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Static black holes of metric-affine gravity in the presence of matter
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We investigate spherically symmetric and static gravitational fields representing black hole configurations in
the framework of metric-affine gauge theories of gra’MAG) in the presence of different matter fields. It is
shown that in the triplet ansatz sector of MAG, black hole configurations in the presence of non-Abelian matter
fields allow the existence of black hole hair. We analyze several cases of matter fields characterized by the
presence of hair and for all of them we show the validity of the no short hair conjecture.
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[. INTRODUCTION black hole configurations. In particular, we investigate black
holes of the triplet ansatz sector of MAG in the presence of
One of the first attempts to consider a non-Riemanniarnatter represented by an &) Yang-Mills, Skyrme, Yang-
description of the gravitational field coupled to an electro-Mills-dilaton, Yang-Mills-Higgs, and a non-Abelian Proca
magnetic field is due to Weyll]. Although this approach is field. We first show that, in general, the presence of matter
considered today as unsuccessful, recent developmenidth non-Abelian structure does not allow us to apply the
through a theory that unifies all the fundamental interaction@'guments used to prove no-hair theorems. We show that in
are reviving the interest in non-Riemannian structures. Fofll these cases black hole hair exists and it must extend be-
instance, the unification scheme in the framework of string/Ond @ surface situated at 3/2 the horizon radius; i.e., we
theory indicates that the classical Riemannian description i8"0V€ the validity of the no short hair conjecture in this sec-
; tor of MAG.
not valid on all scales. In Sec. Il we review the main aspects of MAG and its
Indeed, the theory of the quantum superstrg indi- : ) 1 asp , \
cates that non-Riemannian features are present on the sct & let anslatz ;g.c.tor tog?‘ther with ObUKhOVS equwalencef
of the Planck length. It turns out that low-energy dilaton and eorem. In addition to the pure geometric components o

- ) . ) . "MAG, we consider an additional matter field. In Sec. Ill we
axi-dilaton interactions are tractable in terms ofaconnectlorénalyze the general equations of motion for non-Abelian

that leads to a non-Riemannian geometrical structure with gyatter fields, consider a static spherically symmetric con-

particular torsion and nonmetricity fields. Therefore, it is in- figuration under the assumption that it represents the gravi-

teresting to investigate gravity theories which generalize theational field of a black hole, and prove the validity of the no

pure Riemannian geometrical structure of Einstein’s theoryshort hair conjecture. Finally, in Sec. IV we discuss our re-
The metric-affine gauge theory of gravitMAG) is a  gylts.

gauge theory of the four-dimensional affine group endowed

with a metric. As a gauge theory, it finds its appropriate form Il. FIELD EQUATIONS OF MAG AND THE TRIPLET

if expressed with respect to arbitrary frames or coframes. ANSATZ
The corresponding gravitational potentials are the metric
J.ps. the coframed®, and the connection 1-formi @, with Let us consider a frame field and a coframe field denoted

values in the Lie algebra of the four-dimensional linearby
group GL(4R). Therefore, spacetime is described by a
metric-affine geometry with the gravitational field strengths e,=e",d,, VF=efdx*, 2.9
nonmetricityQ ,z:=—Dg,g, torsionT*:=D 94, and curva- _ _ o

ture RaB::draB_Fay/\Fyﬂ_ Thus, the post-Riemannian respectively. The GL(&R)-covariant derivative for a tensor
components, nonmetricity and torsion, are dynamical varivaluedp-form is
ables which together with the metric and the connection pro-

vide an alternative description of gravitational physics.

