
PHYSICAL REVIEW D, VOLUME 64, 025007
Disentangling the imaginary-time formalism at finite temperature

S. M. H. Wong
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

~Received 19 July 2000; published 11 June 2001!

We rewrite the imaginary-time formalism of finite temperature field theory in a form that all graphs used in
calculating physical processes do not have any loops. Any production of a particle from a heat bath which is
itself not thermalized or the decay and absorption of a similar particle in the bath is expressed entirely in terms
of the sum of particle interaction processes. These are themselves very general in meaning. They can be
straightforward interactions or the more subtle and less well-known purely interference processes that do not
have a counterpart in the vacuum.

DOI: 10.1103/PhysRevD.64.025007 PACS number~s!: 11.10.Wx, 12.38.Bx, 12.38.Mh
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I. INTRODUCTION

For equilibrium field theory at finite temperature, the
are two main methods of performing calculations. They
the imaginary-time formalism where one starts out in Euc
ean space and analytically continues back into Minkow
space at the end of the calculation, and the real-time form
ism where the calculation is done in Minkowski space w
real time throughout. Because the latter has explicit real t
dependence, it is therefore more suitable for time-depen
problems. However it also has the feature of the doubling
the field degrees of freedom so that each field acquire
partner and the propagators become 232 matrices; there-
fore, in the sense that the components used in calculat
are scalar quantities1 at T50 versus matrix quantities in th
real-time formalism, the simple analogy and straightforwa
similarity to field theoretical calculation in the vacuum a
absent. Intuitively, the difference between the calculation
zero and at finite temperature should only be that the la
acquires thermal weights in the phase space integrati
This clearly is not the case in the real-time formalism b
cause one has in addition to deal with matrix quantities
this regard, the imaginary-time formalism resembles mu
more the zero temperature field theory. Having said tha
must be stated that we are well aware of the Braaten-Pisa
resummation where perturbation theory at finite tempera
must be rearranged@1–5# so that it is not just a matter o
thermal weights between zero and finite temperature. Th
are various applications of this resummation scheme~see, for
example, the above references and also@6–10#!. These have
also been recast into the form of kinetic equations for s
particles within a heat bath@11–14#. We will choose not to
complicate matters in this paper and leave resummation
not even including it partially as in@15–18#, or, in other
words, we will consider only particles typically at the sam
scale as the temperature or higher when resummation is

1Here we are considering everything in the zero temperature
theory as scalar quantities; in other words, for the purpose of
cussion here, we make no distinctions between scalar, spinor,
vector fields related quantities. These are all scalar in the sense
have no doubling of the degrees of freedom in the vacuum.
0556-2821/2001/64~2!/025007~13!/$20.00 64 0250
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mally not necessary. We will address the imaginary-time f
malism itself and deal with a number of issues on its usa
Because of its intrinsic similarity with the vacuum theory,
should be possible to bring it into the form where the diffe
ence is essentially in the thermal weights. It will be show
however, that there is a limit to how far this resemblance w
go. And we will go even further by cutting all internal loop

The imaginary-time formalism is a very nice formalism
that by following the established calculational rules of r
placing the thermal discrete imaginary energy sum by c
tour integrals and analytic continuation, the calculations c
be done very similarly to the familiar vacuum field theo
@19#. The needed thermal distributions will be there at t
end and repeated self-energy insertion along a single
will be sorted out even if that line is subsequently cut or p
on shell provided the rules are followed correctly. Thus t
formalism is very compact which can hide many physic
processes. For this reason, although the formalism is q
superior mathematically, it can be very unclear when
comes to finding out exactly what physical processes
involved in a particular calculation. The mathematical a
vantage becomes a disadvantage when it comes to the p
ics. For each given calculation involving medium modific
tion of the properties of a particle or the production of one
should be possible to write the result in a form that is a s
of all the individual contributing processes. These sho
apparently be the phase space integral of each relevant
cess weighed by a product of thermal distributions, but thi
not entirely true as has already been mentioned and wil
clear later.

Another related aspect in thermal field theory that has
been categorically pointed out and discussed is the m
richer possibility of interference when a process happens
side a heat bath. Although interference graphs are w
known to be necessary both at zero and nonzero tempera
they have largely kept theirT50 form when being discusse
within the finiteT context@20,21#. Thus much of the richnes
was not obvious and remained hidden within the ‘‘simple
zero temperature Feynman graphs. The authors are
aware of infrequent mentions of this here and there; see R
@22,23# which are two of the few papers which, as far as t
aspects of the possibility of interference is concerned,
gone to some depths. This may be the case because th
istence of spectator particles easily masks any forw
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S. M. H. WONG PHYSICAL REVIEW D 64 025007
scattering or similar processes, thus ensuring that it is imp
sible to tell whether the latter happened or not. When we
forward scattering here, we mean it in a generalized se
because this can happen to both a fermion or a boson.
will discuss this below, pursue further in the direction
@22,23# but within the imaginary-time formalism, and us
thermal QED coupled to a massive vector particle which
in itself not part of the heat bath as an example in Sec.

II. THERMAL PROCESS ÄVACUUM PROCESS ‹
THERMAL WEIGHTS, ALMOST BUT NOT QUITE

In thermal calculations, it very often concerns the rate
production of some particles from the heat bath which
themselves not thermalized or how the medium modifies
properties of a particle such as its decay or absorption in
the hot medium. When this is done within the imagina
time formalism, one can calculate this order by order~again
we are ignoring resummation here! and the formalism will
yield formulas involving thermal distributions and other e
pressions. This is fine if one is interested only in the answ
If, on the other hand, one would like to know what physic
processes contribute to the production of a particle or h
another gets absorbed or stimulated to decay inside a
dium, one can express the formalism in another more ph
cally explicit way but equivalent to the original formalism
To this end, we now make the claim that the different
production or emission rate of a particle with fou
momentumk per unit volume per unit time from a heat bat
but which is itself not in the heat bath, is essentially given
the discontinuity of the self-energy as

2k0
dR

d3k
52

i discP~k!

exp~k0/T!21
5I ~k!1J~k! ~1!

for a scalar boson~the generalization to vector bosons
straightforward! and

2k0
dR

d3k
52

i discS~k!

exp~k0/T!11
5I ~k!1J~k! ~2!

for a fermion. Each of these can be explicitly expressed
terms of a sum of all the physical processes contributing
the production of this particle represented by the funct
I (k) andJ(k) on the right-hand side~RHS!. The I (k) part,
because of its resemblance to what one gets by cutting r
at zero temperature@24,25#, is known ~see below!. It is es-
sentially the sum of the relevant phase space integrals
the allowed kinematical range of the probability for ea
production process weighed by the particle distributions. T
existence of theJ(k) part is, however, not well known, a
least not to the same extent that it will be expressed late
in this paper. It is very easy therefore to assume erroneo
that there is only the contribution fromI (k). This is the case
for example in papers@20,26#. We will clarify this in the
following sections.

