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Exact gravitational shock waves and Planckian scattering on branes
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We obtain a solution describing a gravitational shock wave propagating along a Randall-Sundrum brane.
The interest of such a solution is twofold: on the one hand, it is the first exact solution for a localized source
on a Randall-Sundrum three-brane. On the other hand, one can use it to study forward scattering at Planckian
energies, including the effects of the continuum of Kaluza-Klein modes. We map out the different regimes for
the scattering obtained by varying the center-of-mass energy and the impact parameter. We also discuss exact
shock waves in ADD scenarios with compact extra dimensions.
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I. INTRODUCTION the analysis of the shock wave of an ultrahigh-energy par-
ticle to such scenarios with extra dimensions. Among these,
No matter how small the rest mass of a particle is, when i@ large and particularly interesting class regards our universe
is accelerated to energies in or above the Planck scale igs a three-brane embedded in a higher dimensional bulk
gravitational field becomes so strong that it cannot be nef13,14,10,11,15 The focus of this paper will be on such
glected. It has been known for some time what this fieldorane-world scenarios, and, mostly, on the Randall-Sundrum
looks like: a planar shock wave, whose rays propagate pamodel with an infinite extra dimensiqi5], henceforth RS2.
allel to the direction of motiofi1,2]. When another particle The phenomenology of RS2 is not as much developed as
crosses this wave front, its trajectory is altered—in otheithat of ADD or RS1. Some steps were taken[i6]. The
words, the second particle is scattered by the attractive gravinain difference is that RS2 is not designed to address the
tational field of the Planckian-energy particle. It was shownhierarchy problem. In fact, in RS2 the fundamental and ef-
in [3] that the amplitude for this sort of scattering can befective four-dimensional gravity scales are relatedMg
exactly calculated. As it turns out, this way of computing thez(MZP,/I)m, and since experiment bounts-the curvature
scattering between the two particles corresponds to the leadeale of the extra dimension—to be not larger than 1 mm,
ing approximation to the forward scattering of two particlesthenM, >10° TeV, which still might be within the reach of
in quantum gravity, for center-of-mass energy much largecosmic rays. Nevertheless, there are variants of RS2
than the momentum transfp4—9]. with n extra dimensions which allow for much lower values
It has been commonly assumed that, given the enormousf M, throughM, =(M32/1")Y"+2) We will focus exclu-
value of the Planck scale, Planckian energies would vergively on RS2, but the extension of our analysis to the mod-
hardly be attainable. However, it has been realized in recerdls of [17] should not present technical difficulties.
years that the fundamental scale for quantum gravity may not From the conceptual point of view, the RS2 model has
be the usual four-dimensional Planck scali, ~10'® GeV.  resulted extremely fruitful, opening up new avenues for
Rather, the fundamental scalé, might be essentially any- thinking about gravity in extra dimensions. However, the
where between the TeV scale ahth,. The latter would be  structure of the model—a three-brane in a constant negative
a derived magnitude, adequate for describing gravity only aturvature background—has made it very difficult to analyze
low energies or large distances, and its large value woulgravity on it in an exact way. It is particularly important to
arise as a consequence of the existence of I@fgkani-  know what is the gravitational field created by sources local-
Hamed-Dimopoulos-Dvali (ADD) [10]], or warped ized to the brane. So far, the only known exact solutions,
[Randall-Sundrum 1RSJ) [11]], extra dimensions. If some constructed in[18], describe black holes in a lower-
form of scenario of low-scale quantum gravity were actuallydimensional setting—a two-brane in a four-dimensional
realized, Planckian energies might be much more accessiblgilk. Hence, the construction of other simple, exact solutions
than previously thought. Favl, in the TeV range, it could in this model is of obvious interest. A main part of this paper
be reached in colliders in the near future, whereas intermeSec. 1) is devoted to constructing the exact gravitational
diate, as well as low, scales might perhaps be probed bghock wave of an effectively massless particle within the
extreme energy cosmic rays. Currently, the case for the lattdRS2 model. To our knowledge, these are the first exact so-
is still open, see e.g[12], but it should be noted that the Iutions to describe the gravitational field of a localized
regime probed by these cosmic rays appears to be precisedpurce on a RS brane in Ag%or higher dimensions With
the one described in the previous paragraph. this solution in hand, we will follow3] and[5] in Sec. Ill to
Given these considerations, it is natural to try to extenddescribe certain aspects of Planckian scattering on the brane.
Finally, given their phenomenological interest, one would
also like to have a similarly exact description of shock waves
*Also at Departamento de’$ica Teoica, Universidad del Par in ADD scenarios. If the gravitational back reaction of the
Vasco, E-48080, Bilbao, Spain. brane is neglecteths it usually is, but sefl9]), this turns
Email address: roberto.emparan@cern.ch out to be much easier than in the RS2 model. Therefore, we

