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Cyclotron damping and Faraday rotation of gravitational waves
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We study the propagation of gravitational waves in a collisionless plasma with an external magnetic field
parallel to the direction of propagation. Because of resonant interaction with the plasma particles the gravita-
tional wave experiences cyclotron damping or growth, the latter case being possible if the distribution function
for any of the particle species deviates from thermodynamical equilibrium. Furthermore, we examine how the
damping and dispersion depends on temperature and on the ratio between the cyclotron and gravitational wave
frequency. The presence of the magnetic field leads to different dispersion relations for different polarizations,
which in turn imply Faraday rotation of gravitational waves.
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[. INTRODUCTION case, efficient wave-particle interaction may take place with-
out the presence of ultrarelativistic particles. The possibility
The propagation of weak gravitational waves in the presfor cyclotron damping of gravitational waves has been con-
ence of matter and electromagnetic fields has been consididered in Ref[8] and recently in Ref[14]. However, the
ered by several authors, e.g., Réfis-12). The back reaction calculation of the damping coefficient in R¢lL4] does not
on the gravitational waves, resulting in damping and/or distest on a self-consistent kinetic theory, and it turns out that
persion, has been studied by Ref$~8], but the gravita- our value of the damping based on the Vlasov equation is
tional effects of mattemost frequently assumed to be a smaller than theirs by several orders of magnitude. On the
fluid or neutral gasand the effects of electromagnetic fields other hand, if we take the limit of a nonrelativistic Maxwell-
have mainly been treated separately. The interaction afn distribution function, our results essentiallyee Ref.
gravitational waves with a plasma—which is the most com{15]) reduces to those of R€8].
mon state of matter relevant for gravitational wave In the case where the unperturbed distribution function of
propagation—has been considered in an astrophysical dke particles is not in thermodynamical equilibrium, gravita-
well as an cosmological context, see, e.g., RE¥s.11] and tional wave instabilities rather than damping may occur. We
Ref. [12], respectively, and references therein. In general igive a condition on the distribution function for instabilities
turns out that matter which is in a plasma state—and thuso develop and demonstrate that it may be fulfilled, for in-
exhibits electromagnetic properties—has possibilities ofstance, by plasmas with a temperature anisotropy. Naturally,
more efficient interaction with gravitational radiation, asthe gravitational wave dispersion is also modified by the
compared to neutral matter. presence of the magnetic field. The dependence of the damp-
In this paper we study the propagation of weak gravitaing and dispersion on the temperature and on the cyclotron
tional waves in a collisionless plasma with an external stati@and gravitational wave frequencies is investigated. Further-
and homogenous magnetic field, parallel to the direction ofnore, we confirm that the natural wave modes are circularly
propagation. Naturally, the matter and fields produce a baclpolarized waves also in the relativistic regime and that—as a
ground curvature, but nevertheless it is meaningful to treatonsequence of the different dispersion relations for these
the background as Minkowski space, provided the wavemodes (in an electron-ion type of plasma-gravitational
length is much shorter than the background curvatsee  waves experience a phenomena analogous to Faraday rota-
the Appendix for a detailed discussjoit turns out that there tion of electromagnetic waves in such a medium.
is a new effect on the gravitational waves that appears due to The paper is organized as follows. In Sec. Il we present
the presence of the external magnetic field—a gravitationathe equations governing our system, using a tetrad descrip-
analogue ofcyclotron dampingof electromagnetic waves tion in order to make the interpretation of our results more
(see Ref[13]). In the electromagnetic case, the waves maystraightforward. Section Ill reviews the problem of single
interact resonantly with the gyrating motion of the particles,particle motion in the presence of a gravitational wave
and the resonance occurs for particles that experience a wapeopagating parallel to an external magnetic field. In particu-
whose Doppler shifted frequency equals the gyrofrequencyar, it is shown that resonant particles experience continuous
In the gravitational analogue, the resonance occurs when thecceleration with velocities approaching the speed of light in
(Doppler shifted wave frequency is twice the gyrofre- vacuum. In Sec. IV the interaction between the gravitational
guency. A mechanism for gravitational wave damping simi-waves and the plasma is studied self-consistently in the lin-
lar to cyclotron damping has been considered previouslyearized approximation using the Einstein-Maxwell-Vlasov
namely, Landau dampingl]. However, cyclotron damping system of equations. The damping and dispersion of the
is a potentially more important mechanism, since, for thisgravitational wave is studied in some detail for an electron-
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ion plasma as well as for an electron-positron plasma in thergation parallel to the magnetic figldie are considering. The
modynamical equilibrium. The case of a plasma which is notlifference to the vacuum case will be that z— v, where
in thermodynamical equilibrium is studied in Sec. V. Finally, v, is the phase velocity of the gravitational wave. From now
in Sec. VI, we summarize our results and discuss their imon we will refer to tetrad components rather than coordinate
plications. There is also an appendix where the problem ofomponents.
separating effects into background curvature eff€tisdi- We follow the approach presented in Rgf] for handling
rect” matter effect and “direct” matter effects is discussed. gravitational effects on the electromagnetic and material
The results in this paper, obtained using a tetrad frame forfields. Suppose an observer moves with 4-veloatty This
malism, are compared with those of a coordinate frame forebserver will measure the electric and magnetic fieligls
malism. =F,uP andB,=%e,,F°¢, respectively, wher& ,;, is the
electromagnetic field tensor arggy, is the volume element
Il. BASIC EQUATIONS on hypersurfaces orthogonal t8. It is convenient to intro-
_ _ _ _ duce a 3-vector notatioB=(E")=(E*,E2 E®) etc., andV
We consider the interaction between weak grawtanonalzel_ From now on we will assume tha’=c is the only
waves and a collisionless plasma in an external magnetifonzero component aff. Generally, the Maxwell equations
field. Since we consider nonempty space the backgroundsniain terms coupling the electromagnetic field to the gravi-
space-time is necessarily curved. However, if the wavelengtfyiiona radiation field. If the gravitational waves propagate
of th_e gravitational waves and the interaction region is Sma'barallel to a magnetic field there are no gravitationally in-
relative to the background curvature we may take the backy ceqd effects o andB. This can be deduced as follows:
ground o be flat and static, and the energy-momentum terg;yen the Ricci rotation coefficients for gravitational waves
sor to be the one correqundmg to the perturbations of thg, ihe TT gauge, the “gravitational source terms” in the
electromagnetic and material fieldsee the Appendix Maxwell equations in Refl9] vanishes for the given orien-
For simplicity, the direction of propagation is assumed;aiion of the magnetic field.
parallel to the magnetic field which we take to be static and 1 equation of motion for a particle of mass and

homogeneous.  Linearized, the Einstein field equationgpargeyin an electromagnetic and gravitational wave field is
(EFE9 take the form

