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We propose a systematic way of constructinghan2, d=4 superfield Born-Infeld action with a second
nonlinearly realizedN=2 supersymmetry. The latter, together with the manifést2 supersymmetry, forms
a central-charge extendét=4, d=4 supersymmetry. We embed the Goldstone-MaxWe#2 multiplet into
an infinite-dimensional off-shell supermultiplet of tHié=4 supersymmetry and impose an infinite set of
covariant constraints which eliminate all exth&=2 superfields through the Goldstone-Maxwell one. The
Born-Infeld superfield Lagrangian density is one of these composite superfields. The constraints can be solved
by iterations to any order in the fields. We present the soNigh® Born-Infeld action up to the 10th order. It
encompasses the action found earlier by Kuzenko and Theisen to the 8th order from a self-duality requirement.
This is a strong indication that the compléte=2 Born-Infeld action with partially brokeiN=4 supersym-
metry is also self-dual.
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[. INTRODUCTION Goldstone superfield action should be a particular represen-
tative of theN=2 supersymmetric Bl actions, such that it
For many reasons it is important to know the off-shell possesses a hiddéh=2 supersymmetry in parallel with the
superfield actions of supersymmetric extensions of the Bornmanifest one. By inspection of the component field content
Infeld (BI) theory[1—6] and to understand the geometry be- of the N=2 vector multiplet, it is obvious that such action
hind them. One of the basic sources of interest in such acshould describe a D3-brane =6, with the scalar compo-
tions is that their notable subclass, the Bl actions with anent fields parameterizing two transverse directions. Nlhe
hidden extra nonlinearly realized supersymmetry, provides a2 Bl action constructed ifi6] reveals no hidden extra su-
manifestly world volume supersymmetric description of persymmetry9] and so it can be regarded merely as a part of
various Dp-branes in a static gau@d. As was demonstrated the hypothetical genuind=4—N=2 Bl action.
in Ref. [3] (see also Refl4]), this sort of Bl action supplies In recent paper$10,11] we showed how the full set of
a nice example of systems with partial spontaneous breakinguperfield equations describing the=2—N=1 Bl system
of global supersymmetryPBGS. The covariant superfield in d=3 and theN=2—N=1, N=4—N=2, and N=8
gauge strengths in terms of which such actions are formu-.N=4 ones ind=4 can be deduced from the customary
lated can be identified with the Goldstone superfields supnonlinear realizations approach applied to the relevant PBGS
porting a nonlinear realization of some underlying extendegatterns. A characteristic common feature of these superfield
supersymmetry. The manifest supersymmetry of the giverystems is that the pure Bl part of the corresponding bosonic
Bl action is the linearly realized half of the underlying su- equations always appears in a disguised form in which the
persymmetry. Bianchi identity for the Maxwell field strength and the dy-
At present, the Goldstone superfield Bl actions are knowmamical equation are mixed in a tricky way. On the other
in a closed explicit form only for the 1/2 PBGS optioNs  hand, the equations for the scalar fieldis the N=4—N
=2—N=1ind=4[3,4] andd=3 [5]. They amount to the =2 andN=8—N=4 cases in which the Goldstone vector
world volume actions of the spacetime-filling D3 and D2 multiplets include such fieldscome out in a form explicitly
branes in a fixed gauge and involve, respectively, the derivable from the standard static-gauge Nambu-Goto ac-
=1, d=4 andN=1, d=3 vector multiplets as the Gold- tions. The disguised form of the Bl equations can be split
stone ones. into the kinematical and dynamical parts by a nonlinear
In Refs.[7,8] it was suggested that, by analogy with the equivalence redefinition of the corresponding bosonic com-
construction of Ref[3], N=2, d=4 vector multiplet could ponent field. As was demonstrated in REf1] for the N
serve as the Goldstone multiplet for the 1/2 spontaneous-4—N=2 example, the superfield version of this redefini-
breaking of N=4, d=4 supersymmetry. The associated tion is an equivalence transformation from the original basic
N=2 Goldstone superfield to the standavd=2 Maxwell
superfield strength. It enables one to divide the original sys-

