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Cyclotron damping and Faraday rotation of gravitational waves
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We study the propagation of gravitational waves in a collisionless plasma with an external magnetic field
parallel to the direction of propagation. Because of resonant interaction with the plasma particles the gravita-
tional wave experiences cyclotron damping or growth, the latter case being possible if the distribution function
for any of the particle species deviates from thermodynamical equilibrium. Furthermore, we examine how the
damping and dispersion depends on temperature and on the ratio between the cyclotron and gravitational wave
frequency. The presence of the magnetic field leads to different dispersion relations for different polarizations,
which in turn imply Faraday rotation of gravitational waves.
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I. INTRODUCTION

The propagation of weak gravitational waves in the pr
ence of matter and electromagnetic fields has been con
ered by several authors, e.g., Refs.@1–12#. The back reaction
on the gravitational waves, resulting in damping and/or d
persion, has been studied by Refs.@1–8#, but the gravita-
tional effects of matter~most frequently assumed to be
fluid or neutral gas! and the effects of electromagnetic field
have mainly been treated separately. The interaction
gravitational waves with a plasma—which is the most co
mon state of matter relevant for gravitational wa
propagation—has been considered in an astrophysica
well as an cosmological context, see, e.g., Refs.@9–11# and
Ref. @12#, respectively, and references therein. In genera
turns out that matter which is in a plasma state—and t
exhibits electromagnetic properties—has possibilities
more efficient interaction with gravitational radiation,
compared to neutral matter.

In this paper we study the propagation of weak grav
tional waves in a collisionless plasma with an external st
and homogenous magnetic field, parallel to the direction
propagation. Naturally, the matter and fields produce a ba
ground curvature, but nevertheless it is meaningful to tr
the background as Minkowski space, provided the wa
length is much shorter than the background curvature~see
the Appendix for a detailed discussion!. It turns out that there
is a new effect on the gravitational waves that appears du
the presence of the external magnetic field—a gravitatio
analogue ofcyclotron dampingof electromagnetic wave
~see Ref.@13#!. In the electromagnetic case, the waves m
interact resonantly with the gyrating motion of the particle
and the resonance occurs for particles that experience a w
whose Doppler shifted frequency equals the gyrofrequen
In the gravitational analogue, the resonance occurs when
~Doppler shifted! wave frequency is twice the gyrofre
quency. A mechanism for gravitational wave damping sim
lar to cyclotron damping has been considered previou
namely, Landau damping@1#. However, cyclotron damping
is a potentially more important mechanism, since, for t
0556-2821/2001/64~2!/024013~12!/$20.00 64 0240
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case, efficient wave-particle interaction may take place w
out the presence of ultrarelativistic particles. The possibi
for cyclotron damping of gravitational waves has been c
sidered in Ref.@8# and recently in Ref.@14#. However, the
calculation of the damping coefficient in Ref.@14# does not
rest on a self-consistent kinetic theory, and it turns out t
our value of the damping based on the Vlasov equation
smaller than theirs by several orders of magnitude. On
other hand, if we take the limit of a nonrelativistic Maxwel
ian distribution function, our results essentially~see Ref.
@15#! reduces to those of Ref.@8#.

In the case where the unperturbed distribution function
the particles is not in thermodynamical equilibrium, gravit
tional wave instabilities rather than damping may occur. W
give a condition on the distribution function for instabilitie
to develop and demonstrate that it may be fulfilled, for
stance, by plasmas with a temperature anisotropy. Natur
the gravitational wave dispersion is also modified by t
presence of the magnetic field. The dependence of the da
ing and dispersion on the temperature and on the cyclo
and gravitational wave frequencies is investigated. Furth
more, we confirm that the natural wave modes are circula
polarized waves also in the relativistic regime and that—a
consequence of the different dispersion relations for th
modes ~in an electron-ion type of plasma!—gravitational
waves experience a phenomena analogous to Faraday
tion of electromagnetic waves in such a medium.

The paper is organized as follows. In Sec. II we pres
the equations governing our system, using a tetrad desc
tion in order to make the interpretation of our results mo
straightforward. Section III reviews the problem of sing
particle motion in the presence of a gravitational wa
propagating parallel to an external magnetic field. In parti
lar, it is shown that resonant particles experience continu
acceleration with velocities approaching the speed of ligh
vacuum. In Sec. IV the interaction between the gravitatio
waves and the plasma is studied self-consistently in the
earized approximation using the Einstein-Maxwell-Vlas
system of equations. The damping and dispersion of
gravitational wave is studied in some detail for an electro
©2001 The American Physical Society13-1
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ion plasma as well as for an electron-positron plasma in th
modynamical equilibrium. The case of a plasma which is
in thermodynamical equilibrium is studied in Sec. V. Final
in Sec. VI, we summarize our results and discuss their
plications. There is also an appendix where the problem
separating effects into background curvature effects~‘‘indi-
rect’’ matter effect! and ‘‘direct’’ matter effects is discussed
The results in this paper, obtained using a tetrad frame
malism, are compared with those of a coordinate frame
malism.

II. BASIC EQUATIONS

We consider the interaction between weak gravitatio
waves and a collisionless plasma in an external magn
field. Since we consider nonempty space the backgro
space-time is necessarily curved. However, if the wavelen
of the gravitational waves and the interaction region is sm
relative to the background curvature we may take the ba
ground to be flat and static, and the energy-momentum
sor to be the one corresponding to the perturbations of
electromagnetic and material fields~see the Appendix!.

For simplicity, the direction of propagation is assum
parallel to the magnetic field which we take to be static a
homogeneous. Linearized, the Einstein field equati
~EFEs! take the form

hhab522kFdTab2
1

2
dThabG ~1!

provided the gauge conditionh ,b
ab50 is fulfilled, which is

equivalent to state that only tensorial perturbations
present. That the gauge condition is indeed satisfied wil
verified in Sec. III below. Hereh[@c22] t

22]z
2#, hab is the

small deviation from the Minkowski background metric, i.e
gab5hab1hab , k[8pG/c4, dTab is the part of the energy
momentum tensor containing small electromagnetic and
terial field perturbations associated with the gravitatio
waves anddT 5dTa

a . In the following it is understood tha
we neglect contributions of second order and higher inhab .
In our notationsa,b,c, . . . 50,1,2,3 andi , j ,k, . . . 51,2,3
and the metric has the signature (2111).

