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Black diholes with unbalanced magnetic charges
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We present a technique that can be used to generate a static, axisymmetric solution of the Einstein-Maxwell-
dilaton equations from a stationary, axisymmetric solution of the vacuum Einstein equations. Starting from the
Kerr solution, Davidson and Gedalin have previously made use of this technique to obtain a pair of oppositely
charged, extremal dilatonic black holes, known as a black dihole. In this paper, we shall instead start from the
Kerr-NUT (Newman-Unti-Tamburinpsolution. It will be shown that the new solution can also be interpreted
as a dihole, but with the black holes carrying unbalanced magnetic charges. The effect of the NUT parameter
is to introduce a net magnetic charge into the system. Finally, we uplift our solution to ten dimensions to
describe a system consisting b6 and anti-D6-branes with unbalanced charges. The limit in which they
coincide agrees with a solution recently derived by Betval.
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[. INTRODUCTION sitely charged, extremal dilatonic black holes, which he calls
a black dihole.
In 1983, Gross and Periyl] and Sorkin[2] derived so- We will start off in Sec. Il by presenting the solution-

lutions of Kaluza-Klein theory starting from existing solu- generating technique that was first used by Davidson and
tions to the four-dimensional vacuum Einstein equationsGedalin to obtain the dilatonic generalization of the Bonnor
These solutions were constructed by first analytically conSolution. Since this technique was only briefly described in
tinuing the seed solutions to the Euclidean regitmeix®, their original article[4], we will provide details of it for
and adding on an extra flat time direction. Solutions to thecompleteness. To the best of our knowledge, these details
four-dimensional Kaluza-Klein equations can then be ob.ca@nnot be found elsewhere in the literature.

; P . . : - In Sec. lll, we will make use of this technique to derive
tained by compactifying the five-dimensional spacetimes on ) . ; .
«5 y pactifying P our dihole solution starting from the Kerr-NUT soluti¢@l;

the latter is a generalization of the Kerr solution which in-

! . . cludes an additional NUT parameter. As such, our solution
Tamburing solution as a seed, the authdfis2] obtained a contains all the abovementioned ones as special cases.

static solution whose Kaluza-Klein gauge field corresponds This will be followed by a standard analysis, which was

to that of a magnetic monopole. This gauge f|eld originates;st used by Emparaf6], to investigate the physical nature
from theg;, term of the Taub-NUT solution, with the NUT- o the new solution. We will demonstrate that it describes a
parameter attributed the physical meaning of the magnetigajr of extremal dilatonic black holes carrying unbalanced
charge in the new solution. magnetic charges, i.e., each of the black holes carries a mag-
Similarly, by using the Kerr solution as seed, a static sonetic charge that is of different sign as well as magnitude. In
lution whose gauge field describes that of a magnetic dipolgontrast to a dipole, this system will have a non-trivial net
was constructedil]. In this case, the angular momentum of magnetic charge. We will continue to refer to this solution as
the Kerr solution is converted into a parameter that characa dihole.
terizes the dipole moment of the new solution. The latter is In Sec. IV, we will discuss the embedding of our solution
the Kaluza-Klein analogue of the Bonnor soluti@®] which  in type IIA superstring theory, in which it would describe a
describes a magnetic dipole in general relativity. static configuration oD6 and anti-D6-branes with unbal-
Now, Kaluza-Klein theory is a special case of the moreanced charges. We will then show that the coincident limit
general Einstein-Maxwell-dilaton theory with an arbitrary agrees with a solution recently presented by Betal.[7].
dilatonic coupling. In the former, the coupling constant
defined in Eq.(2.1), is taken to be\/§. However, in this
paper, we shall focus on the more general Einstein-Maxwell-
dilaton theory wherex can take on any real value. The idea of generating a solution of the Einstein-Maxwell
In 1994, Davidson and Gedalif4] generalized the equations starting from a solution of the vacuum Einstein
solution-generating technique to one that is valid for arbi-equations is not a new or(gee, for example, Kramest al.
trary dilatonic coupling using a Ernst-type formalism. Start-[8] or Islam[9]). In this section, we will focus on a different
ing from the Kerr solution, they obtained the dilatonic gen-technique which generates a static, axisymmetric solution of
eralization of the Bonnor solution and interpreted tire1  the Einstein-Maxwell-dilaton equations starting from a sta-
case as one exhibiting a two-dimensional black and whitg¢ionary, axisymmetric solution of the vacuum Einstein equa-
dihole structure. However, Emparg)] recently pointed out tions.
a flaw in this interpretation and demonstrated that the solu- Einstein-Maxwell-dilaton theory in four dimensions has
tion (for generala) actually describes a static pair of oppo- the following action integral:

