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Towards the completeNÄ2 superfield Born-Infeld action
with partially broken NÄ4 supersymmetry
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We propose a systematic way of constructing anN52, d54 superfield Born-Infeld action with a second
nonlinearly realizedN52 supersymmetry. The latter, together with the manifestN52 supersymmetry, forms
a central-charge extendedN54, d54 supersymmetry. We embed the Goldstone-MaxwellN52 multiplet into
an infinite-dimensional off-shell supermultiplet of thisN54 supersymmetry and impose an infinite set of
covariant constraints which eliminate all extraN52 superfields through the Goldstone-Maxwell one. The
Born-Infeld superfield Lagrangian density is one of these composite superfields. The constraints can be solved
by iterations to any order in the fields. We present the soughtN52 Born-Infeld action up to the 10th order. It
encompasses the action found earlier by Kuzenko and Theisen to the 8th order from a self-duality requirement.
This is a strong indication that the completeN52 Born-Infeld action with partially brokenN54 supersym-
metry is also self-dual.
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I. INTRODUCTION

For many reasons it is important to know the off-sh
superfield actions of supersymmetric extensions of the Bo
Infeld ~BI! theory@1–6# and to understand the geometry b
hind them. One of the basic sources of interest in such
tions is that their notable subclass, the BI actions with
hidden extra nonlinearly realized supersymmetry, provide
manifestly world volume supersymmetric description
various Dp-branes in a static gauge@2#. As was demonstrated
in Ref. @3# ~see also Ref.@4#!, this sort of BI action supplies
a nice example of systems with partial spontaneous brea
of global supersymmetry~PBGS!. The covariant superfield
gauge strengths in terms of which such actions are for
lated can be identified with the Goldstone superfields s
porting a nonlinear realization of some underlying extend
supersymmetry. The manifest supersymmetry of the gi
BI action is the linearly realized half of the underlying s
persymmetry.

At present, the Goldstone superfield BI actions are kno
in a closed explicit form only for the 1/2 PBGS optionsN
52→N51 in d54 @3,4# andd53 @5#. They amount to the
world volume actions of the spacetime-filling D3 and D
branes in a fixed gauge and involve, respectively, theN
51, d54 andN51, d53 vector multiplets as the Gold
stone ones.

In Refs. @7,8# it was suggested that, by analogy with th
construction of Ref.@3#, N52, d54 vector multiplet could
serve as the Goldstone multiplet for the 1/2 spontane
breaking of N54, d54 supersymmetry. The associate
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Goldstone superfield action should be a particular repres
tative of theN52 supersymmetric BI actions, such that
possesses a hiddenN52 supersymmetry in parallel with th
manifest one. By inspection of the component field cont
of the N52 vector multiplet, it is obvious that such actio
should describe a D3-brane inD56, with the scalar compo-
nent fields parameterizing two transverse directions. TheN
52 BI action constructed in@6# reveals no hidden extra su
persymmetry@9# and so it can be regarded merely as a par
the hypothetical genuineN54→N52 BI action.

In recent papers@10,11# we showed how the full set o
superfield equations describing theN52→N51 BI system
in d53 and theN52→N51, N54→N52, and N58
→N54 ones ind54 can be deduced from the customa
nonlinear realizations approach applied to the relevant PB
patterns. A characteristic common feature of these super
systems is that the pure BI part of the corresponding boso
equations always appears in a disguised form in which
Bianchi identity for the Maxwell field strength and the d
namical equation are mixed in a tricky way. On the oth
hand, the equations for the scalar fields~in the N54→N
52 andN58→N54 cases in which the Goldstone vect
multiplets include such fields! come out in a form explicitly
derivable from the standard static-gauge Nambu-Goto
tions. The disguised form of the BI equations can be s
into the kinematical and dynamical parts by a nonline
equivalence redefinition of the corresponding bosonic co
ponent field. As was demonstrated in Ref.@11# for the N
54→N52 example, the superfield version of this redefin
tion is an equivalence transformation from the original ba
N52 Goldstone superfield to the standardN52 Maxwell
superfield strength. It enables one to divide the original s
tem of superfield equations into the pure kinematical a
dynamical parts which are separately invariant under
original hidden supersymmetry, and to construct the corr
©2001 The American Physical Society14-1
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N52 superfield action yielding the dynamical part as t
equation of motion. In this way we reconstructed theN52
BI action with the hidden extraN52 supersymmetry up to
the sixth order inN52 Maxwell superfield strength.