In vacuum, a linearized gravitational wave can be tra
formed into the transverse and traceless~TT! gauge. Then we
have the following line-element and corresponding orthon
mal frame basis:

ds252c2dt21@11h1~j!#dx21@12h1~j!#dy2

12h3~j!dx dy1dz2, ~2!

e0[c21] t , e1[S 12
1

2
h1D ]x2

1

2
h3]y ,

e2[S 11
1

2
h1D ]y2

1

2
h3]x , e3[]z ,

wherej[z2ct andh1 ,h3!1. As it turns out, the gravita
tional waves take this form also in the particular case~propa-
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gation parallel to the magnetic field! we are considering. The
difference to the vacuum case will be thatj5z2vpht, where
vph is the phase velocity of the gravitational wave. From no
on we will refer to tetrad components rather than coordin
components.

We follow the approach presented in Ref.@9# for handling
gravitational effects on the electromagnetic and mate
fields. Suppose an observer moves with 4-velocityua. This
observer will measure the electric and magnetic fieldsEa
[Fabu

b andBa[ 1
2 eabcF

bc , respectively, whereFab is the
electromagnetic field tensor andeabc is the volume elemen
on hypersurfaces orthogonal toua. It is convenient to intro-
duce a 3-vector notationE[(Ei)5(E1,E2,E3) etc., and“
[ei . From now on we will assume thatu05c is the only
nonzero component ofua. Generally, the Maxwell equation
contain terms coupling the electromagnetic field to the gra
tational radiation field. If the gravitational waves propaga
parallel to a magnetic field there are no gravitationally
duced effects onE andB. This can be deduced as follows
Given the Ricci rotation coefficients for gravitational wav
in the TT gauge, the ‘‘gravitational source terms’’ in th
Maxwell equations in Ref.@9# vanishes for the given orien
tation of the magnetic field.

The equation of motion for a particle of massm and
chargeq in an electromagnetic and gravitational wave field

d

dt
p5q@E1~gm!21p3B#2G, ~3!

where g5A11pip
i /(mc)2 and the four-momenta ispa

5gmdxa/dt. The gravitational-force-like term Gi

[Gab
i papb/gm, where Gab

i are the Ricci rotation coeffi-
cients, becomes

G15
1

2
~vph2pz /gm!@ ḣ1p11ḣ3p2#, ~4!

G25
1

2
~vph2pz /gm!@2ḣ1p21ḣ3p1#, ~5!

G35
1

2
~gm!21@ ḣ1~p1

22p2
2!12ḣ3p1p2# ~6!

for weak gravitational waves propagating in thez direction in
Minkowski space, where the overdot represents deriva
with respect toj.

In order to account for resonant wave-particle interactio
we apply kinetic plasma theory, representing each part
species by a distribution functionf governed by the Vlasov
equation. In tetrad form the Vlasov equation reads@16#

Lf 50,

where the Liouville operator is

L[] t1~c/p0!piei1@FEM
i 2Gab

i papbc/p0#]pi
3-2
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CYCLOTRON DAMPING AND FARADAY ROTATION OF . . . PHYSICAL REVIEW D 64 024013
and the electromagnetic force responsible for geodesic de
tion is FEM

i [q(Ei1e i jkpjBk /gm). In vector notation the
Vlasov equation reads

] t f 1
p•“ f

gm
1FqS E1

p3B

gm D2GG•“pf 50, ~7!

where “p[(]p1
,]p2

,]p3
). In the absence of gravitationa

waves, the Vlasov equation has the following spatially h
mogeneous~thermodynamical! equilibrium solution, the
Synge-Ju¨ttner distribution@17#

f SJ5
n0m

4p~mc!3K2~m!
e2mg, ~8!

where n0 is the spatial particle number density,m
[mc2/kBT, kB is the Boltzmann constant,T the tempera-
ture, andK2(m) is a modified Bessel function of secon
kind. Generally, the unperturbed static solutions to Eq.~7!
consistent with a homogeneous and static magnetic field,
in the z direction, but not necessarily in thermodynamic
equilibrium are distribution functionsf 5 f (p' ,p3), where
p'5Ap1

21p2
2.

Since there are no induced electromagnetic fields, the
turbed energy-momentum tensor can be written

dTab5(
PS

E papb

mg
f Gd3p ~9!

where f G is the gravitational perturbation of the distributio
function and the summation is over particle species~PS!.
The self-consistent set of equations governing the interac
between the gravitational waves and the plasma are thus
two coupled equations~1! and ~7!. Obviously, as we have
adapted a tetrad formalism, we mean the tetrad equivale
of Eq. ~1! @18#.

III. CYCLOTRON RESONANCE ACCELERATION

As we will consider effects that are due to wave-parti
interaction, it might be in place to first review some resu
of single particle~test-particle! motion in the presence o
gravitational waves and an external magnetic field. Sin
particle motion in gravitational wave fields has been exa
ined by many authors, see, e.g., Ref.@1#, and references
therein. Particles moving in a monochromatic gravitatio
wave field experience periodic changes in its energy and
riodic deviation from its mean direction of propagation.
the particle motion is constrained, for instance by a magn
field, the change in energy and momentum may be cum
tive. We refer to this as resonant acceleration.

We focus here on charged particles in a homogenous
static magnetic field parallel to the direction of propagat
of gravitational waves. The single particle motion in th
situation have been investigated in some detail by Ref.@14#,
treating it as a Hamiltonian dynamical problem, and also
Ref. @19#. Most noticeable is that not only can resonant a
celeration occur, particles can even be ‘‘trapped’’ in suc
resonant state and experience essentially unlimited lin
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growth in kinetic energy~linear in coordinate time! and the
parallel velocity will approach the velocity of light. The so
lution we present here does not—in contrast to that of R
@14#—result in anexactdescription of the particle motion bu
does reveal the main effect~resonant acceleration of pa
ticles! and has the advantage of being straight forward
also provides an intuitively clear explanation of the mech
nism and the resemblance to electromagnetic cyclotron r
nance acceleration@20#. In the electromagnetic~vacuum!
case thisphase-locksituation also exists, i.e., unlimited reso
nant acceleration of ‘‘trapped’’ particles.

