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Gravitational waveforms with controlled accuracy
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A partially first-order form of the characteristic formulation is introduced to control the accuracy in the
computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our ap-
proach is to reduce the system of equations to first-order differential form on the angular derivatives, while
retaining the proven radial and time integration schemes of the standard characteristic formulation. This results
in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-
merger regime of binary black hole collisions.
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I. INTRODUCTION

One of the most impressive achievements of the cha
teristic approach is its demonstrated ability to carry out lo
term stable evolutions@1# of generic single black hole space
times. Work is under way to extend these numeri
simulations to the post-merger regime of binary black h
coalescence, by first computing the gravitational radiat
emitted during a white hole fission@2#, and then extending
these results to compute the gravitational waveforms emi
during the post-merger phase of a binary black hole collis
@3#.

The present work is an outgrowth of one of these proje
having been motivated by numerical difficulties that we ha
encountered with the present implementation of the cha
teristic code@4#. In the course of our simulations of a white
hole fission@2#, we have noticed an angular oscillation mo
in some of the metric variables of the characteristic form
lation, similar in appearance to ared-black @5# decoupling.
Numerical experiments reveal that although the area th
affects can be somewhat reduced, its amplitude does not
verge to zero with increasing grid resolution for practic
grid sizes in the rapidly changing environment near the ti
of merger of a binary black hole. We had expected to
convergence in this regime, given the measured second o
convergence of the code on less rapidly changing solutio
even at fairly low resolutions@4,6#.

This effect is clearly of numerical nature, and would n
have been observed in earlier work, as it is only trigge
when, in addition to extreme nonlinearities in the met
functions ~such as those found in the post-merger phase
the head-on collision of two black holes, or in the tim
reversed picture, during the fission of a single black-hole!, a
fairly large degree of asymmetry and of time dependenc
the metric functions is present. Moreover, it appears t
even when some of these conditions are satisfied, the d
pation built into the algorithm used for the evolution th
conformal metric of the spheres@7# can, in certain circum-
stances, be sufficient to suppress the spurious oscillati
provided the boundary data is specified analytically@8#.

In the systems that we have previously considered, s
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as Robinson-Trautman spacetimes, a perturbed Kerr b
hole @8# and the collapse of matter into a black hole@6#, our
choice of the gauge conditions at the boundary effectiv
precluded fulfilling the second condition above. In all cas
the boundary data was given analytically, so no extrane
effects could be observed.

This oscillatory mode is not anunstablemode of the finite
difference approximation in the usual sense of exponen
growth of the error. This is confirmed by tests where rand
initial and/or boundary data@9# is prescribed, and the cod
run for many crossing times. But it is worth pointing out th
while those tests are useful to spot exponentially grow
modes, they would not detect a non-exponentially grow
oscillatory mode such as the one we address here.

We observe, in fact, an inaccuracy in the computation
the metric variableW, which does not converge to zero, an
gets triggered in situations where there are large ang
variations and rapid time changes in the metric variab
specially in b, Eq. ~1!. Becauseb is related to the time
slicing of the boundary~and in the black hole case, thi
boundary is the event horizonH 1), b will indeed change
substantially near the time ofcoalescenceof a binary black
hole horizon~or, in the time-reversed description actual
used by our numerical code, near the time offission of a
white hole!.

The PITT null code runs stably in the usual sense~without
exponentially growing modes! in the configurations that we
have explored. The effect of the angular noise is neverthe
important for our present purposes, since the angular err
introduces in the metric functions is most pronounced n
null infinity, and this in turn spoils the accuracy of the wav
forms computed.

We have found that the difficulty lies with the characte
istic evolution equations themselves, and it is not
boundary-induced effect. Although the boundary~horizon!
data is smooth and, by construction, satisfies the consiste
conditions @10#, the evolution and hypersurface equatio
themselves introduce the above mentioned oscillation mo
which is shown clearly in Fig. 1. We have found clear e
dence that the origin of the difficulty lies with those terms
the equations that contain second angular derivatives. Th
type of terms are present both in the evolution equation
the conformal metric of the surfaces at constant luminos
distancer, and in the hypersurface equation for the met
©2001 The American Physical Society07-1
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ROBERTO GÓMEZ PHYSICAL REVIEW D 64 024007
function W itself. Most notably, when this terms are su
pressed, so is the angular oscillation mode inW. The most
troublesome terms are those containing second angula
rivatives of the metric variableb, of the formZZpb andZ2b.

