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Gravitational waveforms with controlled accuracy
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A partially first-order form of the characteristic formulation is introduced to control the accuracy in the
computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our ap-
proach is to reduce the system of equations to first-order differential form on the angular derivatives, while
retaining the proven radial and time integration schemes of the standard characteristic formulation. This results
in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-
merger regime of binary black hole collisions.
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[. INTRODUCTION as Robinson-Trautman spacetimes, a perturbed Kerr black
hole[8] and the collapse of matter into a black hg, our
One of the most impressive achievements of the charaahoice of the gauge conditions at the boundary effectively
teristic approach is its demonstrated ability to carry out longprecluded fulfilling the second condition above. In all cases,
term stable evolutiongl] of generic single black hole space- the boundary data was given analytically, so no extraneous
times. Work is under way to extend these numericaleffects could be observed.
simulations to the post-merger regime of binary black hole This oscillatory mode is not amnstablemode of the finite
coalescence, by first computing the gravitational radiatiordifference approximation in the usual sense of exponential
emitted during a white hole fissidr2], and then extending growth of the error. This is confirmed by tests where random
these results to compute the gravitational waveforms emittethitial and/or boundary datf9] is prescribed, and the code
during the post-merger phase of a binary black hole collisiorrun for many crossing times. But it is worth pointing out that
[3]. while those tests are useful to spot exponentially growing
The present work is an outgrowth of one of these projectsmodes, they would not detect a non-exponentially growing
having been motivated by numerical difficulties that we haveoscillatory mode such as the one we address here.
encountered with the present implementation of the charac- We observe, in fact, an inaccuracy in the computation of
teristic coddg4]. In the course of our simulations of a white- the metric variabléV, which does not converge to zero, and
hole fission 2], we have noticed an angular oscillation modegets triggered in situations where there are large angular
in some of the metric variables of the characteristic formu-variations and rapid time changes in the metric variables,
lation, similar in appearance torad-black[5] decoupling. specially in 8, Eqg. (1). Becauseg is related to the time
Numerical experiments reveal that although the area that glicing of the boundaryand in the black hole case, this
affects can be somewhat reduced, its amplitude does not cobeundary is the event horizoK "), 8 will indeed change
verge to zero with increasing grid resolution for practicalsubstantially near the time a@balescenc®f a binary black
grid sizes in the rapidly changing environment near the timenole horizon(or, in the time-reversed description actually
of merger of a binary black hole. We had expected to seesed by our numerical code, near the timefigsion of a
convergence in this regime, given the measured second ordeshite hole.
convergence of the code on less rapidly changing solutions, ThePITT null code runs stably in the usual serfagthout
even at fairly low resolution§4,6]. exponentially growing modgsn the configurations that we
This effect is clearly of numerical nature, and would nothave explored. The effect of the angular noise is nevertheless
have been observed in earlier work, as it is only triggeredmportant for our present purposes, since the angular error it
when, in addition to extreme nonlinearities in the metricintroduces in the metric functions is most pronounced near
functions (such as those found in the post-merger phase ofiull infinity, and this in turn spoils the accuracy of the wave-
the head-on collision of two black holes, or in the time-forms computed.
reversed picture, during the fission of a single black-hae We have found that the difficulty lies with the character-
fairly large degree of asymmetry and of time dependence iiistic evolution equations themselves, and it is not a
the metric functions is present. Moreover, it appears thaboundary-induced effect. Although the boundahprizon
even when some of these conditions are satisfied, the dissilata is smooth and, by construction, satisfies the consistency
pation built into the algorithm used for the evolution the conditions[10], the evolution and hypersurface equations
conformal metric of the spherég] can, in certain circum- themselves introduce the above mentioned oscillation mode,
stances, be sufficient to suppress the spurious oscillationghich is shown clearly in Fig. 1. We have found clear evi-
provided the boundary data is specified analyticgf dence that the origin of the difficulty lies with those terms in
In the systems that we have previously considered, sucthe equations that contain second angular derivatives. These
type of terms are present both in the evolution equation for
the conformal metric of the surfaces at constant luminosity
*Email address: gomez@pitt.edu distancer, and in the hypersurface equation for the metric
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that a stable discretization of a model problem ag7ihmay
not address other issues such as those raised here. The nu-
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We consider here a different solution, which is analytic in
35 nature, but motivated by a numerical application, specifically
the need to attain controlled accuracy in the computation of
gravitational waveforms out of highly distorted single black
hole systems. Our approach is to remove the offending sec-
ond angular derivatives from our system of equations alto-
gether, by introducing additional variables, in terms of which
the enlarged system can be written in first differential order
form in the angular coordinates. We thus implemepagtial
reduction to a first differential order system, leaving the ra-
dial part of the evolution equations in second order form, and
FIG. 1. The metric functionV at null infinity, displaying the —allowing for mixed radial and angular derivatives, both in the
angular oscillation mode, a consequence of the second angular deriginal equations and in the auxiliary equations introduced.
rivatives in the original system of equations. While the code is notOne goal is to preserve, where appropriate, the radial and
unstable in the usual sense, the accuracy of the computation canriime integration schemes developed for theT null code,
be improved by increasing the grid resolution. whose long-term stabilityin the usual sense of not having
exponentially growing modedas been amply demonstrated
function W itself. Most notably, when this terms are sup- [1]. At the same time, we perform the necessary modification
pressed, so is the angular oscillation modeAinThe most  to the system of equations to make et null code useful
troublesome terms are those containing second angular dfsr the problem at hand.
rivatives of the metric variabl@, of the formdd8 andd?p. The plan of the present paper is as follows: in Sec. Il we
Second angular derivatives of the conformal melrig,  briefly review the characteristic formulation in its standard
Eq. (1), also appear in the hypersurface equationVigrin ~ second-order form. This material has appeared in R&f3],
the form of82 andd8 operators acting on quantities defined and we include it here in a condensed form, as needed for the