Although this approach can in principle be applied to
store, step by step, theN54→N52 BI action to any order,
it would be desirable to develop a more direct way for co
structing such an action, similar to the method which w
used in Ref.@3# in the N52→N51, d54 case~see also
Refs.@4# and@5#!. It deals with the linear Maxwell superfiel
strength from the very beginning, and it is based upon co
pleting the latter to a linear off-shell supermultiplet of th
full supersymmetry by adding a few extra superfields of
unbroken supersymmetry. After imposing a nonlinear co
riant constraint on the superfields of the linear supermultip
one ends up with a nonlinear realization of the full sup
symmetry in terms of the Maxwell superfield strength as
only independent Goldstone superfield. In all the cases s
ied so far, both the BI superfield Lagrangian density and
Goldstone-Maxwell superfield strength belong to the lin
supermultiplet just mentioned.

In this paper we propose a generalization of the metho
Refs. @3,4# to the N54→N52 BI case. Two essentially
novel closely related points of our construction, as compa
to the previously elaborated cases, are as follows.~i! We start
from a proper extension ofN54, d54 Poincare´ superalge-
bra bya complex central charge, in order to gain a geometric
place for the complex bosonicN52 Maxwell superfield
strengthW as the Goldstone superfield@11#. ~ii ! The minimal
linear N54 supermultiplet into which one can embedW
necessarily involves aninfinite tower of chiralN52 super-
fields of growing dimension interrelated by the cent
charge generators. As in the previous cases, the chiraN
52 Lagrangian density of theN54→N52 BI theory is one
of these extra superfields, but in order to express it in te
of W,W̄ one is led to impose aninfinite set of the covariant
constraints which eliminate all the extra superfields as w
We give these constraints in the explicit form and solve th
by iterations, in order to restore the correctN54→N52 BI
action up to the 10th order inW,W̄. Surprisingly, up to the
8th order it reproduces theN52 action found earlier to this
order in Ref.@9# from the requirements of self-duality an
invariance under a shift symmetry ofW,W̄ ~in our approach
it comes out as the symmetry generated by central charg!.
This is an indication that the requirements of@9# are equiva-
lent to the single demand of hiddenN52 supersymmetry.
As a consequence, the fullN54→N52, d54 BI action is
expected to be self-dual.

II. GETTING STARTED

The basic object we shall deal with is a complex sca
N52 off-shell superfield strengthW. It is chiral and satisfies
one additional Bianchi identity:

~a! D̄ ȧ iW50, Da
i W̄50, ~b! DikW5D̄ ikW̄. ~2.1!

Here
02501
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i 5

]

]u i
a

1 i ū ȧ i]aȧ , D̄ ȧ i52
]

]ūȧ i
2 iu i

a]aȧ ,

$Da
i ,D̄ ȧ j%522id j

i ]aȧ , ~2.2!

Di j [Da iDa
j , D̄ i j [D̄ ȧ

i
D̄ ȧ j . ~2.3!

Due to the basic constraints~2.1! the superfieldsW,W̄ obey
the following useful relations:

D4W52
1

2
hW̄, D̄4W̄52

1

2
hW, ~2.4!

where

D4[
1

48
Da iDa

j Di
bDb j , D̄45~D4![

1

48
D̄ ȧ

i
D̄ ȧ j D̄ ḃ i D̄ j

ḃ ,

h[]aȧ]aȧ. ~2.5!

The irreducible field content ofW, W̄ defined by Eq.~2.1! is
the off-shellN52, d54 Abelian vector multiplet. It consists
of a SU(2)-singlet complex scalar field, a Maxwell fiel
strength, a realSU(2)-triplet of the scalar bosonic auxiliar
fields, and aSU(2)-doublet of Weyl spinors, i.e., a total o
~818! independent components.

