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Thermalization in a Hartree ensemble approximation to quantum field dynamics

Mischa Salle´,* Jan Smit,† and Jeroen C. Vink‡
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For homogeneous initial conditions, Hartree~Gaussian! dynamical approximations are known to have prob-
lems with thermalization because of insufficient scattering. We attempt to improve on this by writing an
arbitrary density matrix as a superposition of Gaussian pure states and applying the Hartree approximation to
each member of such an ensemble. Particles can then scatter via their back reaction on the typically inhomo-
geneous mean fields. Starting from initial states that are far from equilibrium we numerically compute the time
evolution of particle distribution functions and observe that they indeed display approximate thermalization on
intermediate time scales by approaching a Bose-Einstein form. However, for very large times the distributions
drift towards classical-like equipartition.
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I. INTRODUCTION

Nonperturbative computations in quantum-field theory
real time are important for our understanding of the phys
of the early universe as well as dynamics of heavy-ion c
lisions. Real-time simulations may also give us a new han
on the difficult problem of computations at finite chemic
potential, e.g. in QCD. Incorporating finite density does n
necessarily pose extra problems of principle, so taking t
averages in a thermalized ergodic system will provide
with microcanonical expectation values.

The classical approximation has given very useful res
for the sphaleron rate~see@1# and @2# for the status in three
and one spatial dimensions!, thermalization after preheatin
@3#, nonequilibrium electroweak baryogenesis@4#, as well as
for studies of equilibration and thermalization@5–7#. With
the inclusion of fermions it has given encouraging results
finite density simulations@8#. However, it suffers from
Rayleigh-Jeans divergences. To some extent these ca
ameliorated in scalar field theories@9#, but for gauge theo-
ries, the problems are more severe@10,11#. Largen approxi-
mations have also been used for initial value problems, w
O(n)-type models. The leading order in 1/n has given useful
results for the description of preheating dynamics in the e
universe~see e.g.@12# and references therein! and for the
possibly disoriented chiral condensate in heavy-ion co
sions @13#, but it is generally considered to contain insuf
cient scattering for describing thermalization at larger tim
This will be improved in next order in 1/n, where scattering
comes into play, but full implementation in field theory
hard. Furthermore, within quantum mechanics one finds
stabilities@14,15#, and it has been argued that systematica
correcting in 1/n does not prevent the approximation to bre
down at times of orderAn @16#. On the other hand
Schwinger-Dyson–like approaches, including scattering d
grams, appear to give more favorable results@17# and have
been found to lead to equilibration in field theory@18#.
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The leading-order largen equations for theO(n) model
are almost identical to the Hartree approximation for t
single-component scalar field, and so the latter approxim
tion is also not considered to be able to describe thermal
tion. Yet, in this paper we shall present evidence for appro
mate thermalization using Hartree dynamics in a toy mod
the w4 model in (111) dimensions. The crucial differenc
with previous studies is that our system is allowed to
arbitrarily inhomogeneous. This has the effect that partic
like excitations can scatter through the intermediary o
mean field fluctuating in timeand space, which in turn is
created by the particles.@We used ‘‘Hartree’’ rather than
‘‘large n’’ to avoid problems with would-be Goldston
bosons in (111) dimensions.#

The Hartree approximation describes the dynamics
terms of a mean-field and a two-point correlation function
corresponds to a Gaussian density matrix in field space,
tered around the mean field with a width given by the tw
point function~see e.g.@15#!. The two-point function can be
conveniently described in terms of a complete set of mo
functions. For a homogeneous initial state, the mean fiel
homogeneous and the mode functions can conveniently
taken in the form of plane waves labeled by a wave-vectok.
Typically, only mode functions in a narrowuku band get
excited by the time-dependent homogeneous mean fi
through parametric resonance or spinodal instability. T
system equilibrates but does not thermalize in this appro
mation and particle distribution functions show resonan
peaks instead of approaching the Bose-Einstein distribu
~see for example@19#!.

It is instructive to compare with the classical approxim
tion. Simulations in this case indicate no problem of pr
ciple with thermalization~see@5–7# for quantitative studies!.
Starting from an initial ensemble of classical field config
rationsrc@w,p,t in# ~with canonical field variablesw andp),
suitable observables are found to become distributed acc
ing to the classical canonical distribution exp(2bH@w,p#).
This distribution will not be reached starting with strict
homogeneous realizations, because then the dynamics is
of a simple system with only two degrees of freedom, i.e.
spatially constantw and p. As initial conditions aiming at
thermalization, these are unsuitable realizations, even
©2001 The American Physical Society16-1
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rc@w,p,t in# is homogeneous. The phase-space distribu
rc@w,p,t in# may be homogeneous, but realizationsw(x,t in),
p(x,t in) are typically inhomogeneous. Viewing the Hartr
approximation as a semiclassical improvement, we may
pect that thermalization will improve if some analogies
classical realizations are used as initial states.

To implement the idea, we note that an arbitrary dens
operator can be formally written as a superposition of Gau
ian pure states:1

r̂5E @dwdp#rq@w,p#uw,p&^w,pu. ~1!

Here the uw,p& are coherent states centered aroundw(x)
5^w,puŵ(x)uw,p& and p(x)5^w,pup̂(x)uw,p&, and
rq@w,p# is a functional representing the density operatorr̂.
We interpret theuw,p&^w,pu as ‘‘realizations’’ of r̂. The
distributionrq@w,p# can be quite singular for non-classic
states, but for suitable semiclassical states or thermal sta
is positive and intuitively attractive@20#. We give a brief
review in Appendix A.

A thermal state like exp@2bĤ# cannot be approximate
very well by a Gaussian if there are nontrivial interaction
For example, with a double-well potential, there are in g
eral multiple peaks in the field distribution, while a Gauss
has a single peak. But if in the decomposition~1! a Gaussian
stateuw,p&^w,pu has a reasonable weight, we can take it
an initial state and use the Hartree approximation to comp
the time evolution. We can then compute time averages~as
long as the approximation is good!, and finally sum over
initial states according to Eq.~1!. Such a description is sem
classical in so far as the mean field describes a near-clas
path andrq@w,p# is positive. But note that in the Hartre
approximation the Gaussian fluctuations~the modes com-
prising the two-point function — these are the ‘‘particlelik
excitations’’ alluded to above! influence the ‘‘classical’’
field, i.e. the mean field of the ‘‘realization.’’

For thermal equilibrium, the functionalrq@w,p# is time
independent but it is not known for interacting systems
the time evolution could be followed exactly, we would b
able to reconstruct its microcanonical version, assuming
system is sufficiently strongly ergodic. With exact dynam
we can imagine starting from some initialrq@w,p# which is
reasonably close to the target distribution, wait for equilib
tion and subsequently compute time averages over an
trarily long time span. With only an approximation to th
dynamics ~Hartree! the distribution may deteriorate afte
some time and we may have to stop and start again.

Crucial questions are now, does the system equilib
sufficiently in the Hartree approximation, such that resu
are insensitive to reasonable choices of the initialrq@w,p#?
Does it thermalize approximately, e.g. do one-particle dis
bution functions get the appropriate thermal forms? H
long does it take for the approximation to break down? A
if the answers to these questions are sufficiently favora

1Operators are indicated with a caret.
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can we obtain a reasonable approximation to the target e
librium distribution at intermediate times starting with a co
venient initial one?

