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Disentangling the imaginary-time formalism at finite temperature
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We rewrite the imaginary-time formalism of finite temperature field theory in a form that all graphs used in
calculating physical processes do not have any loops. Any production of a particle from a heat bath which is
itself not thermalized or the decay and absorption of a similar particle in the bath is expressed entirely in terms
of the sum of particle interaction processes. These are themselves very general in meaning. They can be
straightforward interactions or the more subtle and less well-known purely interference processes that do not
have a counterpart in the vacuum.
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I. INTRODUCTION mally not necessary. We will address the imaginary-time for-
malism itself and deal with a humber of issues on its usage.
For equilibrium field theory at finite temperature, there Because of its intrinsic similarity with the vacuum theory, it
are two main methods of performing calculations. They areshould be possible to bring it into the form where the differ-
the imaginary-time formalism where one starts out in Euclid-ence is essentially in the thermal weights. It will be shown,
ean space and analytically continues back into Minkowskhowever, that there is a limit to how far this resemblance will
space at the end of the calculation, and the real-time formalgo. And we Will go even furthgr by cutting aI.I internal I_00p§.
ism where the calculation is done in Minkowski space with ~ The imaginary-time formalism is a very nice formalism in
real time throughout. Because the latter has explicit real timéhat by following the established calculational rules of re-
dependence, it is therefore more suitable for time-dependeacing the thermal discrete imaginary energy sum by con-
problems. However it also has the feature of the doubling ofour integrals and analytic continuation, the calculations can
the field degrees of freedom so that each field acquires B8 done very similarly to the familiar vacuum field theory
partner and the propagators become 2 matrices: there- [19]. The needed thermal distributions will be there at the
fore, in the sense that the components used in calculatior%q?band rte%eat?d self-_]??her??_/ |n§ert|obn alongtla sw;gle I'r][e
are scalar quantitiésat T=0 versus matrix quantities in the Wi be sorted out even 1t that fin€ IS subsequently cut or pu
) . . . n shell provided the rules are followed correctly. Thus the
real-time formalism, the simple analogy and stralghtforward0 : ; . . .
similarity to field theoretical calculation in the vacuum are formalism is very compact which can hide many physical
ytoh . . rocesses. For this reason, although the formalism is quite
absent. Intuitively, the difference between the calculation a

. uperior mathematically, it can be very unclear when it
zero and at finite temperature should only be that the lattef;mas to finding out exactly what physical processes are

acquires thermal weights in the phase space integrationg,olved in a particular calculation. The mathematical ad-
This clearly is not the case in the real-time formalism be‘vantage becomes a disadvantage when it comes to the phys-
cause one has in addition to deal with matrix quantities. INcs. For each given calculation involving medium modifica-
this regard, the imaginary-time formalism resembles muchion of the properties of a particle or the production of one, it
more the zero temperature field theory. Having said that ithould be possible to write the result in a form that is a sum
must be stated that we are well aware of the Braaten-Pisarskk all the individual contributing processes. These should
resummation where perturbation theory at finite temperaturgpparenuy be the phase space integra| of each relevant pro-
must be rearrangefdl—5] so that it is not just a matter of cess weighed by a product of thermal distributions, but this is
thermal weights between zero and finite temperature. Thergot entirely true as has already been mentioned and will be
are various applications of this resummation schésee, for  clear later.
example, the above references and §6e10). These have Another related aspect in thermal field theory that has not
also been recast into the form of kinetic equations for sofheen categorically pointed out and discussed is the much
particles within a heat batf11-14. We will choose not to  richer possibility of interference when a process happens in-
complicate matters in this paper and leave resummation ouside a heat bath. Although interference graphs are well
not even including it partially as ih15-18, or, in other  known to be necessary both at zero and nonzero temperature,
words, we will consider only particles typically at the samethey have largely kept theif=0 form when being discussed
scale as the temperature or higher when resummation is fo{ithin the finite T context[20,21]. Thus much of the richness
was not obvious and remained hidden within the “simple”
zero temperature Feynman graphs. The authors are only
Here we are considering everything in the zero temperature fiel@ware of infrequent mentions of this here and there; see Refs.
theory as scalar quantities; in other words, for the purpose of dist22,23 which are two of the few papers which, as far as the
cussion here, we make no distinctions between scalar, spinor, ar@spects of the possibility of interference is concerned, had
vector fields related quantities. These are all scalar in the sense thgpne to some depths. This may be the case because the ex-
have no doubling of the degrees of freedom in the vacuum. istence of spectator particles easily masks any forward
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scattering or similar processes, thus ensuring that it is imposvhose probabilities can be written as squared modulus of the
sible to tell whether the latter happened or not. When we sagorresponding matrix elements, they are represented by
forward scattering here, we mean it in a generalized sense

because this can happen to both a fermion or a boson. We _ a4l 2

will discuss this below, pursue further in the direction of I(k)_; fd@P(Zw) 5 k+i§’p Sipi)|M7’| Fp.
[22,23 but within the imaginary-time formalism, and use (3
thermal QED coupled to a massive vector particle which is

in itself not part of the heat bath as an example in Sec. VI.Here in the energy-momentum conserving delta function for
each proces$”, there are the signs; which depend on

whether each four-momentum is incomings;= + or out-

going s;=—. Fp is a product of particle distributions for

each of the participants that has entryin the energy-
In thermal calculations, it very often concerns the rate offomentum conserving delta function

production of some particles from the heat bath which are

themselves not thermalized or how the medium modifies the Fp=I1 sil6(s)+s6(—s)1f(p?), (4

properties of a particle such as its decay or absorption inside iep

the hot medium. When this is done within the imaginary-

time formalism, one can calculate this order by orégain ~ Where we used (") and f(*) to denote Bose-Einstein and

we are ignoring resummation h¢rand the formalism will ~Fermi-Dirac distribution, respectively, and is a sign for

yield formulas involving thermal distributions and other ex- this purpose. The measude ,, represents that of the phase

pressions. This is fine if one is interested only in the answerspace integrations of the proceBs

If, on the other hand, one would like to know what physical 4

processes contribute to the production of a particle or how dd = H d"p;

another gets absorbed or stimulated to decay inside a me- Picr (2m)*

dium, one can express the formalism in another more physi-

cally explicit way but equivalent to the original formalism. We have used thig(k) above and will use it again below for