Dhab: -2k

d
1 —p= - —
5T b—imab} @ GiP=dlE+(ym)*pxB]-G, ®

provided the gauge condition?=0 is fulfilled, which is ~ Where y=\1+p;p'/(mc)® and the four-momenta ip?
equivalent to state that only tensorial perturbations are= YmdxX/dt. The gravitational-force-like term G'
present. That the gauge condition is indeed satisfied will be=I'5,P?p" ym, where T, are the Ricci rotation coeffi-
verified in Sec. IIl below. Her&l=[c™207— #2], h,p is the ~ cients, becomes
small deviation from the M4inkowski background metric, i.e.,

= Napt Nap, k=87G/c”, 6Ty, is the part of the energy- 1 . :
?ﬁact))mgr?fum ?gnsor containing se;?\all eIe(E,)tromagnetic angdyma- G1= 5 (vph= P2/ ym)[h p1+hypo], (4)
terial field perturbations associated with the gravitational
waves andST = &T5. In the following it is understood that
we neglect contributions of second order and highén_jp. G,= E(Uph— p,/ym)[ — h+p2+ hxpl], (5
In our notationsa,b,c, ...=0,1,2,3 andi,j,k, ...=1,2,3
and the metric has the signature { + +).

In vacuum, a linearized gravitational wave can be trans- 1 C4ee - .
formed into the transverse and tracel€EE) gauge. Then we Gs= 5( ym)Lh.(p1=p2) +2hxpip,] (6)
have the following line-element and corresponding orthonor-
mal frame basis: for weak gravitational waves propagating in théirection in

Minkowski space, where the overdot represents derivative

ds2= —c2d2+[1+h, (&)]dx3+[1—h, (&)]dy? with reSpeCt 1.

+2h, (§)dx dy+dZ, 2) In order to account for resonant wave-particle interactions
we apply kinetic plasma theory, representing each particle
1 1 species by a distribution functiohgoverned by the Vlasov
e=c 14, 615( 1- Em)ﬁx— Ehxﬁy, equation. In tetrad form the Vlasov equation refti§]
Lf=0,

=

1 1
1+ §h+ ay_EhX&X! 935(72,
where the Liouville operator is

whereé=z—ct andh, ,h,<1. As it turns out, the gravita- o i i I
tional waves take this form also in the particular cgz®pa- L=di+(c/p)p'e;+[Fen—T'app p°c/p~1dpi
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and the electromagnetic force responsible for geodesic devigrowth in kinetic energylinear in coordinate timeand the

tion is Fgy,=q(E'+ €'¥p;By/ym). In vector notation the parallel velocity will approach the velocity of light. The so-
Vlasov equation reads lution we present here does not—in contrast to that of Ref.
[14]—result in anexactdescription of the particle motion but
does reveal the main effe§tesonant acceleration of par-
ticles and has the advantage of being straight forward. It
also provides an intuitively clear explanation of the mecha-
where V,=(d,,dp,,9p,). In the absence of gravitational nism and the resemblance to electromagnetic cyclotron reso-
waves, the Vlasov equation has the following spatially ho-nance acceleratiofi20]. In the electromagneti¢vacuum
mogeneous (thermodynamical equilibrium solution, the case thigphase-locksituation also exists, i.e., unlimited reso-

pxXB

Vf
d E+——
ym

of+——+
ym

q ~G|-V,f=0, (7

Synge-Jttner distribution[17] nant acceleration of “trapped” particles.
Since there are no gravitationally induced electromagnetic
n fields (linear inh,y), Eq. (3) becomes
form g ——e 7 ®) *
4m(mce)°Ky(w)

where ny is the spatial particle number densityy —p=
=md/kgT, kg is the Boltzmann constant; the tempera- dt
ture, andK,(w) is a modified Bessel function of second
kind. Generally, the unperturbed static solutions to &.
consistent with a homogeneous and static magnetic field, sé@’here‘”c gB/m. The gravitational wave is assumed mono-
in the z direction, but not necessarily in thermodynamical Chromatic and arbitrarily polarizedh., =h., exffi(kz-wt)]
equilibrium are distribution function$=f(p, ,ps), where  +c.c. andh, = h,exdi(kz—wt)]+c.c., where c.c. stands for

(0l y)pXz—G=F, (10

P, = /p12+ pZZ_ complex conjugate. In this sectiem andk are assumed real.
Since there are no induced electromagnetic fields, the per- We assumev./y>wh,, so that the gravitational force in
turbed energy-momentum tensor can be written Eq. (10) is small compared to the electromagnetic one. Thus,

the particle orbits are close to the gyrating motion in the
absence of a gravitational field, and we therefore make the

ansatz p;=(1/\2)p(t)expiwt/y)+c.c. and p,=
+(i/2)p(t)exp(—iwd/y)+c.c., where the amplitude(t)
depends slowly on timg.e.,|dp/dt|<|(w./y)p|] due to the

The self-consistent set of equations governing the interactio ravitational influence and: =sgn(q). Note that the cyclo-

between the gravitational waves and the plasma are thus the " period is not itself a constant, but is depending on the
two coupled equationsl) and (7). Obviously, as we have gamma factor that also is varying slowly. Consider now the

adapted a tetrad formalism, we mean the tetrad equivalencé Xp“C't form of the parallel driving force:
of Eq. (1) [18].