*Email address: bellucci@Inf.infn.it tem of superfield equations into the pure kinematical and
"Email address: eivanov@thsuni.jinr.ru dynamical parts which are separately invariant under the
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N=2 superfield action yielding the dynamical part as the P

equation of motion. In this way we reconstructed the 2 Dia:—+i0“i<9m'1, D,=- —i—_—i 073y
Bl action with the hidden extrdl=2 supersymmetry up to a6; 90"
the sixth order ilN=2 Maxwell superfield strength. o .
Although this approach can in principle be applied to re- {D,,D,j}=—2i 5} e (2.2
store, step by step, tHé=4—N=2 Bl action to any order, _
it would be desirable to develop a more direct way for con- Di=D%“D! Siizﬁ'&ﬁai, (2.3

structing such an action, similar to the method which was
used in Ref[3] in the N=2—N=1, d=4 case(see als0 ¢ {9 the basic constraing.1) the superfieldsV, )V obey
Refs.[4] and[5]). It deals with the linear Maxwell superfield o following useful relations:

strength from the very beginning, and it is based upon com-

pleting the latter to a linear off-shell supermultiplet of the 1 1

full supersymmetry by adding a few extra superfields of the DW= — S0OW, DW= — S0OW, (2.9
unbroken supersymmetry. After imposing a nonlinear cova-

riant constraint on the superfields of the linear supermultiplef,yere

one ends up with a nonlinear realization of the full super-

symmetry in terms of the Maxwell superfield strength as the 1 _ 1
only independent Goldstone superfield. In all the cases stud- D*=-—D*D!D?Dy;, D*=(D%= 4—85';1D“'D'5in3,
ied so far, both the Bl superfield Lagrangian density and the

Goldstone-Maxwell superfield strength belong to the linear Dzﬁadﬁaa_ (2.5
supermultiplet just mentioned.

In this paper we propose a generalization of the method Of e jrreducible field content d#, WV defined by Eq(2.1) is

Refs. [3,4] to the N=4—N=2 Bl case. Two essentially e off.shellN=2, d=4 Abelian vector multiplet. It consists
novel closely related points of our construction, as comparegd; 5 SU(2)-singlet complex scalar field, a Maxwell field

to the previously elaborated cases, are as folleivsVe start  gyanath 4 reaBU(2)-triplet of the scalar bosonic auxiliary

from a proper extension di=4, d=4 Poincaresuperalge- |4 and asU(2)-doublet of Weyl spinors, i.e., a total of
bra bya complex central chargén order to gain a geometric (8+8) independent components.

place for the complex bosonibl=2 Maxwell superfield —
. - S In order to be able to treat,)V as the Goldstone super-
strength/V as the Goldstone superfiglil]. (ii) The minimal fields associated with the PBGS pattéir-4—N=2 in d

linear N=4 supermultiplet into which one can embedt =4 we should define, first of all, an appropriate modification

necessarily involves aimfinite tower of chiralN=2 super- - N e
fields of growing dimension interrelated by the central .Of the standariN=4, d_AT P0|ncar$uperalgebra. It should
charge generators. As in the previous cases, the chiral involve a complex bosonic generator to which one could put

=2 Lagrangian density of thid=4—N=2 Bl theory is one in correspondenc@V,V as the Goldstone superfields. As
of these extra superfields, but in order to express it in term¥as shown in Ref.11], the proper extension is given by the

of W, one is led to impose aimfinite set of the covariant following superalgebra:

constraints which eliminate all the extra superfields as well. P adm = ado .

We give these constraints in the explicit form and solve them 1Qu:Qui}=201Paas {Se:Saj}=26jPaa:

by iterations, in order to restore the corréctE4—N=2 BI _— i S — R
action up to the 10th order inV,W. Surprisingly, up to the {Qu Spt=2e"20pZ, {Qui,Spi}=—2eijeapZ (il :1,22)6,
8th order it reproduces the=2 action found earlier to this 26

grder. in Ref.[9] from .the requirements O.f self-duality and \ith all other (antjcommutators vanishing. It was chosen in
invariance under a shift symmetry ¥,V (in our approach  Ref. [11] as the starting point for constructing a nonlinear
it comes out as the symmetry generated by central chargesealization of the PBGS patteid=4—N=2, with the gen-
This is an indication that the requirements[8f are equiva- eratorsQ,, Qy;, P,; corresponding to the unbroke

lent to the single demand of hidddi=2 supersymmetry.  _ supersymmetry and the remaining ones to the spontane-
As a consequence, the fll=4—N=2, d=4 Bl actionis ;g1 broken symmetries. Obviously, a linear realization of
expected to be self-dual. the same version of PBGS should proceed from the same
superalgebra. The necessary presence of the complex central
Il. GETTING STARTED chargeZ in the anticommutators of the broken and unbroken

