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Gravity with a dynamical preferred frame

Ted Jacobson* and David Mattingly†

Department of Physics, University of Maryland, College Park, Maryland 20742-4111
~Received 7 September 2000; published 26 June 2001!

We study a generally covariant model in which local Lorentz invariance is broken by a dynamical unit
timelike vector fieldua—the ‘‘aether.’’ Such a model makes it possible to study the gravitational and cosmo-
logical consequences of preferred frame effects, such as ‘‘variable speed of light’’ or high frequency disper-
sion, while preserving a generally covariant metric theory of gravity. In this paper we restrict attention to an
action for an effective theory of the aether which involves only the antisymmetrized derivative¹ [aub] .
Without matter this theory is equivalent to a sector of the Einstein-Maxwell-charged dust system. The aether
has two massless transverse excitations, and the solutions of the model include all vacuum solutions of general
relativity ~as well as other solutions!. However, the aether generally develops gradient singularities which
signal a breakdown of this effective theory. Including the symmetrized derivative in the action for the aether
field may cure this problem.
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I. INTRODUCTION

The Lorentz group is noncompact, since the boost par
eter is unbounded. This makes exact Lorentz invariance
possible to test uniformly. Lorentz invariance has thus b
tested only up to some maximum boost and beyond that
an infinite volume of uncharted territory in the Loren
group. Contrast this with the rotation group. Rotation inva
ance can be tested by filling in the compactSO(3) group
manifold more and more densely with data points, or
checking a few randomly selected rotations. The rotat
group can be and has been uniformly explored.

There is also reason to doubt exact Lorentz invariance
leads to divergences in quantum field theory associated
states of arbitrarily high energy and momentum. This pr
lem can be cured with a short distance cutoff which, ho
ever, breaks Lorentz invariance.

For these reasons we entertain the possibility that ther
a preferred rest frame at each spacetime point. In particu
we seek a viable effective field theory incorporating a bre
ing of local Lorentz invariance.

If the preferred frame were to be a fixed external str
ture, then it would violate general covariance, which wou
require us to abandon general relativity~or any generally
covariant modification thereof!. General covariance ordi
narily implies that the divergence of the matter energ
momentum tensorTab vanishes when the matter field sati
fies its equation of motion. This is required for consisten
of the Einstein field equation1 Gab58pGTab , since the di-
vergence of the Einstein tensorGab is identically zero by
virtue of the contracted Bianchi identity. If a fixed preferre
frame is introduced into the matter action, for example, g
eral covariance is lost,Tab is not divergenceless, and th
Einstein equation is inconsistent. We therefore seek to in
porate the preferred frame while preserving general cov
ance, which requires that the preferred frame bedynamical.

*Electronic address: jacobson@physics.umd.edu
†Electronic address: davemm@physics.umd.edu
1We use units withc51 and the metric signature (1222).
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It would be most appealing if the preferred frame we
somehow determined by the spacetime metric itself. As d
cussed below, in spacetimes with an initial singularity t
metric can be used to define a cosmological time functi
the gradient of which then determines a preferred fra
~which is by construction timelike!. However, the nonloca
relationship between this frame and the metric results in
finitely nonlocal field equations if this frame is incorporate
into the action principle. Theories with even a finite amou
of nonlocality are generally horribly unstable@1#, so we do
not consider this a viable approach.

To avoid such unacceptable behavior the preferred fra
should arise fromlocal conditions, which of course reflect
conditions at earlier times but only throughdynamics. For
example, this dynamical frame could be defined by a vec
field @3,2,4,5# or by the gradient of a scalar field@6,7#. In
these approaches the presence or absence of a pref
frame depends on the field configuration, since the prefe
vector may vanish or may not be timelike.

Since our motivation arises from doubts about the fun
mental validity of exact Lorentz invariance, we are not inte
ested in a theory possessing a Lorentz invariant phase.
wish to study instead an effective theory in which there
alwaysa preferred frame. This frame is defined by a timeli
direction or, equivalently, by a unit timelike~contravariant or
covariant! vector field.2 Such a field carries a nonlinear rep
resentation of the local Lorentz group since the field ta
values not in a vector space but on the unit hyperboloid
the tangent space. This could therefore be called a theor
nonlinearly realized Lorentz invariance. It is analogous to
gauge theory with a nonlinear sigma model Higgs field
fixed norm @8,9#. There seems to be no generally accep
terminology for this sort of symmetry structure. Since t
symmetry breaking unit vector field is not a state-depend
expectation value but rather breaks this symmetry inall

2A unit timelike vector contains a discrete piece of informati
that a frame by itself does not have, namely, a time orientation.
theory may or may not depend on this orientation.
©2001 The American Physical Society28-1



on
k

nt
bu
s

nt

ca

di

to

ar

nt
er

a
th
rn
or

b
ke
a
m
fo
a

La

si
l
igh

s
ki
o

vin
k
o

I
f
. I
i

It
f t
us
u
y

tte

T

s
c

-
s-

a
can
gs
la-

nt
os-
ter-
ave

nal

a
ic,
tive

ts

ar-
ry
va-

e

t
r, if
n

the
r
nc-
ce-

on
tly
ith

tter
gi-

tion
sal

p-
ere.

