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Static black holes of metric-affine gravity in the presence of matter
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México, D.F., Mexico
~Received 24 January 2001; published 26 June 2001!

We investigate spherically symmetric and static gravitational fields representing black hole configurations in
the framework of metric-affine gauge theories of gravity~MAG! in the presence of different matter fields. It is
shown that in the triplet ansatz sector of MAG, black hole configurations in the presence of non-Abelian matter
fields allow the existence of black hole hair. We analyze several cases of matter fields characterized by the
presence of hair and for all of them we show the validity of the no short hair conjecture.
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I. INTRODUCTION

One of the first attempts to consider a non-Riemann
description of the gravitational field coupled to an elect
magnetic field is due to Weyl@1#. Although this approach is
considered today as unsuccessful, recent developm
through a theory that unifies all the fundamental interacti
are reviving the interest in non-Riemannian structures.
instance, the unification scheme in the framework of str
theory indicates that the classical Riemannian descriptio
not valid on all scales.

Indeed, the theory of the quantum superstring@2# indi-
cates that non-Riemannian features are present on the
of the Planck length. It turns out that low-energy dilaton a
axi-dilaton interactions are tractable in terms of a connec
that leads to a non-Riemannian geometrical structure wi
particular torsion and nonmetricity fields. Therefore, it is
teresting to investigate gravity theories which generalize
pure Riemannian geometrical structure of Einstein’s theo

The metric-affine gauge theory of gravity~MAG! is a
gauge theory of the four-dimensional affine group endow
with a metric. As a gauge theory, it finds its appropriate fo
if expressed with respect to arbitrary frames or cofram
The corresponding gravitational potentials are the me
gab , the coframeqa, and the connection 1-formGa

b, with
values in the Lie algebra of the four-dimensional line
group GL(4,R). Therefore, spacetime is described by
metric-affine geometry with the gravitational field strengt
nonmetricityQabª2Dgab , torsionTa

ªDqa, and curva-
ture Ra

b
ªdGa

b2Ga
g`Gg

b. Thus, the post-Riemannia
components, nonmetricity and torsion, are dynamical v
ables which together with the metric and the connection p
vide an alternative description of gravitational physics.

In this work, we consider MAG as a gravity theory an
investigate static spherically symmetric fields describ
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black hole configurations. In particular, we investigate bla
holes of the triplet ansatz sector of MAG in the presence
matter represented by an SU~2! Yang-Mills, Skyrme, Yang-
Mills-dilaton, Yang-Mills-Higgs, and a non-Abelian Proc
field. We first show that, in general, the presence of ma
with non-Abelian structure does not allow us to apply t
arguments used to prove no-hair theorems. We show tha
all these cases black hole hair exists and it must extend
yond a surface situated at 3/2 the horizon radius; i.e.,
prove the validity of the no short hair conjecture in this se
tor of MAG.

In Sec. II we review the main aspects of MAG and
triplet ansatz sector together with Obukhov’s equivalen
theorem. In addition to the pure geometric components
MAG, we consider an additional matter field. In Sec. III w
analyze the general equations of motion for non-Abel
matter fields, consider a static spherically symmetric c
figuration under the assumption that it represents the gr
tational field of a black hole, and prove the validity of the n
short hair conjecture. Finally, in Sec. IV we discuss our
sults.

II. FIELD EQUATIONS OF MAG AND THE TRIPLET
ANSATZ

Let us consider a frame field and a coframe field deno
by

ea5em
a]m , qb5em

bdxm, ~2.1!

respectively. The GL(4,R)-covariant derivative for a tenso
valuedp-form is

D5d1Ga
br~La

b!`, ~2.2!

wherer(La
b) is the representation of GL(4,R) andLa

b are
the generators; the connection one-form isGa

b5Gma
bdxm.

The nonmetricity one-form, the torsion, and curvature tw
forms read

Qabª2Dgab , Ta
ªDqa, Ra

b
ªdGa

b2Ga
g`Gg

b,
~2.3!
©2001 The American Physical Society26-1
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respectively, and the Bianchi identities are

DQab[2R(ab) , DTa[Rg
a`qg, DRa

b[0.
~2.4!