papb

STap= 2, Gd3p (9)
PS

wherefg is the gravitational perturbation of the distribution
function and the summation is over particle spedies.

ik .
ll. CYCLOTRON RESONANCE ACCELERATION Fa=—3 y—m[m p2=ih,p?lelke-et=20dM ¢ ¢,
As we will consider effects that are due to wave-particle ik
interaction, it might be in place to first review some results — = —[h,p*2Fihp*2]elkz et 20dn L o ¢
of single particle(test-particleé motion in the presence of 2 ym
gravitational waves and an external magnetic field. Single (11)

particle motion in gravitational wave fields has been exam-
ined by many authors, see, e.g., REf], and references
therein. Particles moving in a monochromatic gravitationalwhere the asterisk denotes complex conjugate. A particle
wave field experience periodic changes in its energy and pewith trajectoryz(t) will typically experience an irregular os-
riodic deviation from its mean direction of propagation. If cillatory force. Unless the particle is resonaar almost
the particle motion is constrained, for instance by a magneticesonantwith the wave, the parallel motion will be random
field, the change in energy and momentum may be cumulaand there will be no net effect—except for the possibility of
tive. We refer to this as resonant acceleration. (smal) diffusive acceleratiof14]. Particles may, however,
We focus here on charged particles in a homogenous arlge resonant, i.e., have a trajectory such that there will be a
static magnetic field parallel to the direction of propagationnonoscillatory force resulting in a lasting acceleration/
of gravitational waves. The single particle motion in this deceleration over several time periods of gyration. Almost
situation have been investigated in some detail by Refl,  resonant particles will be acted on by a force varying in time
treating it as a Hamiltonian dynamical problem, and also byon a time scalgdepending on the magnitude of the mis-
Ref.[19]. Most noticeable is that not only can resonant ac-match slower than the gravitational wave period. From Eq.
celeration occur, particles can even be “trapped” in such &11) we see that there are two possibilities for a particle to be
resonant state and experience essentially unlimited lineaesonant and thus acted on by a constant force:
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dz 20, independently of the initial magnitude @f and ps. From
ka—w— 5 =0, now on we limit ourselves to such particles. For large times
when y>1, Eq. (15) implies y«<2ahwt. Using the expres-
dz 20 sions forp and ps in terms ofy and @ we note that coordi-
ka—aﬂr yc=0 nate moment@/y—0 ast— whereags/y scales as
implying mc
p3/yemc— m (16)
2w
R 12
— M3 ph
This implies the possibility of unlimited acceleration in
2w, which ps/ym approachesc on a time scalet~(hw) ™t
O palmo, (13)  Note, however, that the assumption./y> wh,, formally

restricts the predicting power of these results. However, as
demonstrated by Refl4] the linear growth ofy (due to

r ively, where ;.= w/k. By z we mean the time aver- . .
espectively, where = o/ yzwe mean the time ave parallel accelerationremain even beyond./y> whyg,.

aged trajectory and since we will only consider time- The sections to follow will concentrate on linearized
averaged effects, we have pylz=mydz/dt here and 4.5 itational wave propagation, in which case the particles
t_hroughout the remainder of this section. Physically, the paryij| be assumed to deviate only slightly from the unper-
ticles are resonant when they see a wave whose Dopplglihed orbits. It should be noted, however, that cyclotron
shifted frequency is twice the gyrofrequeney/y. The fac-  gcceleration may have interesting applications in the vicinity
tor 2—not present in the electromagnetic case—is due 10 thgs 4 pinary pulsars close to merging. Practically speaking the
fact that the driving force is quadratic m Note that the two  effective distance of acceleration close to the source will be
resonance conditions can be satisf&dultaneouslynly by |imited by effects due to a three-dimensio@D) geometry.
particles that are oppositely charged. On the other hand, particles close to pulsars are likely to
The question is now whether or not the resonant particlepave a relativistic background temperature, in which case the
remain resonant even though they are accelerated—a changg&onant ones may be accelerated to ultrahigh energies.
in p; and y may potentially lead to a violation of the reso-
nance condition(12) or (13). Clearly the resonance is pre-
served only if y—ps/mu,, is a constant of motion. The
gravitational force, Eqs(4)—(6), has the propertyG-p
=ymu ;1G5 [21]. Thus it holds that

d ( P3 ) F-p Fs
—| y—= — _ =0
dt Mo pn ’ym2C2 Mo pn

IV. CYCLOTRON DAMPING

As seen in the preceding section, charged particles in a
homogenous static magnetic field can be accelerated and de-
celerated by gravitational waves. Thus it should not be sur-
prising that the gravitational wave will be damped—or be
unstable and experience growth—as it propagates through a
collisionless plasma. The dampiiigr growth rate will de-
if and only if vy,=*c, i.e., the resonance is preserved inpend on how the particles are distributed in momentum
vacuum but generally not in a medium. In many situationsspace. In order to incorporate the damping effect due to this
for gravitational waves, however, the vacuum relatigy ~ resonant wave-particle interaction mechanism, we use a ki-
=*c holds to a very good approximation. netic description of the plasma, i.e., each plasma component

In the remainder of this section we will confine ourselvesis represented by a distribution functié(x?,p'). The gravi-
to the case,n=c, sgn@)=—1 and to the resonance condi- tational wavesh. =h. exgi(kz—wt)] and h, =h,exdi(kz
tion (13). We define the constant of motiap=y—pz/mc  —ut)] are superimposed on the Minkowski background met-
and observe  that ps=mc(y—a) and |p| ric (see the Appendjx and are assumed to be associated
=mcy2ya—1—a?. By considering the(time averaged  with a small perturbatioris = f gexfi(kz— wt)], of the distri-
time evolution ofy we find bution function, i.e.,f=fy+fs, wheref, is a stationary

g solution to the Vlasov equatiof¥) in the absence of gravi-
Y _ A - tational waves. This means that the background distribution
qt = @l2a—y 11+ a))]llh[sing+[h|cosy], function f, is a function of p, and ps, where p,

dt
(15 =+Pp1t+ P32

(14

wherep=arg(h, p*?/ym) andy=arg(h, p* %/ ym). Appar-
ently the kinetic energy is a monotonously increasing func-
tion for particles with suitable initial phase of the gyrating
motion, i.e., for