We study these issues in a simple model, (111) dimen-
sional w4 theory. Section II introduces the model and t
Gaussian approximation. An effective HamiltonianHeff de-
scribing the Gaussian dynamics is introduced in Sec. III.
Sec. IV we discuss vacuum and thermal stationary-state
lutions. We note one of the flaws of the Hartree approxim
tion, the fact that it predicts a first-order phase transit
where there should only be a cross over@in (311) D one
also gets a first-order transition@21# instead of the expected
second order; the inconsistency problem with coupling c
stant renormalization@21# is absent in (111) dimensions#.
Numerical results for the evolution from initial out-of
equilibrium distributions are presented in Sec. VI. We intr
duce a one-particle distribution functionnk(t) and compare
its time-dependent form with the Bose-Einstein distributio
In Sec. VII we study correlations in time of the zero
momentum mode of the mean field, use them for estima
damping times. The results are discussed in Sec. VIII.
Appendix A we discuss the representation~1!, and in Appen-
dix B, classical equipartition according toHeff .

II. GAUSSIAN APPROXIMATION

We start with the Heisenberg field equation for the qua
tum field2 at timesx0.0,

~2]21m2!ŵ~x!1lŵ~x!350. ~2!

For exact evaluation we would have to specify the infinite
of matrix elements ofŵ(x,0) and]0ŵ(x,0) as initial condi-
tions. In practice, of course, less detail is needed. Taking
expectation value in an initial state at timex050 leads to

^ŵ~x!&5w~x!, ~3!

^Tŵ~x1!ŵ~x2!&5w~x1!w~x2!2 iG~x1 ,x2!, ~4!

^Tŵ~x1!ŵ~x2!ŵ~x3!&5w~x1!w~x2!w~x3!

2 iw~x1!G~x2 ,x3!12 perm.

1~2 i !2G~x1 ,x2 ,x3!, ~5!

^Tŵ~x1!•••ŵ~x4!&5w~x1!•••w~x4!

2 iw~x1!w~x2!G~x3 ,x4!16 perm.

1w~x1!~2 i !2G~x2 ,x3 ,x4!

13 perm.1~2 i !2G~x1 ,x2!

3G~x3 ,x4!12 perm.

1~2 i !3G~x1 , . . . ,x4!, ~6!

2In this section we assume~311! dimensions.
6-2
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etc. HereT denotes time ordering and

^ŵ~x1!•••ŵ~xn!&[ Tr r̂ ŵ~x1!•••ŵ~xn!, ~7!

with r̂ the initial density operator;w is the mean field~or
classical field! and theG8s are correlation functions~con-
nected Green’s functions!. Taking the expectation value o
Eq. ~2! and neglecting the three-point correlation functi
G(x,x,x) gives the approximate equation

@2]21m21lw~x!223ilG~x,x!#w~x!50. ~8!

To use it we need an equation for the two-point functio
Such an equation can be found by multiplying Eq.~2! by
ŵ(y) and taking again the expectation value in the init
state. This leads to the approximate equation

@2]21m213lw~x!223ilG~x,x!#G~x,y!5d4~x2y!,
~9!

where we used the canonical commutation relations
dropped the three- and four-point correlation functions. W
shall comment on their neglect at the end of this secti
Since only the two-point function appears, Eqs.~8,9! are
exact if the Hamiltonian and density matrix are appro
mated by Gaussian forms. Given the neglect of the high
correlation functions the initial density matrix does not ha
to be Gaussianper se, but its non-Gaussianity does not ent
in Eqs. ~8,9!. For clarity we shall now assume the bracke
^•••& to refer to aGaussian density operatorr. Later we
will consider non-Gaussian operators by further averag
over initial conditions, as in Eq.~1!, which will be indicated
by ^•••&.

An intuitive as well as practical way for computing th
two-point function is in terms of mode functionsf a(x). We
write

2 iG~x,y!5u~x02y0!C~x,y!1u~y02x0!C~y,x!,
~10!

such that

C~x,y!5^@ŵ~x!2w~x!#@ŵ~y!2w~y!#&. ~11!

It follows from Eq. ~9! that C(x,y) satisfies the homoge
neous equation@d4(x2y)→0#, in the variablex as well as
in y, as if ŵ(x)2w(x) satisfies this equation. We can no
introduce mode functionsf a(x) satisfying the homogeneou
equation,

@2]21m213lw~x!213lC~x,x!# f a~x!50, ~12!

@2 iG(x,x)5C(x,x)# and write

ŵ~x! 5
G.a.

w~x!1(
a

@ b̂a f a~x!1b̂a
† f a* ~x!#, ~13!

where theb̂a andb̂a
† are space-time independent and ‘‘G.a

means ‘‘Gaussian approximation.’’ The wave equation~12!
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for the f a is of the Klein-Gordon type and we require th
mode functions to be orthogonal and complete in the Kle
Gordon sense:

E d3x@ f a* ~x!i ]0f b~x!2 i ]0f a* ~x! f b~x!#5dab , ~14!

E d3x@ f a~x!i ]0f b~x!2 i ]0f a~x! f b~x!#50, ~15!

(
a

@2 i f a~x!]0f a* ~y!1 i f a* ~x!]0f a~y!#x05y05d3~x2y!,

~16!

(
a

@ f a~x! f a* ~y!2 f a* ~x! f a~y!#x05y050, ~17!

(
a

@]0f a~x!]0f a* ~y!2]0f a* ~x!]0f a~y!#x05y050. ~18!

The above orthogonality and completeness relations are
served by the equation of motion~12! for the f a . The ca-
nonical commutation relations forŵ and]0ŵ translate into

@ b̂a ,b̂b
† #5dab , @ b̂a ,b̂b#5@ b̂a

† ,b̂b
† #50. ~19!

The initial condition implieŝ b̂a&50 and we have to specify
Eab[^b̂ab̂b& and Nab[^b̂a

† b̂b&. The matricesN and E are
subject to constraints following from their definition as e
pectation values of operators in Hilbert space. We shall
sume that a Bogoliubov transformationb̂a→(b@Aabb̂b

1Babb̂b
† # can be made such thatEab→0 and Nab}dab .

This transformation produces new mode functions that
linear combinations of thef and f * . In the new basis we only
have to specify as initial conditions

^b̂a
† b̂b&[na

0dab , na
0>0, ~20!

in terms of which

C~x,y!5(
a

@~11na
0 ! f a~x! f a* ~y!1na

0 f a* ~x! f a~y!#.

~21!

Equation ~13! expresses the fact that in the Gaussian
proximation, the fieldŵ8(x)[ŵ(x)2w(x) is a generalized
free field, i.e. its correlation functions are completely det
mined by the two-point function. Its linear field equation@i.e.
Eq. ~12! with f a→ŵ8# is equivalent to the Heisenberg equ
tions of motion of the effective Gaussian Hamiltonian ope
tor

ĤG.a.5E d3xF1

2
p̂821

1

2
~¹ŵ8!21

1

2
meff

2 ŵ821eeffG ,
~22!
6-3
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where the space-time dependent effective massmeff
2 is given

by

meff
2 ~x!53lw~x!213lC~x,x!. ~23!

We also introduced an effectivec-number energy density
eeff , which is determined by requirinĝĤG.a.&5^Ĥ&:

eeff~x!5
1

2
p~x!21

1

2
@¹w~x!#21

1

2
m2w~x!21

1

4
lw~x!4

2
3

4
lC~x,x!2. ~24!

Summarizing, the Gaussian approximation consists of E
~8!, ~12!, ~20!, and~21!, together with the orthogonality an
completeness conditions~14!–~18! for the mode functions
and some initial condition for the mean-field and mode fu
tions.