For those processes that do not involve a spectator in
ference graph~see Sec. V for clarification! and therefore
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whose probabilities can be written as squared modulus of
corresponding matrix elements, they are represented by

I ~k!5(P E dFP~2p!4d4S 2k1(
i PP

sipi D uMPu2FP .

~3!

Here in the energy-momentum conserving delta function
each processP, there are the signssi which depend on
whether each four-momentumpi is incomingsi51 or out-
going si52. FP is a product of particle distributions fo
each of the participants that hasan entry in the energy-
momentum conserving delta function

FP5)
i PP

si@u~si !1siu~2si !# f ~si !~pi
0!, ~4!

where we usedf (1) and f (2) to denote Bose-Einstein an
Fermi-Dirac distribution, respectively, andsi is a sign for
this purpose. The measuredFP represents that of the phas
space integrations of the processP:

dFP5)
i PP

d4pi

~2p!4 d~si !~pi
22mi

2!. ~5!

We have used thisI (k) above and will use it again below fo
generic representation of this kind of sum of the contribut
processes of the squared modulus type.

The other generic functionJ(k) is for the sum of interfer-
ence processes that involve spectator particles in either
probability amplitude of the convoluting pair and th
emission-absorption or vice versa of the same particles in
other amplitude of the pair. The function can be represen
by

J~k!5(
P8

E dFP8
8 dwP8~2p!4d4S 2k1 (

i PP8
sipi D

3~M̃P8MP8
* 1M̄p8

* MP8!FP8FP8 . ~6!

Because in these interference graphs, there is emiss
absorption of particles of the same momentum in a sin
amplitude and some of these possibilities have their origin
thermal self-energy insertions on the external lines, wh
can also be viewed as generalized forward scattering on
external lines, the phase space integration measuredFP8

8 for
such a typical processP8, in general, becomes

dFP8
8 5 )

i PP8,i P/ S

d4pi

~2p!4 d~si !~pi
22mi

2!

3)
j PS

d4pj

~2p!4 ~21!njd~nj !~sj !~pj
22mj

2! ~7!

for a subgroupS of all the external lines of the processP8 in
which each memberj in the subgroup hasnj number of
thermal self-energy insertions. We find it clearer here to
thermal self-energy insertion since this should be familiar
the readers, but we will eventually switch to the new mea
7-2
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DISENTANGLING THE IMAGINARY-TIME FORMALISM . . . PHYSICAL REVIEW D 64 025007
ing of the occurrence of any generalized forward scatter
on the external linej. This will be further explained below in
Sec. V. The above phase space integrations only take ca
those momenta that enter into the overall energy-momen
conserving delta function. There are other momentum in
grations that are usually being labeled as loop mome
These are represented by the other measuredwP8 in Eq. ~6!
above. Here it suffices to state that we do not consider lo
as such because each loop can be opened up and interp
as emission-absorption of particles with the same fo
momentum. This interpretation will allow us to treat the
loop-momentum integrals as phase space integrals so
measuredwP8 can be expressed in general in a form ve
similar to Eq.~7!. These other phase space integrations w
therefore acquire thermal distributions as well. The prod
of these isFP8 in Eq. ~6!. This is different fromFP8 which
retains the form in Eq.~4! for the external lines.

For the decay or absorption of a particle with moment
k and massM not thermalized in the medium, we can sim
larly write

2M G51
i discP~k!

exp~2k0/T!21
5I ~2k!1J~2k! ~8!

for a boson and

2M G52
i discS~k!

exp~2k0/T!11
5I ~2k!1J~2k! ~9!

for a fermion with the same mass. We are treating the
sorption as stimulated decay in the presence of the med
hence the width hereG is the width in the medium. The
thermal factor in the denominators of Eqs.~1!, ~2!, ~8!, and
~9! are correct because in the limitT→0, there is no longer a
medium to produce any particles sodR/d3k→0. The width,
however, will remain finite and is given now by the disco
tinuity of the self-energy in the vacuum.

III. SIMPLE EXAMPLES

The relation of the discontinuity of the self-energy to t
sum of phase space integrals over each contributing pro
given in the previous section can be readily shown to h
for simple cases. We review the case of the one-loop s
energy as a simple example. For the production of a mas
fermion from other massless fermions and bosons in a
bath, the required loop graph is the one of the usual ferm
self-energy. Within the imaginary-time formalism, we wri
it as

S~k!5T (
p45 ip0

E d3p

~2p!3

N~k,p!

p2~k2p!2 . ~10!

Here we have not stated explicitly which theory is bei
considered except by using the usual fermion self-ene
graph, it has to be one with vector coupling between bo
and fermion-antifermion. The numerator is simply deno
by a functionN since its details are not required here. Aft
converting the discrete energy sum into contour integra
and performing the latter@19#, one gets
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S~k!52E d3p

~2p!3 H F1

2
1 f ~1 !~p!G

2p

N~k,p!

~k2p!2U
p05p

1

F1

2
1 f ~1 !~p!G

2p

N~k,p!

~k2p!2U
p052p

1

F1

2
2 f ~2 !~ uk2pu!G

2uk2pu
N~k,p!

p2 U
p05k01uk2pu

1

F1

2
2 f ~2 !~ uk2pu!G

2uk2pu
N~k,p!

p2 U
p05k02uk2pu

J .

~11!

The vacuum part has also been included in the above exp
sion. Now performing analytic continuation and taking t
discontinuity of the self-energyS(k) with the delta function
d(k01p1uk2pu) for the production of the massive fermio
in mind, only the second and the third term in Eq.~11! have
the right discontinuity. For production, we have to setk0→
2k0 to get

idiscS~k!52E d3p

~2p!3 ~2p!d~2k01p1uk2pu!

3
@11 f ~1 !~p!2 f ~2 !~ uk2pu!#

2p2uk2pu
N~2k,p!U

p05p

.

~12!

This can be rearranged to

2
idiscS~k!

exp~k0 /T!11
5E d4p

~2p8!4 ~2p!

3d~1 !~p2!
d4p8

~2p8!4 ~2p!d~1 !~p82!

3~2p!4d~4!~2k1p1p8! f ~1 !~p0!

3 f ~2 !~p08!N~2k,p!52k0

dR

d3kU
one-loop

,

~13!

the form we expected from Eq.~2!. TheN is essentially just
the square of the vector-fermion-antifermion coupling, whi
is all there is for the squared modulus of the probabil
amplitude at leading order.

One could easily use Eq.~11! to obtain the discontinuity
for the decay of a massive fermion into a fermion and
boson in the heat bath. The energy conserving delta func
to get from Eq.~11! in this case isd(k02p2uk2pu). Only
the first and last term from Eq.~11! contribute. It is
simple to follow the same steps and arrive at the form giv
in Eq. ~9! or
7-3
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S. M. H. WONG PHYSICAL REVIEW D 64 025007
2
idiscS~k!

exp~2k0 /T!11
5E d4p

~2p8!4 ~2p!d~1 !~p2!

