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Black diholes with unbalanced magnetic charges
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~Received 1 February 2001; published 21 June 2001!

We present a technique that can be used to generate a static, axisymmetric solution of the Einstein-Maxwell-
dilaton equations from a stationary, axisymmetric solution of the vacuum Einstein equations. Starting from the
Kerr solution, Davidson and Gedalin have previously made use of this technique to obtain a pair of oppositely
charged, extremal dilatonic black holes, known as a black dihole. In this paper, we shall instead start from the
Kerr-NUT ~Newman-Unti-Tamburino! solution. It will be shown that the new solution can also be interpreted
as a dihole, but with the black holes carrying unbalanced magnetic charges. The effect of the NUT parameter
is to introduce a net magnetic charge into the system. Finally, we uplift our solution to ten dimensions to
describe a system consisting ofD6 and anti–D6-branes with unbalanced charges. The limit in which they
coincide agrees with a solution recently derived by Braxet al.

DOI: 10.1103/PhysRevD.64.024019 PACS number~s!: 04.40.Nr, 04.20.Jb, 04.70.Bw
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I. INTRODUCTION

In 1983, Gross and Perry@1# and Sorkin@2# derived so-
lutions of Kaluza-Klein theory starting from existing solu
tions to the four-dimensional vacuum Einstein equatio
These solutions were constructed by first analytically c
tinuing the seed solutions to the Euclidean regimet→ ix5,
and adding on an extra flat time direction. Solutions to
four-dimensional Kaluza-Klein equations can then be
tained by compactifying the five-dimensional spacetimes
x5.

Using the self-dual Taub-NUT ~Newman-Unti-
Tamburino! solution as a seed, the authors@1,2# obtained a
static solution whose Kaluza-Klein gauge field correspo
to that of a magnetic monopole. This gauge field origina
from thegtw term of the Taub-NUT solution, with the NUT
parameter attributed the physical meaning of the magn
charge in the new solution.

Similarly, by using the Kerr solution as seed, a static
lution whose gauge field describes that of a magnetic dip
was constructed@1#. In this case, the angular momentum
the Kerr solution is converted into a parameter that cha
terizes the dipole moment of the new solution. The latte
the Kaluza-Klein analogue of the Bonnor solution@3# which
describes a magnetic dipole in general relativity.

Now, Kaluza-Klein theory is a special case of the mo
general Einstein-Maxwell-dilaton theory with an arbitra
dilatonic coupling. In the former, the coupling constanta,
defined in Eq.~2.1!, is taken to beA3. However, in this
paper, we shall focus on the more general Einstein-Maxw
dilaton theory wherea can take on any real value.

In 1994, Davidson and Gedalin@4# generalized the
solution-generating technique to one that is valid for ar
trary dilatonic coupling using a Ernst-type formalism. Sta
ing from the Kerr solution, they obtained the dilatonic ge
eralization of the Bonnor solution and interpreted thea51
case as one exhibiting a two-dimensional black and w
dihole structure. However, Emparan@5# recently pointed out
a flaw in this interpretation and demonstrated that the s
tion ~for generala) actually describes a static pair of opp
0556-2821/2001/64~2!/024019~7!/$20.00 64 0240
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sitely charged, extremal dilatonic black holes, which he ca
a black dihole.

We will start off in Sec. II by presenting the solution
generating technique that was first used by Davidson
Gedalin to obtain the dilatonic generalization of the Bonn
solution. Since this technique was only briefly described
their original article@4#, we will provide details of it for
completeness. To the best of our knowledge, these de
cannot be found elsewhere in the literature.

In Sec. III, we will make use of this technique to deriv
our dihole solution starting from the Kerr-NUT solution@6#;
the latter is a generalization of the Kerr solution which i
cludes an additional NUT parameter. As such, our solut
contains all the abovementioned ones as special cases.

This will be followed by a standard analysis, which w
first used by Emparan@5#, to investigate the physical natur
of the new solution. We will demonstrate that it describe
pair of extremal dilatonic black holes carrying unbalanc
magnetic charges, i.e., each of the black holes carries a m
netic charge that is of different sign as well as magnitude
contrast to a dipole, this system will have a non-trivial n
magnetic charge. We will continue to refer to this solution
a dihole.

