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Gravity with a dynamical preferred frame
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We study a generally covariant model in which local Lorentz invariance is broken by a dynamical unit
timelike vector fieldu?®—the “aether.” Such a model makes it possible to study the gravitational and cosmo-
logical consequences of preferred frame effects, such as “variable speed of light” or high frequency disper-
sion, while preserving a generally covariant metric theory of gravity. In this paper we restrict attention to an
action for an effective theory of the aether which involves only the antisymmetrized derivégivg; .

Without matter this theory is equivalent to a sector of the Einstein-Maxwell-charged dust system. The aether
has two massless transverse excitations, and the solutions of the model include all vacuum solutions of general
relativity (as well as other solutionsHowever, the aether generally develops gradient singularities which
signal a breakdown of this effective theory. Including the symmetrized derivative in the action for the aether
field may cure this problem.
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I. INTRODUCTION It would be most appealing if the preferred frame were
somehow determined by the spacetime metric itself. As dis-
The Lorentz group is noncompact, since the boost parameussed below, in spacetimes with an initial singularity the
eter is unbounded. This makes exact Lorentz invariance immetric can be used to define a cosmological time function,
possible to test uniformly. Lorentz invariance has thus beetthe gradient of which then determines a preferred frame
tested only up to some maximum boost and beyond that liegyhich is by construction timelike However, the nonlocal
an infinite volume of uncharted territory in the Lorentz re|ationship between this frame and the metric results in in-
group. Contrast this with the rotation group. Rotation invari-finitely nonlocal field equations if this frame is incorporated
ance can be tested by filling in the comp&M(3) group nto the action principle. Theories with even a finite amount

manifold more and more densely with data points, or byq¢ honjocality are generally horribly unstabj&], so we do
checking a few randomly selected rotations. The rotation},, o+ consider this a viable approach.

group can be and has been uniformly explored. To avoid such unacceptable behavior the preferred frame

There IS also reason to doubt exact Lorentz mvagrlance:_l%hould arise fromocal conditions which of course reflect
leads to divergences in quantum field theory associated wit o o :
conditions at earlier times but only througlynamics For

states of arbitrarily high energy and momentum. This prob- . : .
lem can be curedywit% a shogr%/distance cutoff which. Eow_example, this dynamical frame could be defined by a vector

ever, breaks Lorentz invariance. field [3,2,4,9 or by the gradient of a scalar fiel®,7]. In

For these reasons we entertain the possibility that there i&1€S€ approaches the presence or absence of a preferred
a preferred rest frame at each spacetime point. In particulaff@me depends on the field configuration, since the preferred

we seek a viable effective field theory incorporating a breakVector may vanish or may not be timelike.
ing of local Lorentz invariance. Since our motivation arises from doubts about the funda-

If the preferred frame were to be a fixed external struc-mnental validity of exact Lorentz invariance, we are not inter-
ture, then it would violate general covariance, which wouldested in a theory possessing a Lorentz invariant phase. We
require us to abandon general relativityr any generally Wwish to study instead an effective theory in which there is
covariant modification therepf General covariance ordi- alwaysa preferred frame. This frame is defined by a timelike
narily implies that the divergence of the matter energy-direction or, equivalently, by a unit timelikgontravariant or
momentum tensor ., vanishes when the matter field satis- covarian} vector field® Such a field carries a nonlinear rep-
fies its equation of motion. This is required for consistencyresentation of the local Lorentz group since the field takes
of the Einstein field equatidrG,,=87GT,,, since the di- Vvalues not in a vector space but on the unit hyperboloid in
vergence of the Einstein tens@,, is identically zero by the tangent space. This could therefore be called a theory of
virtue of the contracted Bianchi identity. If a fixed preferred nonlinearly realized Lorentz invariance. It is analogous to a
frame is introduced into the matter action, for example, gengauge theory with a nonlinear sigma model Higgs field of
eral covariance is losfT,, is not divergenceless, and the fixed norm[8,9]. There seems to be no generally accepted
Einstein equation is inconsistent. We therefore seek to incotterminology for this sort of symmetry structure. Since the
porate the preferred frame while preserving general covariSymmetry breaking unit vector field is not a state-dependent
ance, which requires that the preferred framedpeamical ~ expectation value but rather breaks this symmetryaln