It is worthwhile to stress the fact thatQab , Ta, andRa
b play

the role of field strengths.
We will consider a metric-affine theory described by t

particular Lagrangian

L5VMAG1Lmat, ~2.5!

whereLmat represents the Lagrangian of the matter field.
In a metric-affine spacetime, the curvature has eleven

reducible pieces@3#, whereas the nonmetricity has four an
the torsion three irreducible pieces. The most general pa
conserving LagrangianVMAG which has been constructed
terms of all irreducible pieces of the post-Riemannian co
ponents has been investigated previously@4# and reads

VMAG5
1

2k F2a0Rab`hab22lh1Ta` * S (
I 51

3

aI
(I )TaD

12S (
I 52

4

cI
(I )QabD `qa` * Tb1Qab

` * S (
I 51

4

bI
(I )QabD 1b5~ (3)Qag `qa!` * ~ (4)Qbg

`qb!G2
1

2r
Rab` * S (

I 51

6

wI
(I )Wab1w7qa

`~egc (5)Wg
b!1(

I 51

5

zI
(I )Zab1z6qg `~eac (2)Zg

b!

1(
I 57

9

zIqa`~egc (I 24)Zg
b!D . ~2.6!

The Minkowsi metric isoab5diag(2111), an asterisk
represents the Hodge dual,hª * 1 is the volume four-form,
the constantl is the cosmological constant,r the strong
gravity coupling constant, the constantsa0 , . . . ,a3 ;
b1 , . . . ,b5 ; c2 ;c3 ; c4 ; w1 , . . . ,w7 ; z1 , . . . ,z9 are dimen-
sionless. We have introduced in the curvature square t
the irreducible pieces of the antisymmetric partWab
ªR[ab] and the symmetric partZabªR(ab) of the curvature
two-form. In Zab , we have the purely post-Riemannian pa
of the curvature. Note the peculiar cross terms withcI and
b5.

We will consider here only the simplest nontrivial case
torsion and nonmetricity with shear. Then, for the nonmet
ity we use the ansatz

Qab5 (3)Qab1 (4)Qab , ~2.7!

where

(3)Qab5
4

9 S q (aeb)cL2
1

4
gabL D ,
02402
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Lªqaebc Q↗ab , ~2.8!

is the proper shear piece and(4)Qab5Qgab represents the
dilation piece, whereQª(1/4)Qg

g is the Weyl one-form,
and Q↗abªQab2Qgab is the traceless piece of the non
metricity. Other pieces of the irreducible decomposition
the nonmetricity@3# are taken to be zero.

Let us choose for the torsion only the covector piece
nonvanishing:

Ta5 (2)Ta5
1

3
qa`T, with TªeacTa. ~2.9!

Thus we are left with a triplet of nontrivial one-formsQ, L,
andT for which we make the following ansatz:

Q5
k0

k1
L5

k0

k2
T, ~2.10!

wherek0 , k1, andk2 are given in terms of the gravitationa
coupling constants~for details, see Ref.@4#!. This is the so-
called triplet ansatz sector of MAG theories@5,6,8#.

Consequently, here, we limit ourselves to the special c
in which the only surviving strong gravity piece is the squa
of the segmental curvature~with vanishing cosmologica
constant!, i.e.,

VMAG5
1

2k
@2a0Rab`hab1a2Ta ` * (2)Ta12~c3

(3)Qab

1c4
(4)Qab!`qa` * Tb1Qab` * ~b3

(3)Qab

1b4
(4)Qab!#2

z4

2r
Rab ` * (4)Zab , ~2.11!

where

2
z4

2r
Ra

a` * Zb
b52

2z4

r
dQ` * dQ ~2.12!

is the kinetic term for the Weyl one-form.
Under the above given assumptions it is now straightf

ward to apply Obukhov’s equivalence theorem@5–7# accord-
ing to which the field equations following from the pur
geometrical part of the Lagrangian~2.5!, i.e., VMAG , are
equivalent to Einstein’s equations with an energ
momentum tensor determined by a Proca field. In the c
investigated here we have an additional term due to the p
ence of the matter field in Eq.~2.5!. Thus, the field equations
read

a0

2
habg `R̃bg5kSa , ~2.13!