In order to be able to treatW,W̄ as the Goldstone super
fields associated with the PBGS patternN54→N52 in d
54 we should define, first of all, an appropriate modificati
of the standardN54, d54 Poincare´ superalgebra. It should
involve a complex bosonic generator to which one could
in correspondenceW,W̄ as the Goldstone superfields. A
was shown in Ref.@11#, the proper extension is given by th
following superalgebra:

$Qa
i ,Q̄ȧ j%52d j

i Paȧ , $Sa
i ,S̄ȧ j%52d j

i Paȧ ,

$Qa
i ,Sb

j %52« i j «abZ, $Q̄ȧ i ,S̄ḃ j%522« i j «ȧḃZ̄ ~ i , j 51,2!,
~2.6!

with all other~anti!commutators vanishing. It was chosen
Ref. @11# as the starting point for constructing a nonline
realization of the PBGS patternN54→N52, with the gen-
eratorsQa

i , Q̄ȧ j , Paȧ corresponding to the unbrokenN
52 supersymmetry and the remaining ones to the spont
ously broken symmetries. Obviously, a linear realization
the same version of PBGS should proceed from the sa
superalgebra. The necessary presence of the complex ce
chargeZ in the anticommutators of the broken and unbrok
N52 spinor generators is the crucial difference of the c
under consideration from the PBGS caseN52→N51 in
d54 @3# and itsd53 counterpart@5#. In the latter two cases
one proceeds from theN52 Poincare´ supersymmetries in
d54 and d53 with no central charge generators; the
ementary Goldstone superfields are the fermionic ones w
are eventually identified with the correspondingN51 Max-
well superfield strengths. Note that the superalgebra~2.6! is a
4-2
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TOWARDS THE COMPLETEN52 SUPERFIELD BORN- . . . PHYSICAL REVIEW D 64 025014
d54 notation for theN5(2,0) @or N5(0,2)] Poincare´ su-
peralgebra inD56. In what follows, we shall not actually
need to resort to theD56 interpretation. We shall entirely
deal with theN52, d54 superfields, viewing Eq.~2.6! as a
central-charge extension of the standardN54 Poincare´ su-
persymmetry ind54.

III. EMBEDDING NÄ2 VECTOR MULTIPLET
INTO A LINEAR NÄ4 MULTIPLET

In Ref. @11#, starting from a nonlinear realization ofN
54 supersymmetry defined by the superalgebra~2.6!, we
found, up to the 4th order in fields, an equivalence trans
mation from theN52 Goldstone superfield associated w
the generatorZ to the standardN52 Maxwell superfield
strengthW,W̄ defined by the constraints~2.1!. We found
that the nonlinear hiddenN52 supersymmetry andZ,Z̄
symmetry are realized onW,W̄ by the following transforma-
tions:

dW5 f S 12
1

2
D̄4Ā0D1

1

4
f̄ hA01

1

4i
D̄ i ȧ f̄ Di

a]aȧA0 ,

dW̄5~dW!* , ~3.1!

where the functionsf , f̄ ,

f 5c12ih iau ia , f̄ 5 c̄22i h̄ ȧ
i
ū i

ȧ , ~3.2!

collect the parameters of broken supersymmetry (h ia,h̄ ȧ
i )

and those of the central charge transformations (c,c̄). The
complex chiral functionA0 was specified up to the fourt
order1

A05W 2S 11
1

2
D̄4W̄ 2D1O~W 6!, ~3.3!

D̄ ȧ iA050. ~3.4!

