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Effect of constraint enforcement on the quality of numerical solutions in general relativity
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Brodbecket al. have shown that the linearized time evolution equations of general relativity can be extended
to a system whose solutions asymptotically approach solutions of the constraints. In this paper we extend the
nonlinear equations in similar ways and investigate the effects of various possibilities by numerical means.
Although we were not able to make the constraint submanifold an attractor for all solutions of the extended
system, we were able to significantly reduce the growth of the numerical violation of the constraints. Contrary
to our expectations this improvement did not imply a numerical solution closer to the exact solution, and
therefore did not improve the quality of the numerical solution.
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[. INTRODUCTION the constraints are satisfied. Although our method is differ-
Many physical theories are based upon systems of partiant, we should mention that already in R&f] such a change
differential equations which contain more equations tharhas been suggested. Furthermore, to our knowledge, we per-
variables such as Maxwell's equations or general relativityform the first systematic analysis of the correlation between
The initial data for the time evolution equations cannot bethe violation of the constraints and the quality of humerical
given freely; they must satisfy constraints. It is necessary fosolutions in general relativity.
the consistency of the theory that for any data of the time As the solutions of the field equations of general relativity
evolution equations which initially satisfy the constraints, thesatisfy the constraint equations for all times, the solutions are
constraints are satisfied for all times. This property is callechot affected by modifications of the evolution equations for
the “propagation of constraints.” data which do not satisfy the constraints. Let us denote the
Let us consider Maxwell's equations in vacuum as asubspace of the function space of solutions to the evolution
simple example. The time evolution equations tell us that thequations which satisfy the constraints as “constraint sub-
time derivative of the electric and magnetic field are propor-manifold.” In Ref.[3] it has been proven, that at least for the
tional to the curl of the magnetic and electric field. The van-linearized Einstein equations the constraint submanifold can
ishing of the divergence of the electric and magnetic field ardoe made an attractor for the linearized time evolution equa-
the constraints. It can easily be shown that the constraintsons.
propagate. In cases where the solutions of a system of partial If the solution of the evolution equations automatically
differential equations are determined by numerical means wapproaches the constraint submanifold, the system of evolu-
cannot expect to get an exact propagation of the constraint§on equations carries a dissipative term in it, and therefore,
Due to the discretization of the equations the numerical sothe numerical solution will also approach the constraint sub-
lution deviates from the exact solution by the discretizationmanifold provided the grid is not too coarse. Therefore, to
error. As a consequence, the constraints are not fulfilled exavoid a numerical violation of the constraints, it is sufficient
actly after having evolved for some time, even if the initial to make the constraint submanifold an attractor of(thedi-
data solved the constraints. In the spirit of Hdff we call a  fied) evolution equations. In such a case the constraint sub-
discretization of the time evolution equations compatiblemanifold is “asymptotically stable.”
with the constraints, if the numerical violation of the con- In Brodbecket al. [3] a general method has been pro-
straints has the same convergence order as the discretizatipnsed to derive symmetric hyperbolic extensions of symmet-
of the time evolution equations. Unfortunately the experi-ric hyperbolic evolution equations with first order constraints
ence of numerical relativity shows that compatibility is not which are promising candidates for asymptotic stability.
sufficient for obtaining numerical solutions with small nu- These extended systems are calledystems. In the same
merical violations of the constraints. In many cases the vioarticle it has also been proven, that at least in the case of the
lation of the constraints seems to grow at least exponentiallfinearized Einstein equations there exist parameters such that
with time. This effect is believed to be a major contribution the constraint submanifold is indeed an attractor for the
to the numerical error of numerically calculated solutions. modified evolution equations.
In this work we examine the effect of changing the evo- As the extension of the analysis to the nonlinear Einstein
lution equations outside the submanifold of data on whichequations seemed to be beyond the scope of present analyti-
cal techniques, we took a numerical approach in this paper
and investigated the following questions: First, can we, sim-
*Email address: florian@mpa-garching.mpg.de ply by way of numerical experiments, findhasystem for the
TEmail address: pth@epost.de nonlinear Einstein equations for which the constraint sub-
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manifold is attractive? And secondly, is the numerical solu-equations and first order constrain®. There are various

tion of the modified systems closer to the exact solution thapossibilities to write Einstein’s equations in such a form.

