PHYSICAL REVIEW D, VOLUME 64, 025010
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Massive maximally supersymmetric sigma models are shown to exhibit multiple static kink-domain wall
solutions that preserve 1/2 of the supersymmetry. The kink moduli space admits a nahleal idatric. We
examine in some detail the case when the target of the sigma model is given by the co tangent buRtle of
equipped with the Calabi metric, and we show that there exist BPS solutions correspondirignics at
arbitrary separation. We also describe how 1/4-BPS charged and intersecting domain walls are described in the
low-energy dynamics on the kink moduli space. We comment on the similarity of these results to monopole
dynamics.
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[. INTRODUCTION parallel charges will repel each other. Which possibility is
realized depends on the details of the model; a Wess-Zumino
Models admitting vortices, lumps, monopoles or instan-model in which walls repel or attract according to the choice
tons typically have Bogomol'nyi-Prasad-SommerfiggPS  of parameters in the superpotential was studiefRin
limits in which the forces between the objects cancel, result- The above comments indicate that the simplest models
ing in a moduli space of static multisoliton solutions. The admitting multi BPS kink solitons should have several scalar
structure of these moduli spaces carries important kinematfields. Multi-kink solutions have been found in generalized
cal and dynamical information about the solitons. Moreover\Wess-Zumino model$3,4]. However, these theories have
they have interesting mathematical properties and apped@ur supersymmetries which is not sufficient to endow the
ubiquitously in string theory. It is thus natural to enquire resulting kink moduli spaces with a great deal of geometric
about the possibility of scalar field theories that might exhibitstructure. The only field theories withghtsupersymmetries
multikink solutions with similarly interesting moduli spaces. that admit static kink solutions are the “massive” supersym-
Consider models with BPS kink solutions with energy metric hyper-Kaler sigma models, so it is to these models
E=|Z|, whereE is the energy per unit area of the wall and that we turn our attention. These typlcally'adm|t not only
is a real central charge appearing in the supersymmetry akinks, and their charged counterparts, Qekinks [5], but
gebra. The BPS energy bound for two parallel domain wallS0 a variety of other BPS solutions, such@dumps[6],
is obviously saturated when they are infinitely separated, s#tersecting domain wallg7] and D-brane$8]. The purpose
reducing the separation cannot decrease the energy. It fof this paper is to exhibit and study a class of massive hyper-
lows that the force between the walls at large separation i§ahler sigma models that admitulti-kink (and multi-
either repulsive or zero. This force can be calculdtgcand ~ Q-kink) solutions, for which the moduli space is Kar.
for models with only a single scalar field it is always repul- ~One might suspect that the cancellation of inter-kink
sive. Thus, while there may exist time dependent multidoforces that is needed for static multi-kink solutions to exist is
main wall solutiongsuch as the kink-antikink breather of the @ direct consequence of the 8 supersymmetries, but this is
sine-Gordon modgl these models contain no static multi- certainly not the case. To see why, consider the sigma model
domain wall solutions in which the separation may be choseMith a target space metric given by the multicenter asymp-

arbitrarily. totically locally EuclideanALE) 4-metric
If we consider kinks carrying a complex, or vectorial,
central charge then two kinks with non-parallel charges may ds?=UdX-dX+ U Y(dy+ w-dX)? 1)

exert an attractive force on each other, in which case they

will eventually fuse into a third kink carrying a central whereV X w=VU. This metric has a tri-holomorphic isom-

charge that is the vector sum of the charges of the initial tweetry associated to the Killing-vector fielt,, and the “cen-

kinks. However, it is also possible that two kinks with non- ters” of the metric are the isolated fixed points of this vector
field. The norm oféd,, is, up to a multiplicative factor, the
unique scalar potential terifior this mode] that is compat-

*Email address: j.p.gauntlett@gmw.ac.uk ible with all 8 supersymmetrie®]. The choice of multipli-
"Email address: tong@physics.columbia.edu cative factor corresponds to a choice of mass units, so we
*Email address: p.k.townsend@damtp.cam.ac.uk may take the potential to be
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v=3u~L (2)  walls in the presence of two or more potentials and argue
that it is given by a massive sigma model on the kink moduli
The addition of this potential to the action yields a “mas- space. We explain how this allows one to describe 1/4-BPS
sive” sigma model with isolated vacua at the centers of theQ-kinks and 1/4-BPS intersecting domain wall solutions in
metric. ForN colinear centers the harmonic functidhis  these theories.
given by We end in Sec. V with a discussion. We comment on the
N similarities of these results to those for monopole dynamics
1 and mention an application to string theory.
Uu=> m——,
=1 [X—min|

