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The total perturbative contribution to the free energy of 8t 3) gauge theory is argued to lie significantly
higher than the full result obtained by lattice simulations. This then suggests the existence of large nonpertur-
bative corrections even at temperatures a few times above the critical temperature. Some speculations are then
made on the nature and origin of the nonperturbative corrections. The analysis is then carried out for quantum
chromodynamicsS U(N.) gauge theories, and quantum electrodynamics, leading to a conjecture and one more

speculation.
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[. INTRODUCTION tion arising from an improper insistence of describing the

high-temperature phase in terms of weakly coupled quasi-

The most convincing evidence for a phase transition inparticles?
thermal Yang-Mills theories is provided by direct lattice  Several viewpoints have been expressed in the literature.
simulation of the partition function: Some believe that the deviation is mainly a non-perturbative
correction to a gas of weakly coupled gluons and parametrize
it in terms of a phenomenological “bag constant.” Others
have attempted a phenomenological description of the high-
temperature phase in terms of generalized quasi-particles.
whereB=1/T is the inverse temperature. Over the years thd=or a discussion and detailed references to these phenomeno-
lattice data forSU(3) theory, the purely gluonic sector of logical approaches see, for examg2]. On the other hand,
quantum chromodynamid®CD), has become increasingly a few have suggested that the best consistent description of
accurate, with various systematic errors brought under corihe high-temperature phase might be in terms of novel struc-
trol [1]. Figure 1 shows the normalized free-energy densitytures(3,4].
F=—TInz/\V, of SU(3) gauge theory taken from the firstof ~ In order to help discern among the various possibilities,
Ref. [1]. Plots such as this have supported a picture of dhis paper will focus on estimating the total perturbative con-
low-temperature phase of glueballs melting above some crititribution to the free energy. It is important to first agree on
cal temperature to produce a deconfined phase of weakl§ome terminology so as to avoid confusion due to an overuse
interacting gluons: As the gluons are liberated the number off some phrases in the literature. The partition function de-
degrees of freedom increases causing the free-energy densignds on the Yang-Mills coupling, and has a natural rep-
to rise, while asymptotic freedom guarantees the gluons aréesentation as an Euclidean path inteddl
weakly interacting at sufficiently high temperature.

Though the numerical data for QCD is less accurate, due Z(g)=f D¢e*fgd7'fd3XE(¢(X,T)) @
to technical difficulties in simulating fermions, the accumu-
lated data continue to support a phase transition. It is gener-
ally believed that this is a transition from a low-temperaturewhere collectively denotes the gauge and ghost fields, and
hadronic phase to a high-temperature phase of quarks and the gauge-fixed Lagrangian density &U(3) gauge
gluons. This “quark-gluon plasma’ is the new phase of mat-theory. An expansion of this path integral, and hence the
ter which experiments at Brookhaven and CERN hope tdree-energy density, arourg=0 leads to the usual Feynman
detect in the near future.

For the most part of this paper the focus will be on pure Siatt

Z=Tre FH, (1)

SU(3) theory, since the accurate lattice data allow a direct
comparison with theory. Referring to Fig. 1, there is one -8
feature which is ignored by some, commented on by many 0.6
and which has bothered a few. While there is little doubt that
at infinite temperature a description in terms of gluons is 0.4
tenable, this is less clear at temperatures a few times the
critical temperature] .~270 MeV. For example, atT3., the -2
curve lies 20% below that of an ideal gas of gluons. x=T Tc
What is the origin of this large deviation? Is it due (ip 2 3 4 >
perturbative corrections to the ideal gas val@g&) non- FIG. 1. Mean lattice results for the free-energy density of hot

perturbative effects in the plasm@j) an equally important SU(3) gauge theory from Refl]. Here S, refers to the free
combination of(i) and (i) or, (iv) is this an irrelevant ques- energy divided by the free energy of an ideal gas of gluons.
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FIG. 2. The divergent perturbative free-energy densitg of3)
gauge theory given in Eq3). Starting from the lowest curve at
(af2m)%5=0.24, one had\=2,5,3,4.

perturbation theory and contributions of the fogh, with

infrared effects occasionally generating logarithms multiply-

ing the power termsy"(In(g))™. These terms will be called
perturbative. What is invisible in a diagrammatic expansio

—1/g2 .
aboutg=0 are terms such as 9°, associated for example

with instantong5]. Such terms, which are exponentially sup-

pressed ag— 0, will be called non-perturbative.

n
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Padeimprovement of the divergent seri€3). Their conclu-
sion was that the convergence could be improved, and the

dependence on the scglereduced. However they did not
attempt a direct comparison of their improved results with
the lattice data, though Hatsuda did conclude that for the
case of four fermion flavors, the deviation of the fifth-order
Padeimproved perturbative results from the ideal gas value
was less than 10%.

Not all seem to agree that a resummation of perturbative
results as ir[9,10] sheds sufficient light on the lattice data.
For example, Anderseet al. [11] and Blaizotet al. [12]
have abandoned the expansion of the free energy in terms of
any formal parameter, but use instead gauge invariance as
the main guiding principle to sum select classes of diagrams.
Their low order results seem to be close to the lattice data,
but unfortunately because of the complexity of the calcula-
tions and the absence of an expansion parameter, it is not at
all obvious what the magnitude of “higher order” correc-
tions is. A completely different approach has been taken by
Kajantieet al. In [13] an attempt has been made to numeri-
cally estimate the net contribution of long-distance effects,

Note that at non-zero temperature, odd powers of the cOlsymmarized in a dimensionally reduced effective theory, to

pling, such agy®, appeaf5]. These are perfectly natural and

the free-energy density. As will be discussed later, the cal-

represent collective effects in the plasma. Though theyylation of [13] probably contains some of the non-

sample interesting long-distance physics, mathematicallperturbative effects defined above but might miss out on
they fall into our definition of perturbative corrections. Simi- some others.

larly, Linde [6] had shown that at ordeg® the free energy

This author believes that the declared demise of informa-

receives contributions from an infinite number of tOpOlOgi' tion content in perturbative results such as Bj|s prema-
cally distinct Feynman diagrams. Though the calculation ofyre. In Ref.[14] a resummation scheme was introduced to

that contribution is difficult, it is possible in principle’],

obtain an estimate of the total perturbative contribution to the

and anyway does not qualify as a non-perturbative contribufree-energy density o8U(3) theory. The methodology of

tion according to the definition above.

