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Effect of constraint enforcement on the quality of numerical solutions in general relativity
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Brodbecket al.have shown that the linearized time evolution equations of general relativity can be extended
to a system whose solutions asymptotically approach solutions of the constraints. In this paper we extend the
nonlinear equations in similar ways and investigate the effects of various possibilities by numerical means.
Although we were not able to make the constraint submanifold an attractor for all solutions of the extended
system, we were able to significantly reduce the growth of the numerical violation of the constraints. Contrary
to our expectations this improvement did not imply a numerical solution closer to the exact solution, and
therefore did not improve the quality of the numerical solution.
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I. INTRODUCTION

Many physical theories are based upon systems of pa
differential equations which contain more equations th
variables such as Maxwell’s equations or general relativ
The initial data for the time evolution equations cannot
given freely; they must satisfy constraints. It is necessary
the consistency of the theory that for any data of the ti
evolution equations which initially satisfy the constraints, t
constraints are satisfied for all times. This property is cal
the ‘‘propagation of constraints.’’

Let us consider Maxwell’s equations in vacuum as
simple example. The time evolution equations tell us that
time derivative of the electric and magnetic field are prop
tional to the curl of the magnetic and electric field. The va
ishing of the divergence of the electric and magnetic field
the constraints. It can easily be shown that the constra
propagate. In cases where the solutions of a system of pa
differential equations are determined by numerical means
cannot expect to get an exact propagation of the constra
Due to the discretization of the equations the numerical
lution deviates from the exact solution by the discretizat
error. As a consequence, the constraints are not fulfilled
actly after having evolved for some time, even if the init
data solved the constraints. In the spirit of Ref.@1# we call a
discretization of the time evolution equations compati
with the constraints, if the numerical violation of the co
straints has the same convergence order as the discretiz
of the time evolution equations. Unfortunately the expe
ence of numerical relativity shows that compatibility is n
sufficient for obtaining numerical solutions with small n
merical violations of the constraints. In many cases the v
lation of the constraints seems to grow at least exponent
with time. This effect is believed to be a major contributio
to the numerical error of numerically calculated solutions

In this work we examine the effect of changing the ev
lution equations outside the submanifold of data on wh
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the constraints are satisfied. Although our method is diff
ent, we should mention that already in Ref.@2# such a change
has been suggested. Furthermore, to our knowledge, we
form the first systematic analysis of the correlation betwe
the violation of the constraints and the quality of numeric
solutions in general relativity.

As the solutions of the field equations of general relativ
satisfy the constraint equations for all times, the solutions
not affected by modifications of the evolution equations
data which do not satisfy the constraints. Let us denote
subspace of the function space of solutions to the evolu
equations which satisfy the constraints as ‘‘constraint s
manifold.’’ In Ref. @3# it has been proven, that at least for th
linearized Einstein equations the constraint submanifold
be made an attractor for the linearized time evolution eq
tions.

If the solution of the evolution equations automatica
approaches the constraint submanifold, the system of ev
tion equations carries a dissipative term in it, and therefo
the numerical solution will also approach the constraint s
manifold provided the grid is not too coarse. Therefore,
avoid a numerical violation of the constraints, it is sufficie
to make the constraint submanifold an attractor of the~modi-
fied! evolution equations. In such a case the constraint s
manifold is ‘‘asymptotically stable.’’

In Brodbecket al. @3# a general method has been pr
posed to derive symmetric hyperbolic extensions of symm
ric hyperbolic evolution equations with first order constrain
which are promising candidates for asymptotic stabili
These extended systems are calledl systems. In the same
article it has also been proven, that at least in the case o
linearized Einstein equations there exist parameters such
the constraint submanifold is indeed an attractor for
modified evolution equations.

As the extension of the analysis to the nonlinear Einst
equations seemed to be beyond the scope of present an
cal techniques, we took a numerical approach in this pa
and investigated the following questions: First, can we, s
ply by way of numerical experiments, find al system for the
nonlinear Einstein equations for which the constraint s
©2001 The American Physical Society21-1
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FLORIAN SIEBEL AND PETER HÜBNER PHYSICAL REVIEW D64 024021
manifold is attractive? And secondly, is the numerical so
tion of the modified systems closer to the exact solution t
the numerical solution of the unmodified system? To red
the complexity and to have exact solutions available to co
pare with, we have restricted our investigations to solutio
with two Killing vectors.