)

IIl. DOMAIN WALLS AND MORSE FLOWS
wheren is a unit 3-vector and we may order the centers such ] ] . ] ]
thatm;<m;, ;. TheN vacua are given by =m;n, and there Let us first _conS|_der a sigma _modeI with 4 supercharges in
exist BPS domain walls interpolating between any pair of® =<4 space-time dimensions with compact target speicd
adjacentvacua[10], each of which preservéthe samghalf ~ complex dimensiom. We endow\ with a Kahler metric,g,
of supersymmetry. HoweverX-n is the only “active”  and denote theKﬂer form by Q) am_j the complex structure
sigma-model field of these solutions, so the calculation of thdy J. In D=3 dimensions there exists a deformation of this
force between two widely separated kinks reduces to a cafheory, consistent with supersymmetry, given by the addition
culation similar to that of1] for models with only a single ©f @ potential
scalar field. This force is non-vanishing. Thus finitely sepa-
rated domain walls interpolating between non-adjacent vacua

not exist in this model. . e
do not exist in this mode r}/_\/here,u is a mass parameter amkds holomorphic Killing

These considerations suggest that one will need to co tor field. which o h \ isolated
sider higher-dimensional target spaces to find multi-kink so/ector Tield, which we assume to have only Isolated, non-

: ; . : - degenerate, fixed points.
lutions in massive hyper-Kéer sigma models. Here we con- . . . :
sider models for which the target space metric is a hyperb The one-formi () (the contraction ok with Q) is closed
Kahler Calabi metric on the co-tangent bundig\), where ecause
Nis a compact Kaler manifold of complex dimension. If OV _ _
N admits a holomorphic killing vector then we may con- (i) =(di ) 2=L,0=0, ©

struct a supersymmetric massive sigma-modelTON)  \yhere the first equality follows from the closure@fand the

with 8 supercharges. In fact, the kink solutions of this modelgqng equality from the holomorphicity kfit follows that
actually lie within the zero-section of the tangent bundle. In

other words, they are also solutions to the massive sigma- dH=i,0Q, (6)
model with 4 supercharges oK. In the following section,
we discuss several features of kink solutions in these modelsor some locally-defined Killing potentiaf. The integral of
The BPS equations describing the spatial and temporal varia;() is a topological charge equal to the difference between
tion of a domain wall coincide with the Morse and Hamil- the values oH at the two endpoints. This topological charge
tonian flows of the Killing potential onV, respectively. The can support a BPS kink, which also has a dyonic generaliza-
domain wall moduli space is therefore identified with thetion known as aQ-kink, carrying a Noether charge associ-
space of Morse flows with given fixed points. It is a non- ated to the Killing vector fielk. Denoting by¢' the coordi-
compact manifold with a natural Kéer metric. nates onV, the energy density is given by

The simplest Calabi metric hag=CI’". In the remainder
of the paper we discuss in detail the domain wall solutions of 1 i o L]
this model. As we shall see in Sec. IIl, the potential allowed &= §J dx gij (' + ¢ 1)+ pogiik'k!. (7)
by supersymmetry generically has<{1) isolated vacua,
and hence we take=2. As with the ALE 4-metrics, these This may be rewritten as
vacua have a natural linear ordering. However, in contrast to
the ALE case, the domain walls are not restricted to lie be- . ” NN i
tween adjacent vacua. Rather, we shall exhibit explicit BPS €= | | dX328ij(¢" +u cosad  kK)(¢! +u cosad’ k)
kink solutions interpolating betweemach pair of vacua.
Moreover, we shall show that the solution which interpolates oH . T o
between thd ™ and J" vacua is part of a moduli space of +pcosa—+30ij(¢'—usinak)(¢ —usinak’)
solutions of dimension [2—J|. We show that the collective
coordinates on this space may be thought of as the position,
together with an internal degree of freedom|lof J| funda-
mental domain walls, each of which interpolates between
neighboring vacua. for arbitrary anglea. Maximizing the right-hand side with

In Sec. IV, we discuss the dynamics of domain walls inrespect ton, we deduce the Bogomol'nyi bound,
the T*(CP") model. We show that the moduli space metric is
toric Kahler. We further discuss the dynamics of domain E=uN\T?+Q? 9

V=3u?k? (4

+ pusinad'k; (8)
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where

[}

T=[H]" (10

[N

Q=J dx X'k;

are the topological and Noether charges respectively. Th
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complex partner is an angle conjugate to the total Noether
charge. This pair of collective coordinates partner the two
Nambu-Goldstone fermions arising from the two broken su-
persymmetries.

