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Rayleigh-Schradinger perturbation theory based on Gaussian wave functional approach
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A Rayleigh-Schrdinger perturbation theory based on the Gaussian wave functional is constructed. The
method can be used for calculating the energies of both the vacuum and the excited states. A model calculation
is carried out for the vacuum state of thep* field theory.
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I. INTRODUCTION Nahm and their collaborator proposed a variational pertur-

The Gaussian wave-functional approd@GWFA) [1], or bation scheme based on the functional integral without re-
Gaussian approximation, has become a powerful and imposorting to the background field meth¢dl6]. Additionally,
tant tool to extract the nonperturbative results of quantunBSolovtsovet al. proposed a kind of variational perturbation
field theory[2—4], finite temperature field theorl5], and  theory to calculate the effective potentfdl7]. All these in-
condensed matter systerf,7] since Stevenson’s advoca- vestigations improve the GEP or Gaussian-approximate re-
tion of the method about two decades 48 The Gaussian sult with miscellaneous degrees of success. Nevertheless,
effective potentialGEP) obtained from the GWFA provides fyrther investigations are needed still to achieve better ap-
a good starting point for further investigations of various proximations.
systems|9-17]. Moreover, this approximation can also be e note that Rayleigh-Schidmger perturbation theory is
used for realizing some novel idedd8]. However, the ,ne of the basic techniques in nonrelativistic quantum me-
GWFA is essentially a variational approximation, and hencgnanics[19]. It is also widely used in statistical mechanics
improvement of the_: obtained result is not straightforward. SC{ZO] and, recently, generalized to quantum field thel@3.
far, there exist mainly two methods to improve the GWFA. Conventionally, Rayleigh-Schdinger perturbation theory is

One way is to continue using the var|at|onal.method W'thbased on an exactly solvable part of the Hamiltonian of a
more elaborate, non-Gaussian trial wave functionals. For ex-

ample, Kimmel and his collaborators developed the couple ys_tem. Recently, two of the autho(rlsm and Nahm and .
cluster method and obtained results beyond the Gaussian & eir collaborators calculated the energies of an anharmonic
scillator by combining Rayleigh-Schiimger perturbation

proximation of thex ¢* and ¢® models[9]; Ritschel and his - . ;
collaborators constructed a non-Gaussian trial wave funcN€0ry and variational method and obtained satisfactory re-

tional through a nonlinear canonical transformatjag]: in ~ Sults[22]. In this paper, we develop a variational Rayleigh-
order to investigate (3 1)-dimensional\ ¢* field theory, ~Schralinger perturbation theory based on the Gaussian
Yotsuyanagi proposed an improved scheme of the GWFA byvave-functional approachRSPTGA in quantum field
adopting a BCS-type wave functiondl1]. Another way of theory. Different from the schemes mentioned in the last
improving the GWFA is to use appropriate expansions whicHaragraph, RSPTGA can be used to calculate the energies of
give the GEP in their lowest order. In this aspect, Okegin  both the vacuum and excited states. Applying RSPTGA to
developed an optimized expansion method to calculate the¢* model, we calculate the vacuum state energy up to the
generating functional with the Euclidean formali$&®]. In  third order. The result improves the GEP substantially and
the same Euclidean formalism, Stancu and Stevenson formindicates a fast convergence. Comparing with the result in
lated a slightly different expansion scheme and calculatedRef.[14], our result up to second order is shown to introduce
the post-GEP in the spirit of the background-field methodan additional term.

[13]. Based on the GEP, Cea proposed a generalized GEP Next section, we construct a quasi-free-field eigenstate set
with a variational basis and carried out the calculation withpased on the GWFA, and develop RSPTGA based on the
the help of the standard perturbation technique in quantungjgenset. In Sec. Ill, the vacuum state energy of Xl

field theory[14]. In the late 1990s, within the Minkowski fie|d theory will be calculated using RSPTGA. Finally,

formalism, one of the authoréree) and his collaborators physical implication of the present results will be discussed.
developed the background field method to give an expansion

of the effective action around the Gaussian approximate re-
sults[15]. Recently, in order to calculate the partition func-
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tion of a fermionic system, two of the authof(&Kim and

THEORY BASED ON THE GWFA

In this section, we briefly introduce the GWFA, and con-
:Email address: wenfalu@online.sh.cn struct a quasi-free-field eigenstate set. Based on this eigen-
Permanent address. state set, we construct RSPTGA.
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We consider a model with the Lagrangian density

