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Thermalization in a Hartree ensemble approximation to quantum field dynamics
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For homogeneous initial conditions, Hartr@gaussiapdynamical approximations are known to have prob-
lems with thermalization because of insufficient scattering. We attempt to improve on this by writing an
arbitrary density matrix as a superposition of Gaussian pure states and applying the Hartree approximation to
each member of such an ensemble. Particles can then scatter via their back reaction on the typically inhomo-
geneous mean fields. Starting from initial states that are far from equilibrium we numerically compute the time
evolution of particle distribution functions and observe that they indeed display approximate thermalization on
intermediate time scales by approaching a Bose-Einstein form. However, for very large times the distributions
drift towards classical-like equipartition.
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I. INTRODUCTION The leading-order larga equations for thed(n) model
are almost identical to the Hartree approximation for the
Nonperturbative computations in quantum-field theory insingle-component scalar field, and so the latter approxima-
real time are important for our understanding of the physicsion is also not considered to be able to describe thermaliza-
of the early universe as well as dynamics of heavy-ion coltion. Yet, in this paper we shall present evidence for approxi-
lisions. Real-time simulations may also give us a new handlenate thermalization using Hartree dynamics in a toy model,
on the difficult problem of computations at finite chemical the ¢* model in (1+1) dimensions. The crucial difference
potential, e.g. in QCD. Incorporating finite density does notwith previous studies is that our system is allowed to be
necessarily pose extra problems of principle, so taking timerbitrarily inhomogeneous. This has the effect that particle-
averages in a thermalized ergodic system will provide usike excitations can scatter through the intermediary of a
with microcanonical expectation values. mean field fluctuating in timend space, which in turn is
The classical approximation has given very useful resultgreated by the particle$We used ‘“Hartree” rather than
for the sphaleron ratésee[1] and[2] for the status in three “large n” to avoid problems with would-be Goldstone
and one spatial dimensionghermalization after preheating bosons in (1 1) dimensiong.
[3], nonequilibrium electroweak baryogenepils, as well as The Hartree approximation describes the dynamics in
for studies of equilibration and thermalizati¢f—7]. With  terms of a mean-field and a two-point correlation function. It
the inclusion of fermions it has given encouraging results folcorresponds to a Gaussian density matrix in field space, cen-
finite density simulations[8]. However, it suffers from tered around the mean field with a width given by the two-
Rayleigh-Jeans divergences. To some extent these can peint function(see e.g[15]). The two-point function can be
ameliorated in scalar field theori¢8], but for gauge theo- conveniently described in terms of a complete set of mode
ries, the problems are more sevgi®,11]. Largen approxi-  functions. For a homogeneous initial state, the mean field is
mations have also been used for initial value problems, withomogeneous and the mode functions can conveniently be
O(n)-type models. The leading order imlihas given useful taken in the form of plane waves labeled by a wave-vektor
results for the description of preheating dynamics in the earlyrypically, only mode functions in a narrofk| band get
universe(see e.g{12] and references thergirand for the excited by the time-dependent homogeneous mean field,
possibly disoriented chiral condensate in heavy-ion colli-through parametric resonance or spinodal instability. The
sions[13], but it is generally considered to contain insuffi- system equilibrates but does not thermalize in this approxi-
cient scattering for describing thermalization at larger timesmation and particle distribution functions show resonance
This will be improved in next order in @i/ where scattering peaks instead of approaching the Bose-Einstein distribution
comes into play, but full implementation in field theory is (see for exampl¢19]).
hard. Furthermore, within quantum mechanics one finds in- |t is instructive to compare with the classical approxima-
stabilities[14,15, and it has been argued that systematicallytion. Simulations in this case indicate no problem of prin-
correcting in 1 does not prevent the approximation to breakciple with thermalizatior(see[5—7] for quantitative studies
down at times of orderyn [16]. On the other hand, Starting from an initial ensemble of classical field configu-
Schwinger-Dyson-like approaches, including scattering diarationsp [ ¢, 7,t;,] (with canonical field variableg and ),
grams, appear to give more favorable res[dtg] and have suitable observables are found to become distributed accord-
been found to lead to equilibration in field theddg]. ing to the classical canonical distribution exggH[ ¢,7]).
This distribution will not be reached starting with strictly
homogeneous realizations, because then the dynamics is that

*Email address: msalle@science.uva.nl of a simple system with only two degrees of freedom, i.e. the
"Email address: jsmit@science.uva.nl spatially constantp and 7. As initial conditions aiming at
*Email address: jevink@science.uva.nl thermalization, these are unsuitable realizations, even if

0556-2821/2001/62)/02501615)/$20.00 64 025016-1 ©2001 The American Physical Society



MISCHA SALLE, JAN SMIT, AND JEROEN C. VINK PHYSICAL REVIEW D64 025016

pd @, ] is homogeneous. The phase-space distributioffan we obtain a reasonable approximation to the target equi-
pl @, ti,] may be homogeneous, but realizatians,t;,), librium distribution at intermediate times starting with a con-
m(x,t;,) are typically inhomogeneous. Viewing the Hartree venient initial one?

approximation as a semiclassical improvement, we may ex- We study these issues in a simple modek-11) dimen-
pect that thermalization will improve if some analogies ofsional ¢* theory. Section Il introduces the model and the

classical realizations are used as initial states. Gaussian approximation. An effective Hamiltonibipy de-

To implement the idea, we note that an arbitrary densityscribing the Gaussian dynamics is introduced in Sec. Ill. In
operator can be formally written as a superposition of GaussSec. IV we discuss vacuum and thermal stationary-state so-
ian pure state: lutions. We note one of the flaws of the Hartree approxima-

tion, the fact that it predicts a first-order phase transition
~_ where there should only be a cross ofier (3+1) D one
P f [dedmlpgl e i@, m)e, . @ also gets a first-order transitid@1] instead of the expected

second order; the inconsistency problem with coupling con-
Here the|p,7) are coherent states centered aroun()  stant renormalizatiofi21] is absent in (# 1) dimension
:<(p,7-,|{p(x)|(p,7-r> and w(x)=<<p,7r|%(x)|<p,7r>, and Numerical results for the evolution from initial out-of-
pol¢.7] is a functional representing the density operqfior equilibrium dlstr|_but|or_1$ are _presente_d in Sec. VI. We intro-

duce a one-particle distribution function(t) and compare

\é\./et _|St(=:l-_rpret the"’o’ﬂx"ol’:' ai re_allzianoPS ofp.IThg | its time-dependent form with the Bose-Einstein distribution.
istribution pg[ ¢, 7] can be quite singular for non-classica n Sec. VIl we study correlations in time of the zero-

. . . |
states, but for suitable semiclassical states or thermal State%omentum mode of the mean field, use them for estimating
is positive and intuitively attractivg20]. We give a brief damping times. The results are di,scussed in Sec. VIII. In

review in Appendix A. Appendix A we discuss the representati@i and in Appen-

A thermal state like ep-BH] cannot be approximated gix B, classical equipartition according .
very well by a Gaussian if there are nontrivial interactions.