Second angular derivatives of the conformal metrichAB ,
Eq. ~1!, also appear in the hypersurface equation forW, in
the form ofZp2 andZZp operators acting on quantities define
in terms of the conformal metric. However, these terms
not seem to lead to numerical difficulties as pronounced
those caused by the terms involving second angular der
tives of b, although the reason behind this is not entire
clear at the moment. It is possible that in the present reg
the contribution from these terms is not as important.

Our rationale for implementing the characteristic code
mixed first and second order form has been that doing s
entirely straightforward, and leads to an accurate and st
discretization with the least number of variables. The ar
ment of using the least variables is compelling; however
must consider whether relaxing this requirement might
lead to better overall numerical behavior. We will show th
this is indeed the case.

Rigorous stability arguments can be given for the line
ized system@11# in the axisymmetric case, with the analys
extending unmodified to the full three-dimensional proble
as shown in@9#. Later work@7# has shown that special car
must be taken in the nonlinear case, as some unstable m
are present that are not revealed by the Von-Neuman an
sis of the linear problem. One must keep in mind howe

FIG. 1. The metric functionW at null infinity, displaying the
angular oscillation mode, a consequence of the second angula
rivatives in the original system of equations. While the code is
unstable in the usual sense, the accuracy of the computation ca
be improved by increasing the grid resolution.
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that a stable discretization of a model problem as in@7# may
not address other issues such as those raised here. Th
merical analysis for mixed order systems is not yet at
level of sophistication achieved for first differential ord
systems. Long-term stable evolutions@1# have been
achieved, and this is a consequence of the remarkably g
choice of variables and coordinates inherent to Bondi’s s
tem of equations, as well as of the care taken in impleme
ing them numerically.

We have attempted to solve the problem at hand by
expeditious method of introducing further dissipation in t
equations, in the spirit of@7#. Regrettably, these numerica
remedies do not seem to have the desired effect, appare
because they do not go to the root of the problem.

We consider here a different solution, which is analytic
nature, but motivated by a numerical application, specifica
the need to attain controlled accuracy in the computation
gravitational waveforms out of highly distorted single bla
hole systems. Our approach is to remove the offending s
ond angular derivatives from our system of equations a
gether, by introducing additional variables, in terms of whi
the enlarged system can be written in first differential ord
form in the angular coordinates. We thus implement apartial
reduction to a first differential order system, leaving the
dial part of the evolution equations in second order form, a
allowing for mixed radial and angular derivatives, both in t
original equations and in the auxiliary equations introduc
One goal is to preserve, where appropriate, the radial
time integration schemes developed for thePITT null code,
whose long-term stability~in the usual sense of not havin
exponentially growing modes! has been amply demonstrate
@1#. At the same time, we perform the necessary modificat
to the system of equations to make thePITT null code useful
for the problem at hand.

The plan of the present paper is as follows: in Sec. II
briefly review the characteristic formulation in its standa
second-order form. This material has appeared in Refs.@4,9#,
and we include it here in a condensed form, as needed fo
derivation of the partially reduced system. Our new resu
are contained in Sec. III and onward, where we presen
partial reduction of the characteristic formulation, with a
second order angular derivatives eliminated with the aid o
~minimal! set of additional variables. In Sec. IV, we revie
the discretization strategy for the system of equations in
duced in Sec. III. Finally, we present an application of t
partially reduced system in Sec. V to the computation of
spacetime exterior to a white hole horizon, comparing o
results with those obtained with the standard null cone f
mulation.

II. NULL CONE FORMULATION IN SECOND ORDER
FORM

The material in this section has appeared in Refs.@4,9#
which should be consulted for a detailed derivation. Here
present the main equations~including all the nonlinear
terms!, in a slightly more compact form than that of Ref.@4#,
for ease of reference and to provide a starting point for
approach developed in Sec. III.

de-
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GRAVITATIONAL WAVEFORMS WITH CONTROLLED ACCURACY PHYSICAL REVIEW D64 024007
We use coordinates based upon a family of outgoing n
hypersurfaces, lettingu label these hypersurfaces,xA (A
52,3), label the null rays, andr be a surface area coordinat
such that in thexa5(u,r ,xA) coordinates, the metric take
the Bondi-Sachs form@12,13#

ds252Fe2bS 11
W

r D2r 2hABUAUBGdu222e2bdudr

22r 2hABUBdudxA1r 2hABdxAdxB, ~1!

whereW is related to the Bondi-Sachs variableV by V5r
1W; and wherehABhBC5dC

A and det(hAB)5det(qAB), with
qAB a unit sphere metric, given in terms of a complex dy
qA satisfying qAqA50, qAq̄A52, qA5qABqB , with
qABqBC5dC

A andqAB5 1
2 (qAq̄B1q̄AqB).

