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Multidomain walls in massive supersymmetric sigma models
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Massive maximally supersymmetric sigma models are shown to exhibit multiple static kink-domain wall
solutions that preserve 1/2 of the supersymmetry. The kink moduli space admits a natural Ka¨hler metric. We
examine in some detail the case when the target of the sigma model is given by the co tangent bundle ofCPn

equipped with the Calabi metric, and we show that there exist BPS solutions corresponding ton kinks at
arbitrary separation. We also describe how 1/4-BPS charged and intersecting domain walls are described in the
low-energy dynamics on the kink moduli space. We comment on the similarity of these results to monopole
dynamics.
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I. INTRODUCTION

Models admitting vortices, lumps, monopoles or insta
tons typically have Bogomol’nyi-Prasad-Sommerfield~BPS!
limits in which the forces between the objects cancel, res
ing in a moduli space of static multisoliton solutions. T
structure of these moduli spaces carries important kinem
cal and dynamical information about the solitons. Moreov
they have interesting mathematical properties and ap
ubiquitously in string theory. It is thus natural to enqui
about the possibility of scalar field theories that might exh
multikink solutions with similarly interesting moduli space

Consider models with BPS kink solutions with ener
E5uZu, whereE is the energy per unit area of the wall andZ
is a real central charge appearing in the supersymmetry
gebra. The BPS energy bound for two parallel domain w
is obviously saturated when they are infinitely separated
reducing the separation cannot decrease the energy. It
lows that the force between the walls at large separatio
either repulsive or zero. This force can be calculated@1# and
for models with only a single scalar field it is always repu
sive. Thus, while there may exist time dependent multi
main wall solutions~such as the kink-antikink breather of th
sine-Gordon model!, these models contain no static mul
domain wall solutions in which the separation may be cho
arbitrarily.

If we consider kinks carrying a complex, or vectoria
central charge then two kinks with non-parallel charges m
exert an attractive force on each other, in which case t
will eventually fuse into a third kink carrying a centra
charge that is the vector sum of the charges of the initial
kinks. However, it is also possible that two kinks with no
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parallel charges will repel each other. Which possibility
realized depends on the details of the model; a Wess-Zum
model in which walls repel or attract according to the cho
of parameters in the superpotential was studied in@2#.

The above comments indicate that the simplest mod
admitting multi BPS kink solitons should have several sca
fields. Multi-kink solutions have been found in generaliz
Wess-Zumino models@3,4#. However, these theories hav
four supersymmetries which is not sufficient to endow t
resulting kink moduli spaces with a great deal of geome
structure. The only field theories witheightsupersymmetries
that admit static kink solutions are the ‘‘massive’’ supersy
metric hyper-Ka¨hler sigma models, so it is to these mode
that we turn our attention. These typically admit not on
kinks, and their charged counterparts, theQ-kinks @5#, but
also a variety of other BPS solutions, such asQ-lumps @6#,
intersecting domain walls@7# and D-branes@8#. The purpose
of this paper is to exhibit and study a class of massive hyp
Kähler sigma models that admitmulti-kink ~and multi-
Q-kink! solutions, for which the moduli space is Ka¨hler.

One might suspect that the cancellation of inter-ki
forces that is needed for static multi-kink solutions to exis
a direct consequence of the 8 supersymmetries, but th
certainly not the case. To see why, consider the sigma m
with a target space metric given by the multicenter asym
totically locally Euclidean~ALE! 4-metric

ds25UdX•dX1U21~dc1v•dX!2 ~1!

where¹3v5¹U. This metric has a tri-holomorphic isom
etry associated to the Killing-vector field]c , and the ‘‘cen-
ters’’ of the metric are the isolated fixed points of this vec
field. The norm of]c is, up to a multiplicative factor, the
unique scalar potential term~for this model! that is compat-
ible with all 8 supersymmetries@9#. The choice of multipli-
cative factor corresponds to a choice of mass units, so
may take the potential to be
©2001 The American Physical Society10-1
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V5 1
2 U21. ~2!

The addition of this potential to the action yields a ‘‘ma
sive’’ sigma model with isolated vacua at the centers of
metric. ForN colinear centers the harmonic functionU is
given by

U5(
i 51

N
1

uX2minu
, ~3!

wheren is a unit 3-vector and we may order the centers s
thatmi,mi 11. TheN vacua are given byX5min, and there
exist BPS domain walls interpolating between any pair
adjacentvacua@10#, each of which preserves~the same! half
of supersymmetry. However,X•n is the only ‘‘active’’
sigma-model field of these solutions, so the calculation of
force between two widely separated kinks reduces to a
culation similar to that of@1# for models with only a single
scalar field. This force is non-vanishing. Thus finitely sep
rated domain walls interpolating between non-adjacent va
do not exist in this model.

