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Holographic renormalization group flow and the low-energy, strong coupling, largeN limit
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~Received 12 December 2000; published 31 May 2001!

From the AdS/CFT correspondence, we learn that the classical evolution of supergravity in the bulk can be
reduced to a renormalization group~RG-! flow equation for the dual low-energy, strongly coupled and largeN
gauge theory on the boundary. This result has been used to obtain interesting relations between the various
terms in the gravitational part of the boundary effective action, in particular the terms that affect the cosmo-
logical constant. It is found that once the cosmological constant is canceled in the UV theory, the RG-flow
symmetry of the boundary effective action automatically implies the existence of zero cosmological constant
solutions that extend all the way into the IR. Given the standard~and well founded! contradiction between the
RG-flow idea and the observational evidence of a small cosmological constant, this is considered to be
important progress, albeit incomplete, towards the final solution. Motivated by this success, it would be
interesting to see whether this RG stability extends outside the scope of strong ’t Hooft coupling and the large
N regime that are implicitly assumed in the de Boer–Verlinde–Verlinde Hamilton-Jacobi formulation of the
holographic RG-flow equations of the boundary theory. In this paper, we address this question, where we start
first by identifying the modifications that are required in the Hamilton-Jacobi formulation of the bulk super-
gravity theory when the strong ’t Hooft coupling and the largeN limits are relaxed. Next, taking into account
the leading order corrections in these parameters, we derive new bulk-boundary relations, from which one can
read all the local terms in the boundary effective action. Finally, we use the resulting new constraints to
examine whether the RG stability of the cosmological extends to the new coupling regime. It would be also
interesting to use these constraints to study the Randall-Sundrum scenario in this case.
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I. INTRODUCTION

According to the holographic principle@1,2#, a macro-
scopic region of space and everything inside it can be re
sented by a boundary theory living on the boundary of t
region.1 Furthermore, the boundary theory should not cont
more than one degree of freedom per Planck area. This
lographic principle has in the past few years found a rema
able realization in superstring theory due to new insig
gained from the investigation of various superstring du
ties. At the heart of this string theory incarnation of the h
lographic principle is growing evidence for an intimate co
nection between quantum phenomena in gauge theory
classical aspects of gravity. Early examples illustrating s
a relation are D-branes@7,8#, black hole entropy counting
@9#, and matrix theory@10#. However, the clearest stateme
about the duality between gauge theory and gravity is m
within the framework of the recently discovered AdSD (D
21)-dimensional conformal field theory (CFTD21) corre-
spondence@11–13#. According to this correspondence th
strong ‘t Hooft coupling, i.e.,gYM

2 N@1, and the largeN
limit, i.e., N@1, of certain (D21)-dimensional gauge theo
ries have a dual description in terms of a supergravity the
defined on one higher-dimensional bulk space. An import

*Email: hambli@physics.ubc.ca
1Recently, however, the entropy bound on spacelike and light

surfaces has been generalized to the case of flat Robertson-W
geometries in Ref.@3# and to more general geometries in Re
@4,5#. See also Ref.@6# for work related to the role of focusing
mechanism in holography.
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feature of this duality is the existence of an intriguing re
tionship between infrared~IR! effects in the bulk theory and
ultraviolet ~UV! ones on the boundary. In a succeeding wo
@14#, this relation was shown to be crucial in yielding th
bound of one degree of freedom per Planck area as requ
by the holographic principle.

An immediate follow-up of the IR-UV relation above
which is important to our work in this paper, is the interpr
tation of the extra ‘‘radial’’ Dth coordinater, in the bulk
space, as a renormalization group (RG) parameter of the
(D21)-dimensional quantum field theory living at it
boundary. Indeed, the radial evolution of theD-dimensional
bulk fields was shown to share many features with an
flow @15–19#. This fact was made elegantly more transpar
in the work of @15# by casting the Einstein equations in th
D-dimensional bulk into the form of a Hamiltonian flow
across constant-r timelike foliations. Specifically, it has bee
shown that the Hamilton-Jacobi~HJ! equation for the
D-dimensional Einstein gravity in the bulk, with the latte
taken to be sliced along timelike foliations, can be written
the form of first-order RG-flow equations of the classic
supergravity action. Furthermore, in the asymptotic lim
where the UV boundary extends all the way to infinity, the
RG-flow equations reduce to the standard Callan-Syman
equation including the the conformal anomaly terms@20#, in
full accordance with the RG-flow ideas in quantum fie
theory. This result lends support to the identification of t
bulk classical supergravity action with the boundary qua
tum effective action of the gauge theory as suggested
Refs.@11,13#.