Using the self-dual Taub-NUT (Newman-Unti-

II. SOLUTION-GENERATING TECHNIQUE
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Ayt A= p tA,=2a(A,b,+Ah,) — FTHA T, AL,

f d*x\V—g[R—2(V ¢)2— e 22¢F2], (2.1 29

whereR is the 'Ric.ci scalarg the dilaton fie!d, and-,;, the Bt ¢Zz+p71¢p: _ ap72f672a¢(Ap2+AZ2).
electromagnetic field tensor. For the special case0, we 2.7
recover Einstein-Maxwell theory; forv=1, the action de-

scribes the low energy dynamics of string theory; and for The crucial step now is to realize that if we set
a=+/3, we have Kaluza-Klein theory as mentioned in the _

introduction. However, we shall keep general in what fol- f2=fe ¢ and w=iy1+a’A, (2.8
lows. By varying this action with respect to the metric, gauge

field and dilaton field, we obtain the respective field equa-then Egs(2.4) and(2.6), respectively, become

tions ~ e oo B

(Tt p ) =T, 212407 74w, 2+ w,2) =0,

1 (2.9

Rap=2VapVpp+e 2*¢ 2F o cFp°— EgabF2 , (2.2a ~ _ _

f(w,,+w,,—p~tw,)+2(w,f,+w,f,)=0.

Va(e 2*F2) =0, (2.2b (2.10

These equations are precisely the same as those derived from
o . . : . . .
V2t Ee_ 2a0p2_ (2.29 tmhgt\r/iicuum Einstein equations for a stationary, axisymmetric

Now, we are looking for a static, axisymmetric solutionto  d?=—F(dt—wde)2+ p?f ~Lde2+e*(dp?+d ),
the field equations. Recall that any such spacetime can be (2.11

cast in the Weyl-Papapetrou forfl] ] )
using a Ernst-type formalisiicf. Egs.(2.129 and(2.12b of

ds?=—fdt?+1d o2+ e*(dp?+dz?). (2.3 Islam [9]]. For every such solution to the vacuum Einstein
equations, we can therefore find a corresponding solution to
Furthermore, we choose a purely magnetic ange#zA,  the Einstein-Maxwell-dilaton equations via.8). Neverthe-
with all other components oA, vanishing. It is also under- |ess, one should be aware that this procedure would in gen-
stood thaff, I, x, A, and ¢ are functions ofp andz only. eral generate an imaginary gauge field. Thus, a real solution
With this ans&z, we can now evaluate the left- and right- to the Einstein-Maxwell-dilaton equations can be generated
hand sides of Eq2.2a. DefiningD2=fl, and by consider- via this method only if an analytic continuation of the pa-

ing the combinatiore“D‘l(IRn—fRW), we obtain ramete(s) in the seed solution is possible.
Finally, we see that the dilaton equatith?7) can be writ-
#D  9°D ten as
—_ + —_—
ap?  9z?

bt ozt p rh,=—ap FAAHAS), (212
A simple solution to this equation is given Hy=p [9]. . : . .
With this choice, we may evaluate tf, equation to arrive which, using Eq/(2.9), admits the solution
) & “ nt 2.13
=-— nf, .
1+ a?

