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Exact gravitational shock waves and Planckian scattering on branes
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We obtain a solution describing a gravitational shock wave propagating along a Randall-Sundrum brane.
The interest of such a solution is twofold: on the one hand, it is the first exact solution for a localized source
on a Randall-Sundrum three-brane. On the other hand, one can use it to study forward scattering at Planckian
energies, including the effects of the continuum of Kaluza-Klein modes. We map out the different regimes for
the scattering obtained by varying the center-of-mass energy and the impact parameter. We also discuss exact
shock waves in ADD scenarios with compact extra dimensions.
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I. INTRODUCTION

No matter how small the rest mass of a particle is, whe
is accelerated to energies in or above the Planck scal
gravitational field becomes so strong that it cannot be
glected. It has been known for some time what this fi
looks like: a planar shock wave, whose rays propagate
allel to the direction of motion@1,2#. When another particle
crosses this wave front, its trajectory is altered—in oth
words, the second particle is scattered by the attractive gr
tational field of the Planckian-energy particle. It was sho
in @3# that the amplitude for this sort of scattering can
exactly calculated. As it turns out, this way of computing t
scattering between the two particles corresponds to the l
ing approximation to the forward scattering of two particl
in quantum gravity, for center-of-mass energy much lar
than the momentum transfer@4–9#.

It has been commonly assumed that, given the enorm
value of the Planck scale, Planckian energies would v
hardly be attainable. However, it has been realized in rec
years that the fundamental scale for quantum gravity may
be the usual four-dimensional Planck scale,M Pl;1018 GeV.
Rather, the fundamental scaleM* might be essentially any
where between the TeV scale andM Pl . The latter would be
a derived magnitude, adequate for describing gravity onl
low energies or large distances, and its large value wo
arise as a consequence of the existence of large@Arkani-
Hamed-Dimopoulos-Dvali ~ADD! @10##, or warped
@Randall-Sundrum 1~RS1! @11##, extra dimensions. If some
form of scenario of low-scale quantum gravity were actua
realized, Planckian energies might be much more acces
than previously thought. ForM* in the TeV range, it could
be reached in colliders in the near future, whereas inter
diate, as well as low, scales might perhaps be probed
extreme energy cosmic rays. Currently, the case for the la
is still open, see e.g.,@12#, but it should be noted that th
regime probed by these cosmic rays appears to be prec
the one described in the previous paragraph.

Given these considerations, it is natural to try to exte
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the analysis of the shock wave of an ultrahigh-energy p
ticle to such scenarios with extra dimensions. Among the
a large and particularly interesting class regards our unive
as a three-brane embedded in a higher dimensional
@13,14,10,11,15#. The focus of this paper will be on suc
brane-world scenarios, and, mostly, on the Randall-Sund
model with an infinite extra dimension@15#, henceforth RS2.

The phenomenology of RS2 is not as much developed
that of ADD or RS1. Some steps were taken in@16#. The
main difference is that RS2 is not designed to address
hierarchy problem. In fact, in RS2 the fundamental and
fective four-dimensional gravity scales are related asM*
5(M Pl

2 / l )1/3, and since experiment boundsl—the curvature
scale of the extra dimension—to be not larger than 1 m
thenM* .105 TeV, which still might be within the reach o
cosmic rays. Nevertheless, there are variants of RS2@17#
with n extra dimensions which allow for much lower value
of M* throughM* 5(M Pl

2 / l n)1/(n12). We will focus exclu-
sively on RS2, but the extension of our analysis to the m
els of @17# should not present technical difficulties.

From the conceptual point of view, the RS2 model h
resulted extremely fruitful, opening up new avenues
thinking about gravity in extra dimensions. However, t
structure of the model—a three-brane in a constant nega
curvature background—has made it very difficult to analy
gravity on it in an exact way. It is particularly important t
know what is the gravitational field created by sources loc
ized to the brane. So far, the only known exact solutio
constructed in @18#, describe black holes in a lower
dimensional setting—a two-brane in a four-dimension
bulk. Hence, the construction of other simple, exact solutio
in this model is of obvious interest. A main part of this pap
~Sec. II! is devoted to constructing the exact gravitation
shock wave of an effectively massless particle within t
RS2 model. To our knowledge, these are the first exact
lutions to describe the gravitational field of a localize
source on a RS brane in AdS5 ~or higher dimensions!. With
this solution in hand, we will follow@3# and@5# in Sec. III to
describe certain aspects of Planckian scattering on the br

Finally, given their phenomenological interest, one wou
also like to have a similarly exact description of shock wav
in ADD scenarios. If the gravitational back reaction of th
brane is neglected~as it usually is, but see@19#!, this turns
out to be much easier than in the RS2 model. Therefore,
©2001 The American Physical Society25-1
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ROBERTO EMPARAN PHYSICAL REVIEW D64 024025
will present these solutions in Sec. IV.
Throughout this paper we will denote the convention

~four-dimensional! Planck mass asM Pl[G4
21/2, while M*

5G5
21/3 will be the fundamental~five-dimensional! mass.