the numerical solution of the unmodified system? To reduce In our work, we take the conformal field equatidds-6]

the complexity and to have exact solutions available to comin the first-order formulation described in R§F]. Looking

pare with, we have restricted our investigations to solutiongt Eqgs.(13) and (14) of Ref.[7], it is easy to see that Ein-

with two Killing vectors. stein’s equations and their extension, the conformal field
In our experiments we were able to find a varietydof  equations, are a “quasilinear version” of Maxwell's equa-

systems for which the violation of all constraints is im- tjons, We use the conformal field equations instead of Ein-

proved. However, we did not find a single system for whichg;eir's equations to obtain an easy and well defined treatment

the constraint submanifold is asymptotically stable. Surprisqt grig poundaries, as discussed in Rif]. Since we are

!ngly, the. improvement in the cons}ramt V|qlat|on did not primarily interested in the effect of the nonlinearities, we can

|mply an improvement of 'the numerical solution. . reduce the computational complexity by restricting ourselves
It is important to mention that a general attractive forcet toticallvA3 time$8]. which ar tim

towards the constraint submanifold does not guarantee the, asymploticallyAs spacetimesal, ch are spacetimes

numerical solution to approach the exact solution correy\/ith two commuting, hypersurface orthogonal Killing vector

sponding to the initial data used. Regardless of the system Jfe!ds- We align they and z coordinates with the Killing

the field equations of general relativity, there are additionaPPits. Our solutions do therefore not depend on the space-
degrees of freedom which can be affected by the additiond|k€ coordinatey andz. Under these symmetry assumptions,

terms in theh system. In our numerical experiments, thesethe conformal field equations can be written in the following
additional degrees of freedom were affected in such a waiprm:
that in general the numerical solution of the modified system
was not closer to the exact solution, even if it was closer to

the constraint submanifold.

This paper is structured as follows. In Sec. Il we introduce
parametrized. systems and describe the simplifications im-
plied by the symmetry assumptions. In the next section we
sketch the numerical implementation, recall important fea- P
tures of the exact solutions used in the comparisons, and —f—bs=0, (2.1b

~ 0 Jd
A—rg+A- g—be=0, (2.13

define the measures used for quality assessments. Section IV at
contains the actual numerical investigations, where we de-
scribe the performed probing of the parameter space. Using
selected examples we demonstrate the influence of the indi- d
; ; ; ; —f—cs=0, (2.109
vidual parameters on the quality of the numerical solution. IX

Il. THE PARAMETRIZATION OF THE A SYSTEM
with a time coordinaté labeling the spacelike hypersurfaces,

The construction of a system is based on a split of the _ o : )
y P x being the non-Killing spacelike coordinate, and

system of equations into symmetric hyperbolic evolution

9= (K11, 11,E22,E33,B23, @Ry, MURyy), (2.2a

f=(h11,h22,h33,Ko0,K33, Y122, Y33, E11, P PRg0, M DR33,0,00,Q 1, ). (2.2b

The tensoth,, is the 3-metrick,,, the extrinsic curvature of The variables, which are functions bfand x only, have
the spacelike hypersurfacesy?,. the connection for been split into two classes, callgdandf. For the variables
ha,, OYR,, and YR, parts of the tracefree part of the denoted byf the system contains evolution equations and
Ricci tensor,E,, and B, the electric and magnetic part of constraints. Since there are only evolution equations for the
the conformal Weyl tensof) the conformal factor{), and  variablesg, these represent the degrees of freedom.

(), its normal and space derivative, anda second deriva-  When we evolve initial data forward in time by means of
tive of the conformal factor, as de~scribed in more detail inthe evolution equation$2.1a and (2.1b), the constraints
Ref. [7]. The symmetric matrice®\, A and the vectors (2.19 satisfy an evolution equation from which the propaga-
by, bs, andc; depend ong, f and gauge functions. The tjon of the constraints can be derived. In the following we
matrix A is positive definite, hence the system consisting ofwill call Egs. (2.13 and(2.1b the “unextended system.” To
Eqgs.(2.19 and(2.1b is symmetric hyperbolic. obtain the new, extended system, thesystem, additional
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variables, called\, are introduced and the constraint equa-system. These elements are the construction of initial data,

tions are extended to evolution equations for the new varithe scheme to numerically integrate the time evolution equa-

ables tions, and the measures used to assess the quality of our
numerical solutions. In addition we will briefly describe the