d * H1m2 * f50, ~2.14!

wheref represents the Proca one-form,H[df, m is com-
pletely given in terms of the coupling constants, and a ti
6-2
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denotes the Riemannian part of the curvature. The ene
momentum current entering the right hand side of the E
stein equations is given by

Sa5Sa
(f)1Sa

(mat) , ~2.15!

where

Sa
(f)

ª

z4k0
2

2r
$~eacdf!` * df2~eac* df!`df

1m2@~eacf!` * f1~eac* f!` f#% ~2.16!

is the energy-momentum current of the Proca field, a
Sa

(mat) is the energy-momentum current of the additional m
ter field which satisfies also the corresponding Eul
Lagrange equations. Thus, the triplet ansatz sector of a M
theory coupled to a matter field has been reduced to
effective Einstein-Proca system of differential equatio
coupled to a matter field.

III. STATIC BLACK HOLES IN MAG

In a recent work@9# we have investigated the gravitation
field configuration corresponding to static spherically sy
metric black holes in the context of the triplet ansatz sec
of MAG, and we have proven a no-hair theorem for th
specific case. It was shown that for the case of a mas
Proca field (mÞ0) in the presence of a static black hole, t
effective Proca field is trivial and the field equations redu
to the vacuum Einstein equations and, hence, the only s
black hole is described by the Schwarzschild solution. Mo
over, for a massles Proca field (m50), the equations reduc
to the Einstein-Maxwell system and, therefore, the Reiss
Nordström solution is the only static black hole with non
degenerate horizon.

In addition, we have pointed out that for spherically sy
metric static configurations of the triplet ansatz sector
MAG coupled to a Maxwell field, the only black hole solu
tion allowed is the Reissner-Nordstro¨m one, because in thi
case the field equations are equivalent to an effec
Einstein-Proca-Maxwell system. The question arises:
these no-hair theorems valid also when the geometrical c
ponents of the triplet ansatz sector of MAG become~mini-
mally! coupled to a different kind of matter field?

A. Matter fields with non-Abelian structure

In this section, we will show that our no-hair theorems a
not valid in the presence of matter fields characterized b
non-Abelian gauge structure. Most of the proofs of no-h
theorems are based upon the method first developed by
enstein@10# which consists on rearranging the field equatio
into a statement about the behavior of fields outside the e
horizon. We have improved this method in our previo
work @9# to prove the no-hair theorems for the triplet ans
sector of MAG. Here we will show that when an addition
non-Abelian matter field is taken into account, the origin
argument for no-hair can be avoided.
02402
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Consider a set of arbitrary matter fieldsC i in a gravita-
tional background described by the effective Einstein-Pr
system of MAG. The corresponding action becomesS
5*(VMAG1Lmat)d

4x. After multiplication byC id
4x and in-

tegration, the Euler-Lagrange equations for the matter fie
can be written as

(
i
E

V
]mFC i

]Lmat

]~]mC i !
Gd4x5(

i
E

V
FC i

]Lmat

]C i

1]m~C i !
]Lmat

]~]mC i !
Gd4x.

~3.1!

Assuming that this coupled system admits black hole so
tions, then the left-hand side of Eq.~3.1! can be expressed a
a surface integral over the hypersurface]V which bounds
the volumeV exterior to the black hole. As has been show
by Bekenstein@10#, this surface integral vanishes for stat
fields if the ‘‘norm’’ of the integrand

(
i , j

gmnC iC j

]Lmat

]~]mC i !

