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Rayleigh-Schrödinger perturbation theory based on Gaussian wave functional approach
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A Rayleigh-Schro¨dinger perturbation theory based on the Gaussian wave functional is constructed. The
method can be used for calculating the energies of both the vacuum and the excited states. A model calculation
is carried out for the vacuum state of thelf4 field theory.
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I. INTRODUCTION

The Gaussian wave-functional approach~GWFA! @1#, or
Gaussian approximation, has become a powerful and im
tant tool to extract the nonperturbative results of quant
field theory @2–4#, finite temperature field theory@5#, and
condensed matter systems@6,7# since Stevenson’s advoca
tion of the method about two decades ago@8#. The Gaussian
effective potential~GEP! obtained from the GWFA provide
a good starting point for further investigations of vario
systems@9–17#. Moreover, this approximation can also b
used for realizing some novel ideas@18#. However, the
GWFA is essentially a variational approximation, and hen
improvement of the obtained result is not straightforward.
far, there exist mainly two methods to improve the GWF
One way is to continue using the variational method w
more elaborate, non-Gaussian trial wave functionals. For
ample, Kümmel and his collaborators developed the coup
cluster method and obtained results beyond the Gaussia
proximation of thelf4 andf6 models@9#; Ritschel and his
collaborators constructed a non-Gaussian trial wave fu
tional through a nonlinear canonical transformation@10#; in
order to investigate (311)-dimensionallf4 field theory,
Yotsuyanagi proposed an improved scheme of the GWFA
adopting a BCS-type wave functional@11#. Another way of
improving the GWFA is to use appropriate expansions wh
give the GEP in their lowest order. In this aspect, Okopin´ska
developed an optimized expansion method to calculate
generating functional with the Euclidean formalism@12#. In
the same Euclidean formalism, Stancu and Stevenson for
lated a slightly different expansion scheme and calcula
the post-GEP in the spirit of the background-field meth
@13#. Based on the GEP, Cea proposed a generalized
with a variational basis and carried out the calculation w
the help of the standard perturbation technique in quan
field theory @14#. In the late 1990s, within the Minkowsk
formalism, one of the authors~Yee! and his collaborators
developed the background field method to give an expan
of the effective action around the Gaussian approximate
sults @15#. Recently, in order to calculate the partition fun
tion of a fermionic system, two of the authors~Kim and
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Nahm! and their collaborator proposed a variational pert
bation scheme based on the functional integral without
sorting to the background field method@16#. Additionally,
Solovtsovet al. proposed a kind of variational perturbatio
theory to calculate the effective potential@17#. All these in-
vestigations improve the GEP or Gaussian-approximate
sult with miscellaneous degrees of success. Neverthe
further investigations are needed still to achieve better
proximations.

We note that Rayleigh-Schro¨dinger perturbation theory is
one of the basic techniques in nonrelativistic quantum m
chanics@19#. It is also widely used in statistical mechanic
@20# and, recently, generalized to quantum field theory@21#.
Conventionally, Rayleigh-Schro¨dinger perturbation theory is
based on an exactly solvable part of the Hamiltonian o
system. Recently, two of the authors~Kim and Nahm! and
their collaborators calculated the energies of an anharm
oscillator by combining Rayleigh-Schro¨dinger perturbation
theory and variational method and obtained satisfactory
sults @22#. In this paper, we develop a variational Rayleig
Schrödinger perturbation theory based on the Gauss
wave-functional approach~RSPTGA! in quantum field
theory. Different from the schemes mentioned in the l
paragraph, RSPTGA can be used to calculate the energie
both the vacuum and excited states. Applying RSPTGA
lf4 model, we calculate the vacuum state energy up to
third order. The result improves the GEP substantially a
indicates a fast convergence. Comparing with the resul
Ref. @14#, our result up to second order is shown to introdu
an additional term.

