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Spontaneous Lorentz symmetry breaking by an antisymmetric tensor field

Kiyoshi Higashijima* and Naoto Yokoi†

Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
~Received 7 February 2001; published 6 June 2001!

We study spontaneous Lorentz symmetry breaking in a field theoretical model in 211 dimensions, inspired
by string theory. This model is a gauge theory of an antisymmetric tensor field and a vector field~photon!. The
Nambu-Goldstone~NG! boson for the spontaneous Lorentz symmetry breaking is identified with the unphysi-
cal massless photon in covariant quantization. We also discuss an analog of the equivalence theorem between
the amplitudes for emission or absorption of the physical massive antisymmetric tensor field and those of the
unphysical massless photon. The low-energy effective action of the NG boson is also discussed.
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I. INTRODUCTION

Quantum field theories based on Poincare´ invariance, in
particular, Lorentz invariance successfully describe elem
tary particles below the weak scale energy (;100 GeV!. In
the last few years, a possible type of Lorentznoninvariant
extension of quantum field theories has been extensi
studied. These are the field theories on a spacetime w
coordinates are noncommutative, called noncommuta
field theories@1–4#. The action of the noncommutative fiel
theories can be constructed by replacing the product of fi
in the action of the ordinary field theory with the! product
defined as

f ~x!!g~x![expF iu i j
]

]j i

]

]h j G f ~x1j!g~x1h!uj5h50 ,

~1.1!

whereu i j is a constant noncommutative parameter:@xi ,xj #
5 iu i j . Thus the action explicitly contains theconstantanti-
symmetric tensoru i j , and the Lorentz invariance inp11
dimensions forp>2 cannot be maintained.

String theory naturally provides the noncommutative fie
theories as the world volume effective theories on D bra
@4#; the world volume effective theory of Dp-brane with a
constant background Neveu-Schwarz–Neveu-Schwarz~NS-
NS! B field is equivalent to a (p11)-dimensional noncom
mutative field theory whose constant noncommutative
rameteru i j is given by the background NS-NSB field Bi j . In
string theory the NS-NSB field is indeed a dynamical field in
a closed string sector and thus the constant background
can be interpreted as the constant vacuum expectation v
of the dynamical NS-NSB field. From this perspective, th
Lorentz symmetry isspontaneouslybroken by the constan
vacuum expectation value of the second rank antisymme
tensor field.

In this paper, based on this viewpoint, we discuss
spontaneous Lorentz symmetry breaking within t
effective-field theory of the string theory. Concretely, we
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vestigate the Nambu-Goldstone~NG! boson for the Lorentz
symmetry breaking in a field theoretical toy model in 211
dimensions of a second rank antisymmetric tensor field an
vector field, which is inspired by the effective theory of th
string theory.1 We find that the NG boson is an unphysic
field and their amplitudes, however, provide useful inform
tion about the physical amplitudes of the model through
‘‘equivalence theorem.’’ We also discuss the low-energy d
namics of the NG boson from the perspective of the non
ear realization of the Lorentz symmetry.

This paper is organized as follows. In Sec. II, we intr
duce the gauge invariant model of a second rank antis
metric tensor field and a vector field and discuss the cov
ant canonical quantization of the model. In Sec. III, t
vacuum of the model where the antisymmetric tensor fi
has a vacuum expectation value is discussed, and also
NG boson for the spontaneous Lorentz symmetry breakin
studied in detail. In Sec. IV, a possible perturbation of t
model is discussed and the equivalence theorem betwee
physical amplitudes and the amplitudes of the unphys
NG boson is also argued. In Sec. V, some related proble
are discussed and the relation to the noncommutative fi
theories is speculated.

II. A TOY MODEL FOR FIELD THEORY OF Bµn AND Aµ

In this section we discuss the covariant canonical qua
zation of a toy model for the gauge-invariant field theory
a second rank antisymmetric tensor fieldBmn coupled with a
vector fieldAm ~photon! in 211 dimension.

A. Canonical quantization of the model

The action of the toy model is given by2

S5E d3xF 1

12m2
~Hmnr!22

1

4
~Fmn2Bmn!2G , ~2.1!

1Spontaneous breaking of the Lorentz symmetry has been
cussed previously in gravity theory with the torsion by introduci
quadratic terms of the curvature and torsion@5#. In this paper, we
confine ourselves to the Lorentz symmetry breaking in a pure ga
theory neglecting the effect of the gravitation.