in terms of the conformal metric. However, these terms ddl€rivation of the partially reduced system. Our new results
not seem to lead to numerical difficulties as pronounced a&r€ contained in Sec. lll and onward, where we present a
those caused by the terms involving second angular derivaartial reduction of the characteristic formulation, with all

tives of 3, although the reason behind this is not entirelysecond order angular derivatives eliminated with the aid of a

clear at the moment. It is possible that in the present regim@ninima) set of additional variables. In Sec. IV, we review
the contribution from these terms is not as important. the discretization strategy for the system of equations intro-

Our rationale for implementing the characteristic code induced in Sec. lll. Finally, we present an application of the
mixed first and second order form has been that doing so igartially reduced system in Sec. V to the computation of the
entirely straightforward, and leads to an accurate and stabfPacetime exterior to a white hole horizon, comparing our
discretization with the least number of variables. The argu!€Sults with those obtained with the standard null cone for-
ment of using the least variables is compelling; however on&nulation.
must consider whether relaxing this requirement might not
Iegd_to_ better overall numerical behavior. We will show that Il. NULL CONE FORMULATION IN SECOND ORDER
this is indeed the case. FORM

Rigorous stability arguments can be given for the linear-
ized systenj11] in the axisymmetric case, with the analysis = The material in this section has appeared in Rpfs9]
extending unmodified to the full three-dimensional problemwhich should be consulted for a detailed derivation. Here we
as shown if9]. Later work[7] has shown that special care present the main equationgncluding all the nonlinear
must be taken in the nonlinear case, as some unstable modesms, in a slightly more compact form than that of Rpf],
are present that are not revealed by the Von-Neuman analyer ease of reference and to provide a starting point for the
sis of the linear problem. One must keep in mind howevempproach developed in Sec. lIl.