In Sec. IV, we will discuss the embedding of our solutio
in type IIA superstring theory, in which it would describe
static configuration ofD6 and anti–D6-branes with unbal-
anced charges. We will then show that the coincident lim
agrees with a solution recently presented by Braxet al. @7#.

II. SOLUTION-GENERATING TECHNIQUE

The idea of generating a solution of the Einstein-Maxw
equations starting from a solution of the vacuum Einst
equations is not a new one~see, for example, Krameret al.
@8# or Islam@9#!. In this section, we will focus on a differen
technique which generates a static, axisymmetric solution
the Einstein-Maxwell-dilaton equations starting from a s
tionary, axisymmetric solution of the vacuum Einstein equ
tions.

Einstein-Maxwell-dilaton theory in four dimensions ha
the following action integral:
©2001 The American Physical Society19-1
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E d4xA2g@R22~¹f!22e22afF2#, ~2.1!

whereR is the Ricci scalar,f the dilaton field, andFab the
electromagnetic field tensor. For the special casea50, we
recover Einstein-Maxwell theory; fora51, the action de-
scribes the low energy dynamics of string theory; and
a5A3, we have Kaluza-Klein theory as mentioned in t
introduction. However, we shall keepa general in what fol-
lows. By varying this action with respect to the metric, gau
field and dilaton field, we obtain the respective field equ
tions

Rab52¹af¹bf1e22afS 2FacFb
c2

1

2
gabF

2D , ~2.2a!

¹a~e22afFab!50, ~2.2b!

¹2f1
a

2
e22afF250. ~2.2c!

Now, we are looking for a static, axisymmetric solution
the field equations. Recall that any such spacetime can
cast in the Weyl-Papapetrou form@9#

ds252 f dt21 ldw21em~dr21dz2!. ~2.3!

Furthermore, we choose a purely magnetic ansatzA[Aw

with all other components ofAa vanishing. It is also under
stood thatf, l, m, A, andf are functions ofr andz only.

With this ansa¨tz, we can now evaluate the left- and righ
hand sides of Eq.~2.2a!. DefiningD2[ f l , and by consider-
ing the combinationemD21( lRtt2 f Rww), we obtain

]2D

]r2
1

]2D

]z2
50.

A simple solution to this equation is given byD5r @9#.
With this choice, we may evaluate theRtt equation to arrive
at

f ~ f rr1 f zz1r21f r!2 f r
22 f z

252r22f 3e22af~Ar
21Az

2!,
~2.4!

where subscriptsr and z indicate partial derivatives of the
corresponding function with respect to these variables. S
larly, by evaluating the Ricci componentsRrr2Rzz andRrz ,
we obtain, respectively,

mr52 f 21f r1
1

2
r f 22~ f r

22 f z
2!12r~fr

22fz
2!

12e22afr21f ~Ar
22Az

2!, ~2.5a!

mz52 f 21f z1r f 22f r f z14rfrfz

14e22afr21f ArAz . ~2.5b!

Finally, we obtain from Eqs.~2.2b! and ~2.2c! the gauge
field and dilaton equations,
02401
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Arr1Azz2r21Ar52a~Arfr1Azfz!2 f 21~Ar f r1Azf z!,

~2.6!

frr1fzz1r21fr52ar22f e22af~Ar
21Az

2!.
~2.7!

The crucial step now is to realize that if we set

f̃ 25 f e22af and w5 iA11a2A, ~2.8!

then Eqs.~2.4! and ~2.6!, respectively, become

f̃ ~ f̃ rr1 f̃ zz1r21 f̃ r!2 f̃ r
22 f̃ z

21r22 f̃ 4~wr
21wz

2!50,
~2.9!

f̃ ~wrr1wzz2r21wr!12~wr f̃ r1wzf̃ z!50.
~2.10!

These equations are precisely the same as those derived
the vacuum Einstein equations for a stationary, axisymme
metric

ds252 f̃ ~dt2wdw!21r2 f̃ 21dw21em̃~dr21dz2!,
~2.11!

using a Ernst-type formalism@cf. Eqs.~2.12a! and~2.12b! of
Islam @9##. For every such solution to the vacuum Einste
equations, we can therefore find a corresponding solutio
the Einstein-Maxwell-dilaton equations via~2.8!. Neverthe-
less, one should be aware that this procedure would in g
eral generate an imaginary gauge field. Thus, a real solu
to the Einstein-Maxwell-dilaton equations can be genera
via this method only if an analytic continuation of the p
rameter~s! in the seed solution is possible.