2The metric ishmn5hmn5diag(11,21,21).
©2001 The American Physical Society04-1
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where

Hmnr5]mBnr1]rBmn1]nBrm , Fmn5]mAn2]nAm ,
~2.2!

andm is a parameter with dimension of mass. This action
inspired by string theory.3 Indeed, the first and second term
in Eq. ~2.1! are the same form as the leading term of t
effective action ofBmn , which is a massless mode of close
string, and the leading term of the Dirac-Born-Infeld~DBI!
action of D-brane world volume effective theory, which
the effective action of the open string sector ina8 expansion
@10#.

The action~2.1! is invariant under the gauge transform
tion

dBmn~x!5]mLn~x!2]nLm~x!,

dAm~x!5Lm~x!1]mL~x!, ~2.3!

whereLm(x) andL(x) are one-form and scalar gauge fun
tions, respectively. Because of this gauge invariance, the
tem described by the action~2.1! is a singular~constrained!
system. Thus, for the canonical quantization, one must in
duce gauge fixing terms. Since we want to discuss the sp
taneous Lorentz symmetry breaking in the sequel, we m
take Lorentz gauge-invariant fixing terms. We introduce
following gauge fixing terms:

Sgf5E d3x~Cn]mBmn2B]mAm2C]mCm!, ~2.4!

where B(x) is the Nakanishi-Lautrup~NL! B field for the
vector field andCm(x) andC(x) are the counterparts for th
antisymmetric tensor gauge field@11,12#. These gauge fixing
terms are the analogs of the Landau gauge in quantum e
trodynamics~QED!.

Although the canonical quantization of the model in t
Becchi-Rouet-Stora-Tyutin~BRST! formalism can be carried
out, we make the canonical quantization in the NL formali
@11,12# for simplicity.4

The gauge fixed action is given by Eqs.~2.1! and ~2.4!:

Stotal5E d3x Ltotal~x!

5E d3xF 1

12m2
~Hmnr!22

1

4
~Fmn2Bmn!2

1Cn]mBmn2B]mAm2C]mCmG . ~2.5!

3In fact, this type of action appears in various contexts of str
theory @6–9#.

4In the BRST formalism, in addition, ghost and antighost fie
are introduced. However, since this action is a quadratic action
Abelian gauge symmetry, ghost and antighost fields are free fi
and decouple.
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The equations of motion derived from Eq.~2.5! for each field
become as follows:

Bmn:
1

m2
]rHrmn1~Bmn2Fmn1Cmn!50, ~2.6!

Am: 2]r~Frm2Brm!2]mB50, ~2.7!

Cm: 2]rBrm2]mC50, ~2.8!

B: ]mAm50, ~2.9!

C: ]mCm50, ~2.10!

where Cmn5]mCn2]nCm . Actually, by combining these
equations, one can find free field equations of each field

h2Am50, h~h1m2!Bmn50,

h2Cm50, hB50, hC50. ~2.11!

Thus this model is essentially a free field theory and can
quantized completely. Note that the antisymmetric ten
field Bmn is a mixture of massive and massless compone
Following the procedure in Refs.@11,12#, the three-
dimensional commutation relations can be calculated by
ing the equal-time commutation relations

@f I~x,t !,fJ~y,t !#50, @p I~x,t !,pJ~y,t !#50,

@f I~x,t !,pJ~y,t !#5 id I
Jd2~x2y!,

where p I~x,t ![
]Ltotal~x!

]ḟ I~x,t !
. ~2.12!

Here we abbreviate various fields asf I(x,t), whereI denotes
various indices. The explicit forms of the nonvanishin
three-dimensional commutation relations are5

@B~x!,Am~y!#5@C~x!,Cm~y!#52 i ]m
x D~x2y!,

@Am~x!,An~y!#5@Cm~x!,An~y!#

52 ihmnD~x2y!1 i ]m
x ]n

xE~x2y!,

@Cm~x!,Bnr~y!#52 i ~hmn]r
x2hmr]n

x!D~x2y!,

@Bmn~x!,Brs~y!#5 i @hmr]n
x]s

x 2hms]n
x]r

x2hnr]m
x ]s

x

1hns]m
x ]r

x1m2~hmrhns2hmshnr!#

3D~x2y:m2!2 i ~hmr]n
x]s

x

2hms]n
x]r

x2hnr]m
x ]s

x

1hns]m
x ]r

x!D~x2y!, ~2.13!g

th
ds5The equal-time commutation relations are obtained by set
x05y0 in the three-dimensional commutation relations.
4-2



th
i

g
he
ra

th
ih

o

lc

ons

cle
the
on-
rs,

nt
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where

D~x:m2![
1

~2p!2i
E d3k e~k0!d~k22m2!e2 ikx,

D~x![D~x:m250!, ~2.14!