The Gaussian approximation can be justified in the lim
of largen for the O(n) model. The resulting field equation
are very similar: we only need to make the replacemen
→1 in Eqs.~8! and ~12!.

The above derivation in terms of the Heisenberg eq
tions of motion can be put into the systematic framework
the Dyson-Schwinger hierarchy. These equations foll
from functionally differentiating an exact equation of motio
dG/dw52J with respect toJ and settingJ50 afterwards.
Here G is the effective action~with time integration along
the usual Keldysh-Schwinger contour! and J an external
source. We shall not go into details here, but just comm
on the systematics, using diagrams~for a derivation, see e.g
@22#!. Figure 1 illustrates the exact equation for the me
field. The Gaussian approximation~8! is obtained by drop-
ping the two-loop diagram. By differentiating the diagram
in Fig. 1 we get the exact equation for the two-point cor
lation function illustrated in Fig. 2. The Gaussian appro
mation ~9! can be obtained from this by~a! dropping the
two-loop contributions and~b! dropping the second one-loo
diagram. The neglect of the two-loop terms may be reas

FIG. 1. Diagrammatic illustration ofdS/dw, with S the self-
energy functional defined byG5S2S. The lines and full dots rep-
resent the exact propagators~correlation functions! and vertex func-
tions, the other vertices represent the bare vertex functions as g
by the classical actionS.

FIG. 2. Diagrams for the self-energy part of the inverse cor
lation functionG2152d2S/dw dw1d2S/dw dw. The ••• repre-
sent the two-loop diagrams obtained by differentiating the diagra
in Fig. 1.
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able at weak coupling, and even the second approxima
may be justifiable if the product of the three-point couplin
~one bare, the other dressed! is substantially smaller than th
~bare! four-point coupling in the first one-loop diagram
However, since the bare three-point vertexd3S/dw3}lw we
see that this is not likely ifw5O(l21/2) or larger. Especially
this second approximation~b! is worrisome, because on it
eration of the integral equations we would not get correc
all one-loop diagrams. It is also known that the approxim
tion does not give exact Goldstone bosons where one exp
them, because the phase transition is incorrectly predicte
be first order, instead of second order~in 311 D! or a cross
over (111 D!. There is a problem with renormalization i
(311) dimensions@21# ~but not in 111 D!.

It will depend on the circumstances if these troubleso
features of the Hartree approximation are numerically imp
tant.

III. EFFECTIVE HAMILTONIAN AND CONSERVED
CHARGES

The equations of the Gaussian approximation derived
Sec. II are local in time and they may be derived from
conserved effective Hamiltonian. We shall present it h
and exhibit its symmetries and accompanying conser
charges. We write

f a~x!5
1

A2
@ f a1~x!2 i f a2~x!#, ~25!

jaa~x!5S 1

2
1na

0 D 1/2

f aa~x!, a51,2, ~26!

haa~x!5]0jaa~x!, p~x!5]0w~x!. ~27!

In terms of the real canonical variablesw, p, jaa and haa
the effective Hamiltonian takes the form

Heff5E d3xH 1

2
@p21h21~¹w!21~¹j!2#1

1

2
m2~w21j2!

1
1

4
l@w416w2j213~j2!2#J , ~28!

where

j25(
a

~ja1
2 1ja2

2 !, h25(
a

~ha1
2 1ha2

2 !,

~¹j!25(
a

@~¹ja1!21~¹ja2!2#.. ~29!

It is easy to check that the mean-field Eq.~8! and the mode
equations~12! are equivalent to the Hamilton equations

en

-

s
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]0w5p, ]0p52
dHeff

dw
, ]0jaa5haa ,

]0haa52
dHeff

djaa
. ~30!

It is also straightforward to show thatHeff is just the expec-
tation value of the quantum HamiltonianĤ(t) upon inserting
the Gaussian approximation~13!,

Heff5^Ĥ&. ~31!

The effective Hamiltonian has evidently a large symme
corresponding to rotations of the infinite dimensional vect
jaa andhaa . For definiteness, let us assume a regulariza
of the field theory such that there areM modes, a
51, . . . ,M ~e.g. on anN3 periodic latticeM5N3). Then the
effective Hamiltonian hasO(2M ) symmetry, implying
M (2M21) conserved generalized angular momenta of
general form

Laa,bb5E d3x~jaahbb2jbbhaa!, ~a,a!Þ~b,b!.

~32!

Recalling the orthonormality relations for the mode functio
~14!, ~15! we see that the conserved quantities are given
terms of the initial conditions as

La1,a25
1

2
1na

0 , ~33!

with all others vanishing.
It is interesting to compare with the effective Hamiltonia

corresponding to the largen limit of the O(n) model @23#,
which may be obtained fromHeff above by the replacemen
3→1 ~and 6→2). This has the effect of producing the com
bination l(w21j2)2, so the symmetry enlarges toO(2M
11). The additional 2M conserved generalized angular m
menta depend on the initial conditions forw andp.3

IV. EQUILIBRIUM STATES

In a first exploration of the system and of the Gauss
approximation we study equilibrium states, i.e. station
states with maximum entropy. This will give information o
the phase structure and quasiparticle excitations as a fun
of temperature. From now on we specialize to (111) di-
mensions,xm→(x,t), and assume the system to have ‘‘vo
ume’’ L with periodic boundary conditions. The couplingl
needs no renormalization while the bare mass parametem2

is only

3In @23# the effective Hamiltonian for the homogeneous syst
was expressed in terms of the radial variableja5Aja1

2 1ja2
2

~modulo a factor of two!, and the rotational symmetries mixingja1

andja2 are then absent. However, the corresponding equation
motion then suffer from numerical complications due to the angu
momentum barriers.
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logarithmically divergent with the implicit cutoff.
We assume the equilibrium states to be homogeneous

time independent, i.e.w(x,t)5v and C(x,t;y,t)5C(x
2y,0;0,0). Also the various time derivatives ofC evaluated
at equal times are assumed to be time independent. We
seek solutions of the form~21! in which the mode functions
are plane waves,

w~x,t !5v, f k~x,t !5
eikx2 ivkt

A2vkL
. ~34!

Here the labela is the wave-numberk and we writenk for
the corresponding~time-independent! occupation numbers
With this Ansatz the equations for the mean-field and mo
functions reduce to

~m213lC1lv2!v50, ~35!

2vk
21k21m213lC13lv250, ~36!

whereC5C(x,t;x,t) is time independent. In the infinite vol
ume limit it is given by

C5E dk

2p S nk1
1

2D 1

vk
. ~37!

It follows that

vk
25m21k2, m25m213lC13lv2. ~38!

To determine thenk we maximize the entropyS subject to
the constraint of fixed-energyU[Heff5E, i.e. maximizeS
1b(E2U), with Lagrange multiplyerb. We shall write
these equations in terms of the densitiess5S/L, u5U/L,
e5E/L with L→`. The ~unrenormalized! energy densityu
is given by

u5
Heff

L
5

1

2
m2v21

1

4
lv4

1E dk

2p S nk1
1

2Dvk
21k21m213lv2

2vk
1

3

4
lC2,

~39!

and for our Gaussian density operator,s can be written as

s52
1

L
Tr r logr5E dk

2p
@~nk11!log~nk11!

2nklognk#. ~40!

