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In earlier work we have given a Hamiltonian analysis of Yang-Mills theory in 211 dimensions showing how
a mass gap could arise. In this paper, generalizing and covariantizing from the mass term in the Hamiltonian
analysis, we obtain two manifestly covariant and gauge-invariant mass terms which can be used in a resum-
mation of standard perturbation theory to study properties of the mass gap.
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I. INTRODUCTION

In a series of recent papers we have carried out a Ha
tonian analysis of Yang-Mills theories in~211! dimensions
(YM211) @1–3#. A matrix parametrization of the gauge po
tentials Am was used which facilitated calculations usin
manifestly gauge-invariant variables. An analytical formu
for the string tension was obtained which was found to be
good agreement with lattice gauge theory simulations@3,4#.
It was also shown that effectively the gauge bosons bec
massive. This mass can be identified in the context of a~3
11!-dimensional gluon plasma as the magnetic mass@5#.
The analytically calculated value of this mass is also in r
sonable agreement with numerical estimates@6#.

All the above calculations were done in a Hamiltoni
framework. The virtue of this approach is that at a given ti
we have to consider gauge potentials on the two-dimensi
space and for two-dimensional gauge fields a number of
culations can be done exactly. However, as in any Ham
tonian analysis, we do not have manifest Lorentz covarian
Overall Lorentz covariance is not lost since the requis
commutation properties on the components of the ene
momentum tensor may be verified@1#. Now, the main physi-
cal context in which our results could be applied would
the case of magnetic screening in QCD at high temperatu
The Wick-rotated version ofY M211, namely three-
dimensional Euclidean Yang-Mills theory, is what is need
to describe the zero Matsubara frequency mode of the~3
11!-dimensional QCD at high temperatures. A manifes
covariant formulation of our analysis would be just what
ideal in relating our results to Feynman diagrams in h
temperature QCD. There are two sources of lack of mani
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covariance in our approach, first due to the use of the Ham
tonian analysis itself and secondly, because the gau
invariant variables we used were defined intrinsically in
~211!-splitting and do not have simple~tensorial! transfor-
mation properties under Lorentz transformations. Going o
to a Lagrangian might address the first problem of degree
freedom being defined at a constant time but not the sec
unless we have a Lorentz covariant parametrization of
gauge potentials which makes it easy to isolate the gau
invariant degrees of freedom. In our approach, calculabil
viz., the fact that the transformation of variables could
done exactly, including the Jacobian, was the crucial fac
which led to physical results. To be useful to a similar d
gree, one needs a Lorentz covariant parametrization ofAm
for which the change of variables to the gauge-invariant
grees of freedom can be carried out, including the pa
integral Jacobian in a nonperturbative way. We have
been able to find such a set of variables. The situation
similar to the old problem of rewriting Yang-Mills theory in
terms of Wilson loop variables and other similar choices
variables; as in many earlier attempts, the technical stu
bling block has been the calculation of Jacobians in nonp
turbative terms.

A more practical alternative strategy would then be t
following. First of all, we can consider an expansion of o
results in powers of the coupling constant. It then becom
clear that the mass gap cannot be seen to any finite ord
the perturbative expansion but could be obtained by res
mation of certain series of terms. Such resummations ca
carried out in the covariant path-integral approach by add
and subtracting suitable~gauge-invariant! mass terms, and
indeed, many such calculations have already been done u
different choices of mass terms@7–9#. In these calculations
there is no unique or preferred mass term we can use.
natural question is whether our Hamiltonian analysis c
shed any light on this issue; in other words, are there
mass terms which are similar or close to the mass term wh
©2001 The American Physical Society11-1
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arises in the Hamiltonian analysis?
In this paper we do the following. We study the propert

of the mass term which arises in our Hamiltonian analy
identifying certain key features and then seek covari
gauge-invariant mass terms which can be used in a Lagr
ian resummation procedure and which are simple genera
tions of what we find in the Hamiltonian analysis. Two su
terms are considered and analyzed to some extent.

In the next section, we discuss an ‘‘improved’’ version
perturbation theory starting with our Hamiltonian analys
We first show how the mass term can be manifestly d
played to the lowest order in our gauge-invariant variab
Then building upon this lowest order result, we identify t
required properties and the nature of the mass term. A
cedure for the covariantization of the mass term is descri
in Sec. III. Explicit formulas for the covariantized ma
terms are given to cubic order in the potentials. Section
gives a brief discussion of the results of carrying out
resummation to the lowest nontrivial order. The paper c
cludes with a short summarizing discussion. Some techn
arguments on the nature of the mass term are given in
Appendix.

II. ‘‘IMPROVED’’ PERTURBATION THEORY AND THE
MASS TERM

We consider anSU(N)-gauge theory with the gauge po
tentials Ai52 i t aAi

a , i 51,2, where ta are Hermitian (N
3N) matrices which form a basis of the Lie algebra
SU(N) with @ ta,tb#5 i f abctc, Tr(tatb)5 1

2 dab. The Hamil-
tonian analysis was carried out in theA050 gauge with the
spatial components of the gauge potentials parametrized

A52]MM 21, Ā5M†21]̄M†. ~1!