In our experiments we were able to find a variety ofl
systems for which the violation of all constraints is im
proved. However, we did not find a single system for wh
the constraint submanifold is asymptotically stable. Surp
ingly, the improvement in the constraint violation did n
imply an improvement of the numerical solution.

It is important to mention that a general attractive for
towards the constraint submanifold does not guarantee
numerical solution to approach the exact solution cor
sponding to the initial data used. Regardless of the system
the field equations of general relativity, there are additio
degrees of freedom which can be affected by the additio
terms in thel system. In our numerical experiments, the
additional degrees of freedom were affected in such a w
that in general the numerical solution of the modified syst
was not closer to the exact solution, even if it was close
the constraint submanifold.

This paper is structured as follows. In Sec. II we introdu
parametrizedl systems and describe the simplifications i
plied by the symmetry assumptions. In the next section
sketch the numerical implementation, recall important f
tures of the exact solutions used in the comparisons,
define the measures used for quality assessments. Sectio
contains the actual numerical investigations, where we
scribe the performed probing of the parameter space. U
selected examples we demonstrate the influence of the
vidual parameters on the quality of the numerical solutio

II. THE PARAMETRIZATION OF THE l SYSTEM

The construction of al system is based on a split of th
system of equations into symmetric hyperbolic evoluti
f
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equations and first order constraints@3#. There are various
possibilities to write Einstein’s equations in such a form.

In our work, we take the conformal field equations@4–6#
in the first-order formulation described in Ref.@7#. Looking
at Eqs.~13! and ~14! of Ref. @7#, it is easy to see that Ein
stein’s equations and their extension, the conformal fi
equations, are a ‘‘quasilinear version’’ of Maxwell’s equ
tions. We use the conformal field equations instead of E
stein’s equations to obtain an easy and well defined treatm
of grid boundaries, as discussed in Ref.@7#. Since we are
primarily interested in the effect of the nonlinearities, we c
reduce the computational complexity by restricting oursel
to asymptoticallyA3 spacetimes@8#, which are spacetimes
with two commuting, hypersurface orthogonal Killing vect
fields. We align they and z coordinates with the Killing
orbits. Our solutions do therefore not depend on the spa
like coordinatesy andz. Under these symmetry assumption
the conformal field equations can be written in the followi
form:

Ã
]

]t
g1A

]

]x
g2bg50, ~2.1a!

]

]t
f 2bf50, ~2.1b!

]

]x
f 2cf50, ~2.1c!

with a time coordinatet labeling the spacelike hypersurface
x being the non-Killing spacelike coordinate, and
g5~k11,g1
11,E22,E33,B23,(0,1)R̂1 ,(1,1)R̂11!, ~2.2a!

f 5~h11,h22,h33,k22,k33,g1
22,g1

33,E11,(1,1)R̂22,(1,1)R̂33,V,V0 ,V1 ,v!. ~2.2b!
nd
the

of

a-
e

The tensorhab is the 3-metric,kab the extrinsic curvature o
the spacelike hypersurfaces,ga

bc the connection for
hab , (0,1)R̂a , and (1,1)R̂ab parts of the tracefree part of th
Ricci tensor,Eab and Bab the electric and magnetic part o
the conformal Weyl tensor,V the conformal factor,V0 and
V1 its normal and space derivative, andv a second deriva-
tive of the conformal factor, as described in more detail
Ref. @7#. The symmetric matricesÃ, A and the vectors
bg , bf , and cf depend ong, f and gauge functions. Th
matrix Ã is positive definite, hence the system consisting
Eqs.~2.1a! and ~2.1b! is symmetric hyperbolic.
f

The variables, which are functions oft and x only, have
been split into two classes, calledg and f. For the variables
denoted byf the system contains evolution equations a
constraints. Since there are only evolution equations for
variablesg, these represent the degrees of freedom.

When we evolve initial data forward in time by means
the evolution equations~2.1a! and ~2.1b!, the constraints
~2.1c! satisfy an evolution equation from which the propag
tion of the constraints can be derived. In the following w
will call Eqs. ~2.1a! and~2.1b! the ‘‘unextended system.’’ To
obtain the new, extended system, thel system, additional
1-2
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EFFECT OF CONSTRAINT ENFORCEMENT ON THE . . . PHYSICAL REVIEW D 64 024021
variables, calledl, are introduced and the constraint equ
tions are extended to evolution equations for the new v
ables

Ã
]

]t
g1A

]

]x
g2bg1Cl50, ~2.3a!