What is the physical interpretation of the remaining
fBo—p’|—2 bosonic collective coordinates? They could ei-

Bogomol'nyi bound is saturated for solutions of the equa-ther correspond to further internal degrees of freedom or,

tions

¢'=pu sinak (12)

[

wcosad' kK.

¢i
Both of these equations have a natural geometrical meanin
mined by treatingH as a Hamiltonian,

JH

s

The spatial evolution arises by treatiijas a Morse func-
tion on V. The non-degeneracy 6Ff ensures thatl is a good
Morse function with critical points at the fixed points kf
The Morse flow is

& Q. (12

13

alternatively, to the relative positions and internal coordi-
nates of more than one domain wall. Let us see under which
circumstances we may expect the latter interpretation. Sup-
pose we have three critical points with indiggsq and p’
such thatp>q>p’. Suppose further that there exists a
Morse flowI" from p—q and a second Morse floW’ from

C S .
Up to rescaling, the temporal evolution of the fields is deter-gIHp -+ Then, by continuity, we expect there to exist a flow

from p—p’ which is close td"UT'". The speed of this flow,
determined by Eq(13), reduces in the vicinity of the critical
point g, ensuring that the energy density profile of the solu-
tion looks like two well separated domain walls sandwiching
the vacuunm.

Let u?, a=1,...|p—p’| be the collective coordinates.
These are promoted to fields of the low-energy effective ac-
tion for the (multi) kink domain wall. This low-energy dy-
namics is again a sigma model but now with a target space
metric supplied by the usual metric on the soliton moduli

space,
Gab: f dx

a¢' 99!

59ij - (14)

which, again up to rescaling, coincides with the spatial

Bogomol'nyi equatiorf11]. Note that the Morse and Hamil-
tonian flows on\ are orthogonal. In the remainder of this

which may be thought of as a metric on the space of Morse
flows. This metric is Khler. To see this we first note that the

section, we discuss the time independent Morse flows inow-energy effective action of the multi-kink domain wall is

more detail.

First note that the critical points dfi are in one-to-one
correspondence with the vacua of the poterdal At each
point some flows will depart while others will terminate. The
dimensionp, of the hypersurface formed by the Morse flows

again a supersymmetric sigma model, with the meft) as
its target space metric. Next, we recall that our sigma model
with four supersymmetries and target spac¢emay be em-
bedded into a sigma model with 8 supercharges and target
spaceT*(N). The kink solutions now have|@—p’| fermi-

departing from a given critical point is known as the Morseonic zero modes and preserve four of the eight supersymme-
index of that point, and it is equal to the number of negativeyries, so the effective kink sigma-model with target metric

eigenvalues of the covariant Hessid»’H/D ¢'D ¢/) at that
point. As we assumed the fixed points kfto be non-
degenerate, this guarantees that the hypersurface formed
the flows terminating at a fixed point of Morse indpxwill
have dimension (2—p). Since\ is Kahler, p is even and
moreover for the functioir, the usual Morse inequalities are
saturated; it follows that the number of fixed points with
Morse indexp is equal to the Betti numbds, . In particular,
there exists a single critical point with Morse indes,Zrom
which flows only depart, and a single critical point with
Morse index 0, from which no flows depart.

(14) has four supersymmetries. If we choose the maximal
spacetime dimensior) =5, for the original massive HK
Blyma-model then we will have an effectilze=4 supersym-
metric sigma-model governing the low energy dynamics of
the kink domain walls in thiD=5 spacetime. The target
space of such a sigma model is necessarilyl&a

IIl. DOMAIN WALLS IN  T*(CP")

In this section we discuss in detail the domain walls for
N=CP", working with the toric HK 4-metric onT*(CP")

As a solution to the sigma model with four superchargesvith coordinatesX',¢') (I=1, ... n). The Calabi metric is

and target spacd/, a kink interpolating between a vacuum
of index p and a vacuum of indep’ has|p—p’| fermionic
zero mode$11]. Of these only two arise from broken super-

ds?=U,;dX"-dX?+ (U Y (dy, +A)(diyy+A))
(15

symmetries. The remainder are “accidental.” The unbrokeqfvhere
0

supersymmetries then ensure the existence
|p—p’| real bosonic zero modes, and hehgpe-p’| bosonic