E~x![
1

~2p!2i
E d3k e~k0!d8~k2!e2 ikx,

hE~x!5D~x!. ~2.15!

In order to quantize the model consistently, we require
physical state conditions analogous to the ordinary QED
the NL formalism @11,12#. We define thephysical state
through the physical state conditions:

Cm
(1)~x!uphys&50, B(1)~x!uphys&50,

C(1)~x!uphys&50, ~2.16!

wheref I
(1)(x) means the positive energy part off I(x). In

the gauge~2.4!, as seen from Eq.~2.11!, Cm(x) is a dipole
field. Although the separation between the positive and ne
tive energy part of a dipole field is a nontrivial problem, t
cutoff procedure is known to give the well-defined sepa
tion as found in Sec. II B@12,13#. Thus the physical state
conditions~2.16! are well defined.

B. The physical spectrum

In order to find the spectrum of the model, we define
creation and annihilation operators of each field. The ann
lation operators are defined by the Fourier transforms:

C(1)~x!5
1

2pE d3ku~k0!e2 ikxb~k!,

B(1)~x!5
1

2pE d3ku~k0!e2 ikxc~k!,

Cm
(1)~x:e!5

1

2pE d3ku~k02e!e2 ikxcm~k!,

Am
(1)~x:e!5

1

2pE d3ku~k02e!e2 ikxam~k!,

Bmn
(1)~x!5

1

2pE d3ku~k0!e2 ikxbmn~k!, ~2.17!

and the creation operators are defined by the Hermitian c
jugate of Eq.~2.17!. e in the definition~2.17! is an infrared
cutoff parameter for the dipole fields@12,13#.

The commutation relations of the operators can be ca
lated by the three-dimensional commutation relations~2.13!.
The nonvanishing commutation relations are
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@b~p!,am
1~k!#5@c~p!,cm

1~k!#

5 ipmu~p0!d~p2!d3~p2k!,

@am~p!,an
1~k!#5@cm~p!,an

1~k!#

52hmnu~p0!d~p2!d3~p2k!

2pmpnu~p0!d8~p2!d3~p2k!,

@cm~p!,bnr
1 ~k!#5 i ~hmnpr2hmrpn!u~p0!d~p2!d3~p2k!,

@bmn~p!,brs
1 ~k!#5@2hmrpnps1hmspnpr1hnrpmps

2hnspmpr1 m2~hmrhns

2hmshnr!#u~p0!d~p22m2!d3~p2k!

2~2hmrpnps1hmspnpr1hnrpmps

2hnspmpr!u~p0!d~p2!d3~p2k!.

~2.18!

In terms of these operators, the physical state conditi
~2.16! become

cm~p!uphys&50, b~p!uphys&50, c~p!uphys&50.
~2.19!

The vacuum state is defined by

bmn~p!uvac&50, am~p!uvac&50, ~2.20!

cm~p!uvac&50, b~p!uvac&50,

c~p!uvac&50. ~2.21!

The vacuum state is physical by definition. One-parti
states are constructed by the creation operators from
vacuum state. Physical one-particle states, which satisfy c
dition ~2.19!, are constructed by the creation operato
which commute withcm(p), b(p), andc(p). The physical
states are summarized as follows:6

~i! Physical massless states in the momentum framepm
5(p,0,p),

c1
1~p!uvac&, @c0

1~p!2c2
1~p!#uvac&, b1~p!uvac&.

~2.22!

~ii ! Physical massive states with massm in the rest frame
pm5(m,0,0),

umn
1 ~p!uvac&[@bmn

1 ~p!2 f mn
1 ~p!1cmn

1 ~p!#uvac&.
~2.23!

Here umn
1 (p) is the creation operator of the gauge-invaria

field Umn(x)[Bmn(x)2Fmn(x)1Cmn(x). Note that the

6f mn(p) andcmn(p) are the Fourier transforms ofFmn
(1)(x:e) and

Cmn
(1)(x:e), respectively.
4-3
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massless states of photonam(p) are all unphysical due to th
‘‘large’’ gauge symmetry with one-form gauge functio
~2.3!.

