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Quantum-mechanical model of the Kerr-Newman black hole
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We consider a Hamiltonian quantum theory of stationary spacetimes containing a Kerr-Newman black hole.
The physical phase space of such spacetimes is just six dimensional, and it is spanned by tife tin@ss
electric chargeQ and the angular momentuthof the hole, together with the corresponding canonical mo-
menta. In this six-dimensional phase space we perform a canonical transformation such that the resulting
configuration variables describe the dynamical properties of Kerr-Newman black holes in a natural manner.
The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the
corresponding self-adjoint Hamiltonian operator and an eigenvalue equation for the Arnowitt-Deser-Misner
(ADM) mass of the hole, from the point of view of a distant observer at rest, is obtained. In a certain very
restricted sense, this eigenvalue equation may be viewed as a sort of tieoequation of black holes.”

Our “Schradinger equation” implies that the ADM mass, electric charge and angular momentum spectra of
black holes are discrete, and the mass spectrum is bounded from below. Moreover, the spectrum of the quantity
M2—Q?—a?, wherea is the angular momentum per unit mass of the hole, is strictly positive when an
appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of
M, Q and a are of the formy2n, wheren is an integer. It turns out that this result is closely related to
Bekenstein’s proposal on the discrete horizon area spectrum of black holes.
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[. INTRODUCTION oms gives rise to an interesting question of a possibility to

Black holes are among the simplest and most beautifutonstruct a quantum-mechanical model of a black hole
objects in the universe. They are made of spacetime andhich, although it takes into account the three classical de-
electromagnetic field only, and they have just three classicarees of freedom of black holes only, nevertheless describes
degrees of freedom which may be taken to be the niss their quantum mechanical properties with a reasonable accu-
the electric charg& and the angular momentuthof the  racy. In this paper we shall consider one such model of black
hole. holes. Of course, even classical black hole spacetimes may

Although the number of classical degrees of freedom ofperform all sorts of vibrations and oscillations which provide
black holes is just three, however, one expects that there #§em with an enormous number of additional degrees of free-
an enormous number of quantum-mechanical degrees @fom, but in this paper we are interested in stationary black
freedom associated with black holes. During some recerftoles only. In other words, we are quantizing the stationary
years, string theory and loop theoretic approaches to quarsector of black hole spacetimes, and such a sector is charac-
tum gravity have greatly improved our understanding of theterized by just three classical degrees of freed8in
nature of these quantum mechanical degrees of freedom Our model is based on an observation that even stationary
[1,2]. black hole spacetimes hadynamics More precisely, even

As it happens, there is a resemblance between black holgationary black hole spacetimes have a region which does
and hydrogen atoms. Like a black hole, a hydrogen atom hagot admit a timelike Killing vector field. This means that in a
just three classical degrees of freedom. Indeed, the syste@grtain spacetime region the black hole spacetime geometry
looks very simple: An electron whirls around the proton, andevolves in time no matter how we choose the time coordi-
the classical degrees of freedom may be taken to be tige  nate. Itis this time evolution of black hole spacetime geom-
andz coordinates of the electron. Quantum field theoretica®try on which we focus our attention and which, in our
investigations reveal, however, an enormous number ofodel, is responsible for the quantum-mechanical properties
quantum mechanical degrees of freedom associated with vief black holes.
tual electron-positron pairs and photons. Still, the quantum To see what this means consider, as an example, the sim-
mechanical properties of the hydrogen atom may be deplest possible black hole, the Schwarzschild black hole. It
scribed, as an excellent approximation, by its non-relativistid1as the spacetime metric
Schralinger equation which takes into account the three
classical degrees of freedom only. ds?= — ( 1 ﬂ

The resemblance between black holes and hydrogen at- r

dr? .
dt?+ ———+r2(d6?+sirfod ¢?).

2M
r
(1.2
*Electronic address: jarmo.makela@phys.jyu.fi
TElectronic address: pasi.repo@phys.jyu.fi One observes that whan<2M, the coordinate becomes
*Electronic address: markus.luomajoki@phys.jyu.fi timelike, and because spacetime geometry inside the event
$Electronic address: johanna.piilonen@phys.jyu. fi horizon depends onm, it evolves in time. In that regiom
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describes the radius of the wormhole throat of the black holewith the proper time of a freely falling observer at the throat
In a more precise manner the fact that spacetime inside thef the black hole. An explicit example of such a foliation is
event horizon really has dynamics in its geometry can beresented in Appendix B.

seen if one considers the conformal diagram of Kruskal In Sec. V we proceed to quantization. A straightforward
Spacetime: Whem<2M one cannot move in any timelike replacement of the classical Hamiltonian by the Correspond-
direction without changing, and therefore the geometry of ing self-adjoint Hamiltonian operator yields an equation
the spacelike hypersurfaces of spacetime. In Reissnelvhich, in a certain very restncte_d sense, may be considered
Nordstran and Kerr-Newman black hole spacetimes the dy-2S & sort of “Schrdinger equation of black holes.” That

namical region lies in the intermediate region between th&duation is the main result of this paper. In the natural units,

outer and the inner horizons of the hole wherefi=c=G=4mey=1, and when a particular operator

In this paper we consider the Hamiltonian quantization of°
Kerr-Newman black hole spacetimes in such a manner thaE
in the classical level, the phase space coordinates of the 5 2 5

. . . . . 1 J J 1%

theory describe the dynamics of the intermediate region be- _— | _ —__ ~ _ — 4 R24 ;24,2 | ¢ =MV,
tween the horizons in a natural way. The Kerr-Newman so- 2R dR?  gu®  gv?
lution is a specific solution to Einstein’'s and Maxwell's (1.2
equations in vacuum. Because of that, we begin our investi- here W — i th ; ) f th
gations in Sec. Il by a general study of the Hamiltonian\l’\lv ere " (E#'IU) Is the wave function of the Kerr-
formulation of the Einstein-Maxwell theory, paying particu- eéverzg?dnes ggin Oa(:l.e uation of considerable simplicity, our
lar attention to the boundary terms which are needed in as;, .- gar q : . plicity,

: . Schrodinger equation” has many interesting consequences.
ymptotically flat electrovacuum spacetimes, such as Kerrx

N i i ke the Hamiltonian f lati For instance, it predicts that the mass, electric charge and
ewman spacetimes, 1o make the Hamitonian Ormualorlangular momentum spectra of black holes are discrete. In

consistent. We shall see in later sections that these bound ticular, the mass spectrum is bounded from below and can
terms play a most fundamental role in the quantum theory (a)lgé made positive by means of an appropriate choice of a
Kerr-Newman black holes._ In Sec. Ill we calculate theseself-adjoint extension. As a matter of fact, one may prove
boundary terms for maximally extended Kerr-Newmaneyen more than that: It is possible to choose operator order-

spacetimes. It turns out that from the boundary terms one cafigs and self-adjoint extensions such that the spectrum of the
read off the mass, electric charge and angular momentum @fuantity

the black hole.

The study of the classical Hamiltonian dynamics of Kerr- M2—Q?%-a?
Newman black hole spacetimes is performed in Sec. IV. Ba-
sically, our study is based on an important theorem provedvherea:=J/M is the angular momentum per unit mass, is
by Regge and Teitelboinf4]. This theorem states, essen- §trictly positive Rega_rding Hawking radiation, this is a very
tially, that the physical Hamiltonian of asymptotically flat interesting result: It implies that a non-extreme plack hole
spacetime with matter fields can be gained if we first solve@n néver become, by means of Hawking radiation, an ex-
the classical constraints, and then substitute the solutions {6°™€ hole. This result IS In agreement with the third law of
the constraints, in terms of the physical phase space coor lack _hofle ther;ncr)]dynﬁml'cs,l an? IS th;erefore a sltrong argu-
nates of the theory, to the boundary terms at asymptoti e:: 'lp]ear:/ig;]oer: deo?tgslg?)e\é?rbdrgyvc\)/eof?r: dr?r?gtet.he eigen-
spaceﬁke infinity. At the first stage we take the phase SPaCE1lues of the sum of the areas of the horizons of the hole
coordinates to be the mabh the electric chargQ and the which we shall call, for the sake of convenience, th&al
angula_lr momen_tum] of the hole, together with the COITe- areaof the black hole, are of the form
sponding canonical momenfa, , pg andp;, and we write
the sum of the boundary terms, and hence the classical A= n. 1672, (1.3
Hamiltonian, in terms of these phase space coordinates. It is

unclear whether the assumptions of Regge's and Teitekivherenzl 23 and| pji= [1G/c3 is the Planck length
boim’s theorem are valid for Kerr-Newman spacetime andag gych our result is closely related, although not quite iden-
the variablesM, Q, J, pu, Pq andp,, but we accept this  tjcq| to Bekenstein's proposf—28§]. According to that pro-

as an unproved hypothesis and see where it takes us. At thgysal, the spectrum of the outer horizon of the hole is of the
second stage we perform a canonical transformation from thg)rm

variablesM, Q and J and their canonical momenta to the

new variables and their canonically conjugate momenta A,=n-9l |2>|: (1.9
which describe better the dynamics of the intermediate re-

gion between the horizons of the Kerr-Newman black holewheren=1,2,3... andvy is pure number of order one. Ar-
In terms of these phase space variables we write the classicgliments in favor of the claim that it is perhaps not the area
Hamiltonian of Kerr-Newman spacetimes in a specific folia-of the exterior horizon but the sum of the areas which should
tion where the flat Minkowski time coordinate of an have an equal spacing in its spectrum will be given in Sec.
asymptotic observer at rest at a faraway infinity coincidesvI.

onfiguration variable®, u andv of the theory, as
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Finally, our model implies a very interesting discrete ds”= — dt*+ qaudxdx". (2.9
spectrum for the angular momentum of Kerr-Newman black
holes. For uncharged holes near extremality, the angular mdn other words, we have chosen time orthogonal coordinates,
mentum eigenvalues are of the form where the laps&l=1, and the shiffN® vanishes identically.