]Lmat

]~]nC j !
~3.2!

is finite on the horizon. Furthermore, if one can show that
integrand of the right-hand side of Eq.~3.1! is either positive
or negative definite, then the only solutions with finite ene
are those for which the integrand vanishes. This is the m
used method to prove no-hair theorems in different theor

Consider the Lagrangian for an Abelian Yang-Mills ma
ter field Lmat5A2guFu25A2gFmn

aFa
mn , where Fmn

a

52] [mAn]
a and a is the internal index.~The coupling con-

stants are irrelevant for our analysis.! The calculation of the
right-hand side of Eq.~3.1! yields 2*VA2guFu2d4x. If we
consider a static field and, for the sake of simplicity witho
loss of generality, assume that the time componentAt

a50,
then uFu2>0. This shows that the argument for no-hair c
be applied in this case.

Consider now the Lagrangian for a non-Abelian Yan
Mills matter field. Due to the nonlinear terms of the fie
strength (e is the gauge coupling constant!

Fmn
a52] [mAn]

a1eea
bcAm

bAn
c, ~3.3!

the right-hand side of Eq.~3.1! gives

2(
a
E

V
A2g@ uFu21eeabcAm

bAn
cFmn a#. ~3.4!

As in the Abelian case, one can show thatuFu2>0 for static
fields. However, the second term in the integrand of Eq.~3.4!
has not a definite sign, but depends on the particular solu
for the exterior field of the black hole. This opens the pos
bility of avoiding the original no-hair argument. That is, th
non-Abelian structure of the matter field can affect the sta
ment about no-hair in the exterior of a static black hole. It
worth mentioning that a similar argument can be used
show that an additional potential term in the matter Lagra
6-3
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ian of an Abelian Yang-Mills field can affect the no-ha
statement in the same way as does the non-Abelian struc
of the field by itself.

B. Black holes with hair

In all theories in which black hole solutions with ha
have been discovered, only the special case of static sp
cally symmetric spacetimes has been analyzed. For this
son, we will now investigate the triplet ansatz sector of MA
for this specific case. In the standard tensor notation, the
equations for the effective Einstein-Proca sector of MA
~2.13! can be written as follows:

Rmn2
1

2
gmnR5k̃~Smn

(f)1Smn
mat! ~3.5!

with

Smn
(f)5Hm

lHnl2
1

4
gmnHltH

lt1m2fmfn2
m2

2
gmnflfl,

~3.6!

where Rmn is the Ricci tensor,R is the curvature scalar
Hmn[2¹ [mfn] is the field strength of the Abelian Proc
field fm , and k̃[kz4k0

2/4pra0. Moreover, the Proca field
must satisfy the motion equation~2.14! which in tensor no-
tation reads

¹nHnm5m2fm. ~3.7!

Finally, the energy-stress tensor for the additional ma
Smn

mat can be explicitly calculated from the correspondi
matter Lagrangian.

We will consider asymptotically flat static spherical
symmetric black hole spacetimes and write the correspo
ing coframe as

q 0̂5e2dm1/2dt, q 1̂5m21/2dr,

q 2̂5rdu, q 3̂5r sinudw, ~3.8!

whered and m5122M (r )/r are functions ofr only. The
coframe is assumed to be orthonormal with the lo
Minkowski metric oabªdiag(21,1,1,1)5oab. The condi-
tion that the metric corresponding to the coframe~3.8! de-
scribes the gravitational field of a black hole implies th
there exists a regular event horizon at a finite distance,
r H , soM (r H)5r H/2, andd(r H) must be finite. On the othe
hand, asymptotic flatness requires thatm→1 andd→0, at
infinity. We also assume that the Proca field as well as
matter fields to be considered below respect the symme
of the spacetime, i.e., they are static and spherically symm
ric.

Einstein’s equations together with the equations of mot
for the Proca and matter fields~2.13! form a dependent set a
they are related by the Bianchi identities which in this ca
can be written in the form of a conservation law¹mSmn

50. This conservation equation has only one nontrivial co
ponent~the r component! which can be written as
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r !85

1

2mr
$~S t

t2S r
r !1m@2S23~S t

t1S r
r !#%.

~3.9!

Moreover, the field equations~3.5! for the coframe~3.8!
yield

m85k̃rS t
t1

12m

r
, ~3.10!

d85
k̃r

2m
~S t

t2S r
r !, ~3.11!

where the prime stands for differentiation with respect to
radial coordinater, andSmn5Smn

(f)1Smn
mat.