Next section, we construct a quasi-free-field eigenstate
based on the GWFA, and develop RSPTGA based on
eigenset. In Sec. III, the vacuum state energy of thelf4

field theory will be calculated using RSPTGA. Finall
physical implication of the present results will be discuss

II. RAYLEIGH-SCHRO¨ DINGER PERTURBATION
THEORY BASED ON THE GWFA

In this section, we briefly introduce the GWFA, and co
struct a quasi-free-field eigenstate set. Based on this ei
state set, we construct RSPTGA.
©2001 The American Physical Society06-1
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We consider a model with the Lagrangian density

L5
1

2
]mfx]

mfx2V~fx!, ~1!

where x5(x1,x2, . . . ,xD) represents a position in
D-dimensional space,fx[f(xW ) is the field atx, and the
potential V(fx) has a Fourier representation in a sense
tempered distributions@23#. Many model potentials, such a
polynomial models, sine-Gordon and sinh-Gordon mod
possess this property. According to Ref.@4# ~JPA!, the
GWFA produces the best trial vacuum wave functional:

u0& (0)5N expH 2
1

2Ex,y
~fx2w! f xy~fy2w!J , ~2!

where N is the normalization constant~i.e., (0)^0u0& (0)

51), *x,y[*dDxdDy, and f xy5*dDp f(p)eip(x2y) with p
5(p1,p2, . . . ,pD). The classical constantw is equal to the
Gaussian-vacuum expectation value offx :

w5 (0)^0ufxu0& (0). ~3!

Here,

f ~p!5Ap21m2~w!, ~4!

and

m2~w!5E
2`

` da

2Ap
e2a2/4V(2)S a

2
AI 1@m~w!#1w D , ~5!

where V(n)(z)5dnV(z)/dzn5*2`
` (dq/A2p)( iq)nṼ(q)eiqz

@Ṽ(q) is the Fourier representation ofV(z)# and I n(Q)
5*@dDp/(2p)D#@Ap21Q2/(p21Q2)n#. The GEP of the
system, Eq.~1!, is given by

VG~w!5
1

2
I 0~m!2

m2

4
I 1~m!1E

2`

` da

2Ap
e2a2/4

3VS a

2
AI 1~m!1w D ~6!

with m chosen from the three possibilities: solution of E
~5!, m50 and m→` @4# ~JPG!. @Hereafter, we will write
m(w) asm for simplicity except for special cases.# We note
that whenVG(w) has the absolute minimum atw0 , m(w0)
becomes just the physical mass andVG(w0) represents the
vacuum state energy. The symmetry of the vacuum can
discussed using Eqs.~3!–~6!.

For the Gaussian vacuum, Eq.~2!, one can construct the
following annihilation and creation operators@4# ~ZPC!:

Af~p!5S 1

2~2p!Df ~p!
D 1/2E

x
e2 ipx@ f ~p!~fx2w!1 iPx#

~7!

and
02500
f

s,

.

be

Af
†~p!5S 1

2~2p!Df ~p!
D 1/2E

x
eipx@ f ~p!~fx2w!2 iPx#

~8!

with the relations @Af(p),Af
†(p8)#5d(p82p) and

Af(p)u0& (0)50. Here, Px[2 i (d/dfx) is the canonical
conjugate operator tofx with the commutation relation
@fx ,Py#5 id(x2y). Based on these operators, one can c
struct the quasi-free-field Hamiltonian,

H05E dp f~p!Af
†~p!Af~p!

5E
x
F1

2
Px

21
1

2
~]xfx!

21
1

2
m2~fx2w!22

1

2
I 0~m!G .

~9!

The Gaussian vacuum, Eq.~2!, is the ground state ofH0 with
zero energy eigenvalueE0

(0) . The excited states ofH0 are
@21#

un& (0)5
1

An!
)
i 51

n

Af
†~pi !u0& (0), n51,2, . . . ,̀ , ~10!

with the corresponding energy eigenvalue

En
(0)5(

i 51

n

f ~pi !. ~11!

Note that Eq.~2! is not a naive vacuum, since it contain
information on the interacting system, Eq.~1!. Obviously,
the wave functionalsun& (0) and u0& (0) are orthogonal and
normalized to (0)^nun& (0)5(1/n!) (Pi (n))k51

n d(pk82pi k
)

@here Pi(n) represents a permutation of the set$ i k%
5$1,2, . . . ,n% and the summation is over allPi(n)s#. un& (0)

describes an-particle state with the continuous momen
p1 ,p2 , . . . ,pn . u0& (0) andun& (0) with n51,2, . . . ,̀ consti-
tute the complete set forH0, which we call quasi-free-field
complete set.

