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Quantum-mechanical model of the Kerr-Newman black hole

Jarmo Mäkelä,* Pasi Repo,† Markus Luomajoki,‡ and Johanna Piilonen§

Department of Physics, University of Jyva¨skylä, P.O. Box 35, FIN-40351 Jyva¨skylä, Finland
~Received 14 February 2001; published 21 June 2001!

We consider a Hamiltonian quantum theory of stationary spacetimes containing a Kerr-Newman black hole.
The physical phase space of such spacetimes is just six dimensional, and it is spanned by the massM, the
electric chargeQ and the angular momentumJ of the hole, together with the corresponding canonical mo-
menta. In this six-dimensional phase space we perform a canonical transformation such that the resulting
configuration variables describe the dynamical properties of Kerr-Newman black holes in a natural manner.
The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the
corresponding self-adjoint Hamiltonian operator and an eigenvalue equation for the Arnowitt-Deser-Misner
~ADM ! mass of the hole, from the point of view of a distant observer at rest, is obtained. In a certain very
restricted sense, this eigenvalue equation may be viewed as a sort of ‘‘Schro¨dinger equation of black holes.’’
Our ‘‘Schrödinger equation’’ implies that the ADM mass, electric charge and angular momentum spectra of
black holes are discrete, and the mass spectrum is bounded from below. Moreover, the spectrum of the quantity
M22Q22a2, where a is the angular momentum per unit mass of the hole, is strictly positive when an
appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of
M, Q and a are of the formA2n, wheren is an integer. It turns out that this result is closely related to
Bekenstein’s proposal on the discrete horizon area spectrum of black holes.
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I. INTRODUCTION

Black holes are among the simplest and most beau
objects in the universe. They are made of spacetime
electromagnetic field only, and they have just three class
degrees of freedom which may be taken to be the massM,
the electric chargeQ and the angular momentumJ of the
hole.

Although the number of classical degrees of freedom
black holes is just three, however, one expects that ther
an enormous number of quantum-mechanical degree
freedom associated with black holes. During some rec
years, string theory and loop theoretic approaches to qu
tum gravity have greatly improved our understanding of
nature of these quantum mechanical degrees of free
@1,2#.

As it happens, there is a resemblance between black h
and hydrogen atoms. Like a black hole, a hydrogen atom
just three classical degrees of freedom. Indeed, the sys
looks very simple: An electron whirls around the proton, a
the classical degrees of freedom may be taken to be thex, y
andz coordinates of the electron. Quantum field theoreti
investigations reveal, however, an enormous number
quantum mechanical degrees of freedom associated with
tual electron-positron pairs and photons. Still, the quant
mechanical properties of the hydrogen atom may be
scribed, as an excellent approximation, by its non-relativi
Schrödinger equation which takes into account the th
classical degrees of freedom only.

The resemblance between black holes and hydrogen
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oms gives rise to an interesting question of a possibility
construct a quantum-mechanical model of a black h
which, although it takes into account the three classical
grees of freedom of black holes only, nevertheless descr
their quantum mechanical properties with a reasonable a
racy. In this paper we shall consider one such model of bl
holes. Of course, even classical black hole spacetimes
perform all sorts of vibrations and oscillations which provi
them with an enormous number of additional degrees of fr
dom, but in this paper we are interested in stationary bl
holes only. In other words, we are quantizing the station
sector of black hole spacetimes, and such a sector is cha
terized by just three classical degrees of freedom@3#.

Our model is based on an observation that even station
black hole spacetimes havedynamics. More precisely, even
stationary black hole spacetimes have a region which d
not admit a timelike Killing vector field. This means that in
certain spacetime region the black hole spacetime geom
evolves in time no matter how we choose the time coor
nate. It is this time evolution of black hole spacetime geo
etry on which we focus our attention and which, in o
model, is responsible for the quantum-mechanical proper
of black holes.

To see what this means consider, as an example, the
plest possible black hole, the Schwarzschild black hole
has the spacetime metric

ds252S 12
2M

r Ddt21
dr2

12
2M

r

1r 2~du21sin2udf2!.

~1.1!

One observes that whenr ,2M , the coordinater becomes
timelike, and because spacetime geometry inside the e
horizon depends onr, it evolves in time. In that regionr
©2001 The American Physical Society18-1
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describes the radius of the wormhole throat of the black h
In a more precise manner the fact that spacetime inside
event horizon really has dynamics in its geometry can
seen if one considers the conformal diagram of Krus
spacetime: Whenr ,2M one cannot move in any timelik
direction without changingr, and therefore the geometry o
the spacelike hypersurfaces of spacetime. In Reiss
Nordström and Kerr-Newman black hole spacetimes the
namical region lies in the intermediate region between
outer and the inner horizons of the hole.

In this paper we consider the Hamiltonian quantization
Kerr-Newman black hole spacetimes in such a manner t
in the classical level, the phase space coordinates of
theory describe the dynamics of the intermediate region
tween the horizons in a natural way. The Kerr-Newman
lution is a specific solution to Einstein’s and Maxwell
equations in vacuum. Because of that, we begin our inve
gations in Sec. II by a general study of the Hamiltoni
formulation of the Einstein-Maxwell theory, paying partic
lar attention to the boundary terms which are needed in
ymptotically flat electrovacuum spacetimes, such as K
Newman spacetimes, to make the Hamiltonian formulat
consistent. We shall see in later sections that these boun
terms play a most fundamental role in the quantum theor
Kerr-Newman black holes. In Sec. III we calculate the
boundary terms for maximally extended Kerr-Newm
spacetimes. It turns out that from the boundary terms one
read off the mass, electric charge and angular momentum
the black hole.

The study of the classical Hamiltonian dynamics of Ke
Newman black hole spacetimes is performed in Sec. IV.
sically, our study is based on an important theorem pro
by Regge and Teitelboim@4#. This theorem states, esse
tially, that the physical Hamiltonian of asymptotically fla
spacetime with matter fields can be gained if we first so
the classical constraints, and then substitute the solution
the constraints, in terms of the physical phase space coo
nates of the theory, to the boundary terms at asympt
spacelike infinity. At the first stage we take the phase sp
coordinates to be the massM, the electric chargeQ and the
angular momentumJ of the hole, together with the corre
sponding canonical momentapM , pQ andpJ , and we write
the sum of the boundary terms, and hence the class
Hamiltonian, in terms of these phase space coordinates.
unclear whether the assumptions of Regge’s and Te
boim’s theorem are valid for Kerr-Newman spacetime a
the variablesM , Q, J, pM , pQ and pJ , but we accept this
as an unproved hypothesis and see where it takes us. A
second stage we perform a canonical transformation from
variablesM , Q and J and their canonical momenta to th
new variables and their canonically conjugate mome
which describe better the dynamics of the intermediate
gion between the horizons of the Kerr-Newman black ho
In terms of these phase space variables we write the clas
Hamiltonian of Kerr-Newman spacetimes in a specific fol
tion where the flat Minkowski time coordinate of a
asymptotic observer at rest at a faraway infinity coincid
02401
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with the proper time of a freely falling observer at the thro
of the black hole. An explicit example of such a foliation
presented in Appendix B.

In Sec. V we proceed to quantization. A straightforwa
replacement of the classical Hamiltonian by the correspo
ing self-adjoint Hamiltonian operator yields an equati
which, in a certain very restricted sense, may be conside
as a sort of ‘‘Schro¨dinger equation of black holes.’’ Tha
equation is the main result of this paper. In the natural un
where\5c5G54pe051, and when a particular operato
ordering has been chosen, it can be written, in terms of
configuration variablesR, u andv of the theory, as

1

2R S 2
]2

]R2
2

]2

]u2
2

]2

]v2
1R21u21v2D C5MC,

~1.2!

where C5C(R,u,v) is the wave function of the Kerr-
Newman black hole.

Besides being an equation of considerable simplicity,
‘‘Schrödinger equation’’ has many interesting consequenc
For instance, it predicts that the mass, electric charge
angular momentum spectra of black holes are discrete
particular, the mass spectrum is bounded from below and
be made positive by means of an appropriate choice o
self-adjoint extension. As a matter of fact, one may pro
even more than that: It is possible to choose operator or
ings and self-adjoint extensions such that the spectrum of
quantity

M22Q22a2,

whereaªJ/M is the angular momentum per unit mass,
strictly positive. Regarding Hawking radiation, this is a ver
interesting result: It implies that a non-extreme black h
can never become, by means of Hawking radiation, an
treme hole. This result is in agreement with the third law
black hole thermodynamics, and is therefore a strong ar
ment in favor of the physical validity of our model.

At the high end of the spectrum, we find that the eige
values of the sum of the areas of the horizons of the h
which we shall call, for the sake of convenience, thetotal
area of the black hole, are of the form

An
tot5n•16p l Pl

2 , ~1.3!

wheren51,2,3, . . . and l PlªA\G/c3 is the Planck length.
As such our result is closely related, although not quite id
tical to Bekenstein’s proposal@5–28#. According to that pro-
posal, the spectrum of the outer horizon of the hole is of
form

An5n•g l Pl
2 , ~1.4!

wheren51,2,3, . . . andg is pure number of order one. Ar
guments in favor of the claim that it is perhaps not the a
of the exterior horizon but the sum of the areas which sho
have an equal spacing in its spectrum will be given in S
VI.
8-2
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QUANTUM-MECHANICAL MODEL OF THE KERR-NEWMAN . . . PHYSICAL REVIEW D64 024018
Finally, our model implies a very interesting discre
spectrum for the angular momentum of Kerr-Newman bla
holes. For uncharged holes near extremality, the angular
mentum eigenvalues are of the form

Jm5m\, ~1.5!

wherem50,62,64, . . . .

II. HAMILTONIAN FORMULATION OF
EINSTEIN-MAXWELL THEORY

The Einstein-Maxwell theory is a theory of electroma
netic field interacting with gravitational field. In this sectio
we shall develop the Hamiltonian formulation of such
theory in all details, paying particular attention to the boun
ary terms appearing in asymptotically flat spacetimes a
consequence of the requirement of internal consistenc
the theory.

The action of the Einstein-Maxwell theory can be writte
in general, as

S5
1

16pE d4xA2g~ (4)R2FmnFmn!1~boundary terms!.

~2.1!

In this equation the integration is performed over the wh
four-dimensional spacetime.g is the determinant of the
spacetime metricgmn , and

Fmnª]mAn2]n Am ~2.2!

is the electromagnetic field tensor.Am is the electromagnetic
vector potential.(4)R is the four-dimensional scalar curva
ture.

As is well known, we can write the action~2.1! as

S5SS
grav1SS

em1S]S
grav1S]S

em, ~2.3!

where

SS
grav

ª2
1

16pE dtE
S
d3xAqN~KabK

ab2K21R!, ~2.4a!