What is precisely meant by ‘‘Planckian energy,’’ and
which regime, will be discussed in Sec. III. We also takel to
be larger than the fundamental~or string! scale. This seems
reasonable, since otherwise the semiclassical descriptio
the RS setup using Einstein gravity would not be reliable

II. GRAVITATIONAL SHOCK WAVE ON THE RS BRANE

Working in an arbitrary number of dimensions, the R
scenario describes a (d21)-brane in the AdSd11 spacetime,
the case of most relevance being obviouslyd54.1 The
ground state metric is

ds25dy21e22uyu/ lhmndxmdxn, ~1!

with m,n50, . . . ,d21. The coordinatey measures the
proper distance transverse to the brane, which is itself
cated at the orbifold pointy50. It is at times also convenien
to use another form for the metric, by changing the b
coordinate to

z5 l ~ey/ l21!, ~2!

so

ds25
l 2

~ l 1uzu!2 ~dz21hmndxmdxn!. ~3!

The brane is now atz50.
Our starting point is a particle at rest on the brane. In R

@1#, Aichelburg and Sexl showed that, in four flat dime
sions, the metric for the shock wave could be constructed
performing a boost to the speed of light on the Schwar
child solution. In the present case, exact solutions for bl
holes on RS branes in AdSd11 are unknown except for the
low-dimensional model ind53 @18#. We will instead use the
approximations that have been constructed up to linear
order. As in the case of@1#, performing an ultrarelativistic
boost will have the effect that only the linearized part of t
solutions remains important.

Therefore, let us place a source on the brane, localize
it, which means that its stress-energy tensortmn(x) has com-
ponents only along the brane-world indices, and that it
pends solely on the brane-world coordinates. The equat
for the linearized perturbationhmn1hmn induced by the
source have been the subject of a number of papers, inc
ing @15,20–22#. The final result can be given in terms o
Fourier transforms with respect to the brane-world coor
nates,

hmn~q,y!5E d4xe2 iqsxs
hmn~x,y!, ~4!

1There is only a single brane here, so this is different from
higher-dimensional scenarios of@17#.
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in the form @22#

h̃mn~q,y!58pGd11F tmn~q!2
1

d21 S hmn2
qmqn

q2 D t G
3eduyu/2l

Kd/2~euyu/ l lq !

qKd/221~ lq !
. ~5!

The tilde denotes the tracefree perturbationh̃mn5hmn

2(1/d)hmnh, and the solution is expressed in terms
Bessel Kn functions. Also, Gd115M

*
2d11 is the

(d11)-dimensional gravitational constant. The trace of t
perturbation must satisfy

huy5052
32pGd11

~d21!lq2
t, ~6!

but in fact we will not need it.
For a point particle at rest, of massm, the stress-energy

tensor ist00(q)52pmd(q0). The corresponding metric per
turbation can be readily found from the above formulas, ev
if the inverse Fourier transforms can only be explicitly eva
ated in certain limits. Nevertheless, we can still boost
solution in Fourier space. When boosted to high energies
particle becomes ultrarelativistic, and then we can effectiv
take v→1, while keeping the momentump5gmv fixed.
Instead of boosting the solutionhmn for a particle at rest, we
will, equivalently, find the solution that corresponds to t
stress-energy tensor of a boosted particle. This stress-en
tensor transforms under the boost, and then asv→1, as

t00~q!52pgmd~q01vq1!→2ppd~q01q1!,

t01~q!5vt00~q!→t00~q!,

t11~q!5v2t00~q!→t00~q!, ~7!

which is effectively the stress-energy tensor of a mass
particle. We can now plug this into Eq.~5! to obtain the
desired form of the solution. It is important to note that t
stress-tensor~8! is trace-free. Hence the metric perturbatio
hmn can be taken to be trace-free too. This implies that
so-called ‘‘brane-bending’’ effect@20# is absent. The gravi-
tons with polarizations transverse to the brane are not exc
and hence the brane does not bend into the bulk.