In these coordinates we can write
Jn=mh, (1.5

wherem=0,+2,+4,... . S§m=j dtLdsxﬁem, (2.6)

Il. HAMILTONIAN FORMULATION OF where
EINSTEIN-MAXWELL THEORY

The Einstein-Maxwell theory is a theory of electromag- Eem-——\/—{anb[A Ap—2A4(9pA0) + (92RA0) (9pA0) ]
netic field interacting with gravitational field. In this section
we shall develop the Hamiltonian formulation of such a _(3)|:g%)|:ab} 2.7
theory in all details, paying particular attention to the bound-
ary terms appearing in asymptotically flat spacetimes as & the electromagnetic Lagrangian in curved spacetime. The
consequence of the requirement of internal consistency adot means time derivative and we have defined

the theory. 5
The action of the Einstein-Maxwell theory can be written, COIF b= aAp— dpAa, (2.89
in general, as
(3)Fab::qamqbn(3)|:mn_ (2.8b)
1
= ﬁf d*xy/—g(“’R—F,,F*")+(boundary terms The canonical momentum conjugateAg is
2.1
- ST As—dA _Ja Fps. (2.9
In this equation the integration is performed over the whole pT= A —47_rq (As— ds 0)_47-rq Os- )
four-dimensional spacetimeg is the determinant of the é
spacetime metrig,,,,, and This relation can be inverted, and we have
Fu=d,A,—d,A, (2.2 A . Coa 210
:_p , .
is the electromagnetic field tenséy,, is the electromagnetic ° \/a b
vector potential. )R is the four- dimensional scalar curva- _
ture. where we have defined
As is well known, we can write the actidi2.1) as
oad Pb:=apP®. (2.1)
rav m rav
S=STH S SY 23 In terms ofp® we can write the electromagnetic Lagrangian
where as
. 2 \/a
— _|1ZL b VU (3)p(3)pab
sgfaV———f dtf I VAN(K K2~ K2+ R), (2.4 TP A | G P P04 1 PFIFS ]
(2.12
1
ng:=ﬁ dtf2d3x\/a|\j Fu FA, (2.4p  Hence, we get
and S% and S2I" are boundary terms associated with space- ng:f dtfzdgx[paAa—Hem+ Ao(dp?], (2.13
like asymptotic infinities of asymptotically flat spacetimes.
In Egs.(2.49 and(2.4b the spatial integration is performed where
over the whole spacelike hypersurfateof spacetime where
the timet is constantK ., is the exterior curvature tensor on 2 ) \/a 9 (@)cab
that hypersurface its trace, ancR is the three-dimensional Hem::quabpap + E( FFe. (2.14

scalar curvature on that hypersurfabkis the lapse function

andq is the determinant of the metrig,,, on the hypersur- In Eq. (2.13 we have dropped the teriry dt/sd®xd,(Aqp?)
face.. , . arav which can be inverted to a boundary term.

_ The properties of the actioBy"™" are well known. Con- We now include the lapse and the shift to our formulation.
sider now the actiors™ of Eq.. (2.4h). To begin with, con- 14 include the lapse we replack by
sider first the case where the spacetime metric can be written

as dt’ =Ndt, (2.15
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and, becaus@, transforms to

, OxK
Po=ooe

(2.19

we find that for general lapse but vanishing shift the electro-

magnetic action is

m_ 3 an _ em a
S JdtLd X[P?A,— NH ™ Ay(d,p?)]. (2.17)

Inclusion of a non-vanishing shift is a bit more tricky. We

replacedx?® by

dx’@=dx*+ Nadt, (2.18
from which it follows thatA, is replaced by
Aj=Ap— N®A. (2.19

Moreover, at the hypersurface whex€=t-+dt, A, is re-
placed by

S

Al= Aq(t+dt,xP—NPdt)

ox'a
=A,+Adt—(dA)Ndt— (9,NAdL.  (2.20
Hence, we find thaf\, must be replaced by
Al=A,— (dsA)NS—(9,N9)A. (2.20)

Substituting Eqs(2.19 and(2.2]) into Eq.(2.17) we obtain

an expression for the electromagnetic action in the presen

of non-vanishing shift:

ngzf dtLd3x[paAa— NH ™= NSH ™ Ag(dap®) ],
(2.22
where we have defined
Hgm:: pa(s)Fsa! (2.23

and we have ignored the terfidtf s d3xd,(ANp?).

PHYSICAL REVIEW D64 024018

1
pab.=— EJa(Kab— g2°K) (2.26

is the canonical momentum conjugatedtg, and

1
Gabed=— \/—a(Qaqua_ Jaclbd— daddbe)  (2.27)

is the Wheeler-DeWitt metric. Putting the actia@s22 and
(2.24) together we get the Einstein-Maxwell action

S f dt f d*X(P*°Gap+ PPAs— NH—N"Hs— AG),
3

(2.28
where
Hi=TH 94}y M (2.29
is the Hamiltonian constraint,
He=HIV+HE™ (2.30
is the diffeomorphism constraint, and
Gi=—9,p? (2.3)

is the Gaussian constraint.

We shall now consider asymptotically flat spacetimes. In
those kind of spacetimes we must include certain boundary
terms, since we cannot assume the variations of the dynami-
cal variables and their canonical momenta to vanish at
asymptotic infinity. In what follows, we shall take the
Caesymptotic coordinates at spatial infinity to be Cartesian co-
ordinates.

First of all, of course, we have the Arnowitt-Deser-Misner
(ADM) boundary terni4,29

SV = f dtN* (t)Enpm(t), (2.32

where

N*(t) = lim N(t,x%)

r—oo

(2.33

We are now prepared to write down the whole Einstein-is the |apse function at the asymptotic spatial infinity, and

Maxwell action without boundary terms. The gravitational

part S$*'is a mere ADM action

S%rav: j dtfzdsx( pabqab_ NH 9av— NSH grav)’

(2.29
where
Mo (167) Gapodp ™™+~ \GR, (225
* 2( 77) abcdp p 167T q 1 ( . a
nga"==—2p§‘a, (2.25h
and

o1 N dhan
EADM-—“mEé ( axn - ﬁxm dS'n (234)

r—oe
is the ADM energy of spacetime. In E.34 h,,, denotes a
spatial component of the linearized gravitational field in
asymptotic Cartesian coordinates. More precisely, we have
assumed spatial coordinates to become Cartesian in
asymptotic spacelike infinity, and in these coordinates we
have written the spacetime metricgs,= 7,,+h,,, where
n,,=diag(—1,1,1,1) is the flat spacetime metric.

In addition to the ADM boundary term, which is a term
associated with time evolution at asymptotic infinity, we
have, for the non-vanishing shift at spatial infinity, boundary
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terms associated with asymptotic spatial translations. VariaBecause of that, the total Hamiltonian of the Einstein-
tion of the action(2.28 with respect to the momentup?f® Maxwell theory is
conjugate tag,, brings along a ternp4]

H:f d3X(NH+NSH+AgG) + N (1) Eppm(t)
2f dtJ d3x(NLop2°)p, s st ADM
)
+Ng () Papm (D) +Ag (HQ(1). (2.42
which must be canceled at infinity. Hence we need a bound-

ary term Hence, one is left with the last three terms only when the
classical constraints

s”a”%:—f dtN () P2 (1), 2.3
93, a( ) ADM( ) ( 5) HIO, (24sa
where H=0, (2.431
N2 (t):=lim Na(t,x?) (2.36

r—oe G=0 (2.430

is the shift at infinity, and are satisfied.
Papm:=—1lim?2 fﬁ pPds, (2.37  11. BOUNDARY TERMS IN KERR-NEWMAN SPACETIME
r—oo

As we saw in the previous section, one must include, in
is the ADM momentum of spacetime. asymptotically flat spacetimes, certain boundary terms in or-
So far we have considered terms related to pure gravityder to make the variational principle consistent. Of particular
We still have to include boundary terms related to electrointerest are the boundary terms in Kerr-Newman spacetime,
magnetism. First of all, we observe that variation of the acthe most general black hole spacetime. In this section we
tion with respect to the momentup? conjugate toA, brings  shall calculate these boundary terms.
along a term To begin with, we write down the Kerr-Newman line el-
ement in Boyer-Lindquist coordinat¢30]:

f dt f d3xd,(Agdp?),
3

A—aZsirte 2asirfo(r’+a’—A)
ds’=— 5 dt®— s dtd¢
which must be canceled at infinity. Hence, we need an elec-
tromagnetic boundary term r’+a?)?—Aa’sirfo 3,
J Y ( ) sirfd 2 +—dr2+3de?,
3 A
3§==—J dtAg (1)Q(1), (2.38 (3.1
where where
Ag ()= lim Ag(t,x?) (2.39 3 :=r’+a%cos, (3.2a
r—o
A:=r?+a’+Q?—2Mr. (3.2b

is the electric potential at infinity, and

In these equationdyl is the ADM mass of the holeQ its
Q:=—lim 3§ PadS (240 charge, anda is the angular momentum per unit mass. To
= calculate the boundary terms we must approximate the line
element(3.1) at asymptotic infinity, where—c, when only

is the electric char f ime. X .
S the electric charge of spacetime leading order terms are taken into account:

We are now prepared to write the whole Einstein-
Maxwell action, with appropriate boundary terms. We get

2M 4] sinte
ds?~— 1—T)dt2— dtde+r?sirf6d ¢?
5.~ [ dt [ a0+ pPAs—NH-NH,— A
= 2M
+(1+ - dr2+r2de?, (3.3
—J dt{N" (1) Eapm (1) + N (H)Papy (1)
. whereJ:=Ma is the angular momentum of the hole. In Car-

+ A0 (HQ(1)]. (2.4 tesian coordinates this expression takes the form
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oM 4] neglected. Hence, we are allowed to calculate the boundary
dsz~—<1——)dtz——s(xdy—ydx)dt term (3.7) by using the metrio3.4). This calculation has
r r been performed in detail in Appendix A, and we get, because
2M 0= wk,
+| 1+ T)(dx2+dy2+d22); (3.9
ov_ _ f dt wd. 3.9
herer is not the same as in Eq.(3.3): In Eq. (3.3 r is one
of the Boyer-Lindquist coortzjmagef,/,z whereas in B14) r is We must still calculate the ADM boundary ter(2.32 as
defined to be equal taxf+y?+2%)™ well as the electromagnetic boundary tef238. The ADM