We represent tensors on the sphere by spin-weighted
ables @14#. The conformal metrichAB , which satisfies the
condition det(hAB)5det(qAB), is represented by the comple
function J5 1

2 hABqAqB, and by the real functionK

5 1
2 hABqAq̄B, where K2511JJ̄. The metric functionsUA

are similarly encoded in the complex functionU5qAUA

@4,9#. Angular derivatives are expressed in terms ofZ andZp

operators, for details, see Ref.@14#.
The equations for the null cone formulation, in seco

order form, are obtained directly from the appropriate co
ponents of the Ricci tensor@4,9#. These equations form
hierarchy, splitting into hypersurface equations, which
volve only derivatives on the null cone,i.e. Rrr 50 provides
an equation forb ,r in terms ofJ, while RrAqA50 givesUrr
in terms ofJ andb, and the traceRABhAB50 yieldsW,r in
terms ofJ, b andU, respectively.

The main equations@4,9# consist of the hypersurfac
equations

b ,r5
r

8
~J,r J̄,r2K ,r

2 !, ~2!

~r 2Q! ,r52r 2~ZpJ1ðK! ,r12r 4ð~r 22b! ,r

1r 2S ~12K !~ðK,r1ZpJ,r !1Z~ J̄J,r !1Zp~JK,r !

2J,rZpK1
1

2K2
~ZJ̄~J,r2J2J̄,r !1ZJ~ J̄,r2 J̄2J,r !!D .

~3!

U ,r5
e2b

r 2
~KQ2JQ̄!, ~4!

W,r5
1

2
e2bR212ebZZpeb1

1

4
r 22~r 4~ZŪ1ZpU !! ,r

1e2bF ~12K !~ZZpb1ZbZpb!1
1

2
~J~Zpb!2

1 J̄~Zb!2!2
1

2
~Zb~ZpK2ZJ̄!1Zpb~ZK2ZpJ!!
02400
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1
1

2
~JZp2b1 J̄Z2b!G2e22b

r 4

8
~2KU ,r Ū ,r

1JŪ,r
2 1 J̄U ,r

2 !. ~5!

and the evolution equation forJ, obtained fromRABqAqB,

2~rJ ! ,ur2~r 21V~rJ ! ,r ! ,r

52r 21~r 2ZU ! ,r12r 21e2b~Z2b1~Zb!2!

2~r 21W! ,rJ1NJ . ~6!

where@14#

R52K2ZZpK1
1

2
~Zp2J1Z2J̄!1

1

4K
~ZpJ̄ZJ2ZpJZJ̄!. ~7!

and we have used the intermediate variableQ
5r 2e22b(JŪ,r1KU ,r). NJ denotes the non-linear terms

NJ5NJ11NJ21NJ31NJ41NJ51NJ61NJ7

1
J

r
~P11P21P31P4! ~8!

where

NJ152
e2b

r
~K~ZJZpb12ZKZb2ZpJZb!

1J~ZpJZpb22ZKZpb!2 J̄ZJZb!,

NJ252
1

2
~ZJ~rŪ ,r12Ū !1ZpJ~rU ,r12U !!,

NJ35~12K !~r ZU ,r12ZU !2J~r ZŪ ,r12ZŪ !,

NJ45
r 3

2
e22b~K2U ,r

2 12JKU,r Ū ,r1J2Ū ,r
2 !,

NJ552
r

2
J,r~ZŪ1ZpU !,

NJ65r S 1

2
~ŪZJ1UZpJ!~JJ̄,r2 J̄J,r !1~JK,r2KJ,r !ŪZpJ

2Ū~ZJ,r22KZKJ,r12JZKK ,r !

2U~ZpJ,r2KZJ̄J,r1JZJ̄K ,r ! D ,

NJ75r ~J,rK2JK,r !~Ū~ZpJ2ZK !1U~ZpK2ZJ̄!

1K~ZpU2ZŪ !1~JZpŪ2 J̄ZU !!,

P15r 2S J,u

K
~ J̄,rK2 J̄K ,r !1

J̄,u

K
~J,rK2JK,r ! D 28Vb ,r ,
7-3



st

as

ns
n

r
d
he

u
s

ing

er
cti
er
m
a
n

ve

the

ur

di-

s.
ne
o-

t
ce

y

ur-

r

il-

ROBERTO GÓMEZ PHYSICAL REVIEW D 64 024007
P25e2b~22K~ZZpb1ZpbZb!2~ZpbZK1ZbZpK !