In the standard AdSD-CFTD21 correspondence~as de-
scribed above!, where the bulk spacetime is taken to be no

e
ker
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N. HAMBLI PHYSICAL REVIEW D 64 024001
compact, the dual boundary theory is at infinite bulk radi
As such, it must have an infinite energy UV cutoff by virtu
of the IR-UV relation. Therefore, theD-dimensional bulk
graviton modes that extend all the way to the UV bound
are not normalizable, and hence gravity decouples total
form the boundary, leaving out there pure Yang-Mi
theory. However, as first pointed out in Ref.@21# by Randall
and Sundrum~RS!, this situation changes as soon as o
considers the transverse bulk radius to be offinite range. This
in effect translates into having a dual boundary theory
finite bulk radius, and hence with a finite UV cutoff due
the IR-UV relation. In this case, there will existnormalizable
fluctuations of theD-dimensional metric that propagate an
couple as graviton modes of the (D21)-dimensional bound-
ary theory. This generalization of the AdSD /CFTD21 corre-
spondence leads also to a remarkable interplay between
stein equations of the coupled gravity-matter theory on
boundary and the RG-flow equations@15–17,21#. In addi-
tion, it provides interesting relations between the vario
terms in the boundary quantum effective action, in particu
the boundary Newton constant, the cosmological cons
and the scalar potential@15–17,21#. As a result, a cosmologi
cal constant is naturally prevented from being generated
namically along the RG-flow once it has been canceled
higher energies inside the bulk, as pointed out in Ref.@15#.
These results join and corroborate earlier findings on the
of large extra dimensions in the resolution of the cosmolo
cal constant puzzle@22#.

In principle, the above results should continue to hold
any (D21)-dimensional gauge theory provided that it c
be represented as a relevant or marginal perturbation~in the
sense of Ref.@23#! of a largeN superconformal field theory
or any deformation of it, for which the AdSD-CFTD21 cor-
respondence has been established. It is important to p
out, though, that two main assumptions went into the der
tion of the RG-flow equation of the boundary gauge the
from the HJ equation of the classical supergravity action
the bulk, as presented first in Ref.@15#. These two assump
tions are, inherently, part of the conditions that are involv
in the derivation AdSD-CFTD21 correspondence. The firs
assumption concerns the requirement that the gauge th
must have a largeN@1, ~and thus a large gauge group! so
that one can neglect the string loop effects represented by
1/N2 corrections. Secondly, the gauge theory is required
have a large ’t Hooft coupling,gYM

2 N@1, which amounts to
taking the energy scale in the theory to be low enough so
one can ignore quantum gravity effects controlled by
‘‘stringy’’ a8/R2 corrections.a8 denotes as usual the squa
of the string length, andR represents some characteris
radius of the bulk geometry.2 Therefore, one expect to hav
significant modifications of the HJ equation and hence
RG-flow equations outside this low-energy strongly coupl

2To better understand these limits, we refer the reader to Sec
where we show that for type IIB superstrings on AdS53S5, the
string coupling is gst;gYM

2 ;1/N2, and the radius is R2

;a8AgYM
2 N.
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largeN regime. It is the purpose of this paper to identify th
changes that are brought in the derivation of the RG-fl
equation from the equation when the limitsN@1 and
a8/R2!1 are relaxed. In other words, we are interested
the calculation of the leading-order corrections, in the para
eters 1/N and a8/R2, to the HJ equation of the bulk supe
gravity, and in the study of their consequences.