TED JACOBSON AND DAVID MATTINGLY PHYSICAL REVIEW D 64 024028
states, it may be misleading to say the symmetry is ‘‘sp
taneously broken.’’ For lack of a better idea we shall ta
refuge in ambiguity and just call it ‘‘broken.’’ What this
really means is that in order to implement the local Lore
symmetry one must transform not only the matter fields
also the background unit vector, so for practical purpose
will appear as what would normally be called broken Lore
symmetry.

The theory described here was devised about a de
ago by Dell together with one of us@10#, and we have since
learned that similar ideas have independently been stu
previously. The non-gravitational part of the theory~and
generalizations thereof! was considered by Dirac@11# in the
early 1950s as a new theory of electrons~in which the unit
timelike vector played the dual role of gauge-fixed vec
potential and flow vector of a stream of charged dust!. A
class of generally covariant theories breaking Lorentz inv
ance was studied by Gasperini@12# in many papers. In this
work the tetrad formalism was used, and the local Lore
symmetry was broken by including in the action terms ref
ring to a fixed ‘‘internal’’ unit timelike vector. This is
equivalent to our formulation in terms of the metric and
unit timelike vector. To see the equivalence, note that
tetrad defines a metric and associates to the fixed inte
vector a unit vector field on spacetime. The only other inf
mation in the tetrad is the gauge freedom parametrized
the local rotations leaving invariant the preferred timeli
vector. Eliminating this gauge freedom leads to the form
ism used in this paper. Gasperini has studied both cos
logical and central field solutions, with various choices
the specific form of the second derivative terms in the L
grangian. In the present paper we focus on a different
grangian.

The particular Lagrangian studied here was also con
ered by Kostelecky´ and Samuel@13#, as a simplified mode
of the spontaneous Lorentz symmetry breaking that m
occur in string theory, although in Ref.@13# the preferred
vector was not necessarily timelike. More generally, tho
authors argued that spontaneous Lorentz symmetry brea
in string theory may produce vacuum expectation values
more than one tensor field. In this case, rather than ha
just a single ‘‘preferred frame’’ there might be several bac
ground Lorentz tensors which collectively break part or all
the Lorentz symmetry.

The remainder of this paper is organized as follows.
Sec. II we explain the nonlocality problem encountered i
cosmological time is used to define the preferred frame
Sec. III our proposed field theory of a preferred frame
formulated and its general properties are investigated.
seen that the solutions for our theory comprise a subset o
solutions to the coupled Einstein-Maxwell-charged d
equations. Several types of exact solutions to the field eq
tions are characterized in Sec. IV, and the linearized theor
studied in Sec. V. Coupling of the preferred frame to ma
fields is discussed in Sec. VI. Both the dimension<4 cou-
plings and some higher dimension ones are examined.
paper concludes with a brief discussion in Sec. VII.

Among the dimension.4 couplings are included theorie
involving Lorentz non-invariant dispersion at high waveve
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tors. This is motivated by recent work in which high fre
quency dispersion is invoked to avoid the role of tran
Planckian modes in the Hawking effect~for a review see
@14#!. In this framework such theories can be formulated in
generally covariant manner so that gravitational effects
be consistently incorporated. Higher dimension couplin
also also provide an alternative generally covariant formu
tion of variable speed of light models, in which differe
fields propagate at different speeds possibly at different c
mological epochs. Such models have recently been of in
est as potential alternatives to standard cosmology, and h
been given generally covariant formulations using additio
fields to define the preferred frame@5–7#.

II. COSMOLOGICAL TIMES

In this section we briefly describe the construction of
cosmological time function determined purely by the metr
and the reason for rejecting it for the purposes of an effec
theory of local Lorentz symmetry breaking.

The cosmological metric of our universe, by virtue of i
~approximate! homogeneity,~approximately! defines a pre-
ferred spacelike foliation of spacetime. However, this p
ticular definition of the time function relies on the symmet
of the spacetime. For a workable theory with general co
riance what is needed is a definition of cosmological tim
that can be used independently of symmetry.

It is difficult to think of a notion of cosmological time tha
would make sense for all possible cosmologies. Howeve
we restrict attention to spacetimes with a ‘‘beginning,’’ the
two notions of cosmological time atx present themselves:~i!
volume time, the spacetime volume~or perhaps the fourth
root thereof! of the past setI 2@x#, and~ii ! maximal time, the
maximal proper time along a causal curve going back to
initial singularity.3 Other possibilities are combinations o
smoothed averages of these times. Both of these time fu
tions are determined non-locally but causally by the spa
time to the past ofx. They may or may not be sufficiently
smooth functions to enter meaningfully into a local acti
principle.4 If we assume that they are indeed sufficien
smooth we find that there is in any case a fatal problem w
using them in this manner, as will now be explained.

Suppose that to the usual action for gravity and ma
fields is added a term involving one of the above cosmolo
cal times,

S5Slocal1St . ~2.1!

3The maximal time function has been discussed in Refs.@15–17#.
In particular, a powerful theorem proved in Ref.@17# establishes a
number of properties of this function under the further assump
that the initial singularity is the only place past directed cau
curves can end.

