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Free energy of hot gauge theories
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The total perturbative contribution to the free energy of hotSU(3) gauge theory is argued to lie significantly
higher than the full result obtained by lattice simulations. This then suggests the existence of large nonpertur-
bative corrections even at temperatures a few times above the critical temperature. Some speculations are then
made on the nature and origin of the nonperturbative corrections. The analysis is then carried out for quantum
chromodynamics,SU(Nc) gauge theories, and quantum electrodynamics, leading to a conjecture and one more
speculation.
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I. INTRODUCTION

The most convincing evidence for a phase transition
thermal Yang-Mills theories is provided by direct lattic
simulation of the partition function:

Z5Tr e2bH, ~1!

whereb51/T is the inverse temperature. Over the years
lattice data forSU(3) theory, the purely gluonic sector o
quantum chromodynamics~QCD!, has become increasingl
accurate, with various systematic errors brought under c
trol @1#. Figure 1 shows the normalized free-energy dens
F52T ln Z/V, of SU(3) gauge theory taken from the first o
Ref. @1#. Plots such as this have supported a picture o
low-temperature phase of glueballs melting above some c
cal temperature to produce a deconfined phase of we
interacting gluons: As the gluons are liberated the numbe
degrees of freedom increases causing the free-energy de
to rise, while asymptotic freedom guarantees the gluons
weakly interacting at sufficiently high temperature.

Though the numerical data for QCD is less accurate,
to technical difficulties in simulating fermions, the accum
lated data continue to support a phase transition. It is ge
ally believed that this is a transition from a low-temperatu
hadronic phase to a high-temperature phase of quarks
gluons. This ‘‘quark-gluon plasma’’ is the new phase of m
ter which experiments at Brookhaven and CERN hope
detect in the near future.

For the most part of this paper the focus will be on pu
SU(3) theory, since the accurate lattice data allow a dir
comparison with theory. Referring to Fig. 1, there is o
feature which is ignored by some, commented on by m
and which has bothered a few. While there is little doubt t
at infinite temperature a description in terms of gluons
tenable, this is less clear at temperatures a few times
critical temperature,Tc;270 MeV. For example, at 3Tc , the
curve lies 20% below that of an ideal gas of gluons.

What is the origin of this large deviation? Is it due to~i!
perturbative corrections to the ideal gas value,~ii ! non-
perturbative effects in the plasma,~iii ! an equally important
combination of~i! and ~ii ! or, ~iv! is this an irrelevant ques
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tion arising from an improper insistence of describing t
high-temperature phase in terms of weakly coupled qu
particles?

Several viewpoints have been expressed in the literat
Some believe that the deviation is mainly a non-perturba
correction to a gas of weakly coupled gluons and paramet
it in terms of a phenomenological ‘‘bag constant.’’ Othe
have attempted a phenomenological description of the h
temperature phase in terms of generalized quasi-partic
For a discussion and detailed references to these phenom
logical approaches see, for example,@2#. On the other hand
a few have suggested that the best consistent descriptio
the high-temperature phase might be in terms of novel st
tures@3,4#.

In order to help discern among the various possibiliti
this paper will focus on estimating the total perturbative co
tribution to the free energy. It is important to first agree
some terminology so as to avoid confusion due to an over
of some phrases in the literature. The partition function
pends on the Yang-Mills couplingg, and has a natural rep
resentation as an Euclidean path integral@5#

Z~g!5E Df e2*0
bdt*d3xL„f(x,t)… ~2!

wheref collectively denotes the gauge and ghost fields, a
L the gauge-fixed Lagrangian density ofSU(3) gauge
theory. An expansion of this path integral, and hence
free-energy density, aroundg50 leads to the usual Feynma

FIG. 1. Mean lattice results for the free-energy density of h
SU(3) gauge theory from Ref.@1#. Here Slatt refers to the free
energy divided by the free energy of an ideal gas of gluons.
©2001 The American Physical Society02-1
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perturbation theory and contributions of the formgn, with
infrared effects occasionally generating logarithms multip
ing the power terms,gn

„ln(g)…m. These terms will be called
perturbative. What is invisible in a diagrammatic expans
aboutg50 are terms such ase21/g2

, associated for exampl
with instantons@5#. Such terms, which are exponentially su
pressed asg→0, will be called non-perturbative.

Note that at non-zero temperature, odd powers of the c
pling, such asg3, appear@5#. These are perfectly natural an
represent collective effects in the plasma. Though th
sample interesting long-distance physics, mathematic
they fall into our definition of perturbative corrections. Sim
larly, Linde @6# had shown that at orderg6 the free energy
receives contributions from an infinite number of topolo
cally distinct Feynman diagrams. Though the calculation
that contribution is difficult, it is possible in principle@7#,
and anyway does not qualify as a non-perturbative contr
tion according to the definition above.

Following the heroic work of Arnold and Zhai, a com
pletely analytical calculation of the free energy of therm
gauge theory to orderg5 has been obtained@8,7#. ForSU(3)
gauge theory the result can be summarized as follows:

F

F0
512

15

4 S a

p D130S a

p D 3/2

1S 67.5 lnS a

p D1237.2

220.63 lnS m̄

2pT
D D S a

p D 2

2S 799.22247.5 lnS m̄

2pT
D D

3S a

p D 5/2

, ~3!

where F0528p2T4/45 is the contribution of non-
interacting gluons,a5g2/4p, and m̄ is the renormalization
scale in the modified minimal subtraction (MS) scheme. Un-
fortunately Eq.~3! is an oscillatory, non-convergent, seri
even fora as small as 0.2, which is close to the value
physical interest. A plot of Eq.~3! at different orders, at the
scalem̄52pT is shown in Fig. 2. The poor convergence
Eq. ~3! does not allow a direct comparison of the perturb
tive results with lattice data. Furthermore, the result~3! is
actually strongly dependent on the arbitrary value ofm̄. In-
spired by the relative success of Pade´ resummation in other
areas of physics, Hatsuda@9# and Kastening@10# studied the

FIG. 2. The divergent perturbative free-energy density ofSU(3)
gauge theory given in Eq.~3!. Starting from the lowest curve a
(a/2p)0.550.24, one hasN52,5,3,4.
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Padéimprovement of the divergent series~3!. Their conclu-
sion was that the convergence could be improved, and
dependence on the scalem̄ reduced. However they did no
attempt a direct comparison of their improved results w
the lattice data, though Hatsuda did conclude that for
case of four fermion flavors, the deviation of the fifth-ord
Padéimproved perturbative results from the ideal gas va
was less than 10%.