In this work, we consider MAG as a gravity theory and " ) N
investigate static spherically symmetric fields describingVnerep(L%s) is the representation of GL(®) andL“; are

the generators; the connection one-fornTig =T, ,Adx*.
The nonmetricity one-form, the torsion, and curvature two-

D=d+T#p(L?p)A, 2.2
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respectively, and the Bianchi identities are with

DQ.s=2R(z, DT*=R,“\97, DR,=0. A=99€P| F p, 2.8
(2.9

) ) N 5 is the proper shear piece arﬁﬂQaﬁngaﬁ represents the
Itis Worthwhlle to stress the fact th@,;, T% andR,” play  gjlation piece, whereQ:=(1/4)Q,” is the Weyl one-form,
the role of field strengths. , and @ ,5:=Q,5—QJ,z is the traceless piece of the non-

We will consider a metric-affine theory described by the meyricity. Other pieces of the irreducible decomposition of
particular Lagrangian the nonmetricity[3] are taken to be zero.

Let us choose for the torsion only the covector piece as
£=Vuae T Lma 29 nonvanishing: g P

where L, represents the Lagrangian of the matter field. 1
In a metric-affine spacetime, the curvature has eleven ir- Te= ATe=_9AT, with T:=e,|T" (2.9
reducible piece$3], whereas the nonmetricity has four and 3
the torsion three irreducible pieces. The most general parit){_ ) i .
conserving Lagrangiaiy,g which has been constructed in | US We are left with a triplet of nontrivial one-forng A,
terms of all irreducible pieces of the post-Riemannian com@nd T for which we make the following ansatz:
ponents has been investigated previojdlyand reads K K
Q=2A=_°T, (2.10
Ky k

2

3

—agR¥/\ 5= 2N+ TON* ( > aT,

\Vi -
MAG™ 5 “

wherekq, ki, andk, are given in terms of the gravitational

4 coupling constant¢for details, see Ref4]). This is the so-

> CI(I)QQB)/\ﬁa/\*TBjL Qup called triplet ansatz sector of MAG theorig6,8]. _

i=2 Consequently, here, we limit ourselves to the special case
in which the only surviving strong gravity piece is the square

+2

4
* N aB ) ay A * ((B)ABY of the segmental curvaturévith vanishing cosmological
A (Z‘l bi7Q*” | +05(Qua, AIIN*(HQ constany, i.e.,
1 : [ 1 apB a A *(2) 3)
/\19’3) - ZRQB/\* IZl WI( )Waﬁ+w7ﬁa VMAG:Z[_aoR /\7701,8+ a2T /\ Ta+ 2(C3 Qaﬁ
5 +¢,MQ ) NN *TP+Q, 5\ * (b3PQ*#
A& JOW )+ > 27,5+ 259, /\(e,]PZ7 ) ,
=1 4
1b,BoaBy — L RaB A *(4) )
9 b4 Q )] 2p R Zaﬂ! (2 11)
(I=%zv
+|; 2)9,/\(e, !9z B)). 26 Lhere
The Minkowsi metric iso,z=diag(— + + +), an asterisk Zy 2z,
af _ a * p— _ _ *
represents the Hodge duaj;=*1 is the volume four-form, 2p RN\ Zg p dQA™dQ (212
the constant is the cosmological constang, the strong o
gravity coupling constant, the constants,,...,a;; IS the kinetic term for the Weyl one-form.
Dy, ...05;CpiC3; Cqi Wy, ... W7, 2q,...,Zare dimen- Under the above given assumptions it is now straightfor-

sionless. We have introduced in the curvature square teriyard to apply Obukhov's equivalence theorgsr-7] accord-

the irreducible pieces of the antisymmetric paw,, ing to which the field equations following from the pure

=Ry, and the symmetric pa#t, z:=R,z of the curvature ~geometrical part of the Lagrangia2.5), i.e., Vyag, are

two-form. InZ,, 5, we have the purely post-Riemannian partequivalent to Einstein's equations with an energy-

of the curvature. Note the peculiar cross terms waittand ~ momentum tensor determined by a Proca field. In the case

bs. investigated here we have an additional term due to the pres-
We will consider here only the simplest nontrivial case ofénce of the matter field in E¢2.5). Thus, the field equations