We start in Sec. II by reviewing briefly the
AdSD-CFTD21 correspondence to set notation and especi
to emphasis the emergence of the largeN and large ’t Hooft
coupling. In Sec. III, we introduce the leadinga8 corrections
in the bulk supergravity action@24–26#. These corrections
have their origin in the vanishing of the beta function of t
string theory nonlinear sigma model. They are represen
by higher-derivative local effective interactions involving th
higher-curvature gravitational terms. Next, we give a Ham
tonian formulation of the the bulk higher-curvature sup
gravity action so obtained. As expected, we find that the
equations are changed since the canonical conjugate mo
tum to the metric inherits in this case new terms com
from thea8 corrections. Even though it is tedious to calc
late the changes that are brought by thea8 corrections to the
HJ equations, their form and how they appear as high
derivative nonrenormalizable effective interactions can
derived systematically in string theory using effective fie
theory language@23,27#. In Sec. IV, we deal with the ques
tion of how to incorporate the 1/N corrections in the HJ
equations. There is a striking similarity between our probl
here and the one we face when we make the transition f
theclassicalHJ equations to thequantumSchrödinger equa-
tion. In that context, using the WKB or semiclassical theo
the leading quantum corrections linear in\ are found to be
proportional to the second order variation of the actionS. In
a similar manner, the 1/N corrections which would chang
the RG-flow equations are taken to be represented by se
order variations of the supergravity bulk action. The inte
pretation of the HJ constraints of the bulk theory as giving
the RG-flow equations of the boundary theory taken at
radius where the HJ constraints are satisfied, rests also u
their strong resemblance with Polchinski’s exactRG equa-
tion @28#. Therefore, in Sec. IV, we also use this connecti
to motivate the addition of the second order variations of
action as representing the 1/N corrections. After adding the
a8 and 1/N corrections, we look in Sec. V for their implica
tion on the relations between quantities in the boundary
tion previously derived in Refs.@15,17#, in particular those
involving the Newton constant, the scalar potential and
cosmological constant. Furthermore, it would be interest
to see whether the solution to the cosmological cons
problem as proposed in Refs.@15,17# is affected in this case
Finally, in Sec. VII, we discuss our results and offer sugg
tions for future directions. The Hamiltonian formulation o
general relativity in the presence of higher-curvature term
presented in the Appendix.

II. AdS D-CFTDÀ1 CORRESPONDENCE AND
HOLOGRAPHY

We start by reviewing quickly some basic elements of
AdSD-CFTD21 correspondence. Our main concern here w

II,
1-2
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HOLOGRAPHIC RENORMALIZATION GROUP FLOW AND . . . PHYSICAL REVIEW D64 024001
be to motivate the largeN@1, and the large ’t Hooft cou-
pling gYM

2 N@1 limit, involved in the correspondence. Fu
thermore, to simplify our presentation, we focus only on
D55 case since many of the features found in this c
continue to hold for generalD. The most studied example i
this category is the proposed duality between fo
dimensional Yang-Mills theory withN54 supersymmetries
and type-IIB superstring theory on AdS53S5 geometry. At
the heart of this duality is the existence of the relation
tween the two different descriptions of a stack ofN parallel
extremal D3-branes. One in terms of the low-energy fo
dimensionalU(N), N54 supersymmetric gauge theory o
its world-volume, and the other in terms of the classical
pergravity background of the type-II closed superstr
theory. An essential step in the derivation of the AdS5-CFT4
correspondence is the understanding of the range of val
of each of the description above. For the classical superg
ity description, we need the form of the background str
metric, the dilaton and the RR-gauge field for the stack oN
parallel extremal D3-branes. This is given by the followi
form:

ds25~11R4/r 4!21/2dx//
2 1~11R4/r 4!1/2~dr21r 2dV5

2!,
~1!

ef5gst, ~2!