:Electronic address: jacobson@physics.umd.edu 2A unit timelike vector contains a discrete piece of information
Electronic address: davemm@physics.umd.edu that a frame by itself does not have, namely, a time orientation. The
We use units wittc=1 and the metric signatureq(— — —). theory may or may not depend on this orientation.
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states, it may be misleading to say the symmetry is “sponiors. This is motivated by recent work in which high fre-
taneously broken.” For lack of a better idea we shall takequency dispersion is invoked to avoid the role of trans-
refuge in ambiguity and just call it “broken.” What this Planckian modes in the Hawking effeffor a review see
really means is that in order to implement the local Lorentz14]). In this framework such theories can be formulated in a
symmetry one must transform not only the matter fields bugenerally covariant manner so that gravitational effects can
also the background unit vector, so for practical purposes #€ consistently incorporated. Higher dimension couplings
will appear as what would normally be called broken LorentzaIS0 also provide an alternative generally covariant formula-
symmetry. tion of variable spec_ed of light models, in wh|ch different
The theory described here was devised about a decadiglds propagate at different speeds possibly at dlfferent' COS-
ago by Dell together with one of J40], and we have since mological eppchs. Such models have recently been of inter-
learned that similar ideas have independently been studiegft @ potential alternatives to standard cosmology, and have
previously. The non-gravitational part of the thedind peen given generally covariant formulations using additional
generalizations therepfvas considered by Dirgd 1] in the  fields to define the preferred franjg—7].
early 1950s as a new theory of electrdits which the unit
timelike vector played the dual role of gauge-fixed vector
potential and flow vector of a stream of charged Huét
class of generally covariant theories breaking Lorentz invari- In this section we briefly describe the construction of a
ance was studied by Gasper[idi2] in many papers. In this cosmological time function determined purely by the metric,
work the tetrad formalism was used, and the local Lorentzand the reason for rejecting it for the purposes of an effective
symmetry was broken by including in the action terms refertheory of local Lorentz symmetry breaking.
ring to a fixed “internal” unit timelike vector. This is The cosmological metric of our universe, by virtue of its
equivalent to our formulation in terms of the metric and a(approximate homogeneity,(approximately defines a pre-
unit timelike vector. To see the equivalence, note that théerred spacelike foliation of spacetime. However, this par-
tetrad defines a metric and associates to the fixed interngcular definition of the time function relies on the symmetry
vector a unit vector field on spacetime. The only other infor-of the spacetime. For a workable theory with general cova-
mation in the tetrad is the gauge freedom parametrized byiance what is needed is a definition of cosmological time
the local rotations leaving invariant the preferred timelikethat can be used independently of symmetry.
vector. Eliminating this gauge freedom leads to the formal- It is difficult to think of a notion of cosmological time that
ism used in this paper. Gasperini has studied both cosmavould make sense for all possible cosmologies. However, if
logical and central field solutions, with various choices forwe restrict attention to spacetimes with a “beginning,” then
the specific form of the second derivative terms in the La-two notions of cosmological time atpresent themselve§)
grangian. In the present paper we focus on a different Lavolume time the spacetime voluméor perhaps the fourth
grangian. root thereof of the past set™ [ x], and(ii) maximal timethe
The particular Lagrangian studied here was also considmaximal proper time along a causal curve going back to the
ered by Kosteleckyand Samue[13], as a simplified model initial singularity® Other possibilities are combinations or
of the spontaneous Lorentz symmetry breaking that mightmoothed averages of these times. Both of these time func-
occur in string theory, although in Ref13] the preferred tions are determined non-locally but causally by the space-
vector was not necessarily timelike. More generally, thosg¢ime to the past ok. They may or may not be sufficiently
authors argued that spontaneous Lorentz symmetry breakirggooth functions to enter meaningfully into a local action
in string theory may produce vacuum expectation values ofrinciple? If we assume that they are indeed sufficiently
more than one tensor field. In this case, rather than havingmooth we find that there is in any case a fatal problem with
just a single “preferred frame” there might be several back-using them in this manner, as will now be explained.
ground Lorentz tensors which collectively break part or all of  Suppose that to the usual action for gravity and matter
the Lorentz symmetry. fields is added a term involving one of the above cosmologi-
The remainder of this paper is organized as follows. Incal times,
Sec. Il we explain the nonlocality problem encountered if a
cosmological time is used to define the preferred frame. In
Sec. lll our proposed field theory of a preferred frame is
formulated and its general properties are investigated. It is
seen that the solutions for our theory comprise a subset of the
solutions to the coupled Einstein-Maxwell-charged dust 3The maximal time function has been discussed in Héfs—17.
equations. Several types of exact solutions to the field equan particular, a powerful theorem proved in RgE7] establishes a
tions are characterized in Sec. 1V, and the linearized theory isumber of properties of this function under the further assumption
studied in Sec. V. Coupling of the preferred frame to matterthat the initial singularity is the only place past directed causal
fields is discussed in Sec. VI. Both the dimensied cou-  curves can end.
plings and some higher dimension ones are examined. Th&*one of the results of the theorem of REE7] referred to in the
paper concludes with a brief discussion in Sec. VII. previous footnote is that the maximal time function is locally Lip-
Among the dimension-4 couplings are included theories schitz and its first and second derivatives exist almost everywhere.
involving Lorentz non-invariant dispersion at high wavevec-The volume time function may well be even better behaved.