Ref. [14] has been further developed and applied to other

Following the heroic work of Arnold and Zhai, a com- problems in[15,16. In Secs. ll-V an explicit and improved
pletely analytical calculation of the free energy of thermaldiscussion of the results {14] is given, leading to the con-

gauge theory to ordeg® has been obtaind®,7]. For SU(3)
gauge theory the result can be summarized as follows:

P ol I el R P
F, = 4w = R
«|* 799.2-247 51 i
o ' ' 27T

, 3

+237.2

where Fo=—8#?T%45 is the contribution of non-
interacting gluonse=g%/ 4, andu is the renormalization
scale in the modified minimal subtractiomM§) scheme. Un-

clusion that thetotal perturbative contribution to the free-
energy density lies significantly above the full lattice data. In
Sec. VI | discuss the consequent magnitude of non-
perturbative contributions, and speculate on their possible
origin. Section VIl contains an analysis of the perturbative
free energy of generalized QCD, witk; fermions, and a
brief comparison with the available lattice data which is less
precise.SU(N.) gauge theory is discussed in Sec. VIIl, and
an apparently universal relation noted. Section IX considers
guantum electrodynamic$QED) and some speculations
about its high-temperature phase. A summary and the con-
clusion is in Sec. IX.

Il. THE RESUMMATION SCHEME

The truncated perturbative expansion of the normalized

fortunately Eq.(3) is an oscillatory, non-convergent, series free-energy density can be written as

even fora as small as 0.2, which is close to the value of

physical interest. A plot of Eq.3) at different orders, at the

scale;=27TT is shown in Fig. 2. The poor convergence of

N

‘sN(x)=1+nZl A", (4)

Eq. (3) does not allow a direct comparison of the perturba-

tive results with lattice data. Furthermore, the re<8ljt is
actually strongly dependent on the arbitrary valueuofin-
spired by the relative success of Pagsummation in other
areas of physics, Hatsudlg] and Kastening10] studied the

wherex = (a/7)Y? is the coupling constant, and where fol-
lowing [9,10], possible logarithms of the coupling constant
are absorbed into the coefficierfts. The poor convergence

of Eq. (4) is obviously due to the large coefficients at high
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order. Indeed such divergence of perturbative expansions is ISn(No,P)
generic in quantum field theory and one expects the coeffi- T:
cientsf,, to grow asn! for large n [17]. This leads to the

introduction of the Borel transform where\ is a convenient reference value. For the problem at
hand, becausé, is negative, the solutiong(N) to Eq. (10
(5) will be positions of minimd 15]. Denote the value of Eq9)
at p=p(N) by Sy(\). Notice that althouglp(N) is deter-
_ _ mined at the reference valug, Sy(\) is defined for all\.
which has better convergence properties than Bg. The  The reason why this is sufficient has been explainefd &

series(4) may then be recovered using the Borel integral  gnd will be discussed further in the next section.
1 (= It must be stressed that, in genetakée[15]), the varia-
Sy(N) = _J dz e 7 By(2). (6)  tional parametep(N) is not related to possible singularities
Ao of B(z). Rather, it is determined according to the extremum
condition (10). Thus the presentation here is a slight depar-

The logic of Borel resummation is to define the total suMy,re from that in[14] and represents the developments in
S(\) of the perturbation expansion as tRe- limit of Eq. Ref.[15].

(6). This of course requires knowledge B{z)=B..(z) and Sufficient information is now available to construct the
the existence of the Borel integral. Lacking knowledge of the.o5;mmed approximan, from N=3 up toN=5 in the
exactB(z), one therefore attempts to reconstruct an approXiaxt section. The approxima®, of course does not exist
mation toS by replacing the partial seri€®y(z) in Eq. (6) sincef,=0, while S, cannot be constructed because no so-
by a possible analytica_LI conti.nu.ation thereof. A sjmple andtion exists to equations such as H0) at the first non-
popL_JIar method to achieve th|§ IS to use Paﬂproxmant;, trivial order. ForN>2, the solutiong(N) will be positions
Ieadlng_ therefore to a Bore!-Pade;ummatlo_n of the series of global (local) minima if the sign offy is positive (nega-
(4). This method will be briefly discussed in Sec. V. Heretive) [15].

instead | will proceed as suggested by LoefféB] and
change variables in Ed6) through a conformal map. For a
positive parametep, define

0, (10

n

N f.z
Bny(2)=1+ > —
n=1 n!

