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Exact solutions with w modes

Mustapha Ishak, Luke Chamandy, Nicholas Neary, and Kayll take
Department of Physics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
(Received 15 August 2000; published 6 June 2001

An explicit necessary condition for the internal trapping of null geodesics, along with the occurrence of
resonance scattering of axial gravitational waves, is proposed for static spherically symmetric perfect fluid
solutions of Einstein’s equations. Some exact inhomogeneous solutions which exhibit this trapping are given
with special attention to boundary conditions and the physical acceptability of the space-times. In terms of the
tenuity (¢=R/M at the boundaryall the examples given here lie in the narrow range<2.8<2.9. The
tenuity can be raised to more interesting values by the addition of an envelope without altering the trapping.
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[. INTRODUCTION (3) Positive definiteness of bothand energy densitypl
at the origin.
It is now well known that sufficiently compact stapoly- (4) Isolation by way of the requirement that the pressure
tropic or uniform density can support the internal trapping reduce to zero at some finite boundary radiys-0.
of null geodesics and thew modes” found by Chan- (5) Monotonicity of bothp andp to the boundary.

drasekhar and Ferrafl99) [1,2]. These modes exist both  (6) Subluminal adiabatic sound speed?fdp/dp<1)

for axial and polar perturbations, though the axial ones havg11].

been studied more thoroughly. Thhemodes in general have Perhaps not surprisingly, only about 10% of the solutions
no Newtonian counterparf8] since they are predominantly pass these elementary tests. In what follows we take the view
modes of the spacetime. In the polar case they couple weakijiat solutions worthy of further consideration must pass all
to the fluid while in the axial case there is no coupling at all.the applicable tests in at least some redib?]. We also take
Recent numerical studies of thesenodes have involved the the view that an analytic solution of Einstein’s equations can
effect of the equation of stafé] and their excitatiod5,6].  be expected to approximate only a region of a realistic con-
Whereas the role that thesemodes may play in real astro- figuration. That is, an analytic solution could have an interior
physical processes remains open to much further investigaausal limit (¢=1), a circumstance which precludes stan-
tion, it is fair to say that little is actually known about the dard stability argumentfl3], and yet provide an adequate
behavior of the governing potential of the wave equation ingpproximation for a region of a realistic configuration.

exact solutions of Einstein’s equations. Such knowledge is \We begin by setting the notation. The line element in
important since it is both a route to the physical understandeonventional form ige.g.,[14]) [15]

ing of relativistic phenomena and a check on numerical pro-

cedures. The purpose of this paper is to explore necessary dr? oo _— . 5
conditions for the internal trapping of null geodesics and the  d = 2min) [d6*+sin(6)°d¢?]—e?P(dt
existence ofw modes(when the centrifugal part of the po- —

tential dominatesin physically acceptable exact isolated
static spherically symmetric perfect fluid solutions of Ein- @)
stein’s equations. We are able to exhibit physically accept-

. : ) ; c}/\/ith the coordinates comoving in the sense that the fluid
able exact solutions which have trapping and which coul Ltreamlines are given hy*=e~ & In terms of the func-
supportw modes. g N t

tions®(r) andm(r) the regularity conditions reduce to

r

Il. REVIEW OF PERFECT FLUIDS ®’'(0)=m(0)=m’(0)=0, 2

Any metric is an “exact” solution to Einstein’s equa-
tions. However, the consequent energy-momentum tensor
almost never of any interest. What is of interest are solution . ,
which might have some contact with reality. Recerfly a = (p(r) +p(r))uuy+p(r) ), sc_)lvmg for_cp (r) from _the .
collection of exact isolated static spherically symmetric per--component 0; the conservation equations and Einstein’s
fect fluid solutions have been subjected to the following el-€duations[V,Ty=0 and G, —8xp(r)=0] we obtain the

with "=d/dr and®(0) a constant fixed by the scale of
Bext, in terms of the perfect fluid decompositidiy

ementary criteria for physical acceptability: Tolman[16] -Oppenheimer-Volkoff17] (TOV) equation
(1) Isotropy of the pressurep]. , 3
(2) Regularity of the origin by way of the scalars polyno- ®'(r)= — p'(r) _ m(r)+4mp(rr 3)

mial in the Riemann tensdB—10). p(r)+p(r) rir—=2m(r)] '

where, from thet component of the Einstein equatiofS;
*Email address: lake@astro.queensu.ca =—8mp(r)],
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From conditiong?2) and the definitior{6d) it follows that
B(r)~ or (7)