SS
em
ª

1

16pE dtE
S
d3xAqNFmnFmn, ~2.4b!

andS]S
grav andS]S

em are boundary terms associated with spa
like asymptotic infinities of asymptotically flat spacetime
In Eqs.~2.4a! and~2.4b! the spatial integration is performe
over the whole spacelike hypersurfaceS of spacetime where
the timet is constant.Kab is the exterior curvature tensor o
that hypersurface,K its trace, andR is the three-dimensiona
scalar curvature on that hypersurface.N is the lapse function
andq is the determinant of the metricqab on the hypersur-
faceS.

The properties of the actionSS
grav are well known. Con-

sider now the actionSS
em of Eq. ~2.4b!. To begin with, con-

sider first the case where the spacetime metric can be wr
as
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ds252dt21qabdxadxb. ~2.5!

In other words, we have chosen time orthogonal coordina
where the lapseN[1, and the shiftNa vanishes identically.
In these coordinates we can write

SS
em5E dtE

S
d3xL em, ~2.6!

where

L em
ª

1

16p
Aq$2qab@ȦaȦb22Ȧa~]bA0!1~]aA0!~]bA0!#

2 (3)Fab
(3)Fab% ~2.7!

is the electromagnetic Lagrangian in curved spacetime.
dot means time derivative and we have defined

(3)Fabª]aAb2]bAa , ~2.8a!

(3)Fab
ªqamqbn (3)Fmn . ~2.8b!

The canonical momentum conjugate toAa is

pa
ª

]L em

]Ȧa

5
Aq

4p
qas~Ȧs2]sA0!5

Aq

4p
qasF0s . ~2.9!

This relation can be inverted, and we have

Ȧb5
4p

Aq
pb1]bA0 , ~2.10!

where we have defined

pbªqabp
a. ~2.11!

In terms ofpa we can write the electromagnetic Lagrangi
as

L em5paȦa2F2p

Aq
qabp

apb1pa~]aA0!1
Aq

16p
(3)Fab

(3)FabG .

~2.12!

Hence, we get

SS
em5E dtE

S
d3x@paȦa2H em1A0~]apa!#, ~2.13!

where

H em
ª

2p

Aq
qabp

apb1
Aq

16p
(3)Fab

(3)Fab. ~2.14!

In Eq. ~2.13! we have dropped the term12 *dt*Sd3x]a(A0pa)
which can be inverted to a boundary term.

We now include the lapse and the shift to our formulatio
To include the lapse we replacedt by

dt85Ndt, ~2.15!
8-3
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and, becauseA0 transforms to

A085
]xm

]x80
Am , ~2.16!

we find that for general lapse but vanishing shift the elec
magnetic action is

SS
em5E dtE

S
d3x@paȦa2NH em1A0~]apa!#. ~2.17!

Inclusion of a non-vanishing shift is a bit more tricky. W
replacedxa by

dx8a5dxa1Nadt, ~2.18!

from which it follows thatA0 is replaced by

A085A02NsAs . ~2.19!

Moreover, at the hypersurface wherex05t1dt, Aa is re-
placed by

Aa85
]xs

]x8a
As~ t1dt,xb2Nbdt!

5Aa1Ȧadt2~]sAa!Nsdt2~]aNs!Asdt. ~2.20!

Hence, we find thatȦa must be replaced by

Ȧa85Ȧa2~]sAa!Ns2~]aNs!As . ~2.21!

Substituting Eqs.~2.19! and~2.21! into Eq. ~2.17! we obtain
an expression for the electromagnetic action in the prese
of non-vanishing shift:

SS
em5E dtE

S
d3x@paȦa2NH em2NsH s

em1A0~]apa!#,

~2.22!

where we have defined

H s
em
ªpa (3)Fsa , ~2.23!

and we have ignored the term*dt*Sd3x]a(AsN
spa).

We are now prepared to write down the whole Einste
Maxwell action without boundary terms. The gravitation
part SS

grav is a mere ADM action

SS
grav5E dtE

S
d3x~pabq̇ab2NH grav2NsH s

grav!,

~2.24!

where

H grav
ª

1

2
~16p!Gabcdp

abpcd1
1

16p
AqR, ~2.25a!

H s
grav

ª22ps ua
a , ~2.25b!

and
02401
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pab
ª2

1

16p
Aq~Kab2qabK ! ~2.26!

is the canonical momentum conjugate toqab and

Gabcdª2
1

Aq
~qabqcd2qacqbd2qadqbc! ~2.27!

is the Wheeler-DeWitt metric. Putting the actions~2.22! and
~2.24! together we get the Einstein-Maxwell action

SS
grav5E dtE

S
d3x~pabq̇ab1paȦa2NH2NsHs2A0G!,

~2.28!

where

HªH grav1H em ~2.29!

is the Hamiltonian constraint,

HsªH s
grav1H s

em ~2.30!

is the diffeomorphism constraint, and

Gª2]apa ~2.31!

is the Gaussian constraint.
We shall now consider asymptotically flat spacetimes.

those kind of spacetimes we must include certain bound
terms, since we cannot assume the variations of the dyna
cal variables and their canonical momenta to vanish
asymptotic infinity. In what follows, we shall take th
asymptotic coordinates at spatial infinity to be Cartesian
ordinates.

First of all, of course, we have the Arnowitt-Deser-Misn
~ADM ! boundary term@4,29#

S]S
ADM52E dtN1~ t !EADM~ t !, ~2.32!

where

N1~ t !ª lim
r→`

N~ t,xa! ~2.33!

is the lapse function at the asymptotic spatial infinity, and

EADMª lim
r→`

1

16p R S ]hmn

]xn
2

]hnn

]xm D dSm ~2.34!

is the ADM energy of spacetime. In Eq.~2.34! hmn denotes a
spatial component of the linearized gravitational field
asymptotic Cartesian coordinates. More precisely, we h
assumed spatial coordinates to become Cartesian
asymptotic spacelike infinity, and in these coordinates
have written the spacetime metric asgmn5hmn1hmn , where
hmn5diag(21,1,1,1) is the flat spacetime metric.

In addition to the ADM boundary term, which is a term
associated with time evolution at asymptotic infinity, w
have, for the non-vanishing shift at spatial infinity, bounda
8-4
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QUANTUM-MECHANICAL MODEL OF THE KERR-NEWMAN . . . PHYSICAL REVIEW D64 024018
terms associated with asymptotic spatial translations. Va
tion of the action~2.28! with respect to the momentumpab

conjugate toqab brings along a term@4#

2E dtE
S
d3x~Nadpab! ub ,

which must be canceled at infinity. Hence we need a bou
ary term

S]S
trans

ª2E dtNa
1~ t !PADM

a ~ t !, ~2.35!

where

Na
1~ t !ª lim

r→`

Na~ t,xa! ~2.36!

is the shift at infinity, and

PADM
a

ª2 lim
r→`

2 R pabdSb ~2.37!

is the ADM momentum of spacetime.
So far we have considered terms related to pure grav

We still have to include boundary terms related to elect
magnetism. First of all, we observe that variation of the
tion with respect to the momentumpa conjugate toAa brings
along a term

E dtE
S
d3x]a~A0dpa!,

which must be canceled at infinity. Hence, we need an e
tromagnetic boundary term

S]S
em
ª2E dtA0

1~ t !Q~ t !, ~2.38!

where

A0
1~ t !ª lim

r→`

A0~ t,xa! ~2.39!

is the electric potential at infinity, and

Qª2 lim
r→`

R padSa ~2.40!

is the electric charge of spacetime.
We are now prepared to write the whole Einste

Maxwell action, with appropriate boundary terms. We ge

SS5E dtE
S
d3x~pabq̇ab1paȦa2NH2NsHs2A0G!

2E dt@N1~ t !EADM~ t !1Na
1~ t !PADM

a ~ t !

1A0
1~ t !Q~ t !#. ~2.41!
02401
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Because of that, the total Hamiltonian of the Einste
Maxwell theory is

H5E
S
d3x~NH1NsHs1A0G!1N1~ t !EADM~ t !

1Na
1~ t !PADM

a ~ t !1A0
1~ t !Q~ t !. ~2.42!

Hence, one is left with the last three terms only when
classical constraints

H50, ~2.43a!

Hs50, ~2.43b!

G50 ~2.43c!

are satisfied.

III. BOUNDARY TERMS IN KERR-NEWMAN SPACETIME

As we saw in the previous section, one must include,
asymptotically flat spacetimes, certain boundary terms in
der to make the variational principle consistent. Of particu
interest are the boundary terms in Kerr-Newman spaceti
the most general black hole spacetime. In this section
shall calculate these boundary terms.

To begin with, we write down the Kerr-Newman line e
ement in Boyer-Lindquist coordinates@30#:

ds252
D2a2sin2u

S
dt22

2a sin2u~r 21a22D!

S
dtdf

1
~r 21a2!22Da2sin2u

S
sin2udf21

S

D
dr21Sdu2,

~3.1!

where

Sªr 21a2cos2u, ~3.2a!

Dªr 21a21Q222Mr . ~3.2b!

In these equations,M is the ADM mass of the hole,Q its
charge, anda is the angular momentum per unit mass. T
calculate the boundary terms we must approximate the
element~3.1! at asymptotic infinity, wherer→`, when only
leading order terms are taken into account:

ds2'2S 12
2M

r Ddt22
4J sin2u

r
dtdf1r 2sin2udf2

1S 11
2M

r Ddr21r 2du2, ~3.3!

whereJªMa is the angular momentum of the hole. In Ca
tesian coordinates this expression takes the form
8-5
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ds2'2S 12
2M

r Ddt22
4J

r 3
~xdy2ydx!dt

1S 11
2M

r D ~dx21dy21dz2!; ~3.4!

herer is not the samer as in Eq.~3.3!: In Eq. ~3.3! r is one
of the Boyer-Lindquist coordinates, whereas in Eq.~3.4! r is
defined to be equal to (x21y21z2)1/2.

We now proceed to evaluate the boundary terms. W
evaluating the boundary terms the first task is to fix the
ordinate system far away from the black hole. In oth
words, we must fix the lapseN and the shiftNa. In this paper
we choose a faraway coordinate system which revolves, w
respect to the Cartesian coordinatesx, y and z, with an ex-
tremely small angular velocityv around thezaxis.~We must
assumev to be extremely small since otherwise the velo
ties of the faraway observers would exceed the velocity
light. More precisely, we choosev to be so small that even
for observers who are so far away from the hole that
boundary terms are, as a very good approximation, th
calculated at infinity, the velocities are well below the velo
ity of light.! Because, in flat space, the velocity of an o
server at the pointrW5x î1y ĵ1zk̂ revolving with angular
velocity vW is

vW 5vW 3rW, ~3.5!

and because, in Cartesian coordinates,Na represents the
a-component of velocity, we find that

Na5«bc
a vbxc, ~3.6!

where«bc
a is the Levi-Civita symbol such that«12351.