0556-2821/2001/62)/024025%9)/$20.00 64 024025-1 ©2001 The American Physical Society



ROBERTO EMPARAN PHYSICAL REVIEW D64 024025

will present these solutions in Sec. IV. in the form[22]
Throughout this paper we will denote the conventional
(four-dimensional Planck mass aMl p|EG;l/2, while M,
=G5_1/3 will be the fundamentalfive-dimensiongl mass.
What is precise]y meant by “E’Ianckian energy,” and in Kn(e¥q)
which regime, will be discussed in Sec. lll. We also thke Xed\yllzldfz—q.
be larger than the fundamentalr string scale. This seems aKarz-1(19)
reasonable, since otherwise the semiclassical description of _ o~
the RS setup using Einstein gravity would not be reliable. The tilde denotes the tracefree perturbation,=h,,
—(1/d)n,,h, and the solution is expressed in terms of

i _pdFl
Il. GRAVITATIONAL SHOCK WAVE ON THE RS BRANE Bessel K, functions. Also, Ggi,=M, is  the
(d+1)-dimensional gravitational constant. The trace of the
Working in an arbitrary number of dimensions, the RS2perturbation must satisfy

scenario describes @{ 1)-brane in the Adg, ; spacetime,

T]/.w(qu) = 87TGd+l

1 4.9,
t/.w(q)_ d__l( Nuv™— _gr)t:|

®

the case of most relevance being obviously: 4.} The hl 327Gy41 ®
ground state metric is y=0 (d-1)lq?
—dv2t =2yl £ x?
ds’=dy*+e 70X, D but in fact we will not need it.
with w,v=0,...d—1. The coordinatey measures the For a point particle at rest, of masg the stress-energy

proper distance transverse to the brane, which is itself 1ol€NSOr istoo(d) =27mé(do). The corresponding metric per-
cated at the orbifold point=0. It is at times also convenient turbation can be readily found from the above formulas, even

to use another form for the metric, by changing the bulkif the inverse Fourier transforms can only be explicitly evalu-

coordinate to ated in certain limits. Nevertheless, we can still boost the
solution in Fourier space. When boosted to high energies the
z=1(e"-1), (2)  particle becomes ultrarelativistic, and then we can effectively
take v—1, while keeping the momentump=ymuv fixed.
SO Instead of boosting the solutidm),, for a particle at rest, we
) will, equivalently, find the solution that corresponds to the
_ LV stress-energy tensor of a boosted particle. This stress-energy
ds’ ( +|Z|)2(dzz+ 7y AXCAX). ® tensor transforms under the boost, and then-asl, as
The brane is now at=0. too(qQ)=27ymd(qo+vqq)—27pd(qo+ds),
Our starting point is a particle at rest on the brane. In Ref.
[1], Aichelburg and Sexl showed that, in four flat dimen- to1(q)=vtge(q) —tog(q),
sions, the metric for the shock wave could be constructed by
performing a boost to the speed of light on the Schwarzs- t12(0) =vtoo(d) — oo Q). (7)

child solution. In the present case, exact solutions for black , . . .
holes on RS branes in AgS; are unknown except for the wh|c;h is effectively the stress-energy tensor of a massless
low-dimensional model il =3 [18]. We will instead use the pgg'rcéa fg\r/ri (c:y?rt]hgos\,/(\glgtlil:)% tnlsis"i]r;o oEr?aS%tt?o or%?emthtgtethe
approximations that have been constructed up to Iinearizeg . ' P ) .
order. As in the case dfl], performing an ultrarelativistic Stress-tenso8) is trace-free. Hence the metric perturbation

boost will have the effect that only the linearized part of thegg_vcgﬁg dbfbt;ﬁeer_]bteongﬁ]tf?g?fg?féo]tc?g'a-E;'gn'tm_ﬁ)_lk']ees trhaavti_the
solutions remains important. 9 ' g