Not all seem to agree that a resummation of perturba
results as in@9,10# sheds sufficient light on the lattice dat
For example, Andersenet al. @11# and Blaizot et al. @12#
have abandoned the expansion of the free energy in term
any formal parameter, but use instead gauge invarianc
the main guiding principle to sum select classes of diagra
Their low order results seem to be close to the lattice d
but unfortunately because of the complexity of the calcu
tions and the absence of an expansion parameter, it is n
all obvious what the magnitude of ‘‘higher order’’ correc
tions is. A completely different approach has been taken
Kajantieet al. In @13# an attempt has been made to nume
cally estimate the net contribution of long-distance effec
summarized in a dimensionally reduced effective theory
the free-energy density. As will be discussed later, the c
culation of @13# probably contains some of the non
perturbative effects defined above but might miss out
some others.

This author believes that the declared demise of inform
tion content in perturbative results such as Eq.~3! is prema-
ture. In Ref.@14# a resummation scheme was introduced
obtain an estimate of the total perturbative contribution to
free-energy density ofSU(3) theory. The methodology o
Ref. @14# has been further developed and applied to ot
problems in@15,16#. In Secs. II–V an explicit and improved
discussion of the results in@14# is given, leading to the con
clusion that thetotal perturbative contribution to the free
energy density lies significantly above the full lattice data.
Sec. VI I discuss the consequent magnitude of n
perturbative contributions, and speculate on their poss
origin. Section VII contains an analysis of the perturbati
free energy of generalized QCD, withNf fermions, and a
brief comparison with the available lattice data which is le
precise.SU(Nc) gauge theory is discussed in Sec. VIII, an
an apparently universal relation noted. Section IX consid
quantum electrodynamics~QED! and some speculation
about its high-temperature phase. A summary and the c
clusion is in Sec. IX.

II. THE RESUMMATION SCHEME

The truncated perturbative expansion of the normaliz
free-energy density can be written as

ŜN~l!511 (
n51

N

f nln, ~4!

wherel5(a/p)1/2 is the coupling constant, and where fo
lowing @9,10#, possible logarithms of the coupling consta
are absorbed into the coefficientsf n . The poor convergence
of Eq. ~4! is obviously due to the large coefficients at hig
2-2
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FREE ENERGY OF HOT GAUGE THEORIES PHYSICAL REVIEW D64 025002
order. Indeed such divergence of perturbative expansion
generic in quantum field theory and one expects the co
cients f n to grow asn! for large n @17#. This leads to the
introduction of the Borel transform

BN~z!511 (
n51

N
f nzn

n!
~5!

which has better convergence properties than Eq.~4!. The
series~4! may then be recovered using the Borel integral

ŜN~l!5
1

lE0

`

dz e2z/l BN~z!. ~6!

The logic of Borel resummation is to define the total su
S(l) of the perturbation expansion as theN→` limit of Eq.
~6!. This of course requires knowledge ofB(z)[B`(z) and
the existence of the Borel integral. Lacking knowledge of
exactB(z), one therefore attempts to reconstruct an appro
mation toS by replacing the partial seriesBN(z) in Eq. ~6!
by a possible analytical continuation thereof. A simple a
popular method to achieve this is to use Pade´ approximants,
leading therefore to a Borel-Pade´ resummation of the serie
~4!. This method will be briefly discussed in Sec. V. He
instead I will proceed as suggested by Loeffel@18# and
change variables in Eq.~6! through a conformal map. For
positive parameterp, define

w~z!5
A11pz21

A11pz11
~7!

which maps the complex z-plane~Borel plane! to a unit
circle in thew-plane. The inverse of Eq.~7! is given by

z5
4w

p

1

~12w!2 . ~8!

The idea@19# is to rewrite Eq.~6! in terms of the variablew.
Therefore, using Eq.~8!, zn is expanded to orderN in w and
substituted into Eqs.~5!,~6!. The result is

SN~l!511
1

l (
n51

N
f n

n! S 4

pD n

(
k50

N2n
~2n1k21!!

k! ~2n21!!

3E
0

`

e2z/l w~z!(k1n) dz, ~9!

wherew(z) is given by Eq.~7!. Equation~9! represents a
highly nontrivial resummation of the original series~4! @15#.
In the pioneering application of the Borel-conformal-m
technique in condensed matter physics by Le Guillou a
Zinn-Justin@19#, the parameterp was a fixed constant which
determined the precise location of the instanton singularit
z521/p. In some more recent QCD applications@20#, the
fixed constantp determines the ultraviolet renormalon sing
larity closest to the origin in the Borel plane@21#.

The novelty introduced in Ref.@14# and further developed
in @15# was to considerp as a variational parameter dete
mined according to the condition
02500
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fi-
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]SN~lo ,p!