torsion and nonmetricity with shear. Then, for the nonmetricfead

ity we use the ansatz

dp ~
= ARPY= 2.1
Qaﬁ:(s)Qaﬁ+(4)Qan 2.7 2 Napy K2, (2.13
where d*H+m?* ¢=0, (2.14
(3) 4 _ 1 where ¢ represents the Proca one-foreh=d¢, mis com-
Qaﬁ__ ﬁ(aeﬂ)JA _ga,BA s . . . .
9 4 pletely given in terms of the coupling constants, and a tilde
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denotes the Riemannian part of the curvature. The energy- Consider a set of arbitrary matter fields in a gravita-
momentum current entering the right hand side of the Eintional background described by the effective Einstein-Proca

stein equations is given by system of MAG. The corresponding action beconfes
= [(Vyac + Lma) d*x. After multiplication by¥;d*x and in-
3, =3(# 5 may (2.15 tegration, the Euler-Lagrange equations for the matter fields
can be written as
where
aﬁmat { a‘cmat
9, Wy | g = J g,
2 2| JQ H a0, ) 2| ol 'V

z4k
3922006, 1dp) A\ *dp— (e, dp)/\d
(P:=3 (,Jd)\ A~ (e, dd) \do v

——|d*x.
3(a, ;)

+m(e.)p)\* pt (el H)Np]} (216
: (3.9
is the energy-momentum current of the Proca field, and
EE{”E“) is the energy-momentum current of the additional mat-Assuming that this coupled system admits black hole solu-
ter field which satisfies also the corresponding Eulerdions, then the left-hand side of E@.1) can be expressed as
Lagrange equations. Thus, the triplet ansatz sector of a MA@ surface integral over the hypersurfaz® which bounds
theory coupled to a matter field has been reduced to ththe volume() exterior to the black hole. As has been shown
effective Einstein-Proca system of differential equationsby Bekensteir{10], this surface integral vanishes for static
coupled to a matter field. fields if the “norm” of the integrand

lll. STATIC BLACK HOLES IN MAG > 9.,V Olmar 9L (3.2
i

In a recent work9] we have investigated the gravitational
field configuration corresponding to static spherically sym-is finite on the horizon. Furthermore, if one can show that the
metric black holes in the context of the triplet ansatz sectointegrand of the right-hand side of E@.1) is either positive
of MAG, and we have proven a no-hair theorem for thisor negative definite, then the only solutions with finite enegy
specific case. It was shown that for the case of a massivgre those for which the integrand vanishes. This is the most
Proca field (n#0) in the presence of a static black hole, theysed method to prove no-hair theorems in different theories.
effective Proca field is trivial and the field equations reduce Consider the Lagrangian for an Abelian Yang-Mills mat-
to the vacuum Einstein equations and, hence, the only statig; field £~ —g|F|?= J=gF,,°F,*", where F, 2
black hole is described by the Schwarzschild solution. More'=2a[MA";‘] anda is the internal index(The coupling con-

over, for a massles Proca fielth¢0), the equations reduce stants are irrelevant for our analys$ihe calculation of the

to the Einstein-Maxwell system and, therefore, the Reissner:- .- . . o E204
Nordstran solution is the only static black hole with non- right-hand side of Eq(3.1) yields 2/ V- g|F|*d’x. If we

degenerate horizon consider a static field and, for the sake of simplicity without
In addition, we have pointed out that for spherically sym-IOSS of generality, assume that the time comporfght 0,

metric static configurations of the triplet ansatz sector 011hen|F|'2>0'. Th.'s shows that the argument for no-hair can
MAG coupled to a Maxwell field, the only black hole solu- be appll_ed in this case. . .

tion allowed is the Reissner-Nordstnoone, because in this _Consider now the Lagrangian for a non-Abelian Yang-
case the field equations are equivalent to an effectivémns mattelr field. Due to the_ nonlinear terms of the field
Einstein-Proca-Maxwell system. The question arises: AreStrength € is the gauge coupling constant

these no-hair theorems valid also when the geometrical com-
ponents of the triplet ansatz sector of MAG becofmeni-
mally) coupled to a different kind of matter field?