. ns with polarizations transverse to the brane are not excit
Therefore, let us place a source on the brane, localized 059 S polarizations transverse to the brane are not excited

it, which means that its stress-energy tertsg(x) has com- and _hence the brane doe_s not bend_ Into th(_e bu_lk.
ponents only along the brane-world indices, and that it de- 'G|ven tha_t we are dealln'g with a'I|m|t|ng Ilghtllke_source,
pends solely on the brane-world coordinates. The equationg ;s_conv_e?irent Itotwork V¥';[E the tl;]ght-ccinebcgordlpgu;rs
for the linearized perturbatiorn,,+h,, induced by the I s);' vrc_e ta)liésntheerr?osrr% ese, the perturbed metric fora
source have been the subject of a number of papers, includ™ u
ing [15,20-22. The final result can be given in terms of  g2—qy2+ e~ 2V (—dudy +dxidx +h,,(u,x',y)du?),
Fourier transforms with respect to the brane-world coordi- (8)
nates,

wherei=2,...,d—1 labels the coordinates in the brane-

—iq, X" directions transverse to the propagation. Plugging the stress-
huy(q,y)=f d*xe™'9"h ,,(x,y), @ energy tensor propag gging

tyu=2mpds(do+ady), 9

There is only a single brane here, so this is different from theinto Eq. (5), and transforming back to coordinate space we
higher-dimensional scenarios [df7]. get
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order we have actually solved them to all orders. This linear-

h i) — 4Ggy+1 dly|/2! d-2 i ati ; ;
wluxhy)= ﬁpé(u)e d’"=q; ization, which had been noted earlier[i23], allows to con-
(2m) struct exact plane waves localized on the brane in the RS
Kgp(eYq) model. . . -
xeiax 2927 (10) Therefore, the solutiongl1) provide an exact description
aKgp2-1(10) of the gravitational field of a lightlike point source localized

where nowq=|q;q|¥2 is the modulus of the projection of °" the brane.
i Let us now focus on the case dt=4, and in particular,
q, on the plane transverse to the propagation of the particle

On the metric at the location of the braiyes 0. Although we
i.e., parallel to the wave front. The Fourier transforms can-

have not been able to perform the last integration in (&)
not, ford=4, be carried out fully explicitly, but at least the

' . explicitly, we can approximate it in several limits. At large

angular integrations that appear can be performed, .

distances from the source on the wave front on the bnane,

4G edlyli2! >|, we can expand the Bessel functions for sngafio find
d+1

- d-4)/2
hyu(u,r,y)= mp5(u a= 4)/2f dad®

Kaa(e¥q) 1)

Kare-1(1q) 2|4
+ r—4[log(r2/I2)—1]+ e

|2
Iog(rzllz)—r—2

hyu=—4G4ps(u)
X J(d-a)AQr)
(13

wherer is the radial distance on the wave front on the brane,
transverse to the direction of propagation of the particle.
Note that away from the wave front, the perturbation van-This result has been written already in terms of the effective

ishes. gravitational coupling constant induced on the bra@e,
This solution is in fact an exact one: for a =Gg/I. As was the case for static point masses, the first

(d+1)-dimensional metric of the plane wave fori®) the  correction,~ —1%/r?, does not resemble the profile of a five-

exact Einstein tensor is dimensional shock wavéwhich would go likel/r), rather

that of a six-dimensional one. However, at short distances
(r2+y?<l1?), instead, it is easy to see that the five dimen-
sional form of the shock wave is recovered, due to domi-
nance of KK modes. More explicitly, on the braneratl,

d(d—1)
Cyy= 517 Iy

d(d—1) 2(d-1)
Cu=|—%z 7 ) |9 | 3 3r
) huy=—4G4pa(u)| — =+ Slog(r/1)+ gr+ -+ |. (14)
— 5 3,ud,u e‘2|y“( Fo——dy| +Vi|hyy. (12)

A different form for the solution, which is better suited for
All other components vanish. This exact Einstein tensor isiumerical evaluation of the integrals, can be obtained by
linear inh,,. Hence by solving the equations at linearizedapplying the analysis if20] to the source of Eq(9):

Y, (mDJIo(mleV) =3, (mlyY,(mieY!hy
J2(ml)+YZ(ml)

hyu(u,r,y)=—4G4ps(u)| e~ l (15)

2l (=
2Ivl“|og(r2/|2)—;f dmKy(mr)
0

The zero mode term has been split from the continuum of Kaluza-Klein modes ofnmasgsin, this is an exact form for the
solution. The factoe™2Y"" indicates the suppression of the solution into the bulk. On the brane the solution becomes