]p
50, ~10!

wherel0 is a convenient reference value. For the problem
hand, becausef 2 is negative, the solutionsp(N) to Eq. ~10!
will be positions of minima@15#. Denote the value of Eq.~9!
at p5p(N) by SN(l). Notice that althoughp(N) is deter-
mined at the reference valuel0 , SN(l) is defined for alll.
The reason why this is sufficient has been explained in@15#
and will be discussed further in the next section.

It must be stressed that, in general~see@15#!, the varia-
tional parameterp(N) is not related to possible singularitie
of B(z). Rather, it is determined according to the extremu
condition ~10!. Thus the presentation here is a slight dep
ture from that in@14# and represents the developments
Ref. @15#.

Sufficient information is now available to construct th
resummed approximantsSN from N53 up to N55 in the
next section. The approximantS1 of course does not exis
since f 150, while S2 cannot be constructed because no
lution exists to equations such as Eq.~10! at the first non-
trivial order. ForN.2, the solutionsp(N) will be positions
of global ~local! minima if the sign off N is positive~nega-
tive! @15#.

III. SU „3…: RESUMMATION UP TO FIFTH ORDER

In order to make contact with lattice data which show
temperature dependent curve, one must use in Eq.~4! a tem-
perature dependent coupling. Let us begin by using the o
loop running coupling defined by@11,12#

l~c,x!5
2

A11L~c,x!
, ~11!

where L(c,x)5 ln„(2.28pcx)2
…, c5m̄/2pT and x5T/Tc ,

with Tc;270 MeV the critical temperature which separat
the low and high temperature phases@1,22#.

Fixing first the reference valuesc051, x051, which
fixes the reference value ofl0, the results of Eq.~10! are:
p(3)53.2, p(4)57.9, p(5)513.7. The curves forSN(l)
are shown in Fig. 3~a! at the renormalization scalec51.
Notice the behaviorS5.S4.S3 and how these all lie signifi-
cantly above the lattice curve in Fig. 1. The results do
pend on the renormalization scale, denoted here by the
mensionless parameterc. It has been suggested@11,12# that a
suitable choice for such a parameter is 0.5,c,2, corre-
sponding topT,m̄,4pT. Certainly this is the natural en
ergy range for the high-temperature phase. Figure 3~b! shows
the mild dependence ofS5 on the renormalization scale.

The results above were obtained by solving Eq.~10! at the
point c05x051. Now consider changing the reference va
ues toc051, x053, that is, a more central value for th
temperature. The solutions are:p(3)53.2, p(4)
57.8, p(5)513.4. These values are hardly different fro
those above. This is firstly due to the fact that Eq.~9! is a
much slower varying function of the coupling than the orig
nal divergent series. Furthermore, for the present probl
2-3
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RAJESH R. PARWANI PHYSICAL REVIEW D64 025002
the coupling itself varies slower than logarithmically withc
andx ~thec andx dependence of the coefficientsf 4 and f 5 is
also only logarithmic!. The curves for the re-optimizedSN
are essentially identical to those shown in Figs. 3~a,b!, the
difference being only at the fifth decimal point. For examp
the value ofS5 in Fig. 3~a! at x53 is 0.938684, while tha
for S5 optimized at x053 @and hence evaluated at p~5!
513.4#, is 0.938672 atx53. This confirms the assertion i
@14# that the results are quite insensitive to the exact re
ence values chosen to solve Eq.~10!.

We now proceed to test the sensitivity of the results to
approximation used for the running coupling~11!. The ap-
proximate two-loop running coupling is given by@11,12#

l~c,x!5
2

A11L~c,x!
S 12

51

121

ln„L~c,x!…

L~c,x! D ~12!

with the symbols having the same meaning as before. In
4, the one-loop running coupling~11! and the approximate
two-loop running coupling~12! are plotted atc51 to show
their difference. Atx53, the value for the approximate two
loop coupling is about 20% lower than the one-loop res
Nevertheless, because of the above-mentioned propert
the resummed series, we shall see that the final results t
not shift dramatically. Using Eq.~12!, the solution of Eq.
~10! at the reference pointc051,x053 are: p(3)
53.2, p(4)57.6, p(5)513.1. The corresponding curve
shown in Fig. 5~a! have moved up slightly compared to tho
in Fig. 3~a!. The ‘‘two-loop’’ value of S5(c51,x53)
50.9473 should be compared to the ‘‘one-loop’’ valu
0.9387 obtained above. The mild renormalization scale
pendence of the newS5 is shown in Fig. 5~b!.

FIG. 3. ~a! The resummed perturbative free-energy density
hot SU(3) gauge theory forN53, 4 and 5, using a one-loop run
ning coupling, the reference valuesc051, x051, and the renor-
malization scalec51. The curves move upwards asN increases.~b!
The fifth order resummed perturbative free-energy density of~a! at
three different renormalization scales,c50.5, 1 and 2. The free-
energy density increases with increasingc.
02500
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In summary, it has been demonstrated that the resum
approximantsS3 , S4 , S5 all lie significantly above the lat-
tice data and satisfy the monotonicity conditionS5.S4
.S3. The result is insensitive to the reference value used
solve Eq. ~10!, for the range of interest 0.5,c,2, 1,x
,5. The result is also insensitive to the approximation us
for the running coupling constant and in fact better appro
mations for the coupling seem to move the values ofSN
further away from the lattice data. Finally it should be not
that the valuesSN also appear to converge asN increases.

The only way to force the values ofSN down closer to the
lattice data is to choose very low values for the renormali
tion scale,c;0.05. Of course this is not only unnatural b
increases the effective value of the coupling content bey
what one would believe is physically reasonable for a p
turbative treatment. That is by making an artificially lo
choice for the renormalization scale, one cannot escape
conclusion stated in the abstract of large non-perturba
corrections.

f

FIG. 4. The one-loop~upper curve! and approximate two-loop
running couplings forSU(3) gauge theory at the renormalizatio
scalec51.