One can show that all the physical massless states~2.22!
are null states from the commutation relations~2.18!. The
physical massive stateu12

1 (p)uvac& is the propagating stat
with positive norm andu01

1 (p)uvac& andu02
1 (p)uvac& are null

states in the rest frame. Thus we conclude that the phys
propagating degree of freedom7 of the model is a physica
massive stateu12

1 (p)uvac& with massm. Although the action
~2.1! has the gauge symmetry~2.3!, the physical massive
state appears through the generalized Stueckelberg for
ism, which is the antisymmetric tensor field version of t
Stueckelberg formalism of QED@14#. The antisymmetric
tensor fieldBmn ‘‘eats’’ the degrees of freedom of the gaug
field Am and become a massive antisymmetric tensor fie
Note that a massless second rank antisymmetric tensor
has no physical propagating degrees of freedom and a m
sive one has one physical propagating degree in 211
dimension.8

We consider the interesting limit of the model,m→0.
This corresponds to the limit where the modes of clos
string decouple in the corresponding effective action
string theory discussed in Sec. II A. In this limit, the com
mutation relation ofBmn in Eq. ~2.13! becomes

@Bmn~x!,Brs~y!#50, ~2.24!

and the commutators of the creation and annihilation op
tors also become

@bmn~p!,brs
1 ~k!#50. ~2.25!

Thus the states associated with the antisymmetric tensor
Bmn become zero norm. In this limit, the physical propag
ing massless state in the momentum framepm5(p,0,p) is
given by

@u01
1 ~p!2u12

1 ~p!#uvac&. ~2.26!

Indeed, the norm of this physical propagating state beco

^@u01~p!2u12~p!#@u01
1 ~p!2u12

1 ~p!#&

5^@ f 01~p!2 f 12~p!#@ f 01
1 ~p!2 f 12

1 ~p!#&

54p2^a1~p!a1
1~p!&. ~2.27!

Hence, in this limit, the physical propagating state becom
essentially the transverse photona1

1(p)uvac&. However it is
worth noting that even though the norms of@u01

1 (p)
2u12

1 (p)#uvac& and @ f 01
1 (p)2 f 12

1 (p)#uvac& are the same in

7In this paper, the physical propagating state means the phy
state with positive norm, which contributes to the physical am
tudes.

8A massless photon also has one physical propagating degr
~211! dimensions.
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the limit m→0, the physical propagating state isnot
@ f 01

1 (p)2 f 12
1 (p)#uvac&, but @u01

1 (p)2u12
1 (p)#uvac&.

This situation is similar to the broken phase of the Yan
Mills-Higgs model, where the equivalence theorem ho
@15,16#. This theorem claims the amplitude for emission
absorption of the longitudinal states of the massive ga
boson becomes equal, at high energy, to the amplitude
emission or absorption of the unphysical Nambu-Goldsto
states, which is absorbed by the gauge boson. In our mo
the physical massive state of the antisymmetric tensor fi
appears after the antisymmetric tensor field ‘‘eats’’ the u
physical state of the transverse photon. The above analys
the norm of the physical states implies that the analog
equivalence theorem holds in our model; in the high-ene
region where one can ignore massm, the amplitude for emis-
sion or absorption of the longitudinal states of the physi
massive antisymmetric tensor field is the same as the am
tude for emission or absorption of the unphysical mass
transverse photon.

III. SPONTANEOUS LORENTZ SYMMETRY BREAKING
BY THE ANTISYMMETRIC TENSOR FIELD

In this section we discuss the spontaneous breaking of
Lorentz symmetry by a constant vacuum expectation va
~VEV! of the second rank antisymmetric tensor field in o
model.

A. The Nambu-Goldstone boson for the spontaneous Lorentz
symmetry breaking

The equations of motion~2.6!–~2.10! have a solution
such that onlyBmn andFmn have constant nonzero VEV’s:9

^B12&5^F12&5BVEV5const ~Þ0!. ~3.1!

One can easily find that this solution is a ground state w
vanishing energy of the Hamiltonian derived from the acti
~2.5!. @See Eq.~3.3!.# Although BVEV is an undetermined
constant in our model, we assume this to be a nonzero c
stant in the sequel. Since the VEV’s ofCm , B, andC vanish,
this vacuum is a physical state. In the framework of t
nonperturbative string theory, the possibility of^Bmn&Þ0
has been discussed in Refs.@17,18#. In this viewpoint, the
nonzero VEV ofB12 induces a spontaneous magnetizati
^F12&.