. . . N=2 spinor generators is the crucial difference of the case
The basic object we shall deal with is a complex scalar P J

. o - under consideration from the PBGS cade=2—N=1 in
N=2 off-shell superfield strengthy. It is chiral and satisfies j_, [3] and itsd=3 counterparf5]. In the latter two cases
one additional Bianchi identity: :

one proceeds from thBl=2 Poincaresupersymmetries in
_ A _ o d=4 andd=3 with no central charge generators; the el-
(a) DyW=0, D,W=0, (b) D*W=D"W. (2.1)  ementary Goldstone superfields are the fermionic ones which
are eventually identified with the correspondiNg: 1 Max-
Here well superfield strengths. Note that the superalgébs@ is a
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d=4 notation for theN=(2,0) [or N=(0,2)] Poincaresu-

peralgebra inD=6. In what follows, we shall not actually
need to resort to th® =6 interpretation. We shall entirely

deal with theN=2, d=4 superfields, viewing E42.6) as a
central-charge extension of the standire 4 Poincaresu-
persymmetry ind=4.

Ill. EMBEDDING N=2 VECTOR MULTIPLET
INTO A LINEAR N=4 MULTIPLET

In Ref. [11], starting from a nonlinear realization of
=4 supersymmetry defined by the superalge{##®), we

found, up to the 4th order in fields, an equivalence transfor-
mation from theN=2 Goldstone superfield associated with

the generatoiZ to the standardN=2 Maxwell superfield
strengthW, )V defined by the constraint®.1). We foun_d
that the nonlinear hiddeiN=2 supersymmetry and,Z

symmetry are realized o, W by the following transforma-
tions:

1 11—
+ZfDAO+ ED'“fDi“&on,

1,
sW=f| 1-5D" 4o

SW=(SW)*, (3.0
where the functions, f,
f=c+2i79%6,,, f=c—2i7 67, 3.2

a

collect the parameters of broken supersymmehﬂﬂ,(;'d)
and those of the central charge transformationg), The

complex chiral function4, was specified up to the fourth

ordett

+0o(W"), (3.3

1—
Ag= Wz( 1+ §D4W2

D;;Ay=0. (3.4)

Actually, the transformation law3.1), (3.2) is the most

general hidden supersymmetry transformation law\giV

compatible with the defining constraint8.1), provided that
the N=2 superfield function4, obeys the chirality condi-
tion (3.4). By analogy with theN=1 construction of Ref.
[3], in order to promote Eq(3.1) to alinear (though still

inhomogeneoysrealization of the considereN=4 super-
symmetry, it is natural to treatl, as a newindependent N

=2 superfield constrained only by the chirality condition

(3.4) and to try to define the transformation law.df under
the »,n,c,c transformations in such a way that the=2
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straint. In view of the covariance of this hypothetical con-
straint, the correct transformation law fot, to the appro-
priate order can be reproduced by varying E®.3
according to the transformation lai®.1). Since we knowA4,

up to the 4th order, we can uniquely restore its transforma-
tion law up to the 3rd order. We explicitly find

1

4i DD, A, ,

1
8Ag=21 WA + (3.5

where

A1=§W3+ o(w%), D,;A;=0. (3.6)
We observe the appearance of a new composite chiral super-
field A, and there is no way to avoid it in the transformation
law (3.5). This is the crucial difference from tié=1 case
of Refs.[3,4] where a similar reasoning led to a closed su-
permultiplet with only one extr&l=1 superfield in addition
to the N=1 Goldstone-Maxwell ondthe resulting linear
multiplet of N=2 supersymmetry is Bl=1 superfield form
of the N=2 vector multiplet with a modified transformation
law [12,13).