Ill. SU (3): RESUMMATION UP TO FIFTH ORDER

In order to make contact with lattice data which show a
_ Nl4pz-1 temperature dependent curve, one must use i&a@ tem-
W(z)= — (7) . . .
Ji+pz+1 perature dependent coupling. Let us begin by using the one-

loop running coupling defined biyl1,12
which maps the complex z-plan@orel plane to a unit

circle in thew-plane. The inverse of Eq7) is given by 2
ACX)= ———, (11
aw 1 Vv11L(c,x)
= awE ®

where L(c,x)=In((2.28mcx)?), c=;/27-rT and x=T/T,,
The ideg[19] is to rewrite Eq(6) in terms of the variablev. ~ With T.~270 MeV the critical temperature which separates
Therefore, using Eq8), z" is expanded to ordeM in wand  the low and high temperature phagés2?2].

substituted into Eqg5),(6). The result is Fixing first the reference valuesy=1, xo=1, which
fixes the reference value of,, the results of Eq(10) are:

1 fo/4 nNn (2n+k—-1)! p(3)=3.2, p(4)=7.9, p(5)=13.7. The curves foSy(\)

SN()\):]-"’_X nZl F(E) kzo K (2n—1)1 are shown in Fig. @) at the renormalization scale=1.

Notice the behavioB;>S,>S; and how these all lie signifi-
S (k1) cantly above the lattice curve in Fig. 1. The results do de-
X fo e "t w(z)" Vdz, (9  pend on the renormalization scale, denoted here by the di-
mensionless parameterlt has been suggestgtll, 17 that a

wherew(z) is given by Eq.(7). Equation(9) represents a suitable choice fgr such a parameter is<0&<2, corre-
highly nontrivial resummation of the original serie® [15]. sponding torT<u<4=T. Certainly this is the natural en-
In the pioneering application of the Borel-conformal-mapergy range for the high-temperature phase. Figiiog shows
technique in condensed matter physics by Le Guillou andhe mild dependence &; on the renormalization scale.
Zinn-Justin[19], the parametep was a fixed constant which The results above were obtained by solving @4) at the
determined the precise location of the instanton singularity apoint co=Xo=1. Now consider changing the reference val-
z=—1/p. In some more recent QCD applicatiof®0], the  ues tocy=1, xo=3, that is, a more central value for the
fixed constanp determines the ultraviolet renormalon singu- temperature.  The  solutions are:p(3)=3.2, p(4)
larity closest to the origin in the Borel plaf21]. =7.8, p(5)=13.4. These values are hardly different from
The novelty introduced in Refl14] and further developed those above. This is firstly due to the fact that E9). is a
in [15] was to considep as a variational parameter deter- much slower varying function of the coupling than the origi-
mined according to the condition nal divergent series. Furthermore, for the present problem,
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0 955 FIG. 4. The one-loofupper curveé and approximate two-loop

) running couplings forSU(3) gauge theory at the renormalization
0.94 scalec=1.

0.93 In summary, it has been demonstrated that the resummed
0.92 approximantsS;, S,, Sy all lie significantly above the lat-
tice data and satisfy the monotonicity conditi@>S,
7 3 3 i g =T Te >S,. The result is insensitive to the reference value used to

solve Eg.(10), for the range of interest 05c<2, 1<X

FIG. 3. (8 The resummed perturbative free-energy density of<9- The result is also insensitive to the approximation used
hot SU(3) gauge theory foN=3, 4 and 5, using a one-loop run- for the running coupling constant and in fact better approxi-
ning coupling, the reference values=1, x,=1, and the renor- Mmations for the coupling seem to move the valuesSqf
malization scale= 1. The curves move upwards lsncreases(b) further away from the lattice data. Finally it should be noted
The fifth order resummed perturbative free-energy densitygoat  that the valuesSy also appear to converge Biincreases.
three different renormalization scaless=0.5, 1 and 2. The free- The only way to force the values & down closer to the
energy density increases with increasing lattice data is to choose very low values for the renormaliza-

tion scale,c~0.05. Of course this is not only unnatural but
the coupling itself varies slower than logarithmically with  increases the effective value of the coupling content beyond
andx (thec andx dependence of the coefficierftsandfs is  what one would believe is physically reasonable for a per-
also only logarithmig. The curves for the re-optimize8y  turbative treatment. That is by making an artificially low
are essentially identical to those shown in Fig&,B, the  choice for the renormalization scale, one cannot escape the
difference being only at the fifth decimal point. For example,conclusion stated in the abstract of large non-perturbative
the value ofS; in Fig. 3@ atx=3 is 0.938684, while that corrections.
for Ss optimized atxy,=3 [and hence evaluated ai{5p

=13.4), is 0.938672 ak= 3. This confirms the assertion in Sn
[14] that the results are quite insensitive to the exact refer- 0.95
ence values chosen to solve Efj0). 0.945
We now proceed to test the sensitivity of the results to the 0.94
approximation used for the running couplifgl). The ap- 0.935
proximate two-loop running coupling is given py1,12| 0.93
0.925
x=T T¢
)\(c,x)=; 1—EM (12 0.915/ 2 3 ¢ >
V11L(c,x) 121 L(c,x)
s

5
with the symbols having the same meaning as before. In Fig. 0.955
4, the one-loop running coupling.l) and the approximate 0-95//
two-loop running couplingd12) are plotted at=1 to show 0.945

their difference. Aix= 3, the value for the approximate two- 0.94

loop coupling is about 20% lower than the one-loop result. 0.935
Nevertheless, because of the above-mentioned property of OOS;;’ ;

the resummed series, we shall see that the final results to do
not shift dramatically. Using Eq(12), the solution of Eq. 2 3 4 5

(10 at the reference pointco=1x,=3 are: p(3) FIG. 5. (8 The resummed perturbative free-energy density of
=3.2, 9(4)_:7'6’ p(5)=13.1. The, corresponding curves hot SU(3) gauge theory foN=3, 4 and 5, using a two-loop run-
shown in Fig. $a) have moved up slightly compared to those ping coupling, the reference values=1, x,=3, and the renor-

in Fig. 3@. The “two-loop” value of Ss(c=1x=3)  malization scalec=1. The curves move upwards asincreases
=0.9473 should be compared to the “one-loop” value from 3 to 5.(b) The fifth order resummed perturbative free-energy
0.9387 obtained above. The mild renormalization scale dedensity of (a) at three different renormalization scales=0.5, 1
pendence of the neBs is shown in Fig. ). and 2. The free-energy density increases with increasing