From the TOV equatiorihere taken to be the right-hand asr—O0 wherey, is a physically irrelevant scale fact¢ihe
members of Eq(3)] we observe thap(r) is maximal atr ratioB(r)/b is invariant to scale changestin It follows that
=0. Moreover, if there is an equation of stdt@(p)] then the necessary and sufficient condition for the internal trap-
eitherp is maximal with respect toatr =0 orpis maximal  ping of null geodesicsthat is the existence af, such that
wrt p atr=0. Despite that fact that the TOV equation hasr =0 andr <0 atrg) is given by

been known for over sixty years, only recenfy8] has its
mathematical structure been fully appreciated. For example,
we now know that fop(r)>0 there exists a unique global

m'(r)
- 4

4mp(r)= ;

1
®'(1)>> (89

solution for every 6<p(0)< <. It is not difficult to find “so-
lutions” of the TOV equation. For examplen(r) can be
chosen in such a way that E@) yields a solutiorjwith p(r)
following from Eq. (4)]. The simplest choice is clearlyn

ocr3 but this leads us back to the Schwarzschild interior so-

lution. The metric(1) contains two functionsm(r) and

®(r), related by Eq(3). The first represents the gravitational

energy(effective gravitational magse.g.,[19]). The second

is, in the weak field limitr>2m(r), the Newtonian poten-
tial. This interpretation offers no insight into the meaning of
d(r) within Einstein’s theory, and is a good point to begin

our discussion.

Ill. NULL GEODESIC LIMIT
We start with the “centrifugal” part of the potentif2Q]

or, from Eq.(3),

p(r)+p(r)

; (8b)

p'(r)<-

which, with an equation of sta{e(p)] can be given as

. p(r)+p(r)
pl(N<———F5—. (8¢
ver
From Eg.(8a) and the TOV equation it follows that
r<3m(r)+4mp(r)rd, 9

a relation which makes the trapping of null geodesics a
manifestly relativistic phenomend2,23.

for non-radial odd parity perturbations. This governs the evo-

lution of null geodesics. Radial null geodesics of the metric

(1) satisfy

dr
t== f +D, (5)
2m(r)
e(D(I’) l_

r

with 6, ¢, andD constant. Non-radial null geodesics satisfy

0= /2 (by choice,

rtg?=1, (6a)
e 2= (6

and
SN

with
B(r)=re %), (6d)

where - =d/d\ for affine \, andb is a constant>0, the

IV. FULL POTENTIAL

The odd parity(axial) w modes are non-radial perturba-
tions of the spacetime which do not couple to the fluid at all.
In terms of the frequencys and mode numbelt=2 the
governing equation is given Hy4]

2
— +w?|Z=V(r,)Z, (10
*
wherer, is the “tortoise” coordinate
e_(p(r)
dr, =—————dr. (11
2m(r)

r

The potential is conveniently expressed in terms ahd is

given by
6m(r)
—

(12

V(r)=

B(r)z(I(I+1)+47-rr2[p(r)—p(r)]—

A necessary condition for the occurrence of resonance scat-
tering of axial gravitational waves by an isolated distribution

“impact parameter.” The “potential” impact parameter of fluid is a local minimum inV(r) within the boundary of

B(r) provides, by way of Eq(6d), an invariant physical

the fluid. [If the centrifugal part of the potentid] 1/B(r)?]

interpretation of®(r). Null geodesics are restricted by the X[I(l1+1)]) dominates, which is frequently but not always

conditionb<B(r) [21].

the casdsee below, then Eq.(9) provides such a conditioh.
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It is the purpose of this paper to explore the occurrences dhrly, a simple change in scale makéscontinuous but not
this minimum in physically acceptable exact solutions. It iscontinuously differentiable & . The wave equatioii10) is
the shape of the functiovi(r) which is of interest, and since of course invariant to these changes in scale. In sumniary,
the exterior vacuum has a well known local maximunr at can be taken to be continuous and continuously differen-
~3.28M (for | =2), the boundary conditions associated with tiable at>, andV can be taken to be continuo[&7].
the fluid-vacuum interface need careful attention.