For example, with a double-well potential, there are in gen-

eral multiple peaks in the field distribution, while a Gaussian Il. GAUSSIAN APPROXIMATION

has a single peak. But if in the decompositida Gaussian e start with the Heisenberg field equation for the quan-
state| ¢, 7)( @, 7| has a reasonable weight, we can take it agym field? at timesx°>0,

an initial state and use the Hartree approximation to compute R A

the time evolution. We can then compute time averagss (—°+ u?) e(X) + N e(x)3=0. (2)
long as the approximation is gopdand finally sum over

initial states according to E@1). Such a description is semi- For exact evaluation we would have to specify the infinite set

classical in so far as the mean field describes a near-classic§d matrix elements oﬁa(x 0) and&oglz(x 0) as initial condi-

path andpg[ ¢, 7] is positive. But note that in the Hartree tjons. In practice, of course, less detail is needed. Taking the
approximation the Gaussian fluctuatiottse modes com- expectation value in an initial state at tirr8=0 leads to
prising the two-point function — these are the “particlelike

excitations” alluded to aboveinfluence the “classical”

field, i.e. the mean field of the “realization.” {e(x))=e(x), &)
For thermal equilibrium, the functiongly[ ¢, ] is time ) A
independent but it is not known for interacting systems. If (Te(X1) @(X2)) = @(X1) p(X2) —1G(Xq,X5), 4

the time evolution could be followed exactly, we would be
able to reconstruct its microcanonical version, assuming the

system is sufficiently strongly ergodic. With exact dynamics (Te(x2) e(x2) 0(x3)) = @(X1) @(X2) ¢(X3)

we can imagine starting from some initig}[ ¢, 7] which is —i@(X1)G(Xy,X3)+ 2 perm.
reasonably close to the target distribution, wait for equilibra- -
tion and subsequently compute time averages over an arbi- +(=1)°G(X1,X2,X3), 6)

trarily long time span. With only an approximation to the - -
dynamics (Hartreg the distribution may deteriorate after (Te(Xq) - @(Xa)) = @(X1) - - ¢(X4)
some time and we may have to stop and start again.

. : . —ip(X X2)G(X3,X4) + 6 perm.
Crucial questions are now, does the system equilibrate ¢(X1)¢(X2)G(Xs,xa) +6 p

sufficiently in the Hartree approximation, such that results + o(X1) (—1)2G(Xy,X3,X4)
are insensitive to reasonable choices of the injiigly,7]? .

i i i ole distri +3 perm:+ (—i)2G(X1,X,)
Does it thermalize approximately, e.g. do one-patrticle distri- 172

bution functions get the appropriate thermal forms? How
long does it take for the approximation to break down? And
if the answers to these questions are sufficiently favorable, +(—=1)3G(Xq, ... Xq), (6)

X G(X3,X4) + 2 perm.

lOperators are indicated with a caret. 2In this section we assun@+1) dimensions.

025016-2



THERMALIZATION IN A HARTREE ENSEMBLE . .. PHYSICAL REVIEW D 64 025016

etc. HereT denotes time ordering and for the f, is of the Klein-Gordon type and we require the
A . . . mode functions to be orthogonal and complete in the Klein-
(e(X1) - @(Xp))= Tr pe(X1)- - @(Xn), (7)  Gordon sense:

with f) the initial density operatory is the mean fieldor
classical fieldd and theG’s are correlation functiongcon-
nected Green'’s functiopsTaking the expectation value of
Eqg. (2) and neglecting the three-point correlation function 5 ] )

G(x,x,X) gives the approximate equation j d°X[ f o(X)1dof g(X) —1dof o(X)f 5(X)]=0, (15

f d3X[ % (X)idof g(X) —idof X (X)fg(X)]= 8,5, (19

[— 2+ u2+ A @(X)2—3ING(X,X)]e(x)=0.  (8)

_ . . 2 [ () 3of 5 (V) TR () dof oY) 0= yo= 8*(x—Y),
To use it we need an equation for the two-point function. "«

Such an equation can be found by multiplying ER) by (16)

¢(y) and taking again the expectation value in the initial

state. This leads to the approximate equation Z [£.,0F*(y)— £ () (Y)],0_y0=0 17)
a a a a XV=y ’

[— %+ p2+ 3N (X)?>—3iING(X,X)]G(X,y) = 6*(x—Y),
(9

. . . qu [9of a(X) 90T 5 (Y) = 90T % (X) dof oY) 0= y0=0. (18)

where we used the canonical commutation relations an
dropped the three- and four-point correlation functions. We
shall comment on their neglect at the end of this sectionThe above orthogonality and completeness relations are pre-
Since only the two-point function appears, E@8,9 are served by the equation of motigqi2) for the f,. The ca-
exact if the Hamiltonian and density matrix are approxi-nonical commutation relations fas anddy¢ translate into
mated by Gaussian forms. Given the neglect of the higher-
correlation fqnctions the ?nitial density ma?rix does not have [BQ,BEF Bugr (b, 165]:[62,62]:0- (19
to be Gaussiaper se but its non-Gaussianity does not enter
in Egs.(8,9). For clarity we shall now assume the brackets I T .
(---) to refer to aGaussian density operatqs. Later we The |n|tA|aIAcond|t|on |mpllfas{Aba>=0 and we have to specify
will consider non-Gaussian operators by further averagindras={0.bg) andN,z=(blbs). The matrices\N andE are
over initial conditions, as in Eq1), which will be indicated ~ subject to constraints following from their definition as ex-
by ﬁ pectation values of operators in Hilbert space. We sball as-

An intuitive as well as practical way for computing the sume that a Bogoliubov transformatiob,— > g A,zbg

two-point function is in terms of mode functiorig(x). We +Baﬁ62§] can be made such th&,;—0 andN,zx5,4.

write This transformation produces new mode functions that are
) 0 0 o o linear combinations of theandf*. In the new basis we only
—IG(xy)=6(x"=y")C(xy) + 6(y"—x)C(y,x), 10 have to specify as initial conditions
such that (bibg)=nd.s. Ne=0, (20

CoxY)={[e(x)—e(X)[e(y)—¢(y)]). (11  interms of which

It follows from Eq. (9) that C(x,y) satisfies the homoge-

neous equatiof8*(x—y)—0], in the variablex as well as C(X’y)zg [(1+ng)fa(x)fZ(y)+ngf’;(x)fa(y)].

iny, as if (x)— ¢(x) satisfies this equation. We can now (21)
introduce mode function,(x) satisfying the homogeneous
equation, Equation (13) expresses the fact that in the Gaussian ap-

proximation, the fielde’ (x)=¢(x)— ¢(X) is a generalized
[— %+ u?+3Ne(X)%+3NC(%,X)]f(x)=0, (12  free field, i.e. its correlation functions are completely deter-
mined by the two-point function. Its linear field equatiome.
Eq. (12) with f,— ¢'] is equivalent to the Heisenberg equa-
Ga tions of motion of the effective Gaussian Hamiltonian opera-

()= e(x)+ > [bf,0+bfx (0], (13 O

[-iG(x,x)=C(x,X)] and write

1 1 1
~ ~ N — 3y| 2202 T o2 T2 22
where theb, andb! are space-time independent and “G.a.” Hoa, f d*x 5"+ 5 (Vo) ™+ 5 Mege +€e“f}’

means “Gaussian approximation.” The wave equatihB) (22

025016-3



MISCHA SALLE, JAN SMIT, AND JEROEN C. VINK PHYSICAL REVIEW D64 025016

able at weak coupling, and even the second approximation
_ i52/8¢ — + may be justifiable if the product of the three-point couplings
(one bare, the other dressesl substantially smaller than the

(bare four-point coupling in the first one-loop diagram.

