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Exact solutions with w modes
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An explicit necessary condition for the internal trapping of null geodesics, along with the occurrence of
resonance scattering of axial gravitational waves, is proposed for static spherically symmetric perfect fluid
solutions of Einstein’s equations. Some exact inhomogeneous solutions which exhibit this trapping are given
with special attention to boundary conditions and the physical acceptability of the space-times. In terms of the
tenuity (a5R/M at the boundary! all the examples given here lie in the narrow range 2.8,a,2.9. The
tenuity can be raised to more interesting values by the addition of an envelope without altering the trapping.
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I. INTRODUCTION

It is now well known that sufficiently compact stars~poly-
tropic or uniform density! can support the internal trappin
of null geodesics and the ‘‘w modes’’ found by Chan-
drasekhar and Ferrari~1991! @1,2#. These modes exist bot
for axial and polar perturbations, though the axial ones h
been studied more thoroughly. Thew modes in general hav
no Newtonian counterparts@3# since they are predominantl
modes of the spacetime. In the polar case they couple we
to the fluid while in the axial case there is no coupling at a
Recent numerical studies of thesew modes have involved the
effect of the equation of state@4# and their excitation@5,6#.
Whereas the role that thesew modes may play in real astro
physical processes remains open to much further inves
tion, it is fair to say that little is actually known about th
behavior of the governing potential of the wave equation
exact solutions of Einstein’s equations. Such knowledge
important since it is both a route to the physical understa
ing of relativistic phenomena and a check on numerical p
cedures. The purpose of this paper is to explore neces
conditions for the internal trapping of null geodesics and
existence ofw modes~when the centrifugal part of the po
tential dominates! in physically acceptable exact isolate
static spherically symmetric perfect fluid solutions of Ei
stein’s equations. We are able to exhibit physically acce
able exact solutions which have trapping and which co
supportw modes.

II. REVIEW OF PERFECT FLUIDS

Any metric is an ‘‘exact’’ solution to Einstein’s equa
tions. However, the consequent energy-momentum tens
almost never of any interest. What is of interest are soluti
which might have some contact with reality. Recently@7# a
collection of exact isolated static spherically symmetric p
fect fluid solutions have been subjected to the following
ementary criteria for physical acceptability:

~1! Isotropy of the pressure (p).
~2! Regularity of the origin by way of the scalars polyn

mial in the Riemann tensor@8–10#.
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~3! Positive definiteness of bothp and energy density (r)
at the origin.

~4! Isolation by way of the requirement that the pressu
reduce to zero at some finite boundary radiusr S.0.

~5! Monotonicity of bothp andr to the boundary.
~6! Subluminal adiabatic sound speed (vs

25dp/dr,1)
@11#.
Perhaps not surprisingly, only about 10% of the solutio
pass these elementary tests. In what follows we take the v
that solutions worthy of further consideration must pass
the applicable tests in at least some region@12#. We also take
the view that an analytic solution of Einstein’s equations c
be expected to approximate only a region of a realistic c
figuration. That is, an analytic solution could have an inter
causal limit (vs

251), a circumstance which precludes sta
dard stability arguments@13#, and yet provide an adequat
approximation for a region of a realistic configuration.

We begin by setting the notation. The line element
conventional form is~e.g.,@14#! @15#

ds25
dr2

12
2m~r !

r

1r 2@du21sin~u!2df2#2e2F(r )dt2

~1!

with the coordinates comoving in the sense that the fl
streamlines are given byua5e2F(r )d t

a . In terms of the func-
tions F(r ) andm(r ) the regularity conditions reduce to

F8~0!5m~0!5m8~0!50, ~2!

with 8[d/dr and F(0) a constant fixed by the scale oft.
Next, in terms of the perfect fluid decomposition@Tb

a

5„r(r )1p(r )…uaub1p(r )db
a#, solving for F8(r ) from the

r-component of the conservation equations and Einste
equations@¹aTr

a50 and Gr
r28pp(r )50# we obtain the

Tolman @16# -Oppenheimer-Volkoff@17# ~TOV! equation

F8~r !5
2p8~r !

r~r !1p~r !
5

m~r !14pp~r !r 3

r @r 22m~r !#
, ~3!

where, from thet component of the Einstein equations@Gt
t

528pr(r )#,
©2001 The American Physical Society05-1
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4pr~r !5
m8~r !

r 2
. ~4!