A|=dXJ~wJ|, V(JXWK)|:VJUK| . (16)

collective coordinates. The physical interpretation of one of
these is as the center-of-mass position of the domain wall; it¥he functionsU are given by
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Py 1 there is a 3(—1) dimensional sub-manifold of the Calabi
U=t (170  metric with vanishing potential. We will consider only ge-
X m— 2 %K neric potentials and examine the kinks that interpolate be-
et tween the different isolated vacua. The relevant Morse func-

tion isH==]_,u,X'-n. Setting all time derivatives to zero,
wherem is a constant 3-vector and the lacklod indices in  the Bogomol'nyi equations are
the second term implies that it appears in each component of
the matrix. The triplet of Kaler forms are X" =U"HYu,n (23

Q= (diy +A)dX'— FU,;dX" x dX? (18 P = ey X (24)

where the wedge product of forms is implicit. This metric
appears in physics as the moduli space of a sing(e
+1) instanton on non-commutativié*, where the 3-vector
m is related to théanti-self-dual non-commutativity param-
eter (see, for examplg,12]). In particular, then=1 Calabi
4-metric coincides with the Eguchi-Hanson metric on khe
=2 ALE space(1). The 4n-metric hasSU(n+1) tri-  \hile a kink which interpolates between tH8 vacuum and
holomorphic isometry. In the above coordinates only they,q (n+1)™ vacuum has mass,

Cartan sub-algebra is manifest corresponding to the Killing

vector fieldsk'=d/dy, . These permit the construction of a E ner=mul. (26)
potential compatible with supersymmetry given by the '

square of the length of a linear combination of these vectorgye may write these formulas in a unified form if we intro-
[9], say u k' for constanty, , duce the (+1) quantitiesy, such that

V=Fupa(U™HY. (19

where the unit 3-vectan= = m/m depending on whether we
are considering a kink or anti-kink. A BPS kink interpolating
between theé" andJ" vacua, withl,J=1, . .. n has energy,

Eig=m|w— uyl (25

m=r—vper (1=1,...0) 27

In fact, as shown 13,7, this is not the most general po- and the mass of a kink interpolating between kfeand 3"
tential allowed by supersymmetry. For theories w6 vacua is now given by

space-time dimensions one may sum the squares of the
lengths of (6-D) independent, mutually commuting, tri-
holomorphic Killing vectors. In the following section we will
consider this possibility, but for now we restrict ourselves to
the simplest potential given in E¢L9).

It will prove useful to define ar{+1)" coordinate,

Eiy=m|v,—vyl. (29)

Importantly, rewriting the energy in this fashion also makes
it clear that there is an ordering to the vacua given by the
relative values ofy,, allowing us to talk of neighboring, or

n adjacent, vacua. We choose the ordering- v, ;. Notice
XM lom—3 x! (20) tha_lt the form of th_e_energszf_i) is al_ready sugge_stive of the
=1 existence of multikink solutions since, assumidg |, we
may write

so that=]'*1X'=m. The potential19) is given explicitly by
-1

2
EIJ:KZJ Eks1x- (29

N
2'1 Mlxl

N
v=1 5% T S —— 21 . ,
22’1 (iX) =2 —73 @1 Taken at face value, this suggests that the kink may be de-
E XJ . . . .
composed intad= (1 —J) kinks, each of which interpolates
J=1 . . . .
between neighboring vacua. We will refer to the kink that
Note that the denominator of the second term is not given bjnterpolates between the" and (+1)" vacua as the"
S0 =m unlessX'-m=0 for eachl. In fact, this con- fundamentakink. An analysis of the supersymmetry trans-
straint on the coordinates is precisely the restriction to thdormations[7] reveals that each of these fundamental kinks
CP" base of the manifold. We shall not impose this con-Preserves the same half of supersymmetry, as would be ex-
straint for now, although we shall later see that all BPS kink*€cted if multikink solutions were to exist. However, one

do in fact lie within this submanifold. must be wary in drawing such conclusions from the
For generic choice of constantg,# «,, the potential B0gomolnyi energy bound alone. Indeed, all the above
(21) hasn+1 isolated vacua, given by statements apply.equally \(vell to kinks in the ALE 4-mgtr|cs_
discussed in the introduction but, as we noted there, in this

X'=mésY for J=1,...n+1. (22) case there simply do not exist BPS domain wall solutions

interpolating between non-adjacent vacua. Nevertheless, we
For non-generic potentials there is an enlarged moduli spacghall see that in the present case the above conclusions are in
of vacua. Specifically, if of the constantg., coincide, then fact correct.
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We start our analysis of the Bogomol'nyi equations by If we first examineL=1 (and assume that#1) then (v,

presenting explicit solutions betweany pair of vacua with  —»)<0 for all L and there are no non-trivial solutions to
J<lI, the stationary point equation. Th¥$=0. By induction, the
K " same is true for alXX with K<J andK>1. Similarly, this

X2—mé™ as x—— analysis implies thax' andX” have no stationary points and

are therefore monotonic. However, it does not rule out the
possibility of stationary points foxX* with J<K<I.