FIG. 1. Diagrammatic illustration 053/, with S the self- However, since the bare three-point vert&6/ S\ ¢ we

energy functional defined by=S—3. The lines and full dots rep- See that this is not likely i=0O(\ "2 or larger. Especially
resent the exact propagatdcerrelation functionsand vertex func-  this second approximatiotb) is worrisome, because on it-
tions, the other vertices represent the bare vertex functions as givearation of the integral equations we would not get correctly
by the classical actio®. all one-loop diagrams. It is also known that the approxima-

tion does not give exact Goldstone bosons where one expects

where the space-time dependent effective nnag,sis given them, because the phase transition is incorrectly predicted to

by

be first order, instead of second ordegr 3+ 1 D) or a cross
5 over (1+1 D). There is a problem with renormalization in
Me(X) =3\ @(X)?+3NC(X,X). (23)  (3+1) dimensiong21] (but not in 1+1 D).
It will depend on the circumstances if these troublesome

We also introduced an effectivenumber energy density features of the Hartree approximation are numerically impor-

€eft, Which is determined by requiringig ,)=(H): tant.
1 2 1 2 1 2 2 1 4
€cii(X)= 5 m(X) +5[Vo(X) ]+ s u70(X)*+ — N e(X) Ill. EFFECTIVE HAMILTONIAN AND CONSERVED
2 2 2 4
CHARGES
— §)\C(x,x)2. (24) The equations of the Gaussian approximation derived in
4 Sec. Il are local in time and they may be derived from a

conserved effective Hamiltonian. We shall present it here

Summarizing, the Gaussian approximation consists of Eq$ng exhibit its symmetries and accompanying conserved

(8), (12), (20), and(21), together with the orthogonality and
completeness conditiond4)—(18) for the mode functions
and some initial condition for the mean-field and mode func-

charges. We write

tions. 1 :
The Gaussian approximation can be justified in the limit fa(x)_ﬁ[fal(x)—lfaz(x)], (25
of largen for the O(n) model. The resulting field equations
are very similar: we only need to make the replacement 3 1 1o
—1 in Egs.(8) and(12). —Z4 o) f -12 26
The above derivation in terms of the Heisenberg equa- fea )=+ M| Teax),  a=1.2, (26)

tions of motion can be put into the systematic framework of

the Dyson-Schwinger hierarchy. These equations follow _ _

from functionally differentiating an exact equation of motion Maa(X) = dobaa(X),  T(X)=doe(X). @
o'l o= —J with respect toJ and settingJ=0 afterwards. ) i

HereT is the effective actiorfwith time integration along !N terms of the real canonical variablgs 7, £.a and 7,a
the usual Keldysh-Schwinger contouand J an external the effective Hamiltonian takes the form

source. We shall not go into details here, but just comment

on the systematics, using diagraffer a derivation, see e.g. 3
[22]). Figure 1 illustrates the exact equation for the meanHeﬁ:f d>x
field. The Gaussian approximatidB) is obtained by drop-
ping the two-loop diagram. By differentiating the diagrams
in Fig. 1 we get the exact equation for the two-point corre-
lation function illustrated in Fig. 2. The Gaussian approxi-
mation (9) can be obtained from this bgg) dropping the
two-loop contributions an¢b) dropping the second one-loop
diagram. The neglect of the two-loop terms may be reason-

iS58 = Q " *Q— e

FIG. 2. Diagrams for the self-energy part of the inverse corre-
lation functionG 1= — 6°S/ 8¢ ¢+ 523159 S¢. The - - - repre-
sent the two-loop diagrams obtained by differentiating the diagramét is easy to check that the mean-field E8) and the mode
in Fig. 1. equationg12) are equivalent to the Hamilton equations

1 1
SLrt n?+ (V)2 + (V2] + S u’(9?+£7)

+§A[¢4+6¢2§2+3<§Z>21 , (29
where

5222 (Ea+ &), n°= ~ (721+ 1%0),

(VE2=D [(VEa)?+(VEm)?].. (29)
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SH gt logarithmically divergent with the implicit cutoff.
dop=m, dom=— g 0€aa™ Naas We assume the equilibrium states to be homogeneous and
time independent, i.e.p(x,t)=v and C(x,t;y,t)=C(x
SH i —Y.0;0,0). Also the various time derivatives Gfevaluated
AoNga=— 3L (30 at equal times are assumed to be time independent. We shall

seek solutions of the forr21) in which the mode functions
It is also straightforward to show thét,; is just the expec- aré plane waves,
tation value of the quantum Hamiltoni&h(t) upon inserting

) S ikx— it
the Gaussian approximatiqa3), X.1)= f(x.1)= e 34
i ‘P( y ) U, k( ’ ) \/m ( )

Heff:<H>' (31

The effective Hamiltonian h identl | i Here the labek is the wave-numbek and we writen, for
€ efieclive Hamittonian nas evidently a farge Symmetryy, correspondindtime-independentoccupation numbers.
corresponding to rotations of the infinite dimensional vector

d For definit let larizati With this Ansatz the equations for the mean-field and mode
£aa @Nd7,, . For definiteness, let us assume a regularization, . «0ns reduce to

of the field theory such that there arel modes, «
=1,... M (e.g. on arN?® periodic latticeM = N3). Then the (124 3NC+ A0 =0 (35)
effective Hamiltonian hasO(2M) symmetry, implying ’
M(2M —1) conserved generalized angular momenta of the

2 2 2 2
— w2+ K2+ u?+ + =
general form otk 4+ u+3NC+3Nv°=0, (36)

whereC=C(x,t;Xx,t) is time independent. In the infinite vol-
Laa,ﬁb:f d*X(aampp— EppTaa),  (@,@)#(B,D). ume limit it is given by
(32) dk 1)\ 1

Recalling the orthonormality relations for the mode functions szﬁ ”k+§ o (37)
(14), (15 we see that the conserved quantities are given in
terms of the initial conditions as It follows that

Loyt 33 wp=m’+k?, m’=p?+3\C+3\02 (39

al,a 2 a?

To determine then, we maximize the entrop subject to
the constraint of fixed-energy =H=E, i.e. maximizeS
+ B(E—U), with Lagrange multiplyer3. We shall write
these equations in terms of the densitsesS/L, u=U/L,
e=E/L with L—o. The (unrenormalizeflenergy density

with all others vanishing.

It is interesting to compare with the effective Hamiltonian
corresponding to the large limit of the O(n) model[23],
which may be obtained frorhl o above by the replacement
3—1 (and 6—2). This has the effect of producing the com-

T is given b
bination \ (¢2+ &2)2, so the symmetry enlarges ©(2M g y
+1). The additional 1 conserved generalized angular mo- Hey 1 1
menta depend on the initial conditions ferand 7. u= Te= E,u,zszr Z)\v4
IV. EQUILIBRIUM STATES dk 1) 02+ K2+ u2+3\02 3
. . . — | Nkt = +—\C?,
In a first exploration of the system and of the Gaussian f 2 ( ) 2wy 4

approximation we study equilibrium states, i.e. stationary (39)
states with maximum entropy. This will give information on

the phase structure and quasiparticle excitations as a functigfyq for our Gaussian density operategan be written as
of temperature. From now on we specialize toH1) di-

mensionsx*— (x,t), and assume the system to have “vol- 1 dk
ume” L with periodic boundary conditions. The couplihg s=—— Tr plogp= f —[(n+1)log(n,+1)
o . L 2
needs no renormalization while the bare mass parameter
is only —nglogn]. (40

The maximization equations read
3In [23] the effective Hamiltonian for the homogeneous system

was expressed in terms of the radial varialfle= &2, + &2, 0= olstBle—u)] =log ne+1 — Bw u=e
(modulo a factor of twy and the rotational symmetries mixirg, ony Ny ko ’

and ¢,, are then absent. However, the corresponding equations of (41
motion then suffer from numerical complications due to the angular

momentum barriers. with the solution
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FIG. 3. Zero-temperature effective potentih =H /L) ver- FIG. 4. Finite-temperature effective potentidh =(u—Ts)/x
sus ¢ for various values ofu?/\. The potential is normalized to VErsus¢ for various values ofsm(¢c,0). The potential is again
zero ate=0. normalized to zero ap=0.