From the TOV equation@here taken to be the right-han
members of Eq.~3!# we observe thatp(r ) is maximal atr
50. Moreover, if there is an equation of state@p(r)# then
eitherr is maximal with respect tor at r 50 or p is maximal
wrt r at r 50. Despite that fact that the TOV equation h
been known for over sixty years, only recently@18# has its
mathematical structure been fully appreciated. For exam
we now know that forp(r ).0 there exists a unique globa
solution for every 0,p(0),`. It is not difficult to find ‘‘so-
lutions’’ of the TOV equation. For example,m(r ) can be
chosen in such a way that Eq.~3! yields a solution@with r(r )
following from Eq. ~4!#. The simplest choice is clearlym
}r 3 but this leads us back to the Schwarzschild interior
lution. The metric ~1! contains two functions,m(r ) and
F(r ), related by Eq.~3!. The first represents the gravitation
energy~effective gravitational mass! ~e.g.,@19#!. The second
is, in the weak field limitr @2m(r ), the Newtonian poten-
tial. This interpretation offers no insight into the meaning
F(r ) within Einstein’s theory, and is a good point to beg
our discussion.

III. NULL GEODESIC LIMIT

We start with the ‘‘centrifugal’’ part of the potential@20#
for non-radial odd parity perturbations. This governs the e
lution of null geodesics. Radial null geodesics of the me
~1! satisfy

t56E dr

eF(r )A12
2m~r !

r

1D, ~5!

with u, f, andD constant. Non-radial null geodesics satis
u5p/2 ~by choice!,

r 4f•251, ~6a!

e4F(r )t•25
1

b2
, ~6b!

and

r 2r •25S 12
2m~r !

r D S B~r !2

b2
21D , ~6c!

with

B~r ![re2F(r ), ~6d!

where •[d/dl for affine l, and b is a constant.0, the
‘‘impact parameter.’’ The ‘‘potential’’ impact paramete
B(r ) provides, by way of Eq.~6d!, an invariant physical
interpretation ofF(r ). Null geodesics are restricted by th
conditionb<B(r ) @21#.
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From conditions~2! and the definition~6d! it follows that

B~r !;c0r ~7!

asr→0 wherec0 is a physically irrelevant scale factor.@The
ratio B(r )/b is invariant to scale changes int.# It follows that
the necessary and sufficient condition for the internal tr
ping of null geodesics~that is the existence ofr 0 such that
r •50 andr ••,0 at r 0) is given by

F8~r !.
1

r
~8a!

or, from Eq.~3!,

p8~r !,2
r~r !1p~r !

r
~8b!

which, with an equation of state@p(r)# can be given as

r8~r !,2
r~r !1p~r !

vs
2r

. ~8c!

From Eq.~8a! and the TOV equation it follows that

r ,3m~r !14pp~r !r 3, ~9!

a relation which makes the trapping of null geodesics
manifestly relativistic phenomenon@22,23#.

IV. FULL POTENTIAL

The odd parity~axial! w modes are non-radial perturba
tions of the spacetime which do not couple to the fluid at
In terms of the frequencyÃ and mode numberl>2 the
governing equation is given by@24#

S d2

dr
*
2

1Ã2D Z5V~r * !Z, ~10!

wherer * is the ‘‘tortoise’’ coordinate

dr* 5
e2F(r )

A12
2m~r !

r

dr. ~11!

The potential is conveniently expressed in terms ofr and is
given by

V~r !5
1

B~r !2 S l ~ l 11!14pr 2@r~r !2p~r !#2
6m~r !

r D .

~12!

A necessary condition for the occurrence of resonance s
tering of axial gravitational waves by an isolated distributi
of fluid is a local minimum inV(r ) within the boundary of
the fluid. †If the centrifugal part of the potential„@1/B(r )2#
3@ l ( l 11)#… dominates, which is frequently but not alway
the case~see below!, then Eq.~9! provides such a condition.‡
5-2
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EXACT SOLUTIONS WITH w MODES PHYSICAL REVIEW D64 024005
It is the purpose of this paper to explore the occurrence
this minimum in physically acceptable exact solutions. It
the shape of the functionV(r ) which is of interest, and since
the exterior vacuum has a well known local maximum ar
;3.28M ~for l 52), the boundary conditions associated w
the fluid-vacuum interface need careful attention.

V. BOUNDARY CONDITIONS

The Darmois-Israel junction conditions demand the c
tinuity of the first and second fundamental forms at a bou
ary surface. These conditions are well known~e.g.,@25#! but
are usefully reviewed here. We take the ‘‘interior’’ metric
be of the form~1!. The ‘‘exterior’’ is the familiar Schwarzs-
child vacuum@in coordinates (r5” r ,u,f,T5” t)#:

ds25
dr2

12
2M

r

1r2@du21sin~u!2df2#2S 12
2M

r DdT2.