The maximization equations read

05
d@s1b~e2u!#

dnk
5 logS nk11

nk
D2bvk , u5e,

~41!

with the solution

of
r

6-5
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nk5
1

ebvk21
~42!

andb such thatu5e. So we found equilibrium states of th
Hartree evolution corresponding to the Bose-Einstein dis
bution with temperatureT5b21. All effects of the interac-
tion are buried in the temperature dependent massm intro-
duced in Eq.~38!.

For simplicity of discussion, let us next use a simple m
mentum cutoffuku,L and define a renormalized mass p
rameterm r

2 by

m r
25m21

3l

4p
log

4L2

l
. ~43!

Then Eq.~38! takes the renormalized form

m25m r
21

3l

4p
log

l

m2
13lE

0

`dk

p

1

Am21k2

1

e
Am21k2/T21

13lv2. ~44!

At zero temperature the equilibrium state is the vacuum.
v50 there is one solutionm2 for every m r

2P(2`,`). For
nonzerov we get with Eq.~35! the relations

m252lv2, m r
252

1

2
m21

3l

4p
log

m2

l
. ~45!

There turn out to betwo solutions, providedm r
2/l,(3/4p)

3@211 log(3/2p)#'20.415, otherwise none. To dete
mine the true ground state we plot in Fig. 3 the effect
potentialu as a functionw @i.e. m2 is the solution of Eq.~44!
with v→w at T50#, for variousm r . The plot shows that
there is a first-order phase transition as a function ofm r

2 ,
instead of the expected second-order transition for a mod
the universality class of the Ising model. This misrepres
tation of the phase transition is a well-known artifact of t
Gaussian approximation~see, e.g.@21#!.

Note that the second-order transition would occur
strong couplingl/m2→`, where the Gaussian approxim
tion is suspect. In fact, the two masses at the transition

FIG. 3. Zero-temperature effective potentialu/l5Heff /Ll ver-
susw for various values ofm r

2/l. The potential is normalized to
zero atw50.
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imply strong coupling: they are given byl/m2'10, for w
50 and l/m2'1.2 for w5vc'0.65. To avoid fake first-
order effects we should evidently choose parameters a
from the transition region. For this paper we mostly us
l/m251/12 for which there is only one ground state atv2

56, well away fromvc
2'0.65.

Having determined the ground state we define the ren
malized energyHeff,r by subtracting fromHeff its value in the
ground state, such that the vacuum energy is zero. It ca
instructive to split the total energy into a classical~Gaussian
mean field! part and a mode energy,Heff,r5Hclas1Hmodes,
where we define the classical part as

Hclas5E dxF1

2
p21

1

2
~¹w!21Vclas~w!G , ~46!

Vclas~w!5
1

2
m2w21

1

4
lw4, v50, ~47!

5
1

4
l~w22v2!2, vÞ0, ~48!

wherem2 andv2 are the vacuum values (T50).
Consider now starting in the broken symmetry phasev

Þ0 at zero temperature and raising the temperature. In
11) dimensions there should be only a cross over and n
true phase transition. Figure 4 shows the finite-tempera
effective potential~free-energy density!

f ~w!5u~w!2Ts~w!, ~49!

using the temperatureT as independent variable instead
the energy densitye. Now m25m2(w,T) is the solution of
Eq. ~44!, v→w, at finiteT. The parameters were chosen su
that v25m2(v,0)/2l56 at T50. We see again a fake first
order transition, atTc'1.79m(v,0), with vc51.96. Its latent
heat l and surface tensions are given by l 5Du
50.39m(v,0)2, s5*0

vcdwA2 f (w)50.295m(v,0). These are
not particularly small values and we may not argue that
effects of the first-order transition will be negligible und
generic circumstances. However, the critical size of a nu
ating bubble is zero in~111! dimensions, so the bubbl

FIG. 4. Finite-temperature effective potentialf /l5(u2Ts)/l
versusw for various values ofbm(wc,0). The potential is again
normalized to zero atw50.
6-6
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nucleation rate is not suppressed@}exp(22s/Tc)'exp
(20.17)# and supercooling will not be strong.

We end this section with some cautionary remarks. Fi
the fact that the equilibrium correlation functionC(x,y) has
the free form@i.e. Eq.~50! below withnk given by the Bose-
Einstein form~42!# for any coupling strength is a result o
the Gaussian approximation. The exact correlation func
will have a more complicated form, although the correctio
are expected to be small at weak coupling. We will che
this by a Monte Carlo computation in a separate publicat
@25#.

Second, it is not clear that the finite-temperature equi
rium state found above will actually be approached at v
large times. Any set of numbersnk in conjunction with Eqs.
~34!–~39! gives a stationary solution to the Hartree equ
tions. Our derivation of the Bose-Einstein form fornk used
the standard form~40! for the entropy, but we have no
shown that this entropy is a large time result of the dyna
ics. Of course, this would be trivially the case if we choo
the initial ocupation numbersna

05nk . But for a generic
Gaussian initial state the correlation function may still a
proach a fixed point of the form just discussed (t't8),

C~x,t;x8,t8!5(
a

@~11na
0 ! f a~x,t ! f a* ~x8,t8!

1na
0 f a* ~x,t ! f a~x8,t8!#

→E dk

2p F11nk

2vk
eik(x2x8)2 ivk(t2t8)

1
nk

2vk
e2 ik(x2x8)1 ivk(t2t8)G , ~50!

where thenk are expected to correspond to maximum e
tropy in relation to the dynamics. Since the Hartree dynam
in terms ofHeff is classical we may expect this entropy
take a classical form, which would lead to

nk5
T

vk
. ~51!

Matters are complicated by the presence of the infinit
many conserved charges~33!, which are determined by th
initial conditions. Note that without these constraints o
would expectnk11/25T/vk , instead of Eq.~51!, which
makes a big difference because equipartition suggests
T5O(e/L) and thereforesmall nk . We elaborate on this in
Appendix B.

To study such matters numerically we now first introdu
a coarse graining of the correlation function and define
corresponding time-dependent distribution functionnk(t).

V. COARSE-GRAINED PARTICLE NUMBERS

The mode functions may be interpreted as represen
particles that interact through the mean field. This is sim
to electrons scattering off each other in classical electro
namics, albeit that here the ‘‘particles’’ are treated quant
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mechanically and their interaction is short ranged. In
itively, such an interpretation supposes that the particles
localized, with a correspondingly fluctuating~and hence in-
homogeneous! mean field taking the role of a classical fiel

Within such a picture one expects the system to therm
ize approximately. We would like such thermalization to
quantal, e.g. with particle-distribution functions that are
the Bose-Einstein type. However, the fact that our equati
of motion have the form of classical Hamilton equations
terms ofHeff suggests otherwise, namely a distribution a
proaching a classical Boltzmann form exp(2bHeff), subject
to the constraints set by the large number of conser
charges~32!. But this may take a very long time. In any cas
one way to test the Gaussian approximation is to study
thermalization properties.

This we do by looking at equal-time correlation function
coarse grained by averaging over a space-time region.
suming the system is weakly coupled we can compare s
averages with a free field form in terms of quasiparticles w
effective masses. If the system equilibrates locally in a qu
tum way, then the quasiparticle distributionnk should ap-
proach the Bose-Einstein form. We define the correlat
functions

S~x,y,t !5^ŵ~x,t !ŵ~y,t !&2^ŵ~x,t !&^ŵ~y,t !&, ~52!

T~x,y,t !5
1

2
^@ŵ~x,t !p̂~y,t !1p̂~y,t !ŵ~x,t !#&

2^ŵ~x,t !&^p̂~y,t !&, ~53!