The set of equations~3.9!–~3.11! have been intensively
analyzed in the literature for different theories and numeri
solutions have been found that are characterized by the p
ence of non-Abelian and Higgs hair. These theories
SU~2! Yang-Mills, Skyrme, Yang-Mills-dilaton, Yang-Mills-
Higgs, and non-Abelian Proca. Because of the additivity
the energy-momentum tensor, hair will also exist in a
theory which involves an arbitrary combination of the mat
fields mentioned above. This is true also for any linear co
bination of energy-stress tensors in which at least one
them is characterized by the presence of hair. Accordin
black hole hair will exist when any one of these matter fie
is present in the gravitational field of a static spherica
symmetric black hole described by the triplet ansatz secto
MAG.

C. The no short hair conjecture in MAG

In a recent work@11#, it was conjectured that if a black
hole has hair, then it cannot be shorter than the radiusr hair

53/2AA/4p, whereA is the horizon area. In the case of
static spherically symmetric black hole the hair radiusr hair
53/2r H , where r H is the horizon radius. The hair radiu
defines around a black hole a hypersurface, called
‘‘hairosphere,’’ beyond which the hair can exist. Inside t
hairosphere, hair is not allowed to exist. In this section
will show that this no short hair conjecture is valid for th
special case of MAG under consideration in presence of
matter fields in which black hole hair has been discovere

In all cases we will consider, the effective Einstein-Pro
field equations of MAG~3.10! and ~3.11! and the corre-
sponding ansatz for the matter fields can be written as

m85
1

r
@12m1a~K1U !#, d85bK, ~3.12!

wherea, b, K, andU take particular values in each cas
The strategy for showing the validity of the no short ha
conjecture is the following. From the matter field equatio
and Eq.~3.12! it is possible to obtain a generic function@12#
of the form E}e2d(K2U) which enters the conservatio
equation~3.9!. If we demand the existence of a black ho
solution in each case, we will show thatE must be negative
on the horizon and positive semidefinite at infinity. Ther
6-4
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fore,E must be positive in some region~between the horizon
and infinity! which is determined by the condition 3m.1.
Finally, we show that this region corresponds to values of
radial coordinater outside the hairosphere. This proves t
validity of the conjecture.

We now investigate all the particular cases in which bla
hole hair has been found. For the sake of simplicity, in e
case we will quote fora, b, K, andU in Eq. ~3.12! only
the term corresponding to the additional matter field, dr
ping the term coming from the effective Proca field of MA
which does not allow the presence of hair@9#. Because of the
additivity of the stress-energy tensor discussed above,
simplification does not affect the behavior of the gene
function E.

~i! The SU~2! Yang-Mills @13# field for which the matter
Lagrangian has the form

Lmat5LYM52A 2g

16p f 2 Fmn
aFmn

a , ~3.13!

where Fmn
a5]mAn

a2]nAm
a1ea

bcAm
bAn

c is the field
strength for the gauge fieldAm

a , and f represents the gaug
coupling constant. We use the static spherically symme
ansatz for the potential

A5saAm
adxm5s1wdu1~s3 cotu1s2w!sinudw,

~3.14!

wheres i ( i 51,2,3) are the Pauli matrices andw is a func-
tion of r only. The field equations for this case may be wr
ten as in Eq.~3.12!, with K5mw82, U5(12w2)2/(2r 2),
a522/f 2, andb522/( f 2mr ). From the matter field equa
tions we obtain

E8[@r 2e2d~K2U !#85re2d~3m21!w82. ~3.15!

From the expressions forK andU we see thatE is nega-
tive at the horizon becauseK(r H)50 @sincem(r H)50# and
U(r H).0. On the other hand, the asymptotic flatness con
tion implies thatE→0 asr→`. Accordingly,E must be an
increasing function ofr in some intermediate region. It fol
lows then that the right-hand side of Eq.~3.15! must become
positive at some point, i.e., we must have 3m.1.