What sort of boundary terms do show up with this kind
a choice of the shift? To begin with, we recall from Sec.
that variation of the momentumpab conjugate toqab brings
along a term

2E dtE d3x~Nadpab! ub ,

which must be canceled at infinity. If the shiftNa is chosen
as in Eq.~3.6!, we must therefore bring along a bounda
term

S]S
rev522«abcE dtvb lim

r→`
R xcpandSn , ~3.7!

which replaces the boundary termS]S
trans of Eq. ~2.35!.

Now, when calculating the boundary termS]S
rev of Eq.

~3.7! we should, of course, first perform a coordinate tra
formation where the spacetime metric~3.4! is replaced by the
corresponding expression in revolving coordinates, and t
proceed to calculate the boundary term by using this exp
sion. However, when the faraway coordinate system revo
very slowly, we are interested in terms linear inv only.
Taking into account the transformation in the expression
the metric would produce terms quadratic inv, which can be
02401
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neglected. Hence, we are allowed to calculate the bound
term ~3.7! by using the metric~3.4!. This calculation has
been performed in detail in Appendix A, and we get, beca
vW 5v k̂,

S]S
rev52E dt vJ. ~3.8!

We must still calculate the ADM boundary term~2.32! as
well as the electromagnetic boundary term~2.38!. The ADM
boundary term of Kerr-Newman spacetime is, for arbitra
lapseN1 at infinity,

S]S
ADM52E dtN1M . ~3.9!

To calculate the electromagnetic boundary term we first
call that for Kerr-Newman solution the only non-zero com
ponents ofAm in Boyer-Lindquist coordinates are

At52
Qr

S
, ~3.10a!

Af5
Qar

S
sin2u. ~3.10b!

Using Eqs.~2.9!, ~2.19! and~2.21! one finds that for genera
lapse and shift one can writepa, the canonical momentum
conjugate toAa as

pa5
1

N

Aq

4p
qas~F0s2Nb(3)Fbs!. ~3.11!

This expression, together with Eqs.~3.10!, implies that in
Boyer-Lindquist coordinates the only surviving compone
of pa is pr which, in the leading order, can be written ve
far away from the hole as

pr52
Q

4pr 2
1O~r 23!. ~3.12!

Hence, the electromagnetic boundary term~2.38! is

S]S
em52E dtA0

1Q, ~3.13!

as expected. The slow rotation of the asymptotic coordin
system will change the ADM and the electromagne
boundary terms a bit but the resulting corrections will be
the order ofO(v2) and can therefore be neglected.

IV. HAMILTONIAN DYNAMICS OF KERR-NEWMAN
SPACETIMES

We shall now proceed to the study of the Hamiltoni
dynamics of maximally extended Kerr-Newman spacetim
To begin with, consider a foliation of such spacetimes in
space and time. Obviously, we want the spacelike hyper
faces where the timet5const to cover as great a portion o
spacetime as possible. Maximally extended Kerr-Newm
8-6
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spacetimes have a periodic geometrical structure, and
pick up one such period@30#. We choose the spacelike hy
persurfacest5const such that they begin from the left-ha
side asymptotic infinity, then go through the interior regio
of the hole in arbitrary ways, and finally end at the righ
hand side asymptotic infinity in the conformal diagra
However, such spacelike hypersurfaces cannot be pushe
yond the interior horizons where the Boyer-Lindquist co
dinate

r 5r 2ªM2AM22Q22a2, ~4.1!

since otherwise our hypersurfaces would fail to be spacel
Hence our study of the Hamiltonian dynamics of Ke
Newman spacetimes must be restricted to include, in a
tion to the left and the right exterior regions of the Ke
Newman black hole, only such an interior region of the h
that lies between two successiver 5r 2 hypersurfaces in the
conformal diagram. Our spacelike hypersurfacet5const
therefore begins its life at the pastr 5r 2 hypersurface, then
goes through the bifurcation point where

r 5r 1ªM1AM22Q22a2, ~4.2!

and finally ends its life at the futurer 5r 2 hypersurface~see
Fig. 1!. Bearing this restriction in mind, we shall now go in
the Hamiltonian dynamics of Kerr-Newman spacetimes.

The first task is to write the action with appropria
boundary terms. The problem is now that we havetwo
asymptotic infinities, and at both of these infinities we ha
certain boundary terms. When this fact is taken into acco
we find that the action takes the form

S5E dtE
S
d3x~pabq̇ab1paȦa2NH2NsHs2A0G!

2E dt@~N11N2!M1~A0
12A0

2!Q1~v12v2!J#.

~4.3!

In this equation, quantities equipped with plus and min
respectively, are quantities written at the right and the
asymptotic infinities. In particular,v1 and v2 are angular
velocities of faraway coordinate systems aroundz-axis.
Hence, the total Hamiltonian of Kerr-Newman spacetime

Htot5E
S
d3x~NH1NsHs1A0G!1~N11N2!M

1~A0
12A0

2!Q1~v12v2!J. ~4.4!

Now, the problem with our Hamiltonian is that it contain
an enormous number of independent degrees of freed
Indeed, our Hamiltonian may be considered as a function
the hypersurface metricqab at each pointx on the spacelike
hypersurfaceS, together with the corresponding canonic
momentapab. However, the ultimate object of interest in th
paper is canonical quantization of the stationary black h
sector of Einstein-Maxwell theory. Stationary black holes,
turn, are characterized by just three independent, clas
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degrees of freedom, and hence an enormous number o
grees of freedom must be truncated.

For non-rotating black hole spacetimes, the truncat
process may be performed in the following manner: One fi
writes the action for asymptotically flat, spherically symme
ric Einstein-Maxwell theory. After the Hamiltonian, diffeo
morphism and Gaussian constraints have been solved, o
left with just four canonical degrees of freedom which can
taken to be the massM and the electric chargeQ of the hole,
together with the corresponding canonical momentapM and
pQ @25,29,31#. A similar truncation could also be performe
for rotating black holes: One begins with asymptotically fl
Einstein-Maxwell theory with appropriate symmetrie
solves the classical constraints, and is finally left with just
physical, canonical degrees of freedom which may be ta
to be the massM, the electric chargeQ, and the angular
momentumJ of the Kerr-Newman black hole, together wit
the corresponding canonical momentapM , pQ andpJ .

An important feature of the process explained above
which the phase space becomes reduced in such a way
only the physical degrees of freedom are left, is that
resulting Hamiltonian, the so called reduced Hamiltonia
involves the boundary terms only. In particular, the reduc
Hamiltonian of Kerr-Newmann spacetimes is now

FIG. 1. The conformal diagram of Kerr-Newman spacetim
Our spacelike hypersurfacest5const begin their life at the pastr
5r 2 hypersurface, then go through the bifurcation point, and
nally end their life at the futurer 5r 2 hypersurface.
8-7
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H red5~N11N2!M1~A0
12A0

2!Q1~v12v2!J.
~4.5!

As a matter of fact, the reduced Hamiltonian may be u
as the real, physical Hamiltonian of the system. This w
proved by Regge and Teitelboim@4#. They found that if one
solves the classical constraints and then substitutes the
tions to the reduced Hamiltonian, then the correct equati
of motion for the canonical variables are obtained. More p
cisely, they showed the following: One assumes that
variablesqab andpab can be separated by a one to one, tim
independent, functionally differentiable canonical transf
mation in two sets (wa,pa) and (c A,pA) in such a way that:

~a! The reduced Hamiltonian depends only onwa and the
pa .

~b! When thepa are prescribed as functionspa of x
which satisfy

ṗa50, ~4.6!

then the constraintsH50 andHs50 can be solved to ex
press thewa as functionals

wa5 f a@c A;pA# ~4.7!

of the remaining canonical variables.
The functional derivatives off a with respect tocA and

pA are assumed to exist. If the above conditions are true t
Hamilton’s equation for the reduced Hamiltonian

H red@c A;pA#5~boundary terms!uwa5 f a,pa5pa
, ~4.8!

together with Eqs.~4.6! and~4.7! are equivalent to Einstein’s
equations in the particular frame defined bypa5pa .

The proof of this result is easy: The Poisson brackets
invariant under canonical transformation and the Ham
tonian is unchanged in value if the canonical transformat
is independent of time. Hence

ċ A~x!5
dH

dpA~x!
U

wa5 f a,pa5pa

. ~4.9!

On the other hand,

H@wa;pa ,c A;pA#uwa5 f a,pa5pa

5~boundary terms!uwa5 f a,pa5pa

5H red@cA;pA#. ~4.10!

Differentiating Eq.~4.10! with respect topA gives

E
S
d3y

dH

dwa~y!
U

wa5 f a,pa5pa

d f a~y!

dpA~x!
1

dH

dpA~x!
U

wa5 f a,pa5pa

5
dH red

dpA~x!
. ~4.11!

However, by Eq.~4.6!
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ṗa~x!5
dH

dwa~x!
U

wa5 f a,pa5pa

50, ~4.12!

and therefore

dH

dpA~x!
U

wa5 f a,pa5pa

5
dH red

dpA~x!
. ~4.13!

In other words,H red generates the correct equation of moti
for c A. In a completely analogous way one shows that
correct equation of motion is also generated forpA . Al-
though we have here considered pure gravity only, it is cl
that our analysis could be easily generalized to include e
tromagnetic fields as well.

The real problem is now: Are the assumptions of the p
vious theorem valid for Kerr-Newman spacetimes? In ot
words, is it possible to divide the phase space of an Einst
Maxwell theory with appropriate symmetries in two parts
a manner explained above? For spherically symmetric,
ymptotically flat Einstein-Maxwell theory this can be don
andhas been donein Refs.@29,31#. For theories having the
Kerr-Newman solution as their unique solution to the clas
cal constraints this has not been done. However, there is
an obvious reason why this could not be done, and we s
the following hypothesis.

For an appropriately symmetric, asymptotically fl
Einstein-Maxwell theory having the Kerr-Newman solutio
as its unique solution to the Hamiltonian, diffeomorphis
and Gaussian constraints there exists a one to one, tim
dependent, differentiable canonical transformation which
vides the phase space (qab ,pab,Aa ,pa) into two sets
(M ,Q,J,PM ,PQ ,PJ) and (c A,PA) in such a way that:

~a! The reduced Hamiltonian depends only onM, Q, J,
PM , PQ andPJ .

~b! When theM, Q andJ are prescribed as functionsm, q,
and i which satisfy

ṁ5q̇5 i̇50, ~4.14!

then the constraints can be solved to express thePM , PQ and
PJ as functionally differentiable functionals ofc A andPA .

We have been unable to find an exact proof of this h
pothesis for Kerr-Newmann black hole spacetimes and,
deed, this is the weak point of our model. However, there
no obvious reasons why it would not be true. In what fo
lows, we shall consider our hypothesis as true and see w
it takes us.