Actually, the transformation law~3.1!, ~3.2! is the most
general hidden supersymmetry transformation law ofW,W̄
compatible with the defining constraints~2.1!, provided that
the N52 superfield functionA0 obeys the chirality condi-
tion ~3.4!. By analogy with theN51 construction of Ref.
@3#, in order to promote Eq.~3.1! to a linear ~though still
inhomogeneous! realization of the consideredN54 super-
symmetry, it is natural to treatA0 as a newindependent N
52 superfield constrained only by the chirality conditio
~3.4! and to try to define the transformation law ofA0 under
the h,h̄,c,c̄ transformations in such a way that theN52
superfieldsA0 , W,W̄ form a closed set. Then, imposing
proper covariant constraint on these superfields one c
hope to recover the structure~3.3! as a solution to this con

1For further convenience, here we use a slightly different nota
for this function as compared to Ref.@11#.
02501
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straint. In view of the covariance of this hypothetical co
straint, the correct transformation law forA0 to the appro-
priate order can be reproduced by varying Eq.~3.3!
according to the transformation law~3.1!. Since we knowA0
up to the 4th order, we can uniquely restore its transform
tion law up to the 3rd order. We explicitly find

dA052 fW1
1

4
f̄ hA11

1

4i
D̄ i ȧ f̄ Di

a]aȧA1 , ~3.5!

where

A15
2

3
W 31O~W 5!, D̄ ȧ iA150. ~3.6!

We observe the appearance of a new composite chiral su
field A1, and there is no way to avoid it in the transformatio
law ~3.5!. This is the crucial difference from theN51 case
of Refs. @3,4# where a similar reasoning led to a closed s
permultiplet with only one extraN51 superfield in addition
to the N51 Goldstone-Maxwell one~the resulting linear
multiplet of N52 supersymmetry is aN51 superfield form
of the N52 vector multiplet with a modified transformatio
law @12,13#!.

Thus, we are forced to incorporate a chiral superfieldA1
as a new independentN52 superfield component of the lin
ear N54 supermultiplet we are seeking. Inspecting t
brackets of all these transformations suggests that the
possibility to achieve their closure in accord with the sup
algebra~2.6! is to introduce aninfinite sequence of chira
N52 superfields and their antichiral conjugatesAn , Ān , n
50,1, . . . ,

D̄ ȧ iAn50, Da
i An̄50, ~3.7!

with the following transformation laws:

dA052 fW1
1

4
f̄ hA11

1

4i
D̄ i ȧ f̄ Di

a]aȧA1 , ~3.8!

dA152 fA01
1

4
f̄ hA21

1

4i
D̄ i ȧ f̄ Di

a]aȧA2 , . . . ,

dAn52 fAn211
1

4
f̄ hAn11

1
1

4i
D̄ i ȧ f̄ Di

a]aȧAn11 ~n>1!, ~3.9!

dAn̄5~dAn!* .

It is a simple exercise to check that these transformati
close off shell both among themselves and with those of
manifestN52 supersymmetry just according to theN54
superalgebra~2.6!.

Realizing ~formally! the central charge generato
as derivatives in some extra complex ‘‘central-char
coordinate’’z

n

4-3
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Z5
i

2

]

]z
, Z̄5

i

2

]

] z̄
, ~3.10!

and assuming all the involvedN52 superfields to be define
on a z,z̄ extension of the standardN52 superspace, it is
instructive to rewrite the transformation laws under thec,c̄
transformations as follows:

]W
]z

5S 12
1

2
D̄4Ā0D ,

]W
] z̄

5
1

4
hA0 , ~3.11!

]A0

]z
52W,

]A0

] z̄
5

1

4
hA1 , ~3.12!

]An

]z
52An21 ,

]An

] z̄
5

1

4
hAn11 . ~3.13!

These relations imply, in particular,

S ]2

]z] z̄
2

1

2
h DW50, S ]2

]z] z̄
2

1

2
h DAn50. ~3.14!

If we regardz,z̄ as the actual coordinates, which extend t
d54 Minkowski space to theD56 one, the relations~3.14!
mean that the constructed linear supermultiplet is on s
from the D56 perspective. On the other hand, from thed
54 point of view this multiplet is off shell, and the relation
~3.11!–~3.13!, ~3.14! simply give a specific realization of th
central charge generatorsZ,Z̄ on itsN52 superfield compo-
nents. In this sense this multiplet is similar to the previou
known specialN52, d54 andN54, d54 supermultiplets,
which are obtained from the on-shell multiplets in high
dimensions via nontrivial dimension reductions and inhe
the higher-dimensional translation generators as nontrivi
realized central charges ind54 @14,15# @a renowned ex-
ample of this sort is the (818) Fayet-Sohnius hypermultip
let @14##. Since the superalgebra~2.6! is just ad54 form of
the N5(2,0) @or N5(0,2)] D56 Poincare´ superalgebra, it
is natural to think that the above supermultiplet has aD56
origin and to try to reveal it.2 We hope to come back to thi
interesting problem in the future. For the time being we p
fer to treat the above infinite-dimensional representation
the pured54 framework as a linear realization of the part
spontaneous breaking of the central-charge extendedN54,