We now proceed to evaluate the boundary terms. Wheg, ngary term of Kerr-Newman spacetime is, for arbitrary
evaluating the boundary terms the first task is to fix the C°1apseN+ at infinity

ordinate system far away from the black hole. In other

words, we must fix the lapge and the shifiN2. In this paper oM

we choose a faraway coordinate system which revolves, with 5?2 == f dtN"M. (3.9
respect to the Cartesian coordinaiey and z, with an ex-

tremely small angular velocity around thez axis.(We must ~ To calculate the electromagnetic boundary term we first re-
assumew to be extremely small since otherwise the veloci-call that for Kerr-Newman solution the only non-zero com-
ties of the faraway observers would exceed the velocity oponents ofA, in Boyer-Lindquist coordinates are

light. More precisely, we choose to be so small that even

for observers who are so far away from the hole that the _Qr
S t -, (3.10a
boundary terms are, as a very good approximation, those 3
calculated at infinity, the velocities are well below the veloc-
ity of light.) Because, in flat space, the velocity of an ob- ar .
Y ght. wse, Tn nat sp: . . ty Ay= Q—S|n20. (3.10b
server at the point =xi+yj+zk revolving with angular py
velocity o is Using Egs.(2.9), (2.19 and(2.21) one finds that for general
= oXT, (3.5 Iaps_e and shift one can writg?, the canonical momentum
conjugate toA, as
and because, in Cartesian coordinati$, represents the Ja
_ . . q
a-component of velocity, we find that pa:N P as(F o— NPOF, ). (3.11

a=sgcwbxc, (3.6
This expression, together with Eg&.10, implies that in
wheree}, is the Levi-Civita symbol such that;,;=1. Boyer-Lindquist coordinates the only surviving component
What sort of boundary terms do show up with this kind of of p2 is p" which, in the leading order, can be written very
a choice of the shift? To begin with, we recall from Sec. Il far away from the hole as
that variation of the momentup®” conjugate tog,;, brings

along a term
g pr=-— Q 2+O(r‘3). (3.12
Arr
2f dtf d3X(Na8p?®) s, _ _
Hence, the electromagnetic boundary td2188 is

which must be canceled at infinity. If the shiMf is chosen
as in Eq.(3.6), we must therefore bring along a boundary o= —J dtA] Q, (3.13
term
as expected. The slow rotation of the asymptotic coordinate
rev_ _ b cpan system will change the ADM and the electromagnetic
= zsabcf dte m 3€ XpTdS, S boundary terms a bit but the resulting corrections will be of
the order ofO(w?) and can therefore be neglected.
which replaces the boundary terg§a" of Eq. (2.35.
Now, when calculating the boundary ter8}Y’ of Eq. IV. HAMILTONIAN DYNAMICS OF KERR-NEWMAN
(3.7 we should, of course, first perform a coordinate trans- SPACETIMES
formation where the spacetime met{&4) is replaced by the
corresponding expression in revolving coordinates, and then We shall now proceed to the study of the Hamiltonian
proceed to calculate the boundary term by using this exprestynamics of maximally extended Kerr-Newman spacetimes.
sion. However, when the faraway coordinate system revolve$o begin with, consider a foliation of such spacetimes into
very slowly, we are interested in terms linear éanonly.  space and time. Obviously, we want the spacelike hypersur-
Taking into account the transformation in the expression ofaces where the time=const to cover as great a portion of
the metric would produce terms quadratiainwhich can be  spacetime as possible. Maximally extended Kerr-Newman
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spacetimes have a periodic geometrical structure, and we
pick up one such periof30]. We choose the spacelike hy-
persurface$=const such that they begin from the left-hand
side asymptotic infinity, then go through the interior regions
of the hole in arbitrary ways, and finally end at the right-
hand side asymptotic infinity in the conformal diagram.
However, such spacelike hypersurfaces cannot be pushed be-
yond the interior horizons where the Boyer-Lindquist coor-
dinate

r=r_=M-{M?-Q?-a?, (4.2) i

since otherwise our hypersurfaces would fail to be spacelike. 7,
Hence our study of the Hamiltonian dynamics of Kerr-
Newman spacetimes must be restricted to include, in addi- ;o
tion to the left and the right exterior regions of the Kerr-
Newman black hole, only such an interior region of the hole
that lies between two successiver _ hypersurfaces in the
conformal diagram. Our spacelike hypersurfatzeconst
therefore begins its life at the pastr_ hypersurface, then
goes through the bifurcation point where

r=r,:=M+M?-Q?—a?, (4.2

and finally ends its life at the future=r _ hypersurfaceésee
Fig. 1). Bearing this restriction in mind, we shall now go into
the Hamiltonian dynamics of Kerr-Newman spacetimes.

The first task is to write the action with appropriate
boundary terms. The problem is now that we havwe
asymptotic infinities, and at both of these infinities we have
certain boundary terms. When this fact is taken into account, FIG. 1. The conformal diagram of Kerr-Newman spacetimes.
we find that the action takes the form Our spacelike hypersurfaceés: const begin their life at the past
=r_ hypersurface, then go through the bifurcation point, and fi-
nally end their life at the future=r _ hypersurface.

o

S= f dt J 2c|3x(pabqab+ p?A,— NH— NSH,— AgG)

degrees of freedom, and hence an enormous number of de-
— f dif(N*+N")M +(Ag —Ay)Q+ (0" —07)J]. grees of freedom must be truncated.
For non-rotating black hole spacetimes, the truncation
4.3 process may be performed in the following manner: One first
. ) » . . .~ writes the action for asymptotically flat, spherically symmet-
In this equation, quantities equipped with plus and minusyic Einstein-Maxwell theory. After the Hamiltonian, diffeo-
respectively, are quantities written at the right and the left,,, ,nism and Gaussian constraints have been solved, one is
asymptotic infinities. In parthularq) andw™ are angu_lar left with just four canonical degrees of freedom which can be
velocities of faraway coordinate systems arourdxis. taken to be the masd and the electric charg® of the hole
Hence, the total Hamiltonian of Kerr-Newman spacetime istogether with the corresponding canonical momem}iaand,

Pg [25,29,31. A similar truncation could also be performed

Htot:f d*X(NH+NH+AgG) +(NT+N7)M for rotating black holes: One begins with asymptotically flat
* Einstein-Maxwell theory with appropriate symmetries,
+(AF—A7)Q+(w —w™)J. (4.4) solves the classical constraints, and is finally left with just six

physical, canonical degrees of freedom which may be taken
Now, the problem with our Hamiltonian is that it contains to be the masd, the electric charg&, and the angular

an enormous number of independent degrees of freedormomentumJ of the Kerr-Newman black hole, together with
Indeed, our Hamiltonian may be considered as a function ofhe corresponding canonical momempta, pg andp;.
the hypersurface metrig,, at each poink on the spacelike An important feature of the process explained above, in
hypersurface, together with the corresponding canonical which the phase space becomes reduced in such a way that
momentap?®. However, the ultimate object of interest in this only the physical degrees of freedom are left, is that the
paper is canonical quantization of the stationary black holeesulting Hamiltonian, the so called reduced Hamiltonian,
sector of Einstein-Maxwell theory. Stationary black holes, ininvolves the boundary terms only. In particular, the reduced
turn, are characterized by just three independent, classicélamiltonian of Kerr-Newmann spacetimes is now
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Hred:(N++N—)|\/| +(A3’—A6)Q+(a)+—w_)l

Ta(X)= =0, 4.1
(4.5 0= o (4.12
As a matter of fact, the reduced Hamiltonian may be used
as the real, physical Hamiltonian of the system. This wagnd therefore
proved by Regge and Teitelboip4]. They found that if one
solves the classical constraints and then substitutes the solu- SH SHed
tions to the reduced Hamiltonian, then the correct equations STAX) T SmAX) (4.13

of motion for the canonical variables are obtained. More pre- *=1%7m, =P,
cisely, they showed the following: One assumes that the ] ]
variablesg,, andp?® can be separated by a one to one, timeln other wordsH"™? generates the correct equation of motion
independent, functionally differentiable canonical transfor-for . In a completely analogous way one shows that the
mation in two sets ¢, ,) and (4", ,) in such a way that: correct equation of motion is also generated for. Al-

(@) The reduced Hamiltonian depends only @fiand the ~ though we have here considered pure gravity only, it is clear
Ty that our analysis could be easily generalized to include elec-

(b) When ther, are prescribed as functions, of x ~ tromagnetic fields as well. _
which satisfy The real problem is now: Are the assumptions of the pre-
vious theorem valid for Kerr-Newman spacetimes? In other
words, is it possible to divide the phase space of an Einstein-
Maxwell theory with appropriate symmetries in two parts in
a manner explained above? For spherically symmetric, as-
ymptotically flat Einstein-Maxwell theory this can be done
andhas been done Refs.[29,31]. For theories having the
Kerr-Newman solution as their unique solution to the classi-
cal constraints this has not been done. However, there is not
of the remaining canonical variables. an obvious reason why this could not be done, and we state

The functional derivatives of® with respect toy”* and  the following hypothesis.
w, are assumed to exist. If the above conditions are true then For an appropriately symmetric, asymptotically flat
Hamilton’s equation for the reduced Hamiltonian Einstein-Maxwell theory having the Kerr-Newman solution
as its unique solution to the Hamiltonian, diffeomorphism
and Gaussian constraints there exists a one to one, time in-
dependent, differentiable canonical transformation which di-
together with Eqs(4.6) and(4.7) are equivalent to Einstein’s yides the phase Spaceqaq),pab,Aa,pa) into two sets
equations in the particular frame defined hy=p,, . (M,Q,3,Py,Pq,P;) and /", P,) in such a way that:

The proof of this result is easy: The Poisson brackets are (g) The reduced Hamiltonian depends only bh Q, J,
invariant under canonical transformation and the Hamil-p, Po andP;.

tonian is unchanged in value if the canonical transformation  (b) When theM, Q andJ are prescribed as functions g,

p,=0, (4.6)

then the constraint{=0 andHs=0 can be solved to ex-
press thep® as functionals

=Ty mal (4.7

H™] ¢ *; 7a]=(boundary terml ja_te , —p , (4.8)

is independent of time. Hence

Nt —. 4.9
OmA(X) Rr—
On the other hand,
HLo% o 0™ )l gatam —p.
= (boundary term)igoa:fuma:pa
=H*yA mal. (4.10

Differentiating Eq.(4.10 with respect tor, gives

SH st*(y) = oH |
f dy— STAX) | SmAX)|
> 80 W) st m —p, OTA TAXN gacta,m —p
SHed
= (4.11

However, by Eq(4.6)

and . which satisfy

m=q=1:=0, (4.14
then the constraints can be solved to expres®tpe P, and
P, as functionally differentiable functionals @f* and P, .