~ii ! The Skyrme field with the matter Lagrangian@14#

Lmat5LSk5A2g
f 2

4
Tr~¹mW¹mW21!

1A2g

32e2 Tr@~¹mW!W21,~¹n!W21#2,

~3.16!

where¹m is the covariant derivative,W is the SU~2! chiral
field, andf 2 ande2 are the coupling constants. For the SU~2!
chiral field we use the hedgehog ansatzW(r )
5exp@s•rF(r )# wheres are the Pauli matrices andr is a
unit radial vector.

To write down the field equations we follow@14# and use
the variablesr̃ 5e f r andm̃( r̃ )5e f m(r ) so that the function
02402
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m defined above remains invariant. Dropping the tilde,
resulting equations are equivalent to Eq.~3.12! with
K5m@r 2/21sin2F(r)#F82, U5sin2F@11sin2F/(2r2)#, a
528p f 2, and b528p f 2/(mr ). From the matter field
equations we find

E8[@e2d~K2U !#8

52e2dF rmF821
12m

rm
K22r S 11

U

r 2 2A112
U

r 2D G .
~3.17!

From the explicit expressions forK and U it follows that
E(r H),0, and since the asymptotic behavior of the fie
equations impliesF(r )'1/r 2 at infinity, we have thatE→
10 at infinity. Therefore, the right-hand side of Eq.~3.17!
must be positive in some region. Moreover, there must b
point whereE50, i.e.,K5U, andE8.0. At this point, the
right-hand side of Eq.~3.17! becomes

2rmF8222r SA112
K

r 221D 1
K

rm
~3m21!.0.

~3.18!

Since the first and second terms of the last equation are n
tive, we conclude that 3m.1 at this point. This is the sam
condition as in case~i!.

~iii ! In the case of SU~2! Yang-Mills-dilaton field with an
arbitrary ~positive semidefinite! potential termV(f) ~which
is expected to arise in superstrings inspired models@15#!, the
corresponding matter Lagrangian is given by@16#

Lmat5LYMD

5A2g

4p S 1

2
¹mf¹mf2

1

4 f 2 e2gfFmn
aFmn

a2V~f! D ,

~3.19!

wheref is the gauge coupling constant,g is the dimension-
less dilatonic coupling constant, andFmn

a is the SU~2! Yang-
Mills field strength. The ansatz for the gauge field config
ration is the same as that given in case~i!, andf5f(r ).

The corresponding field equations can be written in
generic form ~3.12! with K5K11K2, where K1
5m exp(2gf)w82/f2, K25mr 2f82/2 and U5r 2V(f)
1exp(2gf)(12w2)2/(2f2r2), a522, andb522/(mr ). Fol-
lowing the same procedure, from the matter field equati
we find

E8[@r 2e2d~K2U !#8

5re2dF22K224r 2V~f!1~3m21!
K

mG . ~3.20!

The behavior of the generic functionE is as in the previous
cases, and since the first and second terms of the right-h
side of Eq.~3.20! are negative, we again find the conditio
3m.1 in order to obtain asymptotically flat solutions.
6-5
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~iv! For a SU~2! Yang-Mills-Higgs field the matter La-
grangian is given by@17#

Lmat5LYMH

52A2g

4p F 1

4 f 2 Fmn
aFmn

a1~DmF!†~DmF!1V~F!G ,
~3.21!

where Dm is the usual gauge-covariant derivative,F is a
complex doublet Higgs field, andFmn

a is the SU~2! Yang-
Mills field given above. The arbitrary potentialV(F) must
be positive semidefinite. In this case, the ansatz for
Yang-Mills field is the same as before, and for the Hig
field we have

F5
1

A2
S 0

w~r !
D . ~3.22!

The field equations are equivalent to Eq.~3.12! with K
5K11K2, where K15mr 2w82/2, and K25mw82/ f 2, U
5r 2V(w)1(12w2)2/(2 f 2r 2)1(11w)2w2/4, a522, and
b522/(mr ). Finally, the matter field equations lead to

E8[@r 2e2d~K2U !#8

5re2dF22K224r 2V~w!2
1

2
~11w!2w21~3m21!

K

mG .
~3.23!