4One of the results of the theorem of Ref.@17# referred to in the
previous footnote is that the maximal time function is locally Li
schitz and its first and second derivatives exist almost everywh
The volume time function may well be even better behaved.
8-2



t t
c

ce

s
y

t
ity
u

l if

a

a
is
m
be
e

a
lo
if

th
r

-

o

n
so
e
ar

nd

e

of
been

e of
at-
-

e

le
e

o-
I.

ther
ini-

am-
the
our
re-

ed
to
to

-

y

a
se

n
en

GRAVITY WITH A DYNAMICAL PREFERRED FRAME PHYSICAL REVIEW D 64 024028
We assume that the equations of motion are obtained
usual by requiring that the action is stationary with respec
variations of the fields. The variational derivative of the a
tion with respect togab(x) has the form

dS

dgab~x!
5

dSlocal

dgab~x!
1

d8St

dgab~x!

1E d4x8
dSt

dt~x8!

dt~x8!

dgab~x!
, ~2.2!

where the prime ond8 indicates that the metric dependen
of t(x) is not included in the variation. Since
dt(x8)/dgab(x) has support whenx8 lies to the future ofx,
the field equationdS/dgab(x)50 involves the values of the
fields to the future ofx. Indeed the metric field equation i
infinitely non-local in time, since the time function at an
point to the future can be affected by a metric variation ax.
Even finite nonlocality in time leads to unphysical instabil
@1#, so this approach to incorporating a preferred frame m
be rejected. If the action depends ont only through its de-
rivative ¹at, then the equation of motion would be causa
d¹ct(x8) depended only ongab(x) at x5x8. However, this
is not the case for either the volume time or the maxim
time.

III. AETHER DYNAMICS

We now turn to a class of theories in which there is
preferred frame which is determined by a local field. It
convenient to give a name to this field, and ‘‘aether’’ see
as good a name as any. Let us take the aether field to
unit timelike vector fieldua, which is dimensionless, like th
metric. To handle the condition thatua is a unit vector, we
include in the action a Lagrange multiplier term. Note th
we are implicitly assuming that the spacetime admits a g
bally defined unit timelike vector field which is the case
and only if the spacetime is time orientable.

A. Action

The most general Lagrangian involving the metric and
aether with two or fewer derivatives is, up to a total dive
gence,

Lg,u5a02a1R2a2Rabu
aub2b1FabFab

2b2~¹aub!~¹aub!2b3 u̇au̇a, ~3.1!

where u̇a
ªum¹mua, Fab is defined in analogy to the elec

tromagnetic field strength,

Fabª2¹ [aub] . ~3.2!

The term (¹aua)2 is equivalent, via integration by parts, t
the combination (¹aub)(¹aub)2(1/2)FabFab1Rabu

aub, so
has not been included in Eq.~3.1!.

The Lagrangian~3.1! is similar to the one discussed i
Ref. @18# as the most general Lagrangian for a vector-ten
theory of gravity, including terms up to second order in d
rivatives and quadratic in the vector field. The differences
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that ~i! the termsu2 and Ru2 are missing from our action
since the vector field is constrained to be a unit vector, a
~ii ! we have included the quartic termb3u̇2, which was omit-
ted in Ref.@18# because it is not quadratic inua @19#. Note
that, even without the last term, our theory isnot a special
case of the vector-tensor theories discussed in Ref.@18#,
since the constraintu251 affects the field equations.

The coefficienta0 in the action~3.1! has mass dimension
4 while a1,2 and b1,2,3 have mass dimension 2. Lacking th
underlying fundamental theory we do not try to assigna
priori the values of these coefficients. A partial analysis
the observational consequences and limits on them has
done for the vector-tensor theories@18#, however that analy-
sis does not apply directly to our case due to the presenc
the constraint term. It is fairly clear nevertheless that wh
ever valuesb1,2,3 take, agreement with observation will re
quire thata2!a1, and thata0 /a1 ~which is basically the
cosmological constant! must not be much larger than th
squared Hubble constant.

In this initial foray we shall restrict attention to the simp
case in which the only terms with non-zero coefficients arR
and F2. That is, we seta05a25b25b350. The minimal
theory we consider is thus defined by the action

Smin@gab ,ua,l#5E d4xA2g„2a1R2b1FabFab

1l~gabu
aub21!…. ~3.3!

This minimal theory is one of the models considered by K
steleckýand Samuel@13# in the paper mentioned in Sec.
Those authors studied a broader class of models in whichua

is not necessarily constrained to be a unit vector but ra
possesses a Lorentz-invariant potential energy with a m
mum at some fixed value ofuaua. They also allowed for
extra, compact spatial dimensions of spacetime, and ex
ined cases where the symmetry breaking vector lies in
extra dimensions as well as cases where it lies in the f
ordinary spacetime dimensions. Our paper by contrast is
stricted to four dimensions and to a timelike vector of fix
norm. Later in this paper we shall also add matter terms
the action, including terms which couple the aether field
the matter.