{
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We use coordinates based upon a family of outgoing null 1 _ r4 _
hypersurfaces, lettingi label these hypersurfaces” (A + E(J62,8+J62/3) —E!’Zﬁg(ZKU,,U,r
=2,3), label the null rays, andbe a surface area coordinate,
. a: A . . I P
such that in thex®*=(u,r,x”) coordinates, the metric takes +JU,2r+JU,2r)- (5)

the Bondi-Sachs forri12,13
and the evolution equation fdk; obtained fromRgq”qE,

w
ds’=—|e?# 1+— —r?h gUAUB|du?—2e?Adudr
2(r\]),ur_(r71v(r~]),r),r
—2r2hABUBdUd)A+rZhABdXAdXB, (l) — _r—l(r26U) r+2r—1e2ﬁ(62ﬁ+(6ﬁ)2)
whereW is related to the Bondi-Sachs variableby V=r —(r~'W) J+N;. 6)

+W; and whereh”"Bhg .= 62 and dethag) = det(qag), With
gag @ Unit sphere metric, give_n in terms of a complex dyadwhere[14]
qa satisfying g*ga=0, g*da=2, q*=q*gs, with

_ _ P _ 1 . 1 -
0*°dsc= ¢ anddag=7(dals+dads). o  R=2K— 8K+ = (8234 0%0) + — (8363—8383). (7)

We represent tensors on the sphere by spin-weighted vari- 2 4K

ables[14]. The conformal metrichag, Which satisfies the ) ) )
condition deth,g) = det(qagp), is represented by the complex and  we have used the intermediate variabl@
function J=1h,sq”q® and by the real functionk  =r2e 2(JU,+KU ). N; denotes the non-linear terms

=3hagd”q®, whereK?=1+J3J. The metric functionsJ”

are similarly encoded in the complex functidh=q,U"

[4,9]. Angular derivatives are expressed in terms$yaindd J

operators, for details, see R¢L4]. + (PPt PstPy) 8
The equations for the null cone formulation, in second

order form, are obtained directly from the appropriate com-yhere

ponents of the Ricci tensd#,9]. These equations form a

hierarchy, splitting into hypersurface equations, which in- e?h } _

volve only derivatives on the null conee. R, =0 provides Nj1=———(K(3J65+20K55—-0308)

an equation fog3, in terms ofJ, while R 4q”=0 givesU,,

in terms ofJ and 8, and the trac&R,gh”P=0 yieldsW,, in +3(8388—25K8pB) - I8358),

terms ofJ, B andU, respectively.

N3=Nj1+Njya+Nyz+Nys+Nys+Nyg+Ny7

The main equationg4,9] consist of the hypersurface 1 _ .
equations N32=—E(éJ(rU'r+2U)+6J(rU,r+2U)),
r I
_ _ k2 J— _
Br= gl =Ko, (2) Nys=(1—K)(rdU ,+28U)—J(rdU ,+20U),
(r’Q),,=—r*(3J+6K) (+2r*a(r ?B), re

NJ4=Ee_zﬁ(KZinL2JKU,,U,r—I—J2U’2r),
+r2[ (1-K)(8K ,+8J ) +0(3J ) +8(IK ;)
r —
NJSZ_EJ’r(6U+6U),
. R _ .
—J,,6K+%(6J(J,F—JZJJ)+6J(J,r—J2J,r))).

1 = = —
. NJezr(E(U6J+U6J)(JJ’r—JJYr)+(JK'r—KJ'r)UéJ

e2h _ —U(0J,—2KOKJ ,+2J0KK ;)
U= —5(KQ=3Q), (4)

—U(83,—KdIJ,+I0IK ;)

1 _ 1 —
W, =se?PR—1-ef38ef+ —r (r*(d3U+3dU))

2 4 Ny=r(J ,K—JIK,)(U(8J—5K)+U(K—0dJ)

+e28| (1—K)(58B+0B8) + %(J(ég)? +K(8U—-3U) +(J3U —J3U)),

_ 1 o _ Jo—  — 3,
+J(6,8)2)—E(éB(éK—éJ)+6,B(6K—6J)) P,=r2 ?(J,rK—JK,,)+?(J,rK—JK,r))—svps,r,
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P,=e2#(—2K(58B8+5B33) — (583K + 585K)
+(I(8%B+(3B)?)+I(8°B+(3B)?))
+(8388+033p)),

r _ _ _ _
P3=5((r8U +28U)+(rou ,+200)),

4
r J— . J—
P4=—Ze*ZB(ZKu,ru,rJrJu?rJrJu?r).
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of the conformal metric because no use is made there of the
determinant condition. The conformal metitgg satisfies
the condition detf,g) =det(ag), i.€., it contains only two
independent pieces of information, which are given in our
notation by the complex functiod=3h,gq”qB. The re-
maining dyad component, given by the real functi&n
=3hapq”q®, is completely determined by the relatidt?
=1+JJ, which is a consequence of the determinant condi-
tion.