As in the previous cases, the required behavior of the fu
tion E and the fact that the first three terms of the right-ha
side of Eq.~3.21! are negative lead to the condition 3m.1
for the region of interest.

~v! In the case of a non-Abelian Proca field the mat
Lagrangian is@17#

Lmat5LNAP52A 2g

16p f 2Fmn
aFmn

a2
A2gm2

32p
Am

a Aa
m ,

~3.24!

wherem is the mass parameter and the ansatz for the po
tial is as in the Yang-Mills case~3.14!. Again, the field equa-
tions are given by Eq.~3.12! with K5mw82, U5(1
2w2)2/(2r 2)1m2(11w)2, a522/f 2, andb522/( f 2mr ).
On the other hand, from the matter field equations we ob

E8[@r 2e2d~K2U !#8

5re2dF ~3m21!w822
f 2m2

2
~11w!2G . ~3.25!

As in the previous cases, the required behavior of the gen
function E leads to the condition 3m.1.

In all cases presented here, there is a change in the be
ior of the generic functionE: It always starts at the horizo
as a negative and decreasing function and needs to incr
towards its asymptotic value. We have shown that t
change always occurs beyond the point characterized
3m.1. Since m5122M (r )/r , the change occurs at th
02402
e
s

c-
d

r

n-

in

ric

av-

ase
s
by

point r 0.3M (r 0). On the other hand,M (r ) is an increasing
function because from the general field equation~3.10! we

have thatM 852(k̃/2)r 2S t
t5(k̃/2)r 2rE.0, where rE is

the energy density of the matter field which we suppose to
positive semidefinite in accordance with the weak ene
condition. Being an increasing function,M (r ) reaches its
minimum value on the horizon, wherem(r H)50 and
M (r H)5r H/2. Consequently, the turning pointr 0 satisfies
the inequalityr 0.3M (r 0)>3M (r H)53r H/2.

This result shows that the asymptotic behavior of the m
ter fields present in the gravitational field of a static sphe
cally symmetric black hole can start only after the value
the radial coordinater is sufficiently large, and the lowes
value determines the radiusr hair of the hairosphere. This
proves the validity of the no short hair conjecture for t
triplet ansatz sector of MAG in the presence of matter fie
in which black hole hair has been found.

IV. DISCUSSION

We have investigated the gravitational field of sta
spherically symmetric black holes described by the effect
Einstein-Proca field of the triplet ansatz sector of MAG
the presence of matter. It was shown that when matte
represented by an Abelian Yang-Mills field, the no-hair the
rems proven previously can be applied. On the other han
the matter possesses a non-Abelian structure or the co
sponding Lagrangian contains an additional potential te
the arguments employed to prove the validity of no-h
theorems can be avoided due to the presence of an addit
term in the general matter field equations.

In particular, it was shown that black hole hair exists
the system composed by the effective Einstein-Proca fiel
MAG and a SU~2! Yang-Mills, Skyrme, Yang-Mills-dilaton,
Yang-Mills-Higgs, or non-Abelian Proca field. Moreover, w
have proved that in all these cases the no short hair con
ture is valid, that is, hair exists only outside a sphere
radiusr hair53r H/2, wherer H is the horizon radius.

These results could be used to further investigate
physical significance of MAG. The no hair theorems prov
in our previous work@9# show that the triplet ansatz sector
MAG in the presence of a spherically symmetric black ho
is nothing more than Einstein’s gravity. No new physics c
be found in this sector because the no-hair theorems pro
the existence of more general solutions than the ones kn
in Einstein’s gravity. However, the triplet ansatz sector
probably one the most simplest special cases of MAG
could be that by slightly relaxing the triplet ansatz~2.10!,
one would obtain a more general effective system wh
could be still equivalent to Einstein’s gravity coupled to
matter field. A first natural candidate could be the effect
Einstein–non-Abelian–Proca field. In this case, as we h
seen in this work, there exist solutions with black hole ha
The hair could then be directly related to some specific p
of the post-Riemannian structures of MAG. This resea
program, if realizable, could throw light on the physical si
nificance of torsion and nonmetricity.
6-6
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