]

]t
f 1B

]

]x
l2bf1Dl50, ~2.3b!

]

]t
l1BT

]

]x
f 2BTcf1El50. ~2.3c!

The quantitiesB, C, D, andE are matrices.BT denotes the
transposed matrix ofB. This system is constructed in such
way that~1! it is symmetric hyperbolic and~2! in the case in
which the variablesl vanish identically the system is re
duced to the original system~2.1!. Because of the secon
requirement, thel-system is a generalization of the origin
system. The first requirement implies well-posedness of
initial value problem. Apart from the restrictions resultin
from the two conditions above, the choice of the parame
B, C, D, andE is free. It is the aim to choose them in suc
a way that for all solutions of the system the variablesl
decay, which then implies that the solution is driven towa
a solution of the constraints.

We will now shortly explain why we have introduce
these parameters. Let us assume that the constraint equa
are not satisfied exactly, i.e.,]xf 2cfÞ0, andl50 initially.
In the case of vanishingE, the variablesl are the time inte-
gral of the violation of constraints—as a result of the n
evolution equation~2.3c!. For nonvanishingE, in addition,
the El term will have a damping or amplifying effect ont
the variablesl, depending on the eigenvalues ofE. For posi-
tive eigenvalues we expect damping, for negative eigen
ues amplification. The information about the violation
constraints, saved in the variablesl, is coupled back to the
variables (g, f ) by the termsB]xl, Dl, andCl.

As the conformal field equations are a generalization
Einstein’s equations we can relate the constraints~2.1c!, or
more general, the constraints of the conformal field equati
without symmetries@7#, to the momentum and Hamiltonia
constraints of the standard 311 equations. The Hamiltonian
constraint and the momentum constraint form a subset of
constraints used in our system. Contracting Eq.~14b! of Ref.
@7# with the 3-metrichbc and restricting it to the case ofV
51, we recover the momentum constraint(3)¹b(kab

2habk)50, with k5kabh
ab. Similarly, contracting Eq.

~14c! of Ref. @7# twice and evaluating the 3-Christoffel sym
bols, one can deduce the Hamiltonian constraint(3)R1k2

2kabk
ab50, where (3)R denotes the Ricci scalar of th

3-metric.

III. THE NUMERICAL IMPLEMENTATION

In this section we will describe the basic elements of
numerical implementation which we use to compare
quality of solutions obtained by solving thel system with
the quality of solutions obtained by solving the unextend
02402
-
i-

e

rs

s

ons

l-

f

s

e

e
e

d

system. These elements are the construction of initial d
the scheme to numerically integrate the time evolution eq
tions, and the measures used to assess the quality of
numerical solutions. In addition we will briefly describe th
exact solutions which we used as reference solutions.

A. Constructing hyperboloidal initial data

In order to analyze the numerical behavior of thel sys-
tem, we first have to construct initial data for the conform
field equations. These data are called hyperboloidal ini
data.

In Ref. @9# Sec. 2 the procedure of calculating initial da
has been described in detail for the case without any s
metry assumptions. We slightly modified the procedure
making use of the symmetry assumptions, namely that
spatial grid is only one-dimensional~1D!. For an exact solu-
tion we prescribe the 4-metricgab and the conformal factor
V as functions of (t,x). From those we calculate our var
ables (g, f ) and the gauge source functions numerically. T
code has also got the functionality to perform a coordin
transformation to express the exact solution in new coo
nates (t8,x8). In the calculations presented in this paper w
usedl50 as initial setting forl.

B. The integration of the time evolution equations

In order to discretize the evolution equation

] tu1A= ~u!]xu5b~u! ~3.1!

for the vector of variablesu, we adjust the second-orde
scheme described in Ref.@9# Sec. 3.1 to our symmetry as
sumption, i.e., we perform a Strang splitting ansatz to s
equation~3.1! into a principal part

] tu1A= ~u!]xu50 ~3.2!

and a source part

] tu5b~u!. ~3.3!