FIG. 5. ~a! The resummed perturbative free-energy density
hot SU(3) gauge theory forN53, 4 and 5, using a two-loop run
ning coupling, the reference valuesc051, x053, and the renor-
malization scalec51. The curves move upwards asN increases
from 3 to 5.~b! The fifth order resummed perturbative free-ener
density of ~a! at three different renormalization scales,c50.5, 1
and 2. The free-energy density increases with increasingc.
2-4
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IV. HIGHER ORDER CORRECTIONS

Due to technical complications the sixth order contrib
tion, l6, to the free-energy density has not been calcula
although an algorithm for it exists@7#. There is a misconcep
tion that because that contribution is due to an infinite nu
ber of topologically distinct diagrams, its value must be ve
large. A counter-example is provided by the magne
screening mass@5#, which suffers from the same disease b
whose approximate calculations in the literature show it to
of ordinary magnitude@23#.

Having said that, let us see what is the worst that c
happen. It has been suggested@24# that Pade´ approximants
can be used to estimate the next term of a truncated pe
bation series. That is, after approximating the truncated
ries by the ratio of two polynomials, the Pade´ approximant is
re-expanded as a power series to estimate the next ter
the series. Well, why not also use Borel-Pade´ approximants
for the same purpose? Using the fifth order result~3! together
with the two-loop running coupling~12!, and choosing the
central valuesc51,x53, all fifth order Pade´ and Borel-Pade´
approximants were constructed and then re-expanded to
an estimate of the coefficientf 6. The largest value obtaine
was 30 000 and the smallest230 000. Note that the fifth
order coefficient atc51 is 2800, so the estimated magn
tude of f 6 is about 37 times larger. Since the couplingl is
about 0.2 atx53,c51, the total value of the sixth orde
contribution to Eq.~3! is therefore estimated to be almost
times in magnitude compared to the fifth order contributio
These are big numbers and should be expected to cause
damage.

Using Eq. ~9! with f 6530 000, the two-loop coupling
~12!, and solving Eq.~10! at the reference pointc051, x0
53 givesp(6)519.75 andS6(c51,x53)50.9490. Repeat-
ing for f 65230,000 givesp(6)519.5 andS6(c51,x53)
50.9489. Notice the negligible change in the value ofS6
even when wildly differing values have been used forf 6.
Those values should be compared with the fifth order
proximant of Fig. 3~a!, which gives S5(c51,x53)
50.9473. The large estimated sixth order corrections to
divergent perturbation expansion~4! cause a change of onl
0.002 to the values of the resummed series, and more im
tantly the shift is upwards,S6.S5, preserving the lower or-
der monotonicity, regardless of the sign off 6.

Kajantie et al. @13# have suggested that the sixth ord
contribution,f 6l6 be of order 10. For a couplingl;0.2, this
translates into the astronomical value6156250 forf 6. Solv-
ing Eq. ~10! at c051,x053 gives p(6)519.8 andS6(c
51,x53)50.9491 for the positivef 6, andp(6)519.4 and
S6(c51,x53)50.9489 for the negativef 6. Despite the
anomalously large value of the sixth order contribution p
posed in@13#, the conclusion here is stillS6.S5, and an
increment of only 0.002.

To highlight the above result in a more dramatic wa
suppose the sixth order coefficient vanishes,f 650. Then be-
cause of the non-trivial way the resummation is done in
~9!, the solution to Eq.~10! for N56 will still be different
from that of N55. At c051,x053 I find p(6)519.5 and
thenS6(c51,x53)50.9489 at four decimal places, which
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almost identical to the values obtained above for vario
large values off 6. This sounds incredible but is actually no
once one remembers that large corrections to the diver
series~4! do not translate into large corrections to the r
summed series~9!. In fact those large values are suppress
in various ways. First, in the re-organization of the series
Eq. ~9!, less weight is given to higher order corrections. S
ondly, the variational procedure chooses values ofp(N)
which in this example increase withN, and so suppress fur
ther the value ofSN .

More understanding of the above results can be obtai
through a largeN analysis carried out for the general Eq
~9!,~10! in @15#. It was shown in@15# that if p(N) increases
for the first few values ofN, then that trend will continue
Let c(N)[p(N11)/p(N). In the largeN and largep(N)
limit one can show that@15#

1

c~N11!
512

1

c~N!
1

1

c~N!2 . ~13!

One consequence of this is thatc(N11),c(N) and c(N)
→11 as N→`. This is indeed observed for the prese
problem already at lowN. Numerically, Eq.~13! too is not a
bad approximation at smallN. In fact using the values found
for p(N) in the last section, one hasp(4)/p(3)57.6/3.2
52.375. With this as input forc(3), Eq.~13! gives the esti-
matec(4);1.32234, to be compared with the actual val
p(5)/p(4)513.1/7.651.7. Next usingc(4)51.7 as the ex-
act input, Eq.~13! givesc(5);1.32201 and thus an estima
of p(6);1.3313.1517.03. On the other hand, usingp(6)
;19.5, as determined by various estimates above, g
c(5)519.5/13.151.49 and then through Eq.~13! the esti-
matec(6);1.28 and hencep(7);1.28319.5525.

Equation~13! was derived in@15# for the casef 1Þ0. For
the present case wheref 150 one will actually obtain the
slightly more accurate equation

1

c~N11!2 512
1

c~N!
1

1

c~N!3 , ~14!

but in the largeN limit where c→11 this is clearly equiva-
lent to Eq.~13!.

Note that the recursion relations~13!,~14! make no ex-
plicit reference to the values of thef n which in the derivation
in @15# were assumed to be generic, that is, diverging at m
factorially with n. Indeed the fact that various different a
sumptions about the value off 6 earlier in this section led to
essentially the same value forp(6);19.5 supports thef n
independence of Eq.~13! already atN;6.