The above result allows us to restrict attention to domain
walls interpolating between the first and last vadua with
boundary conditiond=1 andl=n+1). We will now ex-
amine the Bogomol'nyi equations inductively, starting with
the simplest model admitting multikink solutioriE* (CI?).

XKkoms  as x—+w (30

with 1,J=1,... n+1. We make the ansax“=0 for K
#1,J which, given the constrair(®0), requires that the two
remaining coordinates sum t§'+X’=m. Geometrically,
this restricts us to a sub-manifoli*(CP*) where then(n
+1) choices of vacuum pairs reflect tm€n+1) natural
embeddings of:P! in CP". The Bogomol'nyi equations now

reduce to those on the Eguchi-Hanson space whose solutions n=2
were given in[5], In the previous section we worked with an over-complete
L. . L set of variables subject to the constrai0) in order to
X'=3zm—smtanh(z (v;—v;)(X—Xo)) elucidate the vacuum structure of the theory. In this subsec-
31 N . tion, we revert to the original coordinaték5). The ordering
X =zm+zmtanh(z (v;= ) (X—Xo))- of the vacua described in the previous subsection is equiva-

3D lent to choosing the potentigk;>u,>0. The BPS equa-

H K
Given these solutions, the second Bogomol'nyi equatiorfions forX™ are

may be solved by simply choosing a gauge in whiglvan- “ “
ishes over the trajectoryl4] and settingy, = — ¢;= g to xl’-n=(,ul— Sy —ZXZ)X1
constant. Thus this kink solution has 2 collective coordinates m m
given by the positionx,, and the internal degree of freedom
¢g- We shall now show that the complete solution involves a X2 .n= ( o &xz_ ﬂx1> X2 (35)
further 2d—1)=2(1—J—1) collective coordinates, corre- m m
sponding to the possibility of separating the domain wall
(31 into d fundamental kinks.
First we prove that for the domain wall with boundary

The fixed points of these equations are the va@z2a of the
theory. There are three such points,

conditions(30), any solution to the BPS equations necessar- vacuum 1: Xl=m. X2=0
ily hasXK=0 for all K<J and for allk >1. To see this, note ’
first that the Bogomol'nyi equations requix&‘=n for all K, vacuum 2: X'=0, X2=m
and so take the form
a1 vacuum 3: X!'=0, X?=0. (36)
Z’l p X" These lie at the three corners of a right-angle isoceles tri-
XKn=| vy— 17— | XK. (320  angle, with the right-angle at fixed point 3. The three BPS
2 XM kink solutions given in Eq(31) form the sides of this tri-
M=1 angle, with a fixed direction. Specifically, the kinks interpo-
late between the vacua21, 3—2 and 3—-1.
Moreover, unlike Eq.(23), this form is also valid for the Near the fixed point 3, the trajectories are
(n+1)™ coordinatg(30). Near the two end point®0) of the
domain wall trajectory, these equations approximate to (X1 X?)~(er1¥,er2X) (37
XK n=(vg—1v)XX as x——» so, for positivew, , all trajectories start with a straight line
through the origin into the triangle. Trajectories can only end
XK n=(vg—v))XK as x—+x. (33 at fixed points or at infinity. Moreover, they may not cross.

Therefore, all those that enter the triangle must end on fixed
Thus we see that fok<J and forK>1, the functionsX points. The only one that may end on fixed point 2 is the
must either vanish or have at least two stationary pointsX'=0 kink. All others must end on fixed point 3, so there is
Similarly, for J<K<I, the functions must have at least one a one-parameter family of trajectories that begin at fixed
stationary point while forK=1 and K=J, they may be point 3 and end on fixed point1This is sketched in Fig. 1.

monotonic. However, from Eq32), we see thakXX is sta- Note that the asymmetry between points 1 and 2 arose
tionary atXX+0 only if from the choicew,> w,. In one limit of this parameter we

N

> (= r)X-=0. (2 R . -

[=1 This was also noted by Kimyeong Lee and Piljin [X5].
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2 2