VI. EXAMPLES

V. BOUNDARY CONDITIONS . . . . L
Since the uniform density static sphere satisfies (@j.

The Darmois-Israel junction conditions demand the con-one might guess that all static solutions do. This is not the
tinuity of the first and second fundamental forms at a boundease. For example, the Buchd#28] solution does not allow
ary surface. These conditions are well knoerg.,[25]) but  a region which satisfies E¢9). In contrast, the Tolman VII
are usefully reviewed here. We take the “interior” metric to solution doeg29]. (These are useful exact solutions for the
be of the form(1). The “exterior” is the familiar Schwarzs- study of the equation of state of neutron sti88].) In what
child vacuum(in coordinates (#r,60,¢,T#t)]: follows we demonstrate a number of physically acceptable
) solutions which do satisfy E¢9). We organize the examples
by way of their motivating ansatz.
1 2M

r A. Prescribed form of m(r)

(13 The Finch-Skea solutiof81] is an exact solution which
At the fluid interface E), without loss in generality, we take gives reasonable values for the central densities of neutron

¢ and ¢ continuouswith intrinsic coordinate®, ¢, 7, where ~ Stars. The solution derives from the ansatz
7 is the proper timg This gives

ds’=

2
+rd6%+sin(0)2dp?]— ( 1— TM) dT2.

Crd

re=rs. (14 = e (20

The continuity of the first fundamental form is completed by, hareC is a constant. The line element can be given in the
requiring that the particle trajectories at the boundary bg,.m

timelike. The continuity of the angular components of the

second fundamental forig@xtrinsic curvaturggive ds?=v2dr2+r2dQ%— AZ(C,— C,v)cogv)

M=m(rs), (15 +(C1+Cyv)sin(v)]%dt?, (21

and the continuity of the remainingr{r) component gives  where =1+ w?, w?=Cr2 and A,C, and C, are con-
stants. ClearhAC, can be set by the scale bfeaving(say

qyz:L (16) C and B=C,/C, as parameters. The latter is conveniently
rs(ry—2M™m) given by
which, with the TOV equation, gives vstan(vs)—1
= (22)
p(rs)=0. (17 tanvs) +vs

To summarize, a static spherically symmetric fluid iswherevs=1+ w%, or equivalently, in terms of the tenuity
matched to a vacuum exterior subject(émd only t0 Egs. a=rs/M,
(14), (15 and (17). Further restrictions are frequently im-

posed. In particular, if the coordinates are assumed admis- 2v§
sible (the metric and first derivatives assumed continuous a=——. (23
across) then vs—1
M The physical restrictiong3) and (6) give, respectively, the
e?®(s) = 1_2E' (18)  following lower and upper bounds 6 [33]:
and 0.218<B3=<5.605, (24
mi=0=p(ry). (19 but the limits which follow fromB andV are more transpar-

ently expressed in terms af. Up to an irrelevant scale fac-

Whereas Eq(18) can be achieved by a simple change intor, the potential impact parameter follows immediately as
scale(of t or T), in general, Eq(19) does not hold 26].

Condition(18) is the necessary and sufficient condition Bor B(w)= W (25)

to be continuous and continuously differentiableatSimi- (1-Bv)cogv)+(B+uv)sin(v)’
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FIG. 1. The potential impact parametBrfor the Finch-Skea
solution. The curvegbottom to top have (@,ws,B) given by
(3,7/2,2.638), (2.856,1.529,4) and (2.768,1.614,6.332). The verti- '
cal scale is irrelevant. Far<2.768 the sound speed is superlumi-
nal beyond the local maximum B. The curves are continued ¥ FIG. 3. The potentiaV/ (for mode numbet=2) for the Heintz-

i o mann solution. Here we use=r/M. ay=2.850.V has a local
We find thatB has a local minimum fow<3 and a local  minimum ate=2.717 and the sound speed becomes superluminal

maximum with subluminal sound speed between the locapelow a=2.291.V for the vacuum exterior is also shown.
maximum and minimum for>~2.768. Some typical plots
of B are shown in Fig. 1. The full potenti@lip to an irrel-
evant scale factgris given by

220 272285 328 o

whereD and E are constants and is an integer=1. The
casen=1 is known as the Tolman IV solutiof29]. It fol-

