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In earlier work we have given a Hamiltonian analysis of Yang-Mills theory-i2limensions showing how
a mass gap could arise. In this paper, generalizing and covariantizing from the mass term in the Hamiltonian
analysis, we obtain two manifestly covariant and gauge-invariant mass terms which can be used in a resum-
mation of standard perturbation theory to study properties of the mass gap.
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[. INTRODUCTION covariance in our approach, first due to the use of the Hamil-
tonian analysis itself and secondly, because the gauge-
In a series of recent papers we have carried out a Hamilinvariant variables we used were defined intrinsically in a
tonian analysis of Yang-Mills theories i2+1) dimensions (2+1)-splitting and do not have simplgensoria) transfor-
(YM,, ) [1-3]. A matrix parametrization of the gauge po- mation properties under Lorentz transformations. Going over
tentials A, was used which facilitated calculations using to a Lagrangian might address the first problem of degrees of
manifestly gauge-invariant variables. An analytical formulafreedom being defined at a constant time but not the second,
for the string tension was obtained which was found to be irunless we have a Lorentz covariant parametrization of the
good agreement with lattice gauge theory simulati8)4]. gauge potentials which makes it easy to isolate the gauge-
It was also shown that effectively the gauge bosons becomi@variant degrees of freedom. In our approach, calculability,
massive. This mass can be identified in the context 8 a viz., the fact that the transformation of variables could be
+1)-dimensional gluon plasma as the magnetic mdgds done exactly, including the Jacobian, was the crucial factor,
The analytically calculated value of this mass is also in reawhich led to physical results. To be useful to a similar de-
sonable agreement with numerical estimd&s gree, one needs a Lorentz covariant parametrizatioA of
All the above calculations were done in a Hamiltonianfor which the change of variables to the gauge-invariant de-
framework. The virtue of this approach is that at a given timegrees of freedom can be carried out, including the path-
we have to consider gauge potentials on the two-dimensionahtegral Jacobian in a nonperturbative way. We have not
space and for two-dimensional gauge fields a number of cabeen able to find such a set of variables. The situation is
culations can be done exactly. However, as in any Hamilsimilar to the old problem of rewriting Yang-Mills theory in
tonian analysis, we do not have manifest Lorentz covariancgerms of Wilson loop variables and other similar choices of
Overall Lorentz covariance is not lost since the requisitevariables; as in many earlier attempts, the technical stum-
commutation properties on the components of the energybling block has been the calculation of Jacobians in nonper-
momentum tensor may be verifigtl]. Now, the main physi- turbative terms.
cal context in which our results could be applied would be A more practical alternative strategy would then be the
the case of magnetic screening in QCD at high temperaturefollowing. First of all, we can consider an expansion of our
The Wick-rotated version ofY M, ;, namely three- results in powers of the coupling constant. It then becomes
dimensional Euclidean Yang-Mills theory, is what is neededclear that the mass gap cannot be seen to any finite order in
to describe the zero Matsubara frequency mode of(ghe the perturbative expansion but could be obtained by resum-
+1)-dimensional QCD at high temperatures. A manifestlymation of certain series of terms. Such resummations can be
covariant formulation of our analysis would be just what iscarried out in the covariant path-integral approach by adding
ideal in relating our results to Feynman diagrams in highand subtracting suitablégauge-invariant mass terms, and
temperature QCD. There are two sources of lack of manifegndeed, many such calculations have already been done using
different choices of mass termis—9]. In these calculations,
there is no unique or preferred mass term we can use. The

*Email address: karabali@fabbro.rockefeller.edu natural question is whether our Hamiltonian analysis can
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arises in the Hamiltonian analysis? As is typical for the WZW action, the second integral is over
In this paper we do the following. We study the propertiesa three-dimensional space whose boundary is the physical

of the mass term which arises in our Hamiltonian anaIySiStWO_dimensiona| space Corresponding to the Coordimtgs

identifying certain key features and then seek covariantrhe integrand thus requires an extension of the matrix field

gauge-invariant mass terms which can be used in a Lagrangt into the interior of the three-dimensional space, but physi-

ian resummation procedure and which are simple generalizgz| results do not depend on how this extension is Jaog

tions of what we find in the Hamiltonian analysis. Two such Actually for the special case of Hermitian matrices, the sec-

terms are considered and analyzed to some extent. ond term can also be written as an integral over spatial co-
In the next section, we discuss an “improved” version of grdinates only[11].

perturbation theory starting with our Hamiltonian analysis.  The inner product for two wave functiord,, ¥, is

We first show how the mass term can be manifestly disgiven by

played to the lowest order in our gauge-invariant variables.