To this end, we now make the claim that the differentialgeneric representation of this kind of sum of the contributing

production or emission rate of a particle with four- processes of the squared modulus type.

momentunk per unit volume per unit time from a heat bath, ~ The other generic functiod(k) is for the sum of interfer-

but which is itself not in the heat bath, is essentially given byence processes that involve spectator particles in either one

IIl. THERMAL PROCESS =VACUUM PROCESS ®
THERMAL WEIGHTS, ALMOST BUT NOT QUITE

&9 (pf—mp). (5)

the discontinuity of the self-energy as probability amplitude of the convoluting pair and the
emission-absorption or vice versa of the same particles in the
dr i discII(k) other amplitude of the pair. The function can be represented
O = — f—

—k+ X Sipi)

for a scalar bosorithe generalization to vector bosons is Ik=2> f d®, dep (2m)*5*
P’ iepP'

straightforward and
>< M’)/MP/ M /M D! I ’1)/.; P 6
OdR i discX (k) ( P ) ©

2K K™ ex k) + 1

=1 (k) +J(k) @) Because in these interference graphs, there is emission-

absorption of particles of the same momentum in a single

for a fermion. Each of these can be explicitly expressed i?MPlitude and some of these possibilities have their origin in
terms of a sum of all the physical processes contributing tghermal self-energy insertions on the external lines, which
the production of this particle represented by the functiorfan also be viewed as generalized forward scattering on the
I (k) andJ(k) on the right-hand sidéRHS). Thel(k) part, external lines, the phase space integration meaﬁn‘g for
because of its resemblance to what one gets by cutting rulegich a typical procesg’, in general, becomes

at zero temperaturf24,25, is known (see below. It is es-

sentially the sum of the relevant phase space integrals over dd’ = H d*p, 59 (p2—m?)

the allowed kinematical range of the probability for each Pt iePids (2m)* : :

production process weighed by the particle distributions. The A

existence of theJ(k) part is, however, not well known, at < I1 d’p; (= 1) 6 (p2— m?) @
least not to the same extent that it will be expressed later on jes (2m) ] !

in this paper. It is very easy therefore to assume erroneously

that there is only the contribution frohfk). This is the case for a subgrous of all the external lines of the proce#s in

for example in paper$20,26. We will clarify this in the  which each membeyj in the subgroup has; number of

following sections. thermal self-energy insertions. We find it clearer here to say
For those processes that do not involve a spectator intethermal self-energy insertion since this should be familiar to

ference graph(see Sec. V for clarificationand therefore the readers, but we will eventually switch to the new mean-
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ing of the occurrence of any generalized forward scattering 1
on the external ling. This will be further explained below in 3 5t f(+)(p)}
Sec. V. The above [ i = d’p 2 /\/’(k,p)|
V. phase space integrations only take care of 3, (k)= — 3 5

those momenta that enter into the overall energy-momentum (27) 2p (k=p) |p0:p
conserving delta function. There are other momentum inte- i
grations that are usually being labeled as loop momenta. E+f<+)(p)}
These are represented by the other meadure in Eq. (6) 2 /\/’(k,p)‘
above. Here it suffices to state that we do not consider loops 2p (k—p)?
as such because each loop can be opened up and interpreted Po=—P
as emission-absorption of particles with the same four- 1
momentum. This interpretation will allow us to treat these E—f“(lk— pl)} MK
loop-momentum integrals as phase space integrals so the 4t (k,p)
measuredg, can be expressed in general in a form very 2|k—p| p Po=ko-+|k—pl
similar to Eq.(7). These other phase space integrations will
therefore acquire thermal distributions as well. The product S (k- |)}
of these isFp in Eq. (6). This is different fromF,, which 2 P MKk, p)
retains the form in Eq4) for the external lines. + 2[k—pl p2

For the decay or absorption of a particle with momentum Po=ko~[k=pl
k and massvl not thermalized in the medium, we can simi- (11)
larly write

The vacuum part has also been included in the above expres-
i disclI(k) sion. Now performing analytic continuation and taking the

2MT =+ exg —KIT) -1 I(=K)+J(=k) (8  discontinuity of the self-energ} (k) with the delta function
S(ko+p+|k—p|) for the production of the massive fermion
for a boson and in mind, only the second and the third term in Efj1) have
the right discontinuity. For production, we have to k&t
i disc2 (k) —k° to get
2M TI'= exp(—kolT)+1_|( k)+J(—k) (9) -
for a fermion with the same mass. We are treating the ab-I disc(k) f (277)3(277)5( kot p+[k=p)
sorption as stimulated decay in the presence of the medium, [1+F(p)— ) ([k—p])]
hence the width herd’ is the width in the medium. The M—K,p) _
thermal factor in the denominators of Eq$), (2), (8), and 2p2|k—p| bo=p

(9) are correct because in the lindit— 0, there is no longer a

medium to produce any particles d&/dk— 0. The width, (12
however, will remain finite and is given now by the discon- This can be rearranged to
tinuity of the self-energy in the vacuum. o
idisc (k) d*p )
IIl. SIMPLE EXAMPLES expko/T)+1 (277’)4( ™
. . . . 4.7

The relation of the.dlscontmuny of the self—gner.gy to the x 8+)(p?) ) (2m)6 ) (p'?)
sum of phase space integrals over each contributing process (27")
given in the previous section can be readily shown to hold
for simple cases. We review the case of the one-loop self- X (2m)* 6 (—k+p+p")f ) (pg)
energy as a simple example. For the production of a massive dRrR
fermion from other massless fermions and bosons in a heat xf(—)(pé)Af(_k’p)zzkoT '
bath, the required loop graph is the one of the usual fermion d°k one-loop
self-energy. Within the imaginary-time formalism, we write (13)
it as

s the form we expected from Eq2). The V'is essentially just
S(k)=T E d°p  MKk,p) (10) the square of the vector-fermion-antifermion coupling, which
0. Sth, ) (2m)° pAk—p)?” is all there is for the squared modulus of the probability
amplitude at leading order.
Here we have not stated explicitly which theory is being One could easily use E@l1) to obtain the discontinuity
considered except by using the usual fermion self-energyor the decay of a massive fermion into a fermion and a
graph, it has to be one with vector coupling between bosomoson in the heat bath. The energy conserving delta function
and fermion-antifermion. The numerator is simply denotedto get from Eq.(11) in this case isS(ko—p—|k—p|). Only
by a function/V since its details are not required here. Afterthe first and last term from Eq(11) contribute. It is
converting the discrete energy sum into contour integratiorsimple to follow the same steps and arrive at the form given
and performing the lattdrl9], one gets in Eq. (9) or