Since there are no gravitationally induced electromagn
fields ~linear in hab), Eq. ~3! becomes

d

dt
p5~vc /g!p3 ẑ2G[F, ~10!

wherevc[qB/m. The gravitational wave is assumed mon
chromatic and arbitrarily polarized:h15ĥ1exp@i(kz2vt)#
1c.c. andh35ĥ3exp@i(kz2vt)#1c.c., where c.c. stands fo
complex conjugate. In this sectionv andk are assumed real

We assumevc /g@vhab so that the gravitational force in
Eq. ~10! is small compared to the electromagnetic one. Th
the particle orbits are close to the gyrating motion in t
absence of a gravitational field, and we therefore make
ansatz p15(1/A2)p̂(t)exp(2ivct/g)1c.c. and p25

6( i /A2)p̂(t)exp(2ivct/g)1c.c., where the amplitudep̂(t)
depends slowly on time@i.e., udp̂/dtu!u(vc /g) p̂u# due to the
gravitational influence and65sgn(q). Note that the cyclo-
tron period is not itself a constant, but is depending on
gamma factor that also is varying slowly. Consider now t
explicit form of the parallel driving force:

F352
i

2

k

gm
@ ĥ1p̂26 i ĥ3p̂2#ei(kz2vt22vct/g)1c.c.,

2
i

2

k

gm
@ ĥ1p̂* 27 i ĥ3p̂* 2#ei(kz2vt12vct/g)1c.c.,

~11!

where the asterisk denotes complex conjugate. A part
with trajectoryz(t) will typically experience an irregular os
cillatory force. Unless the particle is resonant~or almost
resonant! with the wave, the parallel motion will be random
and there will be no net effect—except for the possibility
~small! diffusive acceleration@14#. Particles may, however
be resonant, i.e., have a trajectory such that there will b
nonoscillatory force resulting in a lasting acceleratio
deceleration over several time periods of gyration. Alm
resonant particles will be acted on by a force varying in tim
on a time scale~depending on the magnitude of the mi
match! slower than the gravitational wave period. From E
~11! we see that there are two possibilities for a particle to
resonant and thus acted on by a constant force:
3-3
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k
dz̄

dt
2v2

2vc

g
50,

k
dz̄

dt
2v1

2vc

g
50

implying

v52
2vc

g2p3 /mvph
, ~12!

v5
2vc

g2p3 /mvph
, ~13!

respectively, wherevph5v/k. By z̄ we mean the time aver
aged trajectory and since we will only consider tim
averaged effects, we have putp35mgdz̄/dt here and
throughout the remainder of this section. Physically, the p
ticles are resonant when they see a wave whose Dop
shifted frequency is twice the gyrofrequencyvc /g. The fac-
tor 2—not present in the electromagnetic case—is due to
fact that the driving force is quadratic inp̂. Note that the two
resonance conditions can be satisfiedsimultaneouslyonly by
particles that are oppositely charged.

The question is now whether or not the resonant partic
remain resonant even though they are accelerated—a ch
in p3 andg may potentially lead to a violation of the reso
nance condition~12! or ~13!. Clearly the resonance is pre
served only if g2p3 /mvph is a constant of motion. The
gravitational force, Eqs.~4!–~6!, has the propertyG•p
5gmvphG3 @21#. Thus it holds that

d

dt S g2
p3

mvph
D5

F•p

gm2c2
2

F3

mvph
50 ~14!

if and only if vph56c, i.e., the resonance is preserved
vacuum but generally not in a medium. In many situatio
for gravitational waves, however, the vacuum relationvph
56c holds to a very good approximation.

In the remainder of this section we will confine ourselv
to the casevph5c, sgn(q)521 and to the resonance cond
tion ~13!. We define the constant of motiona[g2p3 /mc

and observe that p35mc(g2a) and u p̂u
5mcA2ga212a2. By considering the~time averaged!
time evolution ofg we find

dg

dt
5v@2a2g21~11a2!#@ uĥ1usinw1uĥ3ucosc#,

~15!

wherew[arg(ĥ1p̂* 2/gm) andc[arg(ĥ3p̂* 2/gm). Appar-
ently the kinetic energy is a monotonously increasing fu
tion for particles with suitable initial phase of the gyratin
motion, i.e., for

h[uĥ1ucosw1uĥ3usinc.0
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independently of the initial magnitude ofp̂ and p3. From
now on we limit ourselves to such particles. For large tim
when g@1, Eq. ~15! implies g}2ahvt. Using the expres-
sions forp̂ andp3 in terms ofg anda we note that coordi-
nate momentap̂/g→0 ast→` whereasp3 /g scales as

p3 /g→mc2
mc

2hvt
. ~16!

This implies the possibility of unlimited acceleration
which p3 /gm approachesc on a time scalet;(hv)21.
Note, however, that the assumptionvc /g@vhab formally
restricts the predicting power of these results. However
demonstrated by Ref.@14# the linear growth ofg ~due to
parallel acceleration! remain even beyondvc /g@vhab .

The sections to follow will concentrate on linearize
gravitational wave propagation, in which case the partic
will be assumed to deviate only slightly from the unpe
turbed orbits. It should be noted, however, that cyclotr
acceleration may have interesting applications in the vicin
of a binary pulsars close to merging. Practically speaking
effective distance of acceleration close to the source will
limited by effects due to a three-dimensional~3D! geometry.
On the other hand, particles close to pulsars are likely
have a relativistic background temperature, in which case
resonant ones may be accelerated to ultrahigh energies.

IV. CYCLOTRON DAMPING

As seen in the preceding section, charged particles
homogenous static magnetic field can be accelerated and
celerated by gravitational waves. Thus it should not be s
prising that the gravitational wave will be damped—or
unstable and experience growth—as it propagates throu
collisionless plasma. The damping~or growth! rate will de-
pend on how the particles are distributed in moment
space. In order to incorporate the damping effect due to
resonant wave-particle interaction mechanism, we use a
netic description of the plasma, i.e., each plasma compo
is represented by a distribution functionf (xa,pi). The gravi-
tational wavesh15ĥ1exp@i(kz2vt)# and h35ĥ3exp@i(kz
2vt)# are superimposed on the Minkowski background m
ric ~see the Appendix!, and are assumed to be associa
with a small perturbationf G5 f̂ Gexp@i(kz2vt)#, of the distri-
bution function, i.e.,f 5 f 01 f G , where f 0 is a stationary
solution to the Vlasov equation~7! in the absence of gravi
tational waves. This means that the background distribu
function f 0 is a function of p' and p3, where p'

5Ap1
21p2

2.