3
d4p8

~2p8!4 ~2p!d~1 !~p82!

3~2p!4d~4!~k2p2p8!

3@12 f ~1 !~p0!#@12 f ~2 !~p08!#

3N~k,p!

52MGuone-loop. ~14!

Note that this could equally have been written withd (2) with
f as given in the previous section instead ofd (1) with 1
6 f . Both of the above explicit examples have not theJ(k)
function part because this will come at higher orders. M
precisely these contributions come in at two loop and hig
orders.

IV. GENERAL PROOF

In this section in order to put up a framework so that la
sections can be more readily understood, we show in
own way that Eqs.~1!, ~2!, ~8!, and~9! hold in general. We
saw in Sec. II that both theI (k) andJ(k) functions possess
the same structure ofI (k) at least for the external lines in
cluded in the delta function conserving the overall fou
momentum. That is, as far as the part associated with line
the contributing graphs that carry part of the total ene
momentum is concerned, the two functions are the sa
J(k) has some extra phase space integrals and distribu
but these have little to do with the overall momentum co
servation and they can be viewed as substructures. This
be discussed later on. First the main structure of Eqs.~1!, ~2!,
~8!, and~9!, which is the structure of the functionI (k), will
be shown first.

For a self-energy at arbitrary order in the coupling of t
theory, it can always be rearranged into the form shown
Fig. 1 where momentump1 flows through line 1,p2 flows
through line 2, etc., and the last linem carries the boson o

FIG. 1. A self-energy diagram at any order in the coupling c
always be rearranged in this form with momentumpi flowing
through linei except the last linem where the momentumpm5k
1( i

m21pi . The two blobs may be complex vertices
(m11)-point Green’s functions and they need not be the sa
hence the different shadings. There is of course more than
possibility of such an arrangement for each graph.
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fermion momentumk of the self-energy under consideratio
and the sum of the other lines above it so thatpm5k
1( i

m21pi . The two blobs shaded differently need not be t
same in general and they can be any graphs from very sim
to very complex connecting the lines 1 tom. Our aim is to
put all these lines on-shell so that they become the exte
lines and each has an entry in the overall four-moment
conserving delta function. In other words, we are dividi
the self-energy in two by cutting through line 1 tom. There
is of course more than one way to group lines into the fo
in Fig. 1 and therefore different cuts are possible on t
graph. Also at any given order, the self-energy will be a s
of graphs of the form of Fig. 1. The full results must ther
fore be a sum both over different graphs and cuts on th
graphs. This sum will eventually become our sum over d
ferent contributing processes.

A. The case of all bosonic external lines

Our own approach to arrive at the results in Eqs.~1!, ~2!,
~8!, and ~9! is by using the imaginary-time formalism an
performing the contour integrals of the loop momen
p1 ,p2 ,...,pm21 , without loss of generality, in that order
Furthermore, lines 1 tom will all be taken to be bosonic and
massless for simplicity. The case that some lines are bos
and some fermionic is a generalization which does not af
the proof provided equations to be used below are suita
modified. This will be touched upon briefly in Sec. IV B
Since the discontinuity of the self-energy contains a num
of different processes, we will aim at getting only one pr
cess, say that with the overall energy-momentum delta fu
tion

d~4!S k1(
i

m

sipi D ~15!

where thesi ’s are a fixed set of signs associated with th
particular process depending on which momentumpi is out-
going or incoming. We adopt the convention thats51 for
incoming or absorption of a particle ands52 for outgoing
or emission. This applies also tok. By concentrating on Eq
~15!, any pole in the contour integrations that does not c
tribute to this particular chosen process need not be pic
up and will be dropped from the discussion. For each li
which one of the two poles can be picked is determined
the signssi ’s so that there is only one pole per line that w
contribute to Eq.~15!. Starting from thep1

0 contour integra-
tion, it can either pick the pole on line 1 or that on linem. In
either case, thep2

0 integration will have also two possibili
ties, that of line 2 or linem in the former case and line 2 o
line 1 in the latter. Since each contour integration will ha
two possibilities to pick a pole, there will be 2m21 terms that
contribute to Eq.~15! after all m21 contour integrations
have been performed. Picking a pole on a line in a cont
integral is equivalent to putting that line on-shell and givi
it a factor of a thermal distribution. Since there arem21
integrations andm lines, all but one line will remain off-shel
at the end. This line will be cut and put on-shell as well wh
the discontinuity of the self-energy is finally taken. Ther

n

e,
ne
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fore, although in general the numerators of the 2m21 terms
will be different after the integrations because different s
of external lines may have been put on-shell, they will b
come identical once the discontinuity has been taken.
take the numeratorN(k,p1 ,p2 ,...,pm21) as the part that
does not include the thermal distributions and is evaluate
the mass shells of these particles. Because it is the sam
every term, it can be taken out of the following discussion
a common factor. We can concentrate entirely on manipu
ing the products of thermal distributions into the desir
form. Those readers not interested in the details of this
nipulation could accept on faith that the final form of th
product of distributions is correct and skip to Sec. IV B
examine only the identities and the simple examples in S
IV C.

After the discontinuity has been taken, there will be 2m21

terms, each with a different product of thermal distributio
Writing the propagators in the convenient form

1

p0i
2 2pi

2 5
1

2pi
(

si56

si

p0i2sipi
, ~16!

for i 51 to m21 and

1

p0m
2 2pm

2 5
1

2pm
(

sm56

2sm

p0m1smpm
, ~17!

where pi5upi u for i 51,...,m21 and pm5uk1( i
m21pi u. If

the p1
0 contour integration picks up the pole on line 1, the

will be the factor2@1/21 f (1)(s1p1)# which includes also
the vacuum part. On the other hand if it is the pole on linem
um
a

fe

-
o

r

he
u
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that is picked, then there will instead be@1/21
f (1)(2smpm)#. In the first case, subsequent integration ofp2

0

will yield either the 2@1/21 f (1)(s2p2)# or @1/21
f (1)(2s1p12smpm)# thermal factor depending on whethe
the pole on line 2 or linem is picked. In the other case, ther
will be 2@1/21 f (1)(s2p2)# or @1/21 f (1)(2s1p12smpm)#
from line 2 and line 1, respectively. Continuing like so, the
will be different products of thermal distributions. Startin
from the case where each contour integration picks the p
of its own line, only one of the lines 1 tom21 picks the pole
of line m instead of its own line, the next two lines do n
pick their own lines, and so on until none of thepi

0 contour
integration pick their own pole atpi

05sipi . Using the sim-
plifying notation

f i
~1 !5 f ~1 !~sipi !, ~18!

f 2 j
~1 !5 f ~1 !~2sj pj !, ~19!

f m1 i 1 j 1¯

~1 ! 5 f ~1 !~1smpm1sipi1sj pj1¯ !,
~20!

f 2m2 i 2 j 2¯

~1 ! 5 f ~1 !~2smpm2sipi2sj pj2¯ !,
~21!

and

f̃ i
~1 !51/21 f i

~1 ! , ~22!

etc. The sum of thermal factors from the 2m21 terms with all
common factors taken out can therefore be written as
F5 )
i

m21

f̃ i
~1 !2 (

j 51

m21 S )
iÞ j

m21

f̃ i
~1 !D f̃

2m2(
iÞ j
j 21i

~1 !
1 (

j 51

m22

(
k5 j 11

m21 S )
iÞ j Þk

m21

f̃ i
~1 !D f̃

2m2(
iÞ j
j 21i

~1 !
f̃

2m2(
i 51
k21i

~1 !