Finally, we see that the dilaton equation~2.7! can be writ-
ten as

frr1fzz1r21fr52ar22 f̃ 2~Ar
21Az

2!, ~2.12!

which, using Eq.~2.9!, admits the solution

f52
a

11a2
ln f̃ , ~2.13!

up to the addition of a harmonic functionf̃ satisfyingf̃rr

1f̃zz1r21f̃r50. For the choicef̃50, we have

f 5 f̃ 2/(11a2). ~2.14!

These expressions, together with that for the gauge field
tained from Eq.~2.8!, can then be used to deducem via Eq.
~2.5!. This completes our derivation of the static, axisymm
ric solution to the field equations~2.2!.

We remark that this technique is just a dilatonic gener
zation of theorem 30.8 in Krameret al. @8#, which Bonnor
@3# used to generate~from the Kerr solution! the well-known
magnetic dipole solution. Using the same solution as se
Davidson and Gedalin@4# have made use of the above tec
nique to generate the dilatonic generalization of the Bon
solution. If we begin with the self-dual Taub-NUT solutio
9-2



rr
-
n

th

r

at
nic
try

ic
is

he
lu-

of

y

nts
.

af-

BLACK DIHOLES WITH UNBALANCED MAGNETIC CHARGES PHYSICAL REVIEW D64 024019
instead, we would obtain a generalization of the Gross-Pe
Sorkin @1,2# monopole solution to arbitrary dilatonic cou
pling, which can also be interpreted as an extremal dilato
black hole@10#.

III. DIHOLE SOLUTION WITH UNBALANCED CHARGES

A. Derivation of solution

In this paper, we will start from the Kerr-NUT~or
Demiański-Newman! solution @6#

ds252L̄S dt12
a sin2u~mr1 l 2!1 l D̄ cosu

D̄2a2 sin2u
dw D 2

1L̄21F ~D̄2a2 sin2u!S dr2

D̄
1du2D 1D̄ sin2udw2G ,

~3.1!

where

L̄[
D̄2a2 sin2u

r 21~a cosu1 l !2
and D̄[r 222mr1a22 l 2.

In these expressions,a is the angular momentum andl is the
NUT-parameter. Note that this solution contains both
Kerr and Taub-NUT solutions as special cases withl 50 and
a50, respectively.

By comparing the line element~3.1! with Eq. ~2.11!, we
obtain

f̃ 5L̄ and w522
a sin2u~mr1 l 2!1 l D̄ cosu

D̄2a2 sin2u
. ~3.2!

To ensure that the resulting gauge field is real, we perfo
the analytic continuationa→ ia and l→ i l . Using Eqs.~2.8!,
~2.13!, and~2.14!, we obtain

Aw52
2

A11a2

a sin2u~mr2 l 2!1 lD cosu

D1a2 sin2u
, ~3.3!

f52
a

11a2
lnFD1a2 sin2u

S G , ~3.4!

f 5FD1a2 sin2u

S G2/(11a2)

, ~3.5!

where

D[r 222mr2a21 l 2 and S[r 22~a cosu1 l !2.
~3.6!

Substituting Eqs.~3.3!–~3.5! into Eq. ~2.5!, and by trans-
forming from the Boyer-Lindquist-type coordinates (r , u) to
cylindrical coordinates (r, z) via @11#

r5Ar 222mr2a21 l 2 sinu, z5~r 2m!cosu,
02401
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we obtain by quadrature1 the expression form. We finally
arrive at the new solution

ds25L2/(11a2)H 2dt2

1
S4/(11a2)

@D1~m21a22 l 2!sin2u# (32a2)/(11a2)

3S dr2

D
1du2D J 1

D sin2u

L2/(11a2)
dw2, ~3.7!

where

L[
D1a2 sin2u

S
,

with Aw andf given in Eqs.~3.3! and ~3.4!, respectively.

B. Physical properties of the solution

Recently, the special case (l 50) of the above solution
was analyzed in detail by Emparan@5#. In this section, we
will perform a similar analysis on our solution and arrive
the conclusion that it describes a pair of extremal dilato
black holes with unbalanced charges lying on the symme
axis.