~13!

At the fluid interface (S), without loss in generality, we tak
u andf continuous~with intrinsic coordinatesu,f,t, where
t is the proper time!. This gives

rS5r S . ~14!

The continuity of the first fundamental form is completed
requiring that the particle trajectories at the boundary
timelike. The continuity of the angular components of t
second fundamental form~extrinsic curvature! give

M5m~r S!, ~15!

and the continuity of the remaining (t-t) component gives

FS8 5
M

r S~r S22M !
~16!

which, with the TOV equation, gives

p~r S!50. ~17!

To summarize, a static spherically symmetric fluid
matched to a vacuum exterior subject to~and only to! Eqs.
~14!, ~15! and ~17!. Further restrictions are frequently im
posed. In particular, if the coordinates are assumed ad
sible ~the metric and first derivatives assumed continuo
acrossS) then

e2F(r S)5122
M

r S
, ~18!

and

mS8 505r~r S!. ~19!

Whereas Eq.~18! can be achieved by a simple change
scale~of t or T), in general, Eq.~19! does not hold@26#.
Condition~18! is the necessary and sufficient condition forB
to be continuous and continuously differentiable atS. Simi-
02400
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larly, a simple change in scale makesV continuous but not
continuously differentiable atS. The wave equation~10! is
of course invariant to these changes in scale. In summarB
can be taken to be continuous and continuously differ
tiable atS, andV can be taken to be continuous@27#.

VI. EXAMPLES

Since the uniform density static sphere satisfies Eq.~9!,
one might guess that all static solutions do. This is not
case. For example, the Buchdahl@28# solution does not allow
a region which satisfies Eq.~9!. In contrast, the Tolman VII
solution does@29#. ~These are useful exact solutions for th
study of the equation of state of neutron stars@30#.! In what
follows we demonstrate a number of physically accepta
solutions which do satisfy Eq.~9!. We organize the example
by way of their motivating ansatz.

A. Prescribed form of m„r …

The Finch-Skea solution@31# is an exact solution which
gives reasonable values for the central densities of neu
stars. The solution derives from the ansatz

m~r !5
Cr3

2~11Cr2!
, ~20!

whereC is a constant. The line element can be given in
form

ds25v2dr21r 2dV22A2@~C22C1v !cos~v !

1~C11C2v !sin~v !#2dt2, ~21!

where v[A11v2, v2[Cr2 and A,C1 and C2 are con-
stants. ClearlyAC2 can be set by the scale oft leaving~say!
C and b[C1 /C2 as parameters. The latter is convenien
given by

b5
vStan~vS!21

tan~vS!1vS
~22!

wherevS[A11vS
2 , or equivalently, in terms of the tenuit

a[r S /M ,

a5
2vS

2

vS
2 21

. ~23!

The physical restrictions~3! and ~6! give, respectively, the
following lower and upper bounds tob @33#:

0.218<b<5.605, ~24!

but the limits which follow fromB andV are more transpar
ently expressed in terms ofa. Up to an irrelevant scale fac
tor, the potential impact parameter follows immediately a

B~v!5
w

~12bv !cos~v !1~b1v !sin~v !
. ~25!
5-3
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We find thatB has a local minimum fora,3 and a local
maximum with subluminal sound speed between the lo
maximum and minimum fora.;2.768. Some typical plots
of B are shown in Fig. 1. The full potential~up to an irrel-
evant scale factor! is given by

V~v!5

l ~ l 11!1
F~v !v2

2
23

v2

11v2

B2
~26!

where

F~v !5
21v2

v4
1

1

v2

~bv11!1~b2v !tan~v !

~bv21!2~b1v !tan~v !
. ~27!

Some typical plots ofV are shown in Fig. 2. We find tha
there is a local minimum inV ~with l 52) for a,;2.933
and the local minimum lies in a region with sublumin
sound speed fora.;2.755 @32#. The Finch-Skea solution
therefore offers an example of a causal exact solution w
trapping@13#.

B. Prescribed form of F„r …

A class of models, some of which satisfy conditions~1!
through~6!, starts with the ansatz

e2F(r )5D~11Er2!n, ~28!

FIG. 1. The potential impact parameterB for the Finch-Skea
solution. The curves~bottom to top! have (a,wS ,b) given by
(3,A2,2.638), (2.856,1.529,4) and (2.768,1.614,6.332). The ve
cal scale is irrelevant. Fora,2.768 the sound speed is superlum
nal beyond the local maximum inB. The curves are continued toS.