Then building upon this lowest order result, we identify the

required properties and the nature of the mass term. A pro- (1|2>=J du(C)PI (H)W,(H)

cedure for the covariantization of the mass term is described

in Sec. lll. Explicit formulas for the covariantized mass B 26l (H) gk

terms are given to cubic order in the potentials. Section IV _f du(H)e AW (H)Wao(H). (4)

gives a brief discussion of the results of carrying out the

resummation to the lowest nontrivial order. The paper conCarrying out the change of variables fromto H in the
cludes with a short summarizing discussion. Some technicahamiltonian operator, one gets

arguments on the nature of the mass term are given in the
Appendix. H=T+V

II. “IMPROVED” PERTURBATION THEORY AND THE

2
MASS TERM T % f 7(0) a5 _

We consider ars U(N)-gauge theory with the gauge po- T 6J%(u)
tentials Aj= —it?A%, i=1,2, wheret?® are Hermitian N 5 5
X N) matrices which form a basis of the Lie algebra of +f 0UY) ——= ———
SU(N) with [t,tP]=ifaP%C, Tr(t3")=15%. The Hamil- 83%(u) 83°(v)

tonian analysis was carried out in tAg=0 gauge with the

spatial components of the gauge potentials parametrized as v T 373
_ _ - mc aP“a
A=—oMM~1, A=MT"TM". 1) "

_ — C
Here A=1(A,+iA,), A=3(A,—iA,), z=X1—iXy, Z J=-LoHH 1
=X;+iXp, d=3(d1+id,), d=3(d1—idp). In the above

equationM, MT are complexSL(N,C) matrices. The vol- R
Ca 5ab . fachc(U)

ume element on the spackof gauge-invariant configura- 0(d.0)= 5 i 5)
tions was calculated explicitly ifil,2] and found to be ’ 2 (u—v)2  m(u=v)’
dAdA i in the Kineti -
du(C) = [ \ — du(H) eXA® @) The first term in th_e kinetic energy, viz., J(_5/5\_]) shows
volg that every power ofl in the wave function will give a con-

tribution m=e?c, /27 to the energy. This is the basic mass
whereH=M'M. H is a gauge-invariant, Hermitian matrix- gap of the theory.
valued fielddu(H) is the Haar measure fét. (Explicitly, it The volume element2) plays a crucial role in how the
may be written asdu(H)=[d¢?]ll,det where H 'dH theory develops a mass gap.l{H) is expanded in powers
=derak(@)tc.) Ca is the quadratic Casimir of the adjoint of the magnetic fieldB?= ; €;; (A}~ ajA;”‘+fab°APAj°), the
representatiorg, 2°= 2™ | (H) is the Wess-Zumino-  |eading term has the form
Witten (WZW) action for the Hermitian matrix fieltl given
by [10]
B+O(B®). (6)

1 1

Writing AE, AB for the root mean square fluctuations of the
i electric fieldE and the magnetic fiel®, we have, from the
+—| e*"*Tr(H 9 ,HH 9, HH 1o, H). canonical commutation rulegE? AP]=—i5,5%°, AEAB
127 u . Pl 1= .
~k, wherek is the momentum variable. This gives an esti-
3 mate for the energy

I(H)=%f Tr(gHoH 1)
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1/e%k? AB? The mass term can also be written in a different way as
&= E(W + —ez—) - (7)  follows. We can absorb the exponential factor of Bj.into
the wave functions, defining =e ™ (Ca/4mMIo¢deq 5o that
For low lying states, we must minimiz& with respect to the norm of®’s involves just integration ofb* ® with the
AB2?, AB?, ~e%k, giving £&~k. This corresponds to the flat measurg¢de], i.e.,

min
standard photon. For the non-Abelian theory, this is inad-
equate sincé’) involves the factoe?a' ™. In fact, <1|2>%f [de]d* (H)D,(H). (11)
<H>=f du(H)e?a (M1 (e?E2+B?/e?). (8)  For the wave functiond, we get
2
Equation(6) shows thaB follows a Gaussian distribution of 7,7 Ef — L+ Ha(X)(M2=V2) o (X) [+ - - -
width AB2~7k?/c, for small values ofk. This Gaussian 2]y 843(x)
dominates near smak giving AB2~k?(m/c,). In other ) 52 -
words, even thouglg is minimized aroundAB?~k, prob- N_f _ - oo, oo, SO —
ability is concentrated arouniB2~k?(/c,). For the ex- 2 SP2(X) T Pa(X) (= V5) pa(X) + 4,20%a0%a
pectation value of the energy, we then fidgd-e?c /27
+ O(k?). Thus the kinetic term in combination with the mea- (12)

sure factore?A' (") could lead to a mass gap of ordefc, . = Vo R 2mm e _ .
The argument is not rigorous, but captures the essence $fN€re ¢a(k)=vcakk/(2m)ea(k). szpressmn(l_Z) is the
how a mass gap arises in our formali§t. Hamiltonian for a field of massn=e“c, /2. This can be

All we have done so far is to rewrite the theory in termst@ken as the lowest order term of an “improved” perturba-
of gauge-invariant variables without making any other ap-{ion theory. In the second line of E¢l12), we have also
proximation. It is therefore possible to look at perturbationSeparately shown the mass term since we shall need it
theory in this version. Since, is quadratic in the structure Shortly. o _ o
constantg 2", the exponent in Eq2) would be considereda !t may be worth emphasizing that this Hamiltoniei®),
second order effect in the perturbative expansion. The expdVith the inner product1l), is entirely equivalent to the pre-
nential in Eq.(2) would be expanded in powers of and we ~ Vious one(10), with the inner product given by E¢9) [12].
would not see a Gaussian distribution for the magnetic flucHowever, in Eq(12), the mass term has a more conventional
tuations(of width ~k?). Hence the effect considered above form and therefore one can use this as a starting point for the
cannot be seen to any finite order. The basic question we af8aSs term we want to find for resummation calculations in
asking in this paper is whether one can incorporate the ef€ Lagrangian formalism. We also see that the energy of the
fects of the nontrivial measuré®) and the resultant mass Particle, viz,,Jk®+ m"is an infinite series when expanded in
term in a covariant path integral for diagrammatic analysis. 1{POWers ofe”. The “improved” perturbation theory, which is
is clear that this cannot be done at any finite order in perturéffectively resumming this up, is thus equivalent to a partial
bation theory. However, one can define an “improved” per-résummation of the perturbative expansion.
turbation theory where a partial resummation of the pertur- The gauge-invariant variables, or H are wonderfully
bative expansion has been carried @]t This improvement appropriate for the Hamiltonian analysis. However, in a per-
would be equivalent to keeping the leading termi @fl) as turbative diagrammatic calculation carried out in a covariant