The first consequence of our hypothesis is thatH red of Eq.
~4.5! may be used as the real, physical Hamiltonian of o
theory, withM, Q andJ as the coordinates of the configur
tion space. For that reason we shall drop ‘‘red’’ from o
Hamiltonian, and denote it simply byH.

Our Hamiltonian now implies the following canonica
equations of motion:

Ṁ5
]H

]pM
50, ~4.15a!
8-8
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QUANTUM-MECHANICAL MODEL OF THE KERR-NEWMAN . . . PHYSICAL REVIEW D64 024018
Q̇5
]H

]pQ
50, ~4.15b!

J̇5
]H

]pJ
50, ~4.15c!

ṗM52
]H

]M
52~N11N2!, ~4.15d!

ṗQ52
]H

]Q
52~A0

12A0
2!, ~4.15e!

ṗJ52
]H

]J
52~v12v2!, ~4.15f!

wherepM , pQ andpJ , respectively, are canonical momen
conjugate toM, Q andJ. As expected,M, Q andJ are con-
stants in time. The time derivative ofpM depends on the
choice of the lapse function at both asymptotic infinities
our spacelike hypersurface,ṗQ on the difference betwee
electric potentials at infinities, andṗJ on the difference be-
tween the angular velocities of faraway coordinate syste

The quantitiesN6, A0
6 and v6 determine the gauge o

our theory. For physical reasons, it is sensible to work i
specific gauge where

N1[1, ~4.16a!

N2[0, ~4.16b!

v6[0, ~4.16c!

A0
6[0. ~4.16d!

In this gauge the Hamiltonian takes a particularly sim
form in terms of the canonical coordinates:

H5M . ~4.17!

The physical sense of this kind of gauge fixing lies in t
fact that we consider Kerr-Newman spacetimes from
point of view of a certain specific observer: Our observe
at rest at the right-hand side asymptotic infinity, and his ti
coordinate is the asymptotic Minkowski time, the prop
time of such an observer. We have ‘‘frozen’’ the time ev
lution at the left infinity, which is sensible because our o
server can make observations from just one infinity. For s
an observer, the classical Hamiltonian of the Kerr-Newm
spacetime is justM, the ADM mass of the Kerr-Newman
black hole.

Now, the problem with the phase space coordinatesM, Q,
J, pM , pQ and pJ is that they describe thestatic aspects of
Kerr-Newman spacetimes only. However, there isdynamics
in Kerr-Newman spacetimes in the sense that between
event horizons there is a region in which it is impossible
find a timelike Killing vector field. Our next task is to fin
canonical variables describing the dynamical properties
Kerr-Newman black holes in a natural manner.
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When choosing the phase space coordinates, we refe
the properties of our observer: Our observer lies at rest v
far away from the hole and he is an inertial observer. F
such an observer, the Kerr-Newman spacetime appear
stationary, and all the relevant dynamics of the Ke
Newman spacetime is, in a certain sense, confined inside
event horizon of the hole. These properties prompt us
choose the phase space coordinates in such a manne
when the classical equations of motion are satisfied, all
dynamics are, in a certain sense, confined inside the e
horizon r 5r 1 of the hole. Moreover, as we shall see in
moment, the choice of the phase space coordinates des
ing the dynamics of spacetime is related to the choice
slicing of spacetime into space and time. We choose a slic
where the proper time of an observer in a free fall throu
the bifurcation surface coincides with the proper time of o
faraway observer at rest. On grounds of the principle
equivalence one may view these types of slicings to be
preferred position in relating the physical properties of t
black hole interior to the physics observed by our faraw
observer.

A. Hamiltonian dynamics with charge and angular
momentum as external parameters

To make things simple, considerJ and Q first as mere
external parameters of the theory. In that case our ph
space is just two-dimensional being spanned by the ph
space coordinatesM andpM . In this two dimensional phase
space we now perform the following transformation from t
‘‘old’’ phase space coordinatesM and pM to the ‘‘new’’
phase space coordinatesR andpR :

upMu5A2MR2R22Q22a21M sin21S M2R

AM22Q22a2D
1

1

2
pM , ~4.18a!

pR5sgn~pM !A2MR2R22Q22a2, ~4.18b!

and we have imposed by hand a restriction

2pM<pM<pM . ~4.19!

With the restriction~4.19! the transformation~4.18! is well
defined and one to one. It follows from Eq.~4.18b! that

M5
1

2R
~pR

21R21Q21a2!. ~4.20!

If one substitutes this expression forM into Eq. ~4.18a!, one
getspM in terms ofR andpR . One finds that the fundamen
tal Poisson brackets betweenM andpM are preserved invari-
ant, and hence the transformation~4.18! is canonical.

Equations ~4.17! and ~4.20! imply that the classical
Hamiltonian takes, in terms of the variablesR and pR , the
form
8-9
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H5
1

2R
~pR

21R21Q21a2!. ~4.21!

The geometrical interpretation of the variableR is extremely
interesting. We first write the Hamiltonian equation of m
tion for R:

Ṙ5
]H

]pR
5

pR

R
, ~4.22!

and it follows from Eq.~4.21! that when the classical equa
tions of motion forM andpM are satisfied, then the equatio
of motion for R is

Ṙ25
2M

R
212

Q21a2

R2
. ~4.23!

Now, one can see from the Kerr-Newman metric~3.1! that
for an observer falling freely through the bifurcation surfa
at the equatorial planeu5p/2 such that u̇5ḟ50, the
proper time elapsed whenr goes fromr to r 1dr is dt such
that

2dt25
r 2

r 21a21Q222Mr
dr2, ~4.24!

and therefore the equation of motion of our observer is

ṙ 25
2M

r
212

Q21a2

r 2
, ~4.25!

where the dot means proper time derivative. As one can
Eqs.~4.23! and~4.25! are identical. Hence, we may interpr
R as the radius of the wormhole throat of the Kerr-Newm
black hole, from the point of view of an observer in a fr
fall at the equatorial plane such thatḟ50 through the bifur-
cation two-sphere. Moreover, one can see from Eq.~4.23!
that R is confined to be, classically, within the regio
@r 2 ,r 1#. In other words, our variableR ‘‘lives’’ only within
the inner and the outer horizons of the Kerr-Newman bla
hole, and this is precisely the region in which it is impossib
to find a time coordinate such that spacetime with respec
that time coordinate would be static. Hence, both of the
quirements we posed for our phase space coordinates
satisfied: Dynamics is confined inside the apparent hori
and the time coordinate on the wormhole throat is the pro
time of a freely falling observer.

With the interpretation explained above, the restricti
~4.19! becomes understandable. One can see from
~4.15d! that when the lapse functionsN6 at asymptotic in-
finities are chosen as in Eqs.~4.16!, the canonical momen
tum pM conjugate toM is 2t1const, wheret is the time
coordinate of our asymptotic observer. Now, the transform
tion ~4.18! involves an identification of the time coordinatet
with the proper time of a freely falling observer on th
throat. However, as it was noted at the beginning of t
section, it is impossible to push the spacelike hypersurfa
t5const beyond ther 5r 2 hypersurfaces in the conforma
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diagram. The proper time a freely falling observer needs
fall from the pastr 5r 2 hypersurface to the futurer 5r 2

hypersurface through the bifurcation surface is, as it can
seen from Eq.~4.25!,

Dt52E
r 2

r 1 r 8dr8

A2Mr 82r 822Q22a2
52pM , ~4.26!

and hence the restriction~4.19! is needed. As one can se
from Eq. ~4.18a!, upMu50 when R5r 1 and upMu5pM
when R5r 2 . We have chosenpM to be positive when the
hypersurfacet5const lies between the pastr 5r 2 hypersur-
face and the bifurcation surface, and negative when that
persurface lies between the bifurcation point and the fut
r 5r 2 hypersurface.

Concerning the classical Hamiltonian theory withJ andQ
as mere external parameters the only thing one still need
check is whether there exist such foliations of the Ke
Newman spacetime where the Minkowski time at asympto
infinity and the proper time of a freely falling observer at t
throat through the bifurcation surface really are the one
the same time coordinate. It is easy to see that time coo
nates determining this sort of foliations do exist. A concre
example is constructed in Appendix B. It should be not
however, that all foliations in which the proper time on th
throat and asymptotic Minkowski time are identified are
complete since such foliations, in addition to failing to cov
the regions outside the past and the futurer 5r 2 hypersur-
faces also fail to cover the whole exterior regions of the ho
More precisely, these foliations are valid only when2pM
<t<pM ~see Fig. 2!.

B. Hamiltonian dynamics with charge and angular momentum
as dynamical variables

The next task is to complete the classical Hamilton
~4.21! such thatQ anda are replaced by functions of appro

FIG. 2. The world line of an observer in a free fall at the thro
is a vertical line going through the bifurcation point in the confo
mal diagram. The proper time of such an observer is identified w
the asymptotic Minkowski time.
8-10
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QUANTUM-MECHANICAL MODEL OF THE KERR-NEWMAN . . . PHYSICAL REVIEW D64 024018
priate phase space variables describing the dynamics of K
Newman spacetimes in a natural manner. To this end,
must find, for constantM, a canonical transformation from
the phase space coordinates (Q,pQ) and (J,pJ) to some new
phase space coordinates which we shall denote byu andv,
and their canonical momentapu andpv .

We shall perform such a transformation in two steps.
the first stage we replaceQ and a by canonical momenta
conjugate to yet some unknown coordinatesw1 and w2 of
the configuration space:

pw1
ªQ, ~4.27a!

pw2
ªa, ~4.27b!

and the classical Hamiltonian of Eq.~4.21! takes the form

H5
1

2R
~pR

21pw1

2 1pw2

2 1R2!. ~4.28!

The next task is to findw1 andw2. One expects thatw1
andw2 are related in one way or another to the momentapQ
and pJ conjugate toQ and J, respectively. Because we se
from Eq. ~4.15e! that pQ determines the electromagnet
gauge and from Eq.~4.15f! that pJ determines the angula
velocity of faraway coordinate systems we first write t
classical Hamiltonian in a general electromagnetic ga
when faraway coordinate systems rotate with arbitrary an
lar velocities:

H5
1

2R
~pR

21pw1

2 1pw2

2 1R2!1~A0
12A0

2!pw1

1M ~v12v2!pw2
, ~4.29!
is
i

02401
rr-
e

t

e
u-

which follows from Eq.~4.5!. Using Eqs.~4.15e! and~4.15f!
and the fact thatM is a constant when the classical equatio
of motion are satisfied, we get the Hamiltonian equations
motion for w1 andw2

ẇ1ª
]H

]pw1

5
pw1

R
2 ṗQ , ~4.30a!

ẇ2ª
]H

]pw2

5
pw2

R
2MṗJ . ~4.30b!