025007-3



S. M. H. WONG PHYSICAL REVIEW D 64 025007

1 fermion momentunk of the self-energy under consideration
and the sum of the other lines above it so thg{=k
+2{“‘1pi . The two blobs shaded differently need not be the
same in general and they can be any graphs from very simple
to very complex connecting the lines 1 t@ Our aim is to
put all these lines on-shell so that they become the external
. R lines and each has an entry in the overall four-momentum
m=1 conserving delta function. In other words, we are dividing
T the self-energy in two by cutting through line 11t@ There
is of course more than one way to group lines into the form
FIG. 1. A self-energy diagram at any order in the coupling canin Fig. 1 and therefore different cuts are possible on that
always be rearranged in this form with momentynp flowing  graph. Also at any given order, the self-energy will be a sum
through linei except the last linen where the momenturp,=k  of graphs of the form of Fig. 1. The full results must there-
+3""'p;. The two blobs may be complex vertices or fore be a sum both over different graphs and cuts on those

(m-+1)-point Green's functions and they need not be the samegraphs. This sum will eventually become our sum over dif-
hence the different shadings. There is of course more than ongyrent contributing processes.

possibility of such an arrangement for each graph.

AKX

A. The case of all bosonic external lines

idiscs (k) d*p Lyy2 ] )
— exp—Ko/T) + 1 = (277,)4(277)5( (p?) Our own _approac_h to arrive at.the re_sults in E(c].?, (2),
0 (8), and (9) is by using the imaginary-time formalism and
d*p’ performing the contour integrals of the loop momenta
XW(ZW)5(+)(FJ'2) P1,P2,.--,Pm-1, Without loss of generality, in that order.
Furthermore, lines 1 ton will all be taken to be bosonic and
X (2m)*6W(k—p—p') massless for simplicity. The case that some lines are bosonic
and some fermionic is a generalization which does not affect
X[1—= ) (po)I[1—F(pg)] the proof provided equations to be used below are suitably
XK, p) modified. This will be touched upon briefly in Sec. IVB.
' Since the discontinuity of the self-energy contains a number
:2Mr|one_loop_ (14) of different processes, we will aim at getting only one pro-
cess, say that with the overall energy-momentum delta func-
Note that this could equally have been written wafh) with ~ ton
f as given in the previous section instead &f) with 1 m
+f. Both of the above explicit examples have not &) 54 k+2 Sipi) (15)
function part because this will come at higher orders. More [

precisely these contributions come in at two loop and higher
orders. where thes;’s are a fixed set of signs associated with this
particular process depending on which momenfyris out-
going or incoming. We adopt the convention tisat + for
incoming or absorption of a particle asg= — for outgoing

In this section in order to put up a framework so that lateror emission. This applies also ko By concentrating on Eq.
sections can be more readily understood, we show in oufl5), any pole in the contour integrations that does not con-
own way that Eqs(1), (2), (8), and(9) hold in general. We tribute to this particular chosen process need not be picked
saw in Sec. Il that both thi(k) andJ(k) functions possess up and will be dropped from the discussion. For each line,
the same structure d{k) at least for the external lines in- Which one of the two poles can be picked is determined by
cluded in the delta function conserving the overall four-the signss;’s so that there is only one pole per line that will
momentum. That is, as far as the part associated with lines gontribute to Eq(15). Starting from thep$ contour integra-
the contributing graphs that carry part of the total energytion, it can either pick the pole on line 1 or that on limeln
momentum is concerned, the two functions are the sameeither case, thqag integration will have also two possibili-
J(k) has some extra phase space integrals and distributioriges, that of line 2 or linem in the former case and line 2 or
but these have little to do with the overall momentum con-line 1 in the latter. Since each contour integration will have
servation and they can be viewed as substructures. This witlvo possibilities to pick a pole, there will bé"2?! terms that
be discussed later on. First the main structure of EQs(2), contribute to Eq.(15) after all m—1 contour integrations
(8), and(9), which is the structure of the functidifk), will have been performed. Picking a pole on a line in a contour
be shown first. integral is equivalent to putting that line on-shell and giving

For a self-energy at arbitrary order in the coupling of theit a factor of a thermal distribution. Since there ame-1
theory, it can always be rearranged into the form shown inntegrations andn lines, all but one line will remain off-shell
Fig. 1 where momenturp, flows through line 1p, flows  atthe end. This line will be cut and put on-shell as well when
through line 2, etc., and the last lime carries the boson or the discontinuity of the self-energy is finally taken. There-

IV. GENERAL PROOF
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fore, although in general the numerators of tH& 2terms  that is picked, then there will instead b@1/2+

will be different after the integrations because different sets(*)(—s.p,,)]. In the first case, subsequent integratiopf
of external lines may have been put on-shell, they will be-will yield either the —[1/2+f(*)(s,p,)] or [1/2+
come identical once the discontinuity has been taken. W$(+)(_Slpl_smpm)] thermal factor depending on whether
take the numeratoV(K,p1,pz,....Pm-1) as the part that the pole on line 2 or linenis picked. In the other case, there
does not include the thermal distributions and is evaluated atill be —[1/2+f(*)(s,p,)] or [1/2+ () (—s,p;—SmPm) ]

the mass shells of these particles. Because it is the same fgpm line 2 and line 1, respectively. Continuing like so, there
every term, it can be taken out of the following discussion asyill be different products of thermal distributions. Starting
a common factor. We can concentrate entirely on manipulatfrom the case where each contour integration picks the pole
ing the products of thermal distributions into the desiredof its own line, only one of the lines 1 tm— 1 picks the pole
form. Those readers not interested in the details of this magf line m instead of its own line, the next two lines do not
nipulation could accept on faith that the final form of the pick their own lines, and so on until none of thf contour

product of distributions is correct and skip to Sec. IV B to integration pick their own pole gi°=s;p; . Using the sim-
examine only the identities and the simple examples in Se%lifying notation oo