- (9 (9 . . .
AEngA&g—bgﬂLC)\:O, (2.39 exact solutions which we used as reference solutions.
P P A. Constructing hyperboloidal initial data
—f+B—N—bs+DA=0, (2.3b In order to analyze the numerical behavior of thesys-
at X . s
tem, we first have to construct initial data for the conformal
field equations. These data are called hyperboloidal initial

J J

—N+BT—f—BT¢c;+EN=0. (239 data.
ot IxX In Ref.[9] Sec. 2 the procedure of calculating initial data
has been described in detail for the case without any sym-
metry assumptions. We slightly modified the procedure by
making use of the symmetry assumptions, namely that our
spatial grid is only one-dimension€élD). For an exact solu-
tion we prescribe the 4-metrig,, and the conformal factor

Q) as functions of {,x). From those we calculate our vari-
ables @,f) and the gauge source functions numerically. The
Bode has also got the functionality to perform a coordinate
transformation to express the exact solution in new coordi-
Rates {',x"). In the calculations presented in this paper we
used\=0 as initial setting fo\.

The quantitie8, C, D, andE are matricesB denotes the
transposed matrix dB. This system is constructed in such a
way that(1) it is symmetric hyperbolic an(®) in the case in
which the variables\ vanish identically the system is re-
duced to the original syster{2.1). Because of the second
requirement, the -system is a generalization of the original
system. The first requirement implies well-posedness of th
initial value problem. Apart from the restrictions resulting
from the two conditions above, the choice of the parameter
B, C, D, andE is free. It is the aim to choose them in such
a way that for all solutions of the system the variables
decay, which then implies that the solution is driven towards
a solution of the constraints.

We will now shortly explain why we have introduced In order to discretize the evolution equation
these parameters. Let us assume that the constraint equations
are not satisfied exactly, i.e},f—c;#0, and\ =0 initially. dutA(u)du=b(u) 3.
In the case of vanishing, the variables\ are the time inte- . .
gral of the violation of constraints—as a result of the newfor the vector of variablesi, we adjust the second-order
evolution equation2.39. For nonvanishingE, in addition, ~Scheme described in R€i] Sec. 3.1 to our symmetry as-
the EX term will have a damping or amplifying effect onto Sumption, i.e., we per_for_m a Strang splitting ansatz to split
the variables\, depending on the eigenvaluesifFor posi- €duation(3.1) into a principal part
tive eigenvalues we expect damping, for negative eigenval-

B. The integration of the time evolution equations

ues amplification. The information about the violation of du+A(u)au=0 (3.2
constraints, saved in the variablesis coupled back to the
variables ¢,f) by the termsBd,\, D\, andC\. and a source part
As the conformal field equations are a generalization of
Einstein’s equations we can relate the constraitsc, or du=b(u). (3.3

more general, the constraints of the conformal field equations

without symmetrieg7], to the momentum and Hamiltonian We then solve the principal paf8.2) by the rotated Richt-
constraints of the standard+3l equations. The Hamiltonian myer scheme. With one spatial dimension, this is equivalent
constraint and the momentum constraint form a subset of thé9 the standard second-order Lax-Wendroff methad].
constraints used in our system. Contracting @4b) of Ref. ~ The source part is integrated by the pseudoimplicit Heun
[7] with the 3-metrich® and restricting it to the case 6  scheme. As described in R¢B], principal and source part
=1, we recover the momentum constraiff)V,(k3® are combined in different order, depending on whether the
—habk):O, with k=kabhab. Similarly, contracting Eq. time step is odd or even, to achieve second-order conver-

(140 of Ref.[7] twice and evaluating the 3-Christoffel sym- gence.

bols, one can deduce the Hamiltonian constramR+ k? In Ref.[9] it was shown how superior a 4th order scheme