An expression forpQ andpJ in terms ofR, pR , w1 , w2 , pw1

and pw2
can be gained by integrating both sides of Eq

~4.30a! and ~4.30b! along the classical trajectory in phas
space:

pQªE pw1

RṘ
dR2w1 , ~4.31a!

pJª
1

ME pw2

RṘ
dR2w2 , ~4.31b!

where we have substituted

Ṙ52sgn~pM !A2M

R
212

pw1

2 1pw2

2

R
. ~4.32!

This substitution involves choosingṗQ5 ṗJ50. When the
electric potentials are assumed to vanish at infinities, and
asymptotic coordinate systems are assumed to be
rotating, this kind of choice can be made. With an approp
ate choice of the integration constant we get
pQ5sgn~pM !pw1F sin21S pR
21pw1

2 1pw2

2 2R2

A~pR
21pw1

2 1pw2

2 1R2!224R2~pw1

2 1pw2

2 !
D 1

p

2G2w1 , ~4.33a!

pJ5sgn~pM !
2Rpw2

pR
21pw1

2 1pw2

2 2R2 F sin21S pR
21pw1

2 1pw2

2 2R2

A~pR
21pw1

2 1pw2

2 1R2!224R2~pw1

2 1pw2

2 !
D 1

p

2G2w2 , ~4.33b!
sid-

-
the
where we have made the substitution

M5
1

2R
~pR

21pw1

2 1pw2

2 1R2!. ~4.34!

Equations ~4.18b!, ~4.27! and ~4.33! now constitute a
transformation from the phase space coordinatesM, pM , Q,
pQ , J andpJ to the phase space coordinatesR, pR , w1 , pw1

,

w2, andpw2
. One can easily show that this transformation

well defined and canonical. Moreover, the transformation
one to one provided that we impose the restrictions
s

UpQ1w1

pw1
U<p, ~4.35a!

UMpJ2w2

pw2
U<p. ~4.35b!

These restrictions are related to the fact that we are con
ering spacetime between two successiver 5r 2 hypersur-
faces. Since bothṗQ and ṗJ vanish when the electric poten
tials are assumed to vanish at asymptotic infinities and
8-11
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asymptotic coordinate systems are assumed to be
rotating, we find that classicallyw1 andw2 have the follow-
ing properties: At the pastr 5r 2 hypersurfacew152Qp
1pQ and w252ap1MpJ , at the bifurcation surfacew1
5pQ and w25MpJ , and at the futurer 5r 2 hypersurface
w15Qp1pQ , and w25ap1MpJ . In other words, the
classical domains ofw1 andw2 are bounded by the fact tha
the t5const hypersurfaces cannot be pushed beyond thr
5r 2 hypersurfaces.

As the last step we perform a canonical transformat
from the variablesw1 , pw1

, w2 and pw2
to the variablesu,

pu , v andpv .1 We define

uªpw1
sinS w1

pw1
D , ~4.36a!

puªpw1
cosS w1

pw1
D , ~4.36b!

vªpw2
sinS w2

pw2
D , ~4.36c!

pvªpw2
cosS w2

pw2
D . ~4.36d!

This transformation is well defined, canonical and, with t
restriction~4.35!, one to one as well. We find that

pw1

2 5pu
21u2, ~4.37a!

pw2

2
ªpv

21v2. ~4.37b!

In other words, we may identifypu
21u2 as the squareQ2 of

the electric chargeQ, andpv
21v2 as the square ofa2 of the

angular momentum per unit mass of the hole. Because
that, the classical Hamiltonian of Kerr-Newman black ho
finally takes a very simple form

H5
1

2R
~pR

21pu
21pv

21R21u21v2!. ~4.38!

V. QUANTUM THEORY OF KERR-NEWMAN BLACK
HOLES

After completing the classical Hamiltonian theory of st
tionary spacetime containing a Kerr-Newman black hole,
are now prepared to consider the canonical quantum th
of such spacetimes. In what follows, we shall concentrate
a specific class of canonical quantum theories. More p
cisely, we define the Hilbert space to be the spaceL2(R1

3R3R,RsdRdudv) with the inner product

1u and v should not be confused with light cone coordinates
anything like that.
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^C1uC2&ªE
0

`

dRRsE
2`

`

duE
2`

`

dvC1* ~R,u,v !C2~R,u,v !.

~5.1!

Through the substitutionspR→2 i (]/]R),pu→2 i (]/]u)
and pv→2 i ]/]v we replace the classical Hamiltonian o
Eq. ~4.38! by the corresponding symmetric operator

Ĥª2
1

2
R2s

]

]R S Rs21
]

]RD2
1

2R

]2

]u2
2

1

2R

]2

]v2
1

1

2
R

1
u2

2R
1

v2

2R
. ~5.2!

This operator may be viewed as the Hamiltonian operato
Kerr-Newman black holes. Its eigenvalues are eigenvalue
the ADM energyE of such a hole, from the point of view o
a faraway observer at rest. The eigenvalue equation in q
tion takes the form

F2
1

2
R2s

]

]R S Rs21
]

]RD2
1

2R

]2

]u2
2

1

2R

]2

]v2
1

1

2
R1

u2

2R

1
v2

2RGC~R,u,v !5EC~r ,u,v !. ~5.3!

This equation is the main result of this paper. In a cert
sense, it can be considered as a sort of a ‘‘time-indepen
Schrödinger equation of all the possible black holes,’’ an
C(R,u,v) as the wave function of black holes. Specifying
the quantum theories wheres51, we find that Eq.~5.3!
takes a particularly simple and beautiful form:

1

2R S 2
]2

]R2
2

]2

]u2
2

]2

]v2
1R21u21v2D C~R,u,v !

5EC~R,u,v !. ~5.4!

If we write

C~R,u,v !5c~R!w1~u!w2~v !, ~5.5!

we find that Eq.~5.3! can be separated to eigenvalue equ
tions for M, Q2 anda2

F2
1

2
R2s

d

dRS Rs21
d

dRD1
1

2
R1

Q2

2R
1

a2

2RGc~R!

5Mc~R!, ~5.6a!

S 2
d2

du2
1u2D w1~u!5Q2w1~u!, ~5.6b!

S 2
d2

dv2
1v2D w2~v !5a2w2~v !. ~5.6c!

Consider now Eq.~5.6a!, the eigenvalue equation for th
ADM massM of the hole, in more details. It can be writte
as

r

8-12
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FR2s
d

dRS Rs21
d

dRD Gc~R!5S Q2

R
1

a2

R
1R22M Dc~R!.

~5.7!

As one can see, the function

Q2

R
1

a2

R
1R22M

is negative whenr 2,R,r 1 and positive~or zero! else-
where. Semiclassically, one may therefore expect oscilla
behavior from the wave function whenr 2,R,r 1 and ex-
ponential behavior elsewhere. Hence, our system is so
what analogous to a particle in a potential well such thatR is
confined, classically, between the outer and the inner h
zons of the black hole. What happens semiclassically is
the wave packet corresponding to the variableR is reflected
from the inner horizon. As a result, we get, when the hole
in a stationary state, a standing wave between the outer
the inner horizons. Thus the classical incompleteness, a
ciated with the fact that our foliation is valid only whe
2pM<t<pM , is removed by quantum mechanics: In
stationary state there are no propagating wave packets
tween the horizons and our quantum theory is therefore v
at any moment of time.

When a5Q50, we have a Schwarzschild black hol
and the inner horizon is replaced by the black hole singu
ity: The wave packets are no more reflected from the in
horizon but from the singularity. Again, we have a stand
wave in a stationary state and the quantum theory is vali
any moment of time, but the wave lies between t
Schwarzschild horizon and the singularity. As such there
an interesting resemblance between the properties of
~5.3! and those of the Schro¨dinger equation of a hydroge
atom: When the hydrogen atom is in ans-state where the
orbital angular momentum of the electron orbiting the pro
vanishes, the electron should, classically, collide with
proton in a very short time. Quantum mechanically, ho
ever, the wave packet representing the electron is refle
from the proton, and finally the electron is represented b
standing wave, which makes the quantum theory of the
drogen atom valid at any moment of time. In a Schwar
child black hole, the proton is replaced by the black h
singularity, and the distance of an electron from the proto
replaced by the throat radiusR of the hole. Nevertheless, th
solution provided by quantum theory to the problems of
classical one is similar for both black holes and hydrog
atoms.

We shall now enter the detailed analysis of the eigenva
equation~5.6a!. To begin with, we see that if we denote

xªR3/2, ~5.8a!

cªx(122s)/6x~x!, ~5.8b!

and define

rª
2s21

6
, s>2, ~5.9a!
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6
, s,2 ~5.9b!

then Eq.~5.6a! takes the form

9

8 F2
d2

dx2
1

r~r21!

x2
1

4

9 S x2/31
Q21a2

x2/3 D Gx~x!5Mx~x!.

~5.10!

This equation has been analyzed in details in Ref.@19#. The
only difference between Eq.~5.10! and Eq.~3.18! in Ref.
@19# is thatQ2 has been replaced byQ21a2. Hence one just
replacesQ2 by Q21a2 in the results obtained for Eq.~3.18!
in Ref. @19#.

As in Ref. @14#, one can show that the spectrum ofM is
discrete, bounded below, and can be made positive. From
physical point of view, the semiboundedness and positiv
~in some cases! of the spectrum are very satisfying result
The semiboundedness of the spectrum implies that one
not extract an infinite amount of energy from the syste
whereas the positivity of the spectrum is in agreement w
the well-known positive-energy theorems of general rela
ity, which state, roughly speaking, that the ADM energy
spacetime is always positive or zero when Einstein’s eq
tions are satisfied@30#.

However, one can prove even more than that. One
show that the eigenvalue equation~5.10! implies that when
r>3/2, the eigenvalues of the quantity

M22Q22a2

are strictly positive, and when 1/2<r,3/2, the eigenvalues
of the quantityM22Q22a2 can again be made positive b
means of an appropriate choice of the boundary condition
the wave functionx(x) at the pointx50 or, more precisely,
by means of an appropriate choice of a self-adjoint ext
sion. Moreover, the WKB analysis of Eq.~5.10! yields the
result that whenQ21a2@1, andM22Q22a2@1 such that
r @1, the WKB eigenvaluesMn have a property

Mn
22Q22a2;2n111O~1!, ~5.11!

wheren is an integer andO(1) denotes a term that vanishe
asymptotically for largen. A numerical analysis of Eq
~5.10! yields the result that, up to the term 1 on the righ
hand side, Eq.~5.11! gives fairly accurate results even whe
AQ21a2 and n are relatively small~i.e., of order 10!. In
other words, it seems that the eigenvalues of the quan
AM22Q22a2 are of the formA2n in the semiclassica
limit.