3 > 1

FIG. 1. The BPS flows in th€P? massive sigma model. There 3
exists a one-parameter family of kink trajectories corresponding to
b y y n g FIG. 2. The BPS flows in th€P® massive sigma model. There

the separation of two kinks. The two trajectories-2 and 2-1 . familv of Kink trai . d
may be thought of as the limit of infinitely separated kinks. The now exists a two-parameter family of kink trajectories correspond-

straight-line trajectory 3> 1 corresponds to the two kinks with zero ing _to the geparatlon_of thrge kmks._ The _ro_ws on the faces are
separation copies of Fig. 1. A typical trajectory lying within the tetrahedron is

drawn.

have the straight-line 3:1 kink of Eq. (31). In the other
limit, we approach arbitrarily close to the union of the tra-
jectories of the 3-2 kink and the 2-»1 kink. This limit
itself co_rresponds to the'—32 and 2—>1 kinks at infinite (X?)P1=c(XY)P2(m—X1— X2)H1H2 (40)
separation, but at any point short of this limit the kinks have

finite separation. As the separation is decreased, the tw@here the real modulus=0 labels the trajectories and is a
kinks eventually merge to form the single-8L kink. Itis  measure of the separation of the two kinks. Efe0 trajec-
natural to call the 3-2 and 2-1 kinks “fundamental”  tory corresponds to the straight-line-8L kink, while asc
kinks, and the family of 3-1 kink solutions as a moduli ., the trajectory gets closer and closer to the infinitely
space of multikink solutions. separated 3-2—1 trajectories.

The fundamental kinks have a single real relative collec-
tive coordinate. Supersymmetry requires that this is paired
with a complex partner, such that the relative moduli space is ) ) . .
Kahler. This additional collective coordinate comes from the ~ The pattern of kink trajectories described above general-
angular coordinates, , satisfying Eq.(24). The multikink  izes simply to the general case. Consider fiist3. The
solutions thus have a four-dimensional moduli space of sovacua now determine the points of a right-angle simplex,
lutions. with the solutions(31) forming its edges. This is shown in

Al of the kink trajectories lie within the triangle depicted Fig. 2. On each of the four faces of the simplex, the
in Fig. 1, ensuring that they may not escape to infinity inBogomol'nyi equations reduce to those of the=2 case
field space. This triangle is the toric diagram for2, the  (36), and the trajectories are therefore restricted to lie in the
zero section of the Calabi bundisee for examplg16]). The  face, each of which looks like a copy of Fig. 1. An analysis
two periodic variables), provide a torusT? which fibered ~©Of the Bogomol'nyi equations near the fixed point at the
over the triangle to reconstrudtP?. Thus, the kinks de- Origin (vacuum 4 in the diagrajrshows that the trajectories
scribed above are equally solutions to tté? sigma model. head into the polytope. As each of them cannot escape to
We will return to this point in Sec. IV. infinity without crossing the faces, they must end on a fixed

On each trajectory, there is a unique valueYef X2 for ~ Point. Only those trajectories which lie on the-3—4 face
each value ofX=X". The trajectories can therefore be de-Will €nd at vacua 2 and 3 and, of those, only those on the

scribed by some curvé(X). To find these curves, we divide 3—4 edge will end at vacuum 3. All others end at vacuum 1.
the Bogomol'nyi equation§36), to get A typical trajectory is sketched in Fig. 2. We therefore have

a two parameter family of kink solutions. These parameters
have the interpretation of the separation between the34
=0. kink, the 3—2 kink and the 2-1 kink. As in theT*(CP?)
case, supersymmetry ensures that these separations are
(38) paired with angular collective coordinates arising from the
Multiplying by the integrating factorra—X—Y) 1, we de- - o ) .
duce that The generalization of this to>3 is clear. The vacue?2)
form the vertices of a-dimensional simplex, while the so-
dlog(X#2Y ™ #1(m—X—-Y)*1™#2)=0, (39 lutions (31) form the edges. The trajectories on a face of

It follows that the trajectories in Fig. 1 are described by the
equation

n=3

2

m— Xt m— X
dx?
XZ

dxt+ dx2+ dx?
Xl

M1 M2
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dimensionm are determined by the Bogomol'nyi equations both topological charge as well as Noether charge associated
for T*(CP™) and are restricted to lie on that face. This with the isometryu,k'. They solve the time dependent BPS
bounds the trajectories inside the simplex, each of whiclequationg11). Within the low-energy description of motion
ends at fixed point 1. Note that in each case the simplex isn the kink moduli space, they are described by excitations
the toric diagram forCP", with the n angular variablesy, along theR factor of the numerator in Eq42).