—k,,k?°=0, where ®)R denotes the Ricci scalar of the would be. Ina normal application this superiority would be a
3-metric. big advantage—here it is a disadvantage, however: We are

going to analyze the impact of a drift away from the con-

Il THE NUMERICAL IMPLEMENTATION straint submanifold on the quality of the solution. This drift

originates in the discretization error. If the scheme is very

In this section we will describe the basic elements of theaccurate, the drift is very small, too. But then, the differences

numerical implementation which we use to compare then the quality of the numerical solutions are also very small,

quality of solutions obtained by solving the system with  which makes it harder to distinguish between them. This
the quality of solutions obtained by solving the unextendecdexplains why we use the second-order scheme.
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In the runs described in Sec. IV we cover the spacelike t
hypersurface with 161 grid points. The length of the time
step is chosen dynamically by evaluating the Courant- it
Friedrichs-Lewy condition for each time slice. If not explic-
itly stated otherwise, we use half of what would be allowed
by the Courant-Friedrichs-Lewy condition.

C. Measures of quality

We use the following measures to analyze the quality of a
numerical solution. First, we determine the numerical viola-
tion of the constraints as a measure of the distance from thgh
constraint submanifold. To be able to present our findings
with a limited number of plots we condense the information
by using the “norm”

FIG. 1. Conformal diagram of an asymptoticaly8 solution.
e shaded region corresponds to the physical spacetime.

where the function$!(t,x) andW(t,x) are solutions of cer-
tain differential equationgsee Ref[8]). We restricted our
analysis to two casedl=0 andW=0, the A3 solution on
[[Adl[(t):= \/E f Ci(t,x)%dx, (3.4 the one hand, antl = — 1/256¢2+x2)2 and W= }(t2—x?),
bJae=o on the other hand. The second case, unlike the first one,
contains gravitational radiation. Both solutions behaved very
similarly in our numerical experiments. The amount of gravi-
tational wave content does not seem to be significant for the
Lgrift away from the constraint submanifold. For shortness we
only present calculations done with tA& solution.
The solutions given in Eq.3.6) are already extended be-

where the summation includes all constraiGd,x). In the
actual numerical calculations the integral is of course re
placed by a sum over all grid points with>0, which rep-
resent physical spacetime. In the conformal approach to n
merical relativity grid points with(Q<0 represent a formal
extension of the grid without physical relevance. Thereforeyond the two null infinities.7, and 7, at t=—x and t

it would be wrong to include them into the measure. a Y :

Secondly, we compare our numerical solution to the exact}”’ the shadgd region in Fig. 1 shows the physmallpart..ln
solution. Since the numerical calculation  of LS 'épresentation the point (0,0) represents future time-like
(LDR,, E...B.p) from the given solution d.p,Q) in- infinity i . The metric _and curvature quantities d|vergg there.
( ab»—ab:=ab/ 9 ab> When approaching this point in our numerical evolution, the
voIvesAsoIvmg elliptic equationtsee Ref[9]), we compare  jpqq)te value of several quantities must increase strongly,
(QMDR,,, Q%ELp, 0B,p) to the corresponding quantities which implies increasing absolute errors. However, we con-

from the exact solution and call the result “pseudodiffer-firmed that, even when approachirig, our numerical
ence” P(t,x). In Ref.[9] it was found that with respect to scheme is second-order convergent, the difference between
the relative error this is equivalent to the difference in thethe numerical and the exact solution as well as the violation
variables. Again, to be able to present our findings with &f constraints converges with a convergence rate of two. In
limited number of plots, we condense the information bythe numerical experiments we start our calculationt at

using the “norm” =—1 and stop at=—1/2.
In other coordinates Fig. 1 looks different, e.g., one can
1A |(1) = \/E f Pi(t,%)2dx, (3.5 choose the coordinates such that gis are at constant’
T Ja>o values and thait" lies at a conformal tim¢’ =<. Since our

o ) _ findings are not influenced by this change of coordinates we
where the summation includes the variables in the tupleefrain from a presentation.