Now, how should we understand these results? The p
tivity of the spectrum of the quantityM22Q22a2 has an
interesting consequence regarding Hawking radiation: If o
thinks of Hawking radiation as an outcome of a chain
transitions from higher- to lower-energy eigenstates,
positivity of the spectrum ofM22Q22a2 implies that a
non-extreme Kerr-Newman black hole can never beco
through Hawking radiation, an extreme black hole with ze
temperature, a result that is in agreement with both the th
8-13
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law of thermodynamics and the qualitative difference b
tween extreme and non-extreme black holes. One may
sider this as a strong argument in favor of our choice of
phase space coordinates describing the dynamics of K
Newman spacetimes.

Before considering the implications of Eq.~5.11!, let us
calculate the spectra ofQ anda from Eqs.~5.6b! and~5.6c!.
As one can see, both of these equations are, essentially,
independent Schro¨dinger equations of a one-dimensional li
ear harmonic oscillator. When the solutions to Eq.~5.6b! are
chosen to be harmonic oscillator eigenfunctions, one fi
that the eigenvalues ofQ2 are

Qk
252k11, ~5.12!

or, in SI units,

Qk
25~2k11!

e2

a
, ~5.13!

where k50,1,2, . . . . In this equation,e is the elementary
charge and

aª
e2

4pe0\c
'

1

137
~5.14!

is the fine structure constant. In other words, Eq.~5.3!, the
‘‘Schrödinger equation of black holes,’’ implies that th
electric charge of black holes has a discrete spectrum.

One may have very mixed feelings on the physical va
ity of the charge spectrum in Eq.~5.13!: For elementary par-
ticles at least, the electric chargeQ itself, instead of its
squareQ2, is an integer. Because of that it might appear
the first sight that the charge spectrum we have just obta
contradicts all the possible observations and expectati
and should therefore be rejected on physical grounds.

Such a conclusion, however, would be much too rap
First, elementary particles are certainly not black holes
cause for themuQu@M . Secondly, a dimensional investiga
tion reveals to us that the charge spectrum~5.12! is exactly
what one expects for black holes: when one writes the e
tric charge in terms of the natural constantse0 , \ andc, one
finds that the natural unit of electric charge is the so-ca
‘‘Planck charge’’

QPlªA4pe0\c. ~5.15!

One observes that the squareQPl
2 of the Planck chargeQPl ,

instead of the Planck chargeQPl itself, is proportional to\.
Now, for bounded systems, the observed quantities usu
tend to be quantized in such a manner that when we w
that quantity in terms of the natural constants relevant to
system under consideration, then\ must be multiplied by an
integer in the spectrum. In a hydrogen atom, for instance,
relevant natural constants aree0 , \, eand the massme of the
electron. From these quantities one may construct a na
unit of energy in a hydrogen atom:
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and one expects the energy to be quantized such tha
energy eigenvalues are of the form

En52g
mee

4

~4pe0!2\2n2
, ~5.16!

whereg is some pure number andn is an integer. Indeed, if
we takeg51/2, we get exactly the correct energy spectru
for a hydrogen atom. Now, for black holes the only natu
constants we are allowed to use are, in SI units,\, c, G and
e0. Hence, the Planck chargeQPl of Eq. ~5.15! is the natural
unit of charge for black holes, and therefore one expects
the square of the electric charge, instead of the charge it
must be an integer. In other words, the charge spect
~5.13! is exactly what one expects for black holes.

In addition to the dimensional arguments, there is yet
other reason why the electric charge of the black hole d
not necessarily have the same spectrum as ordinary ma
Consider the conformal diagram of Fig. 1 of the Ker
Newman black hole. It is easy to see that the spacelike
persurfacest5const never touch the singularityR50 of the
black hole. From this it follows that the lines of force of th
electric field on these hypersurfaces neither begin nor
anywhere~if they did, they would do so at the singularit
R50), but they jsut go through the Kerr-Newman wormho
to another causally disconnected region. Because of that
not possible to talk about the electric charge of a black h
in the same sense as we talk about electric charge of ordi
matter: For ordinary matter the charge lies at the point wh
the lines of force of the electric field either begin or end b
for black holes no such point exists. Hence it appears
what an external observer observes as the ‘‘electric char
of the black hole is a consequence from the geometrical
causal properties of a black hole spacetime, rather than f
the properties of matter. Since the electric charge of
black hole is not necessarily connected with the elec
charge of ordinary matter, it does not necessarily have
same spectrum, either.

Let us now turn our attention to Eq.~5.6c! which gives
the spectrum ofa2. As for the electric charge, we find tha
the possible eigenvalues ofa2 are

al
252l 11 ~5.17!

or, in SI units,

al
25~2l 11!

\G

c
, ~5.18!

where l 50,1,2, . . . . Again, one observes that the quanti
under consideration is quantized in such a way that\ is
multiplied by an integer. Putting Eqs.~5.11!, ~5.13! and
~5.17! together we find that, semiclassically, the mass eig
values of the black hole are

Mm;A2m ~5.19!

or, in SI units
8-14
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Mm;A2mMPl , ~5.20!

where

mªn1 l 1k50,1,2, . . . , ~5.21!

and

MPlªA\c

G
~5.22!

is the Planck mass.
The spectra of the quantitiesM, Q anda now have inter-

esting consequences regarding the area spectrum of b
holes. As it is well known, the area of the outer horizon o
Kerr-Newman black hole is

A154p~r 1
2 1a2!, ~5.23!

whereas the area of the inner horizon is

A254p~r 2
2 1a2!. ~5.24!

Using Eqs.~5.11! and~5.13! we observe that the semiclass
cal eigenvalues of the quantity

Atot
ªA11A2 , ~5.25!

which we shall call, for the sake of convenience, thetotal
area of a black hole, are of the form

An,l ,k
tot ;16p~2n12l 1k! ~5.26!

or, in SI units,

An,l ,k
tot ;16p~2n12l 1k!l Pl

2 , ~5.27!

where

l PlªA\G

c3
~5.28!

is the Planck length. In other words, we have obtaine
result which is closely related, although not quite identica
the proposal suggested by Bekenstein in 1974 and since
revived by several authors: According to that proposal
spectrum of the outer horizon of the black hole is of the fo
@5–28#

An
15gnlPl

2 , ~5.29!

where n is integer andg is a pure number of order one
Hence, we have obtained a result which states that the
area of the hole, withg516p, instead of the area of its inne
horizon, is quantized as in Eq.~5.29!. @In contrast to our
result~5.27! and to Bekenstein’s proposal~5.29!, in @33# Vaz
and Witten interestingly found that thedifferencebetween
the outer and inner horizon areas is quantized in inte
Planck units.# In the last section of this paper we shall co
sider in more detail the possibility that it is perhaps the to
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area, and not the area of the outer horizon nor the differe
between the outer and inner horizon areas, which should
an integer in Planck units.

As the final check of our quantum theory of black hole
let us calculate the angular momentum spectrum of bl
holes. We observe from Eqs.~5.18!, ~5.20! and ~5.21! that
the possible eigenvalues of the angular momentumJ5Ma
of the hole are, semiclassically, of the form

Jn,l ,k;62Al ~ l 1n1k!\. ~5.30!

For uncharged black holes wherek50 we therefore find, in
the limit of extremality wherel @n, that the angular momen
tum eigenvalues are of the form

Jmj
;mj\, ~5.31!

wheremj50,62,64, . . . .
As one can see, the angular momentum spectrum of b

holes, as predicted by our theory is, at least in the limit
extremality, exactly what one might expect. Even the f
that the angular momentumJ is an even number, is in har
mony with our expectations: When the black hole perform
transition from one angular momentum eigenstate to anot
a graviton is emitted or absorbed. Because the spin o
graviton is two, one might expect that the angular mom
tum of the black hole could change only by an even numb
For instance, one may show, quite rigorously, that whe
system consisting of two mass points revolving around th
common center of mass emits or absorbs a graviton, the
gular momentum quantum number of the system can cha
only by an even number@32#. Because of that, the angula
momentum spectrum given by Eq.~5.31! for extremal black
holes may be used as a very strong argument in favor of
physical validity of our quantum-mechanical model of bla
holes.

Unfortunately, our model also appears to contain a v
serious problem regarding the angular momentum spectr
According to Eq.~5.30! the angular momentum of a blac
hole is not in general an integer times the Planck constan\.
Should we be worried because of this result?

The answer to this question is: Not necessarily. The us
rules for the quantum mechanics of angular momentum
low from the symmetries offlat spacetime, and spacetime
containing a Kerr-Newman black hole is certainly not flat.
curved spacetime the angular momentum eigenvalues
system do not necessarily have the same properties as
would have in flat spacetime.

To illustrate this fact by a simple example, consider
particle moving in a conelike spacetime geometry~see Fig.
3!. Thez-componentLz of the angular momentum eigenva
ues may be calculated from the equation

2 i\
]

]f
C~f!5LzC~f!, ~5.32!

from which it follows that the angular momentum eigenfun
tions are of the form

C~f!5Ce( i /\)Lzf, ~5.33!
8-15
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whereC is a constant. In flat spacetime the period ofC(f)
is 2p, producing the usual angular momentum spectrum
conelike spacetime geometry, however, the period ofC is
not 2p but 2p2e, wheree is the deficit angle of the con
~see Fig. 3!. In other words, we must have

C~f12p2e!5C~f!, ~5.34!

and therefore the angular momentum eigenvalues are o
form

Lz5mz

1

12
e

2p

\, ~5.35!

wheremz50,61,62, . . . . In other words, the angular mo
mentum of a system is not necessarily an integer times
Planck constant in curved spacetime.

VI. CONCLUDING REMARKS

In this paper we have considered a particular quantu
mechanical model of Kerr-Newman black holes. The fun
mental ideas behind our model were based on the black
uniqueness theorems. According to these theorems a b
hole in stationary spacetime is completely characterized
exactly three free variables which may be taken to be
massM, the electric chargeQ and the angular momentumJ
of the hole. From these theorems it follows that the Ke
Newman solution, being completely characterized by th
three free variables, is the most general stationary black
solution to combined Einstein-Maxwell equations. In o
model we considered a Hamiltonian quantum theory of s
tionary black hole spacetimes in such a way that the ph
space was spanned by the variablesM, J and Q, together
with the corresponding canonical momentapM , pJ andpQ .
The problem with these phase space coordinates, howev
that they describe thestaticaspects of black hole spacetim
only. However, there isdynamicsin Kerr-Newman space
times in the sense that between the horizons there is no t
like Killing vector field, and we managed to find new pha
space coordinates which describe the dynamical propertie
Kerr-Newman spacetime in a particularly natural mann
These phase space coordinates were replaced by the c

FIG. 3. A particle moving in a conelike spacetime geomet
When the cone is stretched on a plane, the deficit angle« appears.
As a result of the appearance of this deficit angle, the perio
boundary condition for the angular momentum eigenfunctionc(f)
is c(f12p2«)5c(f).
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sponding quantum mechanical operators yielding the s
metric Hamiltonian operator. Our analysis produced E
~5.3! which, in a certain very restricted sense, may be c
sidered as a sort of ‘‘Schro¨dinger equation of black holes.’
That equation gives, in the context of our model, the ma
electric charge and angular momentum spectra of bl
holes.