These considerations suggest that one will need to c
sider higher-dimensional target spaces to find multi-kink
lutions in massive hyper-Ka¨hler sigma models. Here we con
sider models for which the target space metric is a hyp
Kähler Calabi metric on the co-tangent bundleT!(N), where
N is a compact Ka¨hler manifold of complex dimensionn. If
N admits a holomorphic killing vector then we may co
struct a supersymmetric massive sigma-model onT!(N)
with 8 supercharges. In fact, the kink solutions of this mo
actually lie within the zero-section of the tangent bundle.
other words, they are also solutions to the massive sig
model with 4 supercharges onN. In the following section,
we discuss several features of kink solutions in these mod
The BPS equations describing the spatial and temporal va
tion of a domain wall coincide with the Morse and Ham
tonian flows of the Killing potential onN, respectively. The
domain wall moduli space is therefore identified with t
space of Morse flows with given fixed points. It is a no
compact manifold with a natural Ka¨hler metric.

The simplest Calabi metric hasN5CPn. In the remainder
of the paper we discuss in detail the domain wall solutions
this model. As we shall see in Sec. III, the potential allow
by supersymmetry generically has (n11) isolated vacua,
and hence we taken>2. As with the ALE 4-metrics, these
vacua have a natural linear ordering. However, in contras
the ALE case, the domain walls are not restricted to lie
tween adjacent vacua. Rather, we shall exhibit explicit B
kink solutions interpolating betweeneach pair of vacua.
Moreover, we shall show that the solution which interpola
between theI th and Jth vacua is part of a moduli space o
solutions of dimension 2uI 2Ju. We show that the collective
coordinates on this space may be thought of as the posi
together with an internal degree of freedom, ofuI 2Ju funda-
mental domain walls, each of which interpolates betwe
neighboring vacua.

In Sec. IV, we discuss the dynamics of domain walls
theT!(CPn) model. We show that the moduli space metric
toric Kähler. We further discuss the dynamics of doma
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walls in the presence of two or more potentials and arg
that it is given by a massive sigma model on the kink mod
space. We explain how this allows one to describe 1/4-B
Q-kinks and 1/4-BPS intersecting domain wall solutions
these theories.

We end in Sec. V with a discussion. We comment on
similarities of these results to those for monopole dynam
and mention an application to string theory.

II. DOMAIN WALLS AND MORSE FLOWS

Let us first consider a sigma model with 4 supercharge
D<4 space-time dimensions with compact target spaceN of
complex dimensionn. We endowN with a Kähler metric,g,
and denote the Ka¨hler form byV and the complex structure
by J. In D<3 dimensions there exists a deformation of th
theory, consistent with supersymmetry, given by the addit
of a potential

V5 1
2 m2k2 ~4!

wherem is a mass parameter andk is holomorphic Killing
vector field, which we assume to have only isolated, n
degenerate, fixed points.

The one-formi kV ~the contraction ofk with V) is closed
because

d~ i kV!5~dik1 i kd!V[LkV50, ~5!

where the first equality follows from the closure ofV and the
second equality from the holomorphicity ofk; it follows that

dH5 i kV, ~6!

for some locally-defined Killing potentialH. The integral of
i kV is a topological charge equal to the difference betwe
the values ofH at the two endpoints. This topological charg
can support a BPS kink, which also has a dyonic general
tion known as aQ-kink, carrying a Noether charge assoc
ated to the Killing vector fieldk. Denoting byf i the coordi-
nates onN, the energy density is given by

E5
1

2E dx gi j ~ḟ iḟ j1f i8f j8!1m2gi j k
ikj . ~7!

This may be rewritten as

E5E H dx 1
2 gi j ~f i 81m cosaJ k

i kk!~f j 81m cosaJ l
j kl !

1m cosa
]H

]x
1 1

2 gi j ~ḟ i2m sinaki !~ḟ j2m sinakj !

1m sinaḟ iki J ~8!

for arbitrary anglea. Maximizing the right-hand side with
respect toa, we deduce the Bogomol’nyi bound,

E>mAT21Q2 ~9!
0-2
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where

T5@H#2`
1` , Q5E dx Ẋiki ~10!

are the topological and Noether charges respectively.
Bogomol’nyi bound is saturated for solutions of the equ
tions

ḟ i5m sinaki ~11!

f i852m cosaJ k
i kk .