A. Linearized Vlasov equation

We begin by calculating the perturbed distribution func-
tion that results from a gravitational wave propagating par-
allel to an external magnetic field. Linearizing the Vlasov
h=|h_|cose+ |hy|sing>0 Eq.(7)in h, , hy, andfg gives
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P3

K——-w a
ym

i fot - nPXB-Vefe=G Vifo.  (17)

It is convenient to change to cylindrical coordinates in mo-
mentum space, i.e., we defipg=p, cos¢, p,=p, sin¢ and
ps=p;, so that 6/ ym)pxB-V =~y 'w.d, and Eq.(17)
thus becomes

i(k_p_w — 25, lfa=iwlh, cos 26+ hysin 2] 7,
ym y e ' : >
(18
where
LT P
Fo= 200 (Up“ 7m)aplf°+7mapf°}' 49

Equation(18) has the solution
1 yoFee??
G_E kp”/m— yo—2w,

+1 yoF e '2¢
2 kp”/m— Yo+ 2w,

(hy—ihy) -50 '

_l‘:)zo_

(hy+ihy). (20 50 .

The occurrence of singularities in E@O) indicate that there
iS a resonant interaction. In the casg=0 there are no

singularities, because without magnetic fiebd=ck in our Iy
approximation, and therefore Landau damping of gravita-
tional waves do not occur. For any finite valuewf, how-
ever, the expression fdg; has singularities and we therefore
expect cyclotron damping to occur. -50 ' ' .
-10 0 10
B. Dispersion relation 50 | S? |
We now solve the tetrad equivalenf&8] of EFE (1). (d)
Using Eqgs.(9) and (20) it is straightforward to confirm that
the TT gauge is a consistent choice in our case. The two
diagonal elements both read I,
[w?—c?k?]h,
= (2w (= p?
203 | |7 [ “Pcogatedp, dgdn . . .
PS —J0 0 'ym -50
-40 0 40
1 ) 1 ) &
= E(h+—|hx)l _+ z(h++|hx)l ¥ (21) FIG. 1. The realsolid line) and imaginary(dotted ling part of
Z.=I i,u,Tép for an electron-positron plasma at four different tem-
and the two off diagonal elements give peratures(a) u =100, (b) ©=10,(c) u=1, and(d) x=0.1.
[w?—c?k?]hy = (= To
Ii_;s Cj—:)oJO PL ka/m—yw$2wcdpLdp” (23)

o0 27T [ 3
=2c%k Y, f f J p—lcos¢>sin¢depqu5dp”
ps J-=Jo Jo ym together withC=rwkc?/m. The two equationg21) and
(22) combine to

[ ) [ )
=§(h+—lh><)|_—§(h++lh><)|+, (22

[w?—c?k?—A, —iB.](h,+ihy)=0, (24)
where we have made use of E80) and [w2—c?k?—A_—iB_](h,—ihy)=0, (25)
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where relativistic regime we then present results for an electron-
positron plasma and an electron-ion plasma obtained by nu-
A.=Rel. and B.=Iml.. merical integration of Eq(23). For this purpose it is practi-

The natural gravitational wave modes for EFE with the givenc_al to mtroduce_ normallzed momenta, =p, /mc, p
=p;/mc, and a dimensionless frequency rafic= w./w.

source are thus the circularly polarized motiestih, and
h,.—ih, . Equations(24) and (25) contain the information
about the dispersion and the damping or groydhe toB.. ) S ] -
#0). Due to the smallness of the gravitational coupling con- N the regime of nonrelativistic particle velocities Eg3)
stant,A. andB.. can typically be considered small in the together with Eq(27) becomes

sense that the dispersion relations E@¢) and (25) read 3277( u )3/2 72]00 ewpﬁ/Z

w~ck+A.2w+iB./20. (26) =g o) —1520 dy

1. Nonrelativistic temperature

oy (28

Throughout the remainder of this paper we will have this
approximation in mind and we will occasionally make use of
w~ck to simplify the expressions fdr.. .

after performing thep, integration, where we have intro-
duced r=1/{y7mnyG, which is the characteristic time for

The fact thaid, #A_, unless the plasma components aregravitational contraction of a gas wit.h densrityand_particle
v massm. In the case of a cosmological plasmacoincides,

of equal particle masses and as lang# 0, implies that the . .
two gravitational wave modes have slightly different phaseapart from a factory3/8, with the Hubble time. From Eq.

velocities. Thus, an incident linearly polarized Wave—being(zs) we obtain to lowest order in the temperature
a superposition of the two circularly polarized states—wiill

experience a polarization shift, i.e., the direction of linear A= 1_6; (29)
polarization will be rotated as it propagates through the me- TS 2 1120

dium. In the case of electromagnetic waves this is known as

Faraday rotation. In principle this could be an important re- 8\2m s

sult as the polarization of a gravitational wave carries valu- B.= —;S 2 [ e #1720, (30

able information about the emitting sour¢22?], e.g., the TNHK

inclination of the spin axis of a quadrupole moment sourceygte that for Eq.(29) to apply we must assumg (1

The pole contribution in the integral in E¢RJ) is dealt +20) <1, ie. for the wave frequency close enough to

with in the standard fashion, i.e., by letting the contour ofi-a"the qvrofrequency. higher order thermal effects is al-
integration pass below the pole. It should be noted that thi gy g ¥, N

SPPIoRCN degard what appens i e Gismaion et hora O 116 e dspersion uhereas 80,
tion close to the singularity, and it also misses some otheyeq of() . Siill, it is clear that the dispersion can be enhanced
aspects of the damping process, see, e.g.,[R8], butitis | e magnetic field due to the existence of the resonance.
the simplest way to flnq the main effect due to the pole, an he exponential decrease of the damping with 210 im-
for our purposes it suffices. plies that significant damping only occurs in a limited region
in frequency space close ter12Q) =0 for a low temperature
C. Equilibrium plasma plasma. In the limit of zero temperature the size of this re-