From the general analysis in@15#, one also deduces tha
for large N and largep(N), the monotonicityDSN[SN11
2SN.0 is guaranteed by the factf 2,0, and thatDSN
;1/N3 as N→`. Since the explicitN<5 calculations and
the estimatedN56 result already supportc(N).1 and large
values ofp(N) at low N, this suggests that the continue
monotonicity and rapid convergence of theSN is assured by
the largeN analysis.
2-5
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RAJESH R. PARWANI PHYSICAL REVIEW D64 025002
V. LOWER BOUND AND OTHER ESTIMATES

From the explicit lowN calculations, and the largeN
analysis, one concludes that forN.2,

SN,SN11 ~15!

for all N, and furthermore, the differenceSN112SN de-
creases asN increases, showing a rapid convergence of
approximants. However, in general, it is not quite correct
say that the approximants converge to the total sum of
series@15#. For eachN, let p!(N) be the value ofp that is
optimal, that is, it is the value which when used in Eq.~9!
gives the best estimate ofS, the total sum of the series. De
fine, SN

! 5SN„l,p!(N)…. Then for thosep(N) which are po-
sitions of global minima one has by definition

SN<SN
! . ~16!

It is SN
! which presumably converges toS as N→`. ~This

implicitly assumes that the sub-sequence of global minim
infinite: That is, given any positive integerN0, there is some
n.N0 for which f n is positive.!

Hence if one accepts the two assumptions above, t
combining Eq.~15! with Eq. ~16!,

SN<S ~17!

for all N.2, and one may conclude that theSN are lower
bounds to the sum of the full perturbation series.

In particular that conclusion implies that theN55 curve
in Fig. 5~a! is a lower bound on thetotal perturbativecon-
tribution to the free-energy density of hotSU(3) theory. The
statement has three qualifications. Firstly, it involves
technical assumptions mentioned above. Secondly, as
cussed before, better approximations to the running coup
can move the bounds, but it was seen that a 20% impro
ment in the coupling shifted the boundupwards by 1%.
Secondly, the bounds shift by61% when the renormaliza
tion scale is varied by a factor of two from its central val
m̄52pT. Thus it might be more appropriate to call th
bounds as ‘‘plausible soft lower bounds’’ with an uncertain
depicted in Fig. 5~b!.

Given that the lower bound obtained above involves so
unproved technical assumptions, it is useful to compare
above results with those obtained using different resum
tion schemes for the divergent series~4!. I briefly state here
the main results obtained using a Borel-Pade´ resummation of
Eq. ~4!, with the two-loop approximation for the couplin
~12! and the central valuec51. The approximants will be
denoted as@P,Q#, referring of course to the particular Pad´
approximant used for the partial Borel series~5! constructed
from Eq. ~4!. The only approximants which did not develo
poles and which gave a resummed value below one in
temperature range 2,x,5 were @1,2#, @2,1# and @2,2#.
These are displayed in Fig. 6. The@3,2# and @4,1# approxi-
mants did not develop poles but gave a value above on
the approximants which developed a pole are defi
through a principal value prescription, then the lowest va
was given by@2,3#: 0.91→0.94 asx increased from 2→5.
02500
e
o
e

is

en

e
is-
g

e-

e
e

a-

e

If
d
e

The @1,3# and@1,4# approximants gave values above 0.98
the range of interest while@3,1# gave a value above one.

Thus in the Borel-Pade´ method, the minimum estimate fo
the fifth order resummed series is given by the princi
value regulated@2,3#. The highest values were all above on
If one keeps only the fifth order estimates below one~thus
giving a very conservative lower value!, then the average o
the @2,3# and @1,4# is greater than 0.94 for the entire rang
2,x,5. At x53 the estimates are 0.9560.04. Of course
including also the values above one would push this aver
higher. Clearly the Borel-Pade´ estimates are comparable
the bounds obtained using the resummation technique of
II and should reassure some readers about the novel re
mation used here.

For completeness, I mention an alternative way of thin
ing about divergent series such as Eq.~4!. For QCD at zero
temperature, a paradox is that one-loop results give rem
able agreement with experimental data even when the en
scale is relatively low. As the running coupling is then lar
it is not obvious why higher-loop perturbative corrections a
suppressed. It has been suggested@25,26# that the explana-
tion might lie in the probable asymptotic nature of the QC
perturbation series. Recall that in an asymptotic series
best estimate of the full sum,at a given value of the cou
pling, is obtained when only an optimal number of terms
kept and the rest discarded~even if they are large!. Thus if
one knew the general behavior, at least at large order, of
series~4! and assumed that it was asymptotic, then one co
have obtained a reasonable estimate of the full sum by s
ply adding the optimal first few terms. What has been do
in the previous sections, and this is what various resum
tion schemes try to do, is to instead sum up the whole se
to get an even better estimate of the total perturbation se
~and this has the greater advantage of giving a good resul
a large range of couplings!. Also note that thinking of Eq.~4!
as an asymptotic series does not say anything about exp
non-perturbative corrections@25,26#.

VI. NON-PERTURBATIVE CORRECTIONS

The total perturbative contribution to the free-energy de
sity of SU(3) gauge theory has been argued to be close to
above, theN55 curve in Fig. 5~a!. A residual uncertainty
that could lower the curve of Fig. 5~a! is the exact value of
the renormalization scale. For a natural range of parame
the lower curve in Fig. 5~b! is the result. On the other han

FIG. 6. The@1,2#, @2,1# and@2,2# Borel-Pade´ approximants to
the perturbative free-energy density, with a two-loop running c
pling, and the renormalization scalec51. Starting with the lowest
curve atx55, one has@2,1#, @1,2#, @2,2#.
2-6
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FREE ENERGY OF HOT GAUGE THEORIES PHYSICAL REVIEW D64 025002
the full result as given by lattice simulations is shown in F
1. Lattice errors have been stated to be under 5%@1#. Taken
together, the conclusion appears inescapable:Even at tem-
peratures a few times above the transition temperature, th
are large negative non-perturbative contributions to the fre
energy density. For example, atT53Tc;700 MeV, the lat-
tice results for the normalized free-energy density are
60.04 while the lower bound on the perturbative contrib
tion is 0.94760.007, implying a minimum non-perturbativ
correction of 10%~and as high as 20%).