Since Bmn and Fmn are not gauge invariant under th
gauge transformation~2.3!, one may expect to be able t
eliminate this VEV by the gauge transformation. Howev
the gauge transformation that eliminates the VEV requi
the linear one-form gauge functions such asL1(x)
5 1

2 BVEVx2 andL2(x)52 1
2 BVEVx1. These gauge function

are ill-defined at infinity. Hence we do not require the inva

al
-

in

9If the VEV ^B̃m& ([ 1
2 emnr^Bnr&)5^F̃m& is a time-like constant

vector, one can transform it to this form by an appropriate Lore
transformation.
4-4
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ance under such singular gauge transformations to define
Hilbert space of the quantum theory.

As discussed in Ref.@19#, on the vacuum~3.1!, the
~211!-dimensional Lorentz symmetrySO(2,1);SL(2,R)
is spontaneously broken down to the spatial rotat
SO(2);U(1) by the VEV of B12 and F12.10 What are
-

e

02500
the

n

the NG bosons for the broken boost generators in
model?

In order to answer this question, we construct the gene
tors of the Lorentz transformationsM rs by the Noether
method. The conserved currentsM rs

m(x) for the Lorentz
symmetry can be derived from the action~2.5!:11
M rs
m~x!5xrTs

m~x!2xsTr
m~x!2 i

]Ltotal~x!

]~]mf I !
~Srsf! I5

1

2m2
Hmab~xr]s2xs]r!Bab2~Fma2Bma!~xr]s2xs]r!

3Aa1 Ca~xr]s2xs]r!Bma2B~xr]s2xs]r!Am2C~xr]s2xs]r!Cm2 ~xrds
m2xsdr

m!

3F 1

12m2
~Habg!22

1

4
~Fab2Bab!21Cb]aBabG1 S 1

m2
Hmab1hmaCb2hmbCaD

3~hraBsb2hsaBrb!2 ~Fma2Bma1hmaB!~hraAs2hsaAr!2hmaC~hraCs2hsaCr!, ~3.2!
y
la-
ost

usly.
s of

d

con-
are

is

ous

NG
are

Lor-
re-
is a

in:
where the canonical energy-momentum tensorTr
m(x) is

given by

Tr
m~x!5

1

2m2
Hmab]rBab2~Fma2Bma!]rAa1 Ca]rBma

2B]rAm2C]rCm2dr
mS 1

12m2
~Habg!22

1

4

3~Fab2Bab!21Cb]aBabD . ~3.3!

From the conserved currents~3.2!, one can obtain the gen
erators of Lorentz transformationM rs :

M rs5E d2x M rs
0~x!. ~3.4!

By utilizing expressions~3.2! and ~3.4! and the commu-
tation relations~2.13!, we have the nonvanishing VEV of th
following commutation relations on the vacuum~3.1!:

^@ iM 0i ,B0 j~x!#&5E d2y^@ iM 0i
0~y!,B0 j~x!#&5e i j BVEV ,

~3.5!

10Our convention for the Poincare´ algebra in~211! dimensions is

@Pm ,Pn#50, @Mmn ,Pr#52 i ~hmrPn2hnrPm!,

@Mmn ,M rs#52 i ~hmrM ns2hnrMms1hnsMmr2hmsM nr!.
^@ iM 0i ,F0 j~x!#&5E d2y^@ iM 0i
0~y!,F0 j~x!#&

5e i j BVEV ~e1251!. ~3.6!

Thus two boost generatorsM0i ( i 51,2) are spontaneousl
broken on the vacuum. From the above commutation re
tions, the candidates for the NG bosons for the broken bo
generators areB0i and F0i . However,Bmn is a mixture of
massive and massless components as discussed previo
As obtained in the previous section, the mass eigenstate
the model are the massive fieldUmn and the massless fiel
Fmn ~or Am) and the other massless fieldsCm , B, and C.
Since NG bosons are necessarily a massless state, we
clude that the NG bosons for the broken boost generators
the massless photonF0i . Incidentally, the massive fieldUmn
satisfies

^@ iM 0i ,Umn~x!#&5E d2y^@ iM 0i
0~y!,Umn~x!#&50.

~3.7!

Thus the fact thatBmn becomes essentially a massive field
consistent with the Nambu-Goldstone theorem.

B. Are the NG bosons physical?

We have identified the NG bosons for the spontane
Lorentz symmetry breaking with the massless photonF0i .
The one-particle state of the massless photonFmn ~or Am) is
an unphysical state as discussed in Sec. III A. Hence the
bosons for the spontaneous Lorentz symmetry breaking
unphysical states, i.e., unphysical NG bosons. Since the
entz symmetry is a physical global symmetry, the cor
sponding NG bosons are expected to be physical. Is th
contradiction?