We then solve the principal part~3.2! by the rotated Richt-
myer scheme. With one spatial dimension, this is equiva
to the standard second-order Lax-Wendroff method@10#.
The source part is integrated by the pseudoimplicit He
scheme. As described in Ref.@9#, principal and source par
are combined in different order, depending on whether
time step is odd or even, to achieve second-order con
gence.

In Ref. @9# it was shown how superior a 4th order schem
would be. In a normal application this superiority would be
big advantage—here it is a disadvantage, however: We
going to analyze the impact of a drift away from the co
straint submanifold on the quality of the solution. This dr
originates in the discretization error. If the scheme is ve
accurate, the drift is very small, too. But then, the differenc
in the quality of the numerical solutions are also very sm
which makes it harder to distinguish between them. T
explains why we use the second-order scheme.
1-3
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FLORIAN SIEBEL AND PETER HÜBNER PHYSICAL REVIEW D64 024021
In the runs described in Sec. IV we cover the space
hypersurface with 161 grid points. The length of the tim
step is chosen dynamically by evaluating the Coura
Friedrichs-Lewy condition for each time slice. If not expli
itly stated otherwise, we use half of what would be allow
by the Courant-Friedrichs-Lewy condition.

C. Measures of quality

We use the following measures to analyze the quality o
numerical solution. First, we determine the numerical vio
tion of the constraints as a measure of the distance from
constraint submanifold. To be able to present our findin
with a limited number of plots we condense the informati
by using the ‘‘norm’’

uuDCuu~ t !ªA(
l
E

V.0
Cl~ t,x!2dx, ~3.4!

where the summation includes all constraintsCl(t,x). In the
actual numerical calculations the integral is of course
placed by a sum over all grid points withV.0, which rep-
resent physical spacetime. In the conformal approach to
merical relativity grid points withV,0 represent a forma
extension of the grid without physical relevance. Therefo
it would be wrong to include them into the measure.

Secondly, we compare our numerical solution to the ex
solution. Since the numerical calculation
((1,1)R̂ab ,Eab ,Bab) from the given solution (gab ,V) in-
volves solving elliptic equations~see Ref.@9#!, we compare
(V (1,1)R̂ab ,V2Eab ,VBab) to the corresponding quantitie
from the exact solution and call the result ‘‘pseudodiffe
ence’’ Pl(t,x). In Ref. @9# it was found that with respect to
the relative error this is equivalent to the difference in t
variables. Again, to be able to present our findings with
limited number of plots, we condense the information
using the ‘‘norm’’

uuDPuu~ t !ªA(
l
E

V.0
Pl~ t,x!2dx, ~3.5!

where the summation includes the variables in the tu
(g, f ), but does not include the variablesl.

D. The exact solutions used in the numerical experiments

Only a few exact solutions of Einstein’s vacuum equ
tions possess both high symmetries and time dependenc
even better gravitational radiation. The asymptoticallyA3
solutions do. They can be written as

g5
4A2

At21x2
eM~2dt21dx2!

1
1

2
~ t21x2!~eWdy21e2Wdz2!, ~3.6a!

V5
1

4
~ t22x2!, ~3.6b!
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where the functionsM (t,x) andW(t,x) are solutions of cer-
tain differential equations~see Ref.@8#!. We restricted our
analysis to two casesM[0 andW[0, theA3 solution on
the one hand, andM521/256(t21x2)2 andW5 1

8 (t22x2),
on the other hand. The second case, unlike the first o
contains gravitational radiation. Both solutions behaved v
similarly in our numerical experiments. The amount of gra
tational wave content does not seem to be significant for
drift away from the constraint submanifold. For shortness
only present calculations done with theA3 solution.

The solutions given in Eq.~3.6! are already extended be
yond the two null infinitiesJ1 and J2 at t52x and t
51x, the shaded region in Fig. 1 shows the physical part
this representation the point (0,0) represents future time-
infinity i 1. The metric and curvature quantities diverge the
When approaching this point in our numerical evolution, t
absolute value of several quantities must increase stron
which implies increasing absolute errors. However, we c
firmed that, even when approachingi 1, our numerical
scheme is second-order convergent, the difference betw
the numerical and the exact solution as well as the violat
of constraints converges with a convergence rate of two
the numerical experiments we start our calculation at
521 and stop att521/2.