in Eq. (6) in the exponent in Eq(2). For example, if we Lagrangian framework, we shall need to use the gauge po-
write H=e""*"~ 1+1t2¢2, as would be appropriate in pertur- tentialsA;. To the lowest order, the number of powers of

ion th p ¢'s andA's do match; the mass term given in H42) is
bation theory, we find thus quadratic in thé\’s and can be written as
du(C)=[dgle=Ca2mIdie* (1 4+ O(&3)). 9 ezcif T sz, d2k " k)( 5 kiki)Aa(k)
CorrespondinglyJ®=(ca/7)d¢?, and the Hamiltonian has 47 Yat¥aT e | (2m?" k)T
the expansion (13

H=m

P - . 5 5 This gives the mass term only to the quadratic order and does
f Qa— —f Q(x,y) = = } not have the full non-Abelian gauge invariance; there will be
6¢a  Ca 3@a(X) d@a(y) terms with higher powers oA’s giving a gauge-invariant
c completion of Eq.(13). Already at this stage we can say
+ —Af @ —33)dpat+ O(@3) (100  something about how the full mass term should look like,
mam based on the following conditions.
.. (1) The mass ternfr should be expressible in terms df
where m=e’cn/2m and Q(x,y)=—f[d*k/  since that is the basic gauge-invariant variable of the theory.
(2m)?]1e " V/kk. The termf ¢,6/ S¢, shows that every  (The ¢,’s represent a particular way to parametride It

in a wave function would get a contributionto the energy; should be possible to write the mass term in a way that is not
this is essentially the mass gap again. sensitive to how we parametrit¢)
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(2) To the lowest, viz., quadratic order, it should agreeThe only holomorphically invariant completion of

with the mass term in Eq12) or Eq. (13). . Tr(@HH™) using H and its derivatives, but no additional
(3) The mass term should have *“holomorphic invari- Green’s functions, is I(H) as given in Eq. (14)his is why
ance.” we refer to it as the minimal term.

The last property is the following requirement. As can be A strategy of doing the resummation calculations is then
seen from the definitiongl), the matrices M,M") and  to consider the action

(MV(2),V(z)M") both define the same potentials\, @), ,
whereV(z) is holomorphic inzandV(z) is antinolomorphic. S=Sym= 4 Fmint AFmin (16)
In terms ofH, this means thaH and VHV are physically \ here we considen to be of one higher order in a loop

equivalent. Physical quantities should be,gnd in any Correcéxpansion compared ta2 and Sy, is the usual action for
calculation will be, invariant undeH —VHV, so that the  the YM path integral. In other words, the loop expansion is
ambiguity in the choice of the matricdd, M’ does not organized by treatinG, y— 4?Fmin as the zeroth order term,
affect the physics. For example, the WZW action in B).  while AF,,;, contributes at one loop higher. In particul&r

is invariant undeH—VHYV, a property familiar from two- is a parameter which is taken to have a loop expansion, viz.,

dimensional physics. We have previously referred to this inA=A®+A®)+ ... Since the parametes? is still arbi-
variance requirement as “holomorphic invariance;” it can betrary, we can choose it to be the exact value of the pole of the
used as a guide in some calculations. full propagator. In other words, the pole of the propagator

A minimal mass term with the above requirements can béfor the transverse potentialeemainsu? as loop corrections
easily written down. First of all, sincd =e'*¢", we see that, are added. This requires choosit§’ to cancel the one-loop
in terms ofH, the mass term shown in E€L2) is of the form  shift of the pole A®®) to cancel the two-loop shift of the pole,
Tr(sHaH ). [We shall discuss this in the Appendix in etc.A(;), A® etc. are cazlculated as functions of the param-
eter u°. The conditionu“=A then becomes a nonlinear

i inti -1
some detail. The key point is that we have dH(gH ~*) and equation foru2: it is the gap equation given as

not something like Tr&H?H), even though the latter does
have the same kind of quadratic approximafjdvotice that A(w)=AD+A@ 4. =42 (17)

this term, TrgHgH 1), is the first term of the WZW action
(3). Since the WZW action has holomorphic invariance, weThis determinesu to the order to which the calculation is
see that a minimal mass term, or a minimal holomorphicallyperformed. Thus in the end we also hgwvé=A as desired.
invariant completion of THJH 1), with the properties One can do similar resummation and gap equations with any
(1)—(3) listed above is also a WZW action, i.e., mass term, for examplE in place ofF ;, in Eq. (16).
This procedure is, of course, what is done in any kind of
T resummation or gap equation approach to mass generation
Frin=— gz 1(H). (14 [7-9. The additional ingredient for us is that the Hamil-
tonian analysis suggests some specific forms of the mass
Of course, one can always add gauge-invariant terms whici'm (14). The mass termel4),(15) are not covariant, so we
start with cubic or higher powers @ which do not spoil the have to write covariantized versions of these before they can
requirement that it agrees with E(L2) at the quadratic or- Pe used in a covariant resummation calculation. We shall
der. In this sense the WZW action is only a minimal mass"oW consider a procedure for covariantization, which is of
term, not unique(The quadratic part is, of course, unique. [Nterestin its own right.
There are also other invariant ways to complete