Based on the above complete set, one can readily a
the conventional Rayleigh-Schro¨dinger perturbation tech
nique to calculate the energy of the system, Eq.~1!. In order
to do so, we write the Hamiltonian of the system Eq.~1! as
H5H01HI5H01(H2H0) with

HI5E
x
F2

1

2
m2~fx2w!21

1

2
I 0~m!1V~fx!G . ~12!

Following the Rayleigh-Schro¨dinger perturbation procedur
@19,21#, one can obtain the wave functionals and energies
the vacuum and excited states, respectively,

un&5(
l 50

` FQn

1

H02En
(0) ~En2En

(0)2HI !G l

un& (0), ~13!

and
6-2
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En~w!5En
(0)1(

l 50

`

3 (0)^nuHIFQn

1

H02En
(0) ~En2En

(0)2HI !G l

un& (0),

~14!

with Qn5( j Þn
` *dDp1dDp2•••dDpj u j & (0) (0)^ j u.

For the case ofn50 andl 50, Eq.~14! gives the vacuum
energy up to the first orderE0

15E0
(0)1E0

(1)5*xVG(w) which
is just the product of the GEP and the space volume. Th
employing Eq.~14! with n50, one can get the effectiv
potential for the system, Eq.~1!,

VRS~F!5
E0~w!

WdDx
, ~15!

with

F5
^0ufxu0&

^0u0&
, ~16!

which takes the GEP, Eq.~6!, as the first-order approxima
tion. Equation~16! implies thatF should replacew in the
calculation of the effective potential. It is evident thatw in
Eq. ~3! is the zeroth order approximation,F (0) of F. When
Eq. ~15! is truncated atnth order, one should also trunca
Eq. ~16! at the same order@12,13#.
02500
s,

In the case ofnÞ0, Eq.~14! is the excited-state effective
potential of the system@8#. Additionally, Eq. ~14! becomes
the vacuum and excited-state energies for the symme
phase of the system ifw50 is chosen in the scheme. In th
next section, we apply RSPTGA to the vacuum state of
lf4 field theory.

III. APPLICATION TO lf4 FIELD THEORY

In this section, we consider the potential,V(fx)
5 1

2 m2fx
21(l/4!)fx

4 , which was widely studied in connec
tion with the Gaussian approximation@14#. For this system,
Eq. ~5! gives rise to

m25m21
1

2
lw21

1

4
lI 1~m!, ~17!

and from Eq.~6!, one readily obtains

VG~w!5
1

2
m2w21

1

4!
lw41

1

2
I 0~m!2

1

32
lI 1

2~m!,

~18!

which is just Eq.~2.22! in Ref. @14# ~PRD!.1 To obtain the
effective potential of thelf4 field theory up to a given orde
according to Eq.~15!, we first calculate the following matrix
elements ofHI :
(0)^nuHI un& (0)5 (0)^0uHI u0& (0) (0)^nun& (0)1
1

n!

l

4~2p!D (
$Pi j (n22)%

)
k51

n22

D~pi k
2pj k

8 !d~pj (n21)
8 1pj n

8 2pi (n21)
2pi n

!

3@ f ~pj (n21)
8 ! f ~pj n

8 ! f ~pi (n21)
! f ~pi n

!#21/2, ~19!

(0)^nuHI un21& (0)5
1

An! ~n21!!
H lw

2A2~2p!D (
Pi j (n22)

)
k51

n22

D~pi k
2pj k

8 !d~pj (n21)
8 2pi (n21)

2pi n
!

3@ f ~pj (n21)
8 ! f ~pi (n21)

! f ~pi n
!#21/21A~2p!D

2 S m22
l

3
w2Dw (

Pi j (n21)
)
k51

n21

D~pi k
2pj k

8 !d~pi n
!

3@ f ~pi n
!#21/2J , ~20!

(0)^nuHI un22& (0)5
1

An! ~n22!!

l

4~2p!D (
Pi j (n23)

)
k51

n23

D~pi k
2pj k

8 !d~pj (n22)
8 2pi n22

2pi (n21)
2pi n

!