We begin by highlighting that, in addition to being stat
and axisymmetric, the solution is asymptotically flat. This
in contrast to our seed solution~3.1! whosegtw term does not
vanish in the asymptotic limit. This unphysical nature of t
Kerr-NUT solution has thus been removed in the new so
tion.

A study of the asymptotic behavior ofgtt and Aw also
reveals that the total mass of the solution isM52m/(1
1a2) whereas the net magnetic charge of the solution isQ̄
52l /A11a2. Thus the NUT-parameterl governs the mono-
pole field strength of the solution at far field. Without loss
generality, we shall restrict ourselves to non-negativel cor-
responding to non-negative net magnetic charge.

We shall now examine the singularities of the metric. B
evaluating the curvature invariantRabcdR

abcd, it can be
checked that forl<m,2 the ‘‘outermost’’ curvature singulari-
ties are located at the two points

r 5r 1[m1Am21a22 l 2, u50,p. ~3.8!

We can then follow a similar analysis as in Ref.@5# to show
that the axis of symmetry consists of the three line segme
u50, r 5r 1 and u5p, and the singularities given by Eq
~3.8! are merely the joints between these segments~see Fig.
1 of Ref. @5#!.

1For practical reasons, the integration was actually performed
ter further transforming to prolate spheroidal coordinates@11#: x
5(r 2m)/Am21a22 l 2 andy5cosu.

2This range forl will be justified below.
9-3



la
tw

is-

ti
or

in
in

k

tw
a
r,
to
lc

e
g

la
t
f

actly

cal
try

t

e
g
un-
rged

the

ari-
t

l

we
s

of
y
to

s-

ila-

left

his
ct
- -

Y. C. LIANG AND EDWARD TEO PHYSICAL REVIEW D 64 024019
In order to better understand the nature of these singu
ties, we first note that the proper distance between the
singularities increases as 2a when a→`. It can also be
shown that~for aÞ0) the proper distance vanishes whena
→0.3 Thus, the parametera serves as a measure of the d
tance between the two singularities.

Bearing these facts in mind, we may now further inves
gate the two singularities by adopting the following transf
mation @12,5#:

r 5r 11
r̃

2
~11cosũ ! and sin2u5

r̃ ~12cosũ !

Am21a22 l 2
,

~3.9!

on the metric~3.7!, while taking the limita→`. Physically,
this is tantamount to pushing one of the singularities to
large distance and studying the geometry of the remain
singularity. After carrying out the transformation, we obta

ds2→2S 11
uQu

r̃
D 22/(11a2)

dt21S 11
uQu

r̃
D 2/(11a2)

3@dr̃21 r̃ 2~dũ21sin2ũdw2!#, ~3.10a!

Aw→ Q cosũ

A11a2
, ~3.10b!

f→2
a

11a2
lnS 11

uQu

r̃
D , ~3.10c!

where

Quu505m2 l and Quu5p52m2 l . ~3.11!

This limiting form is just that of an extremal dilatonic blac
hole, with the ~singular! horizon located atr̃ 50 (r 5r 1)
@10#.

We could also perform the transformation~3.9! on the
metric ~3.7! without taking the limit of largea. For smallr̃ ,
it enables us to investigate the geometry near to the
singularities. In this limit, the geometry reduces to the ne
horizon limit of an extremal dilatonic black hole. Howeve
the horizon will no longer be spherically symmetric due
the presence of the other black hole. One can readily ca
late the relevant distortion factors following Ref.@5#.

It can therefore be seen that at the ends of the segm
r 5r 1 , there lie two extremal dilatonic black holes carryin
unbalanced magnetic charges. With the aid of Gauss’s
we may also deduce from Eq.~3.10b! that the black hole a
(r ,u)5(r 1 ,0) and (r 1 ,p) carries a magnetic charge o
( l 2m)/A11a2 and (l 1m)/A11a2, respectively. As ex-

3For a50, however, the proper distance remains infinite in t
limit. It would be clear later that this is due to the well-known fa
that extremal Reissner-Nordstro¨m black holes have throats of infi
nite length.
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pected, the sum of these magnetic charges matches ex
with the net charge of the solution obtained above.