Therefore only two of the three complex quantities in Eqs.
(10),(12) can be given independently, with the remaining one
fixed by the determinant condition. Our choice is to intro-

9

In Refs.[4,9] we have made a partial reduction to a firstduce the additional variables=35J andk=05K. By inspec-

order system by introducing the auxiliary varial@e which
plays the role olJ ;. We sometimes refer to this system as
first order (in time) because only the firsfretarded time
derivative ofJ appears. See Ref§4,9] for details of the

discretization of the above system of equations.

IIl. NULL CONE FORMULATION IN PARTIALLY
REDUCED FORM

tion of Egs.(2)—(8), we note that to put the system in first
order form in the angular derivatives, we need only introduce
one more auxiliary variableB=0.

The new variables are initialized at the boundary visth
=98, v=08J andk=3K respectively, and the consistency
conditions

B:=08;, (13

A reduction to first order form of the system of equations
in Ref. [9], in the quasi-spherical approximation, was con- -
sidered by Frittelli and Lehnd5]. In their work, the main ve=0J,, (14)
variables areJag=hag—0ag, Ua, B and W=V —r+2m,
which measure deviation from Schwarzschild. The auxiliary k,=0K, (15
variables they introduce to reduce the system to first order

form are the following radial and angular deLivati\ies of the propagate them to the interior, being the additional hypersur-
metric functions,Ba=Ba, Magc=Jasc, Q"=U} and  face equations for the new variables.

PAB:JAB,r .

Here we do not work with tensor components directly, but
instead, following Refs[9,4], we represent tensors in terms gog ~
of spin-weighted variables. For example, instead of writing
the equations in terms oB,, we work with B=g”8 A

=903, and express its angular derivatives in terms ahdd
operators. Second angular derivativesffcan in turn be  0.02

expressed in terms @B anddB.

Eliminating all second angular derivatives in the hyper- 0
surface and evolution equations necessitates the introductio
of exactly three complex variables. Since by symmetry there0-04
are only three independent components of the conforma-p.0e |
metric h,g, there are then only six possible angular deriva- 0
tives hag ¢, Which are encoded in the three complex quan-

tities
1 A~BAC
MZéJZEhAB,cq a-q-,

1 _
v=0J= 5 hAB,chquC,

1 _
k=0K= EhAB,CquBq )

0.04

5
&
S

0 .'.q//

N

K

SN
’ ‘ \\\\\&ll
N

\
N
“&\\\“ N

NS
LRSI LI

V. >3

(10

(11)

(12) 35 0

FIG. 2. The variabl&V at null infinity, when the second angular

with spin weight(3), (1) and (1),respectively. The first derivatives are removed by introducing the auxiliary variatBes
order system for the quasi-spherical case consider¢tiSh =¢8, »=38J andk=0K. The figure shows that the angular oscil-
introduces six new variables just for the angular derivativegation mode has been eliminated.
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The complete system of equations consists of Eds- r2U ,=e?$(KQ—JQ) (22)
(12) of Ref. [4], together with Eq(15), i.e., the evolution !
equation forJ

2(1),ur = (1Y) ), ?—K(88+B§)+j(68+82)

(rZVv),rzm[eZﬁ

2 2
__ < 228 2 _ i} re.
K(roU  +26U)+ ~€*%(5B+B?) +(v—k)B)—1+2r6U+76U,r
~ ~ r4_ —
— (W, +W)J+Jy+JP,, (16) _eZﬁZuyr(Ku,rHU,r)] (23
and the hierarchy of hypersurface equations
v, =08J, 7 where
K,=0K, (18
P T w2 R=R 2K+6(v—k)+i(|6J|2—|y|2) (24)
IB,rz g(J,rJ,r_K,r) (19 4K '
Br=08, (20)
In Egs.(16)—(24) we have expressed the second angular de-
(r2Q) ,=r[—K(k,+v r)+;~] r+‘]_6‘] ) rivatives in terms o operators acting oB, v andk, replac-
' o ' ' ing alsod andd operators acting upod, K and 8 with the
;2 corresponding auxiliary variables whenever possible.
+uK Ik, —J K]+ _2[7(3 —J23) As in[9], we have regularized th& , equation by setting
2K W=r2W, and as in Appendix A of4], we split the terms
which vanish in the quasi-spherical approximat{®j} into
+03(J r_‘]z‘]_r)]+2r25 —4rB (21)  two parts, one which contains only hypersurface derivatives,
|
e?f