(g,f), but does not include the variablas

D. The exact solutions used in the numerical experiments IV. THE QUALITY OF THE NUMERICAL SOLUTION:
PARAMETER STUDY
Only a few exact solutions of Einstein’'s vacuum equa- ) ) ] )
tions possess both high symmetries and time dependence, or I this section we discuss the effect of the various param-

even better gravitational radiation. The asymptotically ~ ©ters in thex system(2.3. In the case of the 1D conformal

solutions do. Thev can be written as field equations, the matricds C, D, andE take values in
y R414 R714 R4 and R4 Since the parameter space
4.2 is infinite, we had to restrict ourselves to exemplary cases; an
9= =" (—dt*+dx*) exhaustive study by numerical means is impossible.
Vte+Xx
1 A. O i
+ S0 (eMdy’+e VdZ), (369 veiew

Before going into detail, we discuss the main result of our
numerical experiments. Although we were not able to find a
0= E(tz_xz) (3.60) suitable choice of parameters such that the constraint sub-

4 ' ' manifold became an attractor for all times, we were able to
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FIG. 2. Constraint norm|A.||(t) for the A system of run 7
(dashed lingin comparison to the unextended systsulid line). FIG. 3. Pseudodifference norfi\ 5| (t) for the X system of run
7 (dashed lingin comparison to the unextended systélid line).

improve the violation of constraints up to a factor 5 com-

pared to a numerical evolution of the unextended systendashed lines in Figs. 2 and 3 show the norms for the viola-
There are strong numerical indications that this improvemention of constraint43.4) and the pseudodifferenc8.5) for a

is obtained at the cost of a solution which is worse withchoice of paramete®8=3-1, C=0,D=0, andE=1 in the
respect to the pseudodifference norm. As an example, the system(by 1 we denote the 14 14 unit matriy. The solid

TABLE |. Results of the numerical experiments for variousystems. A number in the column param-
eter denotes a diagonal matrix with the number on the diagonal. For the notation used in the column norm,
please refer to the text.

No. of Parameter Norm
runs B ca D E [|Ac] [[Az]]
1 1 (1,0) 1 1 - T
2 1 (1,0) 12" 1,2° - 1
3 1 (1.0) 1 12° - 1
4 1 (1,0) 12" 1 - T
5 |b| €[0,1] (0,0) 0 1 — 1
6 1.2 (0,0) 0 1 - 1
7 3 (0,0) 0 1 - +
8 1 (0,0) 0 10 + +
9 1 (0,0) 0 ee[—1,1] - T
10 1 (0,0) 0 -3 - -
11 1 (0,0) 0 -10 1 +
12 1 (0,0 0 E)11=(E)gg=—3° - -
13 1 (0,0 0 E)n=-3° - T
14 1 (0,0) 0 E)ge=—3° - T
15 1 (0,0) |d| [3,15] 0 — +
16 1 (£c,0), c=5 0 0 - +
17 1 (0,0) +10 -3 - +
18 1 (0,0) 10 1 - !
19 1 (0,0) 5x¢ 1 - +

4C=(C,;,C,) e R"* whereC,,C,eR"".

b1,2 denotes a diagonal matrix with+I\? at (i,i).

CAll other elements vanish.

d>=< denotes a diagonal matrix with space depending diagonal elements.
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lines show the corresponding results for an evolution of the

unextended systert®.1). Figure 2 shows that the system 0.4Q T T T
initially attracts towards the constraint submanif@idtil t i
=—0.85), before the violation increases with time. Figure 3
shows that the pseudodifference norm at the same time in-
creases more rapidly right from the beginning than in the
numerical solution of the unextended system.

In Table I, we present a summary of the performed nu-
merical experiments. The numbers in the parameter columns
denote the value of the diagonal elements of the correspond-
ing diagonal matrix. In the cases in which we studied a range ,
of diagonal elements, we condense by combining to param- 0.00k
eter intervals with similar behavior. The observed develop- -1.00 -0.90 -0.80 -0.70 —0.60 —0.50 -0.40
ment of the constraint noriA .|| and the pseudodifference tme ¢
norm ||Ap|| is described using the following notation.

—/+: The norm is smaller/greater than that of the unex- - Hacl )

tended system in the whole domain of time integratioh; (dashed I|r?§3 Qnd 6(dotted ling in comparison to the unextended
The norm is smaller/greater than that of the unextended syss—yStem(SOIId ling).
tem after small integration times and greater/smaller at thenerical experiments for systems with different vallbesve

end of the integration. use the same, most restrictive time step for all runs.