A. Linearized Vlasov equation

We begin by calculating the perturbed distribution fun
tion that results from a gravitational wave propagating p
allel to an external magnetic field. Linearizing the Vlas
Eq. ~7! in h1 , h3 , and f G gives
3-4
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i Fk
p3

gm
2vG f G1

q

gm
p3B•“pf G5G•“pf 0 . ~17!

It is convenient to change to cylindrical coordinates in m
mentum space, i.e., we definep1[p'cosf, p2[p'sinf and
p3[pi , so that (q/gm)p3B•“p52g21vc]f and Eq.~17!
thus becomes

F i S kpi

gm
2v D2

vc

g
]fG f G5 iv@h1cos 2f1h3sin 2f#F0 ,

~18!

where

F0[
p'

2vph
F S vph2

pi

gmD ]p'
f 01

p'

gm
]pi

f 0G . ~19!

Equation~18! has the solution

f G5
1

2

gvF 0ei2f

kpi /m2gv22vc
~h12 ih3!

1
1

2

gvF 0e2 i2f

kpi /m2gv12vc
~h11 ih3!. ~20!

The occurrence of singularities in Eq.~20! indicate that there
is a resonant interaction. In the casevc50 there are no
singularities, because without magnetic fieldv>ck in our
approximation, and therefore Landau damping of grav
tional waves do not occur. For any finite value ofvc , how-
ever, the expression forf G has singularities and we therefo
expect cyclotron damping to occur.

B. Dispersion relation

We now solve the tetrad equivalence@18# of EFE ~1!.
Using Eqs.~9! and ~20! it is straightforward to confirm tha
the TT gauge is a consistent choice in our case. The
diagonal elements both read

@v22c2k2#h1

52c2k(
PS

E
2`

` E
0

2pE
0

` p'
3

gm
cos2f f Gdp'dfdpi

5
1

2
~h12 ih3!I 21

1

2
~h11 ih3!I 1 ~21!

and the two off diagonal elements give

@v22c2k2#h3

52c2k(
PS

E
2`

` E
0

2pE
0

` p'
3

gm
cosf sinf f Gdp'dfdpi

5
i

2
~h12 ih3!I 22

i

2
~h11 ih3!I 1 , ~22!

where we have made use of Eq.~20! and
02401
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PS

CE
2`

` E
0

`

p'
3 F0

kpi /m2gv72vc
dp'dpi ~23!

together withC[pvkc2/m. The two equations~21! and
~22! combine to

@v22c2k22A12 iB1#~h11 ih3!50, ~24!

@v22c2k22A22 iB2#~h12 ih3!50, ~25!

FIG. 1. The real~solid line! and imaginary~dotted line! part of
I6[I 6mtep

2 for an electron-positron plasma at four different tem
peratures:~a! m5100, ~b! m510, ~c! m51, and~d! m50.1.
3-5
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where

A6[ReI 6 and B6[Im I 6 .

The natural gravitational wave modes for EFE with the giv
source are thus the circularly polarized modesh11 ih3 and
h12 ih3 . Equations~24! and ~25! contain the information
about the dispersion and the damping or growth~due toB6

Þ0!. Due to the smallness of the gravitational coupling co
stant,A6 and B6 can typically be considered small in th
sense that the dispersion relations Eqs.~24! and ~25! read

v'ck1A6/2v1 iB6/2v. ~26!

Throughout the remainder of this paper we will have t
approximation in mind and we will occasionally make use
v'ck to simplify the expressions forI 6 .

The fact thatA1ÞA2 , unless the plasma components a
of equal particle masses and as longvcÞ0, implies that the
two gravitational wave modes have slightly different pha
velocities. Thus, an incident linearly polarized wave—be
a superposition of the two circularly polarized states—w
experience a polarization shift, i.e., the direction of line
polarization will be rotated as it propagates through the m
dium. In the case of electromagnetic waves this is known
Faraday rotation. In principle this could be an important
sult as the polarization of a gravitational wave carries va
able information about the emitting source@22#, e.g., the
inclination of the spin axis of a quadrupole moment sour

The pole contribution in the integral in Eq.~23! is dealt
with in the standard fashion, i.e., by letting the contour
integration pass below the pole. It should be noted that
approach disregards what happens with the distribution fu
tion close to the singularity, and it also misses some ot
aspects of the damping process, see, e.g., Ref.@23#, but it is
the simplest way to find the main effect due to the pole, a
for our purposes it suffices.

C. Equilibrium plasma

For a plasma in a state of thermodynamical equilibriu
the unperturbed relativistic expression for the distribut
function is the Synge-Ju¨ttner distributionf 05 f SJ, defined in
Eq. ~8!, and for this choiceF0 reduces to

F052
mp'

2

2g~mc!2
f SJ. ~27!

As no instabilities can develop the gravitational waves w
exhibit damping. In this section we examine how the dam
ing and dispersion depends on the ratiovc /v and on the
temperature of the plasma. First we examine the nonrela
istic regime for which analytic results can be obtained. In
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relativistic regime we then present results for an electr
positron plasma and an electron-ion plasma obtained by
merical integration of Eq.~23!. For this purpose it is practi-
cal to introduce normalized momentap'[p' /mc, pi
[pi /mc, and a dimensionless frequency ratioV5vc /v.

1. Nonrelativistic temperature

In the regime of nonrelativistic particle velocities Eq.~23!
together with Eq.~27! becomes

I 652(
PS

32p

t2 S m

2p D 3/2

m22E
2`

` e2mpi
2/2

pi2172V
dpi ~28!

after performing thep' integration, where we have intro
ducedt[1/Apmn0G, which is the characteristic time fo
gravitational contraction of a gas with densityn0 and particle
massm. In the case of a cosmological plasmat coincides,
apart from a factorA3/8, with the Hubble time. From Eq
~28! we obtain to lowest order in the temperature

A65(
PS

16

t2m

1

162V
, ~29!