Il. COSMOLOGICAL TIMES

S=Spcart S;- (2.1
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We assume that the equations of motion are obtained a®at (i) the termsu? and Ru? are missing from our action
usual by requiring that the action is stationary with respect t@ince the vector field is constrained to be a unit vector, and
variations of the fields. The variational derivative of the ac-(ii) we have included the quartic tedogu?, which was omit-

tion with respect tay,,(x) has the form ted in Ref.[18] because it is not quadratic s [19]. Note
that, even without the last term, our theorynist a special
oS OSiocal S'S, case of the vector-ztensor theories discussed in R,
- since the constraini“=1 affects the field equations.
%9a(X)  9Gab(X)  Oav(X) The coefficienta, in the action(3.1) has mass dimension
58S,  o7(x") 4 while a; , and b, , 3 have mass dimension 2. Lacking the
+J X' NETCIE (2.2 underlying fundamental theory we do not try to ass@n
o7(x") 9Gab priori the values of these coefficients. A partial analysis of

where the prime or' indicates that the metric dependencethe observational consequences and limits on them has been
' . . e . done for the vector-tensor theorigk3], however that analy-

of 7(x) ‘is not included in the variation. Since g yoes not apply directly to our case due to the presence of

67(x")/ 6gap(x) has support wher' lies to the future ok, he constraint term. It is fairly clear nevertheless that what-

the field equationsS/ 5g,(x) =0 involves the values of the eyer valuesh, , 5 take, agreement with observation will re-

fields to the future ok. Indeed the metric field equation is quire thata,<a,, and thata,/a; (which is basically the

|nf|n|tely non-local in time, since the time function at any cosmological constaptmust not be much larger than the

point to the future can be affected by a metric variation.at squared Hubble constant.

Even finite nonlocality in time leads to unphysical instability  In this initial foray we shall restrict attention to the simple

[1], so this approach to incorporating a preferred frame mustase in which the only terms with non-zero coefficientsRire

be rejected. If the action depends eronly through its de- and F2. That is, we sefig=a,=b,=b3=0. The minimal

rivative V7, then the equation of motion would be causal if theory we consider is thus defined by the action

6V 7(x") depended only og,,(Xx) atx=x". However, this

is not the case for either the volume time or the maximal Smin[gab'ua,)\]:f d*x\—g(—a;R—b,F2PF

time.

+ N\ (gapuduP—1)). (3.3

This minimal theory is one of the models considered by Ko-

We now turn to a class of theories in which there is asteleckyand Samue[13] in the paper mentioned in Sec. |I.
preferred frame which is determined by a local field. It is Those authors studied a broader class of models in wifich
convenient to give a name to this field, and “aether” seemds not necessarily constrained to be a unit vector but rather
as good a name as any. Let us take the aether field to bepwssesses a Lorentz-invariant potential energy with a mini-
unit timelike vector fieldu?, which is dimensionless, like the mum at some fixed value af,u?® They also allowed for
metric. To handle the condition thaf is a unit vector, we  extra, compact spatial dimensions of spacetime, and exam-
include in the action a Lagrange multiplier term. Note thatined cases where the symmetry breaking vector lies in the
we are |mp||c|t|y assuming that the Spacetime admits a g|o.eXtra dimensions as well as cases where it lies in the four

bally defined unit timelike vector field which is the case if Ordinary spacetime dimensions. Our paper by contrast is re-
and only if the spacetime is time orientable. stricted to four dimensions and to a timelike vector of fixed

norm. Later in this paper we shall also add matter terms to
the action, including terms which couple the aether field to
the matter.

The most general Lagrangian involving the metric and the Note thatF, is invariant under the “gauge transforma-
aether with two or fewer derivatives is, up to a total diver-tion”
gence,

Ill. AETHER DYNAMICS

A. Action

Ug— U+ V,f, (3.9

—a _ ab_ ab
Lg,u=a0~ 8 R—85RapU "= b, FF 4 however the constraint?=1 does not share this symmetry

—b,(V 4up)(V3UP) — bs U2U,, (3.1  (nor do the additional couplings in gengrado the theory is
certainly not “gauge invariant.” The constraint does have a
whereu?:=u™V u®, F,, is defined in analogy to the elec- limited version of this symmetry however, namely for those
tromagnetic field strength, functions f satisfying U,+V.f)(u?+Vaf)=u,u®=1. The
general solution to this equation is

WAV f= — 1+ 1+ QPV,{V,f, (3.5

Fab:=2V[an] . (32)

The term §,u®)? is equivalent, via integration by parts, to

the combination ¥ ,up,) (V2u®) — (1/2)F2°F ,, + Ryudu®, so ~ Where

has not been included in E(B.1). o
The Lagrangian3.1) is similar to the one discussed in Gab'="Gab* Uallo 39