We have been unable to find an exact proof of this hy-
pothesis for Kerr-Newmann black hole spacetimes and, in-
deed, this is the weak point of our model. However, there are
no obvious reasons why it would not be true. In what fol-
lows, we shall consider our hypothesis as true and see where
it takes us.

The first consequence of our hypothesis is th&f of Eq.

(4.5 may be used as the real, physical Hamiltonian of our
theory, withM, Q andJ as the coordinates of the configura-

tion space. For that reason we shall drop “red” from our
Hamiltonian, and denote it simply k.

Our Hamiltonian now implies the following canonical
equations of motion:

JH

M=—-——=0, 4.15
o (4.153
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oH When choosing the phase space coordinates, we refer to
Q= FroNay (4.15D  the properties of our observer: Our observer lies at rest very
Q far away from the hole and he is an inertial observer. For
. GH such an observer, the Kerr-Newman spacetime appears as
J=—=0, (4.150 stationary, and all the relevant dynamics of the Kerr-
9P, Newman spacetime is, in a certain sense, confined inside the
event horizon of the hole. These properties prompt us to
Py=— ﬁ: —(N*+N"), (4.159 choose the pha_lse space coordinate_s in such a manner that
oM when the classical equations of motion are satisfied, all the
dynamics are, in a certain sense, confined inside the event
aH . horizonr=r, of the hole. Moreover, as we shall see in a
Po=~ aQ (Ag =Ao), (4.159 moment, the choice of the phase space coordinates describ-
ing the dynamics of spacetime is related to the choice of
oH slicing of spacetime into space and time. We choose a slicing
Pi=— 3= —(0"—w7), (4.15)  where the proper time of an observer in a free fall through

the bifurcation surface coincides with the proper time of our

wherepy , po andp;, respectively, are canonical momenta faraway observer at rest. On grounds of the principle of
conjugate toM, Q andJ. As expectedM, Q andJ are con- equivalence one may view these types of slicings to be in a
stants in time. The time derivative gfy, depends on the preferred position in relating the physical properties of the
choice of the lapse function at both asymptotic infinities oflack hole interior to the physics observed by our faraway

our spacelike hypersurfacq'e)Q on the difference between observer.

electric potentials at infinities, angl, on the difference be-
tween the angular velocities of faraway coordinate systems.
The quantitiesN™, A; and w™ determine the gauge of
our theory. For physical reasons, it is sensible to work in a To make things simple, considdrand Q first as mere
specific gauge where external parameters of the theory. In that case our phase
space is just two-dimensional being spanned by the phase

A. Hamiltonian dynamics with charge and angular
momentum as external parameters

NFf=1, (4.168  space coordinateld andp,, . In this two dimensional phase
space we now perform the following transformation from the
N™=0, (4.16b  “old” phase space coordinatel! and p,, to the “new”
phase space coordinatBsand pg:
w =0, (4.160
+ ol = VZMR-RE— Q= a2+ M sin 2| — %
In this gauge the Hamiltonian takes a particularly simple 1
form in terms of the canonical coordinates: + EWM’ (4.18a
H=M. (4.17
Pr=Sgn Pw) V2ZMR—R*~Q*~-a?, (4.180

The physical sense of this kind of gauge fixing lies in the
fact that we consider Kerr-Newman spacetimes from theyng we have imposed by hand a restriction
point of view of a certain specific observer: Our observer is
at rest at the right-hand side asymptotic infinity, and his time
coordinate is the asymptotic Minkowski time, the proper

ﬂﬂ;g no;ts ;'hcg |22 iont;?n?trve\r/\./rx\c/; ﬁ ?Sa\slinsfirgéegeégﬁstémoeure\(;%'_With the restriction(4.19 the transformatior{4.18 is well
Y defined and one to one. It follows from E@.18b that

server can make observations from just one infinity. For such
an observer, the classical Hamiltonian of the Kerr-Newman
spacetime is jusM, the ADM mass of the Kerr-Newman M = i(p2+R2+Q2+az)_ (4.20
black hole. 2RR

Now, the problem with the phase space coordinbe®),
J, Pm, P andp; is that they describe thstatic aspects of  If one substitutes this expression fdrinto Eq.(4.18a, one
Kerr-Newman spacetimes only. However, therglymamics getspy in terms ofR andpg. One finds that the fundamen-
in Kerr-Newman spacetimes in the sense that between thial Poisson brackets betwebhandpy, are preserved invari-
event horizons there is a region in which it is impossible toant, and hence the transformati@h18 is canonical.
find a timelike Killing vector field. Our next task is to find Equations (4.17) and (4.20 imply that the classical
canonical variables describing the dynamical properties oHamiltonian takes, in terms of the variablBsand pg, the
Kerr-Newman black holes in a natural manner. form

— M <py<mM. (4.19
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1
H=ﬁ(p§+ R?+Q%+a?). (4.2

The geometrical interpretation of the varialités extremely
interesting. We first write the Hamiltonian equation of mo-
tion for R:

o World line of the freely
falling observer at the throat.

JH  pr

= (7—pR “R’ (4.22
and it follows from Eq.(4.21) that when the classical equa-
tions of motion forM andp,, are satisfied, then the equation
of motion forR is

., 2M Q%+a?
Ri=—-—1- 2

(4.23

Now, one can see from the Kerr-Newman met@cl) that
for an observer falling freely through the bifurcation surface FIG. 2. The world line of an observer in a free fall at the throat

at the equatorial plan@=m/2 such thatd=¢=0, the s a vertical line going through the bifurcation point in the confor-
proper time elapsed whangoes fromr to r +dr isdr such  mal diagram. The proper time of such an observer is identified with

that the asymptotic Minkowski time.
r2 diagram. The proper time a freely falling observer needs to
—d2= — 5 dr?, (4.24) fall from the pastr=r _ hypersurface to the future=r_
re+a‘+Q°—2Mr hypersurface through the bifurcation surface is, as it can be

. . ) seen from Eq(4.25),
and therefore the equation of motion of our observer is

r'dr’
2™ Q%+a?

M+
AIZZJ’ =27M, (4.26
— (4.25 r_2Mr' —r'?—Q%—a?

2

r _

r r

and hence the restrictiof.19 is needed. As one can see
where the dot means proper time derivative. As one can seéom Eq. (4.183, |py/|=0 when R=r, and |py|=7M
EQgs.(4.23 and(4.25 are identical. Hence, we may interpret whenR=r_. We have chosep,, to be positive when the
R as the radius of the wormhole throat of the Kerr-Newmanhypersurface = const lies between the pastr_ hypersur-
black hole, from the point of view of an observer in a freeface and the bifurcation surface, and negative when that hy-

fall at the equatorial plane such that=0 through the bifur- persurface lies between the bifurcation point and the future
cation two-sphere. Moreover, one can see from @3 =r- hypersurface. o
that R is confined to be, classically, within the region Concerning the classical Hamiltonian theory witandQ
[r_,r.]. In other words, our variablR “lives” only within as mere external parameters the only thing one still needs to
the inner and the outer horizons of the Kerr-Newman blackcheck is whether there exist such foliations of the Kerr-
hole, and this is precisely the region in which it is impossibleNewman spacetime where the Minkowski time at asymptotic
to find a time coordinate such that spacetime with respect t§ifinity and the proper time of a freely falling observer at the
that time coordinate would be static. Hence, both of the reIhroat through the bifurcation surface rea”y are the one and
quirements we posed for our phase space coordinates alfe® same time coordinate. It is easy to see that time coordi-
satisfied: Dynamics is confined inside the apparent horizoRates determining this sort of foliations do exist. A concrete
and the time coordinate on the wormhole throat is the prope@Xample is constructed in Appendix B. It should be noted,
time of a freely falling observer. however, that all foliations in which the proper time on the
With the interpretation explained above, the restrictionthroat and asymptotic Minkowski time are identified are in-
(4.19 becomes understandable. One can see from E@_omplete since such foliations, in addition to failing to cover
(4.150 that when the lapse functiod$™ at asymptotic in- the regions outside the past and the futurer _ hypersur-
finities are chosen as in Eqgt.16), the canonical momen- faces also fail to cover the whole exterior regions of the hole.
tum py conjugate toM is —t+const, wheret is the time More precisely, _these foliations are valid only whenrM
coordinate of our asymptotic observer. Now, the transformas=t<mM (see Fig. 2
tion (4.18 involves an identification of the time coordindte
with the proper time of a freely falling observer on the
throat. However, as it was noted at the beginning of this
section, it is impossible to push the spacelike hypersurfaces The next task is to complete the classical Hamiltonian
t=const beyond the=r_ hypersurfaces in the conformal (4.21) such thatQ anda are replaced by functions of appro-

B. Hamiltonian dynamics with charge and angular momentum
as dynamical variables
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priate phase space variables describing the dynamics of Kerwhich follows from Eq.(4.5). Using Eqs(4.15¢ and(4.151)
Newman spacetimes in a natural manner. To this end, wand the fact thaM is a constant when the classical equations
must find, for constanM, a canonical transformation from of motion are satisfied, we get the Hamiltonian equations of
the phase space coordinat€y, py) and (J,p;) to some new motion forw; andw,

phase space coordinates which we shall denota agduv,

and their canonical momenfg, andp, . . dH  Pw,

We shall perform such a transformation in two steps. At Wi=gs TR Per (4.309
the first stage we replac® and a by canonical momenta !
conjugate to yet some unknown coordinaves and w, of _ oH pW _
the configuration space: Wai= —2—Mp;. (4.30D
(?pw2 R

=Q, (4.273
Pu,=Q An expression fopg andp; in terms ofR, pg, Wy, Wy, Pw,

Pw, =4, (4.27H and Pw, €an be gained by integrating both sides of Egs.