9 9 lows immediately from Eq(8a) that this solution exhibits no
Flv)w L @

I(1+1)+ 3 trapping B is monotone increasing andmonotone decreas-
2 1+ w? ing). For n=2 condition (3) fails. The casen=3 satisfies
V(w)= B2 (26) conditions(1) through(6). It has been examined by Heintz-
mann[34], who gives the solution
where
2402 1 (Bu+1)+(B—v)tanv) ds? dr’
[ 1% —v)tlanuv =
F(v)= +— .2 3ar? 1+C(1+4ar?)~ 12
W=t gD (proany) 27 1- ( )
2 1+ar?
Some typical plots oV are shown in Fig. 2. We find that +r2d02— A2(1+ar?)%de2. 29

there is a local minimum i/ (with |=2) for a<~2.933
and the local minimum lies in a region with subluminal
sound speed foer>~2.755[32]. The Finch-Skea solution Again, in terms of the tenuity¢=ry /M), we find that there
therefore offers an example of a causal exact solution wittis a local minimum inV (with 1 =2) for «<~2.902 and the
trapping[13]. local minimum lies in a region with subluminal sound speed
for «>~2.788. A typical example is shown in Fig. 3 where
B. Prescribed form of ®(r) V has been matched onto the vacuum exterior at the bound-
ary 3, and the minimum inv and sound speed limit have

A class of models, some of which satisfy conditidd$  peen indicated. The cases-4 andn=5 satisfy conditions

through(6), starts with the ansatz (1) through(6) and have been solved by Durgapas] fol-
e?*=Dp(1+Er)", (28) lowing the formulation of Korkind36]. For n=4 the solu-
tion is given by
1+Cr?)dr?
7—1OCr2—Czr4+ KCr?
7 (1+5Cr?)?/®
+r2dQ%—A(1+Cr?)*dt?. (30
0808 1 11 12 13 14 15 In this case we find that there is a local minimumvriwith

@ |=2) for «<~2.892 and the local minimum lies in a region

FIG. 2. The potentiaV (for mode numbet=2) for the Finch-  With subluminal sound speed far>~2.780. SinceB(r)
Skea solution. The curvebottom to top have @,ws ,8) given by ~ has a local maximum up te<3, it is clear that the dynami-
(2.933,1.464,3.105), (2.856,1.529,4) and (2.806,1.575,5). The vegal part of the potentia/ can dominate. Fon=>5 the solu-
tical scale is irrelevant. The curves are continued.to tion is
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(1+Cr?)3dr? here we have found that for resonance scattering the tenuity
ds?= 5 5 S . (a=ry/M) lies in the small range 28a<2.9. [In all
~ Cro(309+54Cr°+8C"r") N KCr cases, as decreases, the causal boundar§=(t), if it ex-
112 3/1+6Cr2 ists, moves out and approaches the minimunV ifor some
s N minimum «, exactly as expecteplWhereas this range is well
+rodQ = A(1+Cro)~dt". (3D above the Buchdahl limit of 9/438], it is too low for, say,

neutron star$30]. (Unphysical solutions with trapping and
a>5 are known[39].) It is reasonable to suggest, as has
often been done, that an exact solution may reflect only part
of a more realistic configuration. Boundary conditions within
a distribution are easily derived from the discussion given in
Sec. V:p(r) andm(r) must be continuous to avoid surface
layers(shellg. In particular,m(r) need not be continuously
VIl. DISCUSSION differentiable (which, at least formally, allows first-order

Condition (9) is proposed as the necessary condition forPhase transitions All that is needed to raise into a more
the internal trapping of null geodesics, and for the occur/nteresting rangésay 3<«<10) is the addition of an enve-
rence of resonance scattering of axial gravitational wave!PP€. The envelope is constructed subject to the continuity of
when the centrifugal term dominates the potential, in statid®(r) andm(r) atr,,, wherer, is exterior to the minimum in
spherically symmetric perfect fluid$7]. This condition is V. and must allowp(rs)=0 at a finite boundarys where
not always satisfied. For example, it is not satisfied in the »=<''s [40].
Buchdahl[28] solution. We have demonstrated some physi-
cally acceptable exact solutions for which the condition is
satisfied. One, the Finch-Skea solution, offers an example of
a complete causal exact solution with trapping. At the very We thank Kostas Kokkotas, James Lattimer, Eric Poisson
least, these examples can provide a check on numerical prand Kjell Rosquist for helpful comments. This work was
cedures which attempt to gauge the role tivanodes may supported by a grarfto K.L.) from the Natural Sciences and
play in real astrophysical processes. In every case studiddngineering Research Council of Canada.

We find similar results in this case. There is a local minimum
in V (with | =2) for «<~2.886 and the local minimum lies
in a region with subluminal sound speed far>~2.776.
The solutions(29), (30) and (31) cannot represent the core
region where, we note, they are acaydd).
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