1
L= EaM¢XaM¢X_V(¢X)1 (1)

where x=(x',x, ..., xP) represents a position in
D-dimensional spaceg,= ¢(>Z) is the field atx, and the

potential V(¢,) has a Fourier representation in a sense o

tempered distributiong23]. Many model potentials, such as

polynomial models, sine-Gordon and sinh-Gordon models;

possess this property. According to Ré#l] (JPA), the
GWFA produces the best trial vacuum wave functional:

1
|O)(°)=Nexp[—§f (¢x_§0)fxy(¢y_90)], 2
Xy

where N is the normalization constani.e., (©(0]0)©
=1), [,=Jd®xd®y, and f,,=[d°pf(p)e*~¥ with p
=(pLp? ...,pP). The classical constant is equal to the
Gaussian-vacuum expectation valuedgf:

o= (0] ¢,/0)®. (3)
Here,
f(p)=\p?+1%(e), (4)
and
YRV (L L R AN
M(fp)—J_mme Ve >(§m+@, (5)

where V(V(z)=d"V(z2)/dz"=[* _(dq/V2m)(iq)"V(q)e'%?
[V(q) is the Fourier representation &f(z)] and I,(Q)
= [[d®p/(2m)P][Vp?+ Q% (p*+Q?)"]. The GEP of the
system, Eq(1), is given by
_ 1 ,u,z = da —
V()= 3ot~ | e

XV(gwl(mw ©)

with u chosen from the three possibilities: solution of Eq.
(5), =0 and u—o [4] (JPQ. [Hereafter, we will write
(@) asu for simplicity except for special casg¢dVe note
that whenVg(¢) has the absolute minimum aty, w(¢g)
becomes just the physical mass a¥gl ¢,) represents the

vacuum state energy. The symmetry of the vacuum can be

discussed using Eq§3)—(6).
For the Gaussian vacuum, E@), one can construct the
following annihilation and creation operatdi] (ZPO):

1 1/2 _
=/ —1pX — i
As(p) (Z(ZW)Df(p)) fxe [f(p)(&x ¢)+|Hx](7)

and
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1/2
e ipxr f —o)—i
Z(ZW)Df(p)> | ePttorg- -

®)

with  the relations [Af(p),A;r(p’)]=5(p’—p) and
Ai(p)|0Y©=0. Here, I1,=—i(58/6¢,) is the canonical
onjugate operator tap, with the commutation relation,
oy, 11y ]=i5(x—y). Based on these operators, one can con-
struct the quasi-free-field Hamiltonian,

A?(p)=<

Ho= [ dpt(p)ATPIAPD)

1 1 1 1
fx[zniJf 5(3x¢x)2+ §M2(¢x—¢>)2— 5'0(#) :
9

The Gaussian vacuum, E@), is the ground state ¢, with
zero energy eigenvaIuEgo). The excited states dfi, are
[21]

1 n
(C) S — T(p)10Y©® p=
n) Mi];[lAf(pl)m) , n=12,...%, (10
with the corresponding energy eigenvalue
n
ER=2, f(p). (1D)

Note that Eq.(2) is not a naive vacuum, since it contains
information on the interacting system, E(.). Obviously,
the wave functionalgn)©® and |0)(®) are orthogonal and
normalized to (n[n)®=(1m1)Zp oITK_18(Pk—p;)
[here P;(n) represents a permutation of the sfif}
={1,2, ... n} and the summation is over a@(n)s]. |n)©
describes an-particle state with the continuous momenta
P1,P2, - - . Pn. [0)@ and|n)© with n=1,2, ... » consti-
tute the complete set fdi,, which we call quasi-free-field
complete set.

Based on the above complete set, one can readily apply
the conventional Rayleigh-Schdimger perturbation tech-
nique to calculate the energy of the system, @g. In order
to do so, we write the Hamiltonian of the system [Eb). as
H=Hg+H,=Hy+(H—H,) with

1, , 1
HFL (G @) Sl V(S| (12

Following the Rayleigh-Schobnger perturbation procedure
[19,21], one can obtain the wave functionals and energies for
the vacuum and excited states, respectively,

|
@, (13

In)=2,

Qne o (B~ ED )
nHO—EI(,IO) n n |

and
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* In the case oh#0, Eq.(14) is the excited-state effective
En(¢)=E@+> potential of the systerf8]. Additionally, Eq.(14) becomes
1=0 the vacuum and excited-state energies for the symmetric
1 [ phase of the system =0 is chosen in the scheme. In the
X O(n|H,| Qy———=(E,—EQ—H,) | [n)©@ next section, we apply RSPTGA to the vacuum state of the
| n (0) n n | ' 4 g
Ho—E N ¢~ field theory.