IV C.
After the discontinuity has been taken, there will &2 fO =t (spy), (18)
terms, each with a different product of thermal distributions.
Writing the propagators in the convenient form f(fj):f(”(—sjpj), (19)
o1 5 (16) fr) =) (+spPmtSipi+Sipj )
5 2 A_ —1 i i e m 1
PGi—P;  2Pis=" Poi—SiPi me " R (20)
fori=1tom—1 and f(fr%_i_,-_...:f(ﬂ(—Smpm—Sipi—SjIOj—'"),
1 1 — S (21)
> = S EEr— 1
Pom—Pm  2Pmsa== Pom*+ SmPm -
where p;=|p;| for i=1,..m—1 andp,=|k+=" p]. If T =12+, (22)

the p‘i’ contour integration picks up the pole on line 1, there
will be the factor—[1/2+f(*)(s;p;)] which includes also etc. The sum of thermal factors from th& 2! terms with all
the vacuum part. On the other hand if it is the pole on fime common factors taken out can therefore be written as

s k=1
m Ziﬂ.l m Ei:1|

m—1 m—1 /m—-1 m—-2 m-1 m—1
F= H ’fi(H_A ( I1 'fi(+))?(_+)_ -1+ E 2 (i k'fi(+))'f(+) 'f(+)
1

m-3 m-2 m—1 m—
— FEOFD ) ) et
=1 k=§j;rl |=§k:+1 (iijsﬁksﬁl ' —m-sh —mesC  —mo s
X ( - 1)m71ﬁf(_+mff(_+r%_ 1?(_+n?|_1_2’f(_+r%_1_2_3' i X?(,-'—n)],l,z,...,(m, 2)" (23)
|
The key to finding a way out of this seemingly endless sum_?(jr%flfzfmf(mfz) by virtue of the last contour integra-

of terms is the observation that each term must have a parfjon p? . They can thus all be paired. Now using the delta
ner. By that we mean for every term contain'ﬁfi@)l as part  function Eq.(15), we get the identity

of the thermal weight, there must be another one that differs ~ _

from this term only in this factor by having fﬁ_)l—f(fni,l,z,...,(m,z)
_?(7+r’r)171727~~*(m—2) in its place instead. This is true be-
cause no matter which sets of poles were picked in the con-
tour integrations, the last integration gf,_, must be able to
pick either its own pole on linen— 1 or the pole on the other m—1'm+1+2+-+(m-2)"

line that now carries the energy, ;. This could be the line (24

m if it has not yet been touched or another line with the after this is applied to every pair, the common factor on the
energypy,_, shifted there via an already performed contourRHS of Eq.(24) can be taken out of E423). We now have
integration. Therefore every term must have eitfig?, or 2™ 2 terms to sort out.

=) _f(H)
_fmfl ffmflfzf---f(mfz)

:(e—kOIT_l)f(+) S
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We shift focus now onto the thermal weighf™), or  the functionJ(k). The latter, factor will carry essentially
_f(+) ~1-2-..._(m-3)- For a similar reason as before, eachthe hidden loop momentum integrations and there will be
term must have either one of the two and these again forr@ssociated thermal weights. We will however adopt an ap-
pairs because of the second last contour integratiquf,of,. proach in which there will not be any loop. But this and the

The identity remaining parts of the functiod(k) are the subjects of Sec.
V.
(f( 7)2_f(—+n1—1—2— (m=3) )fm+1+2+ ~+(m-2)
(+) B. The case of a mixture of bosonic and fermionic external
= oot 120 +(m-3) (25 lines

is a more general form of E¢24) and can be used to remove  For the more general case where there is a mixture of
the last factor in the now common thermal factor on the RHSermionic and bosonic lines amongst the lines Irtin Fig.

of Eq. (24) to get the new common factor 1, the proof is somewhat more complicated because bosonic
o distribution can turn into fermionic distribution and vice
(e M=) 0t o mes) - (26)  versa when they are evaluated at a pole depending on

whether this has an imaginary part with a total of an integer
The number of terms has now been further reduced@®2  nora half-integen+ 1/2 of (27i) imaginary energy. For a
lterating this thermal factor reduction process, a™2  posonic self-energy, there must be an even number of inter-
terms can be grouped together eventually into one commomediate fermion lines and for a fermion self-energy, there

thermal factor must be an odd number of such lines. In the latter case in
0 order not to have a contradiction in our momentum arrange-
F=(e M= )f 0 ot ment in Fig. 1, the last linen must be fermionic whereas in
e f O CIE() the bosonic self-energy there is no such constraint. We could
iyt (27)

nevertheless arrange all fermion lines to be those at the bot-
tom and leaving all boson lines at the top in either case. That
is if there aren boson linesn=m, we arrange the lines so
that line 1 ton will be bosonic and linen+1 to m will be
fermionic. Then for a fermion self-energy the last contour
integration will give the pair combination

The first factor will be divided out by the denominator in Eq.
(1) with k°— —Kk° for production or that in Eq(8) for decay.
The remaining thermal distributions will bé*)(p) for ab-
sorption with s=+ in the delta function in Eq(15) or
—[1+f()(p)] for emission whers= — as expected. Com-

bining the sign factors; s, - -s,, originating from the propa- _f )+
gators in Eq(18) but which have been left out of the discus- e
sion so far, this is thé& 5 in Egs.(3) and (4) —f< ) +f(+
m-1-2—---—(m-2)
3152.--Sm
R e — 28 _
P e_kO/T—]_ ( ) ( K /T+1)f( )lfm+1+2+ ++(m—2)
(31
Now we turn to the phase space integrals in @4 From _ _ o
the m—1 loop integrations, there are already the threedf the line m—1 is fermionic or
momentum measured®p; /(27)3 for i=1 to m—1. This
together with the 1/(@;) from the propagators give® in T+ T ) 2
Eq. (5) fromi=1 up to them—1 entry. The last entryn can
be gotten by introducing the identity f<+ _fﬁm Lo (me2)
dspm 3 4(3) i 7k/T -)
W(ZW) 8 k+§1 sipi | =1. (29 =—(e T+ DI g -

Multiplying this bg/ the remaining 12 and the energy delta if this line is bosonic. This is always true because the number
function (2m) S(k°+ =M, p) from the discontinuity gives of fermion lines connecting the two blobs in Fig. 1 is odd.

m Here we have used the notatidii™)=1/2—f("). For a
k+ >, Sipi)- (300  bosonic self-energy, there is the combination
i=1