J=—(= K3JIB+ (Kv+ (K2—1)3J—2KK)B+J[(2k— v)B— 2K (8B +BB) + 2R[ (v— k) B+ J(3B+B?)]])

r3 _ _ _ 1 -
+ Ee—2ﬁ((KU,r+Ju,,)Z—Jf)%[U,,(KU,,+JU,,)])— SLp(rU  +2U)+38(rU +2U)]

+3Ji3[8(rU ;+2U)]—rd (RBUT+r(UdI+U»)id[IJ,]-r(UdI ,+Uv ) —2r(IK,—KJ )

X (R[UK]+i3[KSU—JI5U])—8I(1+rW) 8, (25

and another, where we have explicitly isolated the only non—=u,r,x) coordinates to the metric on a Bondi frameZat
linear term wherdretarded time derivatives of] appear, [4]. (The relevant expressions are given in Appendix B of
Ref.[4] and we will not repeat them hejenspection of Egs.
(B1)—(B6) of [4] reveals that the second angular derivatives
of the conformal factorw enter in the calculation as well. To
remove these derivatives, we introduce the auxiliary variable
The procedure just described eliminates all second angud/’=0w. Sincew is defined solely orZ *, we use the con-
lar derivatives from the hypersurface and evolution equasistency relationV ,=0w , to propagate/V along the gen-
tions. In computing the Bondi News, we must also evaluateerators of Z*, initializing it with W,=03w,, Where wg
the conformal factow, which relates the metric on the* = w(x",u=uy).

Pu=2K—r R, (K=K ). (26
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FIG. 3. The real part of the Bondi new®| N], displays also a
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FIG. 4. The real part of the Bondi new3[N] as computed

pronounced angular oscillation mode. The part of the north steredrom the metric functions obtained from the numerical evolution of

graphic patch below the equator has been masked out.

IV. NUMERICAL INTEGRATION

We use the compactified coordinate=r/(R+r), such
thatx=1 at future null infinity,Z *. Thus, the relevant radial
derivatives can be written ag =(1—x)%/Rd,, rd,=x(1
—x)d, andr?d,=Rx%d,, all of which are regular ak=1.
As in [9], we carry out the radial integration with the right-
hand side of Eqs(21) evaluated at midpoints of the radial
grid,

Qi(xi(1=x))+AX)— Qj_1(Xj—1(1—X;_1) —AX)
(r’Q)

r

AX, (27)

i—1/2

and the same treatment is applied to E2B). Note that the

hypersurface and evolution equations are manifestly regular

atZ" when expressed in the variableexcept for the terms
—4rB in Eq.(21) and 28U in Eq. (23) respectively, which

have an extra factor of. This factor, which would make
them singular afZ ", is effectively canceled by the corre-

the modified system of equations of Sec. Ill. Comparison with Fig.
3 makes it clear that the angular oscillation mode is no longer
present.

sponding factor of X/ which appears in the right-hand side
of Eq. (27), hence the equations are regular for0. Note
also the limiting form of Eq(21) atZ*, Q= —2B, which is
useful in the discretization df , . For details on the numeri-
cal implementation of theth operators, see Refl4]. The
radial integration algorithm is explained in detail in Refs.
[11,9,4,7 and we will not cover it here. A departure frdmh|

is that we use a 3-step iterative Crank-Nicholson scheme
[16] to ensure stability of the time evolutidi7]. For the
time integration of the conformal factor we use a combina-
tion of second-order Runge-Kutta and mid-point riBé in-
tegration schemes.