11(Srsf) I denotes infinitesimal transformations of internal sp
(Srsx)50 for scalar fields, (SrsV)m5 i (hrmVs2hsmVr) for vec-
tor fields, and (SrsB)mn5 i (hrmBsn2hsmBrn1hrnBms

2hsnBmr) for second-rank antisymmetric tensor fields.
4-5
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In order to answer this question, let us discuss the o
particle state created by the broken boost generators from
vacuum ~3.1!. Inserting the decompositionsf I(x)5^f I&
1f̂ I(x) on the vacuum12 into the expressions of the curren
~3.2!, one can construct the broken parts of the curre
M0i

B m(x), which depends on BVEV , i.e., M0i
m

5M0i
B m(BVEV ,f̂ I)1M̂0i

m(f̂ I). The explicit forms of the
broken parts of the currentsM0i

B m(x) are

M0i
B m~x!5BVEV e i j H 1

2
xj~ F̂m02B̂m01hm0B̂!2

1

2
x0~ F̂m j

2B̂m j1hm j B̂!1S 1

m2
Ĥm0 j1hm0Ĉj2hm j Ĉ0D J

~3.8!

and M12
B m vanishes. Using the equations of motion forf̂ I ,

which are the same as Eqs.~2.6!–~2.10!, one can easily show
that these currents are also conserved. From these cur
one can obtain the broken parts of the generators, which
conserved:

M0i
B [E d2x M0i

B 0~x!

5BvevE d2x e i j H F1

2
x0Û0 j~x!G

1F2
1

2
x0Ĉ0 j~x!1

1

2
xj B̂~x!1Ĉj~x!G J . ~3.9!

Hereafter we abbreviate simplyf̂ I asf I without confusion.
These broken parts of generators indeed satisfy

@ iM 0i
B ,B0 j~x!#5@ iM 0i

B ,F0 j~x!#5e i j BVEV . ~3.10!

Note thatM0i
B is a physical operator that commutes withCm ,

B, andC.
We consider the one-particle state created byM0i

B from
the vacuum~3.1!, denoted asuVAC&. Since we are intereste
in the NG bosons for the broken generators, we cons
only the massless state of the one-particle state given b

M0i
B uVAC&umassless5BVEVE d2x e i j F2

1

2
x0C0 j~x!

1
1

2
xjB~x!1Cj~x!G uVAC&. ~3.11!

From the commutation relations~2.13!, one can easily find
that these states are the physical states that satisfy the
ditions ~2.16!, but the null states. Therefore we conclude th
although the spontaneous Lorentz symmetry breaking

12Since^F12&5BVEV , we take, for an example, the VEV’s ofAi

as ^A1&52
1
2 BVEVx2 and ^A2&5

1
2 BVEVx1.
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physical, the massless one-particle state created by the
ken generatorM0i

B from the vacuum~3.1!, is not only a
physical state but also anull state. Since our model has th
twisted structure of the Hilbert space with an indefinite m
ric on account of the gauge invariance~2.3!, nonzero matrix
elements exist between physical null states and unphys
states. Thereby the NG boson, which has the nonzero m
element with this massless one-particle state, can beunphysi-
cal. This is closely analogous to the Abelian Higgs model
the NL formalism@12#.

As discussed in Sec. III A, in the limitm→0, the unphysi-
cal transverse photon, which is the unphysical NG boson
the spontaneous Lorentz symmetry breaking, becomes es
tially the physical propagating state of the model. The imp
cation of this fact will be discussed in Sec. IV.

IV. A PERTURBATION

So far, we have studied the free field theory ofBmn and
Am whose action is given by Eq.~2.5!. In this section, we
discuss a possible perturbation of the model. We introd
the following interaction terms to Eq.~2.5! as the perturba-
tion:

Lint~x!5 (
n52

N

an$~Fmn2Bmn!2%n. ~4.1!

This type of interactions is obtained by thea8 expansion of
DBI action.13 These interactions are gauge invariant und
the gauge transformation~2.3! and consistent with the physi
cal state conditions~2.16!; these interaction terms do no
change the equations of motion ofCm , B, and C in Eq.
~2.11! and keep them free fields. Although these interactio
are nonrenormalizable, we treat them as the perturbati
which are interpreted as the operator insertions in the ma
elements in a similar manner to the chiral Lagrangian
QCD.