f(f,,+f,+p ) —f,2—,2=2p" 3% 29%(A P+ A2,
(2.9

here subscrints and z indicate partial derivatives of the P the addition of a harmonic functioh satisfyingé,,,
w u Pty Z Indl part vativ +<~;Szz+p*1§5p=0. For the choiceh=0, we have

corresponding function with respect to these variables. Simi-

larly, by evaluating the Ricci componerfgs,—R,, andR,,, f_F2l1rad) (214
we obtain, respectively, B ' ‘
1 These expressions, together with that for the gauge field ob-
Bp=— f—lfp+ Epf—Z(fPZ_f22)+2p(¢pZ_ ®,°) tained fr_om Eq(2.9), can the_n b_e used to ded_upevi_a Eq.
(2.5). This completes our derivation of the static, axisymmet-

—2a¢ -1 2_p2 ric solution to the field equationg.2).
t2e pTAS AL, (2.53 We remark that this technique is just a dilatonic generali-
1 Y zation of theorem 30.8 in Krameat al. [8], which Bonnor
L A PR T [3] used to generatdrom the Kerr solutiohthe well-known
+4e‘2”‘¢’p‘1prAZ. (2.5b magnetic dipole solution. Using the same solution as seed,
Davidson and Gedalip4] have made use of the above tech-
Finally, we obtain from Eqgs(2.2b and(2.29 the gauge nique to generate the dilatonic generalization of the Bonnor
field and dilaton equations, solution. If we begin with the self-dual Taub-NUT solution

024019-2



BLACK DIHOLES WITH UNBALANCED MAGNETIC CHARGES

PHYSICAL REVIEW D64 024019

instead, we would obtain a generalization of the Gross-Perrywe obtain by quadratutethe expression fop.. We finally
Sorkin [1,2] monopole solution to arbitrary dilatonic cou- arrive at the new solution
pling, which can also be interpreted as an extremal dilatonic

black hole[10].

I1l. DIHOLE SOLUTION WITH UNBALANCED CHARGES
A. Derivation of solution

In this paper, we will start from the Kerr-NUTor
Demiarski-Newman solution[6]

_ asifo(mr+12)+1Acosd >
ds?=—A| dt+2 SR de
A—a?sirto
— = _ dr? —
+A Y (A—a?sirth) T+d02 + A sirfode?|,
(3.1
where
—  A-a®sirfe

——————— and A=r2-2mr+a?-12
r<+(acosé+l)

In these expressiona,is the angular momentum amnds the

d82:A2/(1+a2){ —dt2

24/(l+a’2)

+
[A+(mP+a%—12)sirP 9]~ <)@+ e)

dr? X A sirfo
X| 3 A8 1+ i de 3.7)
where
A+a?sirfe

A

E L
with A, and ¢ given in Egs.(3.3) and(3.4), respectively.

B. Physical properties of the solution

Recently, the special casé=0) of the above solution
was analyzed in detail by Empard8]. In this section, we
will perform a similar analysis on our solution and arrive at
the conclusion that it describes a pair of extremal dilatonic

NUT-parameter. Note that this solution contains both theblack holes with unbalanced charges lying on the symmetry

Kerr and Taub-NUT solutions as special cases Wit and
a=0, respectively.

By comparing the line elemeri8.1) with Eq. (2.11), we
obtain

_ asirtd(mr+12)+1A cosé
f=A and w=-2

A—a?sirg

(3.2

To ensure that the resulting gauge field is real, we perfor

the analytic continuatioa—ia andl—il. Using Eqs(2.8),
(2.13, and(2.14), we obtain

2 asirfé(mr—I12)+1A cosé

A =— , 3.3
¢ J1+a? A+a?sirto 33
5 a A+aZsirfo 3.4
=— n , :
1+ a? b
_[A+a?sir?g 2/(1+a?) 3
- @9
where

and X=r’-(acosf+1)>.
(3.6

A=r2—2mr—a?®+|?

Substituting Eqs(3.3—(3.5) into Eqg.(2.5), and by trans-
forming from the Boyer-Lindquist-type coordinates @) to
cylindrical coordinatesg, z) via [11]

p=+r’=2mr—a’+1%sing, z=(r—m)cosé,

axis.