U~x,y,t !5^p̂~x,t !p̂~y,t !&2^p̂~x,t !&^p̂~y,t !&,
~54!

where the overbar denotes the space-time averaging as
as a possible average over initial conditions as in Eq.~1!.
Using Eqs.~3! and ~11! we can express these quantities
terms of a ‘‘classical’’~mean field! and a ‘‘quantum’’ con-
tribution,

S~x,y,t !5Sc~x,y,t !1Sq~x,y,t !, ~55!

Sc~x,y,t !5w~x,t !w~y,t !2w~x,t !w~y,t !, ~56!

Sq~x,y,t !5C~x,t;y,t !, ~57!

etc. Note thatSc→0 in case of averaging over initial cond
tions and/or spacetime.

For simplicity the spatial average is performed over all
space. For example,

^ŵ~x,t !ŵ~y,t !&5
1

LDEt2D/2

t1D/2

dt8E
0

L

dẑ ŵ~x1z,t8!

3ŵ~y1z,t8!&. ~58!

Because of the periodic boundary conditionsS, T, and U
depend only on the difference betweenx and y. Taking the
Fourier transform
6-7
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Sk~ t !5
1

LE0

L

dx dy e2 ik(x2y)S~x,y,t !,

k5~0,61,62,••• !
2p

L
, ~59!

and similarly forT andU, it is easy to see thatS andU are
symmetric and positive, i.e.

Sk~ t !5S2k~ t !>0, Uk~ t !5U2k~ t !>0, ~60!

while Tk enjoys no such properties. For a free field w
average occupation numbers^âk

†âk&5nk and frequenciesvk

the correlators are given bySk5(nk1n2k11)/2vk , Tk

5(nk2n2k)/2 and Uk5Skvk
2 . Note that in this caseT is

antisymmetric. We nowdefinevk(t) andnk(t) for the inter-
acting case by

nk~ t !5nk
s~ t !1nk

a~ t !, nk
s~ t !5n2k

s ~ t !, nk
a~ t !52n2k

a ~ t !,
~61!

Sk~ t !5Fnk
s~ t !1

1

2G 1

vk~ t !
, ~62!

Tk
a~ t !5

1

2
@Tk~ t !2T2k~ t !#5nk

a~ t !, ~63!

Uk~ t !5Fnk
s~ t !1

1

2Gvk~ t !. ~64!

These equations can be easily solved in terms ofvk andnk :
vk5v2k5AUk /Sk, nk

s5vkSk21/2 andnk follows by add-
ing Tk

a .
There is a more direct interpretation of these formulas

terms of the expectation value of a number operatorâk
†âk .

Suppose we define time-dependent creation and annihila
operators as

âk~ t !5
1

A2vk~ t !L
E

0

L

dxe2 ikx@vk~ t !ŵ~x,t !

1 i p̂~x,t !#, âk
†~ t !5~ âk~ t !!†. ~65!

Then

^âk
†~ t !âk~ t !&5nk~ t !. ~66!

The problem with starting with Eq.~65! is that one does no
know a priori how to choose thevk(t). This is especially so
if some of the effective squared frequenciesm213lw2

13lC in the equations for the mode functions turn negati
The line of reasoning leading to Eqs.~61!–~64! solves this
problem, but we should keep in mind that this is by bru
force, which can be misleading in extreme situations, e
when the spectral function is not dominated by a sufficien
narrow quasiparticle bump.
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VI. NUMERICAL RESULTS

We now describe some simulations used for obtaining
particle numbersnk(t). The mass and coupling paramete
were chosen such that the system at zero temperature
the ‘‘broken symmetry phase.’’ The coupling was weak,v2

5m2/2l56. Here and in the followingm is the mass of the
particles at zero temperature.

The system is discretized on a space-time lattice with s
tial ~temporal! lattice distancea (a0), with a0 /a50.1. The
number of spatial lattice sites, equal to the number of in
pendent complex mode functions, will be denoted withN
5L/a. The discretized Lagrangian gives rise to second-or
difference equations, with a time evolution that is equivale
to a first-order leapfrog algorithm forpx(t)[@wx(t1a0)
2wx(t)#/a0 andwx(t).

The initialization is similar to that used in@5,6#,

wx5v, px5Am(
j 51

j max

cos~2p jx/L2c j !, ~67!

with random phasesc j uniformly distributed in@0,2p). The
modes are initialized with the equilibrium form at zero tem

perature: thenk
0 are all zero and the modesf k(x,0), ḟ k(x,0)

are given by the plane waves~34! and its time derivative at
t50, with vk

25k21m2. The density operator is thus a su
perposition of coherent pure states as in Eq.~1!.

We now describe a simulation for whichl/m251/12, N
5256,mL532, j max54, A51/A2, such that the energy den
sity is given by E/Lm25A2 j max/450.5. A Bose-Einstein
distribution describing particles with such an energy dens
would have a temperatureT/m'1.08, well below the phase
transition at T/m'1.8, as calculated with the finite
temperature effective potential. We also chose these par
eters so that the system may end up in a low-tempera
quantum regime and not in a classical regime withT/m@1.
A boring consequence was that the volume averaged m
field typically just oscillated around one of the two minim
we did not encounter an initial condition for which it cross
the barrier aftertm.50.

Initially the mean field carries all the energy in its low
momentum modes 0,k/m<p/4 ~zero-momentum mode ex
cluded!. Due to interaction with the inhomogeneous me
field, the modes will not keep the vacuum form, but g
excited. Figure 5 shows the time dependence of the ene
density for one of the members of the ensemble. The t
energy is conserved up to a numerical accuracy of ab
0.2%. The energy in the mean field@cf. Eq. ~46! for its defi-
nition#, initially equal to the total energy, is decreasing ra
idly and after a timetm'100 about 50% has been transfer
to the modes. The mean field continues losing energy a
that time but at a timetm of the order 20000, some 15% i
still left.

The development of the particle numbersnk(t) at early
times is shown in Fig. 6, including the mean-field contrib
6-8
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tion, cf. Eqs.~55!–~57!.4 Initially the mean-field gives the
main contribution sincenk

050 for the modes, but then th
mode contribution rapidly takes over. Because the me
field contribution fluctuates strongly, we used as many
500 initial conditions for these early times, without coarse
ing over time. Figure 7 shows the mode contribution tonk as
a function ofv ~40 initial conditions were used for the da
at tm.200, with no coarsening over time!. It starts out iden-
tically zero, rises rapidly and then appears to stabilize. T
figure also shows a fit to the Bose-Einstein distribution w
chemical potentialm at time tm5990. A chemical potentia
is expected to develop temporarily at weak coupling, sin
elastic scattering dominates over processes like 2↔4 scat-
tering. The fitted temperature (bm51.08) is already ap-
proaching the earlier estimateT/m'1.1 based on the energ
density. The complete distribution function~including the
mean-field contribution! reaches much larger values at the
early times~by a factor of 3–4! and the curves appear clos
together, but the plots are still noisier due to the stron
fluctuating mean field.