Ko(mr) }

hyu(u,r,y=0)=—4G,ps(u) ™ Z(mh+Y2(ml)

(16)

Iog(rzllz)——f

We have used this latter form of the solution to plot polates between the four-dimensional behavior at large dis-
hyu(r) in Fig. 1. The figure very clearly shows how the tances, and five-dimensional gravity at short distances. In the
Kaluza-Klein modes introduce, at distances/|, an en- latter case, it is interesting to note that the leading order
hancement of the gravitational shock wave relative to theapproximation, 1/, yields a weaker effect than the exact
zero-mode truncation, i.e., the leading log term in EGS)  value. The first correction in Eq14), ~—3 log(/1)/2, be-
and (16). In Fig. 2 we exhibit how the exact solution inter- comes in fact of some importance.
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by, exact solution is obtained by similarly cutting and pasting
patches of AdS (see[24] for possibly related work

Ill. PLANCKIAN SCATTERING ON THE BRANE

We will now study the elastic forward scattering ampli-
tude, in a regime where the center-of-mass energy is at a
very large scale, and is much larger than the momentum
transfer,s/|t|>1. Gravitons are expected to dominate over
other interactions above the Planck energy. Obviously, one

FIG. 1. Log-scale plot of the profile of the shock walvg,(r) must specify what is meant by “Planckian energies” here,
on the RS three-brane. It clearly exhibits the deviation, due to th¢.e., whetherE>M, or E>Mp =M, VM, I>M, . Recall
Kaluza-Klein modes, from the four-dimensional logarithmic solu- that the assumption of “Planckian center-of-mass energies”
tion (dotted ling. The units forr are such that=1. has several motivations. First, it ensures that the rest mass
m, of the particle is negligible. To this effect, we just need
energieEE>my, but not necessarily Planckian. More impor-

It is interesting to consider separately the low-tantly, at energies above the Planck scale the effective di-
dimensional case af= 3, corresponding to a domain wall in mensionless couplingg=s/M3, becomes large and gravity
AdS,. For the shock wave solution all the calculations can bds expected to be strongly coupled. Furthermore, due to the
carried out explicitly to the end, since the Bessel functionggrowth of this coupling with energy, it will dominate over
involved can be finitely expressed in terms of elementaryany other interactions. In the present case, however, one
functions. Using the form of the metric in terms of tae should consider first the distance scale that is being probed.
coordinate of Eq(3) we find If the impact parameteb is much larger thar, then the
graviton zero-mode dominates over KK modes. In this re-
gime, Planckian energy will necessarily mdarMp,. The
graviton zero-mode will then be strongly coupled. Instead,

(17 for b<| the KK modes dominate and the interaction be-
comes five-dimensional. Here our methods can also be ap-
Along the brane at=0 this reduces to plied to the regime oM, <E<My,, but this will not nec-
essarily imply that the KK modes are strongly coupled—we
huu(U,r,z=0)=—8G3pd(u)(w|r|+1log(r?), (18  will discuss when they are. Gravity need not dominate over
other interactions in this regime. But fdE>Mp, five-
where we have use,=2IG;. As explained above, the dimensional gravity will always be strongly coupléd.
linearized solution is in fact an exact one. As was the case The forward scattering of two particle®r strings at
for black holes on a two-brane constructed 18], the exact  Planckian energies has been studied in the [&sk|, how-
metric on the brane(18) is precisely the sum of the ever, the possibility of new dimensions opening up was not
(2+1)-dimensional ¢|r]) and (3+1)-dimensional generally considered. Some discussion of this point has been
[« log(r?)] solutions. Observe that in the bulk of spacetime,given in[25]. Our analysis is somewhat complementary to
the four-dimensional form of the solutidn- log(r?+7)]is  that in[25], but we will go into more detail at several points.
recovered for smalt andz From the technical point of view, we mainly build up on the

In [2] it was shown how the Aichelburg-Sex! solution can work of [3] and[5,6]. The regime of Planckian energies and
be constructed by a cut-and-paste method performed in fldarge s/|t| can be treated in the eikonal approximation—a
Minkowski space. It would be interesting to show how thisresummation of an infinite number of graviton ladder and

cross-ladder diagrams, which dominates the elastic forward
hy, scattering. Although it resums contributions from all orders
: in the coupling constant, this approximation does not actu-
ally probe quantum gravity effects. Effectively, graviton
loops are suppressed if the impact paramieisrmuch larger
than the fundamental IengM;1 (the momentum exchanged
by each graviton is much less thah, ). Hence, corrections
in 1/(bM,)? are neglected. Notice also that four-
r dimensional graviton loops are suppressed by the much
larger factor 1/6Mp))?.
Another important point is the possibility of black hole