3@ f ~pj (n22)
8 ! f ~pi n22

! f ~pi (n21)
! f ~pi n

!#21/2, ~21!

1Our notationI n(m) is different from Eq.~2.21! in Ref. @14# ~PRD!.
6-3
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(0)^nuHI un23& (0)5
1

An! ~n23!!

lw

2A2~2p!D (
Pi j (n23)

)
k51

n23

D~pi k
2pj k

8 !d~p2(n22)
1pi (n21)

1pi n
!

3@ f ~pi (n22)
! f ~pi (n21)

! f ~pi n
!#21/2 ~22!

and

(0)^nuHI un24& (0)5
1

An! ~n24!!

l

4~2p!D (
Pi j (n24)

)
k51

n24

D~pi k
2pj k

8 !d~pi (n23)
1pi n22

1pi (n21)
1pi n

!

3@ f ~pi (n23)
! f ~pi (n22)

! f ~pi (n21)
! f ~pi n

!#21/2, ~23!

with

D~pi k
2pj k

8 !5H 0 for k,0,

1 for k50,

d~pi k
2pj k

8 ! for k.0.

Here, the indexi kP$1,2, . . . ,n% with k51,2, . . . ,n corresponds toun& (0) and j kP$1,2, . . . ,n8% with k51,2, . . . ,n8 to
(0)^n8u. Pi j ( l ) represents a given permutation ofl momentapi 1

,pi 2
, . . . ,pi l

paired respectively withpj 1
8 ,pj 2

8 , . . . ,pj l
8 , and

(Pi j ( l )
is over all differentPi j ( l )s. For anyPi j ( l ), i 1 ,i 2 , . . . ,i l are different from one another, and so arej 1 , j 2 , . . . ,j l .

Employing the above matrix elements, a straightforward, yet lengthy calculation according to Eq.~15! gives the effective
potential of thelf4 field theory up to the third order as

V i i i ~w![
E0

i i i

~2p!Dd~0!
5VG~w!2

1

2

1

m2
w2S m22

l

3
w2D 2

2
A

48

l2

m2
w22

B

384

l2

m2
1

A1A11A2

48

l2

m4
w2S m22

l

3
w2D

1
2B11B2

128

l3

m4
w21

C

512

l3

m4
, ~24!

with

A5E dx

~2p!D

dy

~2p!D
@ f 1~x! f 1~y! f 1~x1y!#21@ f 1~x!1 f 1~y!1 f 1~x1y!#21,

A15E dx

~2p!D

dy

~2p!D
@ f 1~x! f 1~y! f 1~x1y!#21@11 f 1~x!1 f 1~y!1 f 1~x1y!#21,

A25E dx

~2p!D

dy

~2p!D
@ f 1~x! f 1~y! f 1~x1y!#21@ f 1~x!1 f 1~y!1 f 1~x1y!#21

3@11 f 1~x!1 f 1~y!1 f 1~x1y!#21,

B5E dx

~2p!D

dy

~2p!D

dz

~2p!D
@ f 1~x! f 1~y! f 1~z! f 1~x1y1z!#21

3@ f 1~x!1 f 1~y!1 f 1~z!1 f 1~x1y1z!#21,
025006-4
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B15E dx

~2p!D

dy

~2p!D

dz

~2p!D
@ f 1~x! f 1~y! f 1~z! f 1~x1y! f 1~x1y1z!#21

3@ f 1~x!1 f 1~y!1 f 1~x1y!#21@ f 1~x!1 f 1~y!1 f 1~z!1 f 1~x1y1z!#21,

B25E dx

~2p!D

dy

~2p!D

dz

~2p!D
@ f 1~x! f 1~y! f 1~z! f 1~x1y! f 1~x1z!#21

3@ f 1~x!1 f 1~y!1 f 1~x1y!#21@ f 1~x!1 f 1~z!1 f 1~x1z!#21,

C5E dx

~2p!D

dy

~2p!D

dz

~2p!D

dv

~2p!D
@ f 1~x! f 1~y! f 1~z! f 1~v! f 1~x1y1z! f 1~x1y1v!#21

3@ f 1~x!1 f 1~y!1 f 1~z!1 f 1~x1y1z!#21@ f 1~x!1 f 1~y!1 f 1~v!1 f 1~x1y1v!#21
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and f 1(w)5A11w2. Here, we takew as the zeroth orde
approximation ofF. In Eq. ~24!, the second, third, and
fourth terms are the second order correction and the last t
terms the third order correction to the GEP.