We begin by highlighting that, in addition to being static
and axisymmetric, the solution is asymptotically flat. This is
in contrast to our seed soluti¢8.1) whoseg;,, term does not
vanish in the asymptotic limit. This unphysical nature of the
Kerr-NUT solution has thus been removed in the new solu-
tion.

A study of the asymptotic behavior @f; and A, also

rTlieveals that the total mass of the solutionNk=2m/(1

+ a?) whereas the net magnetic charge of the solutio® is
=2I/\/1+ &?. Thus the NUT-parametérgoverns the mono-
pole field strength of the solution at far field. Without loss of
generality, we shall restrict ourselves to non-negaticer-
responding to non-negative net magnetic charge.

We shall now examine the singularities of the metric. By
evaluating the curvature invariaiR,,.JR2°°% it can be
checked that for<m,? the “outermost” curvature singulari-
ties are located at the two points

r=r,=m+ym’+a°—12,

We can then follow a similar analysis as in Rigf] to show

that the axis of symmetry consists of the three line segments
0=0, r=r, and 6=, and the singularities given by Eq.
(3.8) are merely the joints between these segmésas Fig.

1 of Ref.[5]).

0=0,m. (3.9

IFor practical reasons, the integration was actually performed af-
ter further transforming to prolate spheroidal coordindtes]: x

=(r—m)/{ym?+a’—1? andy=cosé.

2This range forl will be justified below.

024019-3



Y. C. LIANG AND EDWARD TEO PHYSICAL REVIEW D 64 024019

In order to better understand the nature of these singularpected, the sum of these magnetic charges matches exactly
ties, we first note that the proper distance between the twwith the net charge of the solution obtained above.
singularities increases asa2when a—oo. It can also be The next step is to determine if there are any conical
shown that(for «#0) the proper distance vanishes wheen singularities along the different segments of the symmetry
—0.2 Thus, the parametex serves as a measure of the dis- axis. Assuming that the coordinagehas its usual periodicity
tance between the two singularities. along the symmetry axe8=0 or 7, it can be checked that

Bearing these facts in mind, we may now further investi-the conical excess along=r , is given by
gate the two singularities by adopting the following transfor-

mation[12,5]: m2— |2 2/(1+a?)
~ ~ ~ 5(r+):277 1+ > ) —-1]. (312
+r(1+ 7 d sifo r(1—-cosé) a
r=r,+- cosd) and Sitl= ———,
2 Jym?2+aZ—12

3.9 As was pointed qut in Ref.5], this conical excess can be
understood physically as the presence of a strut allong
on the metrio3.7), while taking the limita—o. Physically, =TI+, Which provides the necessary internal stress to coun-
this is tantamount to pushing one of the singularities to derbalance the attraction between the unbalanced-charged
large distance and studying the geometry of the remaininglack holes.

singularity. After carrying out the transformation, we obtain To an observer located at>r ., the only observable
physical entities are thus the two black holes located at the

Q| —2/(1+ a?) Q| 2/(1+a?) ends of the segmemt=r, ; when 0<6<, the regionr
ds®——| 1+ = dt?+| 1+ = <r, is inaccessible due to the presence of conical singulari-
r r ties; whenf=0 or =, all other singularities are located at
e e~ . < ie - - on.
[ T2+ T2+ sirfddo?) ], (3.10a r<r,, i.e. enclosed within the horizon

Now, note from Eqs(3.11) and(3.12 that the magnetic
~ charge of the black hole at (,0), as well as the conical
~ Qcosé (3.108 singularity along the segment=r ., vanishes wheh=m.
¢ J1+a? ' To understand the physical nature of this special case, we
first note from Eq(3.104 that the masses of the black holes
arem|,_o=(m—1)/(1+a? andm|,_,=(m+1)/(1+ a?),