Both of these equations have a natural geometrical mean
Up to rescaling, the temporal evolution of the fields is det
mined by treatingH as a Hamiltonian,

ḟ i5
]H

]f j
V i j . ~12!

The spatial evolution arises by treatingH as a Morse func-
tion onN. The non-degeneracy ofV ensures thatH is a good
Morse function with critical points at the fixed points ofk.
The Morse flow is

f i85
]H

]f j
gi j ~13!

which, again up to rescaling, coincides with the spa
Bogomol’nyi equation@11#. Note that the Morse and Hamil
tonian flows onN are orthogonal. In the remainder of th
section, we discuss the time independent Morse flows
more detail.

First note that the critical points ofH are in one-to-one
correspondence with the vacua of the potential~4!. At each
point some flows will depart while others will terminate. Th
dimension,p, of the hypersurface formed by the Morse flow
departing from a given critical point is known as the Mor
index of that point, and it is equal to the number of negat
eigenvalues of the covariant Hessian (D2H/Df iDf j ) at that
point. As we assumed the fixed points ofk to be non-
degenerate, this guarantees that the hypersurface forme
the flows terminating at a fixed point of Morse indexp will
have dimension (2n2p). SinceN is Kähler, p is even and
moreover for the functionH, the usual Morse inequalities ar
saturated; it follows that the number of fixed points w
Morse indexp is equal to the Betti numberBp . In particular,
there exists a single critical point with Morse index 2n, from
which flows only depart, and a single critical point wi
Morse index 0, from which no flows depart.

As a solution to the sigma model with four supercharg
and target spaceN, a kink interpolating between a vacuu
of index p and a vacuum of indexp8 hasup2p8u fermionic
zero modes@11#. Of these only two arise from broken supe
symmetries. The remainder are ‘‘accidental.’’ The unbrok
supersymmetries then ensure the existence
up2p8u real bosonic zero modes, and henceup2p8u bosonic
collective coordinates. The physical interpretation of one
these is as the center-of-mass position of the domain wal
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complex partner is an angle conjugate to the total Noet
charge. This pair of collective coordinates partner the t
Nambu-Goldstone fermions arising from the two broken
persymmetries.

What is the physical interpretation of the remainin
up2p8u22 bosonic collective coordinates? They could
ther correspond to further internal degrees of freedom
alternatively, to the relative positions and internal coor
nates of more than one domain wall. Let us see under wh
circumstances we may expect the latter interpretation. S
pose we have three critical points with indicesp, q and p8
such that p.q.p8. Suppose further that there exists
Morse flowG from p→q and a second Morse flowG8 from
q→p8. Then, by continuity, we expect there to exist a flo
from p→p8 which is close toGøG8. The speed of this flow,
determined by Eq.~13!, reduces in the vicinity of the critica
point q, ensuring that the energy density profile of the so
tion looks like two well separated domain walls sandwichi
the vacuumq.

Let ua, a51, . . . ,up2p8u be the collective coordinates
These are promoted to fields of the low-energy effective
tion for the ~multi! kink domain wall. This low-energy dy-
namics is again a sigma model but now with a target sp
metric supplied by the usual metric on the soliton mod
space,

Gab5E dx
]f i

]ua

]f j

]ub
gi j , ~14!

which may be thought of as a metric on the space of Mo
flows. This metric is Ka¨hler. To see this we first note that th
low-energy effective action of the multi-kink domain wall
again a supersymmetric sigma model, with the metric~14! as
its target space metric. Next, we recall that our sigma mo
with four supersymmetries and target spaceN may be em-
bedded into a sigma model with 8 supercharges and ta
spaceT!(N). The kink solutions now have 2up2p8u fermi-
onic zero modes and preserve four of the eight supersym
tries, so the effective kink sigma-model with target met
~14! has four supersymmetries. If we choose the maxim
spacetime dimension,D55, for the original massive HK
sigma-model then we will have an effectiveD54 supersym-
metric sigma-model governing the low energy dynamics
the kink domain walls in thisD55 spacetime. The targe
space of such a sigma model is necessarily Ka¨hler.

III. DOMAIN WALLS IN T!
„CPn

…

In this section we discuss in detail the domain walls
N5CPn, working with the toric HK 4n-metric onT!(CPn)
with coordinates (XI ,c I) (I 51, . . . ,n). The Calabi metric is

ds25UIJdXI
•dXJ1~U21! IJ~dc I1AI !~dcJ1AJ!

~15!

where

AI5dXJ
•vJI , “ (J3vK)I5“JUKI . ~16!