Given that we are dealing with a limiting lightlike sourc
it is convenient to work with the light-cone coordinatesu
5t2x, v5t1x. In terms of these, the perturbed metric for
null source takes the form

ds25dy21e22uyu/ l
„2dudv1dxidxi1huu~u,xi ,y!du2

…,
~8!

where i 52, . . . ,d21 labels the coordinates in the bran
directions transverse to the propagation. Plugging the str
energy tensor

tuu52ppd~q01q1!, ~9!

into Eq. ~5!, and transforming back to coordinate space
get

e

5-2
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EXACT GRAVITATIONAL SHOCK WAVES AND . . . PHYSICAL REVIEW D 64 024025
huu~u,xi ,y!5
4Gd11

~2p!d23
pd~u!eduyu/2lE dd22qi

3eiqix
i Kd/2~euyu/ l lq !

qKd/221~ lq !
, ~10!

where nowq5uqiqi u1/2 is the modulus of the projection o
qm on the plane transverse to the propagation of the part
i.e., parallel to the wave front. The Fourier transforms c
not, for d>4, be carried out fully explicitly, but at least th
angular integrations that appear can be performed,

huu~u,r ,y!5
4Gd11

~2p!(d24)/2
pd~u!

eduyu/2l

r (d24)/2E0

`

dqq(d24)/2

3J(d24)/2~qr !
Kd/2~euyu/ l lq !

Kd/221~ lq !
, ~11!

wherer is the radial distance on the wave front on the bra
transverse to the direction of propagation of the partic
Note that away from the wave front, the perturbation va
ishes.

This solution is in fact an exact one: for
(d11)-dimensional metric of the plane wave form~8! the
exact Einstein tensor is

Gyy5
d~d21!

2l 2 gyy ,

Gmn5S d~d21!

2l 2 2
2~d21!

l
d~y! Dgmn

2
1

2
]mu]nuFe22uyu/ l S ]y

22
d

l
]yD1¹x

2Ghuu . ~12!

All other components vanish. This exact Einstein tenso
linear in huu . Hence by solving the equations at lineariz
lot
e

th

r-

02402
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order we have actually solved them to all orders. This line
ization, which had been noted earlier in@23#, allows to con-
struct exact plane waves localized on the brane in the
model.

Therefore, the solutions~11! provide an exact description
of the gravitational field of a lightlike point source localize
on the brane.

Let us now focus on the case ofd54, and in particular,
on the metric at the location of the brane,y50. Although we
have not been able to perform the last integration in Eq.~11!
explicitly, we can approximate it in several limits. At larg
distances from the source on the wave front on the branr
@ l , we can expand the Bessel functions for smallq, to find

huu524G4pd~u!F log~r 2/ l 2!2
l 2

r 2

1
2l 4

r 4 @ log~r 2/ l 2!21#1•••G . ~13!

This result has been written already in terms of the effect
gravitational coupling constant induced on the brane,G4
5G5 / l . As was the case for static point masses, the fi
correction,;2 l 2/r 2, does not resemble the profile of a five
dimensional shock wave~which would go like l /r ), rather
that of a six-dimensional one. However, at short distan
(r 21y2! l 2), instead, it is easy to see that the five dime
sional form of the shock wave is recovered, due to dom
nance of KK modes. More explicitly, on the brane atr ! l ,

huu524G4pd~u!F2
l

r
1

3

2
log~r / l !1

3r

8l
1•••G . ~14!

A different form for the solution, which is better suited fo
numerical evaluation of the integrals, can be obtained
applying the analysis in@20# to the source of Eq.~9!:
huu~u,r ,y!524G4pd~u!Fe22uyu/ l log~r 2/ l 2!2
2l

p E
0

`

dmK0~mr!
Y1~ml!J2~mleuyu/ l !2J1~ml!Y2~mleuyu/ l !

J1
2~ml!1Y1

2~ml!
G . ~15!

The zero mode term has been split from the continuum of Kaluza-Klein modes of massm. Again, this is an exact form for the
solution. The factore22uyu/ l indicates the suppression of the solution into the bulk. On the brane the solution becomes

huu~u,r ,y50!524G4pd~u!F log~r 2/ l 2!2
4

p2E
0

`dm

m

K0~mr!