To study the tail of the distribution more easily, we plot
Fig. 8 log(111/n), which is linear inv for a Bose-Einstein
distribution. We see linear Bose-Einstein behavior devel
ing at low momenta with gradual participation of the highe
momentum modes. Including the contribution of the me
field, shown in Fig. 9, we see a more rapid convergence
higher occupation numbers, giving a higher fitted tempe
ture and smaller chemical potential, compared to the dat
Fig. 8. The trend seen in Figs. 8 and 9 continues at lar
times, as shown in Fig. 10 for the contribution of the mod
only. The plot including the mean-field contribution look
similar. @We averaged over a time intervaltm524 ~approxi-
mately 3.5 oscillation periods! and used only 10 initial con
figurations.# The straight line is a Bose-Einstein fit with ze
chemical potential attm56200 in the regionv/m,1.8. We
see that the slope is roughly constant in time and that
thermalized part of the distribution is extending to high
values ofv, roughly linear in logtm.

4In this and the following figures an average is taken overk.0
andk,0. The distributionsnk for positive and negativek are equal
within fluctuations.

FIG. 5. The total-energy densityE/Lm2 ~horizontal line at 0.5!,
energy density of the mean field~lower band! and of the modes
~higher band!. Also plotted are the various energy densities in t
quasiparticle interpretation,(knkvk /Lm2.
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In Fig. 11 a plot is made of the Bose-Einstein tempe
tures from the fits~modes only! as a function of time. For
times tm,3000 the fit is made over the intervalv/m,1.4
while for later times this is increased tov/m,1.8. The fig-
ure shows an anticorrelation betweenT andm which would
be meaningful~i.e. not just a fitting artifact! if the particle
density n5(knk /L is constant~or has evidently smaller
fluctuations!. This seems to be the case indeed: as show
Fig. 12, the densityn corresponding to the modes only
quite constant for timestm.100, and in fact continues to
remain so up to times of over 5000. On a larger time scale
order 10000 or so it drops somewhat. The initial approach
n/m ~modes only! to the value'0.34 can be fitted to an
exponential, which yields an equilibration time scaletm
515220, depending on the fitting range.

We have to be careful, however, that ourm is not an
artifact of the fitting procedure. We believe this to be t
case for the larger timestm*40000 wherem goes negative.
As can be seen~with difficulty! in Fig. 10, the distribution
starts to deviate at lowv upwards from the straight line
corresponding to a suppression ofnk compared to the Bose
Einstein form. We interpret this as a contamination by cl
sical behaviornk'Tcl /vk , as in Eq.~51!, as will be argued
later in this section.

Let us now compare with analytical results derived fro
the equilibrium finite-temperature effective potential~49!.
Around tm515000– 20000 the temperature measured in
simulation isT/m51.1. The effective potential then give
for the thermal massm(T51.1)/m5v(T51.1)/v50.93.
We derive the thermal mass in the simulation from the d

FIG. 6. Particle numbernk versusk/m for early times.

FIG. 7. Particle numbernk ~modes only! versusvk for early
times.
6-9
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MISCHA SALLÉ, JAN SMIT, AND JEROEN C. VINK PHYSICAL REVIEW D64 025016
persion relation of measuredvk . It is in very good agree-
ment with a free form:vk

25m2(T)1k2. A straight line fit of
v2 versusk2 over the intervaltm515000– 20000 gives a
slope 1.00 and an offsetm(T51.1)/m50.908. This is also
in good agreement with the volume average of the m
field, which is 0.91.~These values are somewhat lower th
the position of the minimum in the effective potential b
cause of its asymmetric shape, but the difference is sm
because of the small amplitude of the mean field osci
tions.!

The quasiparticle aspect can be investigated further
looking at the energy(knkvk , as plotted in Fig. 5. We have
made a distinction between the particle number as der
from the mean-field, quantum and total two-point functio
We see that the total energy in the particles~mean field1
modes! is only a few percent lower than the total energy
the system, as may be expected for a weakly coupled sys
It is also interesting to note that the quantum modes therm
ize with the same temperature 1.1m the system would have
if all energy would be distributed according to a Bos
Einstein distribution with zero chemical potential, althou
the modes carry initially much less than the total energy

We now turn to the very long time behavior of the syste
where we expect Bose-Einstein behavior to be replaced
classical equipartition according to the effective Hamilton
~28!. The numerical computation of the equilibrium distrib
tion functions in this regime is very difficult as it chang
exceedingly slowly~cf. the slow logt-like population of the
high momentum modes in Fig. 10!. We therefore have car
ried out simulations in a smaller system at stronger coup

FIG. 8. Particle number log(111/nk) ~modes only! versusvk

for early times. The straight line is a Bose-Einstein fit for the lat
time, overv/m,1.2.

FIG. 9. As in Fig. 8, including the mean-field contribution.
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and at larger energy densities in order to make time scal
lot shorter. Here we present data forN516, Lm51, l/m2

51 andE/Lm2536, for which the system is in the ‘‘sym
metric phase.’’ In Fig. 13 we plottednkvk ~modes1 mean
field! versus the integerkL/2p5k/2pm, for different times.
Note that we needed to excite initially also the highest m
mentum modes, otherwise the system would not reach fi
equilibrium sufficiently closely even after a time of 12 mi
lion. Classical equipartition suggestsnkvk5Tcl , giving a
straight horizontal line in the plot. We see indeed flat beh
ior, with lower momentum modes tending to have somew
smaller occupation numbers, except for the zero mode. R
at small couplingl/m251/12 in larger volumesLm54 and
Lm516 in the ‘‘broken phase’’ showed similar results, e
cept that the zero modes were less exceptional.

So we do find approximate classicalnk5Tcl /vk behavior
at very large times. Classical equipartition leads to sm
temperaturesTcl5O(1/N). If this behavior sets in first for
the low momentum modes, then these will appear to be
der occupied compared to the Bose-Einstein distribution
temperatureT.Tcl . This is indeed the trend noticed earlie
in Fig. 10, where the low momentum data at timestm
.20000 lie above the straight line going through the data
larger momenta.

VII. DAMPING RATE

In the previous section we have seen the system eq
brate initially on a time scale oftm515220 in its low mo-
mentum modes, with a particle distribution approaching
Bose-Einstein form. Subsequently this approach progres

t
FIG. 10. The particle numbers~modes only! for later times.

FIG. 11. The Bose-Einstein temperature for particle numb
plotted in Fig. 10. The smoother lines are drawn to guide the e
6-10
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rather more slowly towards higher momenta, on a time sc
that is hard to quantify, of the order of thousands to tens
thousands. To get more information in this regime we turn
autocorrelation functions. For a homogeneous ensembl
finite temperature, the spatial Fourier transformFk(t) of the
symmetrized autocorrelation function

Fk~ t2t8!5E dx e2 ik(x2x8)F1

2
^$ŵ~x,t !,ŵ~x8,t8!%&

2^ŵ~x,t !&^ŵ~x8,t8!&G ~68!

is given in terms of the spectral function by standard form
las. In case of weak coupling the spectral function is
pected to exhibit a strong peak around the mass shell of
quasiparticles, which leads to exponential decay ofFk(t) in
an intermediate time regime. The decay rate is called ‘‘
plasmon damping rate.’’

In the Hartree ensemble approximationFk(t) can be writ-
ten as the sum of a mean-field part and a contribution fr
the mode functions. It is easiest to compute the mean-fi
part. This would give no information in case of consta
mean fields, since it would be identically zero. However,
expect mean field and modes to be sufficiently coupled
gain useful information on the damping rate from the me
field part only. Even at late timestm530000280000 we
observed the back reaction 3l(au f a(x,t)u2 of the modes on
the mean field to be strongly fluctuating in space and tim
Fluctuations in the modes will then cause correspond
fluctuations in the mean field.