2By analogy with the previously known examples@3,5#, one could
expect, at first glance, that this multiplet is ad54 form of the
vectorN52, D56 multiplet which is known to exist only on she
~in D56) @16#. However, this cannot be true because such a m
tiplet can be defined only for theN5(1,1) supersymmetry inD
56 @16# while we are facingN5(2,0) orN5(0,2) supersymmetry
in our case. Note that the PBGS optionN54→N52, d54, with
the N54, d54 supersymmetry being isomorphic just to theN
5(1,1), D56 one, was discussed in Ref.@7#. It requires theN
52 hypermultiplet, as the Goldstone multiplet.
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d54 supersymmetry~2.6! to the standardN52 supersym-
metry. The Goldstone character of this realization is ma
fested in the transformation law~3.1! which contains pure
shifts by the parameters of the spontaneously broken s
metries. Therefore, the appropriate components of the su
field strengthW are the Goldstone fields, and this superfie
itself can be interpreted as the GoldstoneN52 superfield of
the linear realization of the considered PBGS patternN54
→N52.

IV. SUPERFIELD ACTION OF THE NÄ4\NÄ2 BI
THEORY

As was already mentioned, in the approach proceed
from a linear realization of PBGS, the Goldstone superfi
Lagrange density is, as a rule, a component of the sa
linear supermultiplet to which the relevant Goldstone sup
field belongs. This is also true for the case under consid
ation. A good candidate for the chiralN52 Lagrangian den-
sity is the superfieldA0. Indeed, the ‘‘action’’

S5E d4xd4uA01E d4xd4ūĀ0 ~4.1!

is invariant with respect to the transformation~3.8! up to
surface terms, because, taking into account the basic
straints~2.1! and the precise form of these transformation
the integrand is shifted byx derivatives. With the interpreta
tion of the central charge transformations as shifts with
spect to the coordinatesz,z̄, the action~4.1! does not depend
on these coordinates in virtue of Eqs.~3.12!, though the La-
grangian density can bear such a dependence.

It remains for us to define covariant constraints whi
would expressA0 , Ā0 in terms ofW, W̄, with preserving
the linear representation structure~3.1!, ~3.8!, ~3.9!. Because
an infinite number ofN52 superfieldsAn is present in our
case, there should exist an infinite set of constraints trad
all these superfields for the basic Goldstone onesW, W̄.

As a first step in finding these constraints let us note t
the following expression:

f05A0S 12
1

2
D̄4Ā0D2W 22 (

k51

~21!k

238k
A khkD̄4Āk

~4.2!

is invariant, with respect to thef part of the transformations
~3.1!, ~3.8!, ~3.9!. This leads us to choose

f050 ~4.3!

as our first constraint. For consistency withN54 supersym-
metry, the constraint~4.3! should be invariant with respect t
the full transformations~3.1!, ~3.8!, ~3.9!, with the f̄ part
taken into account as well. We shall firstly specialize to thc̄

part of the f̄ transformations. The requirement of thec̄ co-
variance produces the new constraint

l-
4-4
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TOWARDS THE COMPLETEN52 SUPERFIELD BORN- . . . PHYSICAL REVIEW D 64 025014
f15hA112~A0hW2WhA0!

2 (
k50

~21!k

238k
~hAk11hkD̄4Āk2Ak11hk11D̄4Āk!

50. ~4.4!

It is invariant under thef transformations, but requiring it to
be invariant also under thec̄ part gives rise to the new con
straint

f25h2A212~A 0h2A02hA0hA012hA1hW

2A 1h2W2Wh2A1!2 (
k50

~21!k

238k
~h2Ak12hkD̄4Āk

22hAk12hk11D̄4Āk1Ak12hk12D̄4Āk!50. ~4.5!