Here A5 1
2 (A11 iA2), Ā5 1

2 (A12 iA2), z5x12 ix2 , z̄

5x11 ix2 , ]5 1
2 (]11 i ]2), ]̄5 1

2 (]12 i ]2). In the above
equation,M , M† are complexSL(N,C) matrices. The vol-
ume element on the spaceC of gauge-invariant configura
tions was calculated explicitly in@1,2# and found to be

dm~C! 5
@dAdĀ#

volG 5 dm~H ! e2cAI (H) ~2!

whereH5M†M . H is a gauge-invariant, Hermitian matrix
valued field.dm(H) is the Haar measure forH. „Explicitly, it
may be written asdm(H)5@dwa#)xdetr where H21dH
5dwar ak(w)tk .… cA is the quadratic Casimir of the adjoin
representation,cAdab5 f amnf bmn. I (H) is the Wess-Zumino-
Witten ~WZW! action for the Hermitian matrix fieldH given
by @10#

I ~H !5
1

2pE Tr~]H ]̄H21!

1
i

12pE emnaTr~H21]mHH21]nHH21]aH !.

~3!
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As is typical for the WZW action, the second integral is ov
a three-dimensional space whose boundary is the phys
two-dimensional space corresponding to the coordinatesz, z̄.
The integrand thus requires an extension of the matrix fi
H into the interior of the three-dimensional space, but phy
cal results do not depend on how this extension is done@10#.
Actually for the special case of Hermitian matrices, the s
ond term can also be written as an integral over spatial
ordinates only@11#.

The inner product for two wave functionsC1 , C2 is
given by

^1u2&5E dm~C!C1* ~H !C2~H !

5E dm~H !e2cAI (H)C1* ~H !C2~H !. ~4!

Carrying out the change of variables fromA to H in the
Hamiltonian operator, one gets

H5T1V

T5
e2cA

2p F E
u
Ja~uW !

d

dJa~uW !

1E Vab~uW ,vW !
d

dJa~uW !

d

dJb~vW !
G

V5
p

mcA
E ]̄Ja]̄Ja

J5
cA

p
]HH21

Vab~uW ,vW !5
cA

p2

dab

~u2v !2
2 i

f abcJc~vW !

p~u2v !
. ~5!

The first term in the kinetic energyT, viz., J(d/dJ) shows
that every power ofJ in the wave function will give a con-
tribution m5e2cA /2p to the energy. This is the basic ma
gap of the theory.

The volume element~2! plays a crucial role in how the
theory develops a mass gap. IfI (H) is expanded in powers
of the magnetic fieldBa5 1

2 e i j (] iAj
a2] jAi

a1 f abcAi
bAj

c), the
leading term has the form

I ~H !'
1

4pE BS 1

¹2DB1O~B3!. ~6!

Writing DE, DB for the root mean square fluctuations of th
electric fieldE and the magnetic fieldB, we have, from the
canonical commutation rules@Ei

a ,Aj
b#52 id i j d

ab, DEDB
;k, wherek is the momentum variable. This gives an es
mate for the energy
1-2
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E5
1

2 S e2k2

DB2 1
DB2

e2 D . ~7!

For low lying states, we must minimizeE with respect to
DB2, DBmin

2 ;e2k, giving E;k. This corresponds to the
standard photon. For the non-Abelian theory, this is in
equate sincêH& involves the factore2cAI (H). In fact,

^H&5E dm~H !e2cAI (H) 1
2 ~e2E21B2/e2!. ~8!

Equation~6! shows thatB follows a Gaussian distribution o
width DB2'pk2/cA for small values ofk. This Gaussian
dominates near smallk giving DB2;k2(p/cA). In other
words, even thoughE is minimized aroundDB2;k, prob-
ability is concentrated aroundDB2;k2(p/cA). For the ex-
pectation value of the energy, we then findE;e2cA/2p
1O(k2). Thus the kinetic term in combination with the me
sure factore2cAI (H) could lead to a mass gap of ordere2cA .
The argument is not rigorous, but captures the essenc
how a mass gap arises in our formalism@1#.

All we have done so far is to rewrite the theory in term
of gauge-invariant variables without making any other a
proximation. It is therefore possible to look at perturbati
theory in this version. SincecA is quadratic in the structure
constantsf abc, the exponent in Eq.~2! would be considered a
second order effect in the perturbative expansion. The ex
nential in Eq.~2! would be expanded in powers ofcA and we
would not see a Gaussian distribution for the magnetic fl
tuations~of width ;k2). Hence the effect considered abo
cannot be seen to any finite order. The basic question we
asking in this paper is whether one can incorporate the
fects of the nontrivial measure~2! and the resultant mas
term in a covariant path integral for diagrammatic analysis
is clear that this cannot be done at any finite order in per
bation theory. However, one can define an ‘‘improved’’ pe
turbation theory where a partial resummation of the per
bative expansion has been carried out@2#. This improvement
would be equivalent to keeping the leading term ofI (H) as
in Eq. ~6! in the exponent in Eq.~2!. For example, if we
write H5etawa

'11tawa, as would be appropriate in pertu
bation theory, we find

dm~C!.@dw#e2(cA /2p)*]wa]̄wa
„11O~w3!…. ~9!

Correspondingly,Ja.(cA /p)]wa, and the Hamiltonian has
the expansion

H.mF E wa

d

dwa
1

p

cA
E V~xW ,yW !

d

dwa~xW !

d

dwa~yW !
G

1
cA

mpE ]wa~2]]̄ !]̄wa1O~w3! ~10!

where m5e2cA/2p and V(xW ,yW )52*@d2k/
(2p)2#eik•(x2y)/kk̄. The term*wad/dwa shows that everyw
in a wave function would get a contributionm to the energy;
this is essentially the mass gap again.
02501
-

of

-

o-

-

re
f-

It
r-
-
r-

The mass term can also be written in a different way
follows. We can absorb the exponential factor of Eq.~9! into
the wave functions, definingF5e2(cA /4p)*]w]̄wC, so that
the norm ofF ’s involves just integration ofF* F with the
flat measure@dw#, i.e.,

^1u2&'E @dw#F1* ~H !F2~H !. ~11!