Fl2=201,A,0ee )AL A, S, (3.3
the right-hand side of Eq3.1) gives

A. Matter fields with non-Abelian structure

23 fQJ—_g[lF|2+eeabcAMbAVCFW]. (3.4

In this section, we will show that our no-hair theorems are
not valid in the presence of matter fields characterized by a
non-Abelian gauge structure. Most of the proofs of no-hairAs in the Abelian case, one can show tHaf?=0 for static
theorems are based upon the method first developed by Befelds. However, the second term in the integrand of (Bab)
enstein 10] which consists on rearranging the field equationshas not a definite sign, but depends on the particular solution
into a statement about the behavior of fields outside the eveiior the exterior field of the black hole. This opens the possi-
horizon. We have improved this method in our previousbility of avoiding the original no-hair argument. That is, the
work [9] to prove the no-hair theorems for the triplet ansatznon-Abelian structure of the matter field can affect the state-
sector of MAG. Here we will show that when an additional ment about no-hair in the exterior of a static black hole. It is
non-Abelian matter field is taken into account, the originalworth mentioning that a similar argument can be used to
argument for no-hair can be avoided. show that an additional potential term in the matter Lagrang-
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ian of an Abelian Yang-Mills field can affect the no-hair 1 . .
statement in the same way as does the non-Abelian structure €°(e °%)’= oA G20+ u[22-3(X+ 2]}
of the field by itself. # 3.9

B. Black holes with hair Moreover, the field equation&3.5) for the coframe(3.8)

In all theories in which black hole solutions with hair yield

have been discovered, only the special case of static spheri- 1—
. . . ~ )2
cally symmetric spacetimes has been analyzed. For this rea- w' =rr3t+ —— (3.10
son, we will now investigate the triplet ansatz sector of MAG r
for this specific case. In the standard tensor notation, the field

equations for the effective Einstein-Proca sector of MAG , KM ;
(2.13 can be written as follows: o'= ﬂ(z = 2"0), 311
1 ~ here the prime stands for differentiation with respect to the
R, — =0, R=k(3(# 43 ma 35 Wne b P
uwr™ 29wy k(2420 @9 radial coordinate, ands =3 (% +3 7
. The set of equation$3.9—(3.11) have been intensively

with analyzed in the literature for different theories and numerical

1 m2 solutions have been found that are characterized by the pres-
E,EL({L):HM}\HM_ZngMHM"_mZQSM‘ﬁv_Tgw‘ﬁx‘ﬁ)\’ ence of non-Abelian and Higgs hair. These theories are

SU(2) Yang-Mills, Skyrme, Yang-Mills-dilaton, Yang-Mills-
(3.60  Higgs, and non-Abelian Proca. Because of the additivity of
where R, is the Ricci tensorR is the curvature scalar, tEe energ_y-mpmentum tens.or, hair Wi!l al_so exist in any
H =2V, . is the field strength of the Abelian Proca theory wh|qh involves an arpnrary combination of '.the matter
e %] 5 ) fields mentioned above. This is true also for any linear com-
field ¢, and k= xz4ko/4mpay. Moreover, the Proca field pination of energy-stress tensors in which at least one of
must satisfy the motion equatid@.14 which in tensor no-  them is characterized by the presence of hair. Accordingly,
tation reads black hole hair will exist when any one of these matter fields
YV HH=m2gh. 3.7 is present in the gravitatiqnal field of a static spherically
symmetric black hole described by the triplet ansatz sector of

Finally, the energy-stress tensor for the additional matteMAG'

Efji‘t can be explicitly calculated from the corresponding ) _ _
matter Lagrangian. C. The no short hair conjecture in MAG