Ref.[18] as the most general Lagrangian for a vector-tensofs the(positive definit¢ spatial metric orthogonal te®. Thus

theory of gravity, including terms up to second order in de-the action(3.3) is invariant under the gauge transformation

rivatives and quadratic in the vector field. The differences arg3.4) if f is chosen arbitrarily on a spacelike surface and then
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determined uniquely elsewhefap to a discrete choice of 0=V (uPuy) (3.13
sign by integration of Eq(3.5) along the flow ofu?.
=2uVu, (3.19
B. Field equations
=2(uPVu,+UPF4p). (3.15

The equations of motion arising from the acti¢th3) are

1 A Let us defineF,p=2daAp = 2yb1F 4. Then Eq.(3.15 be-
Gap=— a_l(FamFbm_%Fzgab)'*' a_luaubi (3.7 comes 2 2 2

N 1 .
V. Fab=— b, 3.8 UPY U= — ——F pu®, (3.1
a 2b1 u ( ) bYa 2 bl ab
gapuiuP=1. (3.9  which is the equation of motion for a particle in the electro-

magnetic fieldF ,,,, with charge to mass ratie 1/2\b;, the
same ratio we inferred from the Einstein and Maxwell equa-
tions. Thus any solution of our minimal theory is a solution
of the Einstein-Maxwell-charged dust equatiof@though

The metric equatiori3.7) has the form of the Einstein equa-
tion G,,=87GT,,, whereG=1/16mra;, and the stress ten-
sor receives contributions from both tf€ term and the

constraint term in the actiofiThe constraint equatio8.9)  he converse is not trieThe equivalence to a subset of the
has been used to drop the contribution to 847) that would o 5r0eq dust solutions demonstrates that the equations of our
have come from the variation of—g in the constraint  theory admit an initial value formulation, and it provides
term] The contribution from the constraint term looks like gome useful intuition about the nature of the solutions.

that of a(pressgreles)s:_iust with rest energy densityx2 and Our theory isnot equivalentto the Einstein-Maxwell-
that from theF~ term is the usual Maxwell tensor familiar charged dust system because in the general solution of that
from electromagnetism, if we identify the vector potential assystem the dust 4-velocity is not proportional to the vector

potential in some gauge. That is, although there is always a

An'" 2Dl (310 gauge transformation that will mak&,/2.b; a unit vector,
The stress tensor thus satisfies the usual energy conditioHsCalr‘”_Ot N general be made to coincide with the dust
providedb, /a; and\/a; are positive. 4-velocity-
In terms of the vector potentid,, Eq. (3.10 the con-
straint equation(3.9) becomes IV. SOLUTIONS
A, A"=4b, (3.11) In this section we characterize a few types of solutions to
m .

the field equations.

which can be interpreted as a gauge condition. The aether
field equation(3.8) becomes the Maxwell equation with A. Solutions with A=0

Z?u(erfoec'te quaLrt]c()j iiirczr:jeenr:s'ct)f a)\/c\r}%ge_?_hgu:t ;llut'%nwnh If A=0, then the two field equation8.7),(3.8) are just
v 'y Up g ity ( V- Vot the Einstein-Maxwell equations. Any solution to these equa-

of .)‘ is determined _by the current conserva_tion equaf[ion[ions is a solution in our theory provided a gauge can be
which follows from divergence of the aether field equatlonChosen so that the constraint equati@hll is satisfied

(3.8) upon using the identity ,V,F2°=0. Thus\ satisfies a ;
first order ordinary differential equation along the flow lines Such a gauge always exists, at least locally.

a.
of u™: B. Solutions with F,,=0
UV A =—\V Ul (3.12 A special class of solutions to the field equations with
. ) , ) =0 are those withr,,=0. For such fields, Eq3.8) implies
In p_arﬂcular, if A\ vanishes on a Cauchy s_urface, 't_mUStthat)\=0, and the field equation@®.7)—(3.9 reduce to the
vanish everywhere. Also, the sign bfon a given flow line o 4inary vacuum Einstein equation together with the con-

cannot change, since K=0 at any point on a flow line it gyainty2=1. WhenF,,=0 it follows, at least locally, that
must vanish everywhere on that line.