For the wave functionsF, we get

H8.
1

2Ex
F2

d2

dfa
2~xW !

1fa~xW !~m22¹2!fa~xW !G1•••

.
1

2Ex
F2

d2

dfa
2~xW !

1fa~xW !~2¹2!fa~xW !1
e2cA

2

4p2 ]wa]̄waG
~12!

wherefa(kW )5AcAkk̄/(2pm)wa(kW ). Expression~12! is the
Hamiltonian for a field of massm5e2cA /2p. This can be
taken as the lowest order term of an ‘‘improved’’ perturb
tion theory. In the second line of Eq.~12!, we have also
separately shown the mass term since we shall nee
shortly.

It may be worth emphasizing that this Hamiltonian~12!,
with the inner product~11!, is entirely equivalent to the pre
vious one~10!, with the inner product given by Eq.~9! @12#.
However, in Eq.~12!, the mass term has a more convention
form and therefore one can use this as a starting point for
mass term we want to find for resummation calculations
the Lagrangian formalism. We also see that the energy of
particle, viz.,Ak21m2 is an infinite series when expanded
powers ofe2. The ‘‘improved’’ perturbation theory, which is
effectively resumming this up, is thus equivalent to a par
resummation of the perturbative expansion.

The gauge-invariant variableswa or H are wonderfully
appropriate for the Hamiltonian analysis. However, in a p
turbative diagrammatic calculation carried out in a covari
Lagrangian framework, we shall need to use the gauge
tentialsAi . To the lowest order, the number of powers
w ’s and Ai ’s do match; the mass term given in Eq.~12! is
thus quadratic in theA’s and can be written as

e2cA
2

4p2 E ]wa]̄wa5
m2

e2 E d2k

~2p!2 Ai
a~2k!S d i j 2

kikj

k2 DAj
a~k!.

~13!

This gives the mass term only to the quadratic order and d
not have the full non-Abelian gauge invariance; there will
terms with higher powers ofA’s giving a gauge-invariant
completion of Eq.~13!. Already at this stage we can sa
something about how the full mass term should look lik
based on the following conditions.

~1! The mass termF should be expressible in terms ofH
since that is the basic gauge-invariant variable of the the
~The wa’s represent a particular way to parametrizeH. It
should be possible to write the mass term in a way that is
sensitive to how we parametrizeH.!
1-3
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~2! To the lowest, viz., quadratic order, it should agr
with the mass term in Eq.~12! or Eq. ~13!.

~3! The mass term should have ‘‘holomorphic inva
ance.’’

The last property is the following requirement. As can
seen from the definitions~1!, the matrices (M ,M†) and
„MV̄( z̄),V(z)M†

… both define the same potentials (A,Ā),
whereV(z) is holomorphic inz andV̄( z̄) is antiholomorphic.
In terms ofH, this means thatH and VHV̄ are physically
equivalent. Physical quantities should be, and in any cor
calculation will be, invariant underH→VHV̄, so that the
ambiguity in the choice of the matricesM , M† does not
affect the physics. For example, the WZW action in Eq.~3!

is invariant underH→VHV̄, a property familiar from two-
dimensional physics. We have previously referred to this
variance requirement as ‘‘holomorphic invariance;’’ it can
used as a guide in some calculations.

A minimal mass term with the above requirements can
easily written down. First of all, sinceH5etawa

, we see that,
in terms ofH, the mass term shown in Eq.~12! is of the form
Tr(]H ]̄H21). @We shall discuss this in the Appendix i
some detail. The key point is that we have Tr(]H ]̄H21) and
not something like Tr(]H ]̄H), even though the latter doe
have the same kind of quadratic approximation.# Notice that
this term, Tr(]H ]̄H21), is the first term of the WZW action
~3!. Since the WZW action has holomorphic invariance,
see that a minimal mass term, or a minimal holomorphica
invariant completion of Tr(]H ]̄H21), with the properties
~1!–~3! listed above is also a WZW action, i.e.,

Fmin52
2p

e2 I ~H !. ~14!

Of course, one can always add gauge-invariant terms w
start with cubic or higher powers ofA, which do not spoil the
requirement that it agrees with Eq.~12! at the quadratic or-
der. In this sense the WZW action is only a minimal ma
term, not unique.~The quadratic part is, of course, unique!

There are also other invariant ways to comple
Tr(]H ]̄H21). For example, we can write

F5
p2

2e2cA
2E ~Ḡ]̄Ja!Hab~G] J̄b! ~15!

where Ja5(cA /p)(]HH21)a, J̄a5(cA /p)(H21]̄H)a and
Hab52Tr(taHtbH21). This will be holomorphically invari-
ant with the Green’s functionsG5]21 and Ḡ5 ]̄21 trans-
forming in a certain way as discussed in@2#. This way of
writing F involves the additional use of Green’s function
over and above the Green’s functions which appear in
construction ofH ~or M , M†) from the potentials. In the
next section, we give expressions for the covariantized v
sions of bothFmin of Eq. ~14! andF as in Eq.~15!, to cubic
order in potentials. We shall see thatF equalsFmin plus a
number of terms which involve the logarithms of momen
the latter having to do with the additional Green’s function
02501
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The only holomorphically invariant completion o
Tr(] H ]̄H21) using H and its derivatives, but no additiona
Green’s functions, is I(H) as given in Eq. (14). This is why
we refer to it as the minimal term.