The shock wave on a two-brane

hou= —4Gaps()| log(r?+ 22+ 22 + 2 arcran”
uw= 4pS(u)| log(re+z%) i IarcarE|

FIG. 2. The shock wave profila,,(r) on an RS three-brane
(solid line). It interpolates between the leading order behaviors at
short distance £r~1) and large distance~—logr), in dotted 2This is not surprising, since individual KK modes couple with
lines. Again, we have sét=1. constantG,=M;?.
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physics entering at impact parameters of the order of the s|?
Schwarzschild radius associated to a given center-of-mass Skk(8,0)=Gapa, (23

energy. Precise calculations are way beyond any computa-

tiﬁnal SChem?I availabléit involves _trlee-level graviton ex- - grows finearly withs, just like the four-dimensional term, a
change to all orders, and possibly beyond perturbatiof, ot yhat distinguishes it from other non-linear corrections.

theory), but we will discuss this later in mostly qualitative The expansion parameter for KK correctiond 302, Clas-

termsl.l , I he shock sical corrections to the eikonal, that include the graviton self-
Following [3] (see alsd26]) the shock wave geometry niaraction vertices, but still at graviton tree level, have the

directly yields the relevant information needed to compute : 20/h2— 212 ;
. . o X . expansion parameté&s;s/b“=s/(Mg,b“) [6]. Since we are
the eikonalized gravitational scattering amplitude for two b P 4 (Mpb") [6]

ticl 0] ter of 5 2E. Let b assuming thaMp;>1"1, then the KK corrections will be
particies at large center of mass ene - Leta(s,b) larger than these 4D classical corrections up to enefgies

_be the scattering ampl_itude expressed as a function of tthz |
Impact parametep. In eikonal form \/\/F;'lch Eq. (22), the integral(21) can be evaluated at a
a(s,b) = e219(s) (19 saddle poinbb=bg such that

dé(s,b)

If we identify the impact parametérwith the distance in the gqg=-2 b

direction transverse to the propagation of the shock wave,
b=x'x', then§(s,b) can be read off from the shock wave
metric as As long as the saddle point satisfieg>1, it is justified to
ignore the physics at smallérin the integral(21). Notice
8(s,b) that the momentum exchanged at a given impact parameter is
hyu=8pd(u) : (200 larger than in four dimensions, due to the exchange of KK
s )
modes. Equivalently, the deflected angle,

sl P ’ 24

bg S

Having a(s,b), one can compute the amplitude for a

— 2
given momentum transfet= —q;q;= —|q|?, by transform- 9=2 —t_4GE + I_z , (25)
|ng S bS bS
1 is increased, showing the extra attraction that KK modes

salsi= IEJ d2xgix' (g2 (sb) — 1) induce.
Let us now move to the short distance regibel. In this
4 (o case, keeping just the leading order from Etfl) one gets
- I—”fo dbby(bq)e? D). (21) el
4
5(S,b)— T (26)
It is important to notice here that the Fourier transform is a
two-dimensional one, even if the shock wave front is threeThis eikonal phase is small ift2>G,sl=s/M? , and there-
dimensional. The reason is that we are considering the scafore leads to a perturbative regime, which, for the fixed
tering of particles confined to the brane, and therefore themplitude, is at momentum transfg« 2/(G,sl). This is, the
impact parameter is restricted to the two transverse direction8orn term dominates the expansion, and one can do without
along the brane. The available phase space is reduced {Ae eikonal resummation. This is in contrast to the previous
comparison to particles that propagate freely in the bulk. Assituation, where the amplitude was always non-perturbative,
a consequence, even at short distariced the scattering and dominated by a saddle point. Gravity here is five-
amplitude a(s,t) will differ from the “really five-  dimensional(it involves all the KK models and the interac-
dimensional” one. tion is stronger than it would be in a four dimensional setup.
Let us first consider impact parametérarger thanl. In - But it is not strongly coupled.
this regime, which is essentially four-dimensional, the eiko-  Starting at fixed energM, <E<Mp,, one enters this
nal approach is only justified IE>Mp;, and not forM, regime when the impact parameter gets beloihe fixedt
<E<Mp,. At b>I and energies belowlp,, the gravita- amplitude becomes
tional interaction is very weak and likely to be dominated by
other interactions. But foE>My, gravitons dominate and % s2
we can obtain the eikonal from Eq4.3) and (20). Keeping a(Syt)ZSWSL dbbJ(bq) 5(Sab):47TG4|a- (27)
only the two first terms, we get