Relation to Einstein-Maxwell-charged dust system

. ) . . 5The general form of the discrepancy between these two 4-vectors
We have just seen that the field equations of the minima, ,< tound by Dirac(see the second paper of RéL1]), who

theory take the form of the coupled Einstein-Maxwell equa-ghoyed thatin four spacetime dimensionthere is always a gauge
tions, with a charged dust matter source possessing chargetp\hich A/2Vbr= U+ £V 7, whereé and 5 are functions that
mass ratio- 1/2\b;. There is no explicit equation of motion are constant along the flow lines af. Dirac included the functions
for the dust, however the normalization conditih9) pro- ¢ and as dynamical variables in order to obtain a theory in which
vides such an equation. Taking the gradientud=1 we  arbitrary electron streams were admitted. In the third paper of Ref.
have [11] he allowed for multiple streams.
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u,= V.7 for some functionr, and the constraint then implies =~ Some of the linearized static, spherically symmetric solu-
thatV,7V2r=1. The general solution for such a functien tions were previously studied in Ref13]. Those authors
can specified by assigning the value=0 to an arbitrary examined the case whet# is spacelike, and while in four
spacelike surface, and determininglsewhere by “uniform  spacetime dimensions they restricted attention to vanishing
normal extension,” i.e., by the differential equatioAV,  Lagrange multiplierx and vanishing field strength,y. In
=1, wheren? is the unit normal to the surface. the present work we treat the nonlinear case, considering
Another way to think of this construction is in terms of only timelike u® and imposing no further restrictions on the
the congruence of integral curves uf. WhenF,,=0, Eq. fields.
(3.15 implies that these curves are geodesics. Moreover, if Coordinates can be chosen so the line element takes the
u? is the unit tangent field to a congruence of geodesics, theform
Far=2V[aup=0 if and only if the congruence is
hypersurface-orthogonal. Hence the general solution of this
type is just an arbitrary solution to the Einstein equation,
together withu® given by the unit tangent field of any
hypersurface-orthogonal congruence of timelike geodesics in u=u(r)dt+u,(r)dr. 4.2
this metric. A special case is flat spacetime, where uhe
congruence consists of straight lines normal to an arbitrarythe only potentially nonzero component Bfy, is thenF
initial spacelike hypersurface. =4,u,, and the constrain3.9) implies

ds?=gudt?+ g, dr2—r2(d6?+sirfede?), (4.1

and the aether field takes the form

Singular aether evolution gttuZ+gru=1. 4.3

This characterization of the,,=0 solutions shows that, i . ] .
at least for such solutions, the evolution wf is generally The aether field equatiof8.8) in coordinate form reads
singular. The geodesics launched normally from a spacelike L \
surface will typically cross. Where they do, the quantity By _
V,u, will diverge. \/?ga"( V=99g?F )= 2_b1uﬁ’ @4
The existence of such singular evolutions tgrsignals a
breakdown of the effective theory we are using. Perhaps ipr, taking into account the form of the metii4.1),
would be cured by including the tern¥V(,up,)(V@u®) in
the action.(Without this term the action is insensitive to 1 Y
gradients for which the antisymmetrized derivatiVe,uy, ——3,(N—gg"gP'F)=— b—Uﬁ- (4.5
vanishes. For the purposes of the present paper we shall not \/—_g !

pursue this question, but it should be addressed. The left hand side vanishes whgr=r, hence the field equa-

Cosmological solutions tion implies thathu,=0, which in turn implies that either

u,=0 orA=0. In the former casey? is proportional to the

a . :
If u® shares the symmetry of a homogeneous iSotropigimgike Killing field itself. There are thus two cases to con-
cosmological metric, therF,,=0. The presence of the ¢iqer

aether field therefore has no influence on the cosmological

: ” . X If N\#0 there are in fact no static solutions, unless the
evolution un.le.ss there are additional terms in the action bezgefficients in the action are such that the charge to mass
yond the minimal model. In Refl20] we examine some

i . : ratio of the dust is extremal. Recall that any solution to our
cosmological effects of coupling to a scalar field though apeqry is a solution to the charged dust theory. However
fourth spatial derivative term as discussed in Sec. VIB.  nqer the influence of gravitational and electric forces, the
non-extremal charged dust cannot remain static, since there
_ _ _ is no pressur¢22,23.

For a spherically symmetric black hole, a suitable congru- |f \ =0 then(cf. Sec. IV A) these are just the spherically
ence of geodesics is given by the radial free-fall trajectoriesymmetric static Einstein-Maxwell solutions, i.e. the
that all have the same Kiling energy, i.e., the sameRreissner-Nordstrom solutions, in a spherically symmetric,
asymptotic velocity at spatial infinity. The same constructionstatic gauge with fixed norni3.11). Such a gauge always
can even be applied in the case of a Kerr black hole, at leagists, at least locally. Consider the gauge transfam
for the geodesics that are at rest at spatial infinity. This fol-— o’ 4 ., of an arbitrary vector potentia/,. To maintain
lows from the work of Ref[21], in which this congruence is sphgrica] symmetry and time independeﬁce we must have
employed to construct a coordinate system for the Kerr meta:ﬁHy(r) [using the coordinates in Eq4.1)], so that
ric using the time functionr mentioned above. A=A+ andA,=A/ +y . The normalizatior3.11) then
implies