A strategy of doing the resummation calculations is th
to consider the action

S5SY M2m2Fmin1DFmin ~16!

where we considerD to be of one higher order in a loo
expansion compared tom2 and SY M is the usual action for
the YM path integral. In other words, the loop expansion
organized by treatingSY M2m2Fmin as the zeroth order term
while DFmin contributes at one loop higher. In particularD
is a parameter which is taken to have a loop expansion, v
D5D (1)1D (2)1•••. Since the parameterm2 is still arbi-
trary, we can choose it to be the exact value of the pole of
full propagator. In other words, the pole of the propaga
~for the transverse potentials! remainsm2 as loop corrections
are added. This requires choosingD (1) to cancel the one-loop
shift of the pole,D (2) to cancel the two-loop shift of the pole
etc.D (1), D (2), etc. are calculated as functions of the para
eter m2. The conditionm25D then becomes a nonlinea
equation form2; it is the gap equation given as

D~m!5D (1)1D (2)1•••5m2. ~17!

This determinesm to the order to which the calculation i
performed. Thus in the end we also havem25D as desired.
One can do similar resummation and gap equations with
mass term, for exampleF in place ofFmin in Eq. ~16!.

This procedure is, of course, what is done in any kind
resummation or gap equation approach to mass genera
@7–9#. The additional ingredient for us is that the Ham
tonian analysis suggests some specific forms of the m
term ~14!. The mass terms~14!,~15! are not covariant, so we
have to write covariantized versions of these before they
be used in a covariant resummation calculation. We s
now consider a procedure for covariantization, which is
interest in its own right.

III. COVARIANTIZATION OF THE MASS TERM

General procedure

There is one more problem we have to deal with in us
I (H)5I (A, Ā) in a resummed perturbation theory, name
that it is not manifestly covariant. Again, the original theo
is Lorentz invariant and adding and subtractingI does not
affect this. However when we takem2 andD to be of differ-
ent orders, we lose covariance order-by-order unless we
a covariantized version ofI. In this section we outline a
general method of covariantization which can be used foF,
Fmin . Our method may also be interesting in its own righ

The key expressions we have involve holomorphic a
antiholomorphic derivatives and fields. We observe tha]

5 1
2 no

a]a and ]̄5 1
2 n̄o

a]a , where no
a5(1,i ,0) and n̄o

a

5(1,2 i ,0). Similarly for the gauge fieldsA, Ā. An arbitrary
Lorentz transformation ofno

a and n̄o
a produces null 3-vectors
1-4
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na, n̄a respectively, such that

nana5gabn
anb50

n̄an̄a5gabn̄
an̄b50

nan̄a5gabn
an̄b52 ~18!

wheregab is the Minkowski metric. We shall consider th
signature~1,1,21!. This suggests the following covariantiza
tion procedure. Replace the holomorphic and antiholom
phic derivatives (], ]̄) and gauge fields (A, Ā) in I (H), ex-

pressed in terms of the potentials, by (1
2 n•], 1

2 n̄•]) and

( 1
2 n•A, 1

2 n̄•A) respectively, and then integrate over Loren
transformations. Thus the covariant analogue of a gen
term

S5E dtd2xL~A,Ā,],]̄ ! ~19!

would be

Scov5E dmE dtd2xL~ 1
2 n•A, 1

2 n̄•A, 1
2 n•], 1

2 n̄•]!

~20!

wheredm is the measure over Lorentz transformations.
A particular parametrization forn, n̄ is given by

na5~coshu cosx2 i sinx,coshu sinx1 i cosx,sinhu!

n̄a5~coshu cosx1 i sinx,coshu sinx2 i cosx,sinhu!.
~21!

In terms of this parametrization,dm5d(coshu)dx, where
coshuP(0,̀ ) andxP(0,2p).

The problem with this procedure is the fact that the L
entz group is noncompact and integration over Lorentz tra
formations leads to divergences. The degree of diverge
depends on the number ofn’s and n̄’s in the integrand. In
order then for the covariantization procedure to be mean
ful one needs to regulate the integrals in a consistent way
we show below, this can be done by replacing the integ
by traces of suitable (M3M )-matrices. The integrals ar
then regained in a largeM-limit. To define the regularization
notice first of all that there is no such problem in Euclide
three-dimensional space. Integration over Lorentz trans
mations is replaced by integration over rotation angles an
convergent. This has been used before in constructing c
riant mass terms in Euclidean space@13,7#. The Euclidean
version of the null vectorsn is

ni5~2cosu cosx2 i sinx,2cosu sinx1 i cosx,sinu!

n̄i5~2cosu cosx1 i sinx,2cosu sinx2 i cosx,sinu!.
~22!

The measure of integration over the angles isdV

5sinududx. The Euclidean vectorsn, n̄ obey the same
02501
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properties~18!, but with the Minkowski metric replaced by
the Euclidean one. If this procedure is used for the minim
mass termFmin52(2p/e2)I (H), the resulting covariant
mass term is precisely what was proposed some time ag
@13# and used in@7#. It is interesting that this mass term
emerges in some minimal way from our Hamiltonian ana
sis.