For a plasma in a state of thermodynamical equilibriumgion tends to zero. The magnitude of bath andB.. are
the unperturbed relativistic expression for the distributionmonotonically increasing with temperature and vanishes at
function is the Synge-iner distributionf,=fs;, defined in ~ z€ro temperature. The results in this subsection essentially

Eq. (8), and for this choiceF, reduces to agree with Ref[8], see Ref[15]. In the case of no magnetic
field, =0, the dispersion relation®4) and (25) both re-
up? duce tow?—c?k?>—~A=0, whereA=3pgl6/*u. This ex-
Fo=— Wfa- (27)  pression is in agreemef4] with Refs.[1-5].

. s . 2. Electron-positron plasm
As no instabilities can develop the gravitational waves will ectron-positron plasma

exhibit damping. In this section we examine how the damp- Denote 7,,=1/\mm.n,G (e and p stands for electron
ing and dispersion depends on the raiig/w and on the and positron, respectivelyln this case only the sign of the
temperature of the plasma. First we examine the nonrelativeharge differs for the two particle species and we may write
istic regime for which analytic results can be obtained. In theEg. (23), applying Eq.(27), as

N 5 w2 (= (= p° e r\1n] +pf
[.(Q)=—7g —f f —dp, dpy, 31
()= Tep 4 Ka(p)J==Jo \J1+pZ +pf py—1+pl +pf 72 sgriq) 0 PLEPI (Y
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where O=w./0 and w.=|q|B/m. Note that I.({)
=1.(Q)=1.(-Q). The normalized functionZ.(Q)
Eli,urip is numerically calculated for four different tem-
peratures, namely, =100 (“nonrelativistic”) 10, 1, and 0.1
(“ultrarelativistic™ ). The results are displayed in Fig(dote
that Z. is normalized against the temperaurn the non-
relativistic case[see Fig. 18] we have a finite region,

—1/2=0=<1/2 , where Ré. is positive. Rd . changes sign
at 0~ +1/2 and approaches zero as @iQ) in the limit
Q— +. Iml. is negative definitéand thus there is indeed
dampingof the gravitational wave for any finit®) and has

a Gaussian shape around the resonaficest 1/2.
This is also the characteristic behavior for IRe and

Im 1. at higher temperatures. The relativistic effects on the

dispersion and the damping are the followirig: The reso-
nance peaks of Ih. (which occur at} = *+1/2 at zero tem-

peraturg are shifted to higher values ¢| for higher tem-
peratures. Also Re. experiences a similar shift. In the
ultrarelativistic casdsee Fig. 1d)], Rel. changes sign at

Q~=+25 and Im . is centered abouf)~+20. (i) The

-2 _PHe
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magnitude of both Re. and Iml.. increasesroughly lin-
early with temperaturgnote that the curves are normalized
against ﬁngp)‘l in Fig. 1], which can be compared with the
temperature dependence in the nonrelativistic regime that is
given by Egs.(29) and (30). (iii) The region of damping
broadensin the cold limit Iml . takes the form of two sepa-
rated Gaussian functions, the width tending to zero with di-
minishing temperature. These regions are widened and the
gaussian shape is deformed with increasing temperature. In

the ultrarelativistic case Ih. decays exponentially a8
— * oo but approaches zero more abruptly(as-0.

3. Electron-ion plasma

Denote 7= 7,;=1/\mm;nyG (e andi stand for electron
and ion, respective)y For an electron-ion plasma there is an
asymmetry between the particle species due to the small
mass ratice=m,/m;, giving different order of magnitudes
for the two cyclotron frequencies®.. and w;;. Thus the
resonances will occur for very different gravitational wave
frequencies. Given Ed27), we have the following form of
Eq. (23):

2 2
e MeNITHLTH|

.=

Tej K, Me)JxJ \/1+Pl+pH o

—dp, d
V1+p2+pfe2Q, PRl

ei/‘i \/l+pl+pH2

——=dp,dp, (32)
2(,U~|)focf \/l—l-pl—l-pH pj— V1+pl +pf 720, i
where
_ Mg;c? ~ o |qB
Peli =i T and  Qei=—— -t

Provided thafl,=T;, u; and . differs typically by three orders in magnitude. This implies that the ions can be considered

nonrelativistic even in the regime of ultrarelativistic electropg,0.1).
domainsQ,~1 and{);~1 separately. Noting thdd, ==, andu;=¢ "

e HeV1+ps +if

It is convenient to consider the two frequency
Lite, in the regionQ,~1 we have

16 1

l+(Qe)~— epK (Me)fwj J1+m+Pu I~

The normalized functiorZ, (e)=1, u73, is displayed in
Fig. 2 for u.=100 (“nonrelativistic”) 10, 1, and 0.1(*ul-
trarelativistic”). By symmetry,I _(£),) is the mirror image
of 1 .(Qp), i.e., 1 _(Qg)=1.(—0,) and therefore this curve
is not presented. Except for the lack of symmetry atdyt

=0 the result is similar to that of the electron-positron
plasma. In the given temperature and frequency domains the

ion contribution to the normalized functidn:(ﬁe) is just
the approximately constant value 16.