FIG. 2. The potentialV ~for mode numberl 52) for the Finch-
Skea solution. The curves~bottom to top! have (a,wS ,b) given by
(2.933,1.464,3.105), (2.856,1.529,4) and (2.806,1.575,5). The
tical scale is irrelevant. The curves are continued toS.
02400
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whereD and E are constants andn is an integer>1. The
casen51 is known as the Tolman IV solution@29#. It fol-
lows immediately from Eq.~8a! that this solution exhibits no
trapping (B is monotone increasing andV monotone decreas
ing!. For n52 condition ~3! fails. The casen53 satisfies
conditions~1! through~6!. It has been examined by Heintz
mann@34#, who gives the solution

ds25
dr2

S 12
3ar2

2

11C~114ar2!21/2

11ar2 D
1r 2dV22A2~11ar2!3dt2. ~29!

Again, in terms of the tenuity (a[r S /M ), we find that there
is a local minimum inV ~with l 52) for a,;2.902 and the
local minimum lies in a region with subluminal sound spe
for a.;2.788. A typical example is shown in Fig. 3 whe
V has been matched onto the vacuum exterior at the bou
ary S, and the minimum inV and sound speed limit hav
been indicated. The casesn54 andn55 satisfy conditions
~1! through~6! and have been solved by Durgapal@35# fol-
lowing the formulation of Korkina@36#. For n54 the solu-
tion is given by

ds25
~11Cr2!2dr2

S 7210Cr22C2r 4

7
1

KCr2

(115Cr2)2/5D
1r 2dV22A~11Cr2!4dt2. ~30!

In this case we find that there is a local minimum inV ~with
l 52) for a,;2.892 and the local minimum lies in a regio
with subluminal sound speed fora.;2.780. SinceB(r )
has a local maximum up toa<3, it is clear that the dynami-
cal part of the potentialV can dominate. Forn55 the solu-
tion is

i-

r-

FIG. 3. The potentialV ~for mode numberl 52) for the Heintz-
mann solution. Here we usea5r /M . aS52.850. V has a local
minimum ata52.717 and the sound speed becomes superlum
below a52.291.V for the vacuum exterior is also shown.
5-4
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ds25
~11Cr2!3dr2

S 12
Cr2~309154Cr218C2r 4!

112
1

KCr2

A3 116Cr2D
1r 2dV22A~11Cr2!5dt2. ~31!

We find similar results in this case. There is a local minimu
in V ~with l 52) for a,;2.886 and the local minimum lie
in a region with subluminal sound speed fora.;2.776.
The solutions~29!, ~30! and ~31! cannot represent the cor
region where, we note, they are acausal@13#.

VII. DISCUSSION

Condition ~9! is proposed as the necessary condition
the internal trapping of null geodesics, and for the occ
rence of resonance scattering of axial gravitational wa
when the centrifugal term dominates the potential, in sta
spherically symmetric perfect fluids@37#. This condition is
not always satisfied. For example, it is not satisfied in
Buchdahl@28# solution. We have demonstrated some phy
cally acceptable exact solutions for which the condition
satisfied. One, the Finch-Skea solution, offers an exampl
a complete causal exact solution with trapping. At the v
least, these examples can provide a check on numerical
cedures which attempt to gauge the role thatw modes may
play in real astrophysical processes. In every case stu
.
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here we have found that for resonance scattering the ten
(a5r S /M ) lies in the small range 2.8,a,2.9. @In all
cases, asa decreases, the causal boundary (vs

251), if it ex-
ists, moves out and approaches the minimum inV for some
minimuma, exactly as expected.# Whereas this range is we
above the Buchdahl limit of 9/4@38#, it is too low for, say,
neutron stars@30#. ~Unphysical solutions with trapping an
a.5 are known@39#.! It is reasonable to suggest, as h
often been done, that an exact solution may reflect only p
of a more realistic configuration. Boundary conditions with
a distribution are easily derived from the discussion given
Sec. V:p(r ) andm(r ) must be continuous to avoid surfac
layers~shells!. In particular,m(r ) need not be continuously
differentiable ~which, at least formally, allows first-orde
phase transitions!. All that is needed to raisea into a more
interesting range~say 3,a,10) is the addition of an enve
lope. The envelope is constructed subject to the continuity
p(r ) andm(r ) at r s , wherer s is exterior to the minimum in
V, and must allowp(r S)50 at a finite boundaryr S where
r s,r S @40#.
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