The next step is to determine if there are any coni
singularities along the different segments of the symme
axis. Assuming that the coordinatew has its usual periodicity
along the symmetry axesu50 or p, it can be checked tha
the conical excess alongr 5r 1 is given by

d (r 1)52pF S 11
m22 l 2

a2 D 2/(11a2)

21G . ~3.12!

As was pointed out in Ref.@5#, this conical excess can b
understood physically as the presence of a strut alonr
5r 1 , which provides the necessary internal stress to co
terbalance the attraction between the unbalanced-cha
black holes.

To an observer located atr .r 1 , the only observable
physical entities are thus the two black holes located at
ends of the segmentr 5r 1 ; when 0,u,p, the regionr
,r 1 is inaccessible due to the presence of conical singul
ties; whenu50 or p, all other singularities are located a
r ,r 1 , i.e. enclosed within the horizon.

Now, note from Eqs.~3.11! and ~3.12! that the magnetic
charge of the black hole at (r 1 ,0!, as well as the conica
singularity along the segmentr 5r 1 , vanishes whenl 5m.
To understand the physical nature of this special case,
first note from Eq.~3.10a! that the masses of the black hole
are muu505(m2 l )/(11a2) and muu5p5(m1 l )/(11a2),
respectively. Whenl 5m, the mass of the black hole atu
50 vanishes whereas that of the one atu5p becomes the
total mass of the solution. Intuitively, we can thus think
the increase ofl ~from zero! as a physical process whereb
the mass4 of the first black hole is transferred adiabatically
the second.

Indeed, this can seen by performing the following tran
formation on the line element~3.7! when l 5m:

r̃ 5r 2m1a cosu and sin2ũ5
~r 2m!22a2

~r 2m1a cosu!2
sin2u.

The resulting line element is

ds252S 11
2m

r̃
D 22/(11a2)

dt21S 11
2m

r̃
D 2/(11a2)

3@dr̃21 r̃ 2~dũ21sin2ũdw2!#,

which clearly describes the geometry of an extremal d
tonic black hole with mass 2m @see Eq.~3.10a!#. Note that
although the transformation depends ona, the resulting line
element does not; this is expected becausea no longer carries
any physical meaning when there is only one black hole

4In the process of increasing the value ofl, charge is being trans
ferred as well since the black holes are extremal.
9-4
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in the system.5 Notice that if we attempt to increasel beyond
m, the black hole located at (r 1 ,0! would attain a negative
mass and thus become a naked singularity; at the other
of the segmentr 5r 1 , the mass of the black hole woul
exceed the total mass of the solution. This is clearly an
physical situation; thus we shall restrict ourselves to val
of l that are less than or equal tom.

When l 50, it is well known@5# that the conical singular
ity along r 5r 1 can also be removed by introducing an e
ternal magnetic field tuned to the appropriate strength;
was achieved by performing a dilatonic generalization of
Harrison transformation@13# on thel 50 case of our solution
~3.7!, ~3.3!, and~3.4!. For generall, the transformation yields

ds25L82/(11a2)H 2dt2

1
S4/(11a2)

@D1~m21a22 l 2!sin2u# (32a2)/(11a2)

3S dr2

D
1du2D J 1

D sin2u

L82/(11a2)
dw2, ~3.13a!

Aw52
1

SL8
H 2

A11a2
@a sin2u~mr2 l 2!1 lD cosu#

2
B

2
@sin2u~r 22a22 l 2!2

1D~a sin2u22l cosu!2#J , ~3.13b!

f52
a

11a2
ln L8, ~3.13c!

whereD andS are the same as above,

L8[
1

S H D1a2 sin2u22BA11a2@a sin2u~mr2 l 2!

1 lD cosu#1
1

4
B2~11a2!@sin2u~r 22a22 l 2!2

1D~a sin2u22l cosu!2#J , ~3.14!

andB is a new parameter governing the strength of the
ternal magnetic field.

The values ofB that would remove the conical singularit
along r 5r 1 are now

5The a50 case, corresponding to the self-dual Taub-NUT so
tion, was precisely what Gross and Perry@1# and Sorkin@2# consid-
ered to obtain their Kaluza-Klein monopole solution.
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1

A11a2

a6Am21a22 l 2

mr12 l 2
.