(4.309 and (4.30b along the classical trajectory in phase
and the classical Hamiltonian of E(#.21) takes the form space:

1
_ 2 2 2 2 p
H——ZR(pR+ P, P, T R?). (4.28 pQ:f RwldR W, (4.313

The next task is to findv, andw,. One expects that/,
andw, are related in one way or another to the momenga Pw,
and p, conjugate toQ andJ, respectively. Because we see __J’ o dR—wy, (4.31b
from Eq. (4.159 that py determines the electromagnetic
gauge and from Eq4.15f) that p; determines the angular where we have substituted
velocity of faraway coordinate systems we first write the 5
classical Hamiltonian in a general electromagnetic gauge \/ pwl Pw,
when faraway coordinate systems rotate with arbitrary angu- —sgripm) - - (432
lar velocities:

1 This substitution involves choosingQ:bJZO. When the
H= —(p§¢+ pgv + pa’ +R2)+(A] _Aa)pm electric pptentlals are assumed to vanish at infinities, and the
1 asymptotic coordinate systems are assumed to be non-
+ - rotating, this kind of choice can be made. With an appropri-
TM(0” = 07)pu, 429 4te choice of the integration constant we get

omn | sin? PR+ Pa, P, — R ™ .33
Po=SUMPw)Pw,| SIN + = —wy, .
" V(p&+p3, +ph, +R)Z—4R%(p, +pl) | 2
oy 2P - PR+ Pl + Pl — R? w @338
Ps=Sgn Pwm sin” + = —w,, )
PR+ Py, +Pa,— R? VPRF Pl + P, + R — 4R (pl, +ph,) | 2
|
where we have made the substitution Po+W;
—| =T, (4.359
1 2 2 2 le
M= ﬁ(pR—*— le+pW2+R2)' (434)
M < (4.35h
Equations (4.18b, (4.27) and (4.33 now constitute a Pw, ' '

transformation from the phase space coordinMeg,,, Q,

Pq. Jandp, to the phase space coordinal$r, W1, Pw,,  These restrictions are related to the fact that we are consid-
Wy, andpW One can easily show that this transformation isering spacetime between two successiver _ hypersur-

well deflned and canonical. Moreover, the transformation idaces. Since bothQ andp, vanish when the electric poten-
one to one provided that we impose the restrictions tials are assumed to vanish at asymptotic infinities and the
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asymptotic coordinate systems are assumed to be non- % % %

rotating, we find that classically; andw, have the follow- <‘1’1|‘1'2>‘=f dRRﬁf duf dv W7 (R,U,v)¥,(R,U,v).

ing properties: At the past=r_ hypersurfacen;=—Qm 0 T 5.1)

+po andw,=—am+Mp;, at the bifurcation surfacev, '

=pg andw,=Mp;, and at the future =r _ hypersurface Through the substitutiongpgr— —i(d/dR),p,— —i(d/du)

wW;=Qm+pg, and w,=am+Mp;. In other words, the andp,——id/dv we replace the classical Hamiltonian of

classical domains ofr; andw, are bounded by the fact that Eq. (4.39 by the corresponding symmetric operator

the t=const hypersurfaces cannot be pushed beyond the

=r_ hypersurfaces. - s
As the last step we perform a canonical transformation H=-3R“-¢

from the variablesv;, py , W, andpy, to the variablesy,

a)laz 1 4 1
s—1 R

. 2 2
Py, v andp,.* We define ut o v?
+ 2R+ SR’ (5.2
[ Wy
Us=Ppy,sin o=, (4.363  This operator may be viewed as the Hamiltonian operator of
1

Kerr-Newman black holes. Its eigenvalues are eigenvalues of
the ADM energyE of such a hole, from the point of view of

W1 a faraway observer at rest. The eigenvalue equation in ques-
=Py, C0§ — |, 4.36 , '

Pu=Pw, E{ ) (4.360 tion takes the form

w - a) 1 4 1 9 1 u?
2 —— RS ! | —— -
vi=Py Sln(—), (4.360 IR dR] 2R 2 2R g2 2 2R

Wp

UZ

w + —|V(R,u,v)=E¥(r,u,v). 5.3
pv::pwzco{p—z). (4.360 2R ( v (ru.o) 53

Wa

This equation is the main result of this paper. In a certain
This transformation is well defined, canonical and, with thesense, it can be considered as a sort of a “time-independent

restriction(4.35), one to one as well. We find that Schralinger equation of all the possible black holes,” and
WV (R,u,v) as the wave function of black holes. Specifying to
pfvl=pﬁ+ u?, (4.378  the quantum theories wheie=1, we find that Eq.(5.3
takes a particularly simple and beautiful form:
psvzzzps-f—vz. (437b 1 ﬂz &2 &2
—| - —————+R%2+u+v?|¥(R,u,v)
SN S 2 2R\ 9R? au?  gv?
In other words, we may identifp;+u“ as the squar®- of

the electric charg®, andp?+v? as the square a? of the —EV(R,U,v). (5.4
angular momentum per unit mass of the hole. Because of

that, the classical Hamiltonian of Kerr-Newman black holeslf we write

finally takes a very simple form

Y (R,U,v)=¢(R)@1(U) @a(v), (5.9
1 . .
H= 21 524 024+ R4 U2+ p2). 43 we find that Eq.(5.3) can be separated to eigenvalue equa-
R (PRTPUTP; u+o%) (4.38 tions forM, Q2 anda?®

¥(R)

1 d 1 2 2
V. ANTUM THEORY OF KERR-NEWMAN BLACK ——R 5— Sl __ 4 R+ —+ —
QUANTU © ,fOLES c { 2 R dR( R dR) 2 R 2R ' 2R

After completing the classical Hamiltonian theory of sta- =My(R), (5.68
tionary spacetime containing a Kerr-Newman black hole, we )
are now prepared to consider the canonical quantum theor>( _ +u2
of such spacetimes. In what follows, we shall concentrate on\ du?
a specific class of canonical quantum theories. More pre-
cisely, we define the Hilbert space to be the sphégR ™ ( d?

XRXR,R°dRdud) with the inner product - F+v2
v

@1(U)=Q%p;(u), (5.6b

@a(v)=2a%p,(v). (5.60

Consider now Eq(5.63, the eigenvalue equation for the
1y andv should not be confused with light cone coordinates orADM massM of the hole, in more details. It can be written
anything like that. as
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R re1 L) )R = Q2+a2+R oM | (R -2 2 b
aR aR H(R)= RTRTR #(R). p=—pg s S< (5.9p
(5.7
then Eq.(5.69 takes the form
As one can see, the function
9] d2 p(p-1) 4( Q2+a?
2 a2 sl -— + - x%3+ X)=Mx(X).
%+E+R—2M 8| dx2 X2 9 %213 X(X)=Mx(x)
(5.10

is negative wherr_<R<r. and positive(or zerg else-  Thjs equation has been analyzed in details in RES]. The
where. Semiclassically, one may therefore expect oscillatingy difference between Eq5.10 and Eq.(3.18 in Ref.
behavior from the wave function when <R<r, and ex-  [19]is thatQ? has been replaced I§?+ a2. Hence one just
ponential behavior elsewhere. Hence, our system is somgaplaced)? by Q2+ a? in the results obtained for E¢3.19
what analogous to a particle in a potential well such R&t iy Ref. [19].
confined, classically, between the outer and the inner hori- ag in Ref.[14], one can show that the spectrumMdfis
zons of the black hole. What happens semiclassically is thajiscrete, bounded below, and can be made positive. From the
the wave packet corresponding to the variaRls reflected  physical point of view, the semiboundedness and positivity
from the_ inner horizon. As a result, we get, when the hole iy some casgsof the spectrum are very satisfying results:
in a stationary state, a standing wave between the outer anghe semiboundedness of the spectrum implies that one can-
the inner horizons. Thus the classical incompleteness, assgot extract an infinite amount of energy from the system,
ciated with the fact that our foliation is valid only when \yhereas the positivity of the spectrum is in agreement with
—mM=<t<7M, is removed by quantum mechanics: In athe well-known positive-energy theorems of general relativ-
stationary state there are no propagating wave packets by which state, roughly speaking, that the ADM energy of
tween the horizons_and our quantum theory is therefore validpacetime is always positive or zero when Einstein’s equa-
at any moment of time. tions are satisfie30].

Whena=Q=0, we have a Schwarzschild black hole,  However, one can prove even more than that. One can

and the inner horizon is replaced by the black hole singularshow that the eigenvalue equatih10 implies that when
ity: The wave packets are no more reflected from the innebzg/z, the eigenvalues of the quantity

horizon but from the singularity. Again, we have a standing
wave in a stationary state and the quantum theory is valid at M?—Q?%—a?
any moment of time, but the wave lies between the
Schwarzschild horizon and the singularity. As such there isire strictly positive, and when 2p<3/2, the eigenvalues
an interesting resemblance between the properties of E@f the quantityM?—Q?—a? can again be made positive by
(5.3 and those of the Schdinger equation of a hydrogen means of an appropriate choice of the boundary conditions of
atom: When the hydrogen atom is in arstate where the the wave functiony(x) at the pointx=0 or, more precisely,
orbital angular momentum of the electron orbiting the protonby means of an appropriate choice of a self-adjoint exten-
vanishes, the electron should, classically, collide with thesion. Moreover, the WKB analysis of E¢.10 yields the
proton in a very short time. Quantum mechanically, how-result that wherQ?+a?>1, andM?—Q?—a?>1 such that
ever, the wave packet representing the electron is reflectad>1, the WKB eigenvalueM , have a property
from the proton, and finally the electron is represented by a
standing wave, which makes the quantum theory of the hy- Mi-Q%*-a?~2n+1+0(1), (5.11
drogen atom valid at any moment of time. In a Schwarzs-
child black hole, the proton is replaced by the black holewherenis an integer and)(1) denotes a term that vanishes
singularity, and the distance of an electron from the proton ié@symptotically for largen. A numerical analysis of Eq.
replaced by the throat radilsof the hole. Nevertheless, the (5.10 yields the result that, up to the term 1 on the right-
solution provided by quantum theory to the problems of theéhand side, Eq(5.11) gives fairly accurate results even when
classical one is similar for both black holes and hydrogenyQ?+a? and n are relatively smalli.e., of order 10. In
atoms. other words, it seems that the eigenvalues of the quantity
We shall now enter the detailed analysis of the eigenvalug/M?—Q?—a? are of the form/2n in the semiclassical
equation(5.6a. To begin with, we see that if we denote limit.
Now, how should we understand these results? The posi-
x:=R¥2, (5.8a tivity of the spectrum of the quantiti?—Q?—a? has an
interesting consequence regarding Hawking radiation: If one
P=x(17296y(x), (5.8  thinks of Hawking radiation as an outcome of a chain of
_ transitions from higher- to lower-energy eigenstates, the
and define positivity of the spectrum oM?—Q?—a? implies that a
non-extreme Kerr-Newman black hole can never become,
__25_ 1 s=2 (5.93 through Hawking radiation, an extreme black hole with zero
P ' temperature, a result that is in agreement with both the third
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law of thermodynamics and the qualitative difference be-
tween extreme and non-extreme black holes. One may con- _—
sider this as a strong argument in favor of our choice of the (4meg)*h?
phase space coordinates describing the dynamics of Ker
Newman spacetimes.