2 This is different from the usual perturbative result for grav-
S(s.b)= —G4s( log(b/1) — I—z) (22)  ity, which is (in any dimensioh~Gns_2/q2. The reason has
2b been explained above: although the interaction is five dimen-
sional, the scattered particles are confined to the four-
The KK correction to the leading logarithmic term, dimensional brane.
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For q>2/(G,ls) we enter a strong coupling regime and b |-eeeee 3
the amplitudea(s,t) is again dominated by a saddle point, ’

this time at .
5 4D Eikonal Scattering
G 4S I g + KK corrections !+ 4D classical corrections
gq= _bz— . (28) er (linear in s) " (non-linear in s) be<E
S
3
B

In this case the full eikonal resummation is relevant, and the 4D Black Hole

amplitude evaluated at the saddle point is Physics
l Seee——— __ _ I _ _ _
Gul[s 312 . ) o |
a(s,t)=4m\/—-| ~| eFVCsIim2 (29 £z |
2 \q 8 :
£ &/ // 5D Black Hole,
The non-analytic dependence on the coupling shows the non J‘ Physics |
perturbative character of the amplitude. beqE |
Let us note that the 't Hooft polels3] do not appear in 1M, !
these amplitudes. When the eikonal phase is purely logarith- . . —
M, My IMp, E

mic (i.e., 4D), these poles arise from the—0 region in the
g‘;ﬁgracl)gza' 5HDe rgéggwgy%réfglz elle(g!’;]al (é]jgge:ngotrﬁed'[) FIG. 3. The different regimes for the scattering at enerdes
Vi Vi getling ! >M, and impact parametets>1/M, . The boundaries between

poles dlsappeér.Slnce the ’t Hooft poles. could be inter- regimes are merely indications of where the crossover from one
preted as a remnant of the bound states in the 4D CoulomP.\4vior to another takes place.

potential[7,9,27, it is no surprise that they are absent here,
since the 5D Coulomb potential does not hésable bound The total cross section for producing these black holes

states. can be estimated to be of the order of the corresponding

The results above cease to be reliable when the 'mpa(f}lack hole area. Depending on whether the black hole is a
parameter becomes of the order of, or smaller than the grav|érge or a small one. we have

tational (Schwarzschild radius, R. Indeed, forb<Rg one
expects gravitational collapse to take place. The details,

though, are expected to be very complicated, particularly for o~ S for E>IM?2

intermediate scalds~ R . Although the full scattering prob- Mgl Pl

lem is way beyond the techniques used h@ee[28]), one

can assume this regime will be dominated by black hole

physj_cs. Hence thg discussion \{vill be at a qualitative level. o~ /isz| \ |52 for E<IM3,. (32)
Additional discussion of related issues can be founf28i. M7 Mp)

In a scenario like this, the Schwarzschild radiRg
changes depending on the regime one is in. In the effectiv§ince the particles scatter on the brane, the relevant magni-
four dimensional regime of distances larger thathe clas- tude for producing a small black hole is not the five-

sical gravitational radius is dimensional black hole ardahich is in fact a volumg but
rather its section along the brane, which can be assumed to
R=2G,E. (30) be along an equator of the horizon. Notice also that an effec-
tively four-dimensional black hole will not be formed until

The black hole is a “pancake” in this regime, with a very E>M2(>M
small extent into the bulk~Ilog(Ry/l)<Rs [18,21]. The PI P

physics of these black holes is described by four-dimensional The black hqle; thus Cfeated W.'" evaporate by emission
laws. Instead. at distances shorter than of Hawking radiation. In either regim@arge or small, the

radiation will be emitted mostly along the braft8,30.