providing the requisitd " fiber. All trajectories lie within the We would now like to demonstrate the existence of

CP" base of T*(CP") and extend to solutions of theéP"  1/4-BPS O-kinks and explain how they arise in the low-

sigma-model itself. energy dynamics. The analysis is identical to that of 1/4-BPS
One may verify that the functions over the simplex, monopoles, so we will be brief. These objects are related to

S the intersecting domain wall soll_Jtio_ns discussefi7in As in
F(X"ap) = ( m_z X') H (XK)aK (1) that reference, the important pomt is that the potertfifl is
[ K not the most general potential allowed by supersymmetry.
Rather, a HK sigma-model with 8 supercharge®igpace-
are constant on BPS trajectories provided that the parametetitne dimensions admits the sum of {®) potentials, each
a, (I1=1,...n) satisfy,= a u,;=0. This one constrainton the length squared of a mutually commuting tri-holomorphic
n variables ensures that there is an«(1) parameter family  Killing vector [13,7]. In order to build 1/4-BPS objects, we
of (n—1)-dimensional hypersurfaces. For each choice of parequire two such potentials and must therefore be in a space-
rametersy, , the family of hypersurfaces parametrized by thetime dimensiorD <4, with a target space of dimension8.
value of F fill the n-simplex. Thus, togethel and the @ For the Calabi metrics, we take the potential to be of the
—1) independentw, yield an n parameter family of form

(n—1)-dimensional surfaces. Their intersections are the BPS L N 1
trajectories. V=zupy(UT0) "+ 30U ). (43

The Bogomol'nyi equations for the 1/4-BR&kinks are de-
rived thus

In the previous section, we have seen that the Calabi met-
ric on T*(CP") admits a &-dimensional moduli spaceyt ", 5:f dx{U (X" = (U™ H8R) - (X3 = (U~ 2)%n)
of domain wall solutions interpolating between the first and
last vacua. Let us denote the collective coordinates param- N _ , o ,
etrizing M" by u?, a=1,...,2. We have argued that, at +URXE X4 (UTHY (] + e XS (95 + @y - X)
least asymptotically, these parameters have the interpretation —1\13 K _ : oL
of the position and internal degree of freedommofunda- U+ one XE=M) (Pt g XE=Ag))
mental kinks. The low-energy dynamics of these kinks is e PR K
given by a sigma-model with four supercharges/etf' with + X '”]7oc+f dX{N (U™ )" (¢ + oo XT) Y
metric given by Eq(14). Given the smoothness of the do-
main wall solutions, it seems likely that this metric is com- (44)
plete. On general grounds, we expect the metric to factorizqnhe Bogomol'nyi equations are now given by E¢a3) and
into a center of mass piece, parametrizing the overall posi(2 4), together with
tion of the kinks, together with the internal degree of free-" '
dom arising from shifts of the tri-holomorphic Killing vector X'=0 (45)
field u,k'. The moduli space is thus

IV. DYNAMICS OF DOMAIN WALLS IN  T*(CP")

Rx A" h=N\ (46)

n:
MRXG

(42) in which case the mass of tti@kink interpolating between

vacual andJ is given by

where G is a discrete normal subgroup of the isometries.
Supersymmetry requirements ensure that the métdg is Eiy=mlv;— vy|+1cQ (47
Kahler. Moreover, the symmetries of the original massive
sigma-model descend to the low-energy dynamics, ensurinﬂhere”I
that the metric on\ " is toric Kahler i.e. admits1 holomor-
phic U(1) isometries. We denote these by, =1, ... n. QKzf dx(U~HKby, (48)

There exists a generalization of the static domain walls

that we have been considering so far to dyonic domain wallsig recognized as the Noether charge associated with the Kill-
or Q-kinks [5]. These objects, which are 1/2-BIPB, carry  jng vector fielda,
IK'

are defined in Eq(27) and

As is usual for 1/4-BPS states, it is possible to rewrite the
Noether charge in terms of a potential on the kink moduli
°Note that the potentidll9) breaks theSU(n+1) isometry of the spaceM " associated with the Killing vectot$ [17]:
target space t&J(1)" and thus the domain wall moduli space in-
herits only these Abelian isometries. MNQ'=G (N1 (A 417P). (49
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Finally, note that there is a single condition relating the to- \ \1\
pological and Noether charges which ensures that the dyonic

state is truly bound rather than, as appears from the energy
(47), marginally bound. This relation is

x.[X'-n]izz=f dps(U =@l (50

The dynamics of 1/4-BPS monopoles has been discussed in r—

[18,19,13,20,2]l and for instantons if22]. In both cases, \\L\ \

the low-energy dynamics is described by a massive sigma-

model on the soliton moduli space. The same is true here. FIG. 3. Twice as kinky: thé®1—D5 system in background NS