2 (
j 51

m23

(
k5 j 11

m22

(
l 5k11

m21 S )
iÞ j ÞkÞ l

m21

f̃ i
~1 !D f̃

2m2(
iÞ j
j 21i

~1 !
f̃

2m2(
i 51
k21i

~1 !
f̃

2m2(
i 51
l 21i

~1 !
1¯1

3~21!m21 f̃ 2m
~1 ! f̃ 2m21

~1 ! f̃ 2m2122
~1 ! f̃ 2m212223

~1 !
¯3 f̃ 2m21222¯2~m22!

~1 ! . ~23!
-
lta

he
The key to finding a way out of this seemingly endless s
of terms is the observation that each term must have a p

ner. By that we mean for every term containingf̃ m21
(1) as part

of the thermal weight, there must be another one that dif
from this term only in this factor by having

2 f̃ 2m21222¯2(m22)
(1) in its place instead. This is true be

cause no matter which sets of poles were picked in the c
tour integrations, the last integration ofpm21

0 must be able to
pick either its own pole on linem21 or the pole on the othe
line that now carries the energypm21

0 . This could be the line
m if it has not yet been touched or another line with t
energypm21

0 shifted there via an already performed conto

integration. Therefore every term must have eitherf̃ m21
(1) or
rt-

rs

n-

r

2 f̃ 2m21222¯2(m22)
(1) by virtue of the last contour integra

tion pm21
0 . They can thus all be paired. Now using the de

function Eq.~15!, we get the identity

f̃ m21
~1 ! 2 f̃ 2m21222¯2~m22!

~1 !

5 f m21
~1 ! 2 f 2m21222¯2~m22!

~1 !

5~e2k0/T21! f m21
~1 ! f m11121¯1~m22!

~1 ! .
~24!

After this is applied to every pair, the common factor on t
RHS of Eq.~24! can be taken out of Eq.~23!. We now have
2m22 terms to sort out.
7-5
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We shift focus now onto the thermal weightf̃ m22
(1) or

2 f̃ 2m21222¯2(m23)
(1) . For a similar reason as before, ea

term must have either one of the two and these again f
pairs because of the second last contour integration ofpm22

0 .
The identity

~ f m22
~1 ! 2 f 2m21222¯2~m23!

~1 ! ! f m11121¯1~m22!
~1 !

5 f m22
~1 ! f m11121¯1~m23!

~1 ! ~25!

is a more general form of Eq.~24! and can be used to remov
the last factor in the now common thermal factor on the R
of Eq. ~24! to get the new common factor

~e2k0/T21! f m21
~1 ! f m22

~1 ! f m11121¯1~m23!
~1 ! . ~26!

The number of terms has now been further reduced to 2m23.
Iterating this thermal factor reduction process, all 2m21

terms can be grouped together eventually into one comm
thermal factor

F5~e2k0/T21! f m
~1 ! f m21

~1 ! f m22
~1 ! f m23

~1 !
¯

3¯ f 3
~1 ! f 2

~1 ! f 1
~1 ! . ~27!

The first factor will be divided out by the denominator in E
~1! with k0→2k0 for production or that in Eq.~8! for decay.
The remaining thermal distributions will bef (1)(p) for ab-
sorption with s51 in the delta function in Eq.~15! or
2@11 f (1)(p)# for emission whens52 as expected. Com
bining the sign factorss1s2¯sm originating from the propa-
gators in Eq.~18! but which have been left out of the discu
sion so far, this is theFP in Eqs.~3! and ~4!

FP5
s1s2¯sm

e2k0/T21
F. ~28!

Now we turn to the phase space integrals in Eq.~3!. From
the m21 loop integrations, there are already the thre
momentum measuresd3pi /(2p)3 for i 51 to m21. This
together with the 1/(2pi) from the propagators givedF in
Eq. ~5! from i 51 up to them21 entry. The last entrym can
be gotten by introducing the identity

E d3pm

~2p!3 ~2p!3d~3!S k1(
i 51

m

sipi D 51. ~29!

Multiplying this by the remaining 1/2pm and the energy delta
function (2p)d(k01S i 51

m pi
0) from the discontinuity gives

E d4pm

~2p!4 ~2p!d~sm!~pm
2 !d~4!S k1(

i 51

m

sipi D . ~30!

By grouping everything else not discussed above which
mainly the numeratorN(k,p1 ,p2 ,...,pm) together, this will
be uMPu2 if in this particular process the two blobs in Fig.
contain no internal loop momentum that runs completely
side the blob. If either one or both contain internal loops th
this will be the product of (M̄PMP* 1M̄P* MP) and FP in
02500
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the functionJ(k). The latterFP factor will carry essentially
the hidden loop momentum integrations and there will
associated thermal weights. We will however adopt an
proach in which there will not be any loop. But this and t
remaining parts of the functionJ(k) are the subjects of Sec
V.

B. The case of a mixture of bosonic and fermionic external
lines

For the more general case where there is a mixture
fermionic and bosonic lines amongst the lines 1 tom in Fig.
1, the proof is somewhat more complicated because bos
distribution can turn into fermionic distribution and vic
versa when they are evaluated at a pole depending
whether this has an imaginary part with a total of an inte
n or a half-integern11/2 of (2p i ) imaginary energy. For a
bosonic self-energy, there must be an even number of in
mediate fermion lines and for a fermion self-energy, the
must be an odd number of such lines. In the latter case
order not to have a contradiction in our momentum arran
ment in Fig. 1, the last linem must be fermionic whereas in
the bosonic self-energy there is no such constraint. We co
nevertheless arrange all fermion lines to be those at the
tom and leaving all boson lines at the top in either case. T
is if there aren boson linesn<m, we arrange the lines so
that line 1 ton will be bosonic and linen11 to m will be
fermionic. Then for a fermion self-energy the last conto
integration will give the pair combination

2 f̃ m21
~2 ! 1 f̃ 2m21222¯2~m22!

~1 !

5 f m21
~2 ! 1 f 2m21222¯2~m22!

~1 !