1~J~Zp2b1~Zpb!2!1 J̄~Z2b1~Zb!2!!

1~ZpJZpb1ZJ̄Zb!!,

P35
r

2
~~r ZpU ,r12ZpU !1~r ZŪ ,r12ZŪ !!,

P452
r 4

4
e22b~2KU ,r Ū ,r1JŪ,r

2 1 J̄U ,r
2 !. ~9!

In Refs.@4,9# we have made a partial reduction to a fir
order system by introducing the auxiliary variableQ, which
plays the role ofU ,r . We sometimes refer to this system
first order ~in time! because only the first~retarded! time
derivative of J appears. See Refs.@4,9# for details of the
discretization of the above system of equations.

III. NULL CONE FORMULATION IN PARTIALLY
REDUCED FORM

A reduction to first order form of the system of equatio
in Ref. @9#, in the quasi-spherical approximation, was co
sidered by Frittelli and Lehner@15#. In their work, the main
variables areJAB5hAB2qAB , UA , b and Ŵ5V2r 12m,
which measure deviation from Schwarzschild. The auxilia
variables they introduce to reduce the system to first or
form are the following radial and angular derivatives of t
metric functions,BA5b ,A , MABC5JAB,C , QA5U ,r

A and
PAB5JAB,r .

Here we do not work with tensor components directly, b
instead, following Refs.@9,4#, we represent tensors in term
of spin-weighted variables. For example, instead of writ
the equations in terms ofBA , we work with B5qAb ,A

5Zb, and express its angular derivatives in terms ofZ andZp

operators. Second angular derivatives ofb can in turn be
expressed in terms ofZB andZpB.

Eliminating all second angular derivatives in the hyp
surface and evolution equations necessitates the introdu
of exactly three complex variables. Since by symmetry th
are only three independent components of the confor
metric hAB , there are then only six possible angular deriv
tives hAB,C , which are encoded in the three complex qua
tities

m5ZJ5
1

2
hAB,CqAqBqC, ~10!

n5ZpJ5
1

2
hAB,CqAqBq̄C, ~11!

k5ZK5
1

2
hAB,CqAq̄BqC, ~12!

with spin weight(3), (1) and (1),respectively. The first
order system for the quasi-spherical case considered in@15#
introduces six new variables just for the angular derivati
02400
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of the conformal metric because no use is made there of
determinant condition. The conformal metrichAB satisfies
the condition det(hAB)5det(qAB), i.e., it contains only two
independent pieces of information, which are given in o
notation by the complex functionJ5 1

2 hABqAqB. The re-
maining dyad component, given by the real functionK

5 1
2 hABqAq̄B, is completely determined by the relationK2

511JJ̄, which is a consequence of the determinant con
tion.

Therefore only two of the three complex quantities in Eq
~10!,~12! can be given independently, with the remaining o
fixed by the determinant condition. Our choice is to intr
duce the additional variablesn5ZpJ andk5ZK. By inspec-
tion of Eqs.~2!–~8!, we note that to put the system in firs
order form in the angular derivatives, we need only introdu
one more auxiliary variable,B5Zb.

The new variables are initialized at the boundary withB

5Zb, n5ZpJ and k5ZK respectively, and the consistenc
conditions

B,r5Zb ,r , ~13!

n ,r5ZpJ,r , ~14!

k,r5ZK ,r ~15!

propagate them to the interior, being the additional hypers
face equations for the new variables.

FIG. 2. The variableW at null infinity, when the second angula
derivatives are removed by introducing the auxiliary variablesB

5Zb, n5ZpJ andk5ZK. The figure shows that the angular osc
lation mode has been eliminated.
7-4
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The complete system of equations consists of Eqs.~7!–
~12! of Ref. @4#, together with Eq.~15!, i.e., the evolution
equation forJ

2~rJ ! ,ur2~r 21V~rJ ! ,r ! ,r

52K~r ZU ,r12ZU !1
2

r
e2b~ZB1B2!

2~rW̃,r1W̃!J1JH1JPu , ~16!

and the hierarchy of hypersurface equations

n ,r5ZpJ,r ~17!

k,r5ZK ,r ~18!

b ,r5
r

8
~J,r J̄,r2K ,r

2 ! ~19!

B,r5Zb ,r ~20!