The relevant potential oM " is given byV=X\,Q' which,  B-field. The singleD-string has a modulus in which the two kinks

by Eq. (49), we know can be expressed as the length of anove apart as shown by the arrows.

holomorphic Killing vector, ensuring that the 4 supercharges

of the low-energy dynamics are preservedihe 1/4-BPS the construction of 1/4-BPS dyon solutions in the two theo-

Q-kinks are then recovered as 1/2-BPS solutions of the lowries is entirely analogous. 123,24 this correspondence be-

energy dynamics. tween kinks and monopoles was made quantitative; it was
There is another class of 1/4-BPS solitons which mayshown that the BPS mass spectrum of the two dimensional

exist in these models, namely orthogonally intersecting doA/’=(2,2) CP" massive sigma model and the four dimen-

main walls. These were discussed . In the context of the sional N=2 SU(n+1) Yang-Mills theory coincide. This

low-energy dynamics, they occur if the potentialon M " correspondence exists at both classical and quantum levels.

has more than one isolated minima. In this case, if the origiSubsequently, it has been understood that the four-

nal domain wall had spatial world-volume dimensigr2,  dimensional theory also contains “1/4-BPS-like” states

we could consider a “kink-within-a-kink,” in which we [20,21.* The discussion of Sec. IV suggests that analogous

build domain wall within the low-energy effective theory. states also exist within the two-dimension@P" sigma

We do not know at present if the Calabi metrics admit suchmodel. It would be interesting to verify this by semi-classical

intersections, but the above observation reduces this questionethods. Note that if they do exist, the calculation of the

to understanding th&" action onM ", central charges performed (23,24 guarantees that their
mass coincides with that of the monopoles.
V. DISCUSSION Finally, we mention an application of our results to the

D1-D5 system of type IIB string theory. Consider a single

We have shown that massive Idar sigma models with D1-brane in the presence afi parallel but separated
compact target space§” and massive hyper-Kéder sigma  D5-branes. Turning on a background BSield results in an
models with compact target spac&€%(N) admit a moduli  attractive force between the D-string and th&-branes. The
space of domain wall solutions. We examined these solutionB-string hasn vacuum states in which it lies within a single
in detail for /=CP" and showed that the collective coordi- D5-brane, where it appears as an instanton in non-
nates of the solution have the interpretation of the positionscommutativeU(n) gauge theory, broken to the Cartan sub-
together with internal degrees of freedom,roparallel fun-  algebra[29]. For small separations between th&-branes,
damental domain walls. The domain wall moduli space isthe low-energy dynamics of the D-string is described by the
identified with the space of Morse flows ok, where the massive sigma-model oF (CP’") considered in Sec. lll. The
morse function is related to the sigma-model potentia\dn  kink solutions(31) have the interpretation of the D-string
There is a natural Kaer metric on this moduli space. interpolating from oneéD5-brane to anothdi30,31. The re-

We close with a few applications. First, there is a remark-sults of Sec. Ill make it clear that this kinky string has a
able similarity between kinks in thel" model and mono- moduli in which the two kinks move apart. This is shown in
poles inSU(n+1) Yang-Mills-Higgs theory. This fact has Fig. 3. It would be interesting if one could understand this
been noted beforb,23,24 and is underscored in the present motion in terms of a gauge theory along the lineg34].
work. Specifically, the moduli space of a (1,1.,1) mono-

pole (n 1's) has a toric HK 4-metric [25—-28. Here we ACKNOWLEDGMENTS
have shown that the moduli space of the highest kinkIifi
has a toric Khler moduli space of dimensiom2Moreover, We would like to thank Bobby Acharya, Fay Dowker, lan

Dowker, Gary Gibbons, Brian Greene, Jae-Suk Park, Sumati
Surya, Stefan Vandoren and Erick Weinberg for useful dis-

3Note that the original HK sigma model with two potentials exists
in D<4 space-time dimensions. The kink solutions then have
world-volume of dimensioml<3 as is required to construct a mas- “These states have non-parallel electric and magnetic charge vec-
sive supersymmetric sigma-model description of the dynamics withors which would make them 1/4-BPS in tiié=4 theory. How-
four supercharges with a potential given by the length of a holo-ever, in theA’=2 theory, where no 1/4-BPS particle states exist,
morphic Killing vector. they preserve 1/2 supersymmetry.
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