B652(
PS

8A2p

t2Am
e2m(172V)2/2. ~30!

Note that for Eq.~29! to apply we must assumem21(1
62V)21!1, i.e., for the wave frequency close enough
twice the gyrofrequency, higher order thermal effects is
ways important for the wave dispersion, whereas Eq.~30!—
which follows from the residue theorem—holds for all va
ues ofV. Still, it is clear that the dispersion can be enhanc
by the magnetic field due to the existence of the resona
The exponential decrease of the damping with 172V im-
plies that significant damping only occurs in a limited regi
in frequency space close to 172V50 for a low temperature
plasma. In the limit of zero temperature the size of this
gion tends to zero. The magnitude of bothA6 and B6 are
monotonically increasing with temperature and vanishes
zero temperature. The results in this subsection essent
agree with Ref.@8#, see Ref.@15#. In the case of no magneti
field, V50, the dispersion relations~24! and ~25! both re-
duce tov22c2k22A50, whereA[(PS16/t2m. This ex-
pression is in agreement@24# with Refs.@1–5#.

2. Electron-positron plasma

Denote tep[1/Apmen0G (e and p stands for electron
and positron, respectively!. In this case only the sign of the
charge differs for the two particle species and we may w
Eq. ~23!, applying Eq.~27!, as
I 6~Ṽ !52tep
22(

PS

m2

K2~m!
E

2`

` E
0

` p'
5

A11p'
2 1pi

2

e2mA11p'
2

1pi
2

pi2A11p'
2 1pi

272 sgn~q!Ṽ
dp'dpi , ~31!
3-6
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where Ṽ5ṽc /v and ṽc5uquB/m. Note that I 6(Ṽ)
5I 7(Ṽ)5I 6(2Ṽ). The normalized function I6(Ṽ)
[I 6mtep

2 is numerically calculated for four different tem
peratures, namely,m5100~‘‘nonrelativistic’’ ! 10, 1, and 0.1
~‘‘ultrarelativistic’’ !. The results are displayed in Fig. 1~note
that I6 is normalized against the temperature!. In the non-
relativistic case@see Fig. 1~a!# we have a finite region
21/2&Ṽ&1/2 , where ReI 6 is positive. ReI 6 changes sign
at Ṽ'61/2 and approaches zero as 1/(7Ṽ) in the limit
Ṽ→6`. Im I 6 is negative definite~and thus there is indee
dampingof the gravitational wave for any finiteṼ) and has
a Gaussian shape around the resonancesṼ'61/2.

This is also the characteristic behavior for ReI 6 and
Im I 6 at higher temperatures. The relativistic effects on
dispersion and the damping are the following:~i! The reso-
nance peaks of ImI 6 ~which occur atṼ561/2 at zero tem-
perature! are shifted to higher values ofuṼu for higher tem-
peratures. Also ReI 6 experiences a similar shift. In th
ultrarelativistic case@see Fig. 1~d!#, ReI 6 changes sign a
Ṽ'625 and ImI 6 is centered aboutṼ'620. ~ii ! The
on
t

fre

02401
e

magnitude of both ReI 6 and ImI 6 increasesroughly lin-
early with temperature@note that the curves are normalize
against (mtep

2 )21 in Fig. 1#, which can be compared with th
temperature dependence in the nonrelativistic regime tha
given by Eqs.~29! and ~30!. ~iii ! The region of damping
broadens. In the cold limit ImI 6 takes the form of two sepa
rated Gaussian functions, the width tending to zero with
minishing temperature. These regions are widened and
gaussian shape is deformed with increasing temperature
the ultrarelativistic case ImI 6 decays exponentially asṼ
→6` but approaches zero more abruptly asṼ→0.

3. Electron-ion plasma

Denotet5tei[1/Apmin0G (e and i stand for electron
and ion, respectively!. For an electron-ion plasma there is a
asymmetry between the particle species due to the s
mass ratio«[me /mi , giving different order of magnitudes
for the two cyclotron frequenciesvce and vci . Thus the
resonances will occur for very different gravitational wa
frequencies. Given Eq.~27!, we have the following form of
Eq. ~23!:
ered
cy
I 652tei
22

«me
2

K2~me!
E

2`

` E
0

` p'
5

A11p'
2 1pi

2

e2meA11p'
2

1pi
2

pi2A11p'
2 1pi

262Ṽe

dp'dpi

2tei
22

m i
2

K2~m i !
E

2`

` E
0

` p'
5

A11p'
2 1pi

2

e2m iA11p'
2

1pi
2

pi2A11p'
2 1pi

272Ṽ i

dp'dpi , ~32!

where

me/ i5
me/ ic

2

kBTe/ i
and Ṽe/ i[

ṽce/ i

v
5

uquB
me/ iv

.

Provided thatTe5Ti , m i andme differs typically by three orders in magnitude. This implies that the ions can be consid
nonrelativistic even in the regime of ultrarelativistic electrons (me;0.1). It is convenient to consider the two frequen
domainsṼe;1 andṼ i;1 separately. Noting thatṼ i5«Ṽe andm i5«21me , in the regionṼe;1 we have

I 6~Ṽe!'2tep
22

me
2

K2~me!
E

2`

` E
0

` p'
5

A11p'
2 1pi

2

e2meA11p'
2

1pi
2

pi2A11p'
2 1pi

262Ṽe

dp'dpi1
16

tep
2 me

1

162«Ṽe

. ~33!
li-

all

-
n-
d of
es
The normalized functionI1(Ṽe)[I 1mtep
2 is displayed in

Fig. 2 for me5100 ~‘‘nonrelativistic’’ ! 10, 1, and 0.1~‘‘ul-
trarelativistic’’!. By symmetry,I 2(Ṽe) is the mirror image
of I 1(Ṽe), i.e., I 2(Ṽe)5I 1(2Ṽe) and therefore this curve
is not presented. Except for the lack of symmetry aboutṼe
50 the result is similar to that of the electron-positr
plasma. In the given temperature and frequency domains
ion contribution to the normalized functionI 6(Ṽe) is just
the approximately constant value 16.

The effect of resonant ions becomes important in the
quency domain Ṽ i;1. In Fig. 3 we show I1(Ṽ i)
he

-

[I 1mtep
2 for me50.1. The corresponding figures are qua

tatively similar in the entire temperature domain 0.12100,
however, and therefore only one of them is shown. The sm
region nearṼ i50 (Ṽ i;« to be specific! that contains the
electron contribution has been left out.