Applying the same procedure to Eq.~4.5!, we find the con-
straint

f35h3A312~3h2A2hW13hA 1h2A01A 0h3A1

2A 1h3A01A 2h3W2Wh3A223h2A1hA0

23hA 2h2W!1•••50, ~4.6!

and so on. The full infinite set of constraints is by constru
tion invariant under thef and c̄ transformations. Indeed, us
ing the relations~3.11!–~3.13! one may explicitly check tha

]fn

]z
50,

]fn

] z̄
5

1

4
fn11 , ~4.7!

so the full set of constraints is indeed closed.
The variation of the basic constraints with respect to thf̄

transformations has the following general form:

dfn5h̄ i ȧū i ȧBn1h̄ i ȧ~Fn! i ȧ . ~4.8!

Demanding this variation to vanish gives rise to the two s
of constraints

~a! Bn50, ~b! ~Fn! i ȧ50. ~4.9!

The constraint~a! ~4.9! is easily recognized as those obtain
above from thec̄ covariance reasoning. One can show
explicit calculations that

D̄ i ȧ~Fn! j ḃ;d j
i dḃ

ȧBn . ~4.10!

Thus the fermionic constraint~b! ~4.9! seem to be more fun
damental. For example, for the constraintf1 ~4.4! the basic
fermionic constraint reads

~F1! i ȧ5Di
a]aȧA112~A 0Di

a]aȧW2WDi
a]aȧA0!

2 (
k50

~21!k

238k
~Di

a]aȧAk11hkD̄4Āk

2Ak11hkDi
a]aȧD̄4Āk!50. ~4.11!
02501
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In order to prove that the basic fermionic constraint~b! ~4.9!
is actually equivalent to the bosonic one~a! ~4.9!, one has to
know the general solution toall constraints. For the time
being we have explicitly checked this important prope
only for the iteration solution given below. Taking fo
granted that this is true in general, we can limit our attent
to the type (a) constraints only. The constraints~4.2!, ~4.4!
are just of this type.

At present we have no idea how to explicitly solve t
above infinite set of constraints and find a closed expres
for the Lagrangian densitiesA0 , Ā0 similar to the one
known in theN52→N51 case@3#. What we are actually
able to do, so far, is to restore a general solution by ite
tions. For example, in order to restore the action up to
10th order, we have to know the following orders inAk :

A05W 21A 0
(4)1A 0

(6)1A 0
(8)1•••,

A15A 1
(3)1A 1

(5)1A 1
(7)1•••,

A25A 2
(4)1A 2

(6)1•••, A35A 3
(5)1•••. ~4.12!

These terms were found to have the following explicit stru
ture:

A 0
(4)5

1

2
W 2D̄4W̄ 2, A 0

(6)5
1

4
D̄4FW 2W̄ 2~D4W 21D̄4W̄ 2!

2
1

9
W 3hW̄ 3G ,

A 0
(8)5

1

8
D̄4F4W 2Ā0

(6)14W̄ 2A 0
(6)1W 2W̄ 2D4W 2D̄4W̄ 2

2
2

9
W 3h~W̄ 3D4W 2!2

2

9
W 3D̄4W̄ 2hW̄ 3

1
1

144
W 4h2W̄ 4G ,

A 1
(3)5

2

3
W 3, A 1

(5)5
2

3
W 3D̄4W̄ 2,

A 1
(7)5D̄4F1

2
W 3W̄ 2D̄4W̄ 21

1

3
W 3W̄ 2D4W 2

2
1

24
W 4hW̄ 3G ,

A 2
(4)5

1

3
W 4, A 2

(6)5
1

2
W 4D̄4W̄ 2, A 3

(5)5
2

15
W 5. ~4.13!

Note that, despite the presence of growing powers of
operatorh in our constraints, in each case the maxim
power ofh can be finally taken off from all the terms in th
given constraint, leaving us with this maximal power ofh
acting on an expression which starts from the appropr
An . Equating these final expressions to zero allows us
4-5
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algebraically express allAn in terms ofW,W̄ and derivatives
of the latter. For example, forA 3