The functionsU are given by
0-3
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UIJ5
d IJ

XI
1

1

Um2 (
K51

N

XKU ~17!

wherem is a constant 3-vector and the lack ofI ,J indices in
the second term implies that it appears in each compone
the matrix. The triplet of Ka¨hler forms are

V5~dc I1AI !dXI2 1
2 UIJdXI3dXJ ~18!

where the wedge product of forms is implicit. This metr
appears in physics as the moduli space of a singleU(n
11) instanton on non-commutativeR4, where the 3-vector
m is related to the~anti-self-dual! non-commutativity param-
eter ~see, for example,@12#!. In particular, then51 Calabi
4-metric coincides with the Eguchi-Hanson metric on theN
52 ALE space ~1!. The 4n-metric has SU(n11) tri-
holomorphic isometry. In the above coordinates only
Cartan sub-algebra is manifest corresponding to the Kill
vector fieldskI5]/]c I . These permit the construction of
potential compatible with supersymmetry given by t
square of the length of a linear combination of these vec
@9#, saym Ik

I for constantm I ,

V5 1
2 m ImJ~U21! IJ. ~19!

In fact, as shown in@13,7#, this is not the most general po
tential allowed by supersymmetry. For theories withD<6
space-time dimensions one may sum the squares of
lengths of (62D) independent, mutually commuting, tr
holomorphic Killing vectors. In the following section we wi
consider this possibility, but for now we restrict ourselves
the simplest potential given in Eq.~19!.

It will prove useful to define a (n11)th coordinate,

Xn115m2(
I 51

n

XI ~20!

so that( I 51
n11XI5m. The potential~19! is given explicitly by

V5 1
2 (

I 51

N

~m I
2XI !2 1

2

S (
I 51

N

m IX
I D 2

(
J51

n11

XJ

. ~21!

Note that the denominator of the second term is not given
(J51

n11XJ5m unlessXI
•m>0 for eachI. In fact, this con-

straint on the coordinates is precisely the restriction to
CPn base of the manifold. We shall not impose this co
straint for now, although we shall later see that all BPS kin
do in fact lie within this submanifold.

For generic choice of constants,m IÞmJ , the potential
~21! hasn11 isolated vacua, given by

XI5m d IJ for J51, . . . ,n11. ~22!

For non-generic potentials there is an enlarged moduli sp
of vacua. Specifically, ifl of the constantsm I coincide, then
02501
of

e
g

rs

he

y

e
-
s

ce

there is a 3(l 21) dimensional sub-manifold of the Calab
metric with vanishing potential. We will consider only ge
neric potentials and examine the kinks that interpolate
tween the different isolated vacua. The relevant Morse fu
tion is H5( I 51

n m IX
I
•n. Setting all time derivatives to zero

the Bogomol’nyi equations are

XI85~U21! IJmJn ~23!

c I85vIJ•XJ8 ~24!

where the unit 3-vectorn56m/m depending on whether we
are considering a kink or anti-kink. A BPS kink interpolatin
between theI th andJth vacua, withI ,J51, . . . ,n has energy,

EIJ5mum I2mJu ~25!

while a kink which interpolates between theI th vacuum and
the (n11)th vacuum has mass,

EI ,n115mum I u. ~26!

We may write these formulas in a unified form if we intro
duce the (n11) quantitiesn I such that

m I5n I2nn11 ~ I 51, . . . ,n! ~27!

and the mass of a kink interpolating between theI th andJth

vacua is now given by

EIJ5mun I2nJu. ~28!

Importantly, rewriting the energy in this fashion also mak
it clear that there is an ordering to the vacua given by
relative values ofn I , allowing us to talk of neighboring, o
adjacent, vacua. We choose the orderingn I.n I 11. Notice
that the form of the energy~28! is already suggestive of th
existence of multikink solutions since, assumingJ,I , we
may write

EIJ5 (
K5J

I 21

EK11,K . ~29!

Taken at face value, this suggests that the kink may be
composed intod5(I 2J) kinks, each of which interpolate
between neighboring vacua. We will refer to the kink th
interpolates between theI th and (I 11)th vacua as theI th

fundamentalkink. An analysis of the supersymmetry tran
formations@7# reveals that each of these fundamental kin
preserves the same half of supersymmetry, as would be
pected if multikink solutions were to exist. However, on
must be wary in drawing such conclusions from t
Bogomol’nyi energy bound alone. Indeed, all the abo
statements apply equally well to kinks in the ALE 4-metri
discussed in the introduction but, as we noted there, in
case there simply do not exist BPS domain wall solutio
interpolating between non-adjacent vacua. Nevertheless
shall see that in the present case the above conclusions a
fact correct.
0-4
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We start our analysis of the Bogomol’nyi equations
presenting explicit solutions betweenany pair of vacua with
J,I ,