Thus, we are forced to incorporate a chiral superfigld
as a new independeht=2 superfield component of the lin-
ear N=4 supermultiplet we are seeking. Inspecting the
brackets of all these transformations suggests that the only
possibility to achieve their closure in accord with the super-
algebra(2.6) is to introduce annfinite sequence of chiral

N=2 superfields and their antichiral conjugatéds, A,, n
=0,1,...,
D;iA,=0, D' A,=0, (3.7

with the following transformation laws:

1 1
SAo=2tW+f0 A+ 2D ID{ 000 Ar, (38

1 1
5A1:2fAQ+ZfDA2+ EDlafDiaé’aé.Ag, Ceey

1—
5An:2fAn_1+ZfDAn+1

1

4i Bi&f_Diaaa&An%—l (n2 1)1

+ (3.9

OAL=(6A)*.

superfieldsA,, W,V form a closed set. Then, imposing a i js 5 simple exercise to check that these transformations
proper covariant constraint on these superfields one coul lose off shell both among themselves and with those of the

hope to recover the structu(d.3) as a solution to this con-

manifestN=2 supersymmetry just according to thhe=4
superalgebrd2.6).

Realizing (formally) the central charge generators

For further convenience, here we use a slightly different notatioras derivatives in some extra complex “central-charge

for this function as compared to RéfL1].

coordinate” z
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i9 — ig d=4 supersymmetry2.6) to the standardN=2 supersym-

l=-—, Z==—, (3.10 metry. The Goldstone character of this realization is mani-
2 9z 2 gz fested in the transformation la¥8.1) which contains pure

: . , ) shifts by the parameters of the spontaneously broken sym-

and assuming all the involved=2 superfields to be defined \oyies” Therefore, the appropriate components of the super-

on azz extension of the standad=2 superspace, it is fie|d strength)V are the Goldstone fields, and this superfield

instructive to rewrite the transformation laws under the itself can be interpreted as the Goldstdwe 2 superfield of

transformations as follows: the linear realization of the considered PBGS patférn4

—N=2.

aw 1_4_) aw 1

- = - A AO , —_Z—DA(), (31])

9z 2 oz 4 IV. SUPERFIELD ACTION OF THE N=4—N=2 BI

THEORY

ﬁ_AO: : 8_@: EDAl, (3.12 As was already mentioned, in the approach proceeding

9z iz 4 from a linear realization of PBGS, the Goldstone superfield
Lagrange density is, as a rule, a component of the same

A, dA, 1 linear supermultiplet to which the relevant Goldstone super-

o7~ 2An-1, ﬁ:ZDAnJrl- (313 field belongs. This is also true for the case under consider-

ation. A good candidate for the chirdl=2 Lagrangian den-

These relations imply, in particular, sity is the superfieldd,. Indeed, the “action”

( 72 1 ) ( # 1
——-0|W=0, | —=— 30O
9zdz 2 920z 2

If we regardz,z as the actual coordinates, which extend thelS invariant with respect to the transformati¢8.8) up to
d=4 Minkowski space to th® =6 one, the relationé3.14  surface terms, because, taking into account the basic con-
mean that the constructed linear supermultiplet is on sheftraints(2.1) and the precise form of these transformations,
from the D=6 perspective. On the other hand, from the the integrand is shifted by derivatives. With the interpreta-
=4 point of view this multiplet is off shell, and the relations tion of the central charge transformations as shifts with re-
(3.11)—(3.13, (3.14 simply give a specific realization of the spect to the coordinatesz, the action(4.1) does not depend
central charge generatafsZ on itsN=2 superfield compo- ©N the;e coordinates in virtue of E@8.12), though the La-
nents. In this sense this multiplet is similar to the previouslydrangian density can bear such a dependence. _
known speciaN=2, d=4 andN=4, d=4 supermultiplets, It remains for us to define covariant constraints which
which are obtained from the on-shell multiplets in higherwould express4y, Aq in terms of W, W, with preserving
dimensions via nontrivial dimension reductions and inheritthe linear representation structu®1), (3.8), (3.9). Because

the higher-dimensional translation generators as nontriviallan infinite number oN=2 superfieldsA, is present in our
realized central charges id=4 [14,15 [a renowned ex- case, there should exist an infinite set of constraints trading
ample of this sort is the (88) Fayet-Sohnius hypermultip- all these superfields for the basic Goldstone ongs\V.