J1
2~ml!1Y1

2~ml!G . ~16!
dis-
the

der
ct
We have used this latter form of the solution to p
huu(r ) in Fig. 1. The figure very clearly shows how th
Kaluza-Klein modes introduce, at distancesr , l , an en-
hancement of the gravitational shock wave relative to
zero-mode truncation, i.e., the leading log term in Eqs.~13!
and ~16!. In Fig. 2 we exhibit how the exact solution inte
e

polates between the four-dimensional behavior at large
tances, and five-dimensional gravity at short distances. In
latter case, it is interesting to note that the leading or
approximation, 1/r , yields a weaker effect than the exa
value. The first correction in Eq.~14!, ;23 log(r/l)/2, be-
comes in fact of some importance.
5-3
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The shock wave on a two-brane

It is interesting to consider separately the lo
dimensional case ofd53, corresponding to a domain wall i
AdS4. For the shock wave solution all the calculations can
carried out explicitly to the end, since the Bessel functio
involved can be finitely expressed in terms of element
functions. Using the form of the metric in terms of thez
coordinate of Eq.~3! we find

huu524G4pd~u!S log~r 21z2!1
2uzu

l
1

2r

l
arctan

r

uzu D .

~17!

Along the brane atz50 this reduces to

huu~u,r ,z50!528G3pd~u!„pur u1 l log~r 2!…, ~18!

where we have usedG452lG3. As explained above, the
linearized solution is in fact an exact one. As was the c
for black holes on a two-brane constructed in@18#, the exact
metric on the brane~18! is precisely the sum of the
(211)-dimensional (}ur u) and (311)-dimensional
@} log(r2)# solutions. Observe that in the bulk of spacetim
the four-dimensional form of the solution@; log(r21z2)# is
recovered for smallr andz.

In @2# it was shown how the Aichelburg-Sexl solution ca
be constructed by a cut-and-paste method performed in
Minkowski space. It would be interesting to show how th

FIG. 1. Log-scale plot of the profile of the shock wavehuu(r )
on the RS three-brane. It clearly exhibits the deviation, due to
Kaluza-Klein modes, from the four-dimensional logarithmic so
tion ~dotted line!. The units forr are such thatl 51.

FIG. 2. The shock wave profilehuu(r ) on an RS three-brane
~solid line!. It interpolates between the leading order behaviors
short distance (;r 21) and large distance (;2 log r), in dotted
lines. Again, we have setl 51.
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exact solution is obtained by similarly cutting and pasti
patches of AdS4 ~see@24# for possibly related work!.

III. PLANCKIAN SCATTERING ON THE BRANE

We will now study the elastic forward scattering amp
tude, in a regime where the center-of-mass energy is
very large scale, and is much larger than the momen
transfer,s/utu@1. Gravitons are expected to dominate ov
other interactions above the Planck energy. Obviously,
must specify what is meant by ‘‘Planckian energies’’ he
i.e., whetherE.M* or E.M Pl5M*

AM* l @M* . Recall
that the assumption of ‘‘Planckian center-of-mass energi
has several motivations. First, it ensures that the rest m
m0 of the particle is negligible. To this effect, we just nee
energiesE@m0, but not necessarily Planckian. More impo
tantly, at energies above the Planck scale the effective
mensionless couplingaG[s/M Pl

2 becomes large and gravit
is expected to be strongly coupled. Furthermore, due to
growth of this coupling with energy, it will dominate ove
any other interactions. In the present case, however,
should consider first the distance scale that is being prob
If the impact parameterb is much larger thanl, then the
graviton zero-mode dominates over KK modes. In this
gime, Planckian energy will necessarily meanE.M Pl . The
graviton zero-mode will then be strongly coupled. Inste
for b, l the KK modes dominate and the interaction b
comes five-dimensional. Here our methods can also be
plied to the regime ofM* ,E,M Pl , but this will not nec-
essarily imply that the KK modes are strongly coupled—
will discuss when they are. Gravity need not dominate o
other interactions in this regime. But forE.M Pl five-
dimensional gravity will always be strongly coupled.2