In other coordinates Fig. 1 looks different, e.g., one c
choose the coordinates such that theJ ’s are at constantx8
values and thati 1 lies at a conformal timet85`. Since our
findings are not influenced by this change of coordinates
refrain from a presentation.

IV. THE QUALITY OF THE NUMERICAL SOLUTION:
PARAMETER STUDY

In this section we discuss the effect of the various para
eters in thel system~2.3!. In the case of the 1D conforma
field equations, the matricesB, C, D, andE take values in
R14,14, R7,14, R14,14, andR14,14. Since the parameter spac
is infinite, we had to restrict ourselves to exemplary cases
exhaustive study by numerical means is impossible.

A. Overview

Before going into detail, we discuss the main result of o
numerical experiments. Although we were not able to fin
suitable choice of parameters such that the constraint
manifold became an attractor for all times, we were able

FIG. 1. Conformal diagram of an asymptoticallyA3 solution.
The shaded region corresponds to the physical spacetime.
1-4
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improve the violation of constraints up to a factor 5 co
pared to a numerical evolution of the unextended syst
There are strong numerical indications that this improvem
is obtained at the cost of a solution which is worse w
respect to the pseudodifference norm. As an example,

FIG. 2. Constraint normuuDCuu(t) for the l system of run 7
~dashed line! in comparison to the unextended system~solid line!.
02402
-
.

nt

he

dashed lines in Figs. 2 and 3 show the norms for the vio
tion of constraints~3.4! and the pseudodifference~3.5! for a
choice of parametersB53•1= , C50, D50, andE51= in the
l system~by 1= we denote the 14314 unit matrix!. The solid

FIG. 3. Pseudodifference normuuDPuu(t) for thel system of run
7 ~dashed line! in comparison to the unextended system~solid line!.
-
norm,
TABLE I. Results of the numerical experiments for variousl systems. A number in the column param
eter denotes a diagonal matrix with the number on the diagonal. For the notation used in the column
please refer to the text.

No. of Parameter Norm
runs B C a D E uuDCuu uuDPuu

1 1 (1,0) 1 1 2 ↑
2 1 (1,0) 1l2

b 1l2
b 2 ↑

3 1 (1,0) 1 1l2
b 2 ↑

4 1 (1,0) 1l2
b 1 2 ↑

5 ubuP@0,1# (0,0) 0 1 2 ↑
6 1.2 (0,0) 0 1 2 ↑
7 3 (0,0) 0 1 2 1

8 1 (0,0) 0 10 1 1

9 1 (0,0) 0 eP@21,1# 2 ↑
10 1 (0,0) 0 23 2 2

11 1 (0,0) 0 210 ↑ 1

12 1 (0,0) 0 (E)115(E)88523 c 2 2

13 1 (0,0) 0 (E)11523 c 2 ↑
14 1 (0,0) 0 (E)88523 c 2 ↑

15 1 (0,0) uduP@3,15# 0 2 1

16 1 (6c,0), c55 0 0 2 1

17 1 (0,0) 610 23 2 1

18 1 (0,0) 10 1 2 ↓
19 1 (0,0) 5•x= d 1 2 1

aC5(C1 ,C2)PR7,14, whereC1 ,C2PR7,7.
b1l2 denotes a diagonal matrix with 11l i

2 at (i ,i ).
cAll other elements vanish.
dx= denotes a diagonal matrix with space depending diagonal elements.
1-5
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FLORIAN SIEBEL AND PETER HÜBNER PHYSICAL REVIEW D64 024021
lines show the corresponding results for an evolution of
unextended system~2.1!. Figure 2 shows that thel system
initially attracts towards the constraint submanifold~until t
520.85), before the violation increases with time. Figure
shows that the pseudodifference norm at the same time
creases more rapidly right from the beginning than in
numerical solution of the unextended system.

In Table I, we present a summary of the performed n
merical experiments. The numbers in the parameter colu
denote the value of the diagonal elements of the corresp
ing diagonal matrix. In the cases in which we studied a ra
of diagonal elements, we condense by combining to par
eter intervals with similar behavior. The observed devel
ment of the constraint normuuDCuu and the pseudodifferenc
norm uuDPuu is described using the following notation
2/1: The norm is smaller/greater than that of the une
tended system in the whole domain of time integration,↑/↓:
The norm is smaller/greater than that of the unextended
tem after small integration times and greater/smaller at
end of the integration.