~r 2Q! ,r5r 2@2K~k,r1n ,r !1 n̄J,r1 J̄ZJ,r

1nK ,r1Jk̄,r2J,r k̄#1
r 2

2K2
@ n̄~J,r2J2J̄,r !

1ZJ~J,r2J2J̄,r !#12r 2B,r24rB ~21!
on

g
ua
at

02400
r 2U ,r5e2b~KQ2JQ̄! ~22!

~r 2W̃! ,r5RH e2bS R
2

2K~ZpB1BB̄!1 J̄~ZB1B2!

1~n2k!B̄D2112r ZpU1
r 2

2
ZpU ,r

2e22b
r 4

4
Ū ,r~KU ,r1JŪ,r !J ~23!

where

R5RS 2K1Zp~n2k!1
1

4K
~ uZJu22unu2! D . ~24!

In Eqs.~16!–~24! we have expressed the second angular
rivatives in terms ofZ operators acting onB, n andk, replac-

ing alsoZ andZp operators acting uponJ, K andb with the
corresponding auxiliary variables whenever possible.

As in @9#, we have regularized theW,r equation by setting

W5r 2W̃, and as in Appendix A of@4#, we split the terms
which vanish in the quasi-spherical approximation@9# into
two parts, one which contains only hypersurface derivativ
JH5
e2b

r
~2KZJB̄1~Kn1~K221!ZJ22Kk!B1J@~2k2n!B̄22K~ZpB1BB̄!12R@~n2k!B̄1 J̄~ZB1B2!## !

1
r 3

2
e22b~~KU ,r1JŪ,r !

22JR@Ū ,r~KU ,r1JŪ,r !# !2
1

2
@n~rU ,r12U !1ZJ~rU ,r12U !#

1JiI@Zp~rU ,r12U !#2rJ ,rR@ZpU#1r ~ŪZJ1Un!iI@JJ̄,r #2r ~ŪZJ,r1Un ,r !22r ~JK,r2KJ,r !

3~R@Ūk#1 iI@KZpU2 J̄ZU# !28J~11rW̃!b ,r , ~25!
of

es

ble
and another, where we have explicitly isolated the only n
linear term where~retarded! time derivatives ofJ appear,

Pu5
2r

K
R@J,u~ J̄,rK2 J̄K ,r !#. ~26!

The procedure just described eliminates all second an
lar derivatives from the hypersurface and evolution eq
tions. In computing the Bondi News, we must also evalu
the conformal factorv, which relates the metric on thexa
-

u-
-
e

5(u,r,xA) coordinates to the metric on a Bondi frame atI 1

@4#. ~The relevant expressions are given in Appendix B
Ref. @4# and we will not repeat them here.! Inspection of Eqs.
~B1!–~B6! of @4# reveals that the second angular derivativ
of the conformal factorv enter in the calculation as well. To
remove these derivatives, we introduce the auxiliary varia
W5Zv. Sincev is defined solely onI 1, we use the con-
sistency relationW,u5Zv ,u to propagateW along the gen-
erators of I 1, initializing it with W05Zv0, where v0
5v(xA,u5u0).
7-5
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ROBERTO GÓMEZ PHYSICAL REVIEW D 64 024007
IV. NUMERICAL INTEGRATION

We use the compactified coordinatex5r /(R1r ), such
thatx51 at future null infinity,I 1. Thus, the relevant radia
derivatives can be written as] r5(12x)2/R]x , r ] r5x(1
2x)]x and r 2] r5Rx2]x , all of which are regular atx51.
As in @9#, we carry out the radial integration with the righ
hand side of Eqs.~21! evaluated at midpoints of the radia
grid,

Qi„xi~12xi !1Dx…2Qi 21„xi 21~12xi 21!2Dx…

5
~r 2Q! ,r

r U
i 21/2

Dx, ~27!

and the same treatment is applied to Eq.~23!. Note that the
hypersurface and evolution equations are manifestly reg
at I 1 when expressed in the variablex, except for the terms
24rB in Eq. ~21! and 2r ZpU in Eq. ~23! respectively, which
have an extra factor ofr. This factor, which would make
them singular atI 1, is effectively canceled by the corre

FIG. 3. The real part of the Bondi news,R@N#, displays also a
pronounced angular oscillation mode. The part of the north ste
graphic patch below the equator has been masked out.
02400
ar

sponding factor of 1/r which appears in the right-hand sid
of Eq. ~27!, hence the equations are regular forr .0. Note
also the limiting form of Eq.~21! at I 1, Q522B, which is
useful in the discretization ofU ,r . For details on the numeri
cal implementation of theeth operators, see Ref.@14#. The
radial integration algorithm is explained in detail in Ref
@11,9,4,7# and we will not cover it here. A departure from@4#
is that we use a 3-step iterative Crank-Nicholson sche
@16# to ensure stability of the time evolution@17#. For the
time integration of the conformal factor we use a combin
tion of second-order Runge-Kutta and mid-point rule@5# in-
tegration schemes.