The forward scattering of two particles~or strings! at
Planckian energies has been studied in the past@3–5#, how-
ever, the possibility of new dimensions opening up was
generally considered. Some discussion of this point has b
given in @25#. Our analysis is somewhat complementary
that in @25#, but we will go into more detail at several point
From the technical point of view, we mainly build up on th
work of @3# and@5,6#. The regime of Planckian energies an
large s/utu can be treated in the eikonal approximation—
resummation of an infinite number of graviton ladder a
cross-ladder diagrams, which dominates the elastic forw
scattering. Although it resums contributions from all orde
in the coupling constant, this approximation does not ac
ally probe quantum gravity effects. Effectively, gravito
loops are suppressed if the impact parameterb is much larger
than the fundamental lengthM

*
21 ~the momentum exchange

by each graviton is much less thanM* ). Hence, corrections
in 1/(bM* )2 are neglected. Notice also that fou
dimensional graviton loops are suppressed by the m
larger factor 1/(bMPl)

2.
Another important point is the possibility of black ho

2This is not surprising, since individual KK modes couple wi
constantG45M Pl

22 .

e

t
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physics entering at impact parameters of the order of
Schwarzschild radius associated to a given center-of-m
energy. Precise calculations are way beyond any comp
tional scheme available~it involves tree-level graviton ex
change to all orders, and possibly beyond perturba
theory!, but we will discuss this later in mostly qualitativ
terms.

Following @3# ~see also@26#! the shock wave geometr
directly yields the relevant information needed to comp
the eikonalized gravitational scattering amplitude for tw
particles at large center of mass energyAs52E. Let a(s,b)
be the scattering amplitude expressed as a function of
impact parameterb. In eikonal form

a~s,b!5e2id(s,b). ~19!

If we identify the impact parameterb with the distance in the
direction transverse to the propagation of the shock wa
b5Axixi , thend(s,b) can be read off from the shock wav
metric as

huu58pd~u!
d~s,b!

s
. ~20!

Having a(s,b), one can compute the amplitude for
given momentum transfer,t52qiqi52uqu2, by transform-
ing

1

s
a~s,t !5

2

i E d2xeiqix
i
~e2id(s,b)21!

5
4p

i E
0

`

dbbJ0~bq!e2id(s,b). ~21!

It is important to notice here that the Fourier transform i
two-dimensional one, even if the shock wave front is thr
dimensional. The reason is that we are considering the s
tering of particles confined to the brane, and therefore
impact parameter is restricted to the two transverse direct
along the brane. The available phase space is reduce
comparison to particles that propagate freely in the bulk.
a consequence, even at short distancesb! l the scattering
amplitude a(s,t) will differ from the ‘‘really five-
dimensional’’ one.

Let us first consider impact parametersb larger thanl. In
this regime, which is essentially four-dimensional, the eik
nal approach is only justified ifE.M Pl , and not forM*
,E,M Pl . At b. l and energies belowM Pl , the gravita-
tional interaction is very weak and likely to be dominated
other interactions. But forE.M Pl gravitons dominate and
we can obtain the eikonal from Eqs.~13! and ~20!. Keeping
only the two first terms, we get

d~s,b!52G4sS log~b/ l !2
l 2

2b2D . ~22!

The KK correction to the leading logarithmic term,
02402
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dKK~s,b!5G4

sl2

2b2 , ~23!

grows linearly withs, just like the four-dimensional term,
fact that distinguishes it from other non-linear correction
The expansion parameter for KK corrections isl 2/b2. Clas-
sical corrections to the eikonal, that include the graviton s
interaction vertices, but still at graviton tree level, have t
expansion parameterG4

2s/b25s/(M Pl
2 b2) @6#. Since we are

assuming thatM Pl@ l 21, then the KK corrections will be
larger than these 4D classical corrections up to energieE
;M Pl

2 l .
With Eq. ~22!, the integral~21! can be evaluated at

saddle pointb5bs such that

q522
]d~s,b!

]b U
bs

.
2G4s

bs
S 11

l 2

bs
2D . ~24!

As long as the saddle point satisfiesbs. l , it is justified to
ignore the physics at smallerb in the integral~21!. Notice
that the momentum exchanged at a given impact paramet
larger than in four dimensions, due to the exchange of
modes. Equivalently, the deflected angle,

u.2A2t

s
.

4G4E

bs
S 11

l 2

bs
2D , ~25!

is increased, showing the extra attraction that KK mod
induce.

Let us now move to the short distance regimeb, l . In this
case, keeping just the leading order from Eq.~14! one gets

d~s,b!.
G4sl

2b
. ~26!