The Euclidean analysis is adequate for diagrammatic
culations. However, conceptually, there is still somethi
lacking. Hamiltonian analysis is all in Minkowski space an
to tie in everything, it is important to define the covarian
zation directly in Minkowski space as well. In view of th
Euclidean result, one way to define the regularization of
integration over the Lorentz transformations is then as
lows. We do a Wick rotation of the integrands to Euclide
space, do the integrals there and then continue the fina
sults back to Minkowski space. Alternatively, one can see
definition of the regularized integrals in Minkowski spa
directly in such a way that the results agree with the W
rotation of the Euclidean results. We now show how this c
be done.

First we construct the operator analogues of
Minkowski null vectorsna, n̄a. Let g be a group element o
SO(2,1). g can be written asg5eit aua

where

ta5~ is1 ,is2 ,s3! ~23!

and sa , a51,2,3, are the Pauli matrices. The matricesta

satisfy the commutation rules

@ ta,tb#52i eabcgcdt
d. ~24!

We now introduce the operatorsa, a†, which are doublets
underSO(2,1). One can show that the generators ofSO(2,1)
can be written as

Ja5ā
ta

2
a ~25!

whereā5a†s3. The commutation rule fora, a†, compatible
with SO(2,1) invariance, is

@ai ,ā j #5d i j , i , j 51,2. ~26!

We now define the following operators:

Sa5ātat2āT

S̄a5~Sa!†5aTt2taa ~27!

~the superscriptT indicates the transpose!. It is easy to show
that bothS andS̄ transform as vectors underSO(2,1) trans-
formations. Further they are null vectors,

SaSa50, S̄aS̄a50 ~28!

and

SaS̄a52~Q22Q! ~29!
1-5
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whereQ5( i 51
2 āiai . Q is invariant underSO(2,1) transfor-

mations.
The commutation relation betweenS and S̄ is given by

@Sa,S̄b#522gab~2Q12!18i eabcgcdJ
d. ~30!

In showing Eqs.~28!,~29!,~30! the following properties of
the t-matrices were used:

~ ta! i j ~ ta!kl52~2d i l d jk2d i j dkl!

tatb52gab1 i eabcgcdt
d. ~31!

Finite dimensional representations ofSO(2,1) may be
constructed in terms of Fock states built up usingā acting on
a vacuum state, with a fixed value ofQ, say,M21. A basis
of such states is given byur ,s&5C21ā1

r ā2
su0& with r 1s

5M21 andC5Ar !s!. There areM such states and matri
elements of Ja between these states will give th
(M3M )-matrix representation ofSO(2,1). We are inter-
ested in the action ofSa, S̄a ~or functions of these! on the
states ofur ,s& of this M-dimensional representation. In th
case, we introduce the rescaled operators

S̃a5
Sa

M
, S̄̃a5

S̄a

M
. ~32!

In the largeM-limit, as M→`, the operatorsS̃, S̄̃ commute,

@S̃a,S̄̃b#50. ~33!

Further

S̃aS̃a50, S̄̃aS̄̃a50

S̃aS̄̃a52.

These properties are just what we have forn, n̄ and so we
can identifyS̃, S! with n,n̄, in the largeM-limit.

We are interested in operatorsF made up of equal num

bers ofS̃ andS̄̃’s. The trace of such an operator over states
fixed Q5M21 can be written as

Tr F5 (
r ,s50

M21

^r ,suFur ,s&. ~34!

SinceS̃’s andS̄̃’s are vectors ofSO(2,1), their traces have to
produce invariant tensors ofSO(2,1). In the largeM limit,

replacingS̃, S̄̃ by n, n̄, F becomes a function ofn, n̄ and
trace can be identified as integration. Further, noting that
trace of identity isM, we can define the regularized notion
integrals of products ofn, n̄ over the Lorentz group as
02501
f

e

F E dmF~n,n̄!G
reg

5F 1

M
Tr F~S̃,S̄̃!G

M→`

. ~35!

As an example of this definition of regularized integra
we shall evaluate the integrals ofnan̄b and nanbn̄cn̄d. Ac-
cording to our regularization prescription

F E dmnan̄bG
reg

5F 1

M3Tr~SaS̄b!G
M→`

. ~36!

Using the definition ofSa, S̄b in Eq. ~27! and the properties
~31! we find that

F E dmnan̄bG
reg

5
2

3
gab. ~37!

The same result can be obtained more efficiently by us
the fact that Tr(SaS̄b) has to be proportional to the invarian
tensorgab,

1

M3Tr~SaS̄b!5xgab. ~38!

The constant of proportionalityx is determined by multiply-
ing both sides bygab and using the property~29!. Similarly
we can evaluate

F E dmnanbn̄cn̄dG
reg

5F 1

M5Tr~SaSbS̄cS̄d!G
M→`

52
4

15
gabgcd1

4

10
~gacgbd1gadgbc!.

~39!

The Euclidean integrals corresponding to the above exp
sions can be calculated directly and one can verify that th
Wick rotations agree with the above. In other words, we ha
the result

F 1

M
TrF~S̃,S! !G

M→`

5Wick rotation of F E dV

4p
F~n,n̄!G

Euclidean

.

~40!