The parameter choices for the run 1 were based on
expectations explained in Sec. II. With this choice we w
able to reduce the growth of the violation of constraints,
we neither made the constraint submanifold an attractor
did we improve the pseudodifference at the end of the e
lution. Since we observed that the variablesl grew faster
and to larger values than we had expected, we added te
proportional tol2 ~runs 2–4!, to increase the damping fo
nonvanishingl ’s. We did not observe any significant chan
in the behavior. This may have two reasons: Either the a
tional damping is too weak, a change in the parameterD
andE alone is not sufficient, or these parameters are not
appropriate slots. To obtain a better understanding of
effect of the single parameters we performed the numer
experiments 5–19 whose results we are going to discus
the following subsections.

B. Influence of the parameter B

In the experiments 5–7, we studied the influence of
parameterB setting B proportional to the unit matrixB
5b1= , and varyingb. The matrixE equals the unit matrix in
all cases. The choice of the parameterb changes some of th
characteristics of thel system. Absolute values ofb greater
than 1 imply that thel system has characteristic spee
larger than the speed of light. To avoid any influence of
grid boundary treatment on the numerical solution in
physical part of the grid—in the caseubu.1 the outer grid
boundary is no longer causally disconnected from the ph
cal part of the grid—we moved the grid boundaries furth
out, something one can easily afford to do in a 1D calcu
tion with moderate valuesb. For our purposes this was su
ficient and we, therefore, did not discretize the analytic tre
ment of the initial boundary value problem for thel system
which would guarantee that no constraint violation is fed
from the grid boundary. Forubu.1 the maximally allowed
time step is smaller than that of the unextended system
to the Courant-Friedrichs-Lewy condition. To compare n
02402
e

n-
e

-
ns
d-
e
-

-

-

s-
e

ur
e
t
or
-

ms

i-

e
e
al
in

e

e
e

i-
r
-

t-

ue
-

merical experiments for systems with different valuesb, we
use the same, most restrictive time step for all runs.

For small values ofb we do not observe a significan
change in the behavior of thel system compared to th
unextended system, as can be seen in Figs. 4 and 5. In t
figures we plot the constraint norm~3.4! and the pseudodif-
ference norm~3.5! for b521 ~dashed line! and forb51.2
~dotted line! in addition to the unextended system~solid
line!. The curves are very similar, as are all other curv
from the runs summarized as run number 5 in Table I. Th
is a slightly reduced growth in the constraint norm and
increase in the pseudodifference norm at the end of the e
lution.

For a value ofb significantly greater than 1~run 7 and
Figs. 2 and 3! the constraint norm decreases initially and
always smaller than in the unextended system. In contras
already mentioned, the pseudodifference norm is alw
larger than in the unextended system.

C. Influence of the parameter E

In runs 8–14 we studied the role of the parameterE,
fixing the value ofB to B51= . A nonzero value ofB is indeed

FIG. 4. Constraint normuuDCuu(t) for the runs 5 withb521
~dashed line! and 6~dotted line! in comparison to the unextende
system~solid line!.

FIG. 5. Pseudodifference normuuDPuu(t) for the runs 5 withb
521 ~dashed line! and 6~dotted line! in comparison to the unex
tended system~solid line!.
1-6
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necessary ifl is to measure the violation of the constrain
We choose the valueB51= , as the characteristic speeds d
termined byB then agree with speed of light which seems
be a natural choice for the field equations of general rela
ity. In addition, the results in the previous subsection w
rather insensitive to the exact value of the parameterB in this
part of the parameter space. Changing the value of diag
elements for a constant diagonal matrixE in experiments
8–11, we found the best results for the violation of the co
straints and the pseudodifference for a value ofE523 1=
~Figs. 6 and 7!, where the variablesl are amplified by the
El term in thel system. With this choice of parameters, t
pseudodifference norm can be slightly improved during
whole numerical integration up tot520.5, but we stress
that this improvement is not significant. We checked the
sults for this run after a longer integration time~up to t5
20.3). We then found a worse pseudodifference norm co
pared to the unextended system. In runs 12–14 we put
single diagonal elements ofE to -3, (E)11, and (E)88, which
influence directly those two constraints which are most
hemently violated. These constraints are the constraints
the quantitiesh11 and E11. Only affecting both constraints
with our choice of parameters can improve the numer

FIG. 6. Constraint normuuDCuu(t) for run 10 in comparison to
the unextended system~solid line!.