XK→m dKI as x→2`

XK→m dKJ as x→1` ~30!

with I ,J51, . . . ,n11. We make the ansatzXK50 for K
ÞI ,J which, given the constraint~20!, requires that the two
remaining coordinates sum toXI1XJ5m. Geometrically,
this restricts us to a sub-manifoldT!(CP1) where then(n
11) choices of vacuum pairs reflect then(n11) natural
embeddings ofCP1 in CPn. The Bogomol’nyi equations now
reduce to those on the Eguchi-Hanson space whose solu
were given in@5#,

XI5 1
2 m2 1

2 m tanh„1
2 ~nJ2nJ!~x2x0!…

XJ5 1
2 m1 1

2 m tanh„1
2 ~nJ2n I !~x2x0!….

~31!

Given these solutions, the second Bogomol’nyi equat
may be solved by simply choosing a gauge in whichv van-
ishes over the trajectory@14# and settingc I52cJ5w0 to
constant. Thus this kink solution has 2 collective coordina
given by the position,x0, and the internal degree of freedo
w0. We shall now show that the complete solution involve
further 2(d21)52(I 2J21) collective coordinates, corre
sponding to the possibility of separating the domain w
~31! into d fundamental kinks.

First we prove that for the domain wall with bounda
conditions~30!, any solution to the BPS equations necess
ily hasXK[0 for all K,J and for allK.I . To see this, note
first that the Bogomol’nyi equations requireXK}n for all K,
and so take the form

XK8•n5S nK2

(
L51

n11

nLXL

(
M51

n11

XM D XK. ~32!

Moreover, unlike Eq.~23!, this form is also valid for the
(n11)th coordinate~30!. Near the two end points~20! of the
domain wall trajectory, these equations approximate to

XK8•n'~nK2n I !X
K as x→2`

XK8•n'~nK2nJ!X
K as x→1`. ~33!

Thus we see that forK,J and for K.I , the functionsXK

must either vanish or have at least two stationary poi
Similarly, for J,K,I , the functions must have at least on
stationary point while forK5I and K5J, they may be
monotonic. However, from Eq.~32!, we see thatXK is sta-
tionary atXKÞ0 only if

(
L51

N

~nK2nL!XL50. ~34!
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If we first examineL51 ~and assume thatJÞ1) then (n1
2nL),0 for all L and there are no non-trivial solutions t
the stationary point equation. ThusX1[0. By induction, the
same is true for allXK with K,J andK.I . Similarly, this
analysis implies thatXI andXJ have no stationary points an
are therefore monotonic. However, it does not rule out
possibility of stationary points forXK with J,K,I .

The above result allows us to restrict attention to dom
walls interpolating between the first and last vacua~i.e. with
boundary conditionsJ51 and I 5n11). We will now ex-
amine the Bogomol’nyi equations inductively, starting wi
the simplest model admitting multikink solutions:T!(CP2).

nÄ2

In the previous section we worked with an over-comple
set of variables subject to the constraint~20! in order to
elucidate the vacuum structure of the theory. In this subs
tion, we revert to the original coordinates~15!. The ordering
of the vacua described in the previous subsection is equ
lent to choosing the potentialm1.m2.0. The BPS equa-
tions for XK are

X18•n5S m12
m1

m
X12

m2

m
X2DX1

X28•n5S m22
m2

m
X22

m1

m
X1DX2. ~35!

The fixed points of these equations are the vacua~22! of the
theory. There are three such points,

vacuum 1: X15m, X250

vacuum 2: X150, X25m

vacuum 3: X150, X250. ~36!

These lie at the three corners of a right-angle isoceles
angle, with the right-angle at fixed point 3. The three B
kink solutions given in Eq.~31! form the sides of this tri-
angle, with a fixed direction. Specifically, the kinks interp
late between the vacua 2→1, 3→2 and 3→1.