X=T T¢
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IV. HIGHER ORDER CORRECTIONS almost identical to the values obtained above for various

. L . . large values of . This sounds incredible but is actually not

i Du)\ee t(: t(—;-rc]hr}lcal comphcznon; tie sixth Erder Colntrl'bu'@nce one remembers that large corrections to the divergent

lon, A~ 10 the Iree-energy gnsny as ngt een calcu ate eries(4) do not translate into large corrections to the re-

although an algorithm for it exis{s’]. There is a misconcep- g mmed serie9). In fact those large values are suppressed

tion that because that contribution is due to an infinite nUM;, yarious ways. First, in the re-organization of the series in

ber of topologically distinct di_agrams_, its value must be VerYEq. (9), less weight is given to higher order corrections. Sec-

large. A counter-example is provided by the magneticondly, the variational procedure chooses valuespor)

screening masi$], which suffers from the same disease butwhich in this example increase with, and so suppress fur-

whose approximate calculations in the literature show it to beher the value ofy.

of ordinary m.agnitudé23]. . More understanding of the above results can be obtained
Having said that, let us see what is the worst that canhrough a largeN analysis carried out for the general Egs.

happen. It has been suggested] that Padeapproximants  (9),(10) in [15]. It was shown i{15] that if p(N) increases

can be used to estimate the next term of a truncated pertufer the first few values ofN, then that trend will continue.

bation series. That is, after approximating the truncated sd-et ¢(N)=p(N+1)/p(N). In the largeN and largep(N)

ries by the ratio of two polynomials, the Padeproximantis |imit one can show thaft15]

re-expanded as a power series to estimate the next term in

the series. Well, why not also use Borel-Paggproximants 1 1 1

for the same purpose? Using the fifth order re§)itogether =1— + 13
: . : : 2 (13

with the two-loop running couplingl2), and choosing the c(N+1) ¢(N) ~ ¢(N)

central valueg=1x=23, all fifth order Padand Borel-Pade

approximants were constructed and then re-expanded to giv®ne consequence of this is thatN+ 1)<c(N) and c(N)

an estimate of the coefficieri. The largest value obtained —1" as N—c. This is indeed observed for the present
was 30000 and the smallest30000. Note that the fifth problem already at low. Numerically, Eq.(13) too is not a
order coefficient at=1 is —800, so the estimated magni- bad approximation at smal. In fact using the values found
tude of fg is about 37 times larger. Since the coupliags  for p(N) in the last section, one has(4)/p(3)=7.6/3.2
about 0.2 atx=3,c=1, the total value of the sixth order =2.375. With this as input foc(3), Eq.(13) gives the esti-
contribution to Eq(3) is therefore estimated to be almost 8 matec(4)~1.32234, to be compared with the actual value
times in magnitude compared to the fifth order contribution.p(5)/p(4)=13.1/7.6=1.7. Next usingc(4)=1.7 as the ex-
These are big numbers and should be expected to cause soswt input, Eq(13) givesc(5)~ 1.32201 and thus an estimate
damage. of p(6)~1.3x13.1=17.03. On the other hand, usimg6)

Using Eq. (9) with f5=30000, the two-loop coupling ~19.5, as determined by various estimates above, gives
(12), and solving Eq(10) at the reference pointo=1, Xo  ¢(5)=19.5/13.E1.49 and then through Eq13) the esti-
=3 givesp(6)=19.75 andSs(c=1x=3)=0.9490. Repeat- matec(6)~1.28 and henc@(7)~ 1.28x 19.5=25.
ing for fg=—230,000 givesp(6)=19.5 andSg(c=1x=3) Equation(13) was derived iff15] for the casef;#0. For
=0.9489. Notice the negligible change in the valueSgf the present case whefg=0 one will actually obtain the
even when wildly differing values have been used fgr  slightly more accurate equation
Those values should be compared with the fifth order ap-
proximant of Fig. 8a), which gives S;(c=1x=3) 1 1 1
=0.9473. The large estimated sixth order corrections to the =1~ + 3
divergent perturbation expansié¢#) cause a change of only c(N+1) ¢(N) = e(N)
0.002 to the values of the resummed series, and more impor-
tantly the shift is upwardsS;>Ss, preserving the lower or- but in the largeN limit wherec— 1" this is clearly equiva-
der monotonicity, regardless of the sign fgf lent to Eq.(13).

Kajantie et al. [13] have suggested that the sixth order Note that the recursion relation43),(14) make no ex-
contribution,fs\® be of order 10. For a coupling~0.2, this  plicit reference to the values of tlig which in the derivation
translates into the astronomical valttel 56250 forfs. Solv-  in [15] were assumed to be generic, that is, diverging at most
ing Eqg. (10) at co=1x,=3 gives p(6)=19.8 andSyz(c  factorially with n. Indeed the fact that various different as-
=1x=3)=0.9491 for the positivédg, andp(6)=19.4 and sumptions about the value &f earlier in this section led to
S¢(c=1x=3)=0.9489 for the negativefg. Despite the essentially the same value f@(6)~19.5 supports thd
anomalously large value of the sixth order contribution pro-independence of Eq13) already atN~6.