The parameter choices for the run 1 were based on our For small values ofo we do not observe a significant
expectations explained in Sec. Il. With this choice we werechange in the behavior of the system compared to the
able to reduce the growth of the violation of constraints, butineéxtended system, as can be seen in Figs. 4 and 5. In these
we neither made the constraint submanifold an attractor ndf9ures we plot the constraint nor(8.4) and the pseudodif-

- : : ference norm(3.5) for b=—1 (dashed lingand forb=1.2
ldlf.l we gnprove thi pseu?jo?r:fffrt(;nce aF tg; end 0]; thte eVo(dotted ling in addition to the unextended systefwolid
ution. since we observe at the vaniablesgréw faster line). The curves are very similar, as are all other curves

and to larger values than we had expected, we added term$,m the runs summarized as run number 5 in Table I. There
proportional tox? (runs 2-4, to increase the damping for is a slightly reduced growth in the constraint norm and an
nonvanishing\’s. We did not observe any significant change increase in the pseudodifference norm at the end of the evo-
in the behavior. This may have two reasons: Either the additution.

tional damping is too weak, a change in the parameers For a value ofb significantly greater than Irun 7 and
andE alone is not sufficient, or these parameters are not th&igs. 2 and Bthe constraint norm decreases initially and is
appropriate slots. To obtain a better understanding of th@ways smaller than in the unextended system. In contrast, as
effect of the single parameters we performed the numericgtréady mentioned, the pseudodifference norm is always
experiments 5-19 whose results we are going to discuss #R9€r than in the unextended system.

the following subsections.

0.30F

0.20F

violation of constraints

FIG. 4. Constraint nornj|Ac||(t) for the runs 5 withb=—1

C. Influence of the parameter E

B. Influence of the parameter B In runs 8-14 we studied the role of the parameier

In the experiments 5—7, we studied the influence of thdXing the value o to B=1. A nonzero value oB is indeed

parameterB setting B proportional to the unit matrix8
=Dbl, and varyingb. The matrixE equals the unit matrix in 0.008
all cases. The choice of the paramdiethanges some of the I ,
characteristics of tha system. Absolute values tfgreater ] '
than 1 imply that thex system has characteristic speeds 0.0081
larger than the speed of light. To avoid any influence of the
grid boundary treatment on the numerical solution in the
physical part of the grid—in the cagb|>1 the outer grid
boundary is no longer causally disconnected from the physi- I
cal part of the grid—we moved the grid boundaries further 0.002
out, something one can easily afford to do in a 1D calcula- I
tion with moderate valueb. For our purposes this was suf-

0.004

pseudodifference

0.000 L

ficient and we, therefore, did not discretize the analytic treat- 100 090 —0.80 090 —060 —0.50 —0.40
ment of the initial boundary value problem for thesystem time t

which would guarantee that no constraint violation is fed in

from the grid boundary. Fojb|>1 the maximally allowed FIG. 5. Pseudodifference norft||(t) for the runs 5 withb

time step is smaller than that of the unextended system due —1 (dashed linpand 6(dotted ling in comparison to the unex-
to the Courant-Friedrichs-Lewy condition. To compare nu-tended systentsolid line).
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0.30F 0.30

0.20

violation of constraints
violation of constraints

0.10F

0.00k 1 0.00E 1
—~1.00 —0.90 -0.80 —0.70 —0.60 —0.50 —0.40 ~1.00 —0.90 —0.80 -0.70 —0.60 —0.50 —0.40
time t time t

FIG. 6. Constraint norni|A.||(t) for run 10 in comparison to FIG. 8. Constraint normj|Ag||(t) for run 15 with d=10 in
the unextended systefsolid line). comparison to the unextended systé&sulid line).

evolution of the constraints and the pseudodifference com-

necessary i is to measure the violation of'th.e constraints. pared to the unextended system. However, in comparison to
We choose the valuB=1, as the characteristic speeds de-rn 10, the results are worse.

termined byB then agree with speed of light which seems to

be a natural choice for the field equations of general relativ- D. Influence of the parameter D

ity. In addition, the results in the previous subsection were ) ) ) ]

rather insensitive to the exact value of the param@tier this With the experllment' 15, Weh StUd_'ehd the ||jfluiance of a

part of the parameter space. Changing the value of diagon§ nstant, cﬂagona mgtr@ together .W't a matrB= 1. !n

elements for a constant diagonal matfixin experiments all runs with nonvanishingD the violation of constraints