let [14]]. Since the superalgeb(a.6) is just ad=4 form of As a first step in finding these constraints let us note that
the N=(2,0) [or N=(0,2)] D=6 Poincaresuperalgebra, it the following expression:
is natural to think that the above supermultiplet ha3-a6

origin and to try to reveal #.We hope to come back to this 1 (—1)
interesting problem in the future. For the time being we pre- ¢0=A0( 1- —D4A0) -W2-3 ”
fer to treat the above infinite-dimensional representation in 2 k=1 2X8
the pured=4 framework as a linear realization of the partial 4.2
spontaneous breaking of the central-charge extemted,

A,=0. (3.14 S= f d*xd*6.Ay+ f d*xd*6.A, (4.2)

A, OKD* A,

is invariant, with respect to thiepart of the transformations
(3.1, (3.9), (3.9). This leads us to choose

2By analogy with the previously known exampl&s5], one could
expect, at first glance, that this multiplet isde=4 form of the $o=0 (4.3
vectorN=2, D=6 multiplet which is known to exist only on shell
(in D=6) [16]. However, this cannot be true because such a mulas our first constraint. For consistency witls=4 supersym-
tiplet can be defined only for tha=(1,1) supersymmetry iD  metry, the constrair.3) should be invariant with respect to
=6 [16] while we are facindN=(2,0) orN=(0,2) supersymmetry o £ transformationg3.1), (3.8), (3.9), with the f part
in our case. Note that the PBGS optibi=4—N=2, d=4, with . . o —
the N=4, d=4 supersymmetry being isomorphic just to the taken into g:count as well. We shall firstly spemallzgtocthe
=(1,1), D=6 one, was discussed in Rgf]. It requires theN part of thef transformations. The requirement of theco-
=2 hypermultiplet, as the Goldstone multiplet. variance produces the new constraint
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d1=0A;+2(A,O0W—- WO Ap) In order to prove that the basic fermionic constrahyt(4.9)

is actually equivalent to the bosonic of@ (4.9), one has to
know the general solution tall constraints. For the time
being we have explicitly checked this important property
only for the iteration solution given below. Taking for
=0. (4.4  granted that this is true in general, we can limit our attention

o ) ) . to the type (a) constraints only. The constrai@®<?), (4.4)
It is invariant under thé transformations, but requiring itto 5. just of this type.

— 1)k o o
- E (2 8)" (O A1 O'D* A= A, 104D AY)

be invariant also under the part gives rise to the new con- At present we have no idea how to explicitly solve the

straint above infinite set of constraints and find a closed expression
204 2( A2 A — O AC A+ 20 A0 for the_Lagrangian densitiesly, Ay similar to the one

2 Azt 2(A Ao = H A Ay AW known in theN=2—N=1 case[3]. What we are actually

(-1 )k 5 = able to do, so far, is to restore a general solution by itera-
(02Ac,,0*D* A tions. For example, in order to restore the action up to the
10th order, we have to know the following orders.ify:

— A, O2W- W2 A4,) - E

_ k+1y44 k+2444 \—
2DAk+2D D Ak+Ak+2D D Ak) 0. (45) A0:W2+Ag4)+¢4(06)+¢488)+ o

Applying the same procedure to E@.5), we find the con- 5 5 ;
straint A= AP+ AP+ AP+
h3=03A3+2(302A,0W+ 30 A, 02 A0+ A 0% A4, A= AP+ AO 4 A= AD .. (4.12)

— 3 3yA)_ 3 _ 2
A A+ AW WA, = 307 A, L A These terms were found to have the following explicit struc-
—30A4,0%W)+---=0, (4. ture:

and so on. The full infinite set of constraints is by construc-

tion invariant under thé andc transformations. Indeed, us-
ing the relationg3.11)—(3.13 one may explicitly check that

1 _ _
W D42, A86)=ZD4[W2W2(D4W2+D4W2)

—EW3DV_\/3}
I _o %1 4 9 ’
0y 0 ?—Z%H, (4.7) )
8)— "4 274(6) YA12 4 (6) 2912V AA 02 4002
so the full set of constraints is indeed closed. Ao 8D AWVIAGTHAWTAGTHWIWIDIWIDTWY
The variation of the basic constraints with respect tofthe 2

transformations has the following general form: - —W3D(W3D4W2) W3D4W Oows

Sbn= 101 Bot 7 (F)ia- (4.9 1 _

: o R +—W4DZW4},

Demanding this variation to vanish gives rise to the two sets 144

of constraints
2 2
(8) B,=0, (b) (F)is=0. 49  AP= W3 AP=WIDW?,

The constrain(a) (4.9 is easily recognized as those obtained

above from thec covariance reasoning. One can show byA(7)_D4[ 1W3W D424 W3W D42
explicit calculations that