4. The group velocity

The fact thatA6 is at some points negative implies, to
gether with Eq.~26!, that for some wavelengths and freque
cies the group velocity of the waves exceeds the spee
light. Superluminal group velocities for gravitational wav
3-7
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have been found before, see Ref.@25#, and references
therein. In most cases, but not in all, it has been an effec
the background curvature. It should be noted that sev
results from the literature are in contradiction with ea
other. Naturally, in our case the superluminal group veloc
is a direct effect of the medium. For the case of an electr
positron plasma the group velocity corresponding to Eq.~26!
is

FIG. 2. The real~solid line! and imaginary~dotted line! part of
I1[I 1mtep

2 for an electron-ion plasma at four different temper
tures:~a! m5100, ~b! m510, ~c! m51, and~d! m50.1.
02401
of
al

y
-

vg[
dv

dk
5cF12

1

2v2 S A61
ṽc

v
A68 D G , ~34!

where the prime denotes derivative with respect toṽc /v.
For vc50, i.e., in the case of no magnetic field, the mediu
is just a collisionless gas of charged particles and the gr
velocity is smaller than the velocity of light, in agreeme
with the results of previous authors, e.g., Ref.@1#. From Fig.
1 it is clear that there are regions wherevg.c is realized, for
instance about the pointṽc /v'0.6 ~whereA6 has a local
minima! in Fig. 1~a!. Similarly, also an electron-ion plasm
allows superluminal group velocities. Group velocities th
exceeds the speed of light is not necessarily at odds w
causality—an issue explored, for instance, in Ref.@25#. The
group velocity can simply not be interpreted as the~gravita-
tional wave! signal velocity in this situation.

V. NONEQUILIBRIUM PLASMA

In the case of thermodynamical nonequilibrium, the s
tem has free energy that may feed a gravitational wave
stability. This occurs whenever the imaginary part ofI 6 ,
defined by Eq.~23!, is somewhere positive. Applying th
residue theorem, Eq.~23! gives

B65p(
PS

CE
0

`

p'
3 F F0

D rk/mG
pi5pr

dp' , ~35!

where pr[mc(g r62vc /v) is the resonant parallel mo
menta,

g r[
2vc

v22c2k2 H v2ckF12
~v22c2k2!

4vc
2 S 11

p'
2

m2c2D G 1/2J
is the gamma factor evaluated at the resonant momenta

D r[12
v

ck

pr

g rmc
.

FIG. 3. The real~solid line! and imaginary~dotted line! part of
I1[I 1mtep

2 for an electron-ion plasma forme50.1. The small

region nearṼ i50 containing the electron contribution has been l
out.
3-8
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Instabilities occur for distribution functions and frequenc
such that the conditionB6.0 is satisfied. For simplicity we
focus on nonrelativistic temperatures from now on, in wh
case Eq.~35! reduces to

B65(
PS

4p2

n0~mc!2t2E0

`

p'
3 @4pcf 01p'

2 ]pi
f 0#pi5pr

dp' ,

~36!

wherepc[62mcvc /v. In order to show that there indee
exist instabilities we consider the following example of
temperature-anisotropic ‘‘drifting Maxwellian’’ distribution
function:

f drift5
n0

p3/2pthipth'
2

e2[( pi2pd)2/pthi
2

1p'
2 /pth'

2 ] , ~37!

wherepthi[A2mkBTi, pth'[A2mkBT', andpd is the drift
momenta, for whichB6 becomes

B65(
PS

8Ap

t2

pth'
2

mcpthi
F pd

mc
212aQGe2m2c2Q2/pthi

2
,

~38!

wherea[T' /Ti21 andQ[162vc /v2pd /mc. It is eas-
ily seen thatB6.0 for certain values ofa andvc /v. Note
that if a50 thenB6,0 for all values ofvc /v and hence
there can be no temperature-isotropic beam instability@26#.
On the other hand, puttingpd50, it is clear that a
temperature-anisotropic distribution function without a dr
can be the source of an instability.

The gravitational waves produced by a homogene
plasma, due to the above cyclotron resonance instability
have a frequency of the order of the cyclotron frequency
least in the nonrelativistic temperature limit considered he
In principle this opens up the possibility of emission of hi
frequency gravitational waves through large magnetic fie
~of the order of 1026 T or larger!, i.e., frequencies wel
above the frequency range expected from ‘‘convention
gravitational wave sources, such as compact binar
neutron-star normal modes and gravitationally collapsing
jects, reaching up to 10 kHz. Still the radiation conside
here is generated by a collective process where the amou
matter interactingcoherentlycan be as large as in other a
trophysical examples.

It is not so easy to find astrophysical applications of
cyclotron resonance instability, however: First there must
a magnetized plasma cloud, with a nonequilibrium distrib
tion function that fulfills the conditionB6.0. Such a cloud
could in principle be generated, for example, if there is
magnetic field geometry that allows for a loss-cone distri
tion to evolve. However, there is an obvious risk that th
will be purely electromagnetic instabilities, which typical
have much higher growth rates than the gravitational o
that will dominate the picture. Secondly, for significa
gravitational generation, the plasma cloud must be v
much denser than the average density of the universe, o
wise the growth of the amplitude will take place slowly ev
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compared to a cosmological time scale. In a dense pla
cloud, on the other hand, gravitation must be balanced
pressure gradients in order not to self-contract before sig
cant radiation generation due to the cyclotron resonance
stability occurs. This suggests that maybe plasma inhomo
neities should be included in our treatment, although it see
likely that the effects of inhomogeneity may be neglected
long as the gradient scale lengths is much longer than
wavelength of the gravitational radiation.