We will consider asymptotically flat static spherically  In a recent work11], it was conjectured that if a black
symmetric black hole spacetimes and write the corresponchole has hair, then it cannot be shorter than the radiys

ing coframe as =3/2/Al4m, whereA is the horizon area. In the case of a
. . static spherically symmetric black hole the hair radiyg,
9o=eutdt, 9'=p Vdr, =3/2r,, wherery is the horizon radius. The hair radius
. . defines around a black hole a hypersurface, called the
9?=rd6, 93=rsinbde, (3.9 “hairosphere,” beyond which the hair can exist. Inside the

hairosphere, hair is not allowed to exist. In this section we

where 6 and u=1—2M(r)/r are functions ofr only. The  will show that this no short hair conjecture is valid for the
coframe is assumed to be orthonormal with the localpecial case of MAG under consideration in presence of the
Minkowski metric 0,z:=diag(~1,1,1,1)=0%?. The condi- matter fields in which black hole hair has been discovered.
tion that the metric corresponding to the cofraf3es) de- In all cases we will consider, the effective Einstein-Proca
scribes the gravitational field of a black hole implies thatfield equations of MAG(3.10 and (3.11) and the corre-
there exists a regular event horizon at a finite distance, sagponding ansatz for the matter fields can be written as
Ny, SOM(ry)=ru/2, ands(ry) must be finite. On the other
hand, asymptotic flatness requires that>1 and 6—0, at
infinity. We also assume that the Proca field as well as the
matter fields to be considered below respect the symmetries
of the spacetime, i.e., they are static and spherically symmewherea, B, K, andU take particular values in each case.
ric. The strategy for showing the validity of the no short hair

Einstein’s equations together with the equations of motiorconjecture is the following. From the matter field equations
for the Proca and matter field®.13 form a dependent set as and Eq.(3.12) it is possible to obtain a generic functiph2]
they are related by the Bianchi identities which in this caseof the form Exe™°(K—U) which enters the conservation
can be written in the form of a conservation law,>*”  equation(3.9). If we demand the existence of a black hole
=0. This conservation equation has only one nontrivial com-solution in each case, we will show thatmust be negative
ponent(the r componentwhich can be written as on the horizon and positive semidefinite at infinity. There-

w' = %[1—,u+a(K+U)], §'=pK, (3.12
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fore, E must be positive in some regidhetween the horizon u defined above remains invariant. Dropping the tilde, the
and infinity) which is determined by the conditionu3>1.  resulting equations are equivalent to E¢B.12 with
Finally, we show that this region corresponds to values of th& = u[r?/2+ sir’F(r)JF'?, U=sirPF[1+sirF/(2r%)], «a
radial coordinate outside the hairosphere. This proves the=—8#f2, and B=—8mf?/(ur). From the matter field

validity of the conjecture. equations we find
We now investigate all the particular cases in which black
hole hair has been found. For the sake of simplicity, in eachE'=[e °(K—U)]’
case we will quote forr, B, K, andU in Eq. (3.12 only 1 U ¥
the term corresponding to the additional matter field, drop- _ _ -5 2, 2T 4
ping the term coming from the effective Proca field of MAG e ruk ru K=ar| 1+ r2 1+2r_Z '
which does not allow the presence of H&t. Because of the (3.17)
additivity of the stress-energy tensor discussed above, this ’
simplification does not affect the behavior of the genericFrom the explicit expressions fd¢ and U it follows that
function E. . . . !
; . ) . E(ry)<0, and since the asymptotic behavior of the field
(i) Thg SU?2) Yang-Mills [13] field for which the matter ec(]ug)tions implies (r)~ 1/ a){[ ir?finity, we have thaE—
Lagrangian has the form +0 at infinity. Therefore, the right-hand side of E§.17)

s must be positive in some region. Moreover, there must be a
[ = Lo =—\|—— F S (3.13  point whereE=0, i.e.,,K=U, andE’'>0. At this point, the
mat M 16mf2 "~ 2 right-hand side of Eq(3.17) becomes
where F,2=3d,A2=3d,A2+eWA P A° is the field K K
strength for the gauge fieIAfL, andf represents the gauge —r,uF’2—2r< \/1+ 2r—2—1 + m(S,u—l)>0.

coupling constant. We use the static spherically symmetric
ansatz for the potential