52~e2k0/T11! f m21
~2 ! f m11121¯1~m22!

~1 !

~31!

if the line m21 is fermionic or

2 f̃ m21
~1 ! 1 f̃ 2m21222¯2~m22!

~2 !

52 f m21
~1 ! 2 f 2m21222¯2~m22!

~2 !

52~e2k0/T11! f m21
~1 ! f m11121¯1~m22!

~2 !

~32!

if this line is bosonic. This is always true because the num
of fermion lines connecting the two blobs in Fig. 1 is od
Here we have used the notationf̃ i

(2)51/22 f i
(2) . For a

bosonic self-energy, there is the combination

f̃ m21
~2 ! 2 f̃ 2m21222¯2~m22!

~2 !

52 f m21
~2 ! 1 f 2m21222¯2~m22!

~2 !

5~e2k0/T21! f m21
~2 ! f m11121¯1~m22!

~2 ! .
~33!
7-6
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The thermal factors can be sorted into the desired form
Eq. ~4! using the identities

2~ f i
~2 !2 f 2 j

~2 !! f i 1 j
~1 !5 f i

~2 ! f j
~2 ! , ~34!

~ f i
~1 !1 f 2 j

~2 !! f i 1 j
~2 !5 f i

~1 ! f j
~2 ! , ~35!

2~ f i
~2 !1 f 2 j

~1 !! f i 1 j
~2 !5 f i

~2 ! f j
~1 ! ~36!

iteratively as similarly done before in the previous sectio
The phase space integration measure and the rest ar
same as discussed there. The proof of the main form of
function I (k) or J(k) is therefore complete. In Sec. V, th
integrand and substructures inI (k) andJ(k) or equivalently
the internal structures of the blobs in Fig. 1 will be the su
ject.

C. Examples

In this subsection, we give two examples of the therm
factor reduction from 2m21 terms down to one discussed
the previous section. First we consider a bosonic self-ene
with m53 and one-fermion loop. In accordance to our d
cussions above, we push all fermion lines to the bottom
line 1 will be boson and lines 2 and 3 will be fermion. With
out stating explicitly what process to get from the se
energy, we choose the very general energy conserving d
function d(k01s1p11s2p21s3p3). After the discontinuity
has been taken, the sum of thermal distributions is

F85s1s2s3~2 f̃ 1
~1 ! f̃ 2

~2 !1 f̃ 23
~2 ! f̃ 2

~2 !1 f̃ 1
~1 ! f̃ 2123

~2 !

2 f̃ 23
~2 ! f̃ 2123

~2 ! !. ~37!

This can be reduced by pairing as follows:

F85s1s2s3~ f̃ 1
~1 !2 f̃ 23

~2 !!~2 f̃ 2
~2 !1 f̃ 2123

~2 ! !

5s1s2s3~ f 1
~1 !1 f 23

~2 !!~ f 2
~2 !2 f 2123

~2 ! !

52s1s2s3f 1
~1 ! f 2

~2 ! f 3
~2 !~e2k0 /T21!. ~38!

As another example, we consider a fermion self-ene
with m54. This time only linem is fermionic. The sum of
thermal distributions now is

F85s1s2s3s4~2 f̃ 1
~1 ! f̃ 2

~1 ! f̃ 3
~1 !1 f̃ 24

~2 ! f̃ 2
~1 ! f̃ 3

~1 !

1 f̃ 1
~1 ! f̃ 2124

~2 ! f̃ 3
~1 !1 f̃ 1

~1 ! f̃ 2
~1 ! f̃ 212224

~2 ! 2 f̃ 24
~2 ! f̃ 2124

~2 ! f̃ 3
~1 !

2 f̃ 24
~2 ! f̃ 2

~1 ! f̃ 212224
~2 ! 2 f̃ 1

~1 ! f̃ 2124
~2 ! f̃ 212224

~2 !

1 f̃ 24
~2 ! f̃ 2124

~2 ! f̃ 212224
~2 ! !. ~39!

Pairing as before gives

F85s1s2s3s4~ f̃ 1
~1 !2 f̃ 24

~2 !!~ f̃ 2
~1 !2 f̃ 2124

~2 ! !

3~ f̃ 3
~1 !2 f̃ 212224

~2 ! !
02500
in

.
the
e

-

l

gy
-
o

lta

y

5s1s2s3s4~ f 1
~1 !1 f 24

~2 !!~ f 2
~1 !1 f 2124

~2 ! !

3~ f 3
~1 !1 f 212224

~2 ! !

5s1s2s3s4f 1
~1 ! f 2

~1 ! f 3
~1 ! f 4

~2 !~e2k0 /T21!.
~40!

V. THE INTERNAL STRUCTURES OF I „k… AND J„k…

The previous sections showed how the discontinuity
the self-energy could be arranged into phase space inte
tions over all the external lines weighed by their respect
thermal distributions. There we called any line that show
itself explicitly in Fig. 1 external and these all have entries
the overall energy-momentum conserving delta function
Eq. ~3! and Eq.~6!. In this section, we will deal with the
remaining structures in these equations. These struct
come essentially from the blobs in Fig. 1 which have n
been discussed yet.

In the simplest case, each blob consists of a tree gr
with all lines leading to the external lines 1 tom and the line
with four-momentumk. This can be just a few lines at low
orders or a very large tree at high orders. All internal line
energies-momenta are fixed completely by the external li
and there is no additional integration and thermal distribut
other than those of the external lines. If the two blobs
identical, then there is automatically theuMPu2. If they are
not, then there is the interferenceM̄PMP* 1MP* MP with
FP51. In the case thatMP andMP are of the same order in
the coupling, there must also be the possibilitiesuMPu2 and
uM̄Pu2 so that a larger squared modulus can be form
uM̄P1MPu2. For familiar field theories such asf3, f4,
QED, QCD, etc., tree graphs with the same number of ex
nal legs are of the same order so this grouping into a lar
squared modulus is always possible. This case forJ(k) is
rather trivial but has to be stated first for the sake of co
pleteness before we move on to more complex cases
nonidentical blobs with no internal loop are the simplest e
amples of interference graphs inJ(k) that can actually be
grouped into the class of functionI (k). It is the more com-
plex interference graphs genuinely belonging to theJ(k)
function part that are our main concern. Towards this
now turn.