Black hole solutions

C. Spherically symmetric, static solutions

Here we seek to characterize the general spherically sym- y,=—A =g [g"(A] + B)%>—4b,], (4.6)
metric, static solution. We shall find that, besides the mass,
the metric in these solutions has an additional free parametewhere we have used the fact that for the Reissner-Nordstrom
the “aether charge.” metrics g,, = — 1/g,;. In any region whereg" and A, are
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bounded one can always chog8darge enough so that the tyrbation ish,,?=0, whereh,py=h,,— h7., is the trace-

radical is real, and the(r) can be found by integration.  reversed metric perturbation. In this gauge, the linearized
If a horizon is preseny' diverges and it is not clear from equations of motion are

the preceding discussion whether the unit timelike gauge can

be accessed in a smooth way across the horizon. Indeed it

— N
can, however the maximal extension of the region over Dhap= 2a—1ugo)uéo) 5.4
which such a gauge can be accessed depends on the param-
eterb,. This can also be understood from the equivalence
with a charged dust solution. The radial congruenenust Oup—dp(d?va) = — EUEO) (5.5
satisfy the Lorentz force equatioi3.16), and this congru- !
ence can be nonsingular and time-independent only if the — hapu(@3u(@P 4 2@, — 0, (5.6)
trajectories are monotonic in the coordinate. In general,
however, the trajectories bounce inside the black hole. In a source-free region, the residual gauge freedom is usu-
ally employed to sehg;=hy=0 andh=—h=0 [24]. The
Comparison with observation possibility of doing so depends on the fact that these quan-

To compare with observation it would be necessary tdities satisfy the wave equ.ation in general rel_ativity. In our
determine which of the above solutions to use in the prescase, the componenity; satisfy the wave equation, however
ence of a spherically symmetric static source such as B does not, due to the source term on the right hand side of
planet, star, or black hole. The metric associated with one dfd- (5.4 that is always preserteven outside mattgunless
these objects depends on its “aether charge”’—the charge df=0. This source corresponds to the energy density of the
the Reissner-Nordstrom solution—which is determined by charged dust,” and we wish to allow for the presence of
the “charge” of the “aether dust” that fell in when the this term. Therefore, rather than settingo zero, we choose
object condensed. The choice is determined by the initiafo set to zero the trace of the spatial pdrt, which does
conditions on\, which are presumably cosmological in ori- satisfy the wave equation. The proof that this can be done
gin. We have no theory of these initial conditions at thisfollows the same logic as in the usual case. This gauge con-
stage, but agreement with observations can put a bound Qiition implies h=hg,, hencehgy=hgo— 2h700=hgo, and
the amount of aether charge. If this charge is zero, then wg . | Jantz gauge condition impligghay=0 andd;h; =0.
have the usual Schwarzschild solution of general relativity. o . =
(and, as discussed in Sec. IV B, the aether field is the tangerif?US Noo IS time-independent and the spatial phyf is a

field to a hypersurface orthogonal congruence of timelikglransverse traceless solution to the wave equation. This is not

geodesics which of course agrees with observations. quite the same as the usual transverse traceless gauge in gen-
eral relativity however, sinch;; = hj;—hgedjj, soh;; is not
transverse unlesghg,=0, andh= —2hy#0.

It remains to consider the linearized equations ligg,
In this section we study the linearized equations define®a, and\. The 00-component of the metric equatits14)

V. LINEARIZED THEORY

by expanding about a background solution, afnﬂ the constraint equati@h.6) determinex andv in terms
of hgg:
Jab= 0%+ hap (5.1) A=—a,V?hg, (5.7)
ua=ug0)+va, (5.2 vo=—73Nqo- (5.9
@)1 (1) Using the time independence of, the time and space com-
A=A N (5.3 ponents of the aether equatith5) read
For the background we take the flat meti})= 7,, and a V2= dy( ;) = — A (5.9
i .

constantu{”’ . In this background solution the equations of 2b,
motion imply that the Lagrange multiplier’® must vanish, ,
hence we shall use the letterfor the perturbationn V). In Ovj—di(d'vj)=0. (5.10

this section we use the flat background metric to raise and q . d lonaitudinal
lower indices. Note that we use the perturbation ofdbea- -t US decompose; into transverse and longitudinal parts,

T L i T L
riant vectoruy, to define the perturbation,, . vi=v; tv;, whered'v; =0 andvy=4f for some scalar
We choose Cartesian coordinated,&'), i=1,2,3, in field f. Then Eq.(5.10 implies that the transverse part satis-

which the components of,, are diag(l-1,—1,—1) and fies the wave equatiori,Jv{ =0, so the the aether field has

those oful are (1,0,0,0). The linearized field equations for WO transverse massless modes. o
this theory were first written down in a general gauge in Ref. A for the longitudinal part;-, Eq. (5.9 implies
[13], who also pointed out that the Lorentz gauge can be b.—a
accessed using the linearized diffeomorphism invariance of do(dvh) = 1 A
the action. The Lorentz gauge condition for the metric per- ' 2b,

V2hoo, (5.1

024028-6
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soin particularuiL has at most linear time dependencEhe We now consider specific types of matter couplings, first
same conclusion follows from the divergence of E§10.]  of dimension less than or equal to four, and next of dimen-
ThusvlF=g,a(x)t+ 4,b(x), wherea(x) is determined byro,  Sion greater than four.

andb(x) is arbitrary.