V. WAVEFORMS FROM A FISSIONING WHITE HOLE

We have implemented the system of equations presented
in Sec. lll, and used it in the calculation of the waveforms
emitted by a fissioning white hole. The details of that calcu-
lation are beyond the scope of this work and will appear
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elsewherdg2,3]. The spacetime exterior to a white hole ho- the computation of the radiation, as encoded in the Bondi
rizon is computed, by solving a double-null initial-boundary news. The quality of the numerical waveforms is greatly im-
value problem. Boundary data is given on a white hole hoproved in the partially reduced system. This is readily appar-
rizon, and initial data is specified on an outgoing null surfaceent comparing Figs. 3 and 4, which display the real part of
emanating from the horizon. the Bondi News, at a fixed time, for the standard and the
A procedure for the construction of the complete bound+educed form of the equationdn the plots, the region of the

ary data, i.e., the intrinsic and extrinsic geometry of thepatch below the equator has been masked) tile the
white hole horizon, and a description of how to obtain theevolution of the exterior spacetime is stable with the standard
boundary data necessary to compute the exterior space-tina@proach, the numerical noise swamps the signal. The noise
via characteristic evolution can be found in Ref0]. Some is more pronounced near the edges of the stereographic
regularization of the equations is needed to ensure we deghtch, and it propagates to the interior. Figure 4 shows that,
only with fields which are regular in the entire exterior with the partially reduced system, the Bondi NewsZdt is

spacetimg 2]. perfectly smooth.
By reducing the system of equations presented in Refs.
[10,2] into the form presented in Sec. Ill, with the addition of VI. CONCLUSIONS

the auxiliary variable8=988, v=0J and k=038K, we are
able to remove the angular oscillation clearly present in th"?h
metric functionW when this is computed with the standard
approach.

We take as our benchmark case the most nonlittégh-

We have introduced a system of equations which takes
e traditional null cone formulation and casts it as a system
of equations which is of first differential order in the angular
variables.

2 . . . The effectiveness of this approach is clearly demonstrated
te_st_teccentrlcn)t/casef c_or;gg:lzerﬁ_tlj’].m RefLOJ, W'tg art1 eccen- by comparing the metric functions at null infinity, and spe-
ficity parameter ole= - NS corresponds 1o a case cially the waveforms atZ ™ when computed via this ap-

where the white hole horizon pinches off before the expan, roach versus those obtained with the traditional character-
sion of the outward null rays goes to zero, a necessary conf)-

dition for a Bondi evolution forward in time throughout the stic aptproach, in which second-order angular derivatives are
pre-fission period. P We have thus shown that the partialy reduced systerm of
Figures 1 and 2 show the metric functisiat Z* on the © nave Thus SNown Iat the parially reuced system o

north stereographic patch for both approaches. There is equations is highly effective in suppressing numerical errors,

- ) . Which otherwise would adversely affect the calculations of
clearly visible high frequency angular mode present in th%vaveforms in highly nonlinear scenarios

edge of the patch in the calculation performed with the stan- We are currently using this approach to compute gravita-

dard approach, as seen in Fig. 1. This oscillatory mode Yional waveforms emitted during a white hole fiss{@} and

clearly absent from Fig. 2. . i : -
Using both approachestandard and reduckdve have ;;rmg the post-merger phase of a binary black hole collision

computed the waveforms, which correspond to the radiatio r};gg?nvﬁtﬁr;:‘ttl:grylslguﬁggg application to the characteristic
emitted by a highly distorted white hole. In the time-reverse '
scenario, this would correspond to the radiation incident
from Z~, and the white-hole horizon, to the post-merger
phase of a black hole horizon formed during a binary black We thank J. Winicour for a careful reading of the manu-
hole collision. How to use this information to control the script. We have benefited from conversations with S. Frit-
amount of incoming radiation and to gain insight into thetelli, and with N.T. Bishop and L. Lehner. This work has
radiation emitted during the post-merger phase of a blackeen supported by NSF PHY 9800731 to the University of
hole collision will be discussed elsewhd8,2,3. Pittsburgh. Computer time for this project was provided by
Our motivation in introducing the partially reduced sys- the Department of Physics and Astronomy, by the Pittsburgh
tem was to control the numerical difficulties encountered inSupercomputing Center and by NPACI.
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