8G.E 8G.IE The different regimes in theE,b) plane are displayed in
R= \/ T - (31 Fig. 3. The region marked “weak 4D gravity” is one where
37 37 four-dimensional gravity is weakly coupled and the interac-

tion dominated by single graviton exchange, which we have

T_hese small black hqles are roughly spherical n five dlmer]hot discussed here—the leading amplitude is the same as the
sions. The growth wittE changes from one regime to the

. : . . eikonal, up to a phase. The regions labeled “eikonal” are
other, with some smooth interpolation at distancels ones where gravity is strongly coupled, and the full eikonal

resummation of the amplitude is needed. The amplitudes are
non-perturbative there. The curbe=Rg is an interpolation
3For the eikonal phasé6) one can actually compute exactly the between Eqgs(30) and (31). Note that the scattering is di-

amplitude, rectly sensitive to the extra dimensions only at energies be-
a(st)=8nG(s%q)J (7 ™*\2G,sIq)K (e ™*\2G,s10). low IM3,. Going to higher energies does not actually lead
Here one sees explicitly that the 't Hooft poles are absent. into five-dimensional physics.
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The picture should be valid down to impact parameters For an illustration, consider the case where the extra di-
b>1/M, (or the string length where new physics takes mensions are compactified on a tofli& Then, instead of

over. This regime is beyond the techniques used here. Eq. (38), the solutions are most easily obtained by using the
method of images, i.e., by constructing a periodic array of
IV. EXACT SHOCK WAVES IN THE ADD SCENARIO (4+n)-dimensional shock waves. Since the equations are

) ) _ linear, one simply superimposes the individual solutions. If,
The construction of exact shock waves in ADD scenariogoy simplicity, the torus is a square ongd~ya+L, then

is simpler than in RS. We discuss it briefly here. standard manipulations yield
The ADD scenario consists of a three-braadmitting a
Poincareinvariant vacuum living in a (4+n)-dimensional hyy(U,F,Y) = —4G,ps(u)

spacetime. In the most basic setup, the bulk is empty and the
gravitational back reaction of the brane is neglected: the

2 ' —ingy?/L
brane is simply a 3 1 hypersurface embedded in the bulk. X|log(r9)—2 22” Ko(mpr)e "=,
The extra dimensions are supposed to be compactified on a fa <
certain manifoldM. If the bulk is empty, then the metric on (39

M has to be Ricci flat. Hence, if we label the brane coordi-
nates byx*, and the transverse coordinates §, the where the sum is over vectong on a square lattice exclud-
vacuum is ing the origin(the zero mode has been split alregdyndn
A =(n,n,)*? yields the mass of the Kaluza-Klein modes,
ds?= 7, ,dx*dx"+gapdy3dy®, (33)  =n/L. Recall thatk,(m,r) is the Yukawa potential in two
R dimensiongi.e., on the wave front on the brandhe solu-
whereg,y, is the metric onM, and the brane is at a certain tion is an exact one.
point in M, say, aty?=0. One can repeat the analysis of Planckian scattering per-
The linearization of the Einstein equations that occurs foformed in the previous section. Details may chafeg., the
the solutions we seek simplifies again the construction. Alassical gravitational radius at short distances scalék;as
plane-fronted wave will be of the form ~EY(* 1)y put the qualitative features should be similar.

— +dxdx + 2_,_‘ ady b
ds’=—dudv +dxdx + hy,(x,Y) U+ gardy*dy (34) V. CONCLUDING REMARKS
In this paper we have presented solutions for gravitational
shock waves propagating along branes, Et@), (15), (39),
and argued they are in fact exact solutions, reduced to a
V24 V2)h, (X,V)= — 167G, -t (x)8M(y), (35 single quadrature or series. For the case of the RS2 model on
(Vict Vy)huu(X.y) 4+t S(Y), - (39) a two-brane, the solutions admit a simple explicit fot).
where we have split the Laplacian operator in the wave front [N the past, gravitational shock waves have been a useful
into the brangi and the bquVf, parts. The problem is now tool for studying extreme effects in quantum gravity. As
a rather standard one. As in the RS case, a way to solve thuch, besides the studies of forward scattering at Planckian

equation is by first Fourier-transforming the brane coordi-€nergies, they have also been studied within the AdS-CFT
nates, correspondencg32]. In fact, the context in the latter case is

somewhat related to the one in this paper. In both cases the
(—q°+ Vg)huu(q,y)z — 167G, ntuu(@)8™(y). (36)  shock waves propagate in an AdSpacetime. However, it
appears the solutions considered[B82], where the wave
One now needs thémassive EuclideanGreen’s function in  propagates into the bulk of AdSare different from the ones