(14)

posed in[13], the conclusion here is stif;>Ss, and an From the general analysis [i15], one also deduces that

increment of only 0.002. for large N and largep(N), the monotonicityASy=Sy; 1
To highlight the above result in a more dramatic way, —Sy>0 is guaranteed by the fad, <O, and thatASy

suppose the sixth order coefficient vanistigss 0. Then be-  ~1/N® asN—=. Since the expliciN<5 calculations and

cause of the non-trivial way the resummation is done in Eqthe estimated\=6 result already suppoci{N)>1 and large
(9), the solution to Eq(10) for N=6 will still be different  values ofp(N) at low N, this suggests that the continued
from that of N=5. At co=1x,=3 | find p(6)=19.5 and monotonicity and rapid convergence of tg is assured by
thenSz(c=1,x=3)=0.9489 at four decimal places, which is the largeN analysis.
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V. LOWER BOUND AND OTHER ESTIMATES 0 .96//—’
From the explicit lowN calculations, and the larghl 0.95
analysis, one concludes that far>2, 0.94//
0.93
SN<Sn+1 (15)
0.92
for all N, and furthermore, the differencgy,,—Sy de- v 5 5 4 £ X=T Tc

creases adl increases, showing a rapid convergence of the
approximants. However, in general, it is not quite correct to  Fi. 6. The[1,2], [2,1] and[2,2] Borel-Padeapproximants to
say that the approximants converge to the total sum of théhe perturbative free-energy density, with a two-loop running cou-
series[15]. For eachN, let p*(N) be the value op that is  pling, and the renormalization scate=1. Starting with the lowest
optimal, that is, it is the value which when used in E8).  curve atx=5, one ha§2,1], [1,2], [2,2].

gives the best estimate & the total sum of the series. De-

fine, Sy=Sy(\,p*(N)). Then for thosegp(N) which are po- The[1,3] and[1,4] approximants gave values above 0.98 in

sitions of global minima one has by definition the range of interest whilg3,1] gave a value above one.
. Thus in the Borel-Padmethod, the minimum estimate for
Sv=Sy- (16)  the fifth order resummed series is given by the principal

value regulatedi2,3]. The highest values were all above one.
It is Sy which presumably converges ®asN—. (This  |f one keeps only the fifth order estimates below dtieis
implicitly assumes that the sub-sequence of global minima igjiving a very conservative lower valyehen the average of
infinite: That is, given any positive integdl, there is some  the[2,3] and[1,4] is greater than 0.94 for the entire range

n>N, for which f,, is positive) 2<x<5. At x=3 the estimates are 0.99.04. Of course
Hence if one accepts the two assumptions above, themcluding also the values above one would push this average
combining Eq.(15) with Eq. (16), higher. Clearly the Borel-Padestimates are comparable to
the bounds obtained using the resummation technique of Sec.
Sv=S 17 Il and should reassure some readers about the novel resum-

mation used here.

For completeness, | mention an alternative way of think-
ing about divergent series such as E). For QCD at zero
I : . temperature, a paradox is that one-loop results give remark-
n F'g' 5@ is a lower bound on_theotal perturbativecon- ablepagreement?/vith experimental data even when the energy
tribution to the free-energy.d.ens.lty of h.SU(3) .th(.aory. The scale is relatively low. As the running coupling is then large
statement has thrge qual|f|gat|ons. Firstly, it involves th‘?nit is not obvious why higher-loop perturbative corrections are
technical assumptions mentioned above. Secondly, as d'§'uppressed It has been sugged®%i26| that the explana-
cussed before, better approximations to the running couplingOn might "é in the probable asymptotic nature of the QCD

i 04 | - . . . . .
can mpvehthe boulf‘ds’ ?]u:t 'tdwﬁs st;aen that a dZ%A’ irl}proveperturbatmn series. Recall that in an asymptotic series the
ment in the coupling shifted the bountpwards by 19%. best estimate of the full sunat a given value of the cou-

Secondly, the bounds shift by 1% when the renormaliza- i, is obtained when only an optimal number of terms is
tion scale is varied by a factor of two from its central value kept and the rest discardéeven if they are large Thus if
u=2mT. Thus it might be more appropriate to call the gne knew the general behavior, at least at large order, of the
bounds as “plausible soft lower bounds™ with an uncertainty series(4) and assumed that it was asymptotic, then one could
depicted in Fig. ). have obtained a reasonable estimate of the full sum by sim-
Given that the lower bound obtained above involves somely adding the optimal first few terms. What has been done
unproved technical assumptions, it is useful to compare thg, the previous sections, and this is what various resumma-
above results with those obtained using different resummaion schemes try to do, is to instead sum up the whole series
tion schemes for the divergent seri@s. | briefly state here  to get an even better estimate of the total perturbation series
the main results obtained using a Borel-Pegiummation of  (and this has the greater advantage of giving a good result for
Eq. (4), with the two-loop approximation for the coupling g large range of couplingsAlso note that thinking of Eq(4)
(12) and the central value=1. The approximants will be as an asymptotic series does not say anything about explicit
denoted a$P,Q], referring of course to the particular Pade non-perturbative correctiof5,26.
approximant used for the partial Borel seri{&s constructed

for all N>2, and one may conclude that tl$g are lower
bounds to the sum of the full perturbation series.
In particular that conclusion implies that tiNe=5 curve

from Eq. (4). T_he only approximants which did not devglop V1. NON-PERTURBATIVE CORRECTIONS
poles and which gave a resummed value below one in the
temperature range x<5 were[1,2], [2,1] and [2,2]. The total perturbative contribution to the free-energy den-