Tr((yHgH’l)_ For example, we can write [ll. COVARIANTIZATION OF THE MASS TERM
- General procedure
F= m}z;f (GaI*)Hap(GAIP) (195 There is one more problem we have to deal with in using

I(H)=1(A, A) in a resummed perturbation theory, namely,
where J2= (ca/m)(dHH D2 J2=(ca/m)(H T9H)? and _that it is not mamfestly covariant. Again, the original theory
Hab=2Tr(t§H/}le(l). This)will be E]oAlom)o(rphicall)a invari- 1S Lorentz invariant and adding and subtractingoes not

it th s function — 91 = — affect this. However when we take? andA to be of differ-
ant with the Green's function€=¢ = andG=0" = trans- ot grders, we lose covariance order-by-order unless we use
forming in a certain way as discussed [@®]. This way of

" ol he additional ‘ < functi a covariantized version of. In this section we outline a
writing F involves the additional use of Green's functions, yenera| method of covariantization which can be usedfor
over and above the Green’s functions which appear in th

construction ofH (or M, M) from the potentials. In the min- Our method may also be interesting in its own right.

. ) . o The key expressions we have involve holomorphic and
next section, we give expressions for the covariantized Velantiholomorphic derivatives and fields. We observe that
sions of bothF ,,;, of Eq. (14) andF as in Eq.(15), to cubic

—1l.a H_1na a_(1; na
order in potentials. We shall see thatequalsF ,;, plus a _Znoa_a anq ‘_9 2Noda, Where h" (1&0) anc_l Mo
number of terms which involve the logarithms of momenta,=(1,—1,0). Similarly for the gauge field&, A. An arbitrary
the latter having to do with the additional Green’s functions.Lorentz transformation af andng produces null 3-vectors
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n?, n2 respectively, such that properties(18), but with the Minkowski metric replaced by
the Euclidean one. If this procedure is used for the minimal
=Qg,pn?N°=0 mass termF,i,=— (27/e?)I(H), the resulting covariant
mass term is precisely what was proposed some time ago in
n?n,=g,,n%nP=0 [13] and used in[7]. It is interesting that this mass term
emerges in some minimal way from our Hamiltonian analy-
Na=gapn®n°=2 (18  Sis.

The Euclidean analysis is adequate for diagrammatic cal-
whereg,, is the Minkowski metric. We shall consider the culations. However, conceptually, there is still something
signature(1,1,—1). This suggests the following covariantiza- lacking. Hamiltonian analysis is all in Minkowski space and
tion procedure. Replace the holomorphic and antiholomorto tie in everything, it is important to define the covarianti-
phic derivatives ¢, J) and gauge fieldsA, A) in I(H), ex-  Zation directly in Minkowski space as well. In view of the
pressed in terms of the potentials, byn g 1. 2) and Euclidean result, one way to define the regularization of the

v integration over the Lorentz transformations is then as fol-
(3n-A, 3n-A) respectively, and then integrate over Lorentz|ows. We do a Wick rotation of the integrands to Euclidean
transformations. Thus the covariant analogue of a generapace, do the integrals there and then continue the final re-

term sults back to Minkowski space. Alternatively, one can seek a
definition of the regularized integrals in Minkowski space
:f dtdzxﬁ(A,K,ag) (19) direc_tly in such a way that the results agree with the_Wick
rotation of the Euclidean results. We now show how this can
be done.
would be

First we construct the operator analogues of the
_ _ Minkowski null vectorsn?, n2, Let g be a group element of
Sccv:f d/‘f dtd®xL(3n-A,3n-A,3n-4,5n-9) SO(2,1). g can be written ag=¢€'""" where
(20) o
tt=(ioq,ioy,03) (23
wheredyu is the measure over Lorentz transformations.

A particular parametrization fam, n is given by ando,, a=1,2,3, are the Pauli matrices. The matri¢@s

satisfy the commutation rules

=(cosh@ cosy—i siny,coshd siny+i cosy,sinhé )

( X X X X ) [t3,tP]=2i €2Pg qtY. (24)
cd

=(coshéd cosy+i siny,coshé siny—i cosy,sinhég).