¢—— SInj 1+ |~g| , (3.100  respectively. Wheri=m, the mass of the black hole &t
1ta r =0 vanishes whereas that of the onefat = becomes the
total mass of the solution. Intuitively, we can thus think of
where the increase of (from zerg as a physical process whereby
Qly_o=m—1 and Q|,_,=—m-—I. (3.19) the mas$of the first black hole is transferred adiabatically to

the second.
Indeed, this can seen by performing the following trans-

This limiting form is just that of an extremal dilatonic black X .
formation on the line elemerB.7) whenl=m:

hole, with the (singula) horizon located at=0 (r=r_)
[10].
We could also perform the transformati¢8.9) on tbe T=r—m+acosd and sifd= Sirfe.
metric (3.7) without taking the limit of largea. For smallr, (r—m+acosf)?
it enables us to investigate the geometry near to the two
singularities. In this limit, the geometry reduces to the nearThe resulting line element is
horizon limit of an extremal dilatonic black hole. However,
the horizon will no longer be spherically symmetric due to
the presence of the other black hole. One can readily calcu- gg2— —
late the relevant distortion factors following REB].
It can therefore be seen that at the ends of the segment o
r=r, , there lie two extremal dilatonic black holes carrying X[dr?+r(d6?+sinfode?)],
unbalanced magnetic charges. With the aid of Gauss’s law,
we may also deduce from E¢B.100 that the black hole at which clearly describes the geometry of an extremal dila-
(r,0)=(r,,0) and ¢, ,w) carries a magnetic charge of tonic black hole with massr@ [see Eq.3.10a]. Note that
(I-m)/\J1+a? and (+m)/\1+a? respectively. As ex- although the transformation dependsarthe resulting line
element does not; this is expected because longer carries
any physical meaning when there is only one black hole left

(r—-m)?—a?

—2/(1+a?)
dt?+

2/(1+ a?)

1+ —
r

1+ —
r

SFor a=0, however, the proper distance remains infinite in this
limit. It would be clear later that this is due to the well-known fact
that extremal Reissner-Nordsmoblack holes have throats of infi-  4In the process of increasing the valuel péharge is being trans-
nite length. ferred as well since the black holes are extremal.
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in the systent.Notice that if we attempt to increai;daeyor!d 1 a+ym?+a’—I?
m, the black hole located ar ( ,0) would attain a negative B.= > >
mass and thus become a naked singularity; at the other end Vit a mr,—I

of the segment=r ., the mass of the black hole would ) ) ) . .
exceed the total mass of the solution. This is clearly an unOf these two possible valueB,, is unphysical as it remains

physical situation; thus we shall restrict ourselves to value§onzero in the limit of large [5]. Therefore, the only physi-
of | that are less than or equal ta cally sensibleB that would remove the conical singularity
Whenl =0, it is well known[5] that the conical singular- alongr=r, is given byB_. _

ity alongr=r_ can also be removed by introducing an ex- However, in contrast to thé=0 case[5], the conical
ternal magnetic field tuned to the appropriate strength; thi§ingularities at the other axes of symmetry no longer vanish
was achieved by performing a dilatonic generalization of thefor this choice ofB. If we assume that the coordinatehas
Harrison transformatiofiL 3] on thel =0 case of our solution its usual periodicity along the symmetry axisr ., it can
(3.7), (3.3, and(3.4). For general, the transformation yields Pe shown that along thé=0 segment, there is a conical

deficit of
—4/(1+ QZ)}

corresponding to a cosmic string; whereas along @ker
segment, there is a conicakcesof

dSZZA12/(1+a2){ —dt2

1—|(—a_m)

mr,—12

5(0): 2’77{ 1—-
E4/(1+a2)
+

[A+(m2+a?—12)sirP 4]~ )1+ e)

dr2 5 Asirte e
X T+d0 +Wd¢ , (3.13a a—Jmrra?_|? (1+a%)
Om=2m| | 1+l| —————— -1y,
mr,—|
1 2 _ . : :
A== —=la sirfd(mr—12)+1A cosé] corresponding to a strut. Hence, for an unbalanced dihole, it
SN (Nita is impossible to remove the conical singularities along the
B segments¥=0 and #= 7 simultaneously with that along
- E[sir129(r2—az—|2)2 =r,, by tuning the strength of the external magnetic field.