These are displayed in Fig. 6. Thg,2] and[4,1] approxi-  sity of SU(3) gauge theory has been argued to be close to, or
mants did not develop poles but gave a value above one. Hbove, theN=5 curve in Fig. %a). A residual uncertainty
the approximants which developed a pole are definedhat could lower the curve of Fig.(& is the exact value of
through a principal value prescription, then the lowest valuehe renormalization scale. For a natural range of parameters,
was given by 2,3]: 0.91—-0.94 asx increased from 25.  the lower curve in Fig. &) is the result. On the other hand
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the full result as given by lattice simulations is shown in Fig.rameter iSA= \/92/4772~ 1/\/|n(T/A), one does not get a
1. Lattice errors have been stated to be under[3%Taken simple power suppression frora~'*. Nevertheless, the
together, the conclusion appears inescapablen at tem- analogy with zero-temperature results suggests that such
peratures a few times above the transition temperature, thereontributions might be due to some condensates. Thus the
are large negative non-perturbative contributions to the free-conventional condensates discussed for examplé3hare
energy densityFor example, al =3T;~700 MeV, the lat- plausibly part of the non-perturbative contributions. The
tice results for the normalized free-energy density are 0.8orm however suggests even more novel condensates. These
+0.04 while the lower bound on the perturbative contribu-might be, for example, those of DeTi8] or Pisarski4].
tion is 0.947-0.007, implying a minimum non-perturbative It is worth noting an explicit instance of a theory display-
correction of 10%(and as high as 20%). ing exponentially small non-perturbative effects which are
Thus an answer has been given to the questions raised tﬁrger than those due to stan_dard_ solitons. In fundamental
the introduction. The deviation of the lattice data from theString theory where the coupling & there are the usual
ideal gas value is apparently caused mainly by non_solltons but there are also novel “D-instantons” which give

5 . N . . . 71/g . . .
perturbative corrections, with perturbative corrections ac? larger contrlbutl_ore_ [27]'.| alsc_) mention in passing the_
counting for a much smaller amount. At- 3T, the relative recurrent and intriguing relationship between gauge the_ones
contributions are- 15% and— 5% ' € and stringq 28] which leads one to wonder whether that is a

. possible route to understanding the non-perturbative struc-
| speculate now on possible sources of the non

turbati i First th the familiar inst ture of hot gauge theories.
perturbative corrections. First there are the familiar instan- Using theN=5 curve of Fig. %) as a reasonable esti-

tqns, already present in the clza253|cal action, and which COMate of the full perturbative result, and assuming a nonper-
tribute terms of the ordee *". Secondly there are the tyrbative component of the form

magnetic monopoles. There is by now overwhelming evi-

dence that confinement at zero temperature is caused by the i

't Hooft—Mandelstam mechanism of condensing monopoles Sp=y © a, (18

(the dual superconducting vacuunThus it is possible that

the monopole condensate has not completely melted abogs suggested by the Borel method, one can determine the
the critical temperature. Note that since the classical theorgonstants andq by comparing the lattice data of Fig. 1 with

does not support finite energy monopoles, these must be @he perturbative result. If14] it was shown that
guantum origin, and so their contribution might be larger

than those of the instantons.
In fact contributions which are exponentially small but Siatt=Spert— rx) €
much larger than those of the instantons are suggested by the

Borel resummation itself. It is known that.Yang—MiIIs t.heo— whereS,,, represents the lattice data for the free energy, and
ries are not Borel summab(@0,21. That is, the function g the resummed perturbative result, both normalized with
B(z) has singularities for positive, making the Borel inte- respect to the ideal gas value, ank) is given by Eq.(12)
gral ill-defined. One can nevertheless define the sum of thg; c—1. Equation(19) is a phenomenological equation of
perturbation series using the Borel integral if a prescription issiate for the free energy which generalizes the usual discus-
used to handle the singularities. It is generally believed thagiqns in the literature where the second term on the right-
the prescription dependent ambiguity disappears when etand side of Eq(19) is called a “bag constant.” In this case
plicit non-perturbative contributions are taken into accountpe “constant” is really temperature dependent and repre-
for the physical quantity in question. Indeed the nature ofsents g non-perturbative contribution to the free energy that
singularity itself suggests the form for the non-perturbativeyanishes at infinite temperature. It is important to note that
contribution. If there is a pole ar=gq, then the non- the non-perturbative contribution is negative, since the per-
perturbative contribution will be of the forme™*, which  yrbative result is above the full lattice data, and thus consis-
is larger than the instanton contribution for smellAn ex-  tent with the usual interpretation in the literature.
plicit mathematical model which illustrates the interplay be- 5o far the discussion has implicitly assumed an additive
tween Borel non-summability and non-perturbative contribupicture of perturbative and non-perturbative contributions,
tions has been given ifi5]. . . with both components clearly distinguished. It might be that
Notice that the non-perturbative corrections suggested by, reality the best description of the high-temperature phase
the Borel method at non-zero temperature are very different in terms of completely novel structurg4]. In that case a
from those at zero temperature. In the latter case the expafy ced expansion of those alternatives abost0 must give
sion parameter ig? and so the contribution is-e” %9,  something like Eq(19) and the subsequent distinction be-
which translates into a power suppressed contributionween perturbative and non-perturbative contributions. The
~1/(Q)® when g? is replaced by the running coupling mathematical toy model dfL5] illustrates this.
~1/In(Q/A). In cases where the physical quantity can also be Within the framework of this paper, one can distinguish
analyzed using the operator-product expans@RE), these three versions of the popular concept of “quasi-particle.”
power suppressed contributions to perturbative results corrd=irst there are the “perturbative quasi-particles” which are
spond in the OPE picture to vacuum condensg26s21. deformations of the gluon formed by a particular reorganiza-
At nonzero temperature, since the natural expansion paion of the perturbative Feynman diagram expansion. The

8.7—2.62A(x) (19)
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(Each curve has been normalized with respect to the ideal

0.95
0. 945 gas value for that number of flavors.
: TheN=5 curves in Fig. 7 can be taken as plausible lower
0.94 bounds, or estimates, to the total perturbative free energy
0.935 density of QCD withN; fundamental fermions. Lattice re-
7 3 3 i g X=T Tc sults for QCD contain large systematic errors compared to
0.925/ those forSU(3) and so a precise comparison is not possible.