—.& . o 1 _
DI (Fo) i & 555, (410 —ﬂw‘*m\ﬁ},

Thus the fermionic constrairib) (4.9) seem to be more fun-
damental. For example, for the constraift (4.4) the basic

1 I — 2
(4)— T4 (6) — “YA14P 4092 (5)— S y\)5
fermionic constraint reads A=W A= WD, A=V (4.13)

(F1)ia=D{"daeA1+2(AoD{ 90 e W= WD 940 Ao) Note that, despite the presence of growing powers of the
1)k operator] in our constraints, in each case the maximal
2 ( ———— (D40 Ars 10 kD4 A, power ofJ can be finally taken off from all the terms in the
0 2xgk given constraint, leaving us with this maximal power[of
k. =2 acting on an expression which starts from the appropriate
— Ak 11°D{9,,D7 A =0. (41D 4,. Equating these final expressions to zero allows us to
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algebraically express all,, in terms ofW, W and derivatives (10)_ 1_4 2718) L 52 4 (8) (4)776) 1 T14) 4 (6)
of the latter. For example, fod $>) we finally get the follow- 0 DT W IATHW A A Ay A Ag
ing equation:

1 1 — 1 —
5 ) - gAPDA - 2APDAR - 2APD AP
DPAP=OWo= AP =ove. (414

_ . - n %A(ZA)Dzz(ze)jLélA(ze)Dzz(zﬁt)
This procedure of taking off the degreesl[dfwith discard-
ing possible “zero modes” can be justified as follows: we 1
are interested in an off-shell solution that preserves the mani- - gZAgS)D3Z(35)
fest standardN=2 supersymmetry including the Poincare
covariance. This rules out possible on-shell zero modes
well as the presence of explias or x’s in the expressions
which remain after taking off the appropriate powers oflt
can be checked to any desirable order that these “reduced
constraints yield correct local expressions for the composit
superfields4,, which prove to transform just in accordance
with the original transformation rule8.1), (3.8), (3.9). We —2 Bl action is self-dual similar to ithl=2—N=1 proto-
have explicitly verified this for our iteration solutidd.13).
We do not know, for the time being, how to demonstrate thetype.[3’4]' : . .

' ’ Finally, let us point out that after doing theintegral, the

pOSS![bH'I'[); tp take Oflf th'(tah po;/versl_d_li froTn. thihorlglrllalth pure Maxwell field strength part of the bosonic sector of the
constraints in general, without explicitly solving them. In the 5., ,, action(and of the hypothetical complete actjon

Appendix we deducg a set of pur_ely a_lgebraic .ConStraint%omes entirely from the expansion of the standard Born-
which immediately give the above iteration solution and SOnfeld bosonic action. Just in this sense the above action is a

are candidates for the general form of the "reduced Con'particularN=2 extension of the bosonic Bl action. The dif-

straints. : RSP LT
- . . ._ference from the action of Rdf6] is just in higher-derivative
'Ire explicit expression for the action, up to 8th order "Nterms with thed operators. These correction terms are cru-

} (4.19

4% would be interesting to compare it with the 10th order of
the Kuzenko-Theisen actiofwhich, unfortunately, was not
explicitly given in Ref.[9]). Anyway, the coincidence of the
action of Ref[9] with the N=4—N=2 Bl action, up to the

Bth order, can be regarded as a strong indication that these
actions coincide at any order and, hence, thatNke4— N

W, W, reads cial for the invariance under the hiddéh=2 supersymme-
try, and they drastically change, as compared to [&f.the
S8) = j d4xd40W2+c.c.) +J’ d*xd*6d%al W22 structure of the bosonic action, both in the pure scalar fields
sector and the mixed sector involving couplings between the

Maxwell field strength and the scalar fields. By the reasoning
1+ E(D4W2+54V_V2)}— iW3DV_V3 of Ref.[11], the additional terms are just those needed for
2 18 the existence of an equivalence field redefinition bringing the
1 scalar fields action into the standard static-gauge Nambu-
+ —WZV_VZ[(D4W2+54V_\/2)2+ D4W254W2] Goto form.
4 The analysis of the auxiliary field sector shows that the
equation for the auxiliary fieldP(®(x) has the following