Given the above procedure of covariantization, we c
write down the covariant version of the mass term~14!. We
generalize the derivatives and potentials appearing inI (H)
by defining ]5 1

2 S̃•], ]̄5 1
2 S! •] and A5 1

2 S̃•A, Ā5 1
2 S! •A.

The minimal covariant mass term may now be obtained
1-6
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Fmin5F E 1

M
TrH 2

2p

e2 I ~H !J G
M→`

. ~41!

A final remark on covariantization is that once we ha
done the integration over (n,n̄), there will be terms in the
action which are nonlocal in time. To go back to a Ham
tonian, one needs to remove this via the use of auxili
fields, see@13# in this regard.

Covariantized expressions

We now show how the covariantization procedure wo
specifically for the mass term. As we show in the Append
the mass termF in Eq. ~15! can be written in terms ofA, Ā

andA, Ā with D̄A2]Ā50, Eqs.~A7! to ~A14!. Using the
above equation, or Eq.~A9!, to expressA, Ā in terms ofĀ,
A respectively we can writeF as1
02501
y

s
,

F5
1

2e2E XA2 (
n50

`

~21!n
1

]̄
S Ā

1

]̄
D n

]ĀCa

3XĀ2 (
n50

`

~21!n
1

] S A
1

] D n

]̄ACa

. ~42!

Let us first consider the term quadratic inA’s

F (2)5
1

2e2E S AaĀa2Aa
1

]
]̄Aa2Āa

1

]̄
]Āa

1
1

]̄
~]Āa!

1

]
~ ]̄Aa!D . ~43!

According to the covariantization procedure outlined in S
III, we get
d

Fcov
(2) 5E dmF (2)~Aa→ 1

2 n•Aa,Āa→ 1
2 n̄•Aa,]→ 1

2 n•],]̄→ 1
2 n̄•]!

5
1

8e2E d3k

~2p!3Am
a ~2k!An

a~k!E dmFnmn̄n2nmnn

n̄•k

n•k
2n̄mn̄n

n•k

n̄•k
1n̄mnnG . ~44!

The integrals over Lorentz transformations~regularized expressions! can be evaluated as described in Sec. III. We have

E dmnmn̄n5
2

3
gmn , m,n51,2,3

E dmnmnn

n̄•k

n•k
52

1

3
gmn1

kmkn

k2
. ~45!

Using Eq.~45! in Eq. ~44! we get

Fcov
(2) 5

1

4e2E Am
a ~2k!S gmn2

kmkn

k2 D An
a~k!. ~46!

We now consider the term in Eq.~A10! which is cubic inA’s:

F (3)5
1

2e2E f abcXFAa
1

] S Ab
1

]
]̄AcD1Āa

1

]̄
S Āb

1

]̄
]ĀcD G2F1

]
]̄Aa

1

]̄
S Āb

1

]̄
]ĀcD 1

1

]̄
]Āa

1

] S Ab
1

]
]̄AcD GC[Fpure

(3) 1Fmixed
(3)

~47!

whereFpure
(3) contains only holomorphic or only antiholomorphic components ofA’s andFmixed

(3) contains both holomorphic an
antiholomorphic components.

According to our covariantization procedure we get, in momentum space,

1F may also be written in terms of the magnetic fieldB as

F5(1/8e2)*(D̄21 B)a(D21 B)a.
1-7



trans-

Nair in

DIMITRA KARABALI, CHANJU KIM, AND V. P. NAIR PHYSICAL REVIEW D 64 025011
Fpure
(3) 5

i

8e2E f abcd (3)~p1q1k!Am
a ~p!An

b~q!Al
c~k!E dmS n̄•k

n•pn•k
nmnnnl1c.c.D

Fmixed
(3) 5

i

8e2E f abcd (3)~p1q1k!Am
a ~p!An

b~q!Al
c~k!E dmS n̄•p

n•pn̄•k
nmnnn̄l1c.c.D ~48!

where ‘‘c.c.’’ denotes complex conjugation. After symmetrization over the momenta and integration over the Lorentz
formations we find

Fpure
(3) 52

i

8e2E f abcd (3)~p1k1q!Am
a ~p!An

b~q!Al
c~k!Vmnl

AN ~p,q,k! ~49!

where

Vmnl
AN

„p,q,2~p1q!…5
1

p2q22~p•q!2 F H p•q

p2
2

q•~q1p!

~p1q!2 J pmpnpl1
p•~p1q!

~p1q!2
~qmqnpl1qlqnpm1qlqmpn!2~q→p!G .

Vmnl
AN is proportional to the cubic vertex appearing in the expression of the magnetic mass proposed by Alexanian and

@7#.
The symmetrization over momenta and Lorentz integration is a lot more involved in the case ofFmixed

(3) and it was done
usingMATHEMATICA . We find that

Fmixed
(3) 5

i

24e2E d (3)~p1k1q! f abcAm
a ~p!An

b~q!Al
c~k!$Vmnl

AN ~p,q,k!1Lmnl~p,q,k!% ~50!

whereLmnl(p,q,k) contains terms involving a log-dependence on the momenta.
Adding Eqs.~49! and ~50!, we find that the total cubic order contribution ofFcov can be written as

Fcov
(3) 52

i

12e2E f abcd (3)~p1k1q!Am
a ~p!An

b~q!Al
c~k!Vmnl

AN ~p,q,k!2
emnl

8e2 E d (3)~p1k1q! f abc

3H 2

qk S X

qk2q•k
1

Y

qk1q•kD F̃l
a~p!F̃n

b~q!F̃m
c ~k!2

2

qk S X

~qk2q•k!2 2
Y

~qk1q•k!2D F̃l
a~p!]nF̃r

b~q!]mF̃r
c~k!