1 imply strong coupling: they are given by/mzl~ 10, fOI’.(p
= (42) =0 and\/m?~1.2 for ¢=v.~0.65. To avoid fake first-
efor—1 order effects we should evidently choose parameters away

from the transition region. For this paper we mostly used
and B such thatu= €. So we found equilibrium states of the \/m?=1/12 for which there is only one ground statevat
Hartree evolution corresponding to the Bose-Einstein distri—=6, well away fromvgwo_65_

bution with temperaturd=3"*. All effects of the interac- Having determined the ground state we define the renor-
tion are buried in the temperature dependent nmasstro-  malized energy, by subtracting fronH g its value in the
duced in Eq/(38). ground state, such that the vacuum energy is zero. It can be

For simplicity of discussion, let us next use a simple mo-instructive to split the total energy into a classi¢akussian

mentum cutoff k| <A and define a renormalized mass pa-mean field part and a mode energf i /= HciasT Hmodes

rameter,uf by where we define the classical part as
2 2 3N 4A? 1 1
MO 0T “3 Holas= f dX 57+ 5 (Ve)*+Vaad@) |, (46)
Then Eq.(38) takes the renormalized form 1 1
Voad @) =5 M@+ N¢%,  v=0, (47)
2 23>\|x3fxdk 1 1 w2 4
me=pur+—Io + 3\
Mo am g@ 0 T \m2+k2 gVm?+k4T_ ¢ 1
=—-Ne¢?—v?)?  v#0, (48)
+3\02 (44) 4
At zero temperature the equilibrium state is the vacuum. Fowherem? andv? are the vacuum value§ €0).
v=0 there is one solutiom? for every u?e (—=,%). For Consider now starting in the broken symmetry phase
nonzerov we get with Eq.(35) the relations #0 at zero temperature and raising the temperature. In (1
+1) dimensions there should be only a cross over and not a
) ) ) 1, 3\ m? true phase transition. Figure 4 shows the finite-temperature
m"=2\v%,  pur=—5m™+ —log—. (45 effective potentialfree-energy densily
There turn out to béwo solutions, providedu?/\ < (3/4r) fle)=u(e)—Ts(e), (49)

X[ —1+log(3/2m)]~—0.415, otherwise none. To deter- . . )
mine the true ground state we plot in Fig. 3 the effectiveUsing the temperatur& as independent variable instead of
potentialu as a functiony [i.e. m? is the solution of Eq(44)  the energy densitg. Now m?=m?(¢,T) is the solution of
with v— ¢ at T=0], for various u,. The plot shows that EQ.(44),v— ¢, atfiniteT. The parameters were chosen such
there is a first-order phase transition as a functionuff  thatv?=m?(v,0)/24=6 atT=0. We see again a fake first-
instead of the expected second-order transition for a model iArder transition, alc~1.79m(v,0), withv .= 1.96. Its latent
the universality class of the Ising model. This misrepresen€at | and surface tensions are given by I=Au
tation of the phase transition is a well-known artifact of the=0.39M(v,0)%, o= [ °d@\2f(¢)=0.295M(v,0). These are
Gaussian approximatiofsee, e.g[21]). not particularly small values and we may not argue that the
Note that the second-order transition would occur ateffects of the first-order transition will be negligible under
strong coupling\/m?—, where the Gaussian approxima- generic circumstances. However, the critical size of a nucle-
tion is suspect. In fact, the two masses at the transition alsating bubble is zero in1+1) dimensions, so the bubble
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nucleation rate is not suppressddcexp(—20/T)~exp Mmechanically and their interaction is short ranged. Intu-
(—0.17)] and supercooling will not be strong. itively, such an interpretation supposes that the particles are
We end this section with some cautionary remarks. Firstlocalized, with a correspondingly fluctuatirignd hence in-
the fact that the equilibrium correlation functi@(x,y) has ~homogeneoysmean field taking the role of a classical field.
the free form{i.e. Eq.(50) below withn, given by the Bose- Within such a picture one expects the system to thermal-
Einstein form(42)] for any coupling strength is a result of ize approximately. We would like such thermalization to be
the Gaussian approximation. The exact correlation functiofiuantal, e.g. with particle-distribution functions that are of
will have a more complicated form, although the correctionsthe Bose-Einstein type. However, the fact that our equations
are expected to be small at weak coupling. We will checkof motion have the form of classical Hamilton equations in
this by a Monte Carlo computation in a separate publicatioferms ofHet suggests otherwise, namely a distribution ap-
[25]. proaching a classical Boltzmann form exg§H.¢), subject
Second, it is not clear that the finite-temperature equilibt0 the constraints set by the large number of conserved
rium state found above will actually be approached at verychargeg32). But this may take a very long time. In any case,
large times. Any set of numbers, in conjunction with Eqs. One way to test the Gaussian approximation is to study its
(34)—(39) gives a stationary solution to the Hartree equa-thermalization properties.
tions. Our derivation of the Bose-Einstein form fof used This we do by looking at equal-time correlation functions,
the standard forn(40) for the entropy, but we have not coarse grained by averaging over a space-time region. As-
shown that this entropy is a large time result of the dynamsuming the system is weakly coupled we can compare such
ics. Of course, this would be trivially the case if we chooseaverages with a free field form in terms of quasiparticles with
the initial ocupation numbers’=n,. But for a generic effective masses. If the system equ'|I|b.rate.s locally in a quan-
Gaussian initial state the correlation function may still ap-tum way, then the quasiparticle distribution should ap-

proach a fixed point of the form just discussee-¢'), proach the Bose-Einstein form. We define the correlation
functions
COLEX ) =2 [+ (D (X 1) S(x,y,Hh=(e(x,De(y,1) = (e(x,H){e(y,1), (52

+nlf* (x,0)f (x',t')]

a

I —
TOGY D =5([e(xOm(y,t)+ 7y, e(x,D)])

_}f% 1+nkeik(x—x’)—iwk(t—t’) _ _
27| 2wy —(@(xH){(m(y.1)), (53
+2”—afke*ik<X*X’)“wk<H’> . (50 UGy ) =(a(x, ) a(y,t) —(m(x.H)){m(y.1),

where then, are expected to correspond to maximum en-yhere the overbar denotes the space-time averaging as well
tropy in relation to the dynamics. Since the Hartree dynamicgg 5 possible average over initial conditions as in @&j.

in terms ofHy is classical we may expect this entropy to ysing Eqgs.(3) and (11) we can express these quantities in

take a classical form, which would lead to terms of a “classical”’(mean field and a “quantum” con-
tribution,
nk_w_k' (51) S(x,y,t)=S(x,y,t)+SUx,y,t), (55)
Matters are complicated by the presence of the infinitely SE(x,Y,t) = (X,t)o(y,t) — o(X,t) p(y,1), (56)
many conserved charg€33), which are determined by the
initial conditions. Note that without these constraints one SI(x,y,t)=C(x,t;y,t), (57)

would expectn,+1/2=T/w,, instead of Eq.(51), which

makes a big difference because equipartition suggests loatc. Note thaS®— 0 in case of averaging over initial condi-

T=0(e/A) and thereforesmall n,. We elaborate on this in tions and/or spacetime.