In summary, the perturbation spectrum consists of two
massless transverse traceless modés; ofand two massless
transverse modes of . In addition there is a mode in which
hgo Is an arbitrarily specified time-independent function,
which determinesy, \, and the time derivative of the
longitudinal partviL. The time-independent part of is also
arbitrary. This last freedom corresponds to the linearizatio
of the restricted gauge symmetty.5).

The longitudinal mode looks very strange at first sight. In
the charged dust interpretation, the dust energy density
adjusted to produce an arbitrary gravitational potertiigl,

A. Couplings of dimension=4

A complete classification of Lorentz violating, gauge-
invariant extensions of the SU(X)SU(2)XU(1) minimal
standard model has been given by Colladay and Kostelecky
[25], restricting attention to operators whose mass dimension
is less than or equal to four, so as to preserve power-counting
r}enormalizability. This class of low energy effective actions
includes bothCP T-even andCP T-odd terms, and involves
various coupling tensors with “generation” indices allowing
Bor mixing of fermions from different generations. These
coupling tensors are supposed to be Lorentz violating

) ; . . Facuum expectation values arising in a theory with a funda-
density are all time independent, while the perturbed dusﬁwental underlying Lorentz symmetry

world lines are time dependent. This is a peculiarity of the Here we consider the above class of Lorentz violating

first order_ perturbative solution howe_ver. No exact solutionterms keeping only those couplings that can be constructed
shares this property, as can be easily seen from the aeth\% !

field tion(3.9. If the left hand side is i iant with th the aether fieldi®. With this restriction the antisymmet-
1eld equa |on( j ) e 1elt hand side 1S invariant wi ric tensor couplings are excluded, which rules out Lorentz-
respect to a timelike Killing field, and X is also invariant,

iolating Yuk li d li f field
then so must beP. Evidently the higher order terms in the vioating ukawa coupings and coupings ol gauge Te

strengths to Higgs bilinears, and limits the form of modifi-

equations of motion induce time dependence into the soluz,iinns of the gauge field kinetic terms. Invariance under

tion. A similar phenomenon can be seen upon expanding thﬁme reversalu?— —u® would be required if the physical

f'g‘p'“ _Ifr:nsteln;netjt(;al ?Lft slyst_?m at()jout thehflat sdpacet S%’lgnificanc:e of the aether is only to define a preferred frame
ution with constant dust 4-velocity and vanishing density.onq not 5 preferred local time orientation. If we accordingly

AS i.n our case, the du.St density pe_rturbz_ation can et up any, iher assume this symmetry, all tl@PT-odd terms are
static metric perturbation, and the linearized geodesic equa; !

i . . ) xcluded, which rules out terms with a vector coupled to
tion for the dust yields a time-dependent dust velocity PeT¥armion or Higgs currents, gauge field Chern-Simons cur-
turbation. '

rents, and the (1) potential.
The only possibilities remaining after all these restrictions
VI. MATTER COUPLINGS have been imposed are the modifications of the fermion,

. ) . gauge field, and Higgs kinetic terms:
We have so far considered only the terms in the action

involving the metric and the aether field and up to two de- 2i(cy)3utUPL, yaDply+ H.CA - - -, (6.3
rivatives. Suppose a matter te®p.{ gap.u?, ] is added to
the action Syin[Jan,U3\] of the minimal theory(3.3),

1 b
where ¢ stands for a generic matter field. The variation of —2CgU UG BamBpnt - - -, (6.4
Smat With respect to the metric produces an additional con-

tribution to the stress-energy tensor, and the variation with 1cpuduP(D,@)'Dyd. (6.5)

respect tou® produces an additional term in the current on
the right hand side of Eq3.8). The resulting field equation

takes the form The indiced ,J in Eq. (6.3 are generational indices, and the

coupling constantsc( ), Cg, andcg are all dimensionless.
The ellipses in Eq(6.3) stand for similar terms for the other
VeE. — 1 Ut 1 SSnat 6.0 fermions, while those in Eq6.4) stand for similar terms for
ab= " op, | M T | (6.1 the other gauge fields.
Such additional kinetic terms modify the propagation
speed of the various fields. For example, the propagation

. . b _ . .
The identity VeV®F,,=0 then implies speed for the Higgs field, with respect to the preferred frame,
is (1+c4) Y2 which is less or more than the speed of light
1__ 8Smat if cg IS positive or negative respectively. The coupling con-

UV =—AVau?— 5V : (6.2 stants must therefore be small numbers for fields whose
propagator has been measured accurately. It would be inter-
esting to determine what limits can be placed on these coef-

which shows that now even K is initially zero it need not ficients, particularly for fields such as the Higgs bosons or

remain zero. In the presence of such matter couplings thgluons whose propagators are presumably not yet so well

equivalence to charged dust is lost. measured.

ou?