Thus an answer has been given to the questions raise
the introduction. The deviation of the lattice data from t
ideal gas value is apparently caused mainly by n
perturbative corrections, with perturbative corrections
counting for a much smaller amount. AtT;3Tc the relative
contributions are;15% and;5%.

I speculate now on possible sources of the n
perturbative corrections. First there are the familiar inst
tons, already present in the classical action, and which c
tribute terms of the ordere21/l2

. Secondly there are th
magnetic monopoles. There is by now overwhelming e
dence that confinement at zero temperature is caused b
’t Hooft–Mandelstam mechanism of condensing monopo
~the dual superconducting vacuum!. Thus it is possible tha
the monopole condensate has not completely melted ab
the critical temperature. Note that since the classical the
does not support finite energy monopoles, these must b
quantum origin, and so their contribution might be larg
than those of the instantons.

In fact contributions which are exponentially small b
much larger than those of the instantons are suggested b
Borel resummation itself. It is known that Yang-Mills theo
ries are not Borel summable@20,21#. That is, the function
B(z) has singularities for positivez, making the Borel inte-
gral ill-defined. One can nevertheless define the sum of
perturbation series using the Borel integral if a prescription
used to handle the singularities. It is generally believed t
the prescription dependent ambiguity disappears when
plicit non-perturbative contributions are taken into acco
for the physical quantity in question. Indeed the nature
singularity itself suggests the form for the non-perturbat
contribution. If there is a pole atz5q, then the non-
perturbative contribution will be of the form;e2q/l, which
is larger than the instanton contribution for smalll. An ex-
plicit mathematical model which illustrates the interplay b
tween Borel non-summability and non-perturbative contrib
tions has been given in@15#.

Notice that the non-perturbative corrections suggested
the Borel method at non-zero temperature are very diffe
from those at zero temperature. In the latter case the ex
sion parameter isg2 and so the contribution is;e2q/g2

,
which translates into a power suppressed contribu
;1/(Q)b when g2 is replaced by the running couplin
;1/ln(Q/L). In cases where the physical quantity can also
analyzed using the operator-product expansion~OPE!, these
power suppressed contributions to perturbative results co
spond in the OPE picture to vacuum condensates@20,21#.

At nonzero temperature, since the natural expansion
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rameter isl5Ag2/4p2;1/Aln(T/L), one does not get a
simple power suppression frome21/l. Nevertheless, the
analogy with zero-temperature results suggests that s
contributions might be due to some condensates. Thus
conventional condensates discussed for example in@13# are
plausibly part of the non-perturbative contributions. T
form however suggests even more novel condensates. T
might be, for example, those of DeTar@3# or Pisarski@4#.

It is worth noting an explicit instance of a theory displa
ing exponentially small non-perturbative effects which a
larger than those due to standard solitons. In fundame
string theory where the coupling isg, there are the usua
solitons but there are also novel ‘‘D-instantons’’ which giv
a larger contributione21/g @27#. I also mention in passing the
recurrent and intriguing relationship between gauge theo
and strings@28# which leads one to wonder whether that is
possible route to understanding the non-perturbative st
ture of hot gauge theories.

Using theN55 curve of Fig. 5~a! as a reasonable est
mate of the full perturbative result, and assuming a nonp
turbative component of the form

Snp5
A

l
e2q/l, ~18!

as suggested by the Borel method, one can determine
constantsA andq by comparing the lattice data of Fig. 1 wit
the perturbative result. In@14# it was shown that

Slatt5Spert2
1

l~x!
e8.722.62/l(x), ~19!

whereSlatt represents the lattice data for the free energy, a
Spert the resummed perturbative result, both normalized w
respect to the ideal gas value, andl(x) is given by Eq.~12!
at c51. Equation~19! is a phenomenological equation o
state for the free energy which generalizes the usual dis
sions in the literature where the second term on the rig
hand side of Eq.~19! is called a ‘‘bag constant.’’ In this cas
the ‘‘constant’’ is really temperature dependent and rep
sents a non-perturbative contribution to the free energy
vanishes at infinite temperature. It is important to note t
the non-perturbative contribution is negative, since the p
turbative result is above the full lattice data, and thus con
tent with the usual interpretation in the literature.

So far the discussion has implicitly assumed an addit
picture of perturbative and non-perturbative contributio
with both components clearly distinguished. It might be th
in reality the best description of the high-temperature ph
is in terms of completely novel structures@3,4#. In that case a
forced expansion of those alternatives aboutl50 must give
something like Eq.~19! and the subsequent distinction b
tween perturbative and non-perturbative contributions. T
mathematical toy model of@15# illustrates this.

Within the framework of this paper, one can distingui
three versions of the popular concept of ‘‘quasi-particle
First there are the ‘‘perturbative quasi-particles’’ which a
deformations of the gluon formed by a particular reorgani
tion of the perturbative Feynman diagram expansion. T
2-7
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RAJESH R. PARWANI PHYSICAL REVIEW D64 025002
results above suggest that if all the contributions of su
quasi-particles to the free energy are added up, the net r
will lie above the lattice data, and only truly non-perturbati
contributions, as defined in Sec. I, may give the final agr
ment. Secondly there are the ‘‘nonperturbative qua
particles,’’ which are excitations about the nontrivial therm
vacuum that includes condensates, and so forth. Curre
there is not sufficient control over the theory to constr
these objects. Finally there are the ‘‘phenomenological q
siparticles’’ which simply aim to give numerical agreeme
with the lattice data within a simpleansatz. The ultimate
justification for these phenomological constructs must su
come from the ‘‘nonperturbative quasiparticles.’’