This eikonal phase is small if 2b.G4sl5s/M
*
3 , and there-

fore leads to a perturbative regime, which, for the fixedt
amplitude, is at momentum transferq,2/(G4sl). This is, the
Born term dominates the expansion, and one can do with
the eikonal resummation. This is in contrast to the previo
situation, where the amplitude was always non-perturbat
and dominated by a saddle point. Gravity here is fiv
dimensional~it involves all the KK modes!, and the interac-
tion is stronger than it would be in a four dimensional setu
But it is not strongly coupled.

Starting at fixed energyM* ,E,M Pl , one enters this
regime when the impact parameter gets belowl. The fixed-t
amplitude becomes

a~s,t !.8psE
0

`

dbbJ0~bq!d~s,b!54pG4l
s2

q
. ~27!

This is different from the usual perturbative result for gra
ity, which is ~in any dimension! ;Gns2/q2. The reason has
been explained above: although the interaction is five dim
sional, the scattered particles are confined to the fo
dimensional brane.
5-5
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ROBERTO EMPARAN PHYSICAL REVIEW D64 024025
For q.2/(G4ls) we enter a strong coupling regime an
the amplitudea(s,t) is again dominated by a saddle poin
this time at

q.
G4sl

bs
2 . ~28!

In this case the full eikonal resummation is relevant, and
amplitude evaluated at the saddle point is

a~s,t !.4pAG4l

2 S s

qD 3/2

e2iAG4lsq2 ip/2. ~29!

The non-analytic dependence on the coupling shows the
perturbative character of the amplitude.

Let us note that the ’t Hooft poles@3# do not appear in
these amplitudes. When the eikonal phase is purely loga
mic ~i.e., 4D!, these poles arise from theb→0 region in the
integral ~21!. Here, however, the eikonal changes from 4
behavior to 5D behavior before getting tob→0, and the
poles disappear.3 Since the ’t Hooft poles could be inter
preted as a remnant of the bound states in the 4D Coul
potential@7,9,27#, it is no surprise that they are absent he
since the 5D Coulomb potential does not have~stable! bound
states.

The results above cease to be reliable when the im
parameter becomes of the order of, or smaller than the gr
tational ~Schwarzschild! radius,Rs . Indeed, forb!Rs one
expects gravitational collapse to take place. The deta
though, are expected to be very complicated, particularly
intermediate scalesb;Rs . Although the full scattering prob
lem is way beyond the techniques used here~see@28#!, one
can assume this regime will be dominated by black h
physics. Hence the discussion will be at a qualitative lev
Additional discussion of related issues can be found in@29#.

In a scenario like this, the Schwarzschild radiusRs
changes depending on the regime one is in. In the effec
four dimensional regime of distances larger thanl, the clas-
sical gravitational radius is

Rs.2G4E. ~30!

The black hole is a ‘‘pancake’’ in this regime, with a ve
small extent into the bulk; l log(Rs/l)!Rs @18,21#. The
physics of these black holes is described by four-dimensio
laws. Instead, at distances shorter thanl,

Rs.A8G5E

3p
5A8G4lE

3p
. ~31!

These small black holes are roughly spherical in five dim
sions. The growth withE changes from one regime to th
other, with some smooth interpolation at distances; l .

3For the eikonal phase~26! one can actually compute exactly th
amplitude,

a~s,t!58pG4l~s
2/q!J1~e

2ip/4A2G4slq!K1~e2 ip/4A2G4slq!.
Here one sees explicitly that the ’t Hooft poles are absent.
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The total cross section for producing these black ho
can be estimated to be of the order of the correspond
black hole area. Depending on whether the black hole
large or a small one, we have

s;
s

M Pl
4

for E. lM Pl
2 ,

s;A s

M
*
3 5 lA s

M Pl

2 for E, lM Pl
2 . ~32!

Since the particles scatter on the brane, the relevant ma
tude for producing a small black hole is not the fiv
dimensional black hole area~which is in fact a volume!, but
rather its section along the brane, which can be assume
be along an equator of the horizon. Notice also that an ef
tively four-dimensional black hole will not be formed unt
E.M Pl

2 l @M Pl .
The black holes thus created will evaporate by emiss

of Hawking radiation. In either regime~large or small!, the
radiation will be emitted mostly along the brane@18,30#.