(=) _F(=)
By grouping everything else not discussed above which is fn-1=fom12-(m-2)
mainly the numeratoNV(k,p1,P2,....Pm) together, this will ) -
be | My|? if in this particular process the two blobs in Fig. 1 =ttt o2

contain no internal loop momentum that runs completely in-
side the blob. If either one or both contain internal loops then =(e e KIT_ -1)f( 7, m+l+2+ (m-2) -

this will be the product of MpM%+ MEMyp) and Fp in (33
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The thermal factors can be sorted into the desired form in =5;5,8554(F{ 7+ FO) (57 + 1))
Eq. (4) using the identities
X(F57+15) 5 )

— (= U=, (34)

- - - :51325334]:(+)f(+)f(+)f(—)(e*k0/T_1)‘
(FO+ D)) =1, (35) vz s (40
—(F+ U =ff ) (36)

V. THE INTERNAL STRUCTURES OF (k) AND J(k)

iteratively as simila_rly dong before in the previous section. The previous sections showed how the discontinuity of
L phase_ space integration measure and th.e iy tﬁﬁe self-energy could be arranged into phase space integra-
same as discussed there. The proof of the main form of thg, o oyer all the external lines weighed by their respective
funcnon (k) or J(k) is therefore complete. In S.ec. V, the thermal distributions. There we called any line that showed
integrand and substructureslitk) andJ(k) or equivalently e explicitly in Fig. 1 external and these all have entries in
Fhe internal structures of the blobs in Fig. 1 will be the sub-,o gverall energy-momentum conserving delta function in
Ject. Eq. (3) and Eq.(6). In this section, we will deal with the
remaining structures in these equations. These structures
C. Examples come essentially from the blobs in Fig. 1 which have not

In this subsection, we give two examples of the thermaP€en discussed yet. _
factor reduction from 2~ terms down to one discussed in I the simplest case, each blob consists of a tree graph
the previous section. First we consider a bosonic self-energyith all lines leading to the external lines 1oand the line
with m=3 and one-fermion loop. In accordance to our dis-With four-momentumk. This can be just a few lines at low

cussions above, we push all fermion lines to the bottom s@Tders or a very large tree at high orders. All internal lines’

line 1 will be boson and lines 2 and 3 will be fermion. With- €nergies-momenta are fixed completely by the external lines
out stating explicitly what process to get from the self- and there is no additional integration and thermal distribution
energy, we choose the very general energy conserving dewgher_ than those of t_he externa_1| lines. If thze two blobs are
function 8(ky+ S1p1+ S,Pa-+ Ssps). After the discontinuity identical, then there is automat|ca_lly tha1,|°. If they are

has been taken, the sum of thermal distributions is not, then there is the interferencet, M7+ M3z Mp with
5 5 5 Fp=1.In the case that1, and M are of the same order in
F'=5;5,85(— F0 T ) +F T+ T, the coupling, there must also be the possibilifiés,|? and

|/\77:|2 so that a larger squared modulus can be formed

| Mp+ M2 For familiar field theories such ag®, ¢*,
QED, QCD, etc., tree graphs with the same number of exter-
nal legs are of the same order so this grouping into a larger
squared modulus is always possible. This casel{&) is
rather trivial but has to be stated first for the sake of com-
pleteness before we move on to more complex cases. So

~FT) ). 37
This can be reduced by pairing as follows:

F "= 515283(?g_+ ) _’f(__3))( _?(2_ ) +’f(—_l)— 3)

=515,85(F1 "+ FU) (1) =17 5) nonidentical blobs with no internal loop are the simplest ex-
amples of interference graphs itk) that can actually be
=—5,8,55f LS (e R0/ T— 1), (38)  grouped into the class of functidigk). It is the more com-

_ _ plex interference graphs genuinely belonging to th)
As another example, we consider a fermion self-energfunction part that are our main concern. Towards this we
with m=4. This time only linem is fermionic. The sum of now turn.

thermal distributions now is In the previous paragraph, we discussed the case of the
tree graphs. This type of contribution can generally be inter-
F'=5,5,855,( — Ty S RS + T 15T TFS ) preted straightforwardly as scattering processes or other in-
_ _ _ _ _ teractions. For cases of a few particles in the initial state,
HTF) SRS, —TTE) ST there will always be the vacuum counterpart. These are quite
~ ~ ~ familiar physically. We need not say any more on these.
S PR ARl ST S What wepfir>1/d Iesgobvious and less V\yell k)rlnown is the physi-
TR =) F(o) cal interpretation of the case that the blobs Fig. 1 have inter-
At o a) (39 nal loops. Within the imaginary-time formalism, it is not too
o ) difficult, albeit tedious, to perform the calculation of these
Pairing as before gives graphs and it is all too easy to lose the feel of what are the
- ~ ~ - actual physical processes involved in any particular calcula-
F/=s518,855,(T1 =T (T =T tion. The nature of these graphs made it even harder because
+) %) of the fact that first th_ere_ i_s no vacuum counterpart an_d sec-
X3 =1 5y ond they are the nonintuitive interference type. If one is not
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FIG. 2. An example graph for a blob with one loop. FIG. 4. The associated graph to Fig. 2.

clear in one’s thinking and clings on to the over-familiar Remembering that Figs. 2 and 4 together form an inter-
vacuum picture, they coulld even appear to be impossible. farence contribution, opening up the loop in Fig. 2 would

_ Let us consider the simple case that one blob has ongeem 1o render the interference impossible because there
internal loop and the other none; the procedure in arriving afhust be the same incoming as well as outgoing particles in
the form of (k) has already put all the external lines on- oih graphs. However, graphs representing interactions in a
shell. So the calculation of this blob is equivalent to thepeat hath are not quite the same as those in the vacuum. It is
evaluation of a one-loom-point function wheren<(m 5 common practice to use the same graphs in both situations
+1). The rules of the imaginary-time formalism stlpglated but it must not be forgotten that in a heat bath graphs should
that the energy contour integration of the loop must pick oufye ynderstood to be implicitly accompanied by spectator par-
every pole in the propagators in turn o_f all th_e particles a'QnQicIes that make up the multiparticle system. So opening up
in turn every particle propagating around the loop on-shelly jnto Fig. 5. The momentum carried by the spectator line in

For each particle around the loop, there are two poles. Ongjg. 5 s of course different when this is convoluted with
can be interpreted as its emission into the heat bath from ongach of the thregu), (v), and(l) pairs in Fig. 3.