21) We now introduce the operatoes a', which are doublets

underSQ(2,1). One can show that the generator§a{2,1)

In terms of this parametrizatiordu=d(cosh@)dy, where Can be written as
coshfe (0,°) and y € (0,27). _qa

The problem with this procedure is the fact that the Lor- J2=a—a (25)
entz group is noncompact and integration over Lorentz trans- 2
formations leads to divergences. The degree of divergence
depends on the number afs andn’s in the integrand. In wherea=a'o3. The commutation rule foa, a, compatible
order then for the covariantization procedure to be meaning?ith SO(2,1) invariance, is
ful one needs to regulate the integrals in a consistent way. As — o
we show below, this can be done by replacing the integrals [ai,a;]=6;, i,j=1.2. (26)
by traces of suitable Ml X M)-matrices. The integrals are
then regained in a largd-limit. To define the regularization,
notice first of all that there is no such problem in Euclidean
three-dimensional space. Integration over Lorentz transfor-
mations is replaced by integration over rotation angles and is _
convergent. This has been used before in constructing cova- S=(s)"=a't’t% 27
riant mass terms in Euclidean spdde3,7]. The Euclidean
version of the null vectors is

We now define the following operators:

SP=att?a’

(the superscripT indicates the transpopdt is easy to show
that bothS andS transform as vectors und&0O(2,1) trans-

=(—cosf cosy—i siny,—cosé sin y+i cosy,sing) formations. Further they are null vectors,
n;=(—cosf cosy+i siny,—cosé siny—i cosy,sine). $5,=0, $S,=0 (28
(22
and

The measure of integration over the angles d$)
=sinfdddy. The Euclidean vectors, n obey the same $S,=2(Q%*-Q) (29
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whereQ=2i2:1§iai. Q is invariant undeSQ(2,1) transfor- —
mations. duF(n,n)
The commutation relation betwe&wandS is given by

M (35

1 =
=[—Tr F(S,S)

reg M— oo

As an example of this definition of regularized integrals,

we shall evaluate the integrals ofn? and n®n°nnd. Ac-

. . ) cording to our regularization prescription
In showing Egs.(28),(29),(30) the following properties of

the t-matrices were used:

[S?,SP]= —2g2P(2Q+2) + 8i €2Pg 43¢ (30)

_ 1 _
dundnP| = [—3Tr( S2sP) (36)
(t)ij(ta) = — (26 S — ij 6k1) “' eg M Mo
0= — g%+ e Geqt”. (3D Using the definition of8?, SP in Eq. (27) and the properties
(31) we find that
Finite dimensional representations 8i0(2,1) may be
constructed in terms of Fock states built up usingcting on o 2
a vacuum state, with a fixed value @f say,M — 1. A basis U dun?nP =§gab. (37)

of such states is given bjr,s)=C~'aja3|0) with r+s reg

=M-—1 andC=yr!s!l. There areM such states and matrix ) o ]
elements of J® between these states will give the The same result can be obtained more efficiently by using

(M X M)-matrix representation 080(2,1). We are inter- the fact that Tr&agb) has to be proportional to the invariant

. ) — . b
ested in the action 08?, S? (or functions of theseon the tensorg®,
states of|r,s) of this M-dimensional representation. In this

case, we introduce the rescaled operators 1 = ab
WTr(S S°) =xg?". (38
. P = S
Saz_! St=—-. (32) . . . .
M M The constant of proportionality is determined by multiply-

- ing both sides by?” and using the propert{29). Similarly
In the largeM-limit, as M —, the operatorS, S commute, We can evaluate

[5¥]=0. (33 { f dunfnBnE?

1 _
= {—Jr(SaSbSCSd)
reg M M — o0
Further
— ab cd acybd ad~bc
— 159 9 10(@1 97 +gmg™).
(39

The Euclidean integrals corresponding to the above expres-
sions can be calculated directly and one can verify that their
These properties are just what we have fiom and so we Wick rotations agree with the above. In other words, we have
can |dent|fyS Swith n,n, in the largeM-limit. the result
We are interested in operatofsmade up of equal num-

bers ofS and@s. The trace of such an operator over states of 1 o =
fixed Q=M —1 can be written as v F(SS)
M—o
M-1
. . aQ _ —
TrF= >, (r,s|Fr,s). (34) = Wick rotation of f4—F(n,n)
r.s=0 m Euclidean
(40

SinceS's andS's are vectors 050(2,1), their traces have to

produce invariant tensors &0(2,1). In the largeM limit, Given the above procedure of covariantization, we can
replacingS, S by n, n, F becomes a function af, n and  write down the covariant version of the mass tef). We
trace can be identified as integration. Further, noting that thgeneralize the derivatives and potentials appearlnmrh)
trace of identity isM, we can define the regularized notion of by defining 9=15. 49, 9= 13 9 and A=1S.A, A= 13 A.

integrals of products of, n over the Lorentz group as The minimal covariant mass term may now be obtained as
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1 2 AL
Fmin: fmTr —Ez—l(H) - IA

1 - 1/
(42) Fzﬁf (A—n§=‘,O (—1)“§<A:

A final remark on covariantization is that once we have
done the integration ovem(n), there will be terms in the
action which are nonlocal in time. To go back to a Hamil-
tonian, one needs to remove this via the use of auxiliar){_et us first consider the term quadraticA’s
fields, sed13] in this regard.

M—oo

X

EA) . (42)

_ 1/ 1
A—go(—l) 5(A5

— 1 —1 —
ARAR— AR E&Aa— AF=9A?