(14
. . . . lll. APPLICATION TO A\ ¢* FIELD THEORY
with anzj#ndepldeZ'"dej|J>(0)(0)<J|' ¢
For the case ofi=0 andl =0, Eq.(14) gives the vacuum In this section, we consider the potential/(,)
energy up to the first ordds=E{")+ E{N= [, Vg(¢) which  =3m2¢2+ (\/4!) ¢y, which was widely studied in connec-

is just the product of the GEP and the space volume. Thugijon with the Gaussian approximati¢t4]. For this system,
employing Eq.(14) with n=0, one can get the effective Eq. (5) gives rise to
potential for the system, Edq1),

1 1
E Z=m?+ N @?+ -\
fdPx
with and from Eq.(6), one readily obtains
(0| #4/0)
b=—""-, 16 1 1 1 1
(0[0) 18 VG(‘P)=§m2<P2+ EMD“F 5'0(#)—3—27\@(#),

which takes the GEP, E@6), as the first-order approxima- (18)
tion. Equation(16) implies that® should replacep in the

calculation of the effective potential. It is evident thatin which is just Eq.(2.22) in Ref.[14] (PRD).! To obtain the
Eq. (3) is the zeroth order approximatio®,(®) of ®. When effective potential of tha ¢* field theory up to a given order
Eq. (15) is truncated anth order, one should also truncate according to Eq(15), we first calculate the following matrix
Eq. (16) at the same orddri2,13. elements oH, :

n-2

1 A
(0) (0)=(0) (0) (0) 04 — p— ! I —p —D;
(nlbh )@= EXOI O IO+ 5 200735 (o A AP PRI APl 1Py~ Ps)

X[f(p]_ )i )f(pi (P )] (19

)\(P n-2
A(p: —p!)S(p! —Dn. —Dn:
\/n!(n_l)! ‘2\/2(277_)D Pij(;_z) |(1;[l (plk ka) (pJ(n—l) p'(n—l) pln)

, —172 (2m)° 2 N, s )
XU, JEi, ) Fe )] PN w56t e X TT Alp,—pj)a(p;)

On|Hyn—1)®=

Pij(n-1) k=
X[f(pin)]l’z}, (20)
N n—-3
(0) —2\(0)— . —n! / —p  —n —_n.
(n[H|[n-2) eI Pi,-(;—m 11 Atpi,—pj)(p] , =Pi, ,~Pi,, = Pi)
XLE(p], ) f(pi, Dy, )R] (21

tour notationl ,(w) is different from Eq.(2.21) in Ref.[14] (PRD).
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n-3
©(n[H,|n-3)©= \/n!(rT—3)! N;(;DW)D Pij(En;S) L1 A(pi,=p}) 3Pz, i, +Pi)
><[f(IOi(n_2))f(IOi(n_l))f(IOin)]_ll2 (22)
and
1 N e
(0)<n|H||n_4>(o):m4(2W)D P”%L‘) kljl A(pi — pj’k)5(pi(n,3)+ Pi, ot Pi T Pi)
X[f(pi(n_a))f(pi(n_z))f(pi(n_l))f(pin)]_llz, (23)

with

0 for k<O,

A(p;, —pj )= 1 fork=0,
k k
6(pik—p]-’k) for k>0.

Here, the indexiye{1,2,...n} with k=1,2,...n corresponds tdn)® and j,e{1,2,...n'} with k=1,2,...pn" to
(O)(n’|. Pi;(1) represents a given permutation Iomomentapil,piz, P paired respectively Withnj’l,pj’z, Ce ,pj’l, and
Epiju) is over all differentP;;(1)s. For anyP;;(l), iy,i,, ... i, are different from one another, and so aigj,, ... j;.
Employing the above matrix elements, a straightforward, yet lengthy calculation according (@5Egives the effective
potential of the\ ¢* field theory up to the third order as

El 11 A L\2 A2 B A2 A+A;+A,\2 Y
iii = 2 _ - - 2 2_ 2\ __~ -2 _— - 4 4L e 2 2_ 2
2B;+B, A, C \® ”
128 4% 512 0 (24
with
A J DY ) b y) ][ F100+ Fa(y)+ Tt y)]
= —_— X X X X ,
(2m)° (2m)P 1(X)T(Y)T1(XTy 1 1Y) T T (XTYy

_[_9x dy . §
Al_J(Zw)D (ZW)D'[fl(X)fl(Y)fl(X-i—y)] [1+F,(x)+F(y)+ i (x+y)] L,

. dx dy B .
Az—f (2m)P (277_)5[fl(X)fl(y)fl(X+y)] [F,()+ f1(y)+ F1(x+Y)]