VII. QCD

In this section lower bounds~within assumptions similar
to those made previously! are obtained for the perturbativ
free-energy density of hotSU(3) coupled toNf flavors of
fundamental fermions. As the essential features are v
similar to the pure gauge case, the discussion here wil
brief. The fifth order perturbative results in theMS scheme
can be read off from the landmark papers@8#. The approxi-
mate two-loop coupling that is used here is given by

l~c,x!5
1

A4p2b0L~c,x!
S 12

b1

2b0
2

ln„L~c,x!…

L~c,x! D ~20!

with

b05
11Nc22Nf

48p2 , ~21!

b15
1

3~4p!4 ~34Nc
2213NcNf13Nf /Nc!. ~22!

Following @12# I also assume a relativeNf independence o
L(c,x), and thus use for it the same expression as use
Eq. ~11!. The extremization condition~10! is solved at the
reference pointc051, x053 for Nc53 and 1<Nf<6. The
results obtained are all extremely similar: In each case
convergence of theSN is monotonic and rapid as in the pu
glue case in Fig. 5~a!. For this reason only theN55 curves
are displayed in Fig. 7 for the various number of flavors. F
comparison the pure glue result (Nf50) is also included.

FIG. 7. The fifth order resummed perturbative free-energy d
sity of SU(3) gauge theory coupled toNf fermions as discussed i
Sec. VII. Starting from below atx55, the curves labelNf

56,5,4,3,0,2,1.
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~Each curve has been normalized with respect to the id
gas value for that number of flavors.!

TheN55 curves in Fig. 7 can be taken as plausible low
bounds, or estimates, to the total perturbative free ene
density of QCD withNf fundamental fermions. Lattice re
sults for QCD contain large systematic errors compared
those forSU(3) and so a precise comparison is not possib
After making some assumptions about the size of the syst
atic errors, the authors in Ref.@29# determine that forNf
52 the free-energy density lies about 15220 % below the
ideal gas limit. This is similar to the case of pureSU(3).
Comparing this lattice estimate with the estimate on the p
turbative result in Fig. 7 one is again led to suggest that th
are large non-perturbative corrections to the naive picture
a weakly interacting quark-gluon plasma.

Of course, given the physical relevance of QCD, it wou
be preferable to have more precise numbers from the lat
and especially for other values ofNf . However it seems tha
a non-perturbative component of 10215 % at temperatures
few timesTc is likely to be generic.

When the draft of this paper was complete, I came acr
@22# which gives forNf52 a Tc /LMS;0.5, a factor of two
lower than that for the pure gauge theory. This has the c
sequence thatc in L(c,x) should be replaced by aboutc/2.
However as the reader can surmise by now, this has ha
any impact on the results above, for this is equivalent
shifting the renormalization scalec by a factor of two, which
as we have seen causes only a 1% shift of the curves. In
case this serves to remind that the lattice results forNf are in
a state of flux.

VIII. SU „N…C

Define

l~Nc!5S Nc

3 D 1/2S a

p D 1/2

. ~23!

Then the free-energy density of pureSU(Nc) theory up to
fifth order @8,7# is given by the expression~3!, with (a/p)1/2

replaced everywhere~including inside the logs! by l(Nc).
Thus there is no explicitNc dependence of the free-energ
density when written in terms ofl(Nc).

To examine theNc dependence of the new coupling~23!,
consider the approximate two-loop running coupling giv
by

S a~T!

p
D 1/2

5
1

A4p2b0L~T,L̄ !
S 12

b1

2b0
2

ln„L~T,L̄ !…

L~T,L̄ !
D
~24!

with

L~T,L̄ ![2 lnS 2c8pT

L̄
D , ~25!

b05
11Nc

48p2 , ~26!

-

2-8
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FREE ENERGY OF HOT GAUGE THEORIES PHYSICAL REVIEW D64 025002
b15
1

3~4p!4 ~34Nc
2!, ~27!

and withL̄5L̄(Nc) the SU(Nc) gauge theory scale param
eter in theMS scheme. InL, the constantc8 is m̄/2pT.
Comparing the various equations, one comes to the rem
able conclusion that the new running couplingl(Nc ,T) will
be independent ofNc if the MS scale parameterL(Nc) is
itself independent ofNc when expressed in terms of som
physical length scale. By comparing some data forNc
52,3,4, Teper@30# has concluded that this is indeed th
case.

Therefore, accepting the result of@30#, one deduces tha
the N55 curve in Fig. 5~a! is a plausible lower bound, o
estimate, to the total perturbative free energy density of
SU(Nc) theory when the x axis is interpreted asT/L̄ instead
of T/Tc . This is then a universal relation~at least for low
Nc), and one suspects that the corresponding full lattice
sults might also obey a universal curve, thus leading to
guess that the non-perturbative component of anSU(Nc)
plasma is about 10215 % for temperatures a few time
above the critical temperature.