Note thatFab is invariant under the ‘‘gauge transforma
tion’’

ua→ua1¹af , ~3.4!

however the constraintu251 does not share this symmetr
~nor do the additional couplings in general!, so the theory is
certainly not ‘‘gauge invariant.’’ The constraint does have
limited version of this symmetry however, namely for tho
functions f satisfying (ua1¹af )(ua1¹af )5uaua51. The
general solution to this equation is

ua¹af 5216A11qab¹af ¹bf , ~3.5!

where

qabª2gab1uaub ~3.6!

is the~positive definite! spatial metric orthogonal toua. Thus
the action~3.3! is invariant under the gauge transformatio
~3.4! if f is chosen arbitrarily on a spacelike surface and th
8-3
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TED JACOBSON AND DAVID MATTINGLY PHYSICAL REVIEW D 64 024028
determined uniquely elsewhere~up to a discrete choice o
sign! by integration of Eq.~3.5! along the flow ofua.

B. Field equations

The equations of motion arising from the action~3.3! are

Gab52
2b1

a1
~FamFb

m2 1
4 F2gab!1

l

a1
uaub , ~3.7!

¹aFab52
l

2b1
ub, ~3.8!

gabu
aub51. ~3.9!

The metric equation~3.7! has the form of the Einstein equa
tion Gab58pGTab , whereG51/16pa1, and the stress ten
sor receives contributions from both theF2 term and the
constraint term in the action.@The constraint equation~3.9!
has been used to drop the contribution to Eq.~3.7! that would
have come from the variation ofA2g in the constraint
term.# The contribution from the constraint term looks lik
that of a~pressureless! dust with rest energy density 2l, and
that from theF2 term is the usual Maxwell tensor familia
from electromagnetism, if we identify the vector potential

‘ ‘ Am’ ’ ↔2Ab1um . ~3.10!

The stress tensor thus satisfies the usual energy condi
providedb1 /a1 andl/a1 are positive.

In terms of the vector potentialAm Eq. ~3.10! the con-
straint equation~3.9! becomes

AmAm54b1 ~3.11!

which can be interpreted as a gauge condition. The ae
field equation ~3.8! becomes the Maxwell equation wit
source equal to the current of a charged dust fluid w
4-velocity ub and charge density2(l/Ab1). The evolution
of l is determined by the current conservation equat
which follows from divergence of the aether field equati
~3.8! upon using the identity¹a¹bFab[0. Thusl satisfies a
first order ordinary differential equation along the flow lin
of ua:

ua¹al52l¹aua. ~3.12!

In particular, if l vanishes on a Cauchy surface, it mu
vanish everywhere. Also, the sign ofl on a given flow line
cannot change, since ifl50 at any point on a flow line it
must vanish everywhere on that line.

Relation to Einstein-Maxwell-charged dust system

We have just seen that the field equations of the minim
theory take the form of the coupled Einstein-Maxwell equ
tions, with a charged dust matter source possessing char
mass ratio21/2Ab1. There is no explicit equation of motio
for the dust, however the normalization condition~3.9! pro-
vides such an equation. Taking the gradient ofu251 we
have
02402
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05¹a~ubub! ~3.13!

52ub¹aub ~3.14!

52~ub¹bua1ubFab!. ~3.15!

Let us defineF̃ab52] [aAb]52Ab1Fab . Then Eq.~3.15! be-
comes

ub¹bua52
1

2Ab1

F̃abu
b, ~3.16!

which is the equation of motion for a particle in the electr
magnetic fieldF̃ab , with charge to mass ratio21/2Ab1, the
same ratio we inferred from the Einstein and Maxwell equ
tions. Thus any solution of our minimal theory is a solutio
of the Einstein-Maxwell-charged dust equations~although
the converse is not true!. The equivalence to a subset of th
charged dust solutions demonstrates that the equations o
theory admit an initial value formulation, and it provide
some useful intuition about the nature of the solutions.

Our theory isnot equivalentto the Einstein-Maxwell-
charged dust system because in the general solution of
system the dust 4-velocity is not proportional to the vec
potential in some gauge. That is, although there is alway
gauge transformation that will makeAm/2Ab1 a unit vector,
it cannot in general be made to coincide with the d
4-velocity.5

IV. SOLUTIONS

In this section we characterize a few types of solutions
the field equations.

A. Solutions with lÄ0

If l50, then the two field equations~3.7!,~3.8! are just
the Einstein-Maxwell equations. Any solution to these eq
tions is a solution in our theory provided a gauge can
chosen so that the constraint equation~3.11! is satisfied.
Such a gauge always exists, at least locally.

B. Solutions with F abÄ0

A special class of solutions to the field equations withl
50 are those withFab50. For such fields, Eq.~3.8! implies
that l50, and the field equations~3.7!–~3.9! reduce to the
ordinary vacuum Einstein equation together with the co
straintu251. WhenFab50 it follows, at least locally, that

5The general form of the discrepancy between these two 4-vec
was found by Dirac~see the second paper of Ref.@11#!, who
showed that~in four spacetime dimensions! there is always a gauge
in which Am/2Ab15um1j¹mh, wherej andh are functions that
are constant along the flow lines ofua. Dirac included the functions
j andh as dynamical variables in order to obtain a theory in wh
arbitrary electron streams were admitted. In the third paper of R
@11# he allowed for multiple streams.
8-4
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GRAVITY WITH A DYNAMICAL PREFERRED FRAME PHYSICAL REVIEW D 64 024028
ua5¹at for some functiont, and the constraint then implie
that ¹at¹at51. The general solution for such a functiont
can specified by assigning the valuet50 to an arbitrary
spacelike surface, and determiningt elsewhere by ‘‘uniform
normal extension,’’ i.e., by the differential equationna¹at
51, wherena is the unit normal to the surface.