Although the equations of motion ofBmn andAm is modi-
fied due to the interaction terms, the solution~3.1! still re-
mains to be a solution of the modified equations. Thus, e
after including the perturbations, the spontaneous Lore
symmetry breaking is realized. In this case, the argum
about the NG boson in the previous section does not es
tially change and hence we can conclude that the NG bo
remains to be the unphysical photon.

As is well-known, the low-energy dynamics of the N
boson is given by only the symmetry argument, i.e., the lo
energy theorem. In particular, the low-energy effective
tion of the NG boson is given by the nonlinear realization
the broken symmetry. In the case of the spontaneous Lor
symmetry breaking, these argument holds and the lo
energy effective action of the NG boson is expected to
given by the nonlinear realization of the broken Loren
symmetry. This problem will be argued in Sec. V.

13By virtue of the peculiarity of the~211! dimension, a Lorentz
scalar constructed fromFmn2Bmn can always be expressed as
polynomial of (Fmn2Bmn)2.
4-6
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In the limit m→0, the physical propagating state becom
essentially the unphysical transverse photon. Furthermore
amplitude of the physical propagating state~2.26!, for ex-
ample, the two-point amplitude satisfies

^@u01~p!2u12~p!#L̃int~q!@u01
1 ~k!2u12

1 ~k!#&

5^@ f 01~p!2 f 12~p!#L̃int
(bmn50)

~q!@ f 01
1 ~k!2 f 12

1 ~k!#&,

~4.2!

whereL̃int(q) andL̃int
(bmn50)(q) are the Fourier transforms o

Lint(x) and Lint
(Bmn50)(x) which is obtained by settingBmn

50 in Eq. ~4.1!, respectively. This relation can be gener
ized to the scattering amplitudes for any number of the
coming or outgoing physical particles. Thus the physical a
plitude in this limit is given by the amplitude of th
unphysical transverse photon, that is, the NG boson of
spontaneous Lorentz symmetry breaking. This is an ana
of the equivalence theorem of the Yang-Mills-Higgs mod
In the energy region (BVEV)2/3@E@m, where (BVEV)2/3 is
the scale of the Lorentz symmetry breaking, the phys
S-matrix elements can be obtained by the scattering am
tudes of the NG bosons for the Lorentz symmetry breaki

V. DISCUSSIONS

In this paper, we have studied a covariant canonical qu
tization of a gauge-invariant model of a second-rank a
symmetric tensor field and a vector field~photon!. The spon-
taneous Lorentz symmetry breaking on the vacuum wit
constant VEV of the antisymmetric tensor field has also b
studied and the NG boson of the Lorentz symmetry break
has been identified with the unphysical photon. In this s
tion, we discuss some related problems.

A. The spontaneous symmetry breaking of translation

Until now, we have discussed only the spontaneous L
entz symmetry breaking on the vacuum~3.1!. Indeed, the
vacuum breaks the translational symmetry, because the V
^F12&5BVEV leads to, for example, the VEV’s

^A1&52 1
2 BVEVx2 and ^A2&5 1

2 BVEVx1. ~5.1!

SinceA1 andA2 are not gauge invariant, one may expect th
the VEV’s can be eliminated by a gauge transformati
However, following the discussion about the VEV’s ofBmn

andFmn in Sec. III, we do not require the invariance of th
Hilbert space under the singular gauge transformation wh
eliminates them.

By the VEV’s ~5.1!, two translation generatorsP1 andP2
are broken:

^@ iPi ,Aj~x!#&5e i j
1
2 BVEV , ~5.2!

wherePi is given by the canonical energy-momentum ten
~3.3!:
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Pi5E d2xTi
0~x!. ~5.3!

The NG bosons associated with the broken translation g
erator P1 and P2 are A2 and A1, respectively. A similar
discussion with the broken Lorentz symmetry concludes t
the NG boson of the broken translational symmetry is a
the unphysical massless photon.

This can be also understood from the following comm
tation relation in the Poincare´ algebra10

@M0i ,P0#52 iPi . ~5.4!

Sandwiching the Jacobi identity

@@M0i ,P0#,Aj~x!#1@@Aj~x!,M0i #,P0#1@@P0 ,Aj~x!#,M0i #

50 ~5.5!

between the vacuum statesuVAC&, one can obtain the fol-
lowing equality

^@ iPi ,Aj~x!#&5^@ iM 0i ,]0Aj~x!#&5e i j
1
2 BVEV , ~5.6!

where we have usedP0uVAC&50 and @P0 ,f I #52 i ]0f I .
This implies that when the NG boson of the broken trans
tion generatorPi is Aj , the NG boson of the broken Lorent
generatorM0i is given by its time derivative]0Aj;F0 j .
This phenomenon has been known as the inverse Higgs
nomenon in the nonlinear realization of spacetime symm
tries @20#.