8-11, we found the best results for the violation of the con-COLIId be |mprove_c¢see, e.g., Fig. 8 fod =.1O) at the cost of .

straints and the pseudodifference for a valueEsf —3 1 a worse pseudodifference. The constraint and the pseudodif-
: . o = ference norm are identical for runs witb=d 1 and D=

(Figs. 6 and Y, where the variables are amplified by the

. . ) . —d1. This property results from a symmetry of all time
EX term in thex system. With this choice of parameters, the o, 4 jiytion variables in Eq2.3) under the simultaneous tran-

pseudodiffergnce norm can be slightly improved during the;ion D——D, x——x for this specific choice of param-
whole numerical integration up to=—0.5, but we stress giers For thed3 solution, all evolution variables at a fixed
that this improvement is not significant. We checked the retjme are even/odd functions on the space coordirafer a
sults for this run after a longer integration tinfep tot= " gjagonal, constant matri®, the termDX couples to an even/
—0.3). We then found a worse pseudodifference norm comgqq functionf, the corresponding;, which has, according
pared to the unextended system. In runs 12—14 we put onky, Eq.(2.30, the opposite symmetry, as it measures the cor-

single diagonal elements &0 -3, (E)11, and €)gs, Which  responding constraint, which involves one space derivative
influence directly those two constraints which are most veqy ¢, |

hemently violated. These constraints are the constraints for
the quantitiesh,; and E;;. Only affecting both constraints

. . . ; E. Influence of the parameter C
with our choice of parameters can improve the numerical

In the experiments with a nonvanishing mat@xrun 16
the violation of the constraints was only improved at the cost
of a worse pseudodifference. As the result for the constraint
norm is similar to that in Fig. 8, and the result for the
] pseudodifference norm is qualitatively given by Fig. 3, we
8 refrain from presenting figures for run 16.

0.008 [T T T

0.006 -

r F. Influence of the parameters D and E
0.004 -

Motivated by the good results for the pseudodifference in
] run 10 and for the constraints in run 15, we studied the
b correspondence of nonvanishing, diagonal param&easd
] E for a parameteB=1 in runs 17-19. Using the same pa-
0.0001 ‘ ‘ ‘ ‘ ‘ rameterB, C, andE as in run 10, but now with a nonvan-
100 —090 —0.80 —070 —0.60 —050 —0.40 ishingD, we could not improve the numerical solution in run
time t 17. Hence, in runs 18, 19, we again stuck to our original
choice of E=1. In run 18, the pseudodifference first in-
FIG. 7. Pseudodifference norfii p||(t) for run 10 in compari- ~ creased, before approaching the curve of the unextended sys-
son to the unextended systésolid line). tem at integration times of aboti — 0.5 (Fig. 9). In experi-

pseudodifference

0.002
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0.008] ] significantly reduce the violation of the constraints, but we
also found that this improvement did not imply a smaller
numerical error.

Furthermore, we found that the significant improvement
] in the violation of the constraint did not prevent the solution
g from eventually running away from the constraint submani-
] fold, i.e., the\ systems used do not inherit the property of
] asymptotic stability from the linear system. Similar experi-
] ence with the semilinear SB)-Yang-Mills equationg11]
and the study of a simplified model syst¢fr?] suggest that
0.000L a more balanced choice of parameters of kheystem is

~1.00 —0.90 -0.80 -0.70 —0.60 ~0.50 —-0.40 needed to achieve an attractive force towards the constraint

time t submanifold for all times. Recent analytic results by Heinz-

Otto Kreiss and Peter Humer give sufficient conditions for
asymptotic stability. As we found a strong correlation be-
tween a smaller violation of the constraints and a worse nu-
merical solution in thex system we suspect, however, that
ment 19, we chose the matrix=5x 1 in order to keep the asymptotic stability does not necessarily imply a smaller nu-
symmetries of théA3 solution. Again, the constraints were merical error.
only improved at the cost of a worse solution.

0.006

0.004

pseudodifference

0.002

FIG. 9. Pseudodifference norffA || (t) for run 19 in compari-
son to the unextended systdpolid line).
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