2
4

qk S X

~qk2q•k!2 2
Y

~qk1q•k!2D F̃l
a~p!]rF̃n

b~q!]mF̃r
c~k!

2
4

qk S X

~qk2q•k!3 1
Y

~qk1q•k!3D F̃l
a~p!]r]mF̃t

b~q!]n]tF̃r
c~k!J ~51!
ua
g
g

T

t

in
,

ass
d in
where X5 ln@(qk1q•k)/2qk)], Y5 ln@(qk2q•k)/2qk)]

and F̃m
a 5(1/2)emnlFnl

a .
The expression~51! is true up to cubic terms inA al-

though the log-terms were written in terms ofF̃m
a in order to

make the gauge invariance more transparent.
We see that the covariantization ofF produces two series

of terms: one series of terms which starts with a term q
dratic in A’s and higher order terms necessary for gau
invariance, and a second series of terms involving the lo
rithms of momenta which starts with a term cubic inA’s.
These two series of terms are separately gauge invariant.
non-log terms from Eqs.~46! and ~51! combine to give the
expression for the magnetic mass term proposed in@13,7#.
Since this is essentially the covariantization ofI (H), we may
conclude that the second series of log-terms results from
02501
-
e
a-

he

he

covariantization of just the WZ term, the term cubic
H21]H, in I (H). After all we have shown in the Appendix
Eq. ~A14!, that

F~A!52
2p

e2 F I ~H !

2
i

12pE emnaTr~H21]mHH21]nHH21]aH !G .
~52!

IV. RESUMMATION AND MAGNETIC MASS

As we have stated earlier, the minimal covariantized m
term in Euclidean space agrees with what was propose
1-8
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@13#. The resummation of perturbation theory, to one-lo
order with resummed propagators and vertices, was car
out in @7#. To one-loop order,D was obtained asD5D (1)

'1.2(e2cAm/2p). The resulting gap equationD (1)5m2

gives a value for the mass gap asm'1.2(e2cA /2p). Con-
sidering that we are starting from a perturbative end w
resummation, this value is quite close to the valuee2cA /2p
which we found in our Hamiltonian approach. In the light
all our discussion above, this is not so surprising because
mass term used in@7,13# has emerged as the minimal on
starting from our Hamiltonian analysis. Whether this ma
term was anything special was a question raised by Jac
and Pi in @9#. As we have seen it is a minimal, but n
unique, covariant generalization of the form which emerg
in the Hamiltonian analysis. In the end, the main advant
of this term might in fact be the following. Generally nonlo
cal vertices with covariant Green’s functions can mean t
there are additional propagating degrees of freedom in
theory, which may be made manifest by checking unita
via cutting rules or by making the Lagrangian local via au
iliary fields. ~The Lagrangian then has time derivatives of t
auxiliary fields which means that they are actually propag
ing degrees of freedom.! For the minimal term, however, th
auxiliary fields have a gauged WZW action and one c
argue that it has no degrees of freedom modulo the holom
phic symmetry@13#. This singles out the minimal term t
some extent. Nevertheless, we are not too far from w
other authors have used. Consider the nonminimal termF
given in Eq. ~15!. Noting that the field strengthB

5M†21]̄JM†52M] J̄M 21 and D215M (]21)M 21, D̄21

5M†21( ]̄21)M†, we see that it is very similar to, althoug
not exactly, Fmn(D 22)Fmn , which is the form used by
Jackiw and Pi in@9#. One could also go further and invest
gate the gap equation which results from the use of the
variantized form ofF rather thanFmin . The additional loga-
rithmic terms inF render the calculation significantly mor
complicated, although there is no reason to expect the re
to be dramatically different.

Now we turn to the question: how do we use this in
calculation? From a purely~211!-dimensional point of view,
we know that there is no parameter which controls the
summed loop expansion@7,9#. The calculation of the numeri
cal value of the gap in this way would be difficult, at be
Our Hamiltonian approach would be better suited to su
questions. One can also use the~211!-dimensional theory to
describe magnetic screening in a quark-gluon plasma
~311! dimensions. Notice that one needs some perturba
gauge-invariant way of incorporating magnetic screening
the high temperature calculations with the hard thermal lo
resummations used for the quark-gluon plasma. More t
specific numerical values, one needs a framework for s
calculations and the present work bears on this issue.@The
embedding of~211! results in the~311!-dimensional theory
has been discussed in@14#.#

V. DISCUSSION

A number of different concepts have been brought
gether in this work and it may be useful to summarize brie
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what we have done. Based on our Hamiltonian analysis,
can show that there is a mass term of the form (]wa]̄wa) at
the lowest nontrivial order inwa. There is no ambiguity to
this order inwa. In generalizing from this, first of all, we
need to write down an expression in terms ofH5etawa

which reduces to (]wa]̄wa) at the lowest order. There ar
many such expressions. In the Appendix, we outline the r
sons why (]wa]̄wa) should be considered as the lowest ord
term of Tr(]H ]̄H21). The argument then is to use this term
or some generalization of it, as a mass term to be used
resummation procedure. Even at this stage, although s
restrictions on the possible form of a mass term have b
obtained, there are still many terms which have holomorp
invariance and agree with Tr(]H ]̄H21) to the requisite or-
der, Fmin in Eq. ~14! and F in Eq. ~15! being two such
expressions.Fmin is a minimal one in the sense of not requ
ing additional use of Green’s functions and, for this reas
leads to simpler formulas upon covariantization.