Physically, this is expected due to the asymmetry in the dis-
tribution of charges among the two black holes.

+A(asirf6—21 cos6)?] (3.13b Finally, we shall remark that instead of a magnetic dihole
solution, an electric dihole solution can be obtained by dual-
izing the magnetic field strength tendey,, via

o —2ad
_— INA’", (3.139 , e
T $=—b Fim——cacF. (319
whereA andZ are the same as above, Applying this transformation to the Harrison-transformed so-

lution (3.13), we obtain a solution which describes an elec-
trically charged dihole immersed in an external electric field.

1
. 2 i _ M1 .2 ; 2
A= S A+a?si—2By1+aasiro(mr—I1%) The corresponding gauge field is given by

1 2
+1A cosé]+ ZBZ(l-i-az)[sinzﬁ(rz_a2_|2)2 A’ = (r—3m)B cosf— -2Fae B2 macosd(2-+ sirfo)
+A(asin?d— 21 cosd)?], (3.14 +1(r—3m)(1+cos0)]

2  macosf—I(r—m) L V1+a?
. . + +
andB is a new parameter governing the strength of the ex- J1+ a? 3 2
ternal magnetic field.
The values oB that would remove the conical singularity
alongr=r, are now

2

: (3.16

X B(asirf6— 2l cosb)

with all other components vanishing. In the special chse
SThe a=0 case, corresponding to the self-dual Taub-NUT solu-= 0, the above expression reduces to that given by Chattara-

tion, was precisely what Gross and Pty and Sorkin2] consid-  puti et al.[14]. Note thatB now governs the strength of the
ered to obtain their Kaluza-Klein monopole solution. external electric field. WheB=0, Eq.(3.16 reduces to
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, 2 macosf—I(r—m) oo r2—omr+12\ 12 s s )
At—m S , (3.17 ds = T (—dt*+dx3+---+dxg)
r2_|2 1/2
which clearly asymptotes to the gauge field generated by an +| 5| [dr*+(r?-2mr+1?)
; ; ; re=2mr+|
electric point source, with charge 21/\/1+a?, located at
the origin. X (d6%+sirfode?)], (4.29
IV. D6—ANTI- D6-BRANE CONFIGURATION A“’: ~ 2l cos, (4.2
Now, for certain values ofy, the action(2.1) emerges 3 [r2—2mr+I?
from string theory when compactified down to four dimen- ¢=- Zln r2_|2 (4.29

sions. In such cases the four-dimensional dihole solutions
can be reinterpreted in terms of brane-antibrane configurgynich describes a spherically symmetriix-brane source
tions in ten dimensions. Perhaps the most important examplgyrrying a monopole charde Recently, Braxet al. [7] pre-
is when the Kaluza-Klein dipole is uplifted to ten dimen- sented a supergravity solution that corresponds No
sions, to describe B6—antiD6-brane configuration in type Dp-branes coinciding Witht anti-D p-branes, withN =N in

[IA superstring theoryf12]. . .
In Fhe strir?g frarr)1[e ]the solution describing a pair Ofgeneral. .We will now establish a correspondence between
: our solution and theirs whep==6.

D6-branes with opposite but unbalanced magnetic charges, The solution of Ref[7], after transforming to the string
immersed in a nontrivial magnetic field, is given by stan- frame, is given by ’

dard string theory conventiong])
ds2=e?2 A0~ d2+ dxe+ - - - +dx)

dr? -
d§=A’1’2(—dt2+dx§+--~+dx§+2 ~ Tde? ] +e?BO[dr2+r4(d6?+sirfade?) ]}, (4.3a
Asir?g > sinhkh(r)
2 Ay .g=VC5—1 = =,
T 995 (4.13 N2 T e oshkh(T) — ¢, sinhkh(T)
(4.3b
2 B 7 ~ 3 ~ . ~
A<P=——(asinze(mr—Iz)JrIAcos¢9——[sinze(r2 ¢=15C1h(r) — 7 In[coshkh(r)—c; sinhkh(r)],
SA' 2
(4.30
—a’—1%2)2+ A(asinf6—2l cosh)?]y, (4.1  where
A(r)= > h(r 1| hkh(r inhkh(r
3 (r)=—ac1 (r)—1—6n[cos (r)—cysinhkh(r)],
¢p=—7nA’, (4.19