Vi+pl+pf=20,

dp, dp+ (33

p,u 1+28(2

Eh,urgp for u.=0.1. The corresponding figures are quali-
tatively similar in the entire temperature domain 6100,
however, and therefore only one of them is shown. The small

region near);=0 (Q;~¢ to be specifit that contains the
electron contribution has been left out.
4. The group velocity

The fact thatA.. is at some points negative implies, to-
gether with Eq(26), that for some wavelengths and frequen-

The effect of resonant ions becomes important in the frecies the group velocity of the waves exceeds the speed of

quency domain;~1. In Fig. 3 we showZ, ()

light. Superluminal group velocities for gravitational waves
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FIG. 2. The realsolid line) and imaginary(dotted ling part of
Z,.=I +,ur§p for an electron-ion plasma at four different tempera-
tures:(a) ©=100, (b) ©=10, (c) =1, and(d) x=0.1.

have been found before, see R¢R5], and references

therein. In most cases, but not in all, it has been an effect of yi= —;
the background curvature. It should be noted that several

results from the literature are in contradiction with each
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-1

FIG. 3. The realsolid line) and imaginary(dotted ling part of
I+EI+,ur§p for an electron-ion plasma fop.=0.1. The small

region neaf}; =0 containing the electron contribution has been left

out.
1 ®¢
=cl1- A.+—AL (34)
2 ®

w2

Y9~ gk

where the prime denotes derivative with respeciutd w.

For w.=0, i.e., in the case of no magnetic field, the medium
is just a collisionless gas of charged particles and the group
velocity is smaller than the velocity of light, in agreement
with the results of previous authors, e.g., Réf. From Fig.
1itis clear that there are regions wheig>c is realized, for

instance about the poinb./w~0.6 (whereA. has a local
minima) in Fig. 1(a). Similarly, also an electron-ion plasma
allows superluminal group velocities. Group velocities that
exceeds the speed of light is not necessarily at odds with
causality—an issue explored, for instance, in R2&]. The
group velocity can simply not be interpreted as (heavita-
tional wave signal velocity in this situation.

V. NONEQUILIBRIUM PLASMA

In the case of thermodynamical nonequilibrium, the sys-
tem has free energy that may feed a gravitational wave in-
stability. This occurs whenever the imaginary partlof,
defined by EQ.(23), is somewhere positive. Applying the
residue theorem, Eq23) gives

B.=7> Cf p? (35
55 Jo

Fo .
Akm| 9P
PI=Pr

where p,=mc(y,*2w./w) is the resonant parallel mo-

menta,
2w 1/2
1+

.

(0] C

((1)2— C2k2)

4w

c

other. Naturally, in our case the superluminal group velocitylS the gamma factor evaluated at the resonant momenta and

is a direct effect of the medium. For the case of an electron
positron plasma the group velocity corresponding to (26)
is

@ Pr
ck y,mc’

A
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Instabilities occur for distribution functions and frequenciescompared to a cosmological time scale. In a dense plasma
such that the conditioB. >0 is satisfied. For simplicity we cloud, on the other hand, gravitation must be balanced by
focus on nonrelativistic temperatures from now on, in whichpressure gradients in order not to self-contract before signifi-
case Eq(35) reduces to cant radiation generation due to the cyclotron resonance in-
stability occurs. This suggests that maybe plasma inhomoge-
472 ® 4 5 neities should be included in our treatment, although it seems
B.= 2 —“f pr4pcfot piap”fo:lpuzprd P, likely that the effects of inhomogeneity may be neglected as
PS No(me)=r=Jo long as the gradient scale lengths is much longer than the

(36) g g Cale gs 1S g

wavelength of the gravitational radiation.

wherep.=*2mcw./w. In order to show that there indeed

exist instabilities we consider the following example of a VI. SUMMARY AND DISCUSSION
';Enmcr:i%rr?ture-amsotropm drifting Maxwellian™ distribution We have considered linearized gravitational waves in the
' short wavelength approximation, propagating in a plasma
parallel to an external magnetic field. In vacuum, there is the
fo :Lef[(p\rpd)zlpfhppf/pfm] (37) possibility of cyclotron acceleration of charged particles up
M 2302, P2 ’ locities arbitrarily cl h d of light. Taking th
T Pin| Phs to velocities arbitrarily close to the speed of light. Taking the

collective effects of particle distributions on the gravitational
wherepy = y2mkgT|, ppl =v2mksT,, andpy is the drift ~ waves into account, it follows that thgravitationa) normal
momenta, for whiclB. becomes modes for the system are circularly polarized gravitational
waves, and we derive the corresponding dispersion relations,
2
B 8\VT Ph

which coincide with that of Ref[8] in the limit of a low-
ﬂ _ e m202(~)2/p12h”
~ Ps 72 mcpy[mc ’

1—a®

temperature Maxwellian plasma. In the case of an equilib-
rium plasma the waves are shown to be damped due to reso-
nant interaction with the plasma particles and the dispersion
is modified and enhanced as compared to the case of no
magnetic field. In the case of thermodynamical nonequilib-
that if =0 thenB. <0 for all values ofw./w and hence rjum, there is Fhe possibility of gravitat@onal wave in;tabili—
there can be no temperature-isotropic beam instalji#i6}. ties. To show in a concrete way that this can be re?‘"z?d’ we
On the other hand, puttingy=0, it is clear that a (jemonstr_ate that there are temperature anisotropic distribu-
tion functions that are unstable. Furthermore, we have exam-

temperature-anisotropic distribution function without a drift . . . o .
can be the source of an instability. ined how the damping and dispersion in an electron-positron

The gravitational waves produced by a homogeneou&ype of plasma and an electron-ion plasma, respectively, de-

plasma, due to the above cyclotron resonance instability wilP€"dS on the ratia /o and onT in the regime of relativistic
have a frequency of the order of the cyclotron frequency, afMPerature. The strongest effects occurs whemdw, are
least in the nonrelativistic temperature limit considered herecomparable and the effect increases with temperature and
In principle this opens up the possibility of emission of high 4€NSIY- o _

frequency gravitational waves through large magnetic fields '€ duestion is whether cyclotron damping can be ob-
(of the order of 10° T or large), i.e., frequencies well served, if we assume that gravitational wave astronp22y

above the frequency range expected from “conventional”devemps_SUCCESSf_UIly' The C'gllculatlor_ls mad_e in R4l
gravitational wave sources, such as compact binarie§nd up with an estimate of 10% damping _durlng a propaga-
neutron-star normal modes and gravitationally collapsing oblion d_|stance of the order of 30 kpp, ‘.Nh'Ch suggests that
jects, reaching up to 10 kHz. Still the radiation considere(fhere is at least some chanpe_ ofgrawtatpnal cyclot.ro.r} damp-
here is generated by a collective process where the amount to be g’bser"ed- Combl_nmg E(26) W'Fh the definition
matter interactingcoherentlycan be as large as in other as- ?EI =RT (r?‘ca” thatZ. is the normalized value_ of..
trophysical examples. Q|splayed in Figs. 1, 2, and 3ve note that our damping rate