In the previous paragraph, we discussed the case of
tree graphs. This type of contribution can generally be int
preted straightforwardly as scattering processes or othe
teractions. For cases of a few particles in the initial sta
there will always be the vacuum counterpart. These are q
familiar physically. We need not say any more on the
What we find less obvious and less well known is the phy
cal interpretation of the case that the blobs Fig. 1 have in
nal loops. Within the imaginary-time formalism, it is not to
difficult, albeit tedious, to perform the calculation of the
graphs and it is all too easy to lose the feel of what are
actual physical processes involved in any particular calcu
tion. The nature of these graphs made it even harder bec
of the fact that first there is no vacuum counterpart and s
ond they are the nonintuitive interference type. If one is n
7-7
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clear in one’s thinking and clings on to the over-famili
vacuum picture, they could even appear to be impossibl

Let us consider the simple case that one blob has
internal loop and the other none; the procedure in arriving
the form of I (k) has already put all the external lines o
shell. So the calculation of this blob is equivalent to t
evaluation of a one-loopn-point function wheren<(m
11). The rules of the imaginary-time formalism stipulat
that the energy contour integration of the loop must pick
every pole in the propagators in turn of all the particles alo
the lines that form the loop. This step is equivalent to putt
in turn every particle propagating around the loop on-sh
For each particle around the loop, there are two poles.
can be interpreted as its emission into the heat bath from
vertex and its absorption from the bath by another. The o
is absorption from the heat bath now at the first vertex and
emission back into it from the second. An example graph
a blob with one internal loop and three external lines
shown in Fig. 2. This graph can be turned into the six gra
in Fig. 3 after the energy contour integration put the th
internal lines in turn on mass shell. These are indicated
the now on-shell large dotted lines in Fig. 3.

In our special case, it is easy to turn the blob with the lo
into a sum of tree graphs with emission-absorption of p
ticles of the same momentum. If one now takes a step b
and looks again at the whole picture, there is also the o
blob that helps make up the whole self-energy which cons
of only a tree graph. That for our example graph in Fig
will be that shown in Fig. 4.

FIG. 2. An example graph for a blob with one loop.

FIG. 3. Performing the energy contour integration is equival
to putting the internal lines in turn on shell.~u1! and~u2!, ~v1! and
~v2!, and~l1! and ~l2! are graphs resulting from putting the uppe
vertical, and lower internal line, respectively, on-shell. Each pai
graphs corresponds to the two poles from each line.
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Remembering that Figs. 2 and 4 together form an int
ference contribution, opening up the loop in Fig. 2 wou
seem to render the interference impossible because t
must be the same incoming as well as outgoing particle
both graphs. However, graphs representing interactions
heat bath are not quite the same as those in the vacuum.
a common practice to use the same graphs in both situat
but it must not be forgotten that in a heat bath graphs sho
be understood to be implicitly accompanied by spectator p
ticles that make up the multiparticle system. So opening
the loop in Fig. 2 should be accompanied by a change of
4 into Fig. 5. The momentum carried by the spectator line
Fig. 5 is of course different when this is convoluted wi
each of the three~u!, ~v!, and~l! pairs in Fig. 3.

So in this simple example, there will be six terms in t
function J(k). Each will have a phase space integration
eithers56 form

dwP85
d4l

~2p!4 ~2p!d~s!~ l 22m2!, ~41!

originating from the previous loop integration. Because th
correspond to the emission and absorption of particles of
same momentum within a single graph, they do not pla
part in the overall energy-momentum flow and have not
entry in the corresponding constraining delta function. T
emission and absorption of these particles must come w
thermal distribution. Because of the unusual nature of
emission-absorption or the absorption-emission in the sa
graph, each of these in our example with only one inter
loop acquires the distribution

FP851/21 f ~1 !~ u l 0u! ~42!

for boson or

FP851/22 f ~2 !~ u l 0u! ~43!

for fermion in this simple case. For more complex cas
where the blobs are not identical and each has several in
nal loops, after opening up each loop in the blobs and add
the corresponding spectator on the other blob the phase s
integration becomes

t

f

FIG. 4. The associated graph to Fig. 2.

FIG. 5. This is how Fig. 4 should be properly represented o
the loop in Fig. 2 has been opened up.
7-8
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dwP85)
i

L
d4l i

~2p!4 ~2p!d~si !~ l i
22mi

2!, ~44!

whereL is the combined total number of internal loops b
tween the two blobs. If there are any self-energy inserti
hidden in a blob, then this loop will have to be opened
too. Therefore each self-energy insertion will be turned i
the emission and absorption of a particle of the same fo
momentum from a single line. If the line is fermionic, this
the usual forward scattering, but there is also the case th
bosonic line emits and absorbs, or vice versa, a fermion
the same four-momentum. Thus we label these generical
generalized forward scattering. In this case, the internal l
turned phase space integrations will be of the form of E
~7!. The factor of thermal distribution when there are ma
loops becomes

FP85)
i

L

~1/21si f
~si !~ u l 0u!!. ~45!

Because there must be four or a larger even numbe
graphs obtainable from each loop, the sum in Eq.~6! overP8
is a sum over the main processes as well as over the pos
subprocesses of emission-absorption of particles in e
main process.

The steps in arriving at the form of theJ(k) part contri-
bution to the production from or the decay of a particle in
heat bath are now shown. So expressing a production
stimulated decay of a particle in a heat bath in terms of
the contributing processes should not be restricted only
processes expressible in terms of squared modulus am
tudes. In other words, there is the very importantJ(k) inter-
ference contributions in addition to the better knownI (k)
part. In the next section we will illustrate all these in a
explicit example. But before we do that it must be mention
that the vacuum parts still have to be regularized and re
malized in the usual way. We have assumed that this
implicitly understood.

FIG. 6. The leading contribution to the decay ofVm.

FIG. 7. Two-loop self-energy with internal self-energy insertio
All three internal lines in the middle will be put on-shell as extern
lines; therefore, the two blobs are tree graphs.
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VI. A MORE COMPLEX AND COMPLETE EXAMPLE

In this section we will use QED coupled to a massi
vector particle as an example. The relevant Lagrangian i

L52 1
4 FmnFmn1c̄gm~ i ]m2eAm2gVm!c2 1

4 GmnGmn

2 1
2 M2VmVm , ~46!

whereFmn andGmn are the field tensors for theAm andVm

vector fields, respectively. The couplingg is taken to be
much weaker thane, e@g, so only higher order correction
in e will be considered. Our heat bath will consist only
leptons and photons at a temperatureT, and the vectorVm is
not itself thermalized. A massive vector with a massM@T
will be sent into the heat bath to determine the medi
modification of its width up to two loops.

At leading order~LO!, there is only the decay into a dilep
ton pair contribution to Eq.~8! coming from the one-loop
self-energy shown in Fig. 6. This is of course only a con
bution of the type ofI (k). From Eq.~14! after some substi-
tutions, this contribution is

2MGuLO5E d4p

~2p!4 ~2p!d~1 !~p2!
d4p8

~2p!4 ~2p!d~1 !~p82!

3~2p!4d~4!~k2p2p8!@12 f ~2 !~p0!#

3@12 f ~2 !~p08!#uMuLO
2 . ~47!

Here the numerator is just the familiar Dirac trace of t
lepton loop one gets after summing over final spins and
eraging over initial spin

uMuLO
2 5

4g2

3 H p•p81
2~p•k!~p8•k!

M2 J . ~48!