Before considering the implications of E(.11), let us
calculate the spectra @ anda from Egs.(5.6b and(5.60. mee?

As one can see, both of these equations are, essentially, time- En=-— )’W.
independent Schdinger equations of a one-dimensional lin- (4meo)*hn

ear harmonic oscillator. When the solutions to E:]Bb) are wherey is some pure number antdis an integer. Indeed, if
chosen to be harmonic oscillator eigenfunctions, one findgve takey=1/2, we get exactly the correct energy spectrum

mee*

Snd one expects the energy to be quantized such that the
energy eigenvalues are of the form

(5.1

that the eigenvalues @? are for a hydrogen atom. Now, for black holes the only natural
constants we are allowed to use are, in Sl uritsg, G and
Qﬁ=2k+1, (5.12 €o- Hence, the Planck char@gs, of Eq. (5.19 is the natural

unit of charge for black holes, and therefore one expects that
the square of the electric charge, instead of the charge itself,
must be an integer. In other words, the charge spectrum
o2 (5.13 is exactly what one expects for black holes.
Q§=(2k+ 1)—, (5.13 In addition to the dimensional arguments, there is yet an-
@ other reason why the electric charge of the black hole does
not necessarily have the same spectrum as ordinary matter.
wherek=0,1,2... . In this equation,e is the elementary Consider the conformal diagram of Fig. 1 of the Kerr-
charge and Newman black hole. It is easy to see that the spacelike hy-
persurface$=const never touch the singulariB=0 of the
e? 1 black hole. From this it follows that the lines of force of the
N g e 137 (5.149  electric field on these hypersurfaces neither begin nor end
anywhere(if they did, they would do so at the singularity
R=0), but they jsut go through the Kerr-Newman wormhole
to another causally disconnected region. Because of that it is
not possible to talk about the electric charge of a black hole
in the same sense as we talk about electric charge of ordinary
. . ! matter: For ordinary matter the charge lies at the point where
ity of the charge spectrum in E(5.13: For elementary par- the lines of force of the electric field either begin or end but

ticles at least, the electric charge itself, instead of its for black holes no such point exists. Hence it appears that

2 - . . .
squa_reQ » IS an integer. Because of that it mlght appear ay, hat an external observer observes as the “electric charge”
the f|rst15|ght that the chgrge spectrum we have just obta_lne the black hole is a consequence from the geometrical and
contradicts all the possmlg observatlons_ and expectationgyqq| properties of a black hole spacetime, rather than from
an%shr?uld ther;afo're bi rejected on Fl’gysmal grﬁutnds. .dthe properties of matter. Since the electric charge of the
uch a conclusion, however, would beé much 100 rapldy, ., npole js not necessarily connected with the electric

First, eflemt;:ntary gzli\:ltlclses aredlcerta(ljr]ly not bla|<:!< holf_s beE:harge of ordinary matter, it does not necessarily have the
cause for themQ]| - Secondly, a dimensional investiga- o, o spectrum, either.

tion reveals to us that the charge spectriii? is exactly Let us now turn our attention to E@5.60 which gives

what one expects for black holes: when one writes the electhe spectrum of2. As for the electric charge, we find that
tric charge in terms of the natural constaggs # andc, one c}he possible eigeﬁvalues of are '

finds that the natural unit of electric charge is the so-calle

or, in Sl units,

is the fine structure constant. In other words, E§|3), the

“Schrodinger equation of black holes,” implies that the

electric charge of black holes has a discrete spectrum.
One may have very mixed feelings on the physical valid-

“Planck charge” a?=2l+1 (5.17
Qpyic rreohc. (5.15 or, in Sl units,
hG
2_ _
One observes that the squap, of the Planck charg®p,, aj=(21+1) c’ (5.18

instead of the Planck charggy, itself, is proportional tdi. . )
Now, for bounded systems, the observed quantities usualiherel=0,1,2... . Again, one observes that the quantity
tend to be quantized in such a manner that when we writénder consideration is quantized in such a way thas
that quantity in terms of the natural constants relevant to théultiplied by an integer. Putting Eqg5.11), (5.13 and
system under consideration, th&rmust be multiplied by an (5.17 together we find that, semiclassically, the mass eigen-

integer in the spectrum. In a hydrogen atom, for instance, th¥alues of the black hole are

relevant natural constants asg, #, e and the masm, of the

A M~ +v2m 5.1
electron. From these quantities one may construct a natural m (5.19
unit of energy in a hydrogen atom: or, in Sl units
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M~ \2mMpy, (5.20  area, and not the area of the outer horizon nor the difference
between the outer and inner horizon areas, which should be
where an integer in Planck units.
As the final check of our quantum theory of black holes,
m:=n+I+k=0,12..., (5.2)  let us calculate the angular momentum spectrum of black
holes. We observe from Eq$5.18), (5.20 and (5.2 that
and the possible eigenvalues of the angular momenduniMa

z of the hole are, semiclassically, of the form
c
Mei=\ G (522 Inr e~ 2210 +n+ KA. (5.30

is the Planck mass. For uncharged black holes whete=0 we therefore find, in
The spectra of the quantitiéd, Q anda now have inter-  the limit of extremality wheré>n, that the angular momen-

esting consequences regarding the area spectrum of blatikm eigenvalues are of the form

holes. As it is well known, the area of the outer horizon of a

Kerr-Newman black hole is Im~myfi, (5.39
A+=4w(ri+a2), (5.23  wherem;=0,-2,+4,... .
As one can see, the angular momentum spectrum of black
whereas the area of the inner horizon is holes, as predicted by our theory is, at least in the limit of
extremality, exactly what one might expect. Even the fact
A =4m(r? +a?). (5.24  that the angular momentuthis an even number, is in har-

mony with our expectations: When the black hole performs a
Using Eqgs.(5.11) and(5.13 we observe that the semiclassi- transition from one angular momentum eigenstate to another,
cal eigenvalues of the quantity a graviton is emitted or absorbed. Because the spin of a
ot graviton is two, one might expect that the angular momen-
AT=ALTA, (529 tum of the black hole could change only by an even number.
For instance, one may show, quite rigorously, that when a
system consisting of two mass points revolving around their
common center of mass emits or absorbs a graviton, the an-
tot gular momentum quantum number of the system can change
Anj k- 16m(2n+21+k) (5.2 only by an even numbdi32]. Because of that, the angular
momentum spectrum given by E.31) for extremal black
holes may be used as a very strong argument in favor of the
AR~ 16m(2n+21 + K)IZ,, (5.27) Egl):assical validity of our quantum-mechanical model of black
where Unfortunately, our model also appears to contain a very
serious problem regarding the angular momentum spectrum:
4G According to Eq.(5.30 the angular momentum of a black
lpi= — (5.28 hole is not in genergl an integer times the Planck congtant
c Should we be worried because of this result?

The answer to this question is: Not necessarily. The usual
is the Planck length. In other words, we have obtained gyles for the quantum mechanics of angular momentum fol-
result which is closely related, although not quite identical tolow from the symmetries oflat spacetimeand spacetime
the proposal suggested by Bekenstein in 1974 and since th@@ntaining a Kerr-Newman black hole is certainly not flat. In
revived by several authors: According to that proposal theurved spacetime the angular momentum eigenvalues of a
spectrum of the outer horizon of the black hole is of the formsystem do not necessar”y have the same properties as they
[5-28] would have in flat spacetime.

. ) To illustrate this fact by a simple example, consider a
A, =vynlg, (5.29 particle moving in a conelike spacetime geomesge Fig.

o . 3). ThezcomponenL, of the angular momentum eigenval-
where n is integer andy is a pure number of order one. | oq may be calculated from the equation

Hence, we have obtained a result which states that the total
area of the hole, witly= 16, instead of the area of its inner 9

horizon, is quantized as in E5.29. [In contrast to our —lﬁ%‘l’(tb)zl-z‘l’(@, (5.32
result(5.27) and to Bekenstein’s propos@.29, in [33] Vaz

and Witten interestingly found that thaifferencebetween  from which it follows that the angular momentum eigenfunc-
the outer and inner horizon areas is quantized in integefions are of the form

Planck units] In the last section of this paper we shall con-

sider in more detail the possibility that it is perhaps the total P(p)=CelilMLzd (5.33

which we shall call, for the sake of convenience, th&l
areaof a black hole, are of the form

or, in Sl units,
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sponding quantum mechanical operators yielding the sym-
metric Hamiltonian operator. Our analysis produced Eg.
(5.3) which, in a certain very restricted sense, may be con-
sidered as a sort of “Schdinger equation of black holes.”

—— - - .
That equation gives, in the context of our model, the mass,
electric charge and angular momentum spectra of black
holes.

Equation (5.3), which is the main result of this paper,
implies that the mass, electric charge and angular momentum
spectra of black holes are discrete. Moreover, it implies that
When the cone is stretched on a plane, the deficit anglppears. the mass spectrum Is boun(_jed from below a_nd can be _m_ade
As a result of the appearance of this deficit angle, the perioditpos't've' By means of a choice of an appropriate self-adjpmt
boundary condition for the angular momentum eigenfuncio) ~ €Xtension one may show that the spectrum of the quantity

is Y(p+2m—e)=y(p).

FIG. 3. A particle moving in a conelike spacetime geometry.