It is not so easy to find astrophysical applications of the'S
cyclotron resonance instability, however: First there must be
a magnetized plasma cloud, with a nonequilibrium distribu- _ ImZ.
tion function that fulfills the conditior8..>0. Such a cloud T 20ur?
could in principle be generated, for example, if there is a
magnetic field geometry that allows for a loss-cone distribu-Similarly, the time scale for gravitational wave dispersion is
tion to evolve. However, there is an obvious risk that thereuw?/ReZ.. . For typical values fofequilibrium) plasma in
will be purely electromagnetic instabilities, which typically interstellar space, it is clear that the damping rate predicted
have much higher growth rates than the gravitational onehy Eq. (39) is several orders of magnitude smaller than the
that will dominate the picture. Secondly, for significant estimation made in Refl14]. Presumably the discrepancy is
gravitational generation, the plasma cloud must be verydue to the fact that in Ref14], only the effect ofaccelera-
much denser than the average density of the universe, othetien of particles(corresponding to energy being transported
wise the growth of the amplitude will take place slowly evenfrom the gravitational waveis considered. Generally when

(38)

wherea=T, /T|—=1 and®=1*2w./w—pg/mc. It is eas-
ily seen thatB. >0 for certain values ofr and w./w. Note

(39
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the damping due to wave-particle interaction is small, ittions using a tetrad frame formalism with those of a coordi-
should be noted that ast,, (Wherety,, is the time of nate frame formalism. In the absence of gravitational wave
wave-particle interactiongrows, the energy loss of the de- perturbations the Einstein field equation reads

celerated particles becomes very close to the energy gained

by the accelerated particles, and thus the omission of the

contribution from decelerated particles leads to large errors RO — .
in the damping coefficient. If the singularities are treated

properly, the effect of decelerating as well as accelerating

particles on the wave is included automatically in a kinetic|n this section we use Greek indicesv, . ..=0,1,2,3(or
description. In general for parallel propagation we find that; x y 7) for coordinate components and resema, . ..
cyclotron damping as well as dispersion of gravitational=0 1,2 3 for tetrad components. Adding a small perturba-

1
TO- 2000, e

waves through interstellar space is negligible, in the sensgop o thatR,,=R®+6R,,, T,,=TQ+6T,,, andg,,
that there is essentially no hope of detecting it with gravita-_ () , 1, gives the linearized equgtyion . .
tional wave detectors with realistic sensitivity. py o kv

In general gravitational waves propagate in an angle to
the magnetic field. It is well-knowfsee, e.g., Ref.1]) that B
this leads to generation of electromagnetic fields by the ORuy =K Ty EgWT : (A2)

gravitational wave, and a dispersion relation governing

propagation perpendicular to a magnetic field in a plasma h

been derived by Ref8]. The results show that the gravita- i 0)_ )

tional wave is most affected by the matter when the fre-ShOrt wavelength regime we Ugéiw‘_’hw’ and after suit-

quency matches one of the natural frequencies of the systerfi®l€ gauge transformations we obtain

such as the cyclotron frequency or the plasma frequency. It

should be noted that in an inhomogeneous medium with

slowly varying background parameters we will typically Oh,,=—2«

reach a point where the generated electromagnetic fields ful-

fills the dispersion relation of some natural plasma mode. In

that case linear mode conversion, which is a resonant procedsshould be noted that in principle the left-hand side of Eq.

involving all particles may take place. However, such a (A3) should contain “cross terms” proportional to the prod-

problem remains an issue for future research. uct of h,,, and components of the background part of the
Riemann tensofsee Ref[1]), corresponding to the “indirect
effects of matter” but these terms are omitted, not because

APPENDIX they are small, but because in the short wavelength limit

their contribution can be calculated separately and added af-

erwards. For the same reason also a term proportional to

TOn,,=—-R®n,, have been omitted from the right-hand

nontrivial. In general the effect of a curved background.Side' EquationA3) also applies to the tetrad description if it

space-time cannot be neglected. However, for linearize® unde_rsto_od th_dnab denotes whabR,, reduces 1o in 'gh|s
gravitational waves with short wavelength compared to thetpproximation, i.e.hyy=—hyp=h, and hy=hy=hy in
background curvature, the back reaction on the grr:lvitationzﬂ‘e TT.gauge. The short wavelength appro>qmanon af?d T
wave can be separated into two effects, those respective cofiauge I1s now assumed Fhroughout the remainder of this sec-
tribution can be added to the flat vacuum dispersion relatiofi© If nothing eise is said.
w?—k?c?=0, see Ref[1], p. 427. The first effectthat is '!'he_ total energy-mqmentum tensor due to electromag-
considered by yss a direct consequence of matter and fields"€tC fields and matter is
(where the background curvature can be neglectmud the
second effect is an indirect consequence due to the back- 4
ground curvature produced by the matter and fields. How to Tuw= Mo (FﬂFya—ZgﬂyF”TFgT
find the curved background contribution to the gravitational
wave dispersion relation for a Robertson-Walker or a Vgl 3
Schwarzschild background metric, see R¢1.and[7] re- +;S J pﬂpvfm—yd P,
spectively. Here a warning is strongly motivated, however.
In general the separation of contributions to the dispersion
relation into the “direct” and “indirect” effect isnot com-  where uq is the magnetic permeabilityy=p;/mc=[1
pletely uniquebut to some extent depends on the formalism+p%(mc)?—h**p,p,/(mc)?]*? andp; is the zero compo-
used. Thus great care must be taken when adding a “directhent of the four-momenta satisfying*p,= —m?c?. Note
and an “indirect” contribution to the dispersion relation de- that the definitiony=p,/mc differs from the tetrad formal-
rived by different authors, to see that the formalisms thaism. The background magnetic field is taken to bBe
have produced the different expressions are compatible. =F'?=B (beingidentical to that in the tetrad descriptin