At the next-to-leading order, there are only three se
energy graphs but there are many physical processes hi

.
l

FIG. 8. Contributions to Compton scattering from Fig. 7.

FIG. 9. Decay with photon emission from Fig. 7.
7-9
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within these graphs. In the following graphs, the thick wa
line is for the massive vector while the thin wavy line is f
the photon. The lines overlaid by the vertical dashed line
the exposed external lines of Fig. 1. First we examine th
arrangements of these graphs with no internal loops wi
the blobs. By putting the three internal lines in the two-lo
graph with an internal self-energy in Fig. 7 on-shell, thr
physical processes emerge. We get a sum of the squ
modulus amplitudes of two Compton scattering in Fig. 8,
one decay with photon emission in Fig. 9, and of one vec
photon fusion in Fig. 10. These are clearly all contributio
to the I (k) function part in Eq.~8!. There will of course be
the other contributions where the internal self-energy is
the lower lepton line. These can easily be taken care of b
simple factor of two by symmetry.

The other two-loop graph is the one with a vertex corr
tion drawn in Fig. 11. Putting all three internal lines on-she
three physical, albeit interference, processes emerge. T
are again Compton scattering in Fig. 12, three-body deca
Fig. 13, and fusion in Fig. 14. Because they are all interf
ence contributions, it appears that they belong toJ(k). As
we said in Sec. V, blobs that have no internal loop or ha
only a tree structure could be regrouped with other contri
tions to form a larger amplitude. Examining the pairs in Fi
8 and 12, Figs. 9 and 13, and Figs. 10 and 14 and also
forgetting that the two other lepton lines together with t
photon line in Fig. 11 could also be put on-shell as well
give similar contributions, this can of course be done as
well known. We merely broke down the contributions in
parts so that they could be clearly seen, within the fram
work that we are presenting the paper, which contribut
came from which diagram. Loosely speaking the contrib
tions from Fig. 11 should be inJ(k) but it is better to tighten
the definition so that this function is restricted to the genui
not well-known in-medium interference contributions to t
modification of the width.

After combining the contributions from Figs. 7 and 1
we get for the three processes

FIG. 10. Vector-photon fusion contribution from Fig. 7.

FIG. 11. Two-loop self-energy with vertex correction. Put t
three intermediate lines on-shell and there will not be a
internal loop.
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2MGuCompton52E d4p

~2p!4 ~2p!d~1 !~p2!
d4p8

~2p!4 ~2p!

3d~1 !~p82!
d4q

~2p!4 ~2p!d~1 !~q2!~2p!4d~4!~k

1p2p82q! f ~2 !~p0!@12 f ~2 !~p08!#@1

1 f ~1 !~q0!#uMuCompton
2 , ~49!

2MGudecay5E d4p

~2p!4 ~2p!d~1 !~p2!
d4p8

~2p!4 ~2p!d~1 !~p82!

3
d4q

~2p!4 ~2p!d~1 !~q2!~2p!4d~4!~k2p2p8

2q!3@11 f ~1 !~q0!#@12 f ~2 !~p0!#@1

2 f ~2 !~p08!#uMudecay
2 , ~50!

2MGu fusion52E d4p

~2p!4 ~2p!d~1 !~p2!
d4p8

~2p!4 ~2p!d~1 !~p82!

3
d4q

~2p!4 ~2p!d~1 !~q2!~2p!4d~4!~k1q2p

2p8!3 f ~1 !~q0!@12 f ~2 !~p0!#@12 f ~2 !~p08!#

3uMu fusion
2 . ~51!

The averaged over initial spins, summed over final spins m
trix elements for the three processes are

uMuCompton
2 52

4e2g2

3 H s

u
1

u

s
12tS 1

s
1

1

u
1

t

suD J ,

~52!

uMudecay
2 5

8e2g2

3 H p•p81k•p8

p•q
1

p•p81k•p

p8•q

1
2~p•p8!2

~p•q!~p8•q!J , ~53!

y

FIG. 12. Interference contribution to Compton scattering fro
Fig. 11. This can be regrouped with Fig. 8 to form a larger squa
modulus of a single amplitude. It does not genuinely belong to
J(k) class.

FIG. 13. Interference contribution to decay with photon em
sion from Fig. 11. This can also be regrouped with Fig. 9 to form
larger squared modulus of a single amplitude. This is not real
J(k) class contribution.
7-10
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uMu fusion
2 5

4e2g2

3 H t

u
1

u

t
12sS 1

t
1

1

u
1

s

tuD J . ~54!

These amplitudes were calculated in@27# for studying the
change inZ boson properties in the quark-gluon plasm
Note that if one is only interested in the medium modific
tion to the width, it is necessary to subtract the leading or
and next-to-leading order vacuum contribution in Eqs.~47!
and ~50!.

Now we turn to the examples of one of the main subje
of this paper. In Fig. 7 instead of putting the three interm
diate lines on-shell, one could do this to two lepton lin
without touching the photon as shown in Fig. 15. This resu
in the blob on the RHS in Fig. 1 having an internal loo
made up of two lines. As we discussed already in Sec.
they will be put on the mass shell in turn by the ener
contour integration. Thus it is possible to unfold the diagr
into several ones with emission and absorption of partic
with the same four-momentum within one graph. One m
of course put in the associated spectator particles in the g
originated from the blob on the left-hand side~LHS! of Fig.
1 in order for the new graphs to make physical sense. Th
are now depicted in Figs. 16 and 17. In Fig. 16, the mass
vector decays into a real and virtual dilepton pair. The virt
one then either absorbs a photon from and emits it back
the heat bath or emits a photon into the bath before absor
one back. In Fig. 17, the virtual lepton either annihilates w
one from the heat bath to recreate another dilepton pair
is put on-shell via a photon exchange with a lepton in
bath. The lepton line that has just been put on-shell is sho
by a dashed line in the figure. While all these are happen
on one graph, there is merely the vector decay in
accompanying graph. Here there is a photon or a lep
spectator.

These interference graphs can be worked out to be

FIG. 14. Interference vector-photon fusion contribution fro
Fig. 11. Again together with Fig. 10 this can form a large squa
modulus of a single amplitude. Therefore it is in theI (k) class
contribution.

FIG. 15. In this two-loop self-energy with internal self-ener
insertion, only two lines will be put on-shell. One of the blobs w
have an internal loop with two lines.
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2MGu~Fig. 16!52E d4p

~2p!4 ~21!~2p!

3d8~1 !~p2!
d4p8

~2p!4 ~2p!d~1 !~p82!
d4q

~2p!4

3~2p!d~1 !~q2!~2p!4d~4!~k2p2p8!

3@12 f ~2 !~p0!#@12 f ~2 !~p08!#

3@1/21 f ~1 !~q0!#~M̄M*

1M̄* M!~Fig. 16! , ~55!

and

2MGu~Fig. 17!52E d4p

~2p!4 ~21!~2p!