Near the fixed point 3, the trajectories are

~X1,X2!'~em1x,em2x! ~37!

so, for positivem I , all trajectories start with a straight lin
through the origin into the triangle. Trajectories can only e
at fixed points or at infinity. Moreover, they may not cros
Therefore, all those that enter the triangle must end on fi
points. The only one that may end on fixed point 2 is t
X150 kink. All others must end on fixed point 3, so there
a one-parameter family of trajectories that begin at fix
point 3 and end on fixed point 1.1 This is sketched in Fig. 1

Note that the asymmetry between points 1 and 2 ar
from the choicem1.m2. In one limit of this parameter we

1This was also noted by Kimyeong Lee and Piljin Yi@15#.
0-5
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GAUNTLETT, TONG, AND TOWNSEND PHYSICAL REVIEW D64 025010
have the straight-line 3→1 kink of Eq. ~31!. In the other
limit, we approach arbitrarily close to the union of the tr
jectories of the 3→2 kink and the 2→1 kink. This limit
itself corresponds to the 3→2 and 2→1 kinks at infinite
separation, but at any point short of this limit the kinks ha
finite separation. As the separation is decreased, the
kinks eventually merge to form the single 3→1 kink. It is
natural to call the 3→2 and 2→1 kinks ‘‘fundamental’’
kinks, and the family of 3→1 kink solutions as a modul
space of multikink solutions.

The fundamental kinks have a single real relative coll
tive coordinate. Supersymmetry requires that this is pa
with a complex partner, such that the relative moduli spac
Kähler. This additional collective coordinate comes from t
angular coordinatesc I , satisfying Eq.~24!. The multikink
solutions thus have a four-dimensional moduli space of
lutions.

All of the kink trajectories lie within the triangle depicte
in Fig. 1, ensuring that they may not escape to infinity
field space. This triangle is the toric diagram forCP2, the
zero section of the Calabi bundle~see for example@16#!. The
two periodic variablesc I provide a torusT2 which fibered
over the triangle to reconstructCP2. Thus, the kinks de-
scribed above are equally solutions to theCP2 sigma model.
We will return to this point in Sec. IV.

On each trajectory, there is a unique value ofY5X2 for
each value ofX5X1. The trajectories can therefore be d
scribed by some curveY(X). To find these curves, we divid
the Bogomol’nyi equations~36!, to get

m1S dX11
m2X1

X2
dX2D 2m2S dX21

m2X2

X1
dX1D 50.

~38!

Multiplying by the integrating factor (m2X2Y)21, we de-
duce that

d log„Xm2Y2m1~m2X2Y!m12m2
…50. ~39!

FIG. 1. The BPS flows in theCP2 massive sigma model. Ther
exists a one-parameter family of kink trajectories correspondin
the separation of two kinks. The two trajectories 3→2 and 2→1
may be thought of as the limit of infinitely separated kinks. T
straight-line trajectory 3→1 corresponds to the two kinks with zer
separation.
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It follows that the trajectories in Fig. 1 are described by t
equation

~X2!m15c~X1!m2~m2X12X2!m12m2 ~40!

where the real modulusc>0 labels the trajectories and is
measure of the separation of the two kinks. Thec50 trajec-
tory corresponds to the straight-line 3→1 kink, while asc
→`, the trajectory gets closer and closer to the infinite
separated 3→2→1 trajectories.

nÐ3

The pattern of kink trajectories described above gene
izes simply to the general case. Consider firstn53. The
vacua now determine the points of a right-angle simpl
with the solutions~31! forming its edges. This is shown in
Fig. 2. On each of the four faces of the simplex, t
Bogomol’nyi equations reduce to those of then52 case
~36!, and the trajectories are therefore restricted to lie in
face, each of which looks like a copy of Fig. 1. An analys
of the Bogomol’nyi equations near the fixed point at t
origin ~vacuum 4 in the diagram! shows that the trajectorie
head into the polytope. As each of them cannot escap
infinity without crossing the faces, they must end on a fix
point. Only those trajectories which lie on the 22324 face
will end at vacua 2 and 3 and, of those, only those on
324 edge will end at vacuum 3. All others end at vacuum
A typical trajectory is sketched in Fig. 2. We therefore ha
a two parameter family of kink solutions. These paramet
have the interpretation of the separation between the 4→3
kink, the 3→2 kink and the 2→1 kink. As in theT!(CP2)
case, supersymmetry ensures that these separations
paired with angular collective coordinates arising from t
c I .