Once we have chosen a specific mass term such asFmin ,
its use in an action formalism, rather than in a Hamiltoni
analysis, will require that it be covariantized to maintain Lo
entz covariance order by order. We have given a method
covariantization, both in Minkowski space and in the Wi
rotated Euclidean case. Finally, we have given a discus
of the results of the resummation carried out with the mi
mal mass termFmin .
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APPENDIX

We have written the mass term in Eq.~12! to the second
order inw. We want to write an expression in terms ofH for
which this is the quadratic expansion and show that the c
rect expression should be Tr(]H ]̄H21) and not something
like Tr(]H ]̄H).

Writing the kinetic energyT as

T52
e2

2

d2

dAi
adAi

a ~A1!

we have

e2

2 E dm~H !e2cAIC* S 2
d2

dAi
adAi

a C D
5

e2

2 E dm~H !F* F2
d2F

dAi
adAi

a 12cA

dI

dAi
a

dF

dAi
a

2S cA
2 dI

dAi
a

dI

dAi
a 2cA

d2I

dAi
adAi

aDFG ~A2!
1-9
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where we have writtenC5e2cAIF, absorbing the crucia
WZW part of the measure into the wave functions. In a sim
lar way we have

e2

2 E dm~H !e2cAI S 2
d2

dAi
adAi

a C* DC

5
e2

2 E dm~H !F2
d2F*

dAi
adAi

a 12cA

dI

dAi
a

dF*

dAi
a

2S cA
2 dI

dAi
a

dI

dAi
a 2cA

d2I

dAi
adAi

aDF* GF. ~A3!

We now add these two equations and do a partial integra
for d/dAi

a . In doing so we have to use the full measu

dm(H)e2cAI5@dAdĀ#/(volG). This gives

E dm~H !
dI

dAi
a

d~F* F!

dAi
a

5E dm~H !e2cAIe22cAI
dI

dAi
a

d~F* F!

dAi
a

5E dm~H !S 2
d2I

dAi
adAi

a 12cA

dI

dAi
a

dI

dAi
aDF* F.

~A4!

Thus upon adding Eqs.~A2! and~A3! and using Eq.~A4! we
find

^CuTuC&5 1
2 ^FuT̃1T̃†uF&1

e2cA
2

2 K FU dI

dAi
a

dI

dAi
aUFL

~A5!

where the inner product in terms ofF ’s is now

^1u2&5E dm~H !F* F ~A6!

andT̃F52(e2/2)(d2F/dAidAi). T̃† denotes the adjoint o
T̃ with just the Haar measure for integration as in Eq.~A6!.
Equation~A5! displays the extra ‘‘mass term’’ as

e2cA
2

2 E dI

dAi
a

dI

dAi
a 5

e2cA
2

2 E dI

dAa

dI

dĀa
[m2F ~A7!

where m5e2cA/2p. In terms of the gauge potentials, th
lowest order term of this expression, viz., the quadratic te
is the mass term~13! for A’s, the higher order terms bein
required for reasons of gauge invariance. This term can
simplified further as follows. RegardingI as a function ofA,
Ā, we can write its variation as

dI 52
1

2pE ~A2A!adĀa1~Ā2Ā!adAa ~A8!
02501
-

n

,

e

whereA, Ā obey the equations

D̄A2]Ā50

DĀ2 ]̄A50. ~A9!

This shows that we may write

F5
2p2

e2 E dI

dAa

dI

dĀa
5

1

2e2E ~A2A!a~Ā2Ā!a.

~A10!

Taking the variation of Eq.~A10! and using Eq.~A8! we find

2
e2

p
dF5dI ~A,Ā!2

1

2pE ~A2A!adĀa1~Ā2Ā!adA a.

~A11!

Notice that the second term is just like the variation ofI as in
Eq. ~A8!, except for the exchangeA→A, Ā→Ā. In terms of
the parametrization~1! of A, Ā, we can solve Eq.~A9! to get

Ā52 ]̄MM 215M ]̄M 21

~A12!
A5M†21]M†52]M†21M†.

The exchangeA→A, Ā→Ā thus corresponds toM
→M†21 or H5M†M→H215M 21M†21. Equation~A11!
can thus be written as

2
e2

p
dF5dI ~H !1dI ~H21!. ~A13!

This implies

F52
p

e2 @ I ~H !1I ~H21!#52
1

e2Tr~ ]̄H]H21!.

~A14!

This brings us to the point of identifying the mass ter
which satisfies the requirements~1! and~2! listed in Sec. II,
but not yet the requirement~3!. The expression forF as it is
written in Eq.~A14! is not holomorphically invariant. This is
because even thoughI (H) is invariant,I (H21) is not. @No-
tice that the inversion ofD, D̄ to obtainA, Ā, or equiva-
lently the solution~A12!, requires fixing a ‘‘holomorphic
frame.’’ This is why the form ofF in Eq. ~A14! is not holo-
morphically invariant.# A holomorphically invariant comple-
tion of F is straightforward. Notice thatF in Eq. ~A14! is
proportional to the kinetic term ofI (H). Since I (H) is in-
variant underH→VHV̄, we see that a minimal completio
of F we can use is

F→Fmin52
2p

e2 I ~H !. ~A15!

The minimal mass term is then the WZW action.
1-10
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