Equation ~5.3!, which is the main result of this pape
implies that the mass, electric charge and angular momen
spectra of black holes are discrete. Moreover, it implies t
the mass spectrum is bounded from below and can be m
positive. By means of a choice of an appropriate self-adjo
extension one may show that the spectrum of the quanti

M22Q22a2,

wherea is the angular momentum per unit mass of the ho
is always positive. Regarding Hawking radiation, this is
very important result: It means that a non-extreme black h
can never become an extreme black hole by means of
Hawking radiation of black holes. This result is in agreeme
with the third law of black hole thermodynamics, and
therefore a strong argument in favor of the physical valid
of our model.

At the high end of the spectrum, Eq.~5.3! implied that the
eigenvalues of the quantitiesM, Q anda are all quantized, in
natural units, in a very similar manner: In natural units t
eigenvalues of these quantities are all of the formA2n,
where n is an integer. Although this kind of a spectru
might appear very odd for an electric charge spectrum
black holes, it is exactly what one expects on dimensio
grounds. In the extremal limit, Eq.~5.3! implied that the
angular momentum eigenvalues of black holes are of
form

mj\,

wheremj50,62,64, . . . .
Of particular interest is the area spectrum of black ho

given by Eq.~5.3!. Equation~5.3! implied that the sum of the
areas of the two horizons of Kerr-Newman black hole is
the form

n16p l Pl
2 ,

wherel Pl is the Planck length. Hence, we get a result wh
is closely related, although not quite identical to, the p
posal made by Bekenstein in 1974. According to Beke
stein’s proposal, it is not the sum of areas of horizon but
area of the outer horizon which has an equal spacing in
spectrum.

Although our result about an equal spacing for the sp
trum of the sum of the horizon areas may have certain
thetic merits, it also involves some problems. For instan
the fact that the mass eigenvalues are of the formA2m
which, together with the fact thatQ anda have similar spec-
tra, implied the area spectrum under consideration, also
plies that the angular frequencies of quanta of Hawking
diation emitted in transitions between nearby states is

.

ic
8-16
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v'
1

M
. ~6.1!

For Schwarzschild black holes this is something one mi
expect because the Hawking temperature of such a ho
@34#

TH5
1

8pM
, ~6.2!

and therefore it follows from Wien’s displacement law th
the maximum of the thermal spectrum of black hole radiat
corresponds to the angular frequency

vmax}
1

M
. ~6.3!

In other words, the angular frequency associated with
discrete spectrum of Hawking radiation as predicted by
model, behaves, as a function ofM, in the same way as doe
the angular frequency corresponding to the maximum of
thermal spectrum as predicted by Hawking and others.

Unfortunately, this nice correspondence between Ha
ing’s result and our model breaks down whenQ or a are
different from zero. In that case the Hawking temperature
the black hole is@34#

TH5
AM22Q22a2

2p@~M1AM22Q22a2!21a2#
, ~6.4!

and one finds that the maximum of the thermal spectr
corresponds to the angular frequency

vmax}
AM22Q22a2

~M1AM22Q22a2!21a2
. ~6.5!

In other words, the angular frequency~6.1! predicted by our
model corresponds, when the hole is near extremality,
temperature which is muchhigher than the Hawking tem-
perature.

However, there may be a possible way out of this pro
lem. In all our investigation we have emphasized the imp
tance of the dynamics of the intermediate region between
horizons of the black hole. The dynamics of this intermedi
region is, in our model, responsible for the discrete eigen
ues of the mass, electric charge and angular momentum
the hole. Now, if we take this point of view to its extrem
limits we are tempted to speculate that both of the horiz
of the hole, acting as the boundaries of the intermediate
gion, may participate, in one way or another, in the radiat
process of the black hole. In other words, both of the ho
zons may radiate. The radiation emitted by the inner hori
is probably emitted inside the inner horizon, and is theref
not observed by the external observer. Nevertheless, an e
sion of this radiation is likely to reduce considerably t
number of quanta, and hence the temperature, of the ra
tion coming out from the hole: The more the inner horiz
radiates, the less quanta are left for the outer horizon.
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Let us give up for a moment our resistance to this m
charming temptation and have a play with the thought t
both of the horizons have an important role in black ho
radiation. For instance, one might consider one quarter of
total area of the hole as a sort of a ‘‘total entropy’’ of th
hole

Stot5
1

4
~A11A2!. ~6.6!

Moreover, one might be inclined to define a temperatureT
corresponding to this entropy~whatever that means! such
that

1

T
ª

]Stot

]E
, ~6.7!

and one finds, quite unexpectedly, that

T5
1

8pM
. ~6.8!

In other words, we have recovered the Hawking tempera
of the Schwarzschild black hole@see Eq.~6.2!#. This expres-
sion is the same for all black holes, and it is inversely p
portional to the massM of the hole. It may well be that al
this is just meaningless play with symbols, without a
physical content, but nevertheless the idea that it is the t
area, and not the area of the outer horizon, which is of f
damental importance in black hole quantum mechanics,
pears to possess remarkable internal consistency: If the
area of the hole has equal spacing in its spectrum, one
pects the temperature of the hole to be inversely proportio
to the massM, and this result is recovered if the total entrop
of the hole is taken to be one quarter of not the area of
outer horizon but of the total area of the hole. We sh
investigate these ideas in more detail in forthcoming pap

To conclude, our quantum-mechanical model of Ke
Newman black holes appears to involve several physic
sensible properties but also some problems. For instance
claim that Kerr-Newman spacetime and our phase sp
variables satisfy the assumptions of Regge’s and Te
boim’s theorem has been left unproved. The proper anal
of the Hamiltonian dynamics of Kerr-Newman spacetim
along the lines shown by Kucharˇ for Schwarzscild spacetime
should therefore be performed@29#.

Another problem is, whether the quantum mechanics
black holes can be described with a sufficient accuracy
means of a model having just three independent degree
freedom. In other words, are the mass, electric charge
angular momentum spectra obtained from our model r
able? When answering to this question one can just say
at least the spectra are such as one might expect on sem
sical and dimensional grounds. As to the problems relate
the statistical origin of black hole entropy and things like th
our model says nothing. Another, more esoteric, reason w
our model may probably contain some hints of truth is
simplicity and certain naturality. Such things, however, a
merely matters of taste and should not be trusted too mu
8-17
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APPENDIX A: A BOUNDARY TERM

In this appendix the boundary termS]S
rev of Sec. III is

calculated explicitly.
That boundary term is expressed in Cartesian coordin

in Eq. ~3.7!. Because the coordinate system revolves aro
the z-axis with angular velocityv, we havev1505v2 and
v35v, and so the boundary term can be written in the fo

S]S
rev522E dt v R ~xp s

2 dSs2yp s
1 dSs!. ~A1!

By comparing the line element of Eq.~3.4! with the ADM
line element

ds252~N22NaNa!dt212Nadxadt1qabdxadxb,
~A2!

whereN is the lapse function,Na is a component of the shif
vector ~a 5 1,2,3! andqab is a spacelike component of th
metric tensor associated with the hypersurface, we find
the only non-zero spacelike components of the metric ten
are

q11511
2M

r
5q225q33 ~A3!

and for the components of the shift vectorNa we have

N15
2Jy

r 3
, N252

2Jx

r 3
, N350 ~A4!

where

NaªqabN
b ~A5!

and

r 5Ax21y21z2. ~A6!

Comparing Eqs.~3.4! and~A2! we obtain the lapse func
tion N:

N5A12
2M

r
1

4J2

r 6 S 11
2M

r D 21

~x21y2!. ~A7!

To evaluate covariant derivatives ofNa we must calculate
Christoffel symbols using the non-zero components ofqab
expressed in Eq.~A3!. The non-zero Christoffel symbol
needed in the calculations are

G11
1 5G12

2 5G13
3 52

Mx

r 3 S 11
2M

r D 21

, ~A8a!
02401
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G11
2 5G33

2 5
My

r 3 S 11
2M

r D 21

, ~A8b!

G22
1 5G33

1 5
Mx

r 3 S 11
2M

r D 21

, ~A8c!

G22
2 5G12

1 5G23
3 52

My

r 3 S 11
2M

r D 21

,

~A8d!

G13
1 5G23

2 52
Mz

r 3 S 11
2M

r D 21

. ~A8e!

By using the formula

Kab5
1

2N
~2q̇ab1Naub1Nbua! ~A9!

for the exterior curvature tensorKab , we get

K115
2Jxy

Nr5 S 2M

r 12M
23D , ~A10a!

K2252
2Jxy

Nr5 S 2M

r 12M
23D , ~A10b!

K3350, ~A10c!

K125K2152
J

Nr5
~x22y2!S 2M

r 12M
23D ,

~A10d!

K135K315
Jyz

Nr5 S 2M

r 12M
23D , ~A10e!

K235K3252
Jxz

Nr5 S 2M

r 12M
23D . ~A10f!

To evaluatepab , the canonical momentum conjugate toqab ,
from the expression

pabª
Aq

16p
~Kab2qabK !, ~A11!

we must first calculateK andAq, and we get

Kªq11K111q22K221q33K3350, ~A12!

Aq5S 11
2M

r D 3/2

. ~A13!

When the results from Eqs.~A12! and ~A13! are substi-
tuted to Eq.~A11!, we have
8-18
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p115

S 11
2M

r D 3/2

16p

2Jxy

Nr5 S 2M

r 12M
23D , ~A14a!

p2252

S 11
2M

r D 3/2

16p

2Jxy

Nr5 S 2M

r 12M
23D , ~A14b!

p3350, ~A14c!

p125p2152

S 11
2M

r D 3/2

16p

J

Nr5
~x22y2!S 2M

r 12M
23D ,

~A14d!

p135p315

S 11
2M

r D 3/2

16p

Jyz

Nr5 S 2M

r 12M
23D , ~A14e!

p235p3252

S 11
2M

r D 3/2

16p

Jxz

Nr5 S 2M

r 12M
23D .

~A14f!

The boundary termS]S
rev can be expressed by using the co

ponents calculated above and the components of the
normal on the surface:

S]S
rev522E dt v R @xq22~p21n

11p22n
21p23n

3!dS

2yq11~p11n
11p12n

21p13n
3!#dS

5
1

8pE dt vJ R S 11
2M

r D 1/2S 2M

r 12M
23D

3
1

Nr5
@~x22y2!~xn12yn2!12xy~yn12xn2!

1z~x21y2!n3#dS. ~A15!

This integral is easy to evaluate in spherical coordina
We first consider a two-dimensional spherical surface w
radiusr. The relations between the spherical coordinatesr, u
an f and the Cartesian coordinatesx, y andz are

x5r cosf sinu, y5r sinu sinf, z5r cosu.
~A16!