Another way to think of this construction is in terms
the congruence of integral curves ofua. WhenFab50, Eq.
~3.15! implies that these curves are geodesics. Moreove
ua is the unit tangent field to a congruence of geodesics, t
Fab52¹ [aub]50 if and only if the congruence is
hypersurface-orthogonal. Hence the general solution of
type is just an arbitrary solution to the Einstein equatio
together with ua given by the unit tangent field of an
hypersurface-orthogonal congruence of timelike geodesic
this metric. A special case is flat spacetime, where theua

congruence consists of straight lines normal to an arbitr
initial spacelike hypersurface.

Singular aether evolution

This characterization of theFab50 solutions shows that
at least for such solutions, the evolution ofua is generally
singular. The geodesics launched normally from a space
surface will typically cross. Where they do, the quant
¹aub will diverge.

The existence of such singular evolutions forua signals a
breakdown of the effective theory we are using. Perhap
would be cured by including the term (¹ (aub))(¹

(aub)) in
the action.~Without this term the action is insensitive t
gradients for which the antisymmetrized derivative¹ [aub]
vanishes.! For the purposes of the present paper we shall
pursue this question, but it should be addressed.

Cosmological solutions

If ua shares the symmetry of a homogeneous isotro
cosmological metric, thenFab50. The presence of the
aether field therefore has no influence on the cosmolog
evolution unless there are additional terms in the action
yond the minimal model. In Ref.@20# we examine some
cosmological effects of coupling to a scalar field though
fourth spatial derivative term as discussed in Sec. VI B.

Black hole solutions

For a spherically symmetric black hole, a suitable cong
ence of geodesics is given by the radial free-fall trajecto
that all have the same Killing energy, i.e., the sa
asymptotic velocity at spatial infinity. The same construct
can even be applied in the case of a Kerr black hole, at l
for the geodesics that are at rest at spatial infinity. This
lows from the work of Ref.@21#, in which this congruence is
employed to construct a coordinate system for the Kerr m
ric using the time functiont mentioned above.

C. Spherically symmetric, static solutions

Here we seek to characterize the general spherically s
metric, static solution. We shall find that, besides the ma
the metric in these solutions has an additional free param
the ‘‘aether charge.’’
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Some of the linearized static, spherically symmetric so
tions were previously studied in Ref.@13#. Those authors
examined the case whereua is spacelike, and while in four
spacetime dimensions they restricted attention to vanish
Lagrange multiplierl and vanishing field strengthFab . In
the present work we treat the nonlinear case, conside
only timelike ua and imposing no further restrictions on th
fields.

Coordinates can be chosen so the line element takes
form

ds25gttdt21grr dr22r 2~du21sin2udw2!, ~4.1!

and the aether field takes the form

u5ut~r !dt1ur~r !dr. ~4.2!

The only potentially nonzero component ofFab is thenFrt
5] rut , and the constraint~3.9! implies

gttut
21grr ur

251. ~4.3!

The aether field equation~3.8! in coordinate form reads

1

A2g
]a~A2ggamgbnFmn!52

l

2b1
ub, ~4.4!

or, taking into account the form of the metric~4.1!,

1

A2g
] r~A2ggrr gbtFrt !52

l

b1
ub. ~4.5!

The left hand side vanishes whenb5r , hence the field equa
tion implies thatlur50, which in turn implies that either
ur50 or l50. In the former case,ua is proportional to the
timelike Killing field itself. There are thus two cases to co
sider.

If l5” 0 there are in fact no static solutions, unless t
coefficients in the action are such that the charge to m
ratio of the dust is extremal. Recall that any solution to o
theory is a solution to the charged dust theory. Howe
under the influence of gravitational and electric forces,
non-extremal charged dust cannot remain static, since t
is no pressure@22,23#.

If l50 then~cf. Sec. IV A! these are just the sphericall
symmetric static Einstein-Maxwell solutions, i.e. th
Reissner-Nordstrom solutions, in a spherically symmet
static gauge with fixed norm~3.11!. Such a gauge alway
exists, at least locally. Consider the gauge transformAm

5Am8 1a ,m of an arbitrary vector potentialAm8 . To maintain
spherical symmetry and time independence we must h
a5bt1g(r ) @using the coordinates in Eq.~4.1!#, so that
At5At81b andAr5Ar81g ,r . The normalization~3.11! then
implies

g ,r52Ar86Agtt@gtt~At81b!224b1#, ~4.6!

where we have used the fact that for the Reissner-Nordst
metrics grr 521/gtt . In any region wheregtt and At are
8-5
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bounded one can always chooseb large enough so that th
radical is real, and theng(r ) can be found by integration.