Appendix B. For simplicity the spatial average is performed over all of
To study such matters numerically we now first introducespace. For example,

a coarse graining of the correlation function and define a

H H _ H H H 4 B 1 t+A/2 L “
corresponding time-dependent distribution functigst). (G0 e(y0) = Eft_mdt, fo dZ(p(x+2t")

V. COARSE-GRAINED PARTICLE NUMBERS “ ,
. . , Xe(y+zt)). (58)
The mode functions may be interpreted as representing

particles that interact through the mean field. This is similaBBecause of the periodic boundary conditioBsT, and U
to electrons scattering off each other in classical electrodydepend only on the difference betweemndy. Taking the
namics, albeit that here the “particles” are treated quantuntourier transform
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VI. NUMERICAL RESULTS

1JL A
t)=—[ dxdy e CVgx,y,t),
S LJo y Sy We now describe some simulations used for obtaining the

particle numbers,(t). The mass and coupling parameters
K= (051,42 )2_77 59 were chosen such that the system at zero temperature is in
IR et AN T the “broken symmetry phase.” The coupling was weak,
=m?/2x=6. Here and in the followingn is the mass of the
and similarly forT andU, it is easy to see th&8andU are  particles at zero temperature.
symmetric and positive, i.e. The system is discretized on a space-time lattice with spa-
tial (tempora) lattice distancea (ag), with ag/a=0.1. The
S(1)=S_(1)=0, U,(t)=U_,(t)=0, (60)  number of spatial lattice sites, equal to the number of inde-
. ) i i _ pendent complex mode functions, will be denoted with
while T\ enjoys no such properties. For a free field with _| /5 The discretized Lagrangian gives rise to second-order
average occupation numbef@a,) =ny and frequencies, difference equations, with a time evolution that is equivalent
the correlators are given b$.=(nc+n_+1)/120y, Ty  to a first-order leapfrog algorithm forr,(t)=[ ¢.(t+ao)

=(n—n_)/2 and Uy =S, . Note that in this cas@ is  — ¢ (t)]/a, and ¢, (t).
antisymmetric. We nowdefinew(t) andny(t) for the inter- The initialization is similar to that used i5,6],
acting case by
(61) ex=v, m=AmY, cod2mx/L—y;),  (67)
=1
t)=| ny(t)+ ! 62

with random phaseg; uniformly distributed in[0,27). The
1 modes are initialized with the equilibrium form at zero tem-
Tﬁ(t)=§[Tk(t)—T—k(t)]=nﬁ(t), (63)  perature: then are all zero and the modég(x,0), f(x,0)
are given by the plane wavé34) and its time derivative at
t=0, with w2=k?+m?. The density operator is thus a su-

1
Ui(t)=| ng(t)+ 7| @K(b). (64)  perposition of coherent pure states as in €.
We now describe a simulation for whiotim?=1/12, N
These equations can be easily solved in terms,oéndn,: ~ —2°6,ML=32, jmax:4’2A:21_/\/§' such that the energy den-
o= _=JU,/S,, NS= w,S— 1/2 andn, follows by add- sity is given by E/Lm“=A%].,/4=0.5. A Bose-Einstein
ing T2. distribution describing particles with such an energy density

There is a more direct interpretation of these formulas ifvould have a temperatul®m~1.08, well below the phase
transition at T/m=~1.8, as calculated with the finite-

trqmperature effective potential. We also chose these param-
eters so that the system may end up in a low-temperature
quantum regime and not in a classical regime Witim>1.

terms of the expectation value of a number operafg, .
Suppose we define time-dependent creation and annihilati
operators as

L A boring consequence was that the volume averaged mean
ék(t)= —J dxe*ikx[wk(t)&v(x,t) field typically just oscillated around one of the two minima,
V2w (t)LJo we did not encounter an initial condition for which it crossed

the barrier aftetm>50.

Initially the mean field carries all the energy in its low-
momentum modes<Qk/m= m/4 (zero-momentum mode ex-
cluded. Due to interaction with the inhomogeneous mean
- field, the modes will not keep the vacuum form, but get

(al(tHa(t))y=ny(t). (66)  excited. Figure 5 shows the time dependence of the energy

density for one of the members of the ensemble. The total

The problem with starting with Eq65) is that one does not energy is conserved up to a numerical accuracy of about
know a priori how to choose the,(t). This is especially so 0.2%. The energy in the mean fidldf. Eq. (46) for its defi-
if some of the effective squared frequencig€+3\¢?  nition], initially equal to the total energy, is decreasing rap-
+ 3\ C in the equations for the mode functions turn negative idly and after a timém= 100 about 50% has been transfered
The line of reasoning leading to Eq$1)—(64) solves this to the modes. The mean field continues losing energy after
problem, but we should keep in mind that this is by brutethat time but at a timém of the order 20000, some 15% is
force, which can be misleading in extreme situations, e.gstill left.
when the spectral function is not dominated by a sufficiently The development of the particle numbergt) at early
narrow quasiparticle bump. times is shown in Fig. 6, including the mean-field contribu-

+im(x0],  alt)=(a(t)". (65)

Then
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16 :
tm= 2 ——
1 tm= 6 —— |
12 tm= 18 ——
10 + tm= 42 —— |
c 8 F
6 F
4 F
2 F
0 ; : : 0
0 5000 10000 15000  tm — 20000 1.5 2
k/m
FIG. 5. The total-energy densif/Lm? (horizontal line at 0.5
energy density of the mean fieltbwer band and of the modes FIG. 6. Particle numben, versusk/m for early times.
(higher bandl Also plotted are the various energy densities in the
quasiparticle interpretatior, \nyw, /L m". In Fig. 11 a plot is made of the Bose-Einstein tempera-

. R . . tures from the fitgmodes only as a function of time. For
tion, cf. Eqs.(55-(57)." Initially the mean-field gives the jmestm<3000 the fit is made over the intervalm<1.4
main contribution sincen, =0 for the modes, but then the hjle for later times this is increased to/m<1.8. The fig-
mode contribution rapidly takes over. Because the meanyre shows an anticorrelation betwe®rand x which would
fleld'cp_ntrlbutlo'r! fluctuates strongly,_ we usgd as many age meaningful(i.e. not just a fitting artifagtif the particle
500 initial conditions for these early times, without coarseN-gensity n=>,n,/L is constant(or has evidently smaller

ing over time. Figure 7 shows the mode contributiom{@®s  fjctyations. This seems to be the case indeed: as shown in
a function ofw (40 initial conditions were used for the data Fig. 12, the densityn corresponding to the modes only is
attm>200, with no coarsening over timdt starts out iden-  gyite constant for timesm>100, and in fact continues to
tically zero, rises rapidly and then appears to stabilize. Theemain so up to times of over 5000. On a larger time scale of
figure also shows a fit to the Bose-Einstein distribution withy,der 10000 or so it drops somewhat. The initial approach of
chemical potential. at timetm=990. A chemical potential ,/m (modes only to the value~0.34 can be fitted to an