M 2_ Q2_ a2
whereC is a constant. In flat spacetime the perioddofe)

is 277, producing the usual angular momentum spectrum. m_/vherea is the angular momentum per unit mass of the hole,

conelike spacetime geometry, however, the periodPofs 1S always positive. Regarding Hawking radiation, this is a
not 27 but 27— €, wheree is the deficit angle of the cone V€Y important result: It means that a non-extreme black hole

(see Fig. 3. In other words, we must have can never become an extreme black hole by means of the
’ Hawking radiation of black holes. This result is in agreement
V(p+2m— €)=V (), (5.34  Wwith the third law of black hole thermodynamics, and is

therefore a strong argument in favor of the physical validity
and therefore the angular momentum eigenvalues are of thef our model.
form At the high end of the spectrum, E¢.3) implied that the
eigenvalues of the quantitiés, Q anda are all quantized, in

1 natural units, in a very similar manner: In natural units the
L,=m, € h, (5.39 eigenvalues of these quantities are all of the fof@n,
1_§ where n is an integer. Although this kind of a spectrum
might appear very odd for an electric charge spectrum of
wherem,=0,21,%2,. .. . In other words, the angular mo- black holes, it is exactly what one expects on dimensional

mentum of a system is not necessarily an integer times th@rounds. In the extremal limit, Eq5.3) implied that the
Planck constant in curved spacetime. angular momentum eigenvalues of black holes are of the

form

VI. CONCLUDING REMARKS mjﬁ,
In this paper we have considered a particular quantum-

mechanical model of Kerr-Newman black holes. The fundawherem;=0,+2,=4,... .

mental ideas behind our model were based on the black hole Of particular interest is the area spectrum of black holes

uniqueness theorems. According to these theorems a bla@iven by Eq.(5.3. Equation(5.3) implied that the sum of the

hole in stationary spacetime is completely characterized bgreas of the two horizons of Kerr-Newman black hole is of

exactly three free variables which may be taken to be théhe form

massM, the electric charg€ and the angular momentui

of the hole. From these theorems it follows that the Kerr- n16ml3,

Newman solution, being completely characterized by these

three free variables, is the most general stationary black holeherelp, is the Planck length. Hence, we get a result which

solution to combined Einstein-Maxwell equations. In ouris closely related, although not quite identical to, the pro-

model we considered a Hamiltonian quantum theory of staposal made by Bekenstein in 1974. According to Beken-

tionary black hole spacetimes in such a way that the phasgtein’s proposal, it is not the sum of areas of horizon but the

space was spanned by the variablsJ and Q, together area of the outer horizon which has an equal spacing in its

with the corresponding canonical momepig, p; andpg . spectrum.

The problem with these phase space coordinates, however, is Although our result about an equal spacing for the spec-

that they describe thstatic aspects of black hole spacetimes trum of the sum of the horizon areas may have certain es-

only. However, there islynamicsin Kerr-Newman space- thetic merits, it also involves some problems. For instance,

times in the sense that between the horizons there is no timéhe fact that the mass eigenvalues are of the faf@m

like Killing vector field, and we managed to find new phasewhich, together with the fact th& anda have similar spec-

space coordinates which describe the dynamical properties ¢fa, implied the area spectrum under consideration, also im-

Kerr-Newman spacetime in a particularly natural mannerplies that the angular frequencies of quanta of Hawking ra-

These phase space coordinates were replaced by the cordiation emitted in transitions between nearby states is
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1 Let us give up for a moment our resistance to this most
W= (6.1)  charming temptation and have a play with the thought that
both of the horizons have an important role in black hole

For Schwarzschild black holes this is something one mighfadiation. For instance, one might consider one quarter of the

expect because the Hawking temperature of such a hole fhé’tlal area of the hole as a sort of a “total entropy” of the
[34] ole

1 1. -
- o= (AT+AT). (6.6)

and therefore it follows from Wien’s displacement law that Moreover, one might be inclined to define a temperaflire
the maximum of the thermal spectrum of black hole radiatior€rresponding to this entropfwhatever that meanssuch

corresponds to the angular frequency that
1 1 '_astot
el 37 6.3 T 6.7

In other words, the angular frequency associated with th&nd one finds, quite unexpectedly, that
discrete spectrum of Hawking radiation as predicted by our
model, behaves, as a functionMf in the same way as does T= 1
the angular frequency corresponding to the maximum of the 87M "~
thermal spectrum as predicted by Hawking and others.

Unfortunately, this nice correspondence between Hawk!n other words, we have recovered the Hawking temperature
ing’s result and our model breaks down whénor a are  of the Schwarzschild black ho[see Eq(6.2)]. This expres-
different from zero. In that case the Hawking temperature ofsion is the same for all black holes, and it is inversely pro-

(6.9

the black hole i§34] portional to the mas# of the hole. It may well be that all
this is just meaningless play with symbols, without any
JM?2—Q?—a? physical content, but nevertheless the idea that it is the total
Ty= 5.2, .21’ (6.4 area, and not the area of the outer horizon, which is of fun-
2a[(M+yM*—=Q“—a“)“+a“]

damental importance in black hole quantum mechanics, ap-
ears to possess remarkable internal consistency: If the total
rea of the hole has equal spacing in its spectrum, one ex-
pects the temperature of the hole to be inversely proportional

and one finds that the maximum of the thermal spectru
corresponds to the angular frequency

JMZ— 022 to the masdM, and this result is recovered if the total entropy
O™ M ] (6.5  of the hole is taken to be one quarter of not the area of the
(M+{M?—Q?—a?)?+a? outer horizon but of the total area of the hole. We shall
investigate these ideas in more detail in forthcoming papers.
In other words, the angular frequen(§.1) predicted by our To conclude, our quantum-mechanical model of Kerr-

model corresponds, when the hole is near extremality, to &lewman black holes appears to involve several physically
temperature which is muchigher than the Hawking tem- sensible properties but also some problems. For instance, the
perature. claim that Kerr-Newman spacetime and our phase space
However, there may be a possible way out of this prob+ariables satisfy the assumptions of Regge's and Teitel-
lem. In all our investigation we have emphasized the imporboim’s theorem has been left unproved. The proper analysis
tance of the dynamics of the intermediate region between thef the Hamiltonian dynamics of Kerr-Newman spacetimes
horizons of the black hole. The dynamics of this intermediatealong the lines shown by Kuchéor Schwarzscild spacetime
region is, in our model, responsible for the discrete eigenvalshould therefore be perform¢a9].
ues of the mass, electric charge and angular momentum of Another problem is, whether the quantum mechanics of
the hole. Now, if we take this point of view to its extreme black holes can be described with a sufficient accuracy by
limits we are tempted to speculate that both of the horizonsneans of a model having just three independent degrees of
of the hole, acting as the boundaries of the intermediate refreedom. In other words, are the mass, electric charge and
gion, may participate, in one way or another, in the radiatiorangular momentum spectra obtained from our model reli-
process of the black hole. In other words, both of the hori-able? When answering to this question one can just say that
zons may radiate. The radiation emitted by the inner horizorat least the spectra are such as one might expect on semiclas-
is probably emitted inside the inner horizon, and is thereforesical and dimensional grounds. As to the problems related to
not observed by the external observer. Nevertheless, an emithe statistical origin of black hole entropy and things like that
sion of this radiation is likely to reduce considerably the our model says nothing. Another, more esoteric, reason why
number of quanta, and hence the temperature, of the radiaur model may probably contain some hints of truth is its
tion coming out from the hole: The more the inner horizonsimplicity and certain naturality. Such things, however, are
radiates, the less quanta are left for the outer horizon. merely matters of taste and should not be trusted too much.
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APPENDIX A: A BOUNDARY TERM

In this appendix the boundary ter@®y’ of Sec. Il is
calculated explicitly.

That boundary term is expressed in Cartesian coordinates
in Eq. (3.7). Because the coordinate system revolves around
the z-axis with angular velocity, we havew!=0= w? and

w®=w, and so the boundary term can be written in the form

rev__
(O

—2f dt w ff (xpidS—ypdS). (A1)
By comparing the line element of E(.4) with the ADM
line element

ds?= — (N?— N,_N?)dt?+ 2N, dx2dt+ g0 x2d x°,

whereN is the lapse functiori? is a component of the shift
vector(a = 1,2,3 andq,y, is a spacelike component of the
metric tensor associated with the hypersurface, we find that
the only non-zero spacelike components of the metric tensor
are

2M
=1+ 7~ 9227 0a3 (A3)

and for the components of the shift vecté? we have

23y 2Jx
1= "3 2T T T3 N3=0 (A4)
r r
where
Na’:CIabNb (A5)
and
r=\x’+y?+7°. (AB)

PHYSICAL REVIEW D64 024018

1 _r1r2 _ _
I‘I13_F23_

By using the formula

1 .
Kab=m( —apT Najp+Npja)

2Jxy
Nr®

11~

2M
r+2mM )

Jyz
Nr®

2M )

“u=Ka= Sl o ~

JIxz
Nr®°

Kos=Kgo=—

2M .
r+2M

Comparing Eqs(3.4) and (A2) we obtain the lapse func- from the expression

tion N:

2M  40? 2m\| !
N= 1—T+—6 1+T (x2+y2). (A7)
r

To evaluate covariant derivatives Nf, we must calculate
Christoffel symbols using the non-zero componentsygf
expressed in Eq(A3). The non-zero Christoffel symbols
needed in the calculations are

2M

Mx -1
— 1+T , (A8a)

1 _1p2 13 _ _
I =T1=T13= /3
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pab::E(Kab_ JanK),

K=K 11+ 0K o+ qFK 35=
2M 3/2
\/a: 1+ T) .

for the exterior curvature tensét,,, we get

we must first calculat& and+/q, and we get

O;

(A8b)

(A8c)

(A8d)

(A8e)

(A9)

(Al0a)

(A10b)

(A100)

(A10d)

(A10¢)

(A10f)

To evaluatey,,,, the canonical momentum conjugateqig, ,

(A11)

(A12)

(A13)