(3.18

- Since the first and second terms of the last equation are nega-
= adxr= + + . < o o
A=oaA, dx=ogwdf+ (o5 cotd UZW)Smadqzé 14  tive, we conclude that@>1 at this point. This is the same
' condition as in cas€).
whereo; (i=1,2,3) are the Pauli matrices amdis a func- (iii) In the case of S2) Yang-Mills-dilaton field with an
tion of r only. The field equations for this case may be writ- arbitrary (positive semidefinitepotential termV(¢) (which
ten as in Eq.3.12, with K=puw’?, U=(1-w?)?/(2r?), is expected to arise in superstrings inspired mofs$), the
a=—2/f2, and 8= —2/(f2ur). From the matter field equa- Ccorresponding matter Lagrangian is given[tg]
tions we obtain

Lina= Lymp
E'=[r2e %(K—U)]'=re %(Bu—1)w'2. (3.19 L
_ 79+ T 2yér apuv _
From the expressions fat andU we see thakE is nega- B 477(2VM¢VM¢ 4f2e TR R V(e)
tive at the horizon becaus€(ry) =0 [sinceu(ry)=0] and 31
U(ry)>0. On the other hand, the asymptotic flathess condi- (319

tion implies thate—0 asr—o. Accordingly,E must be an
increasing function of in some intermediate region. It fol-
lows then that the right-hand side of E§.15 must become
positive at some point, i.e., we must have31.

(ii) The Skyrme field with the matter Lagrangiftv]

wheref is the gauge coupling constant,is the dimension-
less dilatonic coupling constant, aﬁ@v is the SU2) Yang-
Mills field strength. The ansatz for the gauge field configu-
ration is the same as that given in cdBe and ¢= ¢(r).

The corresponding field equations can be written in the

£2 generic form (3.12 with K=K;+K,, where K;
Lia= Lsk=V—9 ZTr(VMWV“W’l) = exp(ypW ¥,  Ko=ur24'2/2 and U=r2V(¢)
+exp(2yd)(1-W?)?(2f%r?), = —2, andB=—2/(ur). Fol-
—g lowing the same procedure, from the matter field equations
*t N 322 T (V , WW (V)W ]2, we find
(3.16 E'=[r%e %(K-U)]’

whereV , is the covariant derivative)V is the SU2) chiral
field, andf? ande? are the coupling constants. For the(@U
chiral field we wuse the hedgehog ansat?/(r)
=exflo-rF(r)] whereo are the Pauli matrices andis @ The behavior of the generic functidhis as in the previous
unit radial vector. cases, and since the first and second terms of the right-hand

To write down the field equations we follol4] and use  side of Eq.(3.20 are negative, we again find the condition
the variables =efr andm(r)=efm(r) so that the function 3x>1 in order to obtain asymptotically flat solutions.

K
=re 9 —2K2—4r2V(d))+(3/.L—1); . (3.20

024026-5
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(iv) For a SUW2) Yang-Mills-Higgs field the matter La- pointry>3M(ry). On the other handyi(r) is an increasing
grangian is given by17] function because from the general field equati8ril0 we
have thatM’=—(k/2)r?s,'=(x/2)r’pe>0, where pg is
the energy density of the matter field which we suppose to be

[—g| 1 Ay i positive semidefinite in accordance with the weak energy
~ "N ﬁ':w Fia+(D @) (DHD) +V(P)|, condition. Being an increasing functioM (r) reaches its
minimum value on the horizon, wherg(ry)=0 and
(3.2 M(ry)=rq/2. Consequently, the turning poimt satisfies
where D, is the usual gauge-covariant derivativk, is a the inequalityro>3M(ro)=3M(ry)=3ry/2.
complex doublet Higgs field, anB~”, is the SU2) Yang- This result shows that the asymptotic behavior of the mat-
Mills field given above. The arbitrary potentigl(®) must  ter fields present in the gravitational field of a static spheri-
be positive semidefinite. In this case, the ansatz for th&ally symmetric black hole can start only after the value of
Yang-Mills field is the same as before, and for the Higgsthe radial coordinate is sufficiently large, and the lowest
field we have value determines the radius,, of the hairosphere. This
proves the validity of the no short hair conjecture for the
1 ( 0

Linar= Lymu

triplet ansatz sector of MAG in the presence of matter fields
: (3.22 in which black hole hair has been found.