Of these two possible values,B1 is unphysical as it remains
nonzero in the limit of largea @5#. Therefore, the only physi-
cally sensibleB that would remove the conical singularit
along r 5r 1 is given byB2 .

However, in contrast to thel 50 case@5#, the conical
singularities at the other axes of symmetry no longer van
for this choice ofB. If we assume that the coordinatew has
its usual periodicity along the symmetry axisr 5r 1 , it can
be shown that along theu50 segment, there is a conica
deficit of

d (0)52pH 12F12 l S a2Am21a22 l 2

mr12 l 2 D G24/(11a2)J ,

corresponding to a cosmic string; whereas along theu5p
segment, there is a conicalexcessof

d (p)52pH F11 l S a2Am21a22 l 2

mr12 l 2 D G24/(11a2)

21J ,

corresponding to a strut. Hence, for an unbalanced dihol
is impossible to remove the conical singularities along
segmentsu50 andu5p simultaneously with that alongr
5r 1 , by tuning the strength of the external magnetic fie
Physically, this is expected due to the asymmetry in the d
tribution of charges among the two black holes.

Finally, we shall remark that instead of a magnetic diho
solution, an electric dihole solution can be obtained by du
izing the magnetic field strength tensorFab via

f852f, Fab8 5
e22af

2
eabcdF

cd. ~3.15!

Applying this transformation to the Harrison-transformed s
lution ~3.13!, we obtain a solution which describes an ele
trically charged dihole immersed in an external electric fie
The corresponding gauge field is given by

A t8 5~r 23m!B cosu2
A11a2

2
B2@macosu~21sin2u!

1 l ~r 23m!~11cos2u!#

1
2

A11a2

macosu2 l ~r 2m!

S F11
A11a2

2

3B~a sin2u22l cosu!G2

, ~3.16!

with all other components vanishing. In the special casl
50, the above expression reduces to that given by Chatt
puti et al. @14#. Note thatB now governs the strength of th
external electric field. WhenB50, Eq. ~3.16! reduces to

-

9-5
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A t8 5
2

A11a2

macosu2 l ~r 2m!

S
, ~3.17!

which clearly asymptotes to the gauge field generated by
electric point source, with charge22l /A11a2, located at
the origin.

IV. D6–ANTI- D6-BRANE CONFIGURATION

Now, for certain values ofa, the action~2.1! emerges
from string theory when compactified down to four dime
sions. In such cases the four-dimensional dihole soluti
can be reinterpreted in terms of brane-antibrane config
tions in ten dimensions. Perhaps the most important exam
is when the Kaluza-Klein dipole is uplifted to ten dime
sions, to describe aD6 –anti-D6-brane configuration in type
IIA superstring theory@12#.

In the string frame, the solution describing a pair
D6-branes with opposite but unbalanced magnetic char
immersed in a nontrivial magnetic field, is given by~in stan-
dard string theory conventions@7#!

ds25L81/2H 2dt21dx1
21•••1dx6

21SS dr2

D
1du2D J

1
D sin2u

L81/2
dw2, ~4.1a!

Aw52
2

SL8
H a sin2u~mr2 l 2!1 lD cosu2

B

2
@sin2u~r 2

2a22 l 2!21D~a sin2u22l cosu!2#J , ~4.1b!

f52
3

4
ln L8, ~4.1c!

where we now have

L85
1

S
$D1a2 sin2u24B@a sin2u~mr2 l 2!1 lD cosu#

1B2@sin2u~r 22a22 l 2!21D~a sin2u22l cosu!2#%,

with D andS given in Eq.~3.6!. The geometry of the indi-
vidual D6-branes, located at (r ,u)5(r 1,0) and (r 1 ,p), can
be recovered by performing the coordinate transforma
~3.9! on the above solution. This solution contains, as a s
cial case, the solution considered by Sen in Ref.@12#.

As in the four-dimensional situation, if the external ma
netic field is switched off by settingB50, the branes coin-
cide whena50. In this limit, the solution simplifies to
02401
n

s
a-
le

f
s,

n
e-

-

ds25S r 222mr1 l 2

r 22 l 2 D 1/2

~2dt21dx1
21•••1dx6

2!

1S r 22 l 2

r 222mr1 l 2D 1/2

@dr21~r 222mr1 l 2!

3~du21sin2udw2!#, ~4.2a!