The generalization of this ton.3 is clear. The vacua~22!
form the vertices of an-dimensional simplex, while the so
lutions ~31! form the edges. The trajectories on a face

to
FIG. 2. The BPS flows in theCP3 massive sigma model. Ther

now exists a two-parameter family of kink trajectories correspo
ing to the separation of three kinks. The flows on the faces
copies of Fig. 1. A typical trajectory lying within the tetrahedron
drawn.
0-6
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dimensionm are determined by the Bogomol’nyi equatio
for T!(CPm) and are restricted to lie on that face. Th
bounds the trajectories inside the simplex, each of wh
ends at fixed point 1. Note that in each case the simple
the toric diagram forCPn, with the n angular variablesc I
providing the requisiteTn fiber. All trajectories lie within the
CPn base ofT!(CPn) and extend to solutions of theCPn

sigma-model itself.
One may verify that the functions over the simplex,

F~XI ;a I !5S m2(
I

XI D 2(JaJ

)
K

~XK!aK ~41!

are constant on BPS trajectories provided that the param
a I , (I 51, . . . ,n) satisfy,( Ia Im I50. This one constraint on
n variables ensures that there is an (n21) parameter family
of (n21)-dimensional hypersurfaces. For each choice of
rametersa I , the family of hypersurfaces parametrized by t
value of F fill the n-simplex. Thus, together,F and the (n
21) independenta I yield an n parameter family of
(n21)-dimensional surfaces. Their intersections are the B
trajectories.

IV. DYNAMICS OF DOMAIN WALLS IN T!
„CPn

…

In the previous section, we have seen that the Calabi m
ric on T!(CPn) admits a 2n-dimensional moduli space,M n,
of domain wall solutions interpolating between the first a
last vacua. Let us denote the collective coordinates par
etrizing M n by ua, a51, . . . ,2n. We have argued that, a
least asymptotically, these parameters have the interpreta
of the position and internal degree of freedom ofn funda-
mental kinks. The low-energy dynamics of these kinks
given by a sigma-model with four supercharges onM n with
metric given by Eq.~14!. Given the smoothness of the do
main wall solutions, it seems likely that this metric is com
plete. On general grounds, we expect the metric to facto
into a center of mass piece, parametrizing the overall p
tion of the kinks, together with the internal degree of fre
dom arising from shifts of the tri-holomorphic Killing vecto
field m Ik

I . The moduli space is thus

M n5R3
R3M̃n

G
~42!

where G is a discrete normal subgroup of the isometri
Supersymmetry requirements ensure that the metric~14! is
Kähler. Moreover, the symmetries of the original mass
sigma-model descend to the low-energy dynamics, ensu
that the metric onM n is toric Kähler i.e. admitsn holomor-
phic U(1) isometries.2 We denote these byl I , I 51, . . . ,n.

There exists a generalization of the static domain w
that we have been considering so far to dyonic domain wa
or Q-kinks @5#. These objects, which are 1/2-BPS@7#, carry

2Note that the potential~19! breaks theSU(n11) isometry of the
target space toU(1)n and thus the domain wall moduli space i
herits only these Abelian isometries.
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both topological charge as well as Noether charge associ
with the isometrym Ik

I . They solve the time dependent BP
equations~11!. Within the low-energy description of motion
on the kink moduli space, they are described by excitati
along theR factor of the numerator in Eq.~42!.

We would now like to demonstrate the existence
1/4-BPS O-kinks and explain how they arise in the low
energy dynamics. The analysis is identical to that of 1/4-B
monopoles, so we will be brief. These objects are related
the intersecting domain wall solutions discussed in@7#. As in
that reference, the important point is that the potential~19! is
not the most general potential allowed by supersymme
Rather, a HK sigma-model with 8 supercharges inD space-
time dimensions admits the sum of (62D) potentials, each
the length squared of a mutually commuting tri-holomorph
Killing vector @13,7#. In order to build 1/4-BPS objects, w
require two such potentials and must therefore be in a sp
time dimensionD<4, with a target space of dimension>8.
For the Calabi metrics, we take the potential to be of
form

V5 1
2 m ImJ~U21! IJ1 1

2 l IlJ~U21! IJ. ~43!

The Bogomol’nyi equations for the 1/4-BPSQ-kinks are de-
rived thus

E5E dx$UIJ~XI82mK~U21! IKn!•~XJ82mL~U21!JLn!

1UIJẊI
•ẊJ1~U21! IJ~c I81vIK•XK8!~cJ81vJL•XL8!

1~U21! IJ~ ċ I1vIK•ẊK2l I !~ ċJ1vJL•ẊL2lJ!%

1m I@XI
•n#2`

1`1E dx$l I~U21! IJ~ ċJ1vJK•ẊK!%.

~44!

The Bogomol’nyi equations are now given by Eqs.~23! and
~24!, together with

ẊI50 ~45!

ċ I5l I ~46!

in which case the mass of theQ-kink interpolating between
vacuaI andJ is given by

EIJ5mun I2nJu1lKQK ~47!

wheren I are defined in Eq.~27! and

QK5E dx~U21!KLċL ~48!

is recognized as the Noether charge associated with the
ing vector field]cK

.