If a horizon is presentgtt diverges and it is not clear from
the preceding discussion whether the unit timelike gauge
be accessed in a smooth way across the horizon. Inde
can, however the maximal extension of the region o
which such a gauge can be accessed depends on the p
eter b1. This can also be understood from the equivalen
with a charged dust solution. The radial congruenceua must
satisfy the Lorentz force equation~3.16!, and this congru-
ence can be nonsingular and time-independent only if
trajectories are monotonic in ther coordinate. In general
however, the trajectories bounce inside the black hole.

Comparison with observation

To compare with observation it would be necessary
determine which of the above solutions to use in the pr
ence of a spherically symmetric static source such a
planet, star, or black hole. The metric associated with on
these objects depends on its ‘‘aether charge’’—the charg
the Reissner-Nordstrom solution—which is determined
the ‘‘charge’’ of the ‘‘aether dust’’ that fell in when the
object condensed. The choice is determined by the in
conditions onl, which are presumably cosmological in or
gin. We have no theory of these initial conditions at th
stage, but agreement with observations can put a boun
the amount of aether charge. If this charge is zero, then
have the usual Schwarzschild solution of general relativ
~and, as discussed in Sec. IV B, the aether field is the tan
field to a hypersurface orthogonal congruence of timel
geodesics!, which of course agrees with observations.

V. LINEARIZED THEORY

In this section we study the linearized equations defin
by expanding about a background solution,

gab5gab
(0)1hab ~5.1!

ua5ua
(0)1va , ~5.2!

l5l (0)1l (1). ~5.3!

For the background we take the flat metricgab
(0)5hab and a

constantua
(0) . In this background solution the equations

motion imply that the Lagrange multiplierl (0) must vanish,
hence we shall use the letterl for the perturbationl (1). In
this section we use the flat background metric to raise
lower indices. Note that we use the perturbation of thecova-
riant vectorua to define the perturbationva .

We choose Cartesian coordinates (x0,xi), i 51,2,3, in
which the components ofhab are diag(1,21,21,21) and
those ofua

(0) are (1,0,0,0). The linearized field equations f
this theory were first written down in a general gauge in R
@13#, who also pointed out that the Lorentz gauge can
accessed using the linearized diffeomorphism invariance
the action. The Lorentz gauge condition for the metric p
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turbation ish̄ab
,b50, whereh̄ab[hab2 1

2 hhab is the trace-
reversed metric perturbation. In this gauge, the lineari
equations of motion are

hh̄ab52
l

a1
ua

(0)ub
(0) ~5.4!

hvb2]b~]ava!52
l

2b1
ub

(0) ~5.5!

2habu
(0)au(0)b12u(0)bvb50. ~5.6!

In a source-free region, the residual gauge freedom is u
ally employed to seth̄0i5h0i50 and h̄52h50 @24#. The
possibility of doing so depends on the fact that these qu
tities satisfy the wave equation in general relativity. In o
case, the componentsh0i satisfy the wave equation, howeve
h does not, due to the source term on the right hand sid
Eq. ~5.4! that is always present~even outside matter! unless
l50. This source corresponds to the energy density of
‘‘charged dust,’’ and we wish to allow for the presence
this term. Therefore, rather than settingh to zero, we choose
to set to zero the trace of the spatial part,h̄i

i , which does
satisfy the wave equation. The proof that this can be d
follows the same logic as in the usual case. This gauge c
dition implies h̄5h̄00, henceh005h̄002

1
2 h̄h005

1
2 h̄00, and

the Lorentz gauge condition implies]0h̄0050 and] i h̄i j 50.
Thus h00 is time-independent and the spatial parth̄i j is a
transverse traceless solution to the wave equation. This is
quite the same as the usual transverse traceless gauge in
eral relativity however, sincehi j 5h̄i j 2h00d i j , so hi j is not
transverse unless] ih0050, andh522h005” 0.

It remains to consider the linearized equations forh00,
va , andl. The 00-component of the metric equation~5.4!
and the constraint equation~5.6! determinel andv0 in terms
of h00:

l52a1¹2h00 ~5.7!

v052 1
2 h00. ~5.8!

Using the time independence ofv0, the time and space com
ponents of the aether equation~5.5! read

2¹2v02]0~] iv i !52
l

2b1
~5.9!

hv i2] i~] jv j !50. ~5.10!

Let us decomposev i into transverse and longitudinal part
v i5v i

T1v i
L , where ] iv i

T50 and v i
L5] i f for some scalar

field f. Then Eq.~5.10! implies that the transverse part sati
fies the wave equation,hv i

T50, so the the aether field ha
two transverse massless modes.

As for the longitudinal partv i
L , Eq. ~5.9! implies

]0~] iv i
L!5

b12a1

2b1
¹2h00, ~5.11!
8-6
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so in particularv i
L has at most linear time dependence.@The

same conclusion follows from the divergence of Eq.~5.10!.#
Thusv i

L5] ia(x)t1] ib(x), wherea(x) is determined byh00

andb(x) is arbitrary.
In summary, the perturbation spectrum consists of t

massless transverse traceless modes ofh̄i j , and two massless
transverse modes ofv i . In addition there is a mode in whic
h00 is an arbitrarily specified time-independent function
which determinesv0 , l, and the time derivative of the
longitudinal partv i

L . The time-independent part ofv i
L is also

arbitrary. This last freedom corresponds to the linearizat
of the restricted gauge symmetry~3.5!.