vertex and its absorption from the bath by another. The other gg in this simple example, there will be six terms in the
is absorption from the heat bath now at the first vertex and itgnction J(k). Each will have a phase space integration of
emission back into it from the second. An example graph foljthers= + form

a blob with one internal loop and three external lines is

shown in Fig. 2. This graph can be turned into the six graphs d4

in Fig. 3 after the energy contour integration put the three dgop,=(27)4(27r)6<5)(lz—m2), (41)
internal lines in turn on mass shell. These are indicated by

the now on-shell large dotted lines in Fig. 3. originating from the previous loop integration. Because these
In our special case, it is easy to turn the blob with the 100P.,rrespond to the emission and absorption of particles of the

into a sum of tree graphs with emission-absorption of par<;me momentum within a single graph, they do not play a

ticles of the same momentum. If one now takes a step bachart in the overall energy-momentum flow and have not an

and looks again at the whole picture, there is also the oth&l«y in the corresponding constraining delta function. The
blob that helps make up the whole self-energy which consistg nission and absorption of these particles must come with

of only a tree graph. That for our example graph in Fig. 2tnarmal distribution. Because of the unusual nature of the

will be that shown in Fig. 4. emission-absorption or the absorption-emission in the same
graph, each of these in our example with only one internal
loop acquires the distribution

Fpr=112+ (|19 (42)
for boson or
Fpr=1/2—1([19) (43)

for fermion in this simple case. For more complex cases
where the blobs are not identical and each has several inter-
nal loops, after opening up each loop in the blobs and adding
the corresponding spectator on the other blob the phase space
integration becomes

0000000000000

(11)

FIG. 3. Performing the energy contour integration is equivalent
to putting the internal lines in turn on sheluil) and(u2), (v1) and
(v2), and(I1) and(I2) are graphs resulting from putting the upper,
vertical, and lower internal line, respectively, on-shell. Each pair of FIG. 5. This is how Fig. 4 should be properly represented once
graphs corresponds to the two poles from each line. the loop in Fig. 2 has been opened up.
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, 2 2 2
ﬁfv~<::::>\hfw = ﬂv~ﬁf&<:: :::]:iii -+ ; {
I
FIG. 6. The leading contribution to the decay\6f. FIG. 8. Contributions to Compton scattering from Fig. 7.
L d4 i 5 5 VI. A MORE COMPLEX AND COMPLETE EXAMPLE
dep=]1 Z—=a(2m s (7-m?), (44)

i (2m) In this section we will use QED coupled to a massive

vector particle as an example. The relevant Lagrangian is

wherelL is the combined total number of internal loops be- o

tvyeen the two blobs. If there are any self-energy insertions £=—1 FAVF,,+ lﬁ)’“(iﬂu—eAﬂ—gVM)lﬂ—% G*'G,,
hidden in a blob, then this loop will have to be opened up Lo

too. Therefore each self-energy insertion will be turned into -2 MVAV,, (46)
the emission and absorption of a particle of the same four-

momentum from a single line. If the line is fermionic, this is Y Y ,

the usual forward scat%ering, but there is also the case that‘ghereFfL andG* are the field tensor_s fo_r te* andv*
bosonic line emits and absorbs, or vice versa, a fermion Oyector fields, respectively. The CO.UDI'@ Is taken to _be
the same four-momentum. Thus we label these generically a{EUCh yveaker ”“%B' e>g, so only higher qrder corrections
generalized forward scattering. In this case, the internal loo e will be considered. Our heat bath will consist (zn'ly of
turned phase space integrations will be of the form of Eq_eptons and photons at a temperatlifand the vector” is

(7). The factor of thermal distribution when there are manync.)t itself thermallzed. A massive vector W't.h a mags-T .
loops becomes will be sent into the heat bath to determine the medium

modification of its width up to two loops.
At leading orderLO), there is only the decay into a dilep-
L ton pair contribution to Eq(8) coming from the one-loop
For=11 @2+ s£0(]19))). (45  self-energy shown in Fig. 6. This is of course only a contri-
i bution of the type of (k). From Eq.(14) after some substi-
tutions, this contribution is

Because there must be four or a larger even number of

graphs obtainable from each loop, the sum in @®gover P’ d*p

is a sum over the main processes as well as over the possibl@MI'| o= f W(ZW)W)(PZ)
subprocesses of emission-absorption of particles in each

d4p/

(2m)

7(2m) 8 (p'?)

main process. X (2m)* 6 (k—p—p")[1-f)(py)]
The steps in arriving at the form of thKk) part contri- (s 5
bution to the production from or the decay of a particle in a X[1=1"(po) ]| M|{o (47)

heat bath are now shown. So expressing a production or a

stimulated decay of a particle in a heat bath in terms of all L . .

the contributing processes should not be restricted only t ere the numerator is just the fam|l|ar D.II’aC trgce of the
processes expressible in terms of squared modulus amp gpton loop one gets gfter summing over final spins and av-
tudes. In other words, there is the very importa¢i) inter- eraging over initial spin

ference contributions in addition to the better knowk)

part. In the next section we will illustrate all these in an 492 2(p-k)(p’-K)

explicit example. But before we do that it must be mentioned |M|E°:T p-p’+ — vz [ (48)

that the vacuum parts still have to be regularized and renor-
malized in the usual way. We have assumed that this was

implicitly understood. At the next-to-leading order, there are only three self-

energy graphs but there are many physical processes hidden

2
]
FIG. 7. Two-loop self-energy with internal self-energy insertion.
All three internal lines in the middle will be put on-shell as external
lines; therefore, the two blobs are tree graphs. FIG. 9. Decay with photon emission from Fig. 7.
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| D

FIG. 12. Interference contribution to Compton scattering from
Fig. 11. This can be regrouped with Fig. 8 to form a larger squared