V2 e(r)
The field equations are equivalent to E@.12 with K
=K;+K,, where K;=pur?¢'?/2, and K,=puw'?/f2, U IV. DISCUSSION
=r2V(e)+(1-w?)?/(2f%r?) +(1+w)?%¢%/4, a=—2, and , ) e i )
B=—2/(ur). Finally, the matter field equations lead to We_ have mvestlgated the grawtatpnal field of stat'lc
spherically symmetric black holes described by the effective
E'=[r2e %(K—-U)]’ Einstein-Proca field of the triplet ansatz sector of MAG in
the presence of matter. It was shown that when matter is
=re % —2K,—4r®V(¢)— E(1+W)2(p2+ (3u—1) K ) represented by an Abelian Yang-MiI_Is field, the no-hair theo-_
2 2 rems proven previously can be applied. On the other hand, if

(3.23  the matter possesses a non-Abelian structure or the corre-
sponding Lagrangian contains an additional potential term,
As in the previous cases, the required behavior of the fUﬂCthe arguments emp|oyed to prove the Va”dity of no-hair
tion E and the fact that the first three terms of the right-hanttheorems can be avoided due to the presence of an additional
side of Eq.(3.21) are negative lead to the conditiou3-1  term in the general matter field equations.

for the region of interest. _ _ In particular, it was shown that black hole hair exists in
(v) In the case of a non-Abelian Proca field the matterihe system composed by the effective Einstein-Proca field of
Lagrangian i§17] MAG and a SUW2) Yang-Mills, Skyrme, Yang-Mills-dilaton,
— =g Yang-Mills-Higgs, or non-Abelian Proca field. Moreover, we
_ _ 9 aruv _ 9m” apu have proved that in all these cases the no short hair conjec-
Emat 'CNAP ZFMV F a A,uAa’ . . . . . .
167 f 32 ture is valid, that is, hair exists only outside a sphere of

(324 radiusr = 3r/2, wherer,, is the horizon radius.

wherem is the mass parameter and the ansatz for the poten-hng;ﬁsire:#igznizug I\?'(Z\Gus_?ﬁetr?ofﬁgif;et[]ég;/:;igartgvé?]e
tial is as in the Yang-Mills cas€3.14). Again, the field equa- phy 9 . b

. . 4 S, - in our previous worK9] show that the triplet ansatz sector of
tlovr\];)z?(rgrZg)lliirzlz(tl)ivs)%l(?;?— ;\//]itzh alﬁd_giw_ 2'/(192,;r()1 MAG in the presence of a spherically symmetric black hole
On the other hand, from t,he matter f,ield equations we (;btairlls nothing more than Einstein’s gravity. NC.) new physics can

' be found in this sector because the no-hair theorems prohibit

E'=[r2e %K-U)]’ the existence of more general solutions than the ones known
in Einstein’s gravity. However, the triplet ansatz sector is
probably one the most simplest special cases of MAG. It
could be that by slightly relaxing the triplet ansd10),
one would obtain a more general effective system which
As in the previous cases, the required behavior of the genericould be still equivalent to Einstein’s gravity coupled to a
function E leads to the condition 3>1. matter field. A first natural candidate could be the effective

In all cases presented here, there is a change in the behakinstein—non-Abelian—Proca field. In this case, as we have
ior of the generic functiork: It always starts at the horizon seen in this work, there exist solutions with black hole hair.
as a negative and decreasing function and needs to increa$he hair could then be directly related to some specific parts
towards its asymptotic value. We have shown that thisof the post-Riemannian structures of MAG. This research
change always occurs beyond the point characterized byrogram, if realizable, could throw light on the physical sig-
3u>1. Since u=1-2M(r)/r, the change occurs at the nificance of torsion and nonmetricity.

£2m?
=re % (Bu—1)w'?— T(1+w)2 . (38.29
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