The longitudinal mode looks very strange at first sight.
the charged dust interpretation, the dust energy densit
adjusted to produce an arbitrary gravitational potentialh00,
and the perturbed metric, electromagnetic field, and cha
density are all time independent, while the perturbed d
world lines are time dependent. This is a peculiarity of t
first order perturbative solution however. No exact solut
shares this property, as can be easily seen from the ae
field equation~3.8!. If the left hand side is invariant with
respect to a timelike Killing field, and ifl is also invariant,
then so must beub. Evidently the higher order terms in th
equations of motion induce time dependence into the s
tion. A similar phenomenon can be seen upon expanding
simpler Einstein-neutral dust system about the flat space
lution with constant dust 4-velocity and vanishing densi
As in our case, the dust density perturbation can set up
static metric perturbation, and the linearized geodesic eq
tion for the dust yields a time-dependent dust velocity p
turbation.

VI. MATTER COUPLINGS

We have so far considered only the terms in the act
involving the metric and the aether field and up to two d
rivatives. Suppose a matter termSmat@gab ,ua,c# is added to
the action Smin@gab ,ua,l# of the minimal theory ~3.3!,
wherec stands for a generic matter field. The variation
Smat with respect to the metric produces an additional c
tribution to the stress-energy tensor, and the variation w
respect toua produces an additional term in the current
the right hand side of Eq.~3.8!. The resulting field equation
takes the form

¹aFab52
1

2b1
S lub1

1

2

dSmat

dub D . ~6.1!

The identity¹a¹bFab50 then implies

ua¹al52l¹aua2
1

2
¹a

dSmat

dua
, ~6.2!

which shows that now even ifl is initially zero it need not
remain zero. In the presence of such matter couplings
equivalence to charged dust is lost.
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We now consider specific types of matter couplings, fi
of dimension less than or equal to four, and next of dime
sion greater than four.

A. Couplings of dimensionÏ4

A complete classification of Lorentz violating, gaug
invariant extensions of the SU(3)3SU(2)3U(1) minimal
standard model has been given by Colladay and Kostele´
@25#, restricting attention to operators whose mass dimens
is less than or equal to four, so as to preserve power-coun
renormalizability. This class of low energy effective actio
includes bothCPT-even andCPT-odd terms, and involves
various coupling tensors with ‘‘generation’’ indices allowin
for mixing of fermions from different generations. Thes
coupling tensors are supposed to be Lorentz violat
vacuum expectation values arising in a theory with a fun
mental underlying Lorentz symmetry.

Here we consider the above class of Lorentz violat
terms, keeping only those couplings that can be constru
with the aether fieldua. With this restriction the antisymmet
ric tensor couplings are excluded, which rules out Loren
violating Yukawa couplings and couplings of gauge fie
strengths to Higgs bilinears, and limits the form of modi
cations of the gauge field kinetic terms. Invariance un
time reversalua→2ua would be required if the physica
significance of the aether is only to define a preferred fra
and not a preferred local time orientation. If we according
further assume this symmetry, all theCPT-odd terms are
excluded, which rules out terms with a vector coupled
fermion or Higgs currents, gauge field Chern-Simons c
rents, and the U~1! potential.

The only possibilities remaining after all these restrictio
have been imposed are the modifications of the fermi
gauge field, and Higgs kinetic terms:

1
2 i ~cL! IJuaubL̄IgaDbLJ1H.c.1•••, ~6.3!

2 1
4 cBuaubgmnBamBbn1•••, ~6.4!

1
2 cFuaub~DaF!†DbF. ~6.5!

The indicesI ,J in Eq. ~6.3! are generational indices, and th
coupling constants (cL) IJ , cB , andcF are all dimensionless
The ellipses in Eq.~6.3! stand for similar terms for the othe
fermions, while those in Eq.~6.4! stand for similar terms for
the other gauge fields.

Such additional kinetic terms modify the propagati
speed of the various fields. For example, the propaga
speed for the Higgs field, with respect to the preferred fram
is (11cF)21/2, which is less or more than the speed of lig
if cF is positive or negative respectively. The coupling co
stants must therefore be small numbers for fields wh
propagator has been measured accurately. It would be in
esting to determine what limits can be placed on these c
ficients, particularly for fields such as the Higgs bosons
gluons whose propagators are presumably not yet so
measured.
8-7
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B. Couplings of dimensionÌ4

Once the restriction to terms of dimension 4 or less
dropped, the possibilities for Lorentz violating terms—lik
those for Lorentz invariant ones—are endless. Here
would like to consider just two types, which illustrate diffe
ent possibilities that arise in the presence of Lorentz sym
try breaking.

Modified kinetic terms

If the coupling coefficient for a Lorentz violating kineti
term like Eqs.~6.3!–~6.5! is field dependentand polynomial,
rather than a constant, then the term is a dimension.4
operator. In this case it is possible that the coefficient w
larger in the early universe than it is today, due to the c
mological evolution of the field~s! on which the coupling
function depends. This provides an alternate approach
constructing generally covariant, variable speed of light c
mologies. Approaches using a vector@5# or a scalar@6,7# to
define the preferred frame have been the subject of s
recent papers.