After making some assumptions about the size of the system-
FIG. 7. The fifth order resummed perturbative free-energy denatic errors, the authors in Reff29] determine that forN;
sity of SU(3) gauge theory coupled 19 fermions as discussed in =2 the free-energy density lies about-130 % below the
Sec. VII. Starting from below axx=5, the curves labelN; ideal gas limit. This is similar to the case of pusdJ(3).
=6,5,4,3,0,2,1. Comparing this lattice estimate with the estimate on the per-
turbative result in Fig. 7 one is again led to suggest that there
results above suggest that if all the contributions of suchare large non-perturbative corrections to the naive picture of
guasi-particles to the free energy are added up, the net res@dtweakly interacting quark-gluon plasma.
will lie above the lattice data, and only truly non-perturbative  Of course, given the physical relevance of QCD, it would
contributions, as defined in Sec. |, may give the final agreebe preferable to have more precise numbers from the lattice,
ment. Secondly there are the “nonperturbative quasi-and especially for other values f; . However it seems that
particles,” which are excitations about the nontrivial thermala non-perturbative component of 2Q5 % at temperatures a
vacuum that includes condensates, and so forth. Currentliew timesT, is likely to be generic.
there is not sufficient control over the theory to construct When the draft of this paper was complete, | came across
these objects. Finally there are the “phenomenological quaF22] which gives forN;=2 aT./Ayxs~0.5, a factor of two
siparticles” which simply aim to give numerical agreementlower than that for the pure gauge theory. This has the con-
with the lattice data within a simplansatz The ultimate sequence that in L(c,x) should be replaced by aboat2.
justification for these phenomological constructs must surelyHowever as the reader can surmise by now, this has hardly

come from the “nonperturbative quasiparticles.” any impact on the results above, for this is equivalent to
shifting the renormalization scateby a factor of two, which
VIl. QCD as we have seen causes only a 1% shift of the curves. In any

. ) o . o case this serves to remind that the lattice resultd\foare in
In this section lower boundgvithin assumptions similar 5 state of flux.

to those made previoushare obtained for the perturbative
free-energy density of hddU(3) coupled toN; flavors of
fundamental fermions. As the essential features are very

similar to the pure gauge case, the discussion here will be Define
brief. The fifth order perturbative results in th&S scheme

can be read off from the landmark pap@83. The approxi- A(Ng)= (&
mate two-loop coupling that is used here is given by ¢ 3

VI SU (N)e

12/ )\ 12
REE 23

™

1 B, In(L(c,x)) Then the free-energy density of pugJ(N,.) theory up to
2—( - L—) (20)  fifth order[8,7] is given by the expressia), with («/)*?
VA7 BoL(C,X) 2p5 LX) replaced everywheréncluding inside the logsby \(N,).
. Thus there is no expliciN. dependence of the free-energy
with density when written in terms of(N,).
To examine thé\. dependence of the new couplif2g),

A(C,X)=

Bo= m\cha;Qzﬁ (21) consider the approximate two-loop running coupling given
by
2 CY(T) 12 1 Bl In(L(TvA))
B1= —3(477)4(34NC—13NCNf+3Nf/NC). (22 = — 1——2—_
™ VA2 BL(T,A) 2By L(T,A)

Following [12] | also assume a relativd; independence of (24)
L(c,x), and thus use for it the same expression as used ifith
Eqg. (11). The extremization conditiofl0) is solved at the
reference pointy=1, xo=3 for N;=3 and 1=N;<6. The o 2c' #T
results obtained are all extremely similar: In each case the L(T,A)=2In| —|, (25)
convergence of th&y is monotonic and rapid as in the pure
glue case in Fig. @). For this reason only thel=5 curves
are displayed in Fig. 7 for the various number of flavors. For _ 1IN (26)
comparison the pure glue resul{=0) is also included. Bo= 4842
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1 , Sn
B1 3(477)4(34Nc). (27) 1.1

o 1.05
and with A=A (N,) the SU(N.) gauge theory scale param- 1
eter in theMS scheme. InL, the constant’ is w/2#T. 2 0 0.6 0.8 1
Comparing the various equations, one comes to the remark- 0.95
able conclusion that the new running coupli@.,T) will 0.9
be independent oN, if the MS scale parameteh (N.) is
itself independent oN, when expressed in terms of some 0.85
physical length scale. By comparing some data Ky 5

=2,3,4, Teper[30] has concluded that this is indeed the
case.

Therefore, accepting the result [#0], one deduces that
the N=5 curve in Fig. %a) is a plausible lower bound, or
estimate, to the total perturbative free energy density of hot

SU(N,.) theory when the x axis is interpreted BS\ instead
of T/T.. This is then a universal relatiof@t least for low
N.), and one suspects that the corresponding full lattice re-
sults might also obey a universal curve, thus leading to the
guess that the non-perturbative component ofSdd(N.) 0.
plasma is about 1815% for temperatures a few times
above the critical temperature.