FIG. 12. Particle densitiesn/m5(knk /Lm.

FIG. 13. Energy distributionnkvk /m ~modes1 mean field! for
a small system withN516, Lm51, E/Lm2536.
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We have computed the mean-field partF0mf(t) at k50,
obtained by taking a time average after an initial equilib
tion periodtP(0,t0):

F0mf~ t !5
1

~ t12t0!
E

t0

t1
dt8w̃0~ t1t8!w̃0~ t8!

2
1

~ t12t0!2Et0

t1
dt8w̃0~ t1t8!E

t0

t1
dt8w̃0~ t8!,

~69!

where w̃0(t)5*dx w(x,t)/AL. No average was taken ove
initial conditions. Figure 14 shows two examples ofF0mf(t),
for which the average was taken after an equilibration ti
of t0m'31000 over the interval (t0m,t1m)
'(31000,62000). We see roughly exponential decay mo
lated by oscillations. At first the oscillations looked susp
cious to us, as if there were strong memory effects and
damping, but other simulationswith averaging over initial
conditions~this time in the symmetric phase! gave similar
results. As a check we used two-loop perturbation theory
calculate the spectral function in the full~not Hartree ap-
proximated! theory. To our surprise this led to similar osci
lations, modulating exponential decay. The reason is tha
one-space dimension collinear divergences lead to a spe
function with two adjacent peaks@24#. So we conclude tha
the damping behavior in Fig. 14 is real. The straight lin
indicate damping timestmT'105 and'233. We use the
finite temperature mass here to set the scale as this app
naturally in resummed perturbation theory. For the first e
ample ~with the larger volume! the corresponding particle
distribution was found to be reasonably of the Bose-Einst
form, with zero chemical potential and temperatureT/mT
'1.6. The two-loop perturbative calculation gives atmT
'67 for this temperature, which we consider encouragin
close to the Hartree ensemble result'105. We should how-

FIG. 14. Numerically computed auto-correlation functio
loguF0mf(t)u versus timetmT , with mT the temperature dependen
mass. The coupling is weak,l/mT

250.11 and the temperatur
T/mT'1.4 for the smaller volume~with significant deviations from
the Bose-Einstein distribution! and'1.6 for the larger volume~rea-
sonably Bose-Einstein!.
6-11
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MISCHA SALLÉ, JAN SMIT, AND JEROEN C. VINK PHYSICAL REVIEW D64 025016
ever warn the reader that the numerical computation of
tocorrelation functions is quite difficult and that there may
largestatisticalerrors in the numbers given.

VIII. DISCUSSION

We presented results of simulations mainly for a wea
coupled system, such that near equilibrium a description
terms of quasiparticles is expected to be reasonable~we will
check this expectation in a future publication@25#!. Starting
with distributions that are initially far out of equilibrium, in
which only low momentum modesk&m of the classical field
were excited with low energy density, we observed appro
mate thermalization with a particle-distribution function a
proaching the Bose-Einstein form. After a fairly rapid initi
thermalization at low momenta, the gradual adjustment
progressively higher momentum modes is very slow. T
energy in the mean field gets transfered to the two-po
function and one might think that the system behaves a
the mean field were constant. However, this is not the c
up to large timestm580000 the mean field keeps fluctuatin
in space and time and carries a non-negligible fraction of
total energy. Correspondingly, there is a ‘‘plasmon damp
rate,’’ which turns out to be similar in magnitude to th
predicted by two-loop perturbation theory~with no further
Gaussian approximation!. It is hard to assign a time scale fo
the gradual adjustment of the distribution at higher mome
but it appears to be at least two orders of magnitude la
than the equilibration timetm'20 for the particle density
found at early times@ tm5O(10)#, or for the damping time
tm'100 for the zero mode of the mean field, found at larg
times@ tm5O(10000)#. Slow thermalization was also foun
in a recent study of the fully nonlinear classical system in
symmetric phase@7#. Using our parameter combinatio
lT/m3'1.1/12 in their empirical fit 1/tm
55.8 1026(6lT/m3)1.39 would givetm'4 105.

On a large time scale, perhaps of the order oftm
510000 or more the distribution moves away from the qu
tum ~Bose-Einstein! form towards classical equipartition. W
never reached this classical equipartition for the weak c
pling and low temperature used in this paper. It would ha
taken much too long. Only for very small systems at hi
energy density and/or coupling, we were able to reach a s
ation resembling classical equipartition.

We have carried out many more simulations at hig
energy densities, and larger couplings, in which the appr
mate quantum nature of the distribution at intermediate tim
was also evident. With higher energy density and/or lar
coupling the effective coupling strengthnkl/m2 increases.
Things then go quicker and the time scales of quantum
sus classical equilibration get closer and might even
blurred. Furthermore, the Bose-Einstein distribution,
which we based our analysis, might get distorted by nonp
turbative effects. We may have seen such effects already
significant enhancement ofnk at low momenta, in simula-
tions at larger volume.

We have also performed simulations in the ‘‘symmet
phase’’ of the model. The picture there is confusing. At sim
lar couplings and initial conditions as described in the pre
02501
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ous sections nothing much seems to happen. Presumably
reason is the extremely short range nature of the purew4

interaction in the ‘‘symmetric phase.’’ In the ‘‘broken
phase’’ there is also a nonzero three-point coupling, giv
the interactions a finite range. But at higher energy den
and/or coupling there seems to be hardly a time regime
which the distribution function looks sufficiently Bose
Einstein.

Summarizing, on the one hand, our intuitive expectat
that there may be quantal thermalization in the Gaussian
proximation, due to scattering of the mode particles via
arbitrary inhomogeneous mean field, appears to be valida
but on the other hand, it is not clear how useful this appro
mation can be for equilibrium physics, e.g. at finite dens
It is possible that starting closer to quantum thermal equi
rium the time to reach thermalization is reduced and the
termediate time regime of quantal equilibrium can
stretched to do useful computations. Then it will be intere
ing to compare the Gaussian approximation with the cla
cal approximation and see which one fares best. We
address this aspect in a separate paper@25#, where we will
also investigate the possibility of using fewer mo
functions.5
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APPENDIX A: THE DIAGONAL COHERENT-STATE
REPRESENTATION

To derive the representation~1! consider first a quantum
mechanical system of two degrees of freedom with canon
variablesp and q. Let upq& be a normalized coherent stat
such that

âupq&5
1

A2v
~vq1 ip !upq&, â[

1

A2v
~vq̂1 i p̂ !,

^p8q8upq&5expH i

2
~pq82p8q!

2
1

4v
@v2~q2q8!21~p2p8!2#J
E dp dq

2p
upq&^pqu51̂, ~A1!

where v.0 is arbitrary. As is well known, the coheren
states form a~over-complete! set, so it should be possible t
represent an arbitrary operatorr̂ in the form

5The numerical cost of the inhomogeneous Gaussian approx
tion is substantial and scales likeN2d11 for an Nd spatial lattice.
6-12



a

n

ion
s-

that

e-

enta
e

kly

a

s of

n-
heir

use
tive
w

rs to

ce

by

e
h

THERMALIZATION IN A HARTREE ENSEMBLE . . . PHYSICAL REVIEW D 64 025016
r̂5E dp dq

2p
r~p,q! upq&^pqu. ~A2!

In our applicationr̂ is a density operator, for which

E dp dq

2p
r~p,q!51. ~A3!