X

- %2D4W2V_V3DW3— %254W2W3DW3 generic structure:
ik)pg (nh) —
l . P(I )M(Ink)—o,
+ AW (4.19 : , . ,
576 where M is a nonsingular matrixM=1+---, and ellipses

stand for terms involving fields and their derivatives. Hence,
This aCtion, up to a Sllght difference in the notation, coin- P(ik)zo on She", i_e_, the aux"iary field is nonpropagating,
cides with the action found by Kuzenko and Theli@j as in the standartl=2 Maxwell theory_
from the requirements of self-duality and invariance under

no_nlinear shifts qﬂ/V,W (thec,c transformations in our no- V. CONCLUSION
tation). Let us point out that the structure of nonlinearities in _ _
the c,c transformations ofV,V in our approach is uniquely [N this paper we proposed a systematic way of construct-

fixed by the originalN=4 supersymmetry transformations iNg @ N=2 superfield Bl action with a hidden second
and the constraints imposed. In REJ] it was guessed order =2 Supersymmetry. It is based on extending fhe2 vec-
by order from the requirement that the action be invariant. tor multiplet to an infinite-dimensional linear off-shell mul-
The next, 10th order part of tHé=4 invariantN=2 BI tiplet_ of th_e centr_al-_charge modifieN_=4 supersymmetry
action can be easily restored from E@4.13. Its explicit ~@nd imposing an infinite set of covariant constraints which
form looks not too enlightening, so here we present only th@iVe rise to a nonlinear realization of the=4 supersymme-
relevant part of the chiral Lagrangian density in the con-try in terms of theN=2 Maxwell (Goldstone-Maxwe}l su-
densed notation perfield strengthd/V, . Solving these constraints by itera-
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tions, we have restored thé=4 supersymmetric Bl action 9

4
to 10th order inWW,W. In order to construct the full action, 779173 %o-
we need to know the general solution of the constraints. For

this purpose it seems necessary to work out another, techqi—

cally more feasible way of tackling the infinite set of thesebnagiihi:)r\:\grrg;’( 4Eg)(p\‘,3i)ﬂ:sré2§eﬁstg %;ng:ﬂﬁe;?;
constraints, perhaps in az extendedN=4 superspace, jon” procedure can be continued further to get the succes-
rather than in theN=2 one. We hope to report soon on a gjye set of the algebraic constraints

progress in this direction. Another project for a future study

(A3)

is to apply our approach to construct a genuine non-Abelian 1—,— 1 (—1)k
version of theN=4—N=2 Bl action as a proper modifica- P2= A 1- 7P Ao |~ EWAl_kZl gk
tion of the action proposed in Rgf17].

In the course of writing this paper we learned that a con- k2 k 1 —
struction conceptually close to ours was independently Xlgtst3 A+ 1" DA =0, (A4)
worked out by Galperifl18].
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e + K + Sk e Ay, 3s0¥D%A,=0 (A5)

V) k+3 k=Y,
APPENDIX 4 60 2
Let us consider the following constraint: d 8
E%Zgﬁoza
k
or= | 1- 35| - vt 3,
1= -5 0| 7 0~
2 3 =18 and so on.

We have checked that the iteration solution of the con-
straints(Al), (A4), (A5), up to the 8th order, exactly coin-
cides with Eq.(4.13, but we still have no general proof that
this set of constraints is indeed fundamental. It is, by con-
struction, covariant under thetransformations aney super-

k 1
— 4+ —

X372

Ay ,0D*4,=0. (A1)

Using Egs.(3.11),(3.12,(3.13 and the following useful re-

lation: symmetry, but its covariance under théransformations re-
) mains to be proved. Note the interesting relations between
d (=1 S the constraint$4.4)—(4.6) and Eqs(Al), (A4), (A5)
E( P TakAk+ka+pD4Ak+n
Ny 4 . 32 # \?
1 (— 1)K _ 1= =Po=3 =1, $2= 5| ——| P2,
— Z 2 8k (ak_ak+l)Ak+mD k+p+lD4Ak+n+l Jz 029z 0202
. = = ®3, .. -

(ap=0), one can easily check that 9\ gzo2) 3
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