X[1+f100+fo(y) +Fa(x+y)] 7Y

Bzf dx dy dz [f.(X)f (V) (2)f(x+y+2)]7t
(2mP (2m)P (2m)P 1 1y)Th 1 y

X[f2(x)+fo(y)+f(2)+Fo(x+y+2)] 72,
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B —f dx _dy _dz [F1()f(Y)f(D)F(x+y)Fr(x+y+2)] 7t
1= (2m)P (2m)° (2m)° 1T (YT T (XTY)T1(XTYy

X[F(¥)+ f(y) + F1(x YT 0+ fo(y) + (D) + Fa(x+y+2)] 7,

B —f dx _dy _dz [F1()f(Y)f(D)F(x+y)fr(x+2)] 7t
2= (2mP (2m)° (2m)° 1X)T1(Y)T1(2)T1(X+TY)T,

X[F100+Fo(y) + f1(x+ Y] F00 +f1(2) + Fa(x+2)] 7,

C_f dx dy dz do
) @2m)P 2m)P (2mP (2m)°

X[F200+F1(Y) +f1(2)+ F1(x+y+2) ] 100+ fo(y) +Fr(0) +HFa(x+y+ )]

[f1()f1(Y)f1(D)f (@) fi(X+y+2)f (X +y+w)] !

and f,(w)=1+w?. Here, we takep as the zeroth order
approximation ofd. In Eq. (24), the second, third, and HIZJ[VG(¢)+¢
fourth terms are the second order correction and the last three *
terms the third order correction to the GEP. N

From Eq.(24), one can see that aftdi;(¢) is renormal- X (g )%+ a1 (o @)41], (25)
ized, its corrections will be finite and, accordingly, a further '
renormalization procedure is not needed for higher order comwhich is equal to Eq(4.19 in Ref. [14] (PRD) except the
rections. In the case of (1) dimensions, our second-order [xVs(¢) term, where the colons mean normal ordering with
result with ¢=0 is consistent with Eq(14) in Ref.[22].  respect to the Gaussian vacuum, E). The additional term
Furthermore, numerical calculation for the case ofr@) N EQq. 2(24) arises from the linear terme[u®
dimensions indicates that the effective potential with the— (AM3)¢“]:(¢éx—¢):, and disappears when the constraint
second-order correction predicts existence of a second-ord&@- (5:18 in Ref.[14] (PRD) is adopted in our scheme; that
phase transition. We also note that the second-order correts: When® in Eq. (16) is taken asp. However, we note that
tion improves GEP substantially, and the third order correc# S SIMPly the Gaussian-vacuum average value of the field
tion is vanishingly small. This can be seen by comparing théPeratorisee Eq(3)] and ® is not equal tap when higher
coefficients of the second, third and fourth terms of Exf) order contributions are calculat¢dio,12,13. Moreover, the

: . variational procedure which led to the GEP, Ef8) pro-
with those of the last three terms of E@4), respectively. duces the eF:)xtremum condition, EQ.7) [i.e. qu_i(g,)lgg in

This indicates that RSPTGA has a fast convergence in 9ekef [14] (PRD)], and Eq.(5.18 in Ref.[14] (PRD) at any
eral. truncated order is not compatible with this extremum condi-
tion.
In closing the paper, we like to point out that it is straight-
IV. DISCUSSION AND CONCLUSION forward to generalize RSPTGA to other cases, such as
O(N)-symmetrical\ ¢* model[26], a Fermion field system,

S .2 and so on. In fact, a Rayleigh-Schiinger perturbation tech-
based on the GWFA within the framework of quantum f'eld.nique based on the variational results has been applied to a

theory is proposed. Since the theory is based on the Gau53|%|ar0n problem[24]. Moreover, one of the authord.u)
approximation, it provides a systematical tool for controlling developed the GWFA in thermofield dynami25,5] (Lu).
the Gaussian approximation. It can be used not only for calgased on it, it is possible to develop RSPTGA within the
culating the effective potential but also for considering ex-framework of thermofield dynamics which will be useful for
cited states. When one is interested in symmetric phase, theeating finite temperature cases. Finally, instead of perform-
vacuum and excited-state energies can be calculated beyopty the variational procedure in the GWFA as described
the Gaussian approximation by RSPTGA usipg 0. Ap-  above, the extremization process with respeciit@an be
plication of RSPTGA to thex ¢* field theory shows that it carried out after truncating the series of Ef4) at some
can improve the GEP substantially with a fast convergencegiven order{12]. This procedure will lead to a slightly dif-
We note that RSPTGA predicts existence of a secondferent variation of RSPTGAS]. It may have its own advan-
order phase transition in the {11)-dimensional\ ¢* field  tages or peculiarities over the scheme developed here.
theory, although the critical coupling is very small. It may be
attributed to the fact that for the second-order case we ap- ACKNOWLEDGMENTS
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