is expected to develop temporarily at weak coupling, sinc&yponential, which yields an equilibration time scaten
elastic scattering dominates over processes liked2scat-  — 1590, depending on the fitting range.
tering. The fitted temperaturegn=1.08) is already ap- We have to be careful, however, that ouris not an
proaching the earlier estimalém~1.1 based on the energy artifact of the fitting procedure. We believe this to be the
density. The complete distribution functidimcluding the 556 for the larger timetsn= 40000 whereu goes negative.
mean-field contributionreaches much larger values at theseag can be seefwith difficulty) in Fig. 10, the distribution
early times(by a factor of 3—#and the curves appear closer giaris to deviate at low upwards from the straight line,
togethe.r, but the _plots are still noisier due to the Stronglycorresponding to a suppressionrgfcompared to the Bose-
fluctuating mean field. _ _ Einstein form. We interpret this as a contamination by clas-
To study the tail of the distribution more easily, we plotin g4 behaviom,~Ty/w, as in Eq.(51), as will be argued
Fig. 8 log(1+1/n), which is linear inw for a Bose-Einstein  |5ter in this section.
distribution. We see linear Bose-Einstein behavior develop- | ot us now compare with analytical results derived from
ing at low momenta with gradual participation of the higher-ie equilibrium finite-temperature effective potenti@9).
momentum modes. Including the contribution of the meanyrqynd tm=15000-20000 the temperature measured in the
field, shown in Fig. 9, we see a more rapid convergence andin, jjation isT/m=1.1. The effective potential then gives
higher occupation numbers, giving a higher fitted temperas,, the thermal massm(T=1.1)/m=v(T=1.1)/v=0.93.

ture and smaller chemical potential, compared to the data ifye gerive the thermal mass in the simulation from the dis-
Fig. 8. The trend seen in Figs. 8 and 9 continues at larger

times, as shown in Fig. 10 for the contribution of the modes

only. The plot including the mean-field contribution looks o ' ' " tme 6
similar.[We averaged over a time interviath= 24 (approxi- Lo PmeT08(m=e%0) tm= 22 ——
mately 3.5 oscillation periodsand used only 10 initial con- 157 . Wm=023 tm= 78 ——
figurations] The straight line is a Bose-Einstein fit with zero el ==
chemical potential atm= 6200 in the regiono/m<1.8. We = 1t tm=990 ——
see that the slope is roughly constant in time and that the
thermalized part of the distribution is extending to higher 5|
values ofw, roughly linear in logm.

o sSsSSSsSs———

0 3 3.5
“In this and the following figures an average is taken dwel0

andk< 0. The distributions, for positive and negativk are equal FIG. 7. Particle numben, (modes only versusw, for early

within fluctuations. times.
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5L tm= 6 5L tm= 400
tm= 22 b tm= 1500 Fd
4} —— tm=78 4} —— tm= 5700 P
g | — tm=280 / = | —— tm=21300 e
T 31 —— tm=990 4 = 8 —— tm=80000 4
5,| 5,|
Bm=1.08 (tm=990)
1+ Wm=0.23 1 1+ BM=0.89 (tm=6200) -
0 . 0
0 05 1 1.5 2 25 3 35 0 05 1 1.5 2 25 3 35
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FIG. 8. Particle number log{t1l/n,) (modes only versuswy FIG. 10. The particle numbersnodes only for later times.
for early times. The straight line is a Bose-Einstein fit for the latest
time, overo/m<1.2. and at larger energy densities in order to make time scales a
lot shorter. Here we present data fdk=16, Lm=1, A\/m?
persion relation of measureg,. It is in very good agree- =1 andE/Lm?=36, for which the system is in the “sym-

ment with a free formwZ=m?(T) +k?. A straight line fit of ~ metric phase.” In Fig. 13 we plotted,w, (modes+ mean
w? versusk? over the intervaltm=15000—-20000 gives a field) versus the integekL/27=k/2am, for different times.
slope 1.00 and an offsen(T=1.1)/m=0.908. This is also Note that we needed to excite initially also the highest mo-
in good agreement with the volume average of the meamentum modes, otherwise the system would not reach final
field, which is 0.91(These values are somewhat lower thanequilibrium sufficiently closely even after a time of 12 mil-
the position of the minimum in the effective potential be- lion. Classical equipartition suggestgw,=T, giving a
cause of its asymmetric shape, but the difference is sma#traight horizontal line in the plot. We see indeed flat behav-
because of the small amplitude of the mean field oscillaior, with lower momentum modes tending to have somewhat
tions) smaller occupation numbers, except for the zero mode. Runs

The quasiparticle aspect can be investigated further byt small coupling\/m?=1/12 in larger volumest m=4 and
looking at the energ¥n.wy, as plotted in Fig. 5. We have Lm=16 in the “broken phase” showed similar results, ex-
made a distinction between the particle number as derivedept that the zero modes were less exceptional.
from the mean-field, quantum and total two-point function. So we do find approximate classiecgl=T/w, behavior
We see that the total energy in the particlezean field+ at very large times. Classical equipartition leads to small
modes$ is only a few percent lower than the total energy intemperatures = O(1/N). If this behavior sets in first for
the system, as may be expected for a weakly coupled systerthe low momentum modes, then these will appear to be un-
It is also interesting to note that the quantum modes thermaler occupied compared to the Bose-Einstein distribution at
ize with the same temperature 1r the system would have temperaturelT >T . This is indeed the trend noticed earlier
if all energy would be distributed according to a Bose-in Fig. 10, where the low momentum data at times
Einstein distribution with zero chemical potential, although>20000 lie above the straight line going through the data at
the modes carry initially much less than the total energy. larger momenta.

We now turn to the very long time behavior of the system,
where we expect Bose-Einstein behavior to be replaced by VIl. DAMPING RATE
classical equipartition according to the effective Hamiltonian
(28). The numerical computation of the equilibrium distribu-  In the previous section we have seen the system equili-
tion functions in this regime is very difficult as it changes brate initially on a time scale dim=15-20 in its low mo-
exceedingly slowly(cf. the slow log-like population of the ~mentum modes, with a particle distribution approaching the
high momentum modes in Fig. LOWe therefore have car- Bose-Einstein form. Subsequently this approach progressed
ried out simulations in a smaller system at stronger coupling14

T 12}
EE tm= 8 f
tm= 26 T
4} —— tm= 88 0.8 [
T —— tm=300 0.6 |
T 3 —— tm=990
= 0.4 |
e
S5 0.2
0
1r Bm=0.64 (tm=140) -
. 02 . . . H i ! A
f s . . ) ) ) 0 10000 20000 30000 40000 50000 60000 70000 80000
0 0.5 1 15 2 2.5 3 35 tm

FIG. 11. The Bose-Einstein temperature for particle numbers
FIG. 9. As in Fig. 8, including the mean-field contribution. plotted in Fig. 10. The smoother lines are drawn to guide the eye.
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rather more slowly towards higher momenta, on a time scale
that is hard to quantify, of the order of thousands to tens of
thousands. To get more information in this regime we turnto FIG. 14. Numerically computed auto-correlation functions
autocorrelation functions. For a homogeneous ensemble &tg|Fom(t)| versus timetmy, with my the temperature dependent
finite temperature, the spatial Fourier transfdfg{t) of the =~ mass. The coupling is weaky/m?=0.11 and the temperature
symmetrized autocorrelation function T/my=~ 1.4 for the smaller voluméwith significant deviations from
the Bose-Einstein distributigrand~ 1.6 for the larger volumérea-
sonably Bose-Einstein

A N1 . -
Fk(t—t'):J dx e MO S{e(x,), e (<, 1))

We have computed the mean-field pkyg,(t) atk=0,
obtained by taking a time average after an initial equilibra-
(68)  tion periodt e (0t,):

—(@(x,H){ (X' ,1"))

is given in terms of the spectral function by standard formu- _ 1 ftl i INT
las. In case of weak coupling the spectral function is ex- Fomdt (ty—to) Odt Polt+t)eolt’)
pected to exhibit a strong peak around the mass shell of the
guasiparticles, which leads to exponential decay gft) in 1 o~ o~
an intermediate time regime. The decay rate is called “the B (tl_to)zfto dt’go(t+t )fto dt’ eo(t’),
plasmon damping rate.”