As is usual for 1/4-BPS states, it is possible to rewrite
Noether charge in terms of a potential on the kink mod
spaceM n associated with the Killing vectorsl I @17#:

l IQ
I5Gab~l I l

Ia!~lJl
Jb!. ~49!
0-7
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Finally, note that there is a single condition relating the
pological and Noether charges which ensures that the dy
state is truly bound rather than, as appears from the en
~47!, marginally bound. This relation is

l I@XI
•n#2`

1`5E dxl ImJ~U21! IJ5m IQ
I . ~50!

The dynamics of 1/4-BPS monopoles has been discusse
@18,19,13,20,21#, and for instantons in@22#. In both cases,
the low-energy dynamics is described by a massive sig
model on the soliton moduli space. The same is true h
The relevant potential onM n is given byV5l IQ

I which,
by Eq. ~49!, we know can be expressed as the length o
holomorphic Killing vector, ensuring that the 4 supercharg
of the low-energy dynamics are preserved.3 The 1/4-BPS
Q-kinks are then recovered as 1/2-BPS solutions of the l
energy dynamics.

There is another class of 1/4-BPS solitons which m
exist in these models, namely orthogonally intersecting
main walls. These were discussed in@7#. In the context of the
low-energy dynamics, they occur if the potentialV on M n

has more than one isolated minima. In this case, if the or
nal domain wall had spatial world-volume dimension>2,
we could consider a ‘‘kink-within-a-kink,’’ in which we
build domain wall within the low-energy effective theor
We do not know at present if the Calabi metrics admit su
intersections, but the above observation reduces this que
to understanding theTn action onM n.

V. DISCUSSION

We have shown that massive Ka¨hler sigma models with
compact target spacesN and massive hyper-Ka¨hler sigma
models with compact target spacesT!(N) admit a moduli
space of domain wall solutions. We examined these solut
in detail for N5CPn and showed that the collective coord
nates of the solution have the interpretation of the positio
together with internal degrees of freedom, ofn parallel fun-
damental domain walls. The domain wall moduli space
identified with the space of Morse flows onN, where the
morse function is related to the sigma-model potential onN.
There is a natural Ka¨hler metric on this moduli space.

We close with a few applications. First, there is a rema
able similarity between kinks in theCPn model and mono-
poles inSU(n11) Yang-Mills-Higgs theory. This fact ha
been noted before@5,23,24# and is underscored in the prese
work. Specifically, the moduli space of a (1,1, . . . ,1) mono-
pole (n 1’s! has a toric HK 4n-metric @25–28#. Here we
have shown that the moduli space of the highest kink inCPn

has a toric Ka¨hler moduli space of dimension 2n. Moreover,

3Note that the original HK sigma model with two potentials exis
in D<4 space-time dimensions. The kink solutions then ha
world-volume of dimensiond<3 as is required to construct a ma
sive supersymmetric sigma-model description of the dynamics w
four supercharges with a potential given by the length of a ho
morphic Killing vector.
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the construction of 1/4-BPS dyon solutions in the two the
ries is entirely analogous. In@23,24# this correspondence be
tween kinks and monopoles was made quantitative; it w
shown that the BPS mass spectrum of the two dimensio
N5(2,2) CPn massive sigma model and the four dime
sional N52 SU(n11) Yang-Mills theory coincide. This
correspondence exists at both classical and quantum le
Subsequently, it has been understood that the fo
dimensional theory also contains ‘‘1/4-BPS-like’’ stat
@20,21#.4 The discussion of Sec. IV suggests that analog
states also exist within the two-dimensionalCPn sigma
model. It would be interesting to verify this by semi-classic
methods. Note that if they do exist, the calculation of t
central charges performed in@23,24# guarantees that thei
mass coincides with that of the monopoles.

Finally, we mention an application of our results to th
D12D5 system of type IIB string theory. Consider a sing
D1-brane in the presence ofn parallel but separated
D5-branes. Turning on a background NSB-field results in an
attractive force between the D-string and theD5-branes. The
D-string hasn vacuum states in which it lies within a singl
D5-brane, where it appears as an instanton in n
commutativeU(n) gauge theory, broken to the Cartan su
algebra@29#. For small separations between theD5-branes,
the low-energy dynamics of the D-string is described by
massive sigma-model onT!(CPn) considered in Sec. III. The
kink solutions ~31! have the interpretation of the D-strin
interpolating from oneD5-brane to another@30,31#. The re-
sults of Sec. III make it clear that this kinky string has
moduli in which the two kinks move apart. This is shown
Fig. 3. It would be interesting if one could understand th
motion in terms of a gauge theory along the lines of@32#.
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