(5) we finally get the follow-
ing equation:

h3A 3
(5)5

2

15
h3W 5⇒A 3

(5)5
2

15
W 5. ~4.14!

This procedure of taking off the degrees ofh with discard-
ing possible ‘‘zero modes’’ can be justified as follows: w
are interested in an off-shell solution that preserves the m
fest standardN52 supersymmetry including the Poinca´
covariance. This rules out possible on-shell zero mode
well as the presence of explicitu ’s or x’s in the expressions
which remain after taking off the appropriate powers ofh. It
can be checked to any desirable order that these ‘‘reduc
constraints yield correct local expressions for the compo
superfieldsAn , which prove to transform just in accordanc
with the original transformation rules~3.1!, ~3.8!, ~3.9!. We
have explicitly verified this for our iteration solution~4.13!.
We do not know, for the time being, how to demonstrate
possibility to take off the powers ofh from the original
constraints in general, without explicitly solving them. In t
Appendix we deduce a set of purely algebraic constra
which immediately give the above iteration solution and
are candidates for the general form of the ‘‘reduced’’ co
straints.

The explicit expression for the action, up to 8th order
W,W̄, reads

S(8)5S E d4xd4uW 21c.c.D1E d4xd4ud4ūHW 2W̄ 2

3F11
1

2
~D4W 21D̄4W̄ 2!G2

1

18
W 3hW̄ 3

1
1

4
W 2W̄ 2@~D4W 21D̄4W̄ 2!21D4W 2D̄4W̄ 2#

2
1

12
D4W 2W̄ 3hW 32

1

12
D̄4W̄ 2W 3hW̄ 3

1
1

576
W 4h2W̄ 4J . ~4.15!

This action, up to a slight difference in the notation, co
cides with the action found by Kuzenko and Theisen@9#
from the requirements of self-duality and invariance un
nonlinear shifts ofW,W̄ ~the c,c̄ transformations in our no
tation!. Let us point out that the structure of nonlinearities
thec,c̄ transformations ofW,W̄ in our approach is uniquely
fixed by the originalN54 supersymmetry transformation
and the constraints imposed. In Ref.@9# it was guessed orde
by order from the requirement that the action be invarian

The next, 10th order part of theN54 invariantN52 BI
action can be easily restored from Eqs.~4.13!. Its explicit
form looks not too enlightening, so here we present only
relevant part of the chiral Lagrangian density in the co
densed notation
02501
i-
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d’’
te
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ts
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A 0
(10)5

1

2
D̄4FW 2Ā0

(8)1W̄ 2A 0
(8)1A 0

(4)Ā0
(6)1Ā0

(4)A 0
(6)

2
1

8
A 1

(3)hĀ1
(7)2

1

8
A 1

(7)hĀ1
(3)2

1

8
A 1

(5)hĀ1
(5)

1
1

64
A 2

(4)h2Ā2
(6)1

1

64
A 2

(6)h2Ā2
(4)

2
1

512
A 3

(5)h3Ā3
(5)G . ~4.16!

It would be interesting to compare it with the 10th order
the Kuzenko-Theisen action~which, unfortunately, was no
explicitly given in Ref.@9#!. Anyway, the coincidence of the
action of Ref.@9# with theN54→N52 BI action, up to the
8th order, can be regarded as a strong indication that th
actions coincide at any order and, hence, that theN54→N
52 BI action is self-dual similar to itsN52→N51 proto-
type @3,4#.

Finally, let us point out that after doing theu integral, the
pure Maxwell field strength part of the bosonic sector of t
above action~and of the hypothetical complete action!
comes entirely from the expansion of the standard Bo
Infeld bosonic action. Just in this sense the above action
particularN52 extension of the bosonic BI action. The di
ference from the action of Ref.@6# is just in higher-derivative
terms with theh operators. These correction terms are c
cial for the invariance under the hiddenN52 supersymme-
try, and they drastically change, as compared to Ref.@6#, the
structure of the bosonic action, both in the pure scalar fie
sector and the mixed sector involving couplings between
Maxwell field strength and the scalar fields. By the reason
of Ref. @11#, the additional terms are just those needed
the existence of an equivalence field redefinition bringing
scalar fields action into the standard static-gauge Nam
Goto form.