In the Hartree ensemble approximatieg(t) can be writ- (69)
ten as the sum of a mean-field part and a contribution from ~
the mode functions. It is easiest to compute the mean-field/nere eo(t)=/dx ¢(x,t)/ L. No average was taken over
part. This would give no information in case of constantinitial conditions. Figure 14 shows two examplesF@f(t),
mean fields, since it would be identically zero. However, wefor which the average was taken after an equilibration time
expect mean field and modes to be sufficiently coupled t®f ~ tom~31000  over the interval tfm,t;m)
gain useful information on the damping rate from the mean==(31000,62000). We see roughly exponential decay modu-
field part only. Even at late timesm=30000- 80000 we Ia}ted by OSCI||at!OnS. At first the oscillations looked suspi-
observed the back reaction3 |, (x,t)|? of the modes on Cious to us, as if there were strong memory effects and no
the mean field to be strongly fluctuating in space and timedamping, but other simulationsith averaging over initial
Fluctuations in the modes will then cause correspondingonditions(this time in the symmetric phasgave similar

fluctuations in the mean field. results. As a check we used two-loop perturbation theory to
calculate the spectral function in the futhot Hartree ap-
5 . . . . . . : proximated theory. To our surprise this led to similar oscil-

lations, modulating exponential decay. The reason is that in
one-space dimension collinear divergences lead to a spectral
function with two adjacent peakf24]. So we conclude that
the damping behavior in Fig. 14 is real. The straight lines

E
E indicate damping timesm;~105 and~233. We use the
2 . finite temperature mass here to set the scale as this appears
i1 fa— - S naturally in resummed perturbation theory. For the first ex-
ample (with the larger volumgthe corresponding particle
0 s s s : s s s distribution was found to be reasonably of the Bose-Einstein
0 1 2 3 4 5 6 7 8 form, with zero chemical potential and temperatdien;
t/2mm ~1.6. The two-loop perturbative calculation givesrag
FIG. 13. Energy distributiom,w, /m (modes+ mean field for ~67 for this temperature, which we consider encouragingly
a small system wittN=16, Lm=1, E/Lm?=36. close to the Hartree ensemble resslt05. We should how-

025016-11



MISCHA SALLE, JAN SMIT, AND JEROEN C. VINK PHYSICAL REVIEW D64 025016

ever warn the reader that the numerical computation of aueus sections nothing much seems to happen. Presumably, the
tocorrelation functions is quite difficult and that there may bereason is the extremely short range nature of the pifre
large statistical errors in the numbers given. interaction in the “symmetric phase.” In the “broken
phase” there is also a nonzero three-point coupling, giving
the interactions a finite range. But at higher energy density
and/or coupling there seems to be hardly a time regime in

We presented results of simulations mainly for a Weak|ywhich . the distribution function looks sufficiently Bose-
coupled system, such that near equilibrium a description ifEinstein.
terms of quasiparticles is expected to be reason@igewill Summarizing, on the one hand, our intuitive expectation
check this expectation in a future publicatif26]). Starting that there may be quantal thermalization in the Gaussian ap-
with distributions that are initially far out of equilibrium, in Proximation, due to scattering of the mode particles via the
which only low momentum modds<m of the classical field ~arbitrary inhomogeneous mean field, appears to be validated,
were excited with low energy density, we observed approxiPut on the other hand, it is not clear how useful this approxi-
mate thermalization with a particle-distribution function ap- mation can be for equilibrium physics, e.g. at finite density.
proaching the Bose-Einstein form. After a fairly rapid initial It is possible that starting closer to quantum thermal equilib-
thermalization at low momenta, the gradua| adjustment Ofium the time to reach thermalization is reduced and the in-
progressively higher momentum modes is very slow. Thdermediate time regime of quantal equilibrium can be
energy in the mean field gets transfered to the two-poinstretched to do useful computations. Then it will be interest-
function and one might think that the system behaves as ing to compare the Gaussian approximation with the classi-
the mean field were constant. However, this is not the casé&al approximation and see which one fares best. We will
up to large timesm= 80000 the mean field keeps fluctuating address this aspect in a separate p4psf, where we will
in space and time and carries a non-negligible fraction of th@!so investigate the possibility of using fewer mode
total energy. Correspondingly, there is a “plasmon dampingunctions®
rate,” which turns out to be similar in magnitude to that
predicted by two-loop perturbation theofwith no further ACKNOWLEDGMENTS
Gaussian approximationit is hard to assign a time scale for )
the gradual adjustment of the distribution at higher momenta, We thank Gert Aarts, Bert-Jan Nauta and Chris van Weert
but it appears to be at least two orders of magnitude largeer useful discussions. This work is supported by FOM/
than the equilibration timem~20 for the particle density,
found at early time$tm=0(10)], or for the damping time
tm= 100 for the zero mode of the mean field, found at larger APPENDIX A: THE DIAGONAL COHERENT-STATE
times[tm=0O(10000)]. Slow thermalization was also found REPRESENTATION
in a recent study of the fully nonlinear classical system in the

symmetric phas€g7]. Using our parameter combination To de_rive the representatiqf) consider first a _quantum-_
AT/m3~1.1/12 in  their empirical  fit  Xm mechanical system of two degrees of freedom with canonical

=5.810 (60 T/m®) 1 would give rm~4 10 variablesp andq. Let |pg) be a normalized coherent state,

On a large time scale, perhaps of the ordertof  Such that

= 10000 or more the distribution moves away from the quan-

tum (Bose-Einsteipform towards classical equipartition. We - 1 , - 1 A A

never reached this classical equipartition for the weak cou- /P@="==(wd+ip)[pa), a=-—=—(wq+ip),
- . . V2w V2w

pling and low temperature used in this paper. It would have

taken much too long. Only for very small systems at high i

energy densny and/or (_:oupllng_, we were able to reach a Sltl{-prq/ Ipg)= exp{—(pq’ —p'q)

ation resembling classical equipartition. 2

VIII. DISCUSSION

We have carried out many more simulations at higher 1
energy densities, and larger couplings, in which the approxi- — ——[wq—9")2+(p-p")?]
mate quantum nature of the distribution at intermediate times 4w
was also evident. With higher energy density and/or larger
coupling the effective coupling strengthA/m? increases. dpdq -
Things then go quicker and the time scales of quantum ver- j W|DCI><DQ| =1, (A1)
sus classical equilibration get closer and might even get
\k/)vlrleirczﬁdv.ve':buzg;rrgL?rrea'neilhesisB(r;SieﬁmZtteclin td'ftgbg't'on’ On\f\/here >0 is arbitrary. As is well known, the coherent

. ysis, might get distorted by NONPeTe;aiag form dover-completgset, so it should be possible to

turbative effects. We may have seen such effects already in a . ~
significant enhancement of, at low momenta, in simula- '€Présent an arbitrary operatorin the form
tions at larger volume.