The different regimes in the (E,b) plane are displayed in
Fig. 3. The region marked ‘‘weak 4D gravity’’ is one wher
four-dimensional gravity is weakly coupled and the intera
tion dominated by single graviton exchange, which we ha
not discussed here—the leading amplitude is the same a
eikonal, up to a phase. The regions labeled ‘‘eikonal’’ a
ones where gravity is strongly coupled, and the full eikon
resummation of the amplitude is needed. The amplitudes
non-perturbative there. The curveb5Rs is an interpolation
between Eqs.~30! and ~31!. Note that the scattering is di
rectly sensitive to the extra dimensions only at energies
low lM Pl

2 . Going to higher energies does not actually le
into five-dimensional physics.

FIG. 3. The different regimes for the scattering at energiesE
.M* and impact parametersb.1/M* . The boundaries betwee
regimes are merely indications of where the crossover from
behavior to another takes place.
5-6
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The picture should be valid down to impact paramet
b.1/M* ~or the string length!, where new physics take
over. This regime is beyond the techniques used here.

IV. EXACT SHOCK WAVES IN THE ADD SCENARIO

The construction of exact shock waves in ADD scenar
is simpler than in RS. We discuss it briefly here.

The ADD scenario consists of a three-brane~admitting a
Poincare´-invariant vacuum! living in a (41n)-dimensional
spacetime. In the most basic setup, the bulk is empty and
gravitational back reaction of the brane is neglected:
brane is simply a 311 hypersurface embedded in the bu
The extra dimensions are supposed to be compactified
certain manifoldM. If the bulk is empty, then the metric o
M has to be Ricci flat. Hence, if we label the brane coor
nates by xm, and the transverse coordinates byya, the
vacuum is

ds25hmndxmdxn1ĝabdyadyb, ~33!

whereĝab is the metric onM, and the brane is at a certa
point in M, say, atya50.

The linearization of the Einstein equations that occurs
the solutions we seek simplifies again the construction
plane-fronted wave will be of the form

ds252dudv1dxidxi1huu~x,y!du21ĝabdyadyb

~34!

( i 52,3). For a lightlike source localized on the brane t
Einstein equations become

~¹x
21¹y

2!huu~x,y!5216pG41ntuu~x!d (n)~y!, ~35!

where we have split the Laplacian operator in the wave fr
into the brane¹x

2 and the bulk¹y
2 parts. The problem is now

a rather standard one. As in the RS case, a way to solve
equation is by first Fourier-transforming the brane coor
nates,

~2q21¹y
2!huu~q,y!5216pG41ntuu~q!d (n)~y!. ~36!

One now needs the~massive Euclidean! Green’s function in
the transverse bulk space,

~2q21¹y
2!G~q,y!5d (n)~y!. ~37!

For the null pointlike source~9!, the solution is then

huu~u,xi ,y!5216pG41npd~u!E d2q

~2p!2eiqix
i
G~q,y!,

~38!

which is the analogue of Eq.~11!. Obviously, one can as we
give the solution as an analogue of Eq.~15! by finding the
eigenfunctions of the operator in Eq.~37!. As remarked
above, it is the linearized character of the equations wh
allows to perform the entire construction. The main probl
lies in calculating the Green’s function~37! in the extra
space.
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For an illustration, consider the case where the extra
mensions are compactified on a torusTn. Then, instead of
Eq. ~38!, the solutions are most easily obtained by using
method of images, i.e., by constructing a periodic array
(41n)-dimensional shock waves. Since the equations
linear, one simply superimposes the individual solutions.
for simplicity, the torus is a square one,ya;ya1L, then
standard manipulations yield

huu~u,r ,y!524G4pd~u!

3F log~r 2!22 ( 8
naPZn

K0~mnr !e2 inaya/LG ,

~39!

where the sum is over vectorsna on a square lattice exclud
ing the origin~the zero mode has been split already!, andn
5(nana)1/2 yields the mass of the Kaluza-Klein modesmn
5n/L. Recall thatK0(mnr ) is the Yukawa potential in two
dimensions~i.e., on the wave front on the brane!. The solu-
tion is an exact one.

One can repeat the analysis of Planckian scattering
formed in the previous section. Details may change~e.g., the
classical gravitational radius at short distances scales aRs
;E1/(n11)) but the qualitative features should be similar.

V. CONCLUDING REMARKS

In this paper we have presented solutions for gravitatio
shock waves propagating along branes, Eqs.~10!, ~15!, ~39!,
and argued they are in fact exact solutions, reduced t
single quadrature or series. For the case of the RS2 mode
a two-brane, the solutions admit a simple explicit form~17!.