024028-7



TED JACOBSON AND DAVID MATTINGLY PHYSICAL REVIEW D 64 024028

B. Couplings of dimension>4 Herekg is a constant with the dimensions of inverse length

Once the restriction to terms of dimension 4 or less iswhich sets the scale for deviations from Lorentz invariance,

2 . . . . .
dropped, the possibilities for Lorentz violating terms—like 2"dP~ is the covariant spatial Laplacian, i.e.,
those for Lorentz inv_ariant ones—are. en_dless. Here we D2¢p=—DD,¢=—q*V(0"Vpe), (6.7
would like to consider just two types, which illustrate differ- _ . . o
ent possibilities that arise in the presence of Lorentz symmehereD, is the spatial covariant derivative operaf@4] and
try breaking. Jap IS the spatial metri¢3.6).
The u? dependence of the Lagrangi#6.6) produces a
Modified kinetic terms “matter” term in the aether field equatioi6.1). The energy-

. . L _ . momentum tensor for this Lagrangian is
If the coupling coefficient for a Lorentz violating kinetic

term like Eqs.(6.3)—(6.5) is field dependerand polynomial, Tab=Va<pVb<p—/3¢gab—k52[2D2<pumu(aV‘m|Db)<p
rather than a constant, then the term is a dimensioh s m m 5

operator. In this case it is possible that the coefficient was +2Vin(D%¢q@") V)¢ = V(GanD“¢Dme) 1.
larger in the early universe than it is today, due to the cos- (6.9

logical luti f the fiel hich th li . .
mological evolution of the field) on whic © couping i Ref.[20] we evaluate the expectation value of this energy-

function depends. This provides an alternate approach tmomentum tensor in a thermal state in flat spacetime, which
constructing generally covariant, variable speed of light cos- P !

mologies. Approaches using a vecfsi or a scala[6,7] to allows us to determine the modification of the equation of
10gI€S. APP 9 - state produced by the fourth derivative term. This equation
define the preferred frame have been the subject of so

recent ; M6t state is then be used to study how the cosmological evo-
ecent papers. lution is affected by the high frequency dispersion.

Modified dispersion VIl. DISCUSSION

Next we consider a deviation from Lorentz invariance that
becomes strong only at high wave vectors. In the early uni-

verse, when the fields were highly excited at large wave’

vectors, the gravitational effects of such a deviation Couloaether—mto a generally covariant theory. With the action

have been of paramount importance. The study of a modé}dopted ir_1 this paper the aether vector ger)erically develops
incorporating such effects is left to another pafg]. Here gradient singularities even when the metric is perfectly regu-

we indicate only an example of a term in the Lagrangian thalar' We take this as a Sign that the theory is u_np.hyS|caI asan
produces high frequency dispersion in the propagation of ffective theory(although if the afether sector is |gn(_)red the
matter field, and we display the the form of the resultingt eory can be_ made_ to agree Y\.”th opservatlons .W'th an ap-
contribution to the energy-momentum tensor. propriate choice of initial conditions, i.e., by settikg, to

Consequences of non-Lorentz invariant high frequency?€'0- The primary open questions afy what determines

dispersion for the Hawking effect have previously been stud:[he initial values of the aether field and the Lagrange

ied using(1+1)-dimensional model field theories in which Multiplier field, and (i) are the gradient singularities,
higher spatial derivative terms are added to the adfiona W.h'c.h appear tc_) be generic in the eyoluuon 9f the aether,
review seq 14]), and recently such models have been gener-e“mm‘"Ited (ab{) mpludmg a symmetnz.ed denvapve term
alized to field theory in the background of &+1)- W(a“m)(V u ) in the action a_long with th_e antisymme-
dimensional Robertson-Walker spacetime in order to study'2€d derivative term used in this paper? It is plausible that
the consequences for the spectrum of primordial densit)?dd'ng the symmetr_|zeq derlvatllve term W'I.l.have a S'gmf"
fluctuations in inflationary cosmolog§26]. These models cant effect, since with it the action is sensitive to the exis-
can be extended to an arbitraf§+1)-dimensional setting, t€nce of any large gradients.

preserving general covariance as well as spatial rotation sym-

We have made an initial attempt to study the possible
onsequences of incorporating a preferred frame—the
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