VI. SUMMARY AND DISCUSSION

We have considered linearized gravitational waves in
short wavelength approximation, propagating in a plas
parallel to an external magnetic field. In vacuum, there is
possibility of cyclotron acceleration of charged particles
to velocities arbitrarily close to the speed of light. Taking t
collective effects of particle distributions on the gravitation
waves into account, it follows that the~gravitational! normal
modes for the system are circularly polarized gravitatio
waves, and we derive the corresponding dispersion relati
which coincide with that of Ref.@8# in the limit of a low-
temperature Maxwellian plasma. In the case of an equi
rium plasma the waves are shown to be damped due to r
nant interaction with the plasma particles and the dispers
is modified and enhanced as compared to the case o
magnetic field. In the case of thermodynamical nonequi
rium, there is the possibility of gravitational wave instabi
ties. To show in a concrete way that this can be realized,
demonstrate that there are temperature anisotropic distr
tion functions that are unstable. Furthermore, we have ex
ined how the damping and dispersion in an electron-posit
type of plasma and an electron-ion plasma, respectively,
pends on the ratiovc /v and onT in the regime of relativistic
temperature. The strongest effects occurs whenv andvc are
comparable and the effect increases with temperature
density.

The question is whether cyclotron damping can be
served, if we assume that gravitational wave astronomy@22#
develops successfully. The calculations made in Ref.@14#
end up with an estimate of 10% damping during a propa
tion distance of the order of 30 kpc, which suggests t
there is at least some chance of gravitational cyclotron da
ing to be observed. Combining Eq.~26! with the definition
I6[I 6mt2 ~recall thatI6 is the normalized value ofI 6

displayed in Figs. 1, 2, and 3! we note that our damping rat
is

G65
Im I 6

2vmt2
. ~39!

Similarly, the time scale for gravitational wave dispersion
mvt2/ReI6 . For typical values for~equilibrium! plasma in
interstellar space, it is clear that the damping rate predic
by Eq. ~39! is several orders of magnitude smaller than t
estimation made in Ref.@14#. Presumably the discrepancy
due to the fact that in Ref.@14#, only the effect ofaccelera-
tion of particles~corresponding to energy being transport
from the gravitational wave! is considered. Generally whe
3-9
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the damping due to wave-particle interaction is small,
should be noted that asvtprop ~where tprop is the time of
wave-particle interaction! grows, the energy loss of the de
celerated particles becomes very close to the energy ga
by the accelerated particles, and thus the omission of
contribution from decelerated particles leads to large er
in the damping coefficient. If the singularities are treat
properly, the effect of decelerating as well as accelera
particles on the wave is included automatically in a kine
description. In general for parallel propagation we find th
cyclotron damping as well as dispersion of gravitation
waves through interstellar space is negligible, in the se
that there is essentially no hope of detecting it with grav
tional wave detectors with realistic sensitivity.

In general gravitational waves propagate in an angle
the magnetic field. It is well-known~see, e.g., Ref.@1#! that
this leads to generation of electromagnetic fields by
gravitational wave, and a dispersion relation govern
propagation perpendicular to a magnetic field in a plasma
been derived by Ref.@8#. The results show that the gravita
tional wave is most affected by the matter when the f
quency matches one of the natural frequencies of the sys
such as the cyclotron frequency or the plasma frequenc
should be noted that in an inhomogeneous medium w
slowly varying background parameters we will typical
reach a point where the generated electromagnetic fields
fills the dispersion relation of some natural plasma mode
that case linear mode conversion, which is a resonant pro
involving all particles, may take place. However, such
problem remains an issue for future research.

APPENDIX

At a first sight our results seem to disagree with those
Ref. @8#. However, we will show below that our results e
sentially are in agreement@15#, although the comparison i
nontrivial. In general the effect of a curved backgrou
space-time cannot be neglected. However, for lineari
gravitational waves with short wavelength compared to
background curvature, the back reaction on the gravitatio
wave can be separated into two effects, those respective
tribution can be added to the flat vacuum dispersion rela
v22k2c250, see Ref.@1#, p. 427. The first effect~that is
considered by us! is a direct consequence of matter and fie
~where the background curvature can be neglected!, and the
second effect is an indirect consequence due to the b
ground curvature produced by the matter and fields. How
find the curved background contribution to the gravitatio
wave dispersion relation for a Robertson-Walker or
Schwarzschild background metric, see Refs.@1# and @7# re-
spectively. Here a warning is strongly motivated, howev
In general the separation of contributions to the dispers
relation into the ‘‘direct’’ and ‘‘indirect’’ effect isnot com-
pletely unique, but to some extent depends on the formali
used. Thus great care must be taken when adding a ‘‘dire
and an ‘‘indirect’’ contribution to the dispersion relation d
rived by different authors, to see that the formalisms t
have produced the different expressions are compatible.

To illustrate the above matters we compare our calcu
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tions using a tetrad frame formalism with those of a coor
nate frame formalism. In the absence of gravitational wa
perturbations the Einstein field equation reads

Rmn
(0)5kFTmn

(0)2
1

2
gmn

(0)T(0)G . ~A1!

In this section we use Greek indicesm,n, . . . 50,1,2,3~or
t,x,y,z) for coordinate components and reservea,b, . . .
50,1,2,3 for tetrad components. Adding a small pertur
tion, so thatRmn5Rmn

(0)1dRmn , Tmn5Tmn
(0)1dTmn , andgmn

5gmn
(0)1hmn , gives the linearized equation

dRmn5kdFTmn2
1

2
gmnTG . ~A2!

Focusing on the direct effect of matter and assuming
short wavelength regime we usegmn

(0)5hmn , and after suit-
able gauge transformations we obtain

hhmn522kFdTmn2
1

2
dThmnG . ~A3!

It should be noted that in principle the left-hand side of E
~A3! should contain ‘‘cross terms’’ proportional to the pro
uct of hmn and components of the background part of t
Riemann tensor~see Ref.@1#!, corresponding to the ‘‘indirect
effects of matter’’ but these terms are omitted, not beca
they are small, but because in the short wavelength li
their contribution can be calculated separately and added
terwards. For the same reason also a term proportiona
T(0)hmn52R(0)hmn have been omitted from the right-han
side. Equation~A3! also applies to the tetrad description if
is understood thathab denotes whatdRab reduces to in this
approximation, i.e.,h1152h225h1 and h125h215h3 in
the TT gauge. The short wavelength approximation and
gauge is now assumed throughout the remainder of this
tion if nothing else is said.