In the past, gravitational shock waves have been a us
tool for studying extreme effects in quantum gravity. A
such, besides the studies of forward scattering at Planc
energies, they have also been studied within the AdS-C
correspondence@32#. In fact, the context in the latter case
somewhat related to the one in this paper. In both cases
shock waves propagate in an AdS5 spacetime. However, i
appears the solutions considered in@32#, where the wave
propagates into the bulk of AdS5, are different from the ones
we discuss here, which propagate along a brane at a fi
radius from the ‘‘center’’ of the AdS5 space. Shock waves in
curved spacetimes and higher dimensions have also b
studied earlier in@33#, in particular there is some overla
with our elementary discussion in Sec. IV.4

The shock waves on the brane may be thought of as
limiting cases of black holes on the brane when infinite
boosted, even though such black hole solutions remain
known for n.2. However, there is a significant differenc
between shock waves and black holes in these brane-w
models. For black holes of a given massM on an RS brane
there are two different regimes, which could be called
‘‘large black hole’’ ~or ‘‘black pancake’’! and the ‘‘small

4Other work in the string context can be found in@34#.
5-7
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black hole’’ regimes, depending on whether, roughly,M. l
or M, l , respectively. These two regimes could be clea
distinguished in the exact solutions constructed in@18#, and
we have discussed some aspects in Sec. III. There is no
distinction for the shock waves: the description is the sa
whetherp is large or small, and the shape of the soluti
only gets rescaled by changingp. This is a consequence o
the linearity of the solution, which implies a simple line
dependence onp.

For black holes in the compact spaces relevant to AD
there are also two different phases according to whether
horizon radius is smaller or larger thanL. Small black holes
are localized on the brane, whereas large black holes
black strings which are translationally invariant~hence delo-
calized! along the extra dimensions~no pancakes here!. The
Gregory-Laflamme instability@31# separates the two phase
In contrast, the shock waves are always localized. As
energy of the shock wave is changed, the solution sim
scales linearly withp and there appears to be no reason w
it should delocalize. Notice the solution~39! is an exact one,
whereas for black holes the exact localized solutions i
compact space are unknown. ‘‘Shock wave strings’’ wh
are translationally invariant along the extra dimensions
be constructed, but they require translationally invari
sources and do not seem to be relevant here.5 In fact, the
shock wave strings are marginally stable to perturbation
the Gregory-Laflamme type. The absence of an instabilit
not surprising if one considers that shock waves posses
horizons and hence no entropy. Thermodynamical argum
play no role here.

Regarding Planckian scattering on the brane, we h
mapped out a considerable portion of the different regim
that should be amenable to a semiclassical analysis. Fb
, l , the expressions obtained for the fixedt amplitude ac-
count for the fact that the interaction between the particle
five-dimensional, but the particles themselves move only
four dimensions.

5Such ‘‘string shock wave’’ solutions can also be constructed
the RS2 model, but in this case they are even more unphysica
to their strong singularity at the AdS horizon.
B
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We have not discussed string effects. It is not cle
whether the results of@5# in a flat space can be applied to th
setting even at distances much shorter thanl, where the cur-
vature effects of AdS5 would be negligible. One would firs
need a concrete embedding of RS2 in string theory, and e
then, solving string theory in the presence of the brane~and
presumably of RR flux! might not be easy. In@5# it was
found that diffractive string effects may be relevant even
considerably large impact parameters. This would add n
regimes to the diagram in Fig. 3.

There are a number of sources of other corrections tha
have entirely ignored, such as those due to exchange of
ticles other than the graviton, or the finite rest mass of
scattered particles. Furthermore, any effects due to fi
brane thickness have also been neglected. Again, if the b
thickness is on the scale of the fundamental lengthM

*
21 , the

regimes we have considered are not able to resolve it.
Finally, we made some mention in the Introduction

works where the gravitational scattering at high energies
been studied for its possible relevance to the problem
extreme energy cosmic rays@12#. In most of these works the
scattering has been considered in the Born approximation
the basis that at the relevant energies gravity is presum
not strongly coupled. We shall not enter at this stage into
discussion of how to correctly compute the scattering for
relevant process, and how to account for unitarity. Nevert
less, it appears like the phenomenological possibility a
consequences of TeV-mass black holes forming in cos
ray collisions are still to be developed. The total cross s
tion is presumably dominated by other softer processes,
still the consequences might be interesting. At high enou
energies one should only need classical general relativit
describe the process: other interactions and quantum ef
will remain hidden behind the horizon.
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