Taking matrix elements of the above equation withup8,q8&
and ^2p8,2q8u gives

e(v2q821p82)/2v^2p8,2q8ur̂up8,q8&

5E dp dq

2p
ei (p8q2pq8)e2(v2q21p2)/2vr~p,q!, ~A4!

from which follows that the functionr(p,q) is given by the
inverse Fourier transform

r~p,q!5e(v2q21p2)/2vE dp8 dq8

2p

3e2 i (p8q2pq8)e(v2q821p82)/2v^2p8,2q8ur̂up8,q8&.

~A5!

A trivial example is a coherent state centered aboutp1 , q1,
for which r(p,q)52pd(p2p1)d(q2q1). Another simple
example is given by the thermal density operator of the h
monic oscillator with HamiltonianH5(v2q21p2)/2,

r̂5
1

Z
expF2bvS â†â1

1

2D G , ~A6!

with Z the partition function, such that Trr̂51. Choosing
the v in the definition of the coherent states equal to thev

appearing in thisr̂, it follows that

^2p8,2q8ur̂up8,q8&

5
1

Z
expF2~e2bv11!

1

2v
~v2q821p82!2

1

2
bvG , ~A7!

and

r~p,q!5
1

Z
expF2~ebv21!

1

2v
~v2q21p2!1

1

2
bvG .

~A8!

We recognize the inverse Bose-Einstein distributio
exp(bv)21, in the exponent. For large temperatures,bv
!1, r(p,q) approaches the classical Boltzmann distribut
exp(2bH). In the limit of zero temperature we get the di
tribution representing the ground state,

r~p,q!52pd~p!d~q!. ~A9!

More examples can be found in@20#. The generalization to
the scalar field is straightforward.
02501
r-

,

APPENDIX B: EQUIPARTITION?

The effective HamiltonianHeff@w,p,j,h# of the Gaussian
approximation is conserved in time. So one may expect
after very large times the system reachesclassicalequilib-
rium. Assuming ergodicity, time averages will then corr
spond to the Boltzmann distribution exp(2Heff /T), under the
constraints of the conserved generalized angular mom
Laa,bb @cf. Eq. ~32!#. We shall now derive an approximat
form for the particle-distribution functionnk corresponding
to this classical equilibration.

In our derivation we assume the system to be wea
coupled, such that we may approximateHeff in the Boltz-
mann distribution by a free field form~possibly after having
shiftedw by its equilibrium valuev such that̂ w&50),

H free5E dxF1

2
p21

1

2
~]w!21

1

2
m2w2

1(
a

~ uhau21u]jau21m2ujau2!G , ~B1!

where m is an effective mass. For convenience we use
complex formalism for the mode functions@ja5(ja1

2 i ja2)/A25Ana
011/2f a , cf. Eq. ~27!#.6 The generalized

angular momenta are just the naturally conserved charge
the complex fields,

Qa5 i E dx~ja* ha* 2haja!5La1,a25na
01

1

2
. ~B2!

We take them into account by introducing chemical pote
tials ma , such that the average charges are equal to t
values set by the initial conditions,Qa5na

011/2. It is not
immediately clear that this procedure is correct, beca
these initial values are not extensive and therefore rela
fluctuations will be large, but the emerging formulas belo
look reasonable. Imposing the constraints exactly appea
be quite cumbersome, except forN51. Recall thatN is the
number of complex mode functions, which in the latti
regularization is equal to the number of lattice sites:N5(k
5(a . Here we shall assume a sharp momentum cutoffuku
,L, for simplicity.

The classical grand canonical average will be indicated
an overbar:

F̄5
1

Zc
E @dw dp#F)

a
dja dhaG

3expF2
1

T S H free2(
a

maQaD GF, ~B3!

with Zc the partition function such that 15̄1. Our approxi-
mation fornk is now given by (vk5Am21k2)

6We added a superscript 0 tona to indicate that these are th
initial values at timet50, in order to avoid possible confusion wit
the nk .
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S~x,y!5
1

L (
k

eik(x2y)
nk11/2

vk
,

5w~x!w~y!1(
a

F na
011

na
011/2

ja~x!ja* ~y!

1
na

0

na
011/2

ja* ~x!ja~y!G . ~B4!

The calculation is a straightforward free field exercise. Int
ducing the classical analogues of the creation and annih
tion operators,

w~x!5(
k

eikx

A2vkL
~ak1a2k* !,

ja5(
k

eikx

A2vkL
~aak1ba2k* !, ~B5!

and accordingly for the canonical momentap and ha , we
get

H free5(
k

FUakU21(
a

~ uaaku21ubaku2!Gvk ,

Qa5(
k

@ uaaku22ubaku2#. ~B6!

It follows that

nk1
1

2
5uaku21(

a
~ uaaku21ubaku2!

5
T

vk
1(

a
S T

vk2ma
1

T

vk1ma
D .

~B7!

The ma are to be determined by the conditions

na
01

1

2
5Qa5(

k
~ uaaku22ubaku2!

5(
k

S T

vk2ma
2

T

vk1ma
D . ~B8!

Before turning to the casena
050 used mostly in this paper

we comment on the properties of the above equations. S
pose there is only one complex mode function~‘‘quantum
mechanics’’!: N51. Then the solution of the equations
given by
02501
-
a-

p-

m5Av21
T2

~n011/2!2
2

T

n011/2
,

n1
1

2
5AS n01

1

2D 2

1
T2

v2
1

T

v
, ~B9!

for which n>n0. We see thatm→v, n→n0 as T→0, and
m→0, n→` asT→`.

For finite N Eq. ~B8! for ma can be rewritten as a poly
nomial equation of degree 2N by multiplying the left-hand
side and right-hand side by)k(vk

22ma
2). So there are in

principle 2N solutions for eachma . For T→0 we have a
solution in whicha↔k as in ~34!, behaving as

mk5vk2T/~nk
011/2!1•••, nk5nk

01•••. ~B10!

For the casena
0[0 it is natural to look for a solution in

which all the chemical potentials are equal,ma5m. Equation
~B8! then reduces to

1

2
52Tm(

k

1

vk
22m2

'2TLmE
0

Ldk

p

1

m21k22m2

'
TLm

Am22m2
, ~B11!

for large volumesmL@1 and large momentum cutoffL/m
@1 ~the integral converges forL→`.! It follows that

m'
m

A114T2L2
. ~B12!

On the other hand, we have from Eq.~B7!,

nk1
1

2
5

T

vk
1

2NTvk

vk
22m2

, ~B13!

which depends explicitly on the number of modesN. We see
that nk11/2 falls roughly like 1/vk , and there is a dange
that nk may get negative for largevk , which should not
happen.

In fact, in our numerical simulations we always found t
nk to be positive, but not following the distribution~B13! for
all k. Even after very large times we usually found that on
a limited number of modes are able to thermalize appro
mately classically, except for small systems such as in F
13.

If we approximateN5(k'L*0
Ldk/p5LL/p, vL'L,

the conditionnL11/2'2TN/L>1/2 leads toLT>p/4, If
6-14
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this condition is not satisfied, more complicated solutions
the chemical potentials may be needed in whichmk'vk , as
in Eq. ~B10!. We have explored such solutions on the latti
usingMATHEMATICA . Despite ambiguities~e.g. funny behav-
ior of the alternating lattice modes!, such solutions indicate
. D

.

. D

02501
r

,

that nkvk is quite constant~but apparently not exactly!,
i.e.approximate equipartition.

So we tentatively conclude that, approximately,nk
'Tcl /vk is the predicted form for the particle distribution
very large times.
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