dressed-loop expansion will continue to be
use of the renormalization group, so that one hopes to
both critical exponents and phase-transition temperatu
from the DREA. Ultimately one hopes that the DREA can
truncated to relevant and marginal operators~for purposes of
critical exponents! plus perhaps one or two more terms in t
DREA expansion.

Finally, we have noted but not explored at all the fact th
the extension of the techniques used here for the den
matrix can be straightforwardly extended to objects like
Wigner distribution function, which amounts to calculatin
off-diagonal matrix elements. This will be further explore
in subsequent papers.
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APPENDIX

Let us compute the contribution to the reduced action
first order for d52, in order to illustrate how divergence
appear. From expression~17!, we have

r1@b;f,f#52
l

4!
r0F E

1
ŵ4~1!16E

1
Gh~1;1!ŵ2~1!

1E
1
^h4~1!&G . ~A1!

The last term in Eq.~A1! is independent ofŵ. The term in
ŵ2 corresponds to a tadpole graph which we will callTh .
Then, using Eqs.~7!, ~8!, and~16! we arrive at

Th5E ddp

~2p!d

f~p!f~2p!

cosh2~bwk/2!
E ddk

~2p!d
I h~p,k!, ~A2!

I h~p,k!5E
0

b

dtcosh2@wp~t2b/2!#

3
sinh~wkt!sinh@wk~b2t!#

wksinh~bwk!
. ~A3!

The integral overt is straightforward. It is convenient to us
the identity
-

,’’

u
,
h
o

cl

02502
n

sinh~wkt!sinh@wk~b2t!#5cosh2~bwk/2!

2cosh2@wk~t2b/2!#,

~A4!

and to splitI h into a sum of three contributions,I h8 , I h9 , and
I h- . Explicitly,

I h85
b@11sinh~bwp!/~bwp!#

4wk tanh~bwk/2!
, ~A5!

I h952
1

4wk
2

2
sinh@b~wp1wk!#

8wk~wp1wk!sinh~bwk!

2
sinh@b~wp2wk!#

8wk~wp2wk!sinh~bwk!
, ~A6!

I h-52
b@11sinh~bwp!/~bwp!#

4wk sinh~bwk!
. ~A7!

In d52, we usewkdwk5kdk. The integrals go fromumu to
(L21m2)1/2. The contribution fromI h8 goes likeL, the one
from I h9 goes like lnL, whereas the one fromI h- is finite as
L→`. In fact, the two contributions that diverge for largeL
correspond to the tadpoles ind53 andd52, respectively, if
we use k21m2 as the inverse propagator. Although on
might feel tempted to use these two types of subtraction
arrive at finite results, this is not what has to be done
shown in Sec. II B.
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