FIG. 8. (@ The divergent perturbative free-energy density of
QED, given in Sec. IX. Starting from the lowest curve and moving
upwards, one habl=2, 5, 3, 4.(b) The resummed perturbative
IX. QED free-energy density of QED. The curves move upwardaa-

. . f 3 to 5.
Though the fine structure constamtof QED is small at creases from s 1o

everyday energies, i.t is. interesting to consider super-higlar other non-perturbative information is currently available
temperatures where it will be large. The free-energy densmébout the high-temperature phase of QED.
of massless QED at temperatufE) ( has been computed up

to order @®? in Refs. [31,8,7,32. Denoting as usuah

. . X. CONCLUSION
=(al7)*? the normalized free-energy density at thtS

renormalization scalg.=2#T, is given by[31,§] The phrase “nonperturbative” is used often and loosely
with regard to field theories at non-zero temperature. This
F/Fo=1-1.13636.2+2.09946.3+ 0.488875. has caused a great deal of semantic confusion and misunder-
standing. For the purpose of uncovering the cause of the
—6.34112°, (28)  deviation of the result in Fig. 1 from the ideal gas value, it

has been proposed to term “perturbative” all power like
whereF,=1172T#/180 is the free-energy density of a non- (modulo logarithmscontributions to the free-energy density.
interacting plasma of electrons, positrons and photons. FigSuch perturbative contributions follow from the usual Feyn-
ure §a) shows the plot of Eq(28) at different orders. The man diagram expansion of the partition function around zero
series diverges at large coupliiguper-high temperaturgs coupling.
exhibiting a behavior similar to that of Yang-Mills theory at  For SU(3) gauge theory a plausible lower bound was
low temperatures. The convergence at large coupling can bebtained on the totality of such perturbative contributions to
improved by using the resummation technig@g(10). Us-  the free-energy density. The derivation of that lower bound
ing the coefficients from Ed28), the solutions of Eq(10) at  using the variational conformal map involved some technical
the reference valugy=0.5 are(minima): p(3)=0.7, p(4)  assumptions, and so one may instead wish to consider it only
=1.75, p(5)=3. as an estimate of the total perturbative contribution. The es-

The resummed series, with its much improved convertimate is comparable to that obtained using Pad@orel-

gence, is shown in Fig.(B). TheN=5 curve can be taken as Paderesummation methods and lies significantly higher than
a lower bound to the full perturbative result. If one assumeghe full lattice result, thus suggesting that large and truly
that the potential non-perturbative contributions lower thenon-perturbative corrections exist. As discussed in Sec. VI,
perturbative result, as happens in QCD, or are very small ithese non-perturbative corrections might include the usual
magnitude, then one may conclude from Figo)&hat super-  instantons, magnetic monopoles, the usual condensates, and
hot QED undergoes a phase transition. This speculated higiperhaps also more novel condensates and extended structures
temperature phase of QED might then be analogous to thas suggested by the Borel foren ** of the non-perturbative
low-temperature phase of QCD with various bound statescontributions. As to which of these possibilities dominates is
Or, it might resemble the alternative picture of low-energyan interesting question left for future work.
QCD: that of flux tube$33]. It is unfortunate that no lattice The equation of state for h@&U(3) can be summarized
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by the phenomenological relatigt4] Being restricted to an analysis of the free-energy density,
the results here of course do not imply that every observable
S _ T gB7-262A() (29) must have !ar_ge non-perturbative contributions, but it_is
att= Spert A(X) : likely that this is true for most of the bulk thermodynamic
quantities.
whereS,,;; represents the lattice data for the free energy, and An analysis was also carried out for generalized QCD
Spert the resummed perturbative result, both normalized withwith Ny quarks. Currently the lattice data is only approxi-
respect to the ideal gas value, and wheiis the temperature mate and so the conclusions are less definitive. However
dependent couplingl2) atc=1. There is a slight ambiguity accepting the estimates|[i#a9], the conclusion is the same as
in the estimate of the magnitude of non-perturbative correcbefore: There appear to be large non-perturbative corrections
tions coming from the residual renormalization scale ambito the free-energy density of haBU(3) gauge theory
guity of the resummed perturbative results. For the naturatoupled to Ny quarks. Thus in particular, *“quark-gluon
rangenT<u<4xT, the ambiguity is less than one percent. Plasma” seems to be an incomplete description even at tem-
Such an ambiguity between the perturbative and nonPeratures several times above the transition temperature.
perturbative components is understandable, as only the full A Simple relation was noted for the perturbative free-
physical quantity can be demanded to be scale independer@ergy density oSU(N.) gauge theory in Sec. VIII. That
and not separately its perturbative and non-perturbative confesult, combined with the results for generalized QCD in

ponents, though the latter simplifying assumption is oftenSec. VI, and the available lattice data, leads one to a uni-
made. versality conjecture For the high-temperatureT&2T,)

phase ofSU(N,.) gauge theory coupled tN; fundamental
uarks, and for all moderate values Mf and N¢, at most
% of the deviation of the free-energy density from the ideal
as value is due to perturbative effects while non-

By choosing an anomalously low value for the scale
one can fit the purely perturbative results to the lattice dat
but at the price of a very large effective coupling constant,
and thus an unsuppressed contribution from common pla : .
objects like instantons. Therefore this route does not offer aRerturbatNe effects contrlt_)ute a larger-105 %. .
escape from the conclusion of large non-perturbative correc- It hag bee_n speculated in Sec. IX that QED might have an
tions. interesting high-temperature .phase. _

The results of this paper do not imply that the description Finally, the methods of this paper m_|ght be of some use
of the free-energy density must be as in E29). Rather, for the study qf supersymmetric theories at non-zero tem-
completely novel descriptions in terms of various extended’€rature, a topic of interest in recent developm¢R&.
structures are possible,4], but in a forced expansion of
those alternative descriptions abat 0, one must recover
something like Eq(19). On the other hand, the results here | thank B. Choudhary, C. Corian@é. Goldhaber, U. Par-
doimply that an accounting of the lattice free-energy densitywani, |. Parwani, S. Pola, J.S. Prakash, D. Saldhana, S.
in terms of a subset of Feynman diagrams of the perturbativ8aldhana, and P. Van Nieuwenhuizen for their hospitality
thermal vacuum might miss some essential physics. during the course of this work.
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