1
Covariantized expressions F2)= _Zj
2e 9

We now show how the covariantization procedure works
specifically for the mass term. As we show in the Appendix,

the mass ternfr in Eq. (15) can be written in terms oA, A
and A, A with DA—JA=0, Eqgs.(A7) to (A14). Using the
above equation, or EGA9), to express4, A in terms ofA, According to the covariantization procedure outlined in Sec.
A respectively we can writ€ as I, we get

. (43

1 1
+ =(0A*— (9A?)
9 J

Fgg} = f duF@(A2-1in. AR AR %F A% 9—in. 3,0— %H d)

_ nk ——nk —
nﬂny—n#nyﬂ—nﬂnvﬂﬂtnﬂny . (44)

_ 1 J—dskAa kAade
T 8e? (277)3 ,u( JAL(K) M
The integrals over Lorentz transformatiofiegularized expressiopnsan be evaluated as described in Sec. lll. We have
_ 2
f d/.LI’]Mn,,Z §gw, m,v=1,23

nk 1 k,k,

f d,un#n,,n— = 3% I:Z . (45)
Using Eq.(45) in Eq. (44) we get
1 k,k,
Flo =72 A;i(—k)(gw— A (46)
We now consider the term in EA10) which is cubic inA’s:
1 1 1 —1/—-1 — 1— 11 — 1 1 1—
B)—_~—_ abc a_ b~ acC a_ b~ Jac| | | Zopa’ b~ JacC ~oopa_ b~ oacC =) (3)
F Zesz (A (9(A aaA +A = A ;aA a‘?A = A ;aA +79A a(A a&A) ) Fpuret Frixed
(47)

whereF 3}, contains only holomorphic or only antiholomorphic component&’sfandF (). contains both holomorphic and
antiholomorphic components.
According to our covariantization procedure we get, in momentum space,

'F may also be written in terms of the magnetic fi@ds

F=(1/86) (D! B)3D ! B)2
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i n-k
Fﬁ’re—8 ffab°6(3)(p+q+k)Aa(p)A (q)AS (k)Jd,u( I NunMmtcc.

FG (49)

fabes@)(p+q+k)A%(p )Ab(q)AC(k)f d,u pannVa—i—c.c.

mlxed 8

where “c.c.” denotes complex conjugation. After symmetrization over the momenta and integration over the Lorentz trans-
formations we find

Fore= ~ ge2 f 12055 Pk ) AL(P) AN AR (K) VL (p.a k) (49
where
1 p-d q-(q+p) p-(p+q)
VAN (0,0, — (p+ Q)= 57——3|{ — — ———— PPPr+ ————(q,0,Px + U\ TP .+ ) —(q—p)|.
wn (P, 0, —(p+a)) 02— (p- )2 { 02 (p+q)2] Pt (9,9,P\+0\0,P,+0\0A,P,) — (d—P)

Vﬁf)\ is proportional to the cubic vertex appearing in the expression of the magnetic mass proposed by Alexanian and Nair in
[7].

The symmetrization over momenta and Lorentz integration is a lot more involved in the cB&§g gfand it was done
USINgMATHEMATICA . We find that

F ived™ 5252 f S(p+k+a) F2PAL () AU DAL (K IVLIL(P.aK) + L (6K} (50

whereL ,,,(p,q,k) contains terms involving a log-dependence on the momenta.
Adding Egs.(49) and (50), we find that the total cubic order contribution Bf,, can be written as

P = o f 1205 (p+ko+ )AL (P) AN ALK VAN (p,a.K) — "e”“ f O (p+k+q)fe

b 2 X Y Ta =b T=c

2 X Y
q_k qk—q-k+ qk+q~k

4 X Y - . _.
T k| (qk=q-K2 ~ (gk+q- k2 TAPITFL(@LF (k)
4 X Y a . .

" gkl (gk=q-k% " (gk+q- k3] (P19 (Q),0:F (k) -

where X=In[(gk+q-k)/2qk)], Y=In[(qk—q-k)/2gK)] covariantization of just the WZ term, the term cubic in
and|~:a=(1/2)eM NN H™19H, in I (H). After all we have shown in the Appendix,
N v, 14

The expression(51) is true up to cubic terms iR al-  EG-(Al4), that

though the log-terms were written in termsﬁﬁ in order to -

make the gauge invariance more transparent. F(A)=— —2[|(H)
We see that the covariantization Bfproduces two series e

of terms: one series of terms which starts with a term qua-

dratic in A’s and higher order terms necessary for gauge ef”“Tr(H*1<9MHH*1(9,,HH*10QH) .

oratie ; =SS0 127

invariance, and a second series of terms involving the loga-

rithms of momenta which starts with a term cubic A’s. (52
These two series of terms are separately gauge invariant. The

non-log terms from Eqs(.46) and (51) combine to give the V. RESUMMATION AND MAGNETIC MASS

expression for the magnetic mass term proposefl87].

Since this is essentially the covariantizatiorl @fl), we may As we have stated earlier, the minimal covariantized mass

conclude that the second series of log-terms results from thigrm in Euclidean space agrees with what was proposed in

025011-8



MANIFEST COVARIANCE AND THE HAMILTONIAN . .. PHYSICAL REVIEW D 64 025011

[13]. The resummation of perturbation theory, to one-loopwhat we have done. Based on our Hamiltonian analysis, one

order with resummed propagators and vertices, was carrieghn show that there is a mass term of the formpdJ¢?) at
out In [27]- To one-loop orderA was obtained aﬁ(;A(lz) the lowest nontrivial order ip® There is no ambiguity to
~1.2(e“cppn/2m). The resulting gap equatiod*”=pu this order in¢?. In generalizing from this, first of all, we