Aw522l cosu, ~4.2b!

f52
3

4
lnS r 222mr1 l 2

r 22 l 2 D , ~4.2c!

which describes a spherically symmetric6 six-brane source
carrying a monopole chargel. Recently, Braxet al. @7# pre-
sented a supergravity solution that corresponds toN

Dp-branes coinciding withN̄ anti-Dp-branes, withNÞN̄ in
general. We will now establish a correspondence betw
our solution and theirs whenp56.

The solution of Ref.@7#, after transforming to the string
frame, is given by

ds25ef/2$e2A( r̃ )~2dt21dx1
21•••1dx6

2!

1e2B( r̃ )@dr̃21 r̃ 2~du21sin2udw2!#%, ~4.3a!

At1•••65Ac2
221

sinhkh~ r̃ !

coshkh~ r̃ !2c2 sinhkh~ r̃ !
,

~4.3b!

f5
7

16
c1h~ r̃ !2

3

4
ln@coshkh~ r̃ !2c2 sinhkh~ r̃ !#,

~4.3c!

where

A~ r̃ ![2
3

64
c1h~ r̃ !2

1

16
ln@coshkh~ r̃ !2c2 sinhkh~ r̃ !#,

B~ r̃ ![ lnS 12
r 0

2

r̃ 2D 1
21

64
c1h~ r̃ !1

7

16
ln@coshkh~ r̃ !

2c2 sinhkh~ r̃ !#,

h~ r̃ ![ lnS r̃ 2r 0

r̃ 1r 0
D , k[A42

7

16
c1

2.

In these expressionsc1 , c2, and r 0 represent the three pa
rameters of the solution, and the seven-form gauge fi
given by Eq.~4.3b! represents that of an electrically charg
six-brane; for a magnetic six-brane, the corresponding d

6It is curious to note that the coincident limit of the fou
dimensional dihole~3.7! solution is spherically symmetric only
whena5A3.
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ton field and gauge field can be obtained by performing
electromagnetic duality transformation on the above solu
@7#.

The parameterc1 was argued in Ref.@7# to be related to
the vacuum expectation value of the open string tach
stretching between theD6- and anti-D6-branes.7 To estab-
lish the correspondence with our solution, we will set th
parameter to zero. In addition, the other parameters are t
to be

c25
m

Am22 l 2
and r 05

Am22 l 2

2
.

Defining a new radial coordinater by

r̃ 5
1

2
~r 2m1Ar 222mr1 l 2!,

it can then be checked that the magnetic solution obtaine
dualizing Eq.~4.3! is equivalent to Eq.~4.2!. Thus, we see
that our solution~4.1! contains, as a special case, the coin
dentD6-anti-D6-brane system of Ref.@7#.

V. CONCLUSION

In this paper, we have presented a solution-genera
technique which was first used by Davidson and Gedalin@4#

7However, the physical significance of this parameter in four
mensions is still unclear.
r.

02401
n
n

n

en

by

-

g

to generate black dihole solutions carrying equal but op
site charges. For any stationary, axisymmetric solution to
vacuum Einstein equations, we can find a correspond
static, axisymmetric solution to the Einstein-Maxwell-dilato
equations via this technique.

As an application of the technique, we have constructe
new solution starting from the Kerr-NUT solution. A de
tailed analysis reveals that forl ,m, the solution describes a
pair of extremal dilatonic black holes lying on the the sym
metry axis. They carry unbalanced magnetic charges, w
the net charge governed by the NUT parameterl.

There are a few avenues for future research. Chattara
et al. @14# have recently found oppositely charged dihole s
lutions in U(1)4 gauge theory—a generalization of Einstei
Maxwell-dilaton theory consisting of four Abelian gaug
fields and three scalar fields. When embedded in string
M-theory, these solutions describe a variety of intersect
brane-antibrane configurations. It would be worth finding t
corresponding solutions with unbalanced electric and
magnetic charges.

It would also be of interest to find dihole solutions d
scribing non-extremal black holes, as well as diholes in
Sitter and anti–de Sitter space. Another challenging prob
is the construction of diholes in higher-dimensional Einste
Maxwell-dilaton theory. When embedded in string theo
these solutions would describeDp-anti-Dp-brane configura-
tions for p<5.
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