(i=2,3). For a lightlike source localized on the brane the
Einstein equations become

the transverse bulk space, we discuss here, which propagate along a brane at a fixed
S - radius from the “center” of the AdSspace. Shock waves in
(—a°+V))G(q,y)=5"(y). (37  curved spacetimes and higher dimensions have also been

studied earlier in(33], in particular there is some overlap

For the null pointlike sourc€9), the solution is then with our elementary discussion in Sec.4V.

d2q _ The shock waves on the brane may be thought of as the
huu(U,Xi,y)Z—167TG4+np5(U)f zeiin'G(q,y), limiting cases of black holes on the brane when infinitely
(2m) boosted, even though such black hole solutions remain un-

(38) known for n>2. However, there is a significant difference

between shock waves and black holes in these brane-world
models. For black holes of a given madson an RS brane
there are two different regimes, which could be called the
large black hole” (or “black pancake’) and the “small

which is the analogue of E@11). Obviously, one can as well
give the solution as an analogue of Ef5) by finding the
eigenfunctions of the operator in E¢37). As remarked
above, it is the linearized character of the equations which
allows to perform the entire construction. The main problem
lies in calculating the Green’s functio(87) in the extra
space. 4Other work in the string context can be found[B¥].
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black hole” regimes, depending on whether, roughty>1 We have not discussed string effects. It is not clear
or M<lI, respectively. These two regimes could be clearlywhether the results ¢6] in a flat space can be applied to this
distinguished in the exact solutions constructed1i8], and  setting even at distances much shorter thamhere the cur-
we have discussed some aspects in Sec. Ill. There is no sughture effects of AdSwould be negligible. One would first
distinction for the shock waves: the description is the samgeed a concrete embedding of RS2 in string theory, and even
whetherp is large or small, and the shape of the solutionthen, solving string theory in the presence of the bramel
only gets rescaled by changifg This is a consequence of presumably of RR flux might not be easy. If5] it was
the linearity of the solution, which implies a simple linear found that diffractive string effects may be relevant even at
dependence op. considerably large impact parameters. This would add new
For black holes in the compact spaces relevant to ADDyegimes to the diagram in Fig. 3.
there are also two different phases according to whether the There are a number of sources of other corrections that we
horizon rgdius is smaller or larger than Small black holes pgve entirely ignored, such as those due to exchange of par-
are localized on the brane, whereas large black holes afg:jes other than the graviton, or the finite rest mass of the
black strings which are translationally invarighence delo-  scattered particles. Furthermore, any effects due to finite
calized along the extra dimensioriso pancakes heyeThe  prane thickness have also been neglected. Again, if the brane
Gregory-Laflamme instability31] separates the two phases. hickness is on the scale of the fundamental lendtht, the
In contrast, the shock waves are always localized. As th?egimes we have considered are not able to resolve it.
energy of the shock wave is changed, the solution simply “rina|ly we made some mention in the Introduction to
scales linearly witfp and there appears to be no reason whyy,orks where the gravitational scattering at high energies has
it should delocalize. Notice the soluti@89) is an exact one, poan studied for its possible relevance to the problem of
whereas for black holes the exact localized solutions in &ytreme energy cosmic ras2). In most of these works the
compact space are unknown. “Shock wave strings” whichgcattering has been considered in the Born approximation, on
are translationally invariant alon_g the extra dlmensllons.ca@he basis that at the relevant energies gravity is presumably
be constructed, but they require translationally invariantyst sirongly coupled. We shall not enter at this stage into the
sources and do not seem to be relevant Rerefact, the  giscussion of how to correctly compute the scattering for the
shock wave strings are marginally stable to perturbations Ofg|eyant process, and how to account for unitarity. Neverthe-
the Gregory-Laflamme type. The absence of an instability i§ess it appears like the phenomenological possibility and

not.surprising if one considers that shock waves possess NQnsequences of TeV-mass black holes forming in cosmic
horizons and hence no entropy. Thermodynamical arguments,, coljisions are still to be developed. The total cross sec-

play no role here. , tion is presumably dominated by other softer processes, but
Regarding Planckian scattering on the brane, we havgg| the consequences might be interesting. At high enough
mapped out a considerable portion of the different regimegergies one should only need classical general relativity to

that should be amenable to a semiclassical analysisbFor gegcripe the process: other interactions and quantum effects
<l, the expressions obtained for the fixedmplitude ac-  \yi| remain hidden behind the horizon.

count for the fact that the interaction between the particles is
five-dimensional, but the particles themselves move only in
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