; 2
gives a value for the mass gap As-1.2(€ CA/27T)' Con- . need to write down an expression in terms lof e’
sidering that we are starting from a perturbative end with hich red ‘ 5,9 at the | t order. Th
resummation, this value is quite close to the vadtie, /2 which reduces to dg"d¢”) at the lowest order. There are

which we found in our Hamiltonian approach. In the light of many such expressions. In the Appendix, we outline the rea-

all our discussion above, this is not so surprising because tH&oNs why ¢¢°d¢?) should be considered as the lowest order
mass term used ifi7,13] has emerged as the minimal one term of Tr(JHJH ~1). The argument then is to use this term,
starting from our Hamiltonian analysis. Whether this massor some generalization of it, as a mass term to be used in a
term was anything special was a question raised by Jackiwesummation procedure. Even at this stage, although some
and Pi in[9]. As we have seen it is a minimal, but not restrictions on the possible form of a mass term have been
unique, covariant generalization of the form which emerge®btained, there are still many terms which have holomorphic

in the Hamiltonian analysis. In the end, the main advantagghvariance and agree with T&HgH‘l) to the requisite or-

of this term might in fact be the following. Generally nonlo- ger, Fmin in EQ. (14) and F in Eq. (15) being two such

Ca.l Vertices W|th COVariant Green’s funCtionS can mean thaéxpressiong.:min is a minimal one in the sense of not requir-
there are additional propagating degrees of freedom in thgg additional use of Green’s functions and, for this reason,
theory, which may be made manifest by checking unitarityleads to simpler formulas upon covariantization.

via cutting rules or by making the Lagrangian local via aux-  Once we have chosen a specific mass term such,as

iliary fields. (The Lagrangian then has time derivatives of theits yse in an action formalism, rather than in a Hamiltonian
auxiliary fields which means that they are actually propagatanalysis, will require that it be covariantized to maintain Lor-
ing degrees of freedomEor the minimal term, however, the entz covariance order by order. We have given a method of
auxiliary fields have a gauged WZW action and one cansoyariantization, both in Minkowski space and in the Wick
argue that it has no degrees of freedom modulo the holomokgtated Euclidean case. Finally, we have given a discussion

phic symmetry[13]. This singles out the minimal term t0 of the results of the resummation carried out with the mini-
some extent. Nevertheless, we are not too far from whag,3| mass ternf

other authors have used. Consider the nonminimal teérm
given in Eg. (15. Noting that the field strengthB
=M 19IMT'=-MoIM "t andD t=M(s )M, D!
— Mf—l(g—l)Mt we see that it is very similar to, although This vyork was supported in part by the National Science
not exactly, FMV(D_Z)F,W which is the form used by Foundation grants PHY-9970724 and PHY-9605216 and the
Jackiw and Pi if9]. One could also go further and investi- PSC-CUNY-30 grants. C.K. thanks Lehman College of
gate the gap equation which results from the use of the caCUNY and Rockefel_ler University for hospitality facilitating
variantized form ofF rather tharF ;. The additional loga- the completion of this work.
rithmic terms inF render the calculation significantly more
complicated, although there is no reason to expect the results APPENDIX
to be dramatically different.

Now we turn to the question: how do we use this in a : . N
calculation? From a purel§2+ 1)-dimensional point of view, ord_er Ne. We want to write an expression in termstéfor
we know that there is no parameter which controls the re¥Vich this is the quadratic expansion and show that the cor-
summed loop expansidi,d]. The calculation of the numeri- Tect expression should be BilgH ) and not something
cal value of the gap in this way would be difficult, at best. like Tr(dHJH).
Our Hamiltonian approach would be better suited to such Writing the kinetic energyl’ as
questions. One can also use {e-1)-dimensional theory to
describe magnetic screening in a quark-gluon plasma in e? &

2

min -

ACKNOWLEDGMENTS

We have written the mass term in Hd2) to the second

(3+1) dimensions. Notice that one needs some perturbative = W (A1)
gauge-invariant way of incorporating magnetic screening for

the high temperature calculations with the hard thermal l00Rye have

resummations used for the quark-gluon plasma. More than

specific numerical values, one needs a framework for such g2 2

calculations and the present work bears on this isgliee ?f d,u(H)eZCA'\If*< — W\P)

embedding of2+1) results in thg3+1)-dimensional theory Il

has been discussed [i14]. ] 52D Sl &b

2
e
== | du(H)®*| - +20) s o
2 f w(H) [ SARsAR T “CASAR 5p
V. DISCUSSION

2
A number of different concepts have been brought to- —( 2 O Il o )cb (A2)

Casaoa Casaoa
gether in this work and it may be useful to summarize briefly 8 SA? SA? SATOAT
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where we have writtenl =e~°A'®, absorbing the crucial where A, A obey the equations
WZW part of the measure into the wave functions. In a simi-

lar way we have

DA-9A=0
e? 2 o
—_ 2cpl| * — =
ZfdM(H)e ( el )w DA-9A=0. (A9)
ezJ, - 20 . sl sb* This shows that we may write
=7 ) duH)) ~ Spasaa T 20 am s o2r s s 1 -
F=— | (o —= A—A)3(A—A)2,
, ol 4l & ) e? j A% sAR EJ( A )
CASAR AR CASATSAR - (AY (A10)

We now add these two equations and do a partial integratio
for 8/8AY. In doing so we have to use the full measure

du(H)e?A'=[dAdA]/(volG). This gives

ol

S(®* D)