V. WAVEFORMS FROM A FISSIONING WHITE HOLE

We have implemented the system of equations prese
in Sec. III, and used it in the calculation of the waveform
emitted by a fissioning white hole. The details of that calc
lation are beyond the scope of this work and will appe

o-
FIG. 4. The real part of the Bondi news,R@N# as computed

from the metric functions obtained from the numerical evolution
the modified system of equations of Sec. III. Comparison with F
3 makes it clear that the angular oscillation mode is no lon
present.
7-6
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GRAVITATIONAL WAVEFORMS WITH CONTROLLED ACCURACY PHYSICAL REVIEW D64 024007
elsewhere@2,3#. The spacetime exterior to a white hole h
rizon is computed, by solving a double-null initial-bounda
value problem. Boundary data is given on a white hole
rizon, and initial data is specified on an outgoing null surfa
emanating from the horizon.

A procedure for the construction of the complete boun
ary data, i.e., the intrinsic and extrinsic geometry of t
white hole horizon, and a description of how to obtain t
boundary data necessary to compute the exterior space
via characteristic evolution can be found in Ref.@10#. Some
regularization of the equations is needed to ensure we
only with fields which are regular in the entire exteri
spacetime@2#.

By reducing the system of equations presented in R
@10,2# into the form presented in Sec. III, with the addition
the auxiliary variablesB5Zb, n5ZpJ and k5ZK, we are
able to remove the angular oscillation clearly present in
metric functionW when this is computed with the standa
approach.

We take as our benchmark case the most nonlinear~high-
est eccentricity! case considered in Ref.@10#, with an eccen-
tricity parameter ofe51022. This corresponds to a cas
where the white hole horizon pinches off before the exp
sion of the outward null rays goes to zero, a necessary c
dition for a Bondi evolution forward in time throughout th
pre-fission period.

Figures 1 and 2 show the metric functionW at I 1 on the
north stereographic patch for both approaches. There
clearly visible high frequency angular mode present in
edge of the patch in the calculation performed with the st
dard approach, as seen in Fig. 1. This oscillatory mod
clearly absent from Fig. 2.

Using both approaches~standard and reduced!, we have
computed the waveforms, which correspond to the radia
emitted by a highly distorted white hole. In the time-revers
scenario, this would correspond to the radiation incid
from I 2, and the white-hole horizon, to the post-merg
phase of a black hole horizon formed during a binary bla
hole collision. How to use this information to control th
amount of incoming radiation and to gain insight into t
radiation emitted during the post-merger phase of a bl
hole collision will be discussed elsewhere@18,2,3#.

Our motivation in introducing the partially reduced sy
tem was to control the numerical difficulties encountered
le
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the computation of the radiation, as encoded in the Bo
news. The quality of the numerical waveforms is greatly i
proved in the partially reduced system. This is readily app
ent comparing Figs. 3 and 4, which display the real part
the Bondi News, at a fixed time, for the standard and
reduced form of the equations.~In the plots, the region of the
patch below the equator has been masked out.! While the
evolution of the exterior spacetime is stable with the stand
approach, the numerical noise swamps the signal. The n
is more pronounced near the edges of the stereogra
patch, and it propagates to the interior. Figure 4 shows t
with the partially reduced system, the Bondi News atI 1 is
perfectly smooth.

VI. CONCLUSIONS

We have introduced a system of equations which ta
the traditional null cone formulation and casts it as a syst
of equations which is of first differential order in the angul
variables.

The effectiveness of this approach is clearly demonstra
by comparing the metric functions at null infinity, and sp
cially the waveforms atI 1 when computed via this ap
proach versus those obtained with the traditional charac
istic approach, in which second-order angular derivatives
present.

We have thus shown that the partially reduced system
equations is highly effective in suppressing numerical erro
which otherwise would adversely affect the calculations
waveforms in highly nonlinear scenarios.

We are currently using this approach to compute grav
tional waveforms emitted during a white hole fission@2# and
during the post-merger phase of a binary black hole collis
@3#, and we are studying their application to the characteri
problem with matter sources.
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