The total energy-momentum tensor due to electrom
netic fields and matter is

Tmn5m0
21S Fm

sFns2
1

4
gmnFstFstD

1(
PS

E pmpn f
Augu
mg

d3p,

where m0 is the magnetic permeability,g[pt /mc5@1
1p2/(mc)22hmnpmpn /(mc)2#1/2 andpt is the zero compo-
nent of the four-momenta satisfyingpmpm52m2c2. Note
that the definitiong[pt /mc differs from the tetrad formal-
ism. The background magnetic field is taken to beF12
5F125B ~being identical to that in the tetrad description!.
Hence the linearized energy-momentum tensor reads
3-10
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dTmn5m0
21S 2hstFsmFtn2

1

2
hmnB2D

1(
PS

E pmpn

f 0dg

mg0
d3p1(

PS
E pmpn

d f

mg0
d3p,

~A4!

where dg52 1
2 hmnpmpn /(g0mc)2 and g05@1

1p2/(mc)2#1/2. Note that only the last term on the righ
hand side appears in the tetrad equation corresponding to
~A4!, since we havegab5hab in that case. In some sense th
perturbation of the electromagnetic part of the energy m
mentum tensor is somewhat artificial, since the electrom
netic field itself is not perturbed, although it is clear from
technical point of view that all terms in Eq.~A4! must be
included.

In the coordinate description the Vlasov equation read

] t f 1
p

mg
•“ f 1@F2G#•“pf 50,

where Fi5qpmFm
i /gm, Gi5Gmn

i pmpn/gm, Gmn
i are the

Christoffel symbols corresponding togmn5hmn1hmn and
“5(]x ,]y ,]z). The linearized Vlasov equation for th
gravitationally perturbed part of the distribution functio
f G , thus becomes

F] t1
p

mg0
•“1F0•“pG f G1@dF2G#•“pf 050 ~A5!

where

dF•“pf 052vcg0
21@h1 sin 2f2h3 cos 2f#F0 ~A6!

G•“pf 05 i ~2v2kpi~g0m!21!@h1 cos 2f

2h3 sin 2f#F0 ~A7!

andF0 was defined in Eq.~19!. The termdF in Eq. ~A5! has
its origin from the lowering of an index onFm

i and therefore
does not occur in the tetrad description@15#. Also the term
G•“pf 0 differs from the tetrad description becauseG1
5 1

2 Gx , G25 1
2 Gy , andG35Gz .

Solving Eq.~A5! and applying the solution to Eq.~A3!
gives the dispersion relations

@v22c2k22A12 iB1#~h11 ih3!50, ~A8!

@v22c2k22A22 iB2#~h12 ih3!50,
~A9!

whereA65ReI 61A0 , B65Im I 6 , and

I 65
pkc2

m (
PS

E
2`

` E
0

`

p'
3 2v2kpi /~g0m!62vc /g0

kpi /m2g0v72vc

3F0dp'dpi , ~A10!
02401
q.

-
g-

A05kc2m0
21B21

pk

2 (
PS

E
2`

` E
0

` p'
5

~g0m!3
f 0dpidp' .

~A11!

A couple of things should be noted. First, the coordin
frame description gives a term contained inA0 proportional
to B2 that remains even in the absence of particles. This te
has no correspondence in the tetrad formalism, and the
son is that there are no perturbations of the electromagn
part of the energy momentum tensor when we study the p
jections on the tetrad basis vectors, in contrast to what h
pens when we look at the coordinate basis components@see
Eqs.~9! and~A4!#. However, the division into the perturbe
and unperturbedtensorsare the same independent of forma
ism, and thus the ‘‘direct term’’ proportional toB2 in the
coordinate frame formalism is compensated by a term a
ciated with the background curvature produced by the unp
turbed magnetic field in the tetrad formalism. On the oth
hand, the division into a direct effect of matter and an in
rect ~background curvature! effect is not completely artifi-
cial: The direct effect is determinedentirely by the local
matter content, whereas the background curvature effec
determined by the matter content both locally and globa
Furthermore, the background curvature effect will necess
ily give contributions to Eqs.~A8! and~A9! that are real and
independentof the gravitational wave frequency@see the dis-
cussion after Eq.~A3!#. Noting that

2v2kpi /~g0m!62vc /g0

kpi /m2g0v72vc
5

v

kpi /m2g0v72vc
2g0

~A12!

it is clear that the correction to the vacuum dispersion re
tions in the coordinate and tetrad frame formalism devia
only by a frequency independent real constant, and in p
ticular the cyclotron damping agrees perfectly within t
short wavelength approximation scheme. Adding the con
bution toI 6 from the second term in Eq.~A12! to A0 then all
differences between the tetrad and coordinate frame form
isms are collected in this term:

kc2m0
21B21pk(

PS
E

2`

` E
0

`F p'
5

2~g0m!3
f 0

2g0p'
3 F 0c2/mGdpidp' . ~A13!

Relaxing the assumption of Minkowskian background, i.
adding ‘‘cross terms’’~see Ref.@1#! to Eq. ~A3! ~which of
course requires a different tetrad basis in that formalism!, we
could in principle confirm the agreement of the total disp
sion relations including both direct and indirect effects. Th
would be a tedious task, however, since we must then s
for the background configuration including the anisotrop
magnetic field contribution. Since we have shown that
separation into background curvature and ‘‘direct’’ mat
effects is not unique, one can question the relevance of
3-11
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figures showing thereal ~dispersive! part of I 6 since only
the direct matter effect is contained~recall that the damping
contribution is unique, however, and due to the direct eff
only!. But it turns out that there are three reasons that m
also the real plots ofI 6 relevant: First, the main contributio
to the real value ofI 6 occurs in the frequency regime whe
cyclotron resonance effects plays a role, which always
direct effect of matterindependent of formalism. Secondly,
for many cases the dominant contribution to the backgro
curvature comes from the rest mass (T00) part of the energy
.

s.

n

as

th

-

e-

02401
t
e

a

d

momentum tensor, and if that is the case, the difference
played in Eq.~A13! is negligible as compared to other bac
ground curvature contributions@27#. For example, we could
add the background curvature contributions for a Roberts
Walker or a Schwarzschild background metric, using the
sults of Refs.@1# and@7#, respectively, since the difference i
formalisms used in most cases would give only a negligi
contribution in comparison with that included. Thirdly, sinc
the background curvature gives only a real constant con
bution to the dispersion relations, our plots always reveal
frequency dependence of the dispersion.
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