From Eq.~24!, one can see that afterVG(w) is renormal-
ized, its corrections will be finite and, accordingly, a furth
renormalization procedure is not needed for higher order
rections. In the case of (011) dimensions, our second-orde
result with w50 is consistent with Eq.~14! in Ref. @22#.
Furthermore, numerical calculation for the case of (111)
dimensions indicates that the effective potential with
second-order correction predicts existence of a second-o
phase transition. We also note that the second-order co
tion improves GEP substantially, and the third order corr
tion is vanishingly small. This can be seen by comparing
coefficients of the second, third and fourth terms of Eq.~24!
with those of the last three terms of Eq.~24!, respectively.
This indicates that RSPTGA has a fast convergence in g
eral.

IV. DISCUSSION AND CONCLUSION

In this paper, a Rayleigh-Schro¨dinger perturbation theory
based on the GWFA within the framework of quantum fie
theory is proposed. Since the theory is based on the Gaus
approximation, it provides a systematical tool for controlli
the Gaussian approximation. It can be used not only for
culating the effective potential but also for considering e
cited states. When one is interested in symmetric phase
vacuum and excited-state energies can be calculated be
the Gaussian approximation by RSPTGA usingw50. Ap-
plication of RSPTGA to thelf4 field theory shows that it
can improve the GEP substantially with a fast convergen

We note that RSPTGA predicts existence of a seco
order phase transition in the (111)-dimensionallf4 field
theory, although the critical coupling is very small. It may
attributed to the fact that for the second-order case we
proximatedF5^0ufxu0&u l 52 as w. We also note that the
second-order result of Eq.~24! has an additional term
2 1

2 (1/m2)w2@m22(l/3)w2#2 which does not appear in Re
@14#. In fact, Eq.~12! gives, for thelf4 field theory,
02500
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HI5E
x
HVG~w!1wS m22

l

3
w2D :~fx2w!:1

l

3!
w:

3~fx2w!3:1
l

4!
:~fx2w!4:J , ~25!

which is equal to Eq.~4.19! in Ref. @14# ~PRD! except the
*xVG(w) term, where the colons mean normal ordering w
respect to the Gaussian vacuum, Eq.~2!. The additional term
in Eq. ~24! arises from the linear term w@m2

2(l/3)w2#:(fx2w):, and disappears when the constra
Eq. ~5.18! in Ref. @14# ~PRD! is adopted in our scheme; tha
is, whenF in Eq. ~16! is taken asw. However, we note tha
w is simply the Gaussian-vacuum average value of the fi
operator@see Eq.~3!# andF is not equal tow when higher
order contributions are calculated@10,12,13#. Moreover, the
variational procedure which led to the GEP, Eq.~18! pro-
duces the extremum condition, Eq.~17! @i.e., Eq. ~2.19! in
Ref. @14# ~PRD!#, and Eq.~5.18! in Ref. @14# ~PRD! at any
truncated order is not compatible with this extremum con
tion.

In closing the paper, we like to point out that it is straigh
forward to generalize RSPTGA to other cases, such
O(N)-symmetricallf4 model@26#, a Fermion field system
and so on. In fact, a Rayleigh-Schro¨dinger perturbation tech
nique based on the variational results has been applied
polaron problem@24#. Moreover, one of the authors~Lu!
developed the GWFA in thermofield dynamics@25,5# ~Lu!.
Based on it, it is possible to develop RSPTGA within t
framework of thermofield dynamics which will be useful fo
treating finite temperature cases. Finally, instead of perfo
ing the variational procedure in the GWFA as describ
above, the extremization process with respect tom can be
carried out after truncating the series of Eq.~14! at some
given order@12#. This procedure will lead to a slightly dif-
ferent variation of RSPTGA@8#. It may have its own advan
tages or peculiarities over the scheme developed here.
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