When the results from Eq$A12) and (A13) are substi-
tuted to Eq.(A11), we have
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2M | 32 dS=r2sinAded . (A18)
1+ T 2Ixy( 2M
= — In these coordinates the boundary term takes the form
N R TY] 3)' (A149 S nates Hnaaty S
312 o f dt w3 1+ 2 " 2 3
1+ ﬂ P8 @ T r+2Mm
B r 2Ixy[ 2M 3) (AL4D) b 1
P22 167 N \r+2M ) x f J [ (codd - sirP)2sirFo
6=0J¢p=0 N
P3s=0, (Al4c) +4 cod ¢ sirf ¢ sirP 0+ cos g sirt0]d Hd 6.
2M )\ 372 (A19)
1+ _> J oM
P1o=Po1= _ i —(x2—y?) _3)' As r approaches infinitiN goes to 1 and so the denomi-
16w Nr° r+2m nator can be approximated as 1. Integration gives then
(A14d)
i o L[, 2M\ Y 2Mm 3 Bwf o
1+ M > 8 r r+2M 3 @
r Jyz[ 2M 3) (AL40 (A20)
P13=Pa1= NPTV E €
16m Nreir+2M and so the boundary term at infinity, where>«, is
2M 3/2
Pas=Pa2™ =gy Ns\rt2M
(A14f) APPENDIX B: A NOVIKOV-TYPE SLICING OF

. KERR-NEWMAN SPACETIME
The boundary tern83’ can be expressed by using the com-

ponents calculated above and the components of the unit In this appendix we construct in detail a slicing of Kerr-
normal on the surface: Newman spacetime in which the time coordinate of a freely
falling observer through the bifurcation surface and the flat

Minkowski time of a faraway observer at rest at the right-
f;?'=—2f dt @ fﬁ [XGPA(Poan® + p2on?+ pogn®)dS hand side asymptotic infinity are identified. In a certain
1 1 ) 3 sense, one may view these observers and their time coordi-
—YG(pun”+ P+ pian”)]dS nates as physically equivalent. In Ref$4] and[19] similar
1 oM\ 2/ 2M identifications are performed and they are based on the No-
= %J dt wJ fﬁ 1+ T) TV —3) vikov coordinate systertsee, for instance, Reff35]), where

the time coordinate of a given point is given by the proper
1 time 7 of a freely falling observer in the Schwarzchild or the
X ——[(x®=y?)(xnt—yn?)+ 2xy(yn'—xn?) Reissner-Nordstra spacetime through that point, and the
Nre radial coordinateR* in the Novikov coordinate system is
related to the point where the freely falling observer has
begun his journey.
This integral is easy to evaluate in spherical coordinates. Since theR-co_ordln_ate in the classical Ha_m|lton|a4h.2])
We first consider a two-dimensional spherical surface withcan be geometrically _mterpreted as t_he radius of a wormhole
radiusr. The relations between the spherical coordinajes throat at the equatorial plang= /2 in the Kerr-Newman

: : black hole, we begin the construction of the slicing with
an ¢ and the Cartesian coordinatesy andz are desired properties by considering the Kerr-Newman line el-

X=rCcos¢sing, y=rsindsing, z=r cosé. ement (3.1) written in Boyer-Lindquist coordinates at the
(Al6)  equatorial plane:

+z(x2+y?)n%]ds. (A15)

The components of the unit normaft(a=1,2,3) on the sur- A-a®  2a(r’+a’-A)
face are ds’=— = dt?— = dtde
l_ o . 2_ _ . .
n*=n,=cos¢sing, n°=ny,=singsing, (r2+a?)2— Aa? , r2 ,
+—2d¢ + —dr~, (B1)
n®=n,=cosé (A17) r A

and the area element is where
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A=r2+a2—2Mr + Q2. (B2) Hin=PiT + Pt +pgd—Lin (B9)
When the Boyer-Lindquist coordinate$ (x«=0,1,2,3) sat-

isfy the constraint
V=0, XX =1, (B3)

whereg,,, gives the components of the metric tensor of the ) ] o
Kerr-Newman spacetime, the Lagrangian of a particle in thd nerefore, when the constrai®3) is satisfied, we get
Kerr-Newman spacetime is, in general,

of a particle in Kerr-Newman spacetime can be shown to
coincide with the Lagrangiahyy :

HKN:LKN . (BlO)

1
1 .. HKNZE- (B1Y
Lun=— ngx“x”. (B4)
. . On the other hand, when we use the parameters intro-
At the equatorial plane Eq¢B1) and (B4) give for the La-  y,ced in Eqs(B8), we get from Eq(B9)
grangian an expression '

2 R*

1A-a2_ a(r?+a?-A).. T s
_t 12 : 2Hyn=1= — 124+ ———1t+14¢, B12)
LKN_Z r2 t°+ r2 L¢ KN A \/W (;b (
1(r’+a®)?-Aa®. , 112, and from Eqgs(B6b) and(B6c) we obtaing andt in terms of
22 237 B9 jandre:
where the dot denotes proper time derivative. The canonical . 1r*+2r’a®-a*(A-a®) R*
momenta conjugate th r and ¢ are A 2 JIiR2
ey A—aZ a(r’+a?-A). 2, .2
_ _ a(re+a“—A
== tt—————a,  (B6a ( ° )|), ©138
aL r2.
P, = ;N=—Kr, (B6b) 5 1/a(r?+a?-A) R* A—a2|
r — _
A r2 1+ R*2 r2
Iy (r’+a??-Aa. (B13b)
p = - = —
. g r? Now, we choosel=0, and because of this particular
choice we get from EqB12):
a(r’+a2—A).
—_—t. (B60)
: 2H =1 ST
KNT L= = 3Tt ———5 -
It is easy to see that A V1+R*2 A
= v _g (B7a) r+2r’a®~a*(A-a% R*
4 2 VR
AL kN (B14)
Ps=— =0 (B7b) _
¢ As we setr =0, Eq.(B14) yields us a quartic equation for
Therefore the momentg; andp, are constants of motion. o
Let us denote these constants as Ar2— [r*+2r%a?—a2(A-a2)].  (B15)
1+R*?
R*
Pe= ' (B8a) . . )
J1+R*2 From this equation one can calculate theoordinater ,,,, Of
the point from which an observer in a free fall begins his
= journey, in terms oR* which will henceforth be used as a
Py=il, (B8b) ] y

radial coordinate of the Kerr-Newman spacetime. Equation
where we have introduced new real valued parame®&rs (B14) implies an implicit expression(7,R*) for the “old”
andl. radial coordinate in terms of the “new” time coordinater
The Hamiltonian and the “new” radial coordinatéR*:
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7=+ J1+R*? rﬁ]ax—l—az 5
R¥2~—| 1+ ————[+0(rpa).  (B17)
fr(r,R*) r'? dr’ Q7= 2Mr nax
r
rmm&R*)\/R*Z(r72+a2)(2Mrr_QZ)_rrZA

HenceR* goes to infinity ag a4 goes to infinity and vice
versa. Moreover, the time coordinateof an observer at the

to the past and the future of the line where the time coordifreely falling observer at the wormhole throat.
natet=0 in the conformal diagram. To obtain an explicit Another matter to investigate still is that do the observers
expressior (7,R*) for r one should first solve the quartic "otate or not with respect to _the Boyer-Llnd_qwst c_oordl-
equation (B15), and then perform the integration in Eq. nates? We wrote our Hamiltonian from the point of view of
(B16). Solving Eq.(B15), however, would yield a tremen- an .asy.mptot.ic non—r_otating ob_server, and we as_sumed a fo-
dously complicated expression fof,,, and we shall not liation in which the time coordinate at the throat is a proper
write it down here. However, it is easy to see that there ardime of a non-rotating observer in a free fall. To show that in
always at least two positive roots=r ,,=rm(R*). This  Our foliation both of the observers are non-rotating we must
can be seen by plotting the both sides of EB15) and shoyv that $—0 asr—r, and r—oo. The latter case is
varying R*. Moreover, one finds that if one puts=r,,,,  Straightforward, since in the expression
=r, then Eq.(B15) implies R* =0, and vice versa: if one
setsR* =0, then Eq.(B15) is solved byr=r_ . Hence, we
have found that for everR*=0 there is an observer in a d’:i a
free fall such that this observer is at rest at the timer A
=0 with respect to the “old” radial coordinate. When
R*=0 our observer begins his journey at the bifurcation . _
surface and his world line is a straight vertical line in thegiven by Eq.(B13b when|=0, the factorR*/\1+R*?
conformal diagram. approaches to one and the factor in front of it approaches to
Can we extend this coordinate transformation to the rightZero. The first case where-r, is a bit tricky, since we do
hand side asymptotic infinity? Yes we can, since we mayot know the explicit relation of and R* at the bifurcation
choose the coordinat®* such that the solution=r,,,  Point. We have solved the tricky part by expanding Eg.
>r, is the largest of the roots of EqB15). When this (B15) in terms ofr near the bifurcation point. If we take only
choice is made, one can show starting from EB{L5), that, the zeroth and the first order terms, we find that the point

(B16)

(r’+a’-A) R*

2 LR?

(B18)

for larger max, =T nax Wherer =0 is related toR* by an expression
R*Z * 2 * 2 R*Z
5 _ _ 4 2.3 2.2 _ 2~2
r>| 2 T R? 2Mr++ar+1+R*2+4Mar+1+R*2 3aqr+l+R*2
Fmax™ *2 R* 2 * 2 ! (B19)
2rt | 1- —2Mr3 +2Ma?r —2a%q?
1T 14+Re2 " T 14+R*2 Tl R

which gives thar,,,=r. asR*—0, as it should. Now, when E@B19) is substituted into Eq(B18) andR* —0, one gets
the result

$—0. (B20)

In other words, we have managed to construct a foliation of Kerr-Newman spacetime with desired properties at the equatorial
plane: At the asymptotic infinity the time coordinate is the proper time of a freely falling, non-rotating observer at rest, and at
the wormhole throat that of a similar non-rotating observer in a radial free fall through the bifurcation surface.

It is even possible to show that our construction gives the Novikov coordinate system in the Schwarzschild spacetime when
one setgy=a=0 in Eq.(B15). This result is given by EqgB15) and(B16). We get an analogous coordinate system for the
Reissner-Nordstm spacetime when onlg=0. It can be shown that then the relation betwegp, andR* is

F=rma=(M+VM?2—g?(1+R*?) 1) (1+R*?). (B21)
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