To illustrate the above matters we compare our calculaHence the linearized energy-momentum tensor reads

al§ocusing on the direct effect of matter and assuming the

1

5T 5

0T 1, (A3)

At a first sight our results seem to disagree with those o
Ref. [8]. However, we will show below that our results es-
sentially are in agreemefd5], although the comparison is
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ho'F, ,F

ou v

2
Ly, o

oy
fo d3p+2 fpﬂpy—dSD,
(A4)

where  §y=—3h*"p,p,/(yomc? and  y,=[1
+p?/(mc)?]*2 Note that only the last term on the right-

OT 1= Mo (

+E f PuPy
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5 fodpydp, .
(A11)

AO—KC Mo 1BZ+_ J f
PS J -

A couple of things should be noted. First, the coordinate
frame description gives a term containedAp proportional

to B? that remains even in the absence of particles. This term
has no correspondence in the tetrad formalism, and the rea-
son is that there are no perturbations of the electromagnetic

hand side appears in the tetrad equation corresponding to Egart of the energy momentum tensor when we study the pro-
(A4), since we have,,= 7,5, in that case. In some sense the jections on the tetrad basis vectors, in contrast to what hap-
perturbation of the electromagnetic part of the energy mopens when we look at the coordinate basis compor|eets
mentum tensor is somewhat artificial, since the electromagggs.(9) and(A4)]. However, the division into the perturbed
netic field itself is not perturbed, although it is clear from aand unperturbetensorsare the same independent of formal-

technical point of view that all terms in E§A4) must be
included.
In the coordinate description the Vlasov equation reads

p
o+ s VIHIF=G]-V,f=0,

where Fiqu"F /ym, G'= F' LpHp¥lym, F' are the
Christoffel symbols correspondlng 9,,= 77/”+ h,, and
V=(dx,dy,d;). The linearized Vlasov equation for the

gravitationally perturbed part of the distribution function,

fe, thus becomes

p
It e Vo V| fot[8F G- Vpfo=0 (A5)

where
SF-V,fo=2w.y, '[hy sin2¢—h, cos 26]F, (A6)

G~foo=i(2w—ka(70m)—1)[h+ C0S 2¢

—hy sin2¢]F, (A7)
and.F, was defined in Eq(19). The termdF in Eq. (A5) has
its origin from the lowering of an index oﬁ'ﬂ and therefore
does not occur in the tetrad descriptiflb]. Also the term
G-V, f, differs from the tetrad description becaus®

ZGX, G2 ZGy, andG3

Solving Eqg.(A5) and applymg the solution to EGA3)
gives the dispersion relations

[w?—c?k?—A,—iB,](h,+ih,)=0, (A8)
[w?—c?k?—A_—iB_](h,—ihy)=0,
(A9)
whereA.=Rel.+Ay, B.=Iml_., and
| TKC? f f 320 =Kpy/(yom) £ 2w/ v
=7 PS J-w kp”/m YVow+ 2w,
X Fodp.dpy, (A10)

ism, and thus the “direct term” proportional tB? in the
coordinate frame formalism is compensated by a term asso-
ciated with the background curvature produced by the unper-
turbed magnetic field in the tetrad formalism. On the other
hand, the division into a direct effect of matter and an indi-
rect (background curvatujeeffect is not completely artifi-
cial: The direct effect is determineéntirely by the local
matter content, whereas the background curvature effect is
determined by the matter content both locally and globally.
Furthermore, the background curvature effect will necessar-
ily give contributions to Eqs(A8) and(A9) that are real and
independentf the gravitational wave frequen¢gee the dis-
cussion after Eq(A3)]. Noting that

kp”/m— VowF 2w,

w

~— %Yo

B Kp|/m—yo0+ 20,
(A12)
it is clear that the correction to the vacuum dispersion rela-
tions in the coordinate and tetrad frame formalism deviates
only by a frequency independent real constant, and in par-
ticular the cyclotron damping agrees perfectly within the
short wavelength approximation scheme. Adding the contri-
bution tol .. from the second term in E§A12) to Ay then all
differences between the tetrad and coordinate frame formal-
isms are collected in this term:

KC? Mo le+7TK2 f f

2(70m)3 fo

— yoP} Foc?/m|dpdp, . (A13)

Relaxing the assumption of Minkowskian background, i.e.,
adding “cross terms”(see Ref[1]) to Eq. (A3) (which of
course requires a different tetrad basis in that formalisme
could in principle confirm the agreement of the total disper-
sion relations including both direct and indirect effects. This
would be a tedious task, however, since we must then solve
for the background configuration including the anisotropic
magnetic field contribution. Since we have shown that the
separation into background curvature and “direct” matter
effects is not unique, one can question the relevance of the
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figures showing theeal (dispersive part of |. since only momentum tensor, and if that is the case, the difference dis-
the direct matter effect is containécecall that the damping Played in Eq.(A13) is negligible as compared to other back-
contribution is unique, however, and due to the direct effecground curvature contributiorf27]. For example, we could
only). But it turns out that there are three reasons that makg\(/jd the background curvature contributions for a Robertson-
also the real plots df.. relevant: First, the main contribution alker or a Schwarzschild baquround metric, using the. re-

. . sults of Refs[1] and[7], respectively, since the difference in
to the real value of . occurs in the frequency regime when ¢,,4jisms used in most cases would give only a negligible
cyclotron resonance effects plays a role, which always is @ontribution in comparison with that included. Thirdly, since
direct effect of matteindependent of formalisnSecondly,  the background curvature gives only a real constant contri-
for many cases the dominant contribution to the backgroun@ution to the dispersion relations, our plots always reveal the
curvature comes from the rest maggd) part of the energy frequency dependence of the dispersion.
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