FIG. 10. Vector-photon fusion contribution from Fig. 7. modulus of a single amplitude. It does not genuinely belong to the
J(k) class.
within these graphs. In the following graphs, the thick wavy d%p 4,
line is for the massive vector while the thin wavy line is for 2MT| comptor= J'—4(27T)5<+)(p2) 2(27)
the photon. The lines overlaid by the vertical dashed line are (2m) (2m)
the exposed external lines of Fig. 1. First we examine those d%q
arrangements of these graphs with no internal loops within X 8 (p'?) = 4(277) 8 (g?)(2m)4 6P (k
the blobs. By putting the three internal lines in the two-loop (2m)
graph with an internal self-energy in Fig. 7 on-shell, three +p_p’_q)f(—)(po)[l_f(—)(p(’))][l
physical processes emerge. We get a sum of the squared
modulus amplitudes of two Compton scattering in Fig. 8, of +1(a0) I M| Eompton (49

one decay with photon emission in Fig. 9, and of one vector- " 4o’
photon fusion in Fig. 10. These are clearly all contributions 5, :f P 278 (p2 P 2 8 (p'2
to thel (k) function part in Eq.(8). There will of course be [decay (2 )4( ™ &P )(277)4( m& T (p’)

the other contributions where the internal self-energy is on g4
the lower lepton line. These can easily be taken care of by a % q4 (2m) 8 (q?)(2m) 48D (k—p—p’
simple factor of two by symmetry. (2m)
The other two-loop graph is the one with a vertex correc- — ) X[1+F (o)1= (po) [ L
tion drawn in Fig. 11. Putting all three internal lines on-shell,
three physical, albeit interference, processes emerge. They - f(’)(p(’,)]lj\/llﬁecay (50)

are again Compton scattering in Fig. 12, three-body decay in

Fig. 13, and fusion in Fig. 14. Because they are all interfer- 4
g- g- 4 2Mr|fu5|on f(z )4(277)5(+)( )

d*p’

7(2m) 6 (p'?)

ence contributions, it appears that they belonglth). As (2m)*
we said in Sec. V, blobs that have no internal loop or have
ly a tree struct Id b d with other contrib . d'a
only a tree structure could be regrouped with other contribu- ——(2m) 8 (gD (2m) 8D (k+q—p
tions to form a larger amplitude. Examining the pairs in Figs. (2 )

8 and 12, Figs. 9 and 13, and Figs. 10 and 14 and also not p " - N
forgetting that the two other lepton lines together with the —P)X A (@)1= (po) 11— 11 (po)]
photon line in Fig. 11 could also be put on-shell as well to ><|M|f2usion (51)

give similar contributions, this can of course be done as is

well known. We merely broke down the contributions into The averaged over initial spins, summed over final spins ma-
parts so that they could be clearly seen, within the framelrix elements for the three processes are

work that we are presenting the paper, which contribution

came from which diagram. Loosely speaking the contribu- |M|é0mpton: - _g
tions from Fig. 11 should be id(k) but it is better to tighten 3

the definition so that this function is restricted to the genuine, (52)
not well-known in-medium interference contributions to the 2 , / /
8e -p’+k- -p’+k-
modification of the width. | M|Geca 3g [p P L p/ P
After combining the contributions from Figs. 7 and 11, P-4
we get for the three processes 2(p-p’)? }
53
NCOCR &3

<

FIG. 13. Interference contribution to decay with photon emis-

FIG. 11. Two-loop self-energy with vertex correction. Put the sion from Fig. 11. This can also be regrouped with Fig. 9 to form a

three intermediate lines on-shell and there will not be anylarger squared modulus of a single amplitude. This is not really a
internal loop. J(k) class contribution.

025007-10



DISENTANGLING THE IMAGINARY-TIME FORMALISM . .. PHYSICAL REVIEW D 64 025007

RGN O B

FIG. 14. Interference vector-photon fusion contribution from  F|G. 16. Two genuinel(k) class contributions coming from
Fig. 11. Again together with Fig. 10 this can form a large squaredrig. 15. Photon with the same four-momentum is emitted and ab-
modulus of a single amplitude. Therefore it is in the) class  sorbed within a single graph. The same photon is required as a

contribution. spectator in the other graph.
4e’g%(t u 1 1 s 2MT| —2f d'p (—1)(2m)
Fig. 16 — o NA\UT
|M|f2u3|on_T[_+?+25 T"'G"'m ] (54 (Flo- 10 (2m)*
d4 ’ d4q
1(+) (2 ()2
These amplitudes were calculated [2i7] for studying the )
change inZ boson properties in the quark-gluon plasma. x(2m) 6" (g*)(2m)*6' Y (k—p—p")
Note that if one is only interested in the medium modifica- X[1—f ) (p)[1—F(pd)]
tion to the width, it is necessary to subtract the leading order - 0
and next-to-leading order vacuum contribution in E@) X[1/2+ ) (qg) [(MM*
and(50). _
Now we turn to the examples of one of the main subjects + M* M) (rig. 16 5 (55

of this paper. In Fig. 7 instead of putting the three interme-; 4
diate lines on-shell, one could do this to two lepton lines
without touching the photon as shown in Fig. 15. This resultszwIF . _5 d*p 12

in the blob on the RHS in Fig. 1 having an internal loop |(Fig. 17 (=1)(2m)

(2m)*
made up of two lines. As we discussed already in Sec. V, 4

they will be put on the mass shell in turn by the energy X 8'(F)(p?) L (2m) 8 (p'?)

contour integration. Thus it is possible to unfold the diagram (2m)

into several ones with emission and absorption of particles d4l

with the same four-momentum within one graph. One must X——=(2m) 8 (12)(2m)* 6D (k—p—p’)
of course put in the associated spectator particles in the graph (2m)

originated from the blob on the left-hand sifleHS) of Fig. X[1— ) (po)J[1—F ) (py)][1/2

1 in order for the new graphs to make physical sense. These L L

are now depicted in Figs. 16 and 17. In Fig. 16, the massive =) NMM* + M* M) (rig 17 (56)

vector decays into a real and virtual dilepton pair. The thuall\Iote that the mass shell constraining delta functionp df

one then either absorbs a photon from and emits it back int ese equations has a derivative because of the double pole
the heat bath or emits a photon into the bath before absorbin&;ue to the double propagator p#j2. The sum over final

one back. In Fig. 17, the virtual lepton either gnnihilates_ With_spins and averaged over initial spins convoluted amplitudes
one from the heat bath to recreate another dilepton pair or if;o

is put on-shell via a photon exchange with a lepton in the -

bath. The lepton line that has just been put on-shell is shown — . = —., _16e“g , ,

by a dashed line in the figure. While all these are happening(MM FMEM)rg. 16=—3 | PP H(P-A)(P"-0)

on one graph, there is merely the vector decay in the

accompanying graph. Here there is a photon or a lepton X[ = ! +— 1 ”

spectator. p°+2p-q p°—2p-q
These interference graphs can be worked out to be (57)