2

B(r)=In| 1 fo) 4
r=in — == -
2| " 64

1 - 7 ~
c.h(r)+ Eln[coshkh(r)
where we now have

—C, sinhkh(r)],

1
A= E{A+a2 sinf9—4B[asirfd(mr—12)+1A cosé]

- T—ro 7,
h(r)=In| = , k=+\/4——ci.
+B2[si0(r>—a?—12)2+ A(asirt6— 21 cos)?]}, o
In these expressions,, ¢c,, andr, represent the three pa-
with A andS given in Eq.(3.6). The geometry of the indi- rameters of the solution, and the seven-form gauge field
vidual D6-branes, located at (6) =(r . ,0) and ¢, , ), can g_iven by Eq.(4.3b represents that of an electrically c_harggd
be recovered by performing the coordinate transformatiopiX-brane; for a magnetic six-brane, the corresponding dila-
(3.9 on the above solution. This solution contains, as a spe-
cial case, the solution considered by Sen in REZ].

As in the four-dimensional situation, if the external mag- it is curious to note that the coincident limit of the four-
netic field is switched off by setting=0, the branes coin- dimensional dihole(3.7) solution is spherically symmetric only
cide whena=0. In this limit, the solution simplifies to whena= 3.
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ton field and gauge field can be obtained by performing aro generate black dihole solutions carrying equal but oppo-
electromagnetic duality transformation on the above solutiorsite charges. For any stationary, axisymmetric solution to the
[7]. vacuum Einstein equations, we can find a corresponding
The parametec; was argued in Ref.7] to be related to  static, axisymmetric solution to the Einstein-Maxwell-dilaton
the vacuum expectation value of the open string tachyorquations via this technique.
stretching between thB6- and antiD6-branes. To estab- As an application of the technique, we have constructed a
lish the correspondence with our solution, we will set thisnew solution starting from the Kerr-NUT solution. A de-
parameter to zero. In addition, the other parameters are takeailed analysis reveals that fox.m, the solution describes a

to be pair of extremal dilatonic black holes lying on the the sym-
metry axis. They carry unbalanced magnetic charges, with
m m2—12 the net charge governed by the NUT paraméter
szﬁ and ro=—% There are a few avenues for future research. Chattaraputi

et al.[14] have recently found oppositely charged dihole so-
lutions in U(1)* gauge theory—a generalization of Einstein-
Maxwell-dilaton theory consisting of four Abelian gauge
1 fields and three scalar fields. When embedded in string or
r=—=(r—m++rZ—2mr+1?), M-theory, these solutions describe a variety of intersecting

2 brane-antibrane configurations. It would be worth finding the
orresponding solutions with unbalanced electric and/or
agnetic charges.

It would also be of interest to find dihole solutions de-
scribing non-extremal black holes, as well as diholes in de
Sitter and anti—de Sitter space. Another challenging problem
is the construction of diholes in higher-dimensional Einstein-
V. CONCLUSION Maxwell-dilaton theory. When embedded in string theory,

In this paper, we have presented a sqution—generatingjese solutions would descrilp-anti-D p-brane configura-
technique which was first used by Davidson and Gedaljn  10NS for p<5.

Defining a new radial coordinateby

it can then be checked that the magnetic solution obtained by
dualizing Eq.(4.3) is equivalent to Eq(4.2). Thus, we see
that our solution(4.1) contains, as a special case, the coinci-
dentD6-antiD6-brane system of Ref7].
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