B. Relation to the nonlinear realization of Lorentz symmetry

According to the discussion in Sec. V A, the low-ener
effective action of the NG bosonAi can be obtained by the
nonlinear realization of the translational and Lorentz symm
try, which leads to a one-dimensional effective action14

However, since no physical lower-dimensional object su
as a brane exists in our model, we expect a~211!-
dimensional effective action, which describes the low-ene
effective theory in the whole spacetime.

To realize this expectation, as in the case of the bro
boost generators, we split the broken translation genera
Pi into the broken parts and the unbroken parts such15

Pi5Pi
B(BVEV)1 P̂i

Pi
B5

BVEV

2 E d2xe i j ~Û0 j2Ĉ0 j !. ~5.7!

The broken parts of the translation generators satisfy

14The Nambu-Goto type effective action on a lower-dimensio
brane embedded in higher-dimensional flat spacetime is know
be obtained by the nonlinear realization of the higher-dimensio
translational and Lorentz symmetries@21#.

15As in the case of the boost generators, one can show thatPi
B and

P̂i are conserved separately.
4-7



le
n
.
-

de
ns

e

e
-

rg

ug

st
om
nt

is

a
r
ve

are

ho-
G

ome

tive
n

n-
the

tive

ith

e
ied
he

ur
.

.
d

KIYOSHI HIGASHIJIMA AND NAOTO YOKOI PHYSICAL REVIEW D 64 025004
@ iPi
B ,Aj #5e i j

1
2 BVEV . ~5.8!

The same argument as the case of the boost generators
us to the conclusion that the NG bosons for the broken tra
lation generators can be the unphysical massless photon

Here, if one considersonly the physical Hilbert space de
fined by the physical state conditions~2.16!, one can show
that the generators$Mmn ,P0 ,P̂i% form a closed Poincare´ al-
gebra on the physical Hilbert space. As far as one consi
this Poincare´ algebra on the physical Hilbert space, the tra
lational symmetry generated byP̂i is unbrokenand only the
boost symmetry generated byM0i is broken. In this breaking
pattern of the Poincare´ symmetry, the low-energy effectiv
action constructed by the nonlinear realization is a~211!-
dimensional effective action and its explicit form has be
obtained in Ref.@19#. Thus, we expect that the physical am
plitudes of the model can be obtained by the low-ene
effective action via the equivalence theorem discussed
Sec. V A.

C. Other related topics

From the relation between the noncommutative ga
theory and the D-brane world volume effective theory on
constant background antisymmetric tensor field, our inve
gation is expected to give some new insights to the nonc
mutative gauge theory. However, in this context, the a
symmetric tensor field is taken as anexternal field; the
kinetic term for the antisymmetric tensor field does not ex
Then the vacuum

^B12&Þ0 and ^F12&50 ~5.9!
rg

.

cl

02500
ads
s-

rs
-

n

y
in

e
a
i-
-

i-

t.

is allowed as the solution of the equation of motion of
gauge fieldAm . This solution is a different vacuum from ou
vacuum ~3.1!. The extension of our analysis to the abo
case and the relation to the noncommutative gauge theory
interesting problems.

We make some speculations about the dynamics of p
ton Am in our model. At first, since the photon is the N
boson of the broken Lorentz symmetry on the vacuum~3.1!,
the NG theorem concludes that the photon cannot bec
massive on the vacuum. Second, as discussed in Ref.@19#,
the NG boson of the broken Lorentz symmetry has deriva
couplings withany fields including itself. Hence, the photo
is expected to have derivative coupling withany fields in-
cluding itself and neutral fields. From the relation to the no
commutative gauge theory, this seems consistent with
fact that the noncommutative photon in the noncommuta
QED, where the products of fields are replaced by the!
products, has self-couplings and derivative couplings w
fields in the adjoint representation, i.e., neutral fields@22,23#.

Although the discussion in this paper is limited to th
model in 211 dimensions, similar discussions can be appl
to the models in higher dimensions. Investigation of t
more realistic case, that is, the~311!-dimensional case is an
interesting future problem.

Investigation of the supersymmetric extension of o
model from the viewpoint in this paper is also interesting
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