FIG. 7. Pseudodifference normuuDPuu(t) for run 10 in compari-
son to the unextended system~solid line!.
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evolution of the constraints and the pseudodifference co
pared to the unextended system. However, in compariso
run 10, the results are worse.

D. Influence of the parameter D

With the experiment 15, we studied the influence of
constant, diagonal matrixD together with a matrixB51= . In
all runs with nonvanishingD the violation of constraints
could be improved~see, e.g., Fig. 8 ford510) at the cost of
a worse pseudodifference. The constraint and the pseud
ference norm are identical for runs withD5d 1= and D5
2d 1= . This property results from a symmetry of all tim
evolution variables in Eq.~2.3! under the simultaneous tran
sition D→2D, x→2x for this specific choice of param
eters. For theA3 solution, all evolution variables at a fixe
time are even/odd functions on the space coordinatex. For a
diagonal, constant matrixD, the termDl couples to an even
odd functionf i the correspondingl i , which has, according
to Eq. ~2.3c!, the opposite symmetry, as it measures the c
responding constraint, which involves one space deriva
of f i .

E. Influence of the parameter C

In the experiments with a nonvanishing matrixC ~run 16!
the violation of the constraints was only improved at the c
of a worse pseudodifference. As the result for the constr
norm is similar to that in Fig. 8, and the result for th
pseudodifference norm is qualitatively given by Fig. 3, w
refrain from presenting figures for run 16.

F. Influence of the parameters D and E

Motivated by the good results for the pseudodifference
run 10 and for the constraints in run 15, we studied
correspondence of nonvanishing, diagonal parametersD and
E for a parameterB51= in runs 17–19. Using the same pa
rametersB, C, andE as in run 10, but now with a nonvan
ishingD, we could not improve the numerical solution in ru
17. Hence, in runs 18, 19, we again stuck to our origi
choice of E51= . In run 18, the pseudodifference first in
creased, before approaching the curve of the unextended
tem at integration times of aboutt520.5 ~Fig. 9!. In experi-

FIG. 8. Constraint normuuDCuu(t) for run 15 with d510 in
comparison to the unextended system~solid line!.
1-7
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ment 19, we chose the matrixD55x 1= in order to keep the
symmetries of theA3 solution. Again, the constraints wer
only improved at the cost of a worse solution.

V. CONCLUSION AND OUTLOOK

The freedom in extending a system of evolution equati
with constraints to al system is huge. For the conform
field equations of general relativity, we have explored
effect of what we thought are natural choices in thel sys-
tem, analyzing the influence on the quality of the new s
tem’s numerical solution. We found that we were able

FIG. 9. Pseudodifference normuuDPuu(t) for run 19 in compari-
son to the unextended system~solid line!.
.

02402
s

e
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significantly reduce the violation of the constraints, but w
also found that this improvement did not imply a smal
numerical error.

Furthermore, we found that the significant improveme
in the violation of the constraint did not prevent the soluti
from eventually running away from the constraint subma
fold, i.e., thel systems used do not inherit the property
asymptotic stability from the linear system. Similar expe
ence with the semilinear SU~2!-Yang-Mills equations@11#
and the study of a simplified model system@12# suggest that
a more balanced choice of parameters of thel system is
needed to achieve an attractive force towards the const
submanifold for all times. Recent analytic results by Hein
Otto Kreiss and Peter Hu¨bner give sufficient conditions fo
asymptotic stability. As we found a strong correlation b
tween a smaller violation of the constraints and a worse
merical solution in thel system we suspect, however, th
asymptotic stability does not necessarily imply a smaller
merical error.
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@7# P. Hübner, Class. Quantum Grav.16, 2145~1999!.
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@9# P. Hübner, Class. Quantum Grav.16, 2823~1999!.

@10# P. D. Lax and B. Wendroff, Commun. Pure Appl. Math.17,
381 ~1964!.

@11# O. Brodbeck and P. Hu¨bner ~unpublished!.
@12# F. Siebel, Diploma thesis, LMU, Munich, 1999.
1-8