IX. QED

Though the fine structure constanta of QED is small at
everyday energies, it is interesting to consider super-h
temperatures where it will be large. The free-energy den
of massless QED at temperature (T), has been computed u
to order a5/2 in Refs. @31,8,7,32#. Denoting as usuall
5(a/p)1/2, the normalized free-energy density at theMS
renormalization scalem̄52pT, is given by@31,8#

F/F05121.13636l212.09946l310.488875l4

26.34112l5, ~28!

whereF0511p2T4/180 is the free-energy density of a no
interacting plasma of electrons, positrons and photons.
ure 8~a! shows the plot of Eq.~28! at different orders. The
series diverges at large coupling~super-high temperatures!,
exhibiting a behavior similar to that of Yang-Mills theory
low temperatures. The convergence at large coupling ca
improved by using the resummation technique~9!,~10!. Us-
ing the coefficients from Eq.~28!, the solutions of Eq.~10! at
the reference valuel050.5 are~minima!: p(3)50.7, p(4)
51.75, p(5)53.

The resummed series, with its much improved conv
gence, is shown in Fig. 8~b!. TheN55 curve can be taken a
a lower bound to the full perturbative result. If one assum
that the potential non-perturbative contributions lower
perturbative result, as happens in QCD, or are very sma
magnitude, then one may conclude from Fig. 8~b! that super-
hot QED undergoes a phase transition. This speculated h
temperature phase of QED might then be analogous to
low-temperature phase of QCD with various bound sta
Or, it might resemble the alternative picture of low-ener
QCD: that of flux tubes@33#. It is unfortunate that no lattice
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or other non-perturbative information is currently availab
about the high-temperature phase of QED.

X. CONCLUSION

The phrase ‘‘nonperturbative’’ is used often and loose
with regard to field theories at non-zero temperature. T
has caused a great deal of semantic confusion and misun
standing. For the purpose of uncovering the cause of
deviation of the result in Fig. 1 from the ideal gas value,
has been proposed to term ‘‘perturbative’’ all power lik
~modulo logarithms! contributions to the free-energy densit
Such perturbative contributions follow from the usual Fey
man diagram expansion of the partition function around z
coupling.

For SU(3) gauge theory a plausible lower bound w
obtained on the totality of such perturbative contributions
the free-energy density. The derivation of that lower bou
using the variational conformal map involved some techni
assumptions, and so one may instead wish to consider it
as an estimate of the total perturbative contribution. The
timate is comparable to that obtained using Pade´ or Borel-
Padéresummation methods and lies significantly higher th
the full lattice result, thus suggesting that large and tr
non-perturbative corrections exist. As discussed in Sec.
these non-perturbative corrections might include the us
instantons, magnetic monopoles, the usual condensates
perhaps also more novel condensates and extended struc
as suggested by the Borel forme21/l of the non-perturbative
contributions. As to which of these possibilities dominates
an interesting question left for future work.

The equation of state for hotSU(3) can be summarized

FIG. 8. ~a! The divergent perturbative free-energy density
QED, given in Sec. IX. Starting from the lowest curve and movi
upwards, one hasN52, 5, 3, 4.~b! The resummed perturbativ
free-energy density of QED. The curves move upwards asN in-
creases from 3 to 5.
2-9
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RAJESH R. PARWANI PHYSICAL REVIEW D64 025002
by the phenomenological relation@14#

Slatt5Spert2
1

l~x!
e8.722.62/l(x), ~29!

whereSlatt represents the lattice data for the free energy,
Spert the resummed perturbative result, both normalized w
respect to the ideal gas value, and wherel is the temperature
dependent coupling~12! at c51. There is a slight ambiguity
in the estimate of the magnitude of non-perturbative corr
tions coming from the residual renormalization scale am
guity of the resummed perturbative results. For the natu
rangepT,m̄,4pT, the ambiguity is less than one perce
Such an ambiguity between the perturbative and n
perturbative components is understandable, as only the
physical quantity can be demanded to be scale independ
and not separately its perturbative and non-perturbative c
ponents, though the latter simplifying assumption is of
made.

By choosing an anomalously low value for the scalem̄
one can fit the purely perturbative results to the lattice d
but at the price of a very large effective coupling consta
and thus an unsuppressed contribution from common p
objects like instantons. Therefore this route does not offe
escape from the conclusion of large non-perturbative cor
tions.

The results of this paper do not imply that the descript
of the free-energy density must be as in Eq.~29!. Rather,
completely novel descriptions in terms of various extend
structures are possible@3,4#, but in a forced expansion o
those alternative descriptions aboutg50, one must recove
something like Eq.~19!. On the other hand, the results he
do imply that an accounting of the lattice free-energy dens
in terms of a subset of Feynman diagrams of the perturba
thermal vacuum might miss some essential physics.
,
cl.

e
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Being restricted to an analysis of the free-energy dens
the results here of course do not imply that every observa
must have large non-perturbative contributions, but it
likely that this is true for most of the bulk thermodynam
quantities.

An analysis was also carried out for generalized QC
with Nf quarks. Currently the lattice data is only approx
mate and so the conclusions are less definitive. Howe
accepting the estimates in@29#, the conclusion is the same a
before: There appear to be large non-perturbative correct
to the free-energy density of hotSU(3) gauge theory
coupled to Nf quarks. Thus in particular, ‘‘quark-gluon
plasma’’ seems to be an incomplete description even at t
peratures several times above the transition temperature

A simple relation was noted for the perturbative fre
energy density ofSU(Nc) gauge theory in Sec. VIII. Tha
result, combined with the results for generalized QCD
Sec. VII, and the available lattice data, leads one to a u
versality conjecture: For the high-temperature (T>2Tc)
phase ofSU(Nc) gauge theory coupled toNf fundamental
quarks, and for all moderate values ofNc and Nf , at most
5% of the deviation of the free-energy density from the id
gas value is due to perturbative effects while no
perturbative effects contribute a larger 10215 %.

It has been speculated in Sec. IX that QED might have
interesting high-temperature phase.

Finally, the methods of this paper might be of some u
for the study of supersymmetric theories at non-zero te
perature, a topic of interest in recent developments@28#.
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