We have also performed simulations in the “symmetric
phase” of the model. The picture there is confusing. At simi- °The numerical cost of the inhomogeneous Gaussian approxima-
lar couplings and initial conditions as described in the previion is substantial and scales lik9** for an N9 spatial lattice.
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f o o(p.a) [pa(pd. (A2)
In our applicationp is a density operator, for which
dpdq
f —- P(P.a)=1. (A3)

Taking matrix elements of the above equation wiph,q")
and(—p’,—q’| gives

e(wzq’2+p'2)/2w<_ p/,_q/|;)|pr,qr>

dpdq ., )
:J gﬂ_qe'(p 4-Pq)g(@*a*+pH20 (1 q)  (Ad)

from which follows that the functiomp(p,q) is given by the
inverse Fourier transform
dp’ dq’
— al0®q?+p?)2w f it
p(p.g)=e 5
X (P'a-paglera e p 20 —pr —q|plp’,q").
(A5)

A trivial example is a coherent state centered ahmutq.,
for which p(p,q)=2748(p—p1)(q—q;). Another simple

example is given by the thermal density operator of the har-

monic oscillator with HamiltoniaH = (w?g%+ p?)/2,

-~ 1
p—zeX —Bow

with Z the partition function, such that Tp=1. Choosing
the w in the definition of the coherent states equal to ¢he

appearing in thigp, it follows that

afa+=

5 (AB)

(—p'.—d'lplp".a")

(A7)

1 1 1
- _ —Bw . 2~12 12y _
Zeﬂ{(e +D2wuuq +p’9) ZBw,
and
1 1 1
= _ _(@Bo_ 1\ 2~2 2y, =
p(p,q) Zwﬁ (e Dzww)q+p)+2ﬁw}
(A8)

We recognize the
exp(Bw)—1, in the exponent. For large temperatur@sy

<1, p(p,q) approaches the classical Boltzmann distribution .
exp(—pBH). In the limit of zero temperature we get the dis-

tribution representing the ground state,

p(p,q)=2m5(p)5(q). (A9)

More examples can be found j20]. The generalization to
the scalar field is straightforward.

inverse Bose-Einstein distribution,
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APPENDIX B: EQUIPARTITION?

The effective Hamiltoniad .¢ ¢, 7, &, 7] of the Gaussian
approximation is conserved in time. So one may expect that
after very large times the system reaclusssical equilib-
rium. Assuming ergodicity, time averages will then corre-
spond to the Boltzmann distribution expile¢/T), under the
constraints of the conserved generalized angular momenta
L 4a,p0 [Cf. EQ. (32)]. We shall now derive an approximate
form for the particle-distribution functiom, corresponding
to this classical equilibration.

In our derivation we assume the system to be weakly
coupled, such that we may approximaiey in the Boltz-
mann distribution by a free field forrtpossibly after having
shifted ¢ by its equilibrium valuev such that(¢)=0),

1
Tt (ﬂ¢)2+ mtp

1
Hiree= f dx 5

+§ (| mal?+ 0,2+ m? &, 15|, (B

wherem is an effective mass. For convenience we use a
complex formalism for the mode functiongé,=(&.1
—i&,,)\2=\n"+1/2f,, cf. Eq. (27)].° The generalized
angular momenta are just the naturally conserved charges of
the complex fields,

. 1
Qazlf dx(gz n:z_naga)zl-al,a2=n2+§' (BZ)

We take them into account by introducing chemical poten-
tials u,, such that the average charges are equal to their
values set by the initial conditionQa=n2+ 1/2. It is not
immediately clear that this procedure is correct, because
these initial values are not extensive and therefore relative
fluctuations will be large, but the emerging formulas below
look reasonable. Imposing the constraints exactly appears to
be quite cumbersome, except fdr=1. Recall thatN is the
number of complex mode functions, which in the lattice
regularization is equal to the number of lattice sitds: >,
=3 ,. Here we shall assume a sharp momentum cutdff
<A, for simplicity.

The classical grand canonical average will be indicated by
an overbar:

=—f [de dw][H dfadna}

Xexp{ — %( Hfree_E ,Uana)}F,

with Z. the partition function such that41. Our approxi-
mation forny is now given by .= Jm?+k?)

(B3)

%We added a superscript 0 t, to indicate that these are the
initial values at time= 0, in order to avoid possible confusion with
then,.

025016-13



MISCHA SALLE, JAN SMIT, AND JEROEN C. VINK PHYSICAL REVIEW D64 025016

N+ 1/2 TZ T

1 .
— k(x—
S(XyY)—EE elk(x) w="\/ 0+

K (%

(n°+1/2)2 no+1/2’

0

e+ S | € (y) 1 12 12 7T
e @ |nl+a27 n+ == n4 = | + —+—, (BY)
“« 2 2 w2 o
)
a *
+n0+1/2§a(x)§“(y) ' B4 for which n=n°. We see thapr— w, n—n® asT—0, and

u—0, n—ow asT—oo,
For finite N Eq. (B8) for u, can be rewritten as a poly-

The_ calculation is a straightforward free fleld_ exercise. ln.trp'nomial equation of degreeN2 by multiplying the left-hand
ducing the classical analogues of the creation and annihila-. . ; 2 5 .
tion operators, side and right-hand side bM,(w;—u). So there are in

principle 2N solutions for eachu,. For T—0 we have a

o solution in whicha«k as in(34), behaving as

e

e(x)=2 ——=(at+a%y),
k' V2ayl we=o—TI(N0+1/2)+-- -, ne=n+--.. (B10)

eikx
a™ ——(a, +b27 ’
g Zk \/m( k k)

and accordingly for the canonical momentaand »,, we

For the casen’=0 it is natural to look for a solution in
which all the chemical potentials are equa),= x. Equation
(B8) then reduces to

(BS)

get 1_2T > 1 oTL fAdk 1
2 Mk wi_,u2 M 0 7Tm2+k2_M2
Hfree:; ay 2+2 (|aak|2+|bak|2) Wiy
TLu
e a———— (B11)
Qu=2, [1aad?~[bail?]. (B6)

for large volumesnlL>1 and large momentum cutoff/m

It follows that >1 (the integral converges fok —.) It follows that

1 m
Nt 5=la?+ X (Jaul+[bal?) ~—— B12
2 “ N (B12
T T T
— _+2 + _ On the other hand, we have from E&7),
Wy a W™ My wk+M0(
(B7)
1 T 2NTwy
. . Nt 5=—+ : (B13)
The u,, are to be determined by the conditions 2 wx wi-u?
04 1: 0O = E a2—1b .2 which depends explicitly on the number of modésWe see
na Qa (|aak| | ak| ) . .
2 K that n+1/2 falls roughly like 1&,, and there is a danger
that n, may get negative for large, which should not
T T happen.
=> - ) (B8) In fact, in our numerical simulations we always found the
KOk e Ot R n, to be positive, but not following the distributidB13) for

all k. Even after very large times we usually found that only
Before turning to the case’=0 used mostly in this paper, a limited number of modes are able to thermalize approxi-
we comment on the properties of the above equations. Supnately classically, except for small systems such as in Fig.
pose there is only one complex mode functidquantum  13.
mechanics’): N=1. Then the solution of the equations is If we approximateN=3,~ Lfé‘dk/qr:LA/w, wr~A,
given by the conditionn, +1/2~2TN/A=1/2 leads toLT= /4, If
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this condition is not satisfied, more complicated solutions fotthat n w, is quite constantlbut apparently not exactly
the chemical potentials may be needed in whigh w,, as  i.e.approximate equipartition.

in Eqg. (B10). We have explored such solutions on the lattice, So we tentatively conclude that, approximately,
USINgMATHEMATICA . Despite ambiguitiege.g. funny behav- ~T/w, is the predicted form for the particle distribution at
ior of the alternating lattice modgssuch solutions indicate very large times.
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