FIG. 17. Opening up the fermion line in Fig. 15 results in the
absorption from and emission back of a lepton into the heat bath or
vice versa. These are different examples of generalized forward

FIG. 15. In this two-loop self-energy with internal self-energy scattering on the fermion line. The lepton line from the self-energy
insertion, only two lines will be put on-shell. One of the blobs will loop is how shown by dashed lines to distinguish them from
have an internal loop with two lines. the other leptons.
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! FIG. 20. A similar real interference contribution to Fig. 17 from

FIG. 18. Only two lines will be external lines in this two-loop Fig. 18. Note that the former internal but now on-shell lepton line is
se|f-energy and therefore one of the blobs will have an internal |00r51ifferent from that in Flg 18. There is another similar contribution

made up of three lines. from Fig. 18 by opening up the other lepton line in the loop.
and (MM* +M*M)(Fig. 20
_ _ _ 4’ pl[pl-p-p’ p-l+p-p’
(MM* + M* M) gig. 17 T3 pllkl=-pp kel+p-p|
8e%g? (60)

=——3[2(p-(p-p")—p*(p’"- )]
The full result up to®(e?) correction is

« 1 1
2p1+p%  2pi-p?)

(58) I'= 1-‘LO'I' 21-‘Compton'l' 1—‘decay*' 1—‘fusion'l' 21-‘(Fig. 16
+ 20 (rig. 19+ U(Fig. 19120 (Fig. 20 - (61)

Similar to what was done to Fig. 15, one can also put onlyThe factor of two for the various contributions to the width is
two lepton lines of Fig. 11 on the mass shell as shown in Figdue to the two possibilities of lepton and antilepton to take
18. In this case, the blob on the RHS of Fig. 1 has an interngbart in whatever interactions that give rise to that particular
loop consisting of three lines. Converting the photon to a reatontribution. Note that in the gecay T'rusions @and Trig. 10,
one results in the photon absorption-emission interferenceach has linear infrared divergence enhanced by the Bose-
contribution in Fig. 19. Instead of a forward scattering on theEinstein distribution but these cancel in the sum of the three
lepton in Fig. 16, now different fermions participate in the [27 2g.
emission and absorption. Next either lepton line within the By opening up the internal loops, each term in E{) is
loop can be put on-shell. One gets interference contributionfiow a contribution from a clear physical process and not just
where the vector particle gets absorbed by a lepton before &vague one-loop and two-loop contribution which cannot be
dilepton pair is radiated off at the end and others where theeadily associated with an interaction. In the general case of
vector fuses with a virtual photon radiated from a thermalself-energy graphs at high orders so that there are multiple
lepton to form a dilepton pair. These are shown in Fig. 20internal loops and overlapping lines, the imaginary-time for-
All these interfere again with the less interesting simple demalism is just too compact for the physics to be transparent.
cay graph with a spectator. In any case if one is concerned with the physical processes, a

The mathematical expressions for the contributions inet of terms in the self-energy will not contribute and drop
Figs. 19 and 20 are similar to those in EGS5 and (56)  out once the discontinuity has been taken. Therefore there
except (i) (—1)(2m)8'M(p?) is replaced by the usual will be a lot of fruitless labor, so instead of calculating hoops
(2m)8)(p?) and (ii) the convoluted amplitudes are of and loops of virtual particles, it is much simpler to disen-

course not the same. These work out to be tangle all of them and calculate instead the amplitudes of
on-shell particle interactions. We have shown here that these
- - 16e2g? (p-p')? could be both squared moduIL_Js processes and purely inter-
(MM* + M* M) (g, 19= ( — 4 ] ference processes made possible by the presence of the heat
3 (p-aq)(p’-a) bath. The latter are not so well known and it is easy to be

influenced by the accustomed vacuum picture to believe that
(59) there are only the for_mer contributions. _ _
Using these techniques we have, besides working out the
Z boson width in a quark-gluon plasn7], also calculated
and the high mass next-to-leading order dilepton production from
such a QCD plasma. This is reported 28]. Some of these
have previously been examined in, for examplsg]. Since
~v~< we have not included any form of resummation, we do not
® jjf‘ + >R{]:,/ expect the results to agree. But there should be an agreement
A once the resummed version of the present work is done. We
will leave this as a future work.
FIG. 19. From the internal loop of Fig. 18, one also gets a As a final remark although we exclusively worked within

genuine interference contribution with photon absorption-emissiorthe imaginary-time formalism, the result for any of the
within a single graph. physical quantities on the LHS in Egd), (2), (8), and(9)
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obtained within the real-time formalism should, of course, becise connection between any aspects of the two formalisms
the same. The connection between the real- and imaginaryhe readers should consult the references given here. The
time formalism for the first fewN-point functions has been message that we would like to convey in this paper is that the
worked out by various authof0,26,30—34 The relevant physical processes that contribute to the LHS of Efjs.(2),
quantities in our case are the imaginary part of the two-point8), and(9) are far richer in numbers and stranger than those
functions. These are related to those in the real-time formalfound at zero temperature. The existence of a thermal bath

ism by permits many purely interference processes to contribute
which have no counterpart in the vacuum. It has also been

ImII(k) = +tanh(ko/2T)Im I15(k), (62 pointed out that it was possible to calculate the rates, pro-

vided that the finite temperature interference processes were

Im X (k) = —coth(ko/2T)Im 2 14(k). (63 included, by basing on the actual physical processes rather

fhan on whichN-point orN-loop functions. The latter are not

T Iculate the imaginar rt of th If-energies in r . .
o calcuiate the Imaginary part ot the Sel-energies ca mediately physically transparent.

time, one can use any of the many suggested finite tempeer
ture cutting ruleg20,21,23,26,31,35,36Since we are more
interested in what physical processes actually _contrlbutt_e to ACKNOWLEDGMENTS

the production or decay rate of a nonthermalized particle

than the mathematical rules by which one calculates the The author thanks Joe Kapusta for useful discussions.
imaginary part oflI(k) or X (k), we will leave this at that This work was supported by the U.S. Department of Energy
and do not elaborate any further. For the details of the prednder grant No. DE-FG02-87ER40328.
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