J du(H) o

Sl S(D*D)
— H 2cpla—2cpl _—
Jdu( Je“A'e AT sAR
—Jd -2 20, 2 gy
= ) uH)| = Spaspa T 20a5pa gpa | TP

(Ad)

Thus upon adding Eq$A2) and(A3) and using Eq(A4) we
find

V|T|W)=3(D[T+TT|® +e2<:2A o S )
(A5)
where the inner product in terms d&f’'s is now
<1|2>=f du(H)D* D (AB)

andTd = — (e%/2)(5°®/ 5A; 8A;). T' denotes the adjoint of
T with just the Haar measure for integration as in EAg).
Equation(A5) displays the extra “mass term” as

e’ci f
2

where m=e?c,/27. In terms of the gauge potentials, the

ol ol

_e’ch J sl 4l
SA% 5A® 2

oo 2
OA? 5Ka_m F

(A7)

;qaking the variation of EqLA10) and using Eq(A8) we find

e? — 1 _
——06F=61(AA)— —f (A—A)25A2+(A—-A)BSAZ

T 21
(Al11)

Notice that the second term is just like tﬂe vEriation ab in
Eq. (A8), except for the exchangé— A, A—A. In terms of
the parametrizatiofil) of A, A, we can solve Eq(A9) to get

A=—oMM t=MoM !

(A12)
A=MT"1oMT=—smT-IMT.
The exchangeA—A, A—A thus corresponds toM
—M"t or H=M"M—=H =M MT"1 Equation(A11)
can thus be written as

2
—%5F=5I(H)+6I(H‘1). (A13)
This implies
T 1 —
F=— 2[I(H)+I(H™ )=~ STr(gHIH ).
(A14)

This brings us to the point of identifying the mass term
which satisfies the requirements) and (2) listed in Sec. I,
but not yet the requiremeii8). The expression foF as it is
written in Eq.(A14) is not holomorphically invariant. This is
because even thoudlfH) is invariant,| (H 1) is not.[No-

tice that the inversion oD, D to obtain.A, A, or equiva-
lently the solution(A12), requires fixing a “holomorphic
frame.” This is why the form ofF in Eq. (A14) is not holo-
morphically invarianf A holomorphically invariant comple-
tion of F is straightforward. Notice thaE in Eq. (A14) is

lowest order term of this expression, viz., the quadratic termproportional to the kinetic term df(H). Sincel (H) is in-

is the mass ternil3) for A’s, the higher order terms being

required for reasons of gauge invariance. This term can b

simplified further as follows. Regardirigas a function ofA,
A, we can write its variation as

ol

1 — -
‘_Ef (A—A)25A%+(A—A)25AT  (AB)

\éariant underH—VHYV, we see that a minimal completion
of F we can use is

2
FHFmin:_?I(H). (A15)

The minimal mass term is then the WZW action.

025011-10



MANIFEST COVARIANCE AND THE HAMILTONIAN . .. PHYSICAL REVIEW D 64 025011

[1] D. Karabali and V.P. Nair, Nucl. Phy$3464, 135 (1996, [7] G. Alexanian and V.P. Nair, Phys. Lett. 2 435(1995.
Phys. Lett. B379 141(1996); Int. J. Mod. Phys. A12, 1161 [8] W. Buchmuller and O. Philipsen, Nucl. Phyg443, 47 (1995;
(1997. O. Philipsen, in “TFT-98: Thermal Field Theories and their

[2] D. Karabali, Chanju Kim, and V.P. Nair, Nucl. PhyB524, Applications” [5]; F. Eberlein, Phys. Lett. B39 130(1998;
661 (1998; some of our work has been reviewed by H. Nucl. Phys.B550, 303(1999.

Schulz, hep-ph/9908527. [9] R. Jackiw and S.Y. Pi, Phys. Lett. 38 131(1996); 403 297

[3] D. Karabali, Chanju Kim, and V.P. Nair, Phys. Lett. 434, (1997; J.M. Cornwall, Phys. Rev. 0, 500(1974); 26, 1453
103(1998. (1982; 57, 3694(1998.

[4] M. Teper, Phys. Rev. 39, 014512(1999. [10] E. Witten, Commun. Math. Phy€2, 455 (1984; S.P. No-

[5] A.D. Linde, Phys. Lett96B, 289(1980; D. Gross, R. Pisarski, vikov, Usp. Mat. Nauk37, 3 (1982.

and L. Yaffe, Rev. Mod. Phys53, 43 (1981); for a recent [11] M. Bos and V.P. Nair, Int. J. Mod. Phys. 3, 959(1990; R.
discussion, see, for example, V.P. Nair, in “TFT-98: Thermal Efraty and V.P. Nair, Phys. Rev. B7, 5601(1993.
Field Theories and their Applications,” edited by U. Heinz, [12] See, for example, B. SakitQuantum Theory of Many Vari-

hep-ph/9811469. able Systems and Field8Vorld Scientific, Singapore, 1985
[6] A. Cucchieri, F. Karsch, and P. Petreczky, Phys. Letd%, [13] V.P. Nair, Phys. Lett. B352, 117 (1995; see also V.P. Nair,

80 (2002); F. Karsch, M. Oevers, and P. Petreczlbid. 442, Phys. Rev. D48, 3432(1993.

291 (1998. [14] J. Reinbach and H. Schulz, Phys. Lett4B7, 247 (1999.

025011-11