3d8~1 !~p2!
d4p8

~2p!4 ~2p!d~1 !~p82!

3
d4l

~2p!4 ~2p!d~1 !~ l 2!~2p!4d~4!~k2p2p8!

3@12 f ~2 !~p0!#@12 f ~2 !~p08!#@1/2

2 f ~2 !~ l 0!#~M̄M* 1M̄* M!~Fig. 17! . ~56!

Note that the mass shell constraining delta function ofp in
these equations has a derivative because of the double
due to the double propagator (1/p2)2. The sum over final
spins and averaged over initial spins convoluted amplitu
are

~M̄M* 1M̄* M!~Fig. 16!5
16e2g2

3 H p•p81~p•q!~p8•q!

3S 1

p212p•q
1

1

p222p•qD J ,

~57!

d
FIG. 16. Two genuineJ(k) class contributions coming from

Fig. 15. Photon with the same four-momentum is emitted and
sorbed within a single graph. The same photon is required a
spectator in the other graph.

FIG. 17. Opening up the fermion line in Fig. 15 results in t
absorption from and emission back of a lepton into the heat bat
vice versa. These are different examples of generalized forw
scattering on the fermion line. The lepton line from the self-ene
loop is now shown by dashed lines to distinguish them fro
the other leptons.
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and

~M̄M* 1M̄* M!~Fig. 17!

52
8e2g2

3
@2~p• l !~p•p8!2p2~p8• l !#

3S 1

2p• l 1p2 1
1

2p• l 2p2D . ~58!

Similar to what was done to Fig. 15, one can also put o
two lepton lines of Fig. 11 on the mass shell as shown in F
18. In this case, the blob on the RHS of Fig. 1 has an inte
loop consisting of three lines. Converting the photon to a r
one results in the photon absorption-emission interfere
contribution in Fig. 19. Instead of a forward scattering on
lepton in Fig. 16, now different fermions participate in th
emission and absorption. Next either lepton line within t
loop can be put on-shell. One gets interference contributi
where the vector particle gets absorbed by a lepton befo
dilepton pair is radiated off at the end and others where
vector fuses with a virtual photon radiated from a therm
lepton to form a dilepton pair. These are shown in Fig.
All these interfere again with the less interesting simple
cay graph with a spectator.

The mathematical expressions for the contributions
Figs. 19 and 20 are similar to those in Eqs.~55! and ~56!
except ~i! (21)(2p)d8(1)(p2) is replaced by the usua
(2p)d (1)(p2) and ~ii ! the convoluted amplitudes are o
course not the same. These work out to be

~M̄M* 1M̄* M!~Fig. 19!5
16e2g2

3 H 12
~p•p8!2

~p•q!~p8•q!J ,

~59!

and

FIG. 18. Only two lines will be external lines in this two-loo
self-energy and therefore one of the blobs will have an internal l
made up of three lines.

FIG. 19. From the internal loop of Fig. 18, one also gets
genuine interference contribution with photon absorption-emiss
within a single graph.
02500
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~M̄M* 1M̄* M!~Fig. 20!

52
4e2g2

3

p8• l

p• l H p• l 2p•p8

k• l 2p•p8
1

p• l 1p•p8

k• l 1p•p8 J .

~60!

The full result up toO(e2) correction is

G5GLO12GCompton1Gdecay1G fusion12G~Fig. 16!

12G~Fig. 17!1G~Fig. 19!12G~Fig. 20! . ~61!

The factor of two for the various contributions to the width
due to the two possibilities of lepton and antilepton to ta
part in whatever interactions that give rise to that particu
contribution. Note that in theGdecay, G fusion, and GFig. 19,
each has linear infrared divergence enhanced by the B
Einstein distribution but these cancel in the sum of the th
@27,28#.

By opening up the internal loops, each term in Eq.~61! is
now a contribution from a clear physical process and not
a vague one-loop and two-loop contribution which cannot
readily associated with an interaction. In the general cas
self-energy graphs at high orders so that there are mult
internal loops and overlapping lines, the imaginary-time f
malism is just too compact for the physics to be transpar
In any case if one is concerned with the physical processe
lot of terms in the self-energy will not contribute and dro
out once the discontinuity has been taken. Therefore th
will be a lot of fruitless labor, so instead of calculating hoo
and loops of virtual particles, it is much simpler to dise
tangle all of them and calculate instead the amplitudes
on-shell particle interactions. We have shown here that th
could be both squared modulus processes and purely in
ference processes made possible by the presence of the
bath. The latter are not so well known and it is easy to
influenced by the accustomed vacuum picture to believe
there are only the former contributions.

Using these techniques we have, besides working out
Z boson width in a quark-gluon plasma@27#, also calculated
the high mass next-to-leading order dilepton production fr
such a QCD plasma. This is reported in@29#. Some of these
have previously been examined in, for example,@18#. Since
we have not included any form of resummation, we do n
expect the results to agree. But there should be an agree
once the resummed version of the present work is done.
will leave this as a future work.

As a final remark although we exclusively worked with
the imaginary-time formalism, the result for any of th
physical quantities on the LHS in Eqs.~1!, ~2!, ~8!, and ~9!

p

n

FIG. 20. A similar real interference contribution to Fig. 17 fro
Fig. 18. Note that the former internal but now on-shell lepton line
different from that in Fig. 18. There is another similar contributi
from Fig. 18 by opening up the other lepton line in the loop.
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obtained within the real-time formalism should, of course,
the same. The connection between the real- and imagin
time formalism for the first fewN-point functions has been
worked out by various authors@20,26,30–34#. The relevant
quantities in our case are the imaginary part of the two-po
functions. These are related to those in the real-time form
ism by

Im P~k!51tanh~k0/2T!Im P11~k!, ~62!

Im S~k!52coth~k0/2T!Im S11~k!. ~63!

To calculate the imaginary part of the self-energies in r
time, one can use any of the many suggested finite temp
ture cutting rules@20,21,23,26,31,35,36#. Since we are more
interested in what physical processes actually contribut
the production or decay rate of a nonthermalized part
than the mathematical rules by which one calculates
imaginary part ofP(k) or S(k), we will leave this at that
and do not elaborate any further. For the details of the p
ys

D

s

02500
e
ry-

t
l-

l
ra-
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e
e

e-

cise connection between any aspects of the two formali
the readers should consult the references given here.
message that we would like to convey in this paper is that
physical processes that contribute to the LHS of Eqs.~1!, ~2!,
~8!, and~9! are far richer in numbers and stranger than tho
found at zero temperature. The existence of a thermal b
permits many purely interference processes to contrib
which have no counterpart in the vacuum. It has also b
pointed out that it was possible to calculate the rates, p
vided that the finite temperature interference processes w
included, by basing on the actual physical processes ra
than on whichN-point orN-loop functions. The latter are no
immediately physically transparent.
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