The analysis of the auxiliary field sector shows that t
equation for the auxiliary fieldP( ik)(x) has the following
generic structure:

P( ik)M ( ik)
(nl)50,

where M is a nonsingular matrix,M5I 1•••, and ellipses
stand for terms involving fields and their derivatives. Hen
P( ik)50 on shell, i.e., the auxiliary field is nonpropagatin
as in the standardN52 Maxwell theory.

V. CONCLUSION

In this paper we proposed a systematic way of constru
ing a N52 superfield BI action with a hidden secondN
52 supersymmetry. It is based on extending theN52 vec-
tor multiplet to an infinite-dimensional linear off-shell mu
tiplet of the central-charge modifiedN54 supersymmetry
and imposing an infinite set of covariant constraints wh
give rise to a nonlinear realization of theN54 supersymme-
try in terms of theN52 Maxwell ~Goldstone-Maxwell! su-
perfield strengthsW,W̄. Solving these constraints by itera
4-6
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tions, we have restored theN54 supersymmetric BI action
to 10th order inW,W̄. In order to construct the full action
we need to know the general solution of the constraints.
this purpose it seems necessary to work out another, tec
cally more feasible way of tackling the infinite set of the
constraints, perhaps in az,z̄ extendedN54 superspace
rather than in theN52 one. We hope to report soon on
progress in this direction. Another project for a future stu
is to apply our approach to construct a genuine non-Abe
version of theN54→N52 BI action as a proper modifica
tion of the action proposed in Ref.@17#.

In the course of writing this paper we learned that a c
struction conceptually close to ours was independe
worked out by Galperin@18#.
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APPENDIX

Let us consider the following constraint:

w15A1S 12
1

2
D̄4Ā0D2

2

3
WA02 (

k51

~21!k

8k

3S k

3
1

1

2DAk11hkD̄4Āk50. ~A1!

Using Eqs.~3.11!,~3.12!,~3.13! and the following useful re-
lation:

]

]z S (
k51

~21!k

8k
akAk1mhk1pD̄4Āk1nD

5
1

4 (
k50

~21!k

8k
~ak2ak11!Ak1mhk1p11D̄4Āk1n11

~A2!

(a0[0), one can easily check that
g
5.

o
w

02501
or
ni-

y
n

-
ly

t
,

]

]z
w15

4

3
f0 . ~A3!

In other words, Eq.~A1! is the result of ‘‘integrating’’ the
basic constraint~4.2!, with respect toz. The same ‘‘integra-
tion’’ procedure can be continued further to get the succ
sive set of the algebraic constraints

w25A2S 12
1

2
D̄4Ā0D2

1

2
WA12 (

k51

~21!k

8k

3S k2

8
1

k

2
1

1

2DAk12hkD̄4Āk50, ~A4!

]

]z
w25

3

2
w1 ,

w35A3S 12
1

2
D̄4Ā0D2

2

5
WA22 (

k51

~21!k

8k S k3

30

1
k2

4
1

37k

60
1

1

2DAk13hkD̄4Āk50, ~A5!

]

]z
w35

8

5
w2 ,

and so on.
We have checked that the iteration solution of the co

straints~A1!, ~A4!, ~A5!, up to the 8th order, exactly coin
cides with Eq.~4.13!, but we still have no general proof tha
this set of constraints is indeed fundamental. It is, by c
struction, covariant under thec transformations andh super-
symmetry, but its covariance under thef̄ transformations re-
mains to be proved. Note the interesting relations betw
the constraints~4.4!–~4.6! and Eqs.~A1!, ~A4!, ~A5!

f15
]

] z̄
f05

4

3

]2

]z] z̄
w1 , f25

32

9 S ]2

]z] z̄
D 2

w2 ,

f35
80

9 S ]2

]z] z̄
D 3

w3 , . . . . ~A6!
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