The components of the unit normalna(a51,2,3) on the sur-
face are

n15nx5cosf sinu, n25ny5sinu sinf,

n35nz5cosu ~A17!

and the area element is
02401
-
nit

s.
h

dS5r 2sinududf. ~A18!

In these coordinates the boundary term takes the form

S]S
rev5

1

8pE dt vJS 11
2M

r D 1/2S 2M

r 12M
23D

3E
u50

p E
f50

2p 1

N
@~cos2f2sin2f!2sin5u

14 cos2f sin2f sin5u1cos2u sin3u#dfdu.

~A19!

As r approaches infinityN goes to 1 and so the denom
nator can be approximated as 1. Integration gives then

S]S
rev'

1

8p S 11
2M

r D 1/2S 2M

r 12M
23D 8p

3 E dt vJ.

~A20!

and so the boundary term at infinity, wherer→`, is

S]S
rev52E dt vJ. ~A21!

APPENDIX B: A NOVIKOV-TYPE SLICING OF
KERR-NEWMAN SPACETIME

In this appendix we construct in detail a slicing of Ker
Newman spacetime in which the time coordinate of a fre
falling observer through the bifurcation surface and the
Minkowski time of a faraway observer at rest at the righ
hand side asymptotic infinity are identified. In a certa
sense, one may view these observers and their time coo
nates as physically equivalent. In Refs.@14# and@19# similar
identifications are performed and they are based on the
vikov coordinate system~see, for instance, Ref.@35#!, where
the time coordinate of a given point is given by the prop
time t of a freely falling observer in the Schwarzchild or th
Reissner-Nordstro¨m spacetime through that point, and th
radial coordinateR* in the Novikov coordinate system i
related to the pointr where the freely falling observer ha
begun his journey.

Since theR-coordinate in the classical Hamiltonian~4.21!
can be geometrically interpreted as the radius of a wormh
throat at the equatorial planeu5p/2 in the Kerr-Newman
black hole, we begin the construction of the slicing wi
desired properties by considering the Kerr-Newman line
ement ~3.1! written in Boyer-Lindquist coordinates at th
equatorial plane:

ds252
D2a2

r 2
dt22

2a~r 21a22D!

r 2
dtdf

1
~r 21a2!22Da2

r 2
df21

r 2

D
dr2, ~B1!

where
8-19
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D5r 21a222Mr 1Q2. ~B2!

When the Boyer-Lindquist coordinatesxm (m50,1,2,3) sat-
isfy the constraint

A2gmnẋmẋn51, ~B3!

wheregmn gives the components of the metric tensor of t
Kerr-Newman spacetime, the Lagrangian of a particle in
Kerr-Newman spacetime is, in general,

LKN52
1

2
gmnẋmẋn. ~B4!

At the equatorial plane Eqs.~B1! and ~B4! give for the La-
grangian an expression

LKN5
1

2

D2a2

r 2
ṫ21

a~r 21a22D!

r 2
ṫ ḟ

2
1

2

~r 21a2!22 Da2

r 2
ḟ22

1

2

r 2

D
ṙ 2, ~B5!

where the dot denotes proper time derivative. The canon
momenta conjugate tot, r andf are

pt5
]LKN

] ṫ
5

D2a2

r 2
ṫ1

a~r 21a22D!

r 2
ḟ, ~B6a!

pr5
]LKN

] ṙ
52

r 2

D
ṙ , ~B6b!

pf5
]LKN

]ḟ
52

~r 21a2!22Da2

r 2
ḟ

1
a~r 21a22D!

r 2
ṫ . ~B6c!

It is easy to see that

ṗt5
]LKN

]t
50, ~B7a!

ṗf[
]LKN

]f
50. ~B7b!

Therefore the momentapt and pf are constants of motion
Let us denote these constants as

pt5
..

R*

A11R* 2
, ~B8a!

pf5..l , ~B8b!

where we have introduced new real valued parametersR*
and l.

The Hamiltonian
02401
e

al

HKN5pr ṙ 1pt ṫ1pfḟ2LKN ~B9!

of a particle in Kerr-Newman spacetime can be shown
coincide with the LagrangianLKN :

HKN5LKN . ~B10!

Therefore, when the constraint~B3! is satisfied, we get

HKN5
1

2
. ~B11!

On the other hand, when we use the parameters in
duced in Eqs.~B8!, we get from Eq.~B9!

2HKN5152
r 2

D
ṙ 21

R*

A11R* 2
ṫ1 l ḟ, ~B12!

and from Eqs.~B6b! and~B6c! we obtainḟ and ṫ in terms of
l andR* :

ṫ5
1

D S r 412r 2a22a2~D2a2!

r 2

R*

A11R* 2

1
a~r 21a22D!

r 2
l D , ~B13a!

ḟ5
1

D S a~r 21a22D!

r 2

R*

A11R* 2
2

D2a2

r 2
l D .

~B13b!

Now, we choosel 50, and because of this particula
choice we get from Eq.~B12!:

2HKN5152
r 2

D
ṙ 21

R*

A11R* 2

1

D

3S r 412r 2a22a2~D2a2!

r 2

R*

A11R* 2D .

~B14!

As we setṙ 50, Eq.~B14! yields us a quartic equation forr:

Dr 25
R* 2

11R* 2
@r 412r 2a22a2~D2a2!#. ~B15!

From this equation one can calculate ther-coordinater max of
the point from which an observer in a free fall begins h
journey, in terms ofR* which will henceforth be used as
radial coordinate of the Kerr-Newman spacetime. Equat
~B14! implies an implicit expressionr (t,R* ) for the ‘‘old’’
radial coordinater in terms of the ‘‘new’’ time coordinatet
and the ‘‘new’’ radial coordinateR* :
8-20
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t56A11R* 2

3E
r max(R* )

r (t,R* ) r 82

AR* 2~r 821a2!~2Mr 82Q2!2r 82D
dr8.

~B16!

In this equation the signs1 and2, respectively, correspon
to the past and the future of the line where the time coo
nate t50 in the conformal diagram. To obtain an explic
expressionr (t,R* ) for r one should first solve the quarti
equation ~B15!, and then perform the integration in E
~B16!. Solving Eq.~B15!, however, would yield a tremen
dously complicated expression forr max, and we shall not
write it down here. However, it is easy to see that there
always at least two positive rootsr 5r max5r max(R* ). This
can be seen by plotting the both sides of Eq.~B15! and
varying R* . Moreover, one finds that if one putsr 5r max
5r 1 then Eq.~B15! implies R* 50, and vice versa: if one
setsR* 50, then Eq.~B15! is solved byr 5r 1 . Hence, we
have found that for everyR* >0 there is an observer in
free fall such that this observer is at rest at the timet5t
50 with respect to the ‘‘old’’ radial coordinater. When
R* 50 our observer begins his journey at the bifurcati
surface and his world line is a straight vertical line in t
conformal diagram.

Can we extend this coordinate transformation to the rig
hand side asymptotic infinity? Yes we can, since we m
choose the coordinateR* such that the solutionr 5r max
.r 1 is the largest of the roots of Eq.~B15!. When this
choice is made, one can show starting from Eq.~B15!, that,
for large r max,
02401
i-

e

t-
y

R* 2;2S 11
r max

2 1a2

Q222Mr max
D 1O~r max

23 !. ~B17!

HenceR* goes to infinity asr max goes to infinity and vice
versa. Moreover, the time coordinatet of an observer at the
asymptotic infinity coincides with the proper timet of a
freely falling observer at the wormhole throat.

Another matter to investigate still is that do the observ
rotate or not with respect to the Boyer-Lindquist coord
nates? We wrote our Hamiltonian from the point of view
an asymptotic non-rotating observer, and we assumed a
liation in which the time coordinate at the throat is a prop
time of a non-rotating observer in a free fall. To show that
our foliation both of the observers are non-rotating we m
show that ḟ→0 as r→r 1 and r→`. The latter case is
straightforward, since in the expression

ḟ5
1

D

a~r 21a22D!

r 2

R*

A11R* 2
, ~B18!

given by Eq. ~B13b! when l 50, the factorR* /A11R* 2

approaches to one and the factor in front of it approache
zero. The first case wherer→r 1 is a bit tricky, since we do
not know the explicit relation ofr andR* at the bifurcation
point. We have solved the tricky part by expanding E
~B15! in terms ofr near the bifurcation point. If we take onl
the zeroth and the first order terms, we find that the poinr

5r max where ṙ 50 is related toR* by an expression
quatorial
and at

e when
the
r max'

r 1
5 S 22

R* 2

11R* 2D 22Mr 1
4 1a2r 1

3 R* 2

11R* 2
14Ma2r 1

2 R* 2

11R* 2
23a2q2r 1

R* 2

11R* 2

2r 1
4 S 12

R* 2

11R* 2D 22Mr 1
3 12Ma2r 1

R* 2

11R* 2
22a2q2

R* 2

11R* 2

, ~B19!

which gives thatr max5r 1 asR* →0, as it should. Now, when Eq.~B19! is substituted into Eq.~B18! andR* →0, one gets
the result

ḟ→0. ~B20!

In other words, we have managed to construct a foliation of Kerr-Newman spacetime with desired properties at the e
plane: At the asymptotic infinity the time coordinate is the proper time of a freely falling, non-rotating observer at rest,
the wormhole throat that of a similar non-rotating observer in a radial free fall through the bifurcation surface.

It is even possible to show that our construction gives the Novikov coordinate system in the Schwarzschild spacetim
one setsq5a50 in Eq. ~B15!. This result is given by Eqs.~B15! and~B16!. We get an analogous coordinate system for
Reissner-Nordstro¨m spacetime when onlya50. It can be shown that then the relation betweenr max andR* is

r 5r max5„M1AM22q2~11R* 2!21
…~11R* 2!. ~B21!
8-21
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@19# J. Mäkelä and P. Repo, Phys. Rev. D57, 4899~1998!.
@20# S. Hod, Phys. Rev. D59, 024014~1999!.
@21# S. Hod, Gen. Relativ. Gravit.31, 1639~1999!.
@22# I. B. Khriplovich, Phys. Lett. B431, 19 ~1998!.
@23# H. A. Kastrup, Ann. Phys.~Leipzig! 9, 503 ~2000!.
@24# M. Bojowald and H. A. Kastrup, Class. Quantum Grav.17,

3009 ~2000!.
@25# D. V. Ahluwalia, Int. J. Mod. Phys. D8, 651 ~1999!.
@26# R. Garattini, Nucl. Phys. B~Proc. Suppl.! 88, 297 ~2000!; R.

Garattini, gr-qc/0003090.
@27# S. Hod, gr-qc/0012076.
@28# C. Vaz and L. Witten, Phys. Rev. D61, 064017~2000!.
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