Modified dispersion

Next we consider a deviation from Lorentz invariance th
becomes strong only at high wave vectors. In the early u
verse, when the fields were highly excited at large wa
vectors, the gravitational effects of such a deviation co
have been of paramount importance. The study of a mo
incorporating such effects is left to another paper@20#. Here
we indicate only an example of a term in the Lagrangian t
produces high frequency dispersion in the propagation o
matter field, and we display the the form of the resulti
contribution to the energy-momentum tensor.

Consequences of non-Lorentz invariant high freque
dispersion for the Hawking effect have previously been st
ied using~111!-dimensional model field theories in whic
higher spatial derivative terms are added to the action~for a
review see@14#!, and recently such models have been gen
alized to field theory in the background of a~311!-
dimensional Robertson-Walker spacetime in order to st
the consequences for the spectrum of primordial den
fluctuations in inflationary cosmology@26#. These models
can be extended to an arbitrary~311!-dimensional setting,
preserving general covariance as well as spatial rotation s
metry in the local preferred frame. As an example consi
the Lagrangian

Lw5
1

2
„¹aw¹aw1k0

22~D2w!2
…. ~6.6!
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Herek0 is a constant with the dimensions of inverse leng
which sets the scale for deviations from Lorentz invarian
andD2 is the covariant spatial Laplacian, i.e.,

D2w52DaDaw52qac¹a~qc
b¹bw!, ~6.7!

whereDa is the spatial covariant derivative operator@24# and
qab is the spatial metric~3.6!.

The ua dependence of the Lagrangian~6.6! produces a
‘‘matter’’ term in the aether field equation~6.1!. The energy-
momentum tensor for this Lagrangian is

Tab5¹aw¹bw2Lwgab2k0
22@2D2wumu(a¹ umuDb)w

12¹m~D2wq(a
m!¹b)w2¹m~qabD

2wDmw!#.

~6.8!

In Ref. @20# we evaluate the expectation value of this energ
momentum tensor in a thermal state in flat spacetime, wh
allows us to determine the modification of the equation
state produced by the fourth derivative term. This equat
of state is then be used to study how the cosmological e
lution is affected by the high frequency dispersion.

VII. DISCUSSION

We have made an initial attempt to study the possi
consequences of incorporating a preferred frame—
aether—into a generally covariant theory. With the acti
adopted in this paper the aether vector generically deve
gradient singularities even when the metric is perfectly re
lar. We take this as a sign that the theory is unphysical as
effective theory~although if the aether sector is ignored th
theory can be made to agree with observations with an
propriate choice of initial conditions, i.e., by settingFab to
zero!. The primary open questions are~i! what determines
the initial values of the aether field and the Lagran
multiplier field, and ~ii ! are the gradient singularities
which appear to be generic in the evolution of the aeth
eliminated by including a symmetrized derivative ter
(¹ (aub))(¹

(aub)) in the action along with the antisymme
trized derivative term used in this paper? It is plausible t
adding the symmetrized derivative term will have a sign
cant effect, since with it the action is sensitive to the ex
tence of any large gradients.
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@13# V. A. Kostelecký and S. Samuel, Phys. Rev. D40, 1886
~1989!.

@14# T. Jacobson, Suppl. Prog. Theor. Phys.136, 1 ~1999!.
@15# J. D. Barrow and F. J. Tipler, Phys. Rep.56, 371 ~1979!.
@16# R. M. Wald and P. Yip, J. Math. Phys.22, 2659~1981!.
@17# L. Andersson, G. J. Galloway, and R. Howard, Class. Qu

tum Grav.15, 309 ~1998!.
@18# C. M. Will, Theory and Experiment in Gravitational Physic

~Cambridge University Press, Cambridge, England, 1993!.
@19# We thank J. C. Dell for pointing out our earlier omission

this term.
02402
J.

-

@20# T. Jacobson and D. Mattingly, Phys. Rev. D63, 041502
~2001!.

@21# C. Doran, Phys. Rev. D61, 067503~2000!.
@22# W. B. Bonner, Mon. Not. R. Astron. Soc.129, 443 ~1965!.
@23# U. K. De and A. K. Raychaudhuri, Proc. R. Soc. Londo

A303, 97 ~1968!.
@24# R. M. Wald,General Relativity~University of Chicago Press

Chicago, 1984!.
@25# D. Colladay and V. A. Kostelecky, Phys. Rev. D58, 116002

~1998!.
@26# J. Martin and R. H. Brandenberger, Phys. Rev. D63, 123501

~2001!; J. C. Niemeyer,ibid. 63, 123502~2001!; T. Tanaka,
‘‘A comment on trans-Planckian physics in inflationary un
verse,’’ astro-ph/0012431; L. Mersini, M. Bastero-Gil, and
Kanti, Phys. Rev. D~to be published!, hep-ph/0101210; J. C
Niemeyer and R. Parentani, ‘‘Trans-Planckian dispersion
scale-invariance of inflationary perturbations,
astro-ph/0101451; A. A. Starobinsky, JETP Lett.73, 415
~2001!; R. Easther, B. R. Greene, W. H. Kinney, and G. Sh
‘‘Inflation as a probe of short distance physics,
hep-th/0104102.
8-9