C01235~11R4/r 4!2121, ~3!

wheredx//
2 denotes the flat four-dimensional metric for th

coordinates parallel to the D3-branes, and the radiusR is
R25a8AgstN. For the low-energy supersymmetric Yan
Mills description on the D3-branes worldvolume, we ne
the relationgYM

2 5gst between the couplings.3

Another piece of knowledge which played an importa
role in the formulation of the standard AdS5-CFT4 corre-
spondence is the realization that the low-energy limit of
gauge theory on the D3-branes world volume, correspond
to a8→0, may be taken directly in the supergravity descr
tion. On the supergravity side, the limit amounts simply
taking the near horizon geometry corresponding to thr
→0 limit. Thus, finally, in the limita8→0 andr→0, with
r /a8 fixed, one finds that the metric in Eq.~1! reduces to the
form

ds25
r 2

R2 dx//
2 1

R2

r 2 dr21R2dV5
2 , ~4!

3For a generalDp-brane, the relation between the couplings
gYM

2 5gst(a8)p23, and the dimensionless effective coupling, at e
ergy scaleE, is geff

2 (E)5gYM
2 NEp23. Perturbation theory applies in

UV for p,3, and in IR forp.3, and the two cases may be relat
by S duality @12#. The special casep53, presented in Sec. II, cor
responds toN54 supersymmetric Yang-Mills theory inD54,
which is known to be a finite, conformally invariant quantum fie
theory.
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which describes the product-space geometry AdS53S5,
where both factors have radiusR25a8AgYM

2 N. Furthermore,
we know that the classical supergravity description can
trusted only if the length scale of the D3-brane solutio
given by the metric~4!, is much larger than the string sca
Aa8, which allows for the ‘‘stringy’’ quantum gravity effects
to be neglected. This condition translates intoR2@a8, which
yields the large ’t Hooft coupling limit for the gauge theo
on the D3-branes world volume, i.e.,gYM

2 N@1. In order to
suppress the string loop corrections, we also need to
gst→0, and hencegYM

2 →0, which amounts to taking the
largeN limit, N@1. To summarize, the supergravity solutio
is expected to give exact information about theN54 super-
symmetric Yang-Mills theory on the D3-branes world vo
ume, in the limit of largeN@1 and large ’t Hooft coupling
gYM

2 N@1. More on the two limits above after introducin
another key feature of the AdS5-CFT4 correspondence be
low, that is, the idea of RG flow and holography.

From the AdS53S5 geometry in Eq.~4!, we can see tha
the coordinater transverse to the D3-branes can be regar
as a renormalization group scale. Indeed, two excitation
the gauge theory on the D3-branes world volume, which
related by a scale transformations

x//→etx// , ~5!

translate on the AdS factor of the geometry into two exci
tions concentrated around different locations in the tra
verse r direction, and which are related by the followin
transformation@12,29#:

r→e2tr . ~6!

The AdS5-CFT4 correspondence provides us thus with a h
lographic map between physics in the gauge theory on
world-volume, which can be thought of as living on th
AdS5 boundary, and physics in one higher dimension
AdS5 bulk space. This holographic map is at the center of
IR-UV relation according to which~IR! effects in the bulk
theory are related to~UV! ones on the boundary. This rela
tion turned out to be very crucial in yielding the holograph
bound of one degree of freedom per Planck area as requ
by the holographic principle@15#.

In the original AdS5-CFT4 correspondence, the AdS5
boundary is taken to be atr 51`, and as a result the rang
of the r values extends all the way to infinity. Therefor
while the theory in the AdS5 bulk space contains gravity, th
dual CFT4 theory on the boundary does not. This happe
because the bulk gravitational modes that propagate all
way to infinity are not normalizable, and therefore do n
fluctuate. In this paper, however, we are interested in
much more general situation where gravity does not
couple at the boundary. For this to happen, we follow
Randall-Sundrum proposal in Ref.@21#, and choose the AdS5
transverser coordinate to run over a finite range,r<r 0, in-
stead over an infinite range. An immediate consequenc
this is that, there exists now a normalizable gravitational c
lective mode at the boundary, which in this case is living
finite the radiusr 5r 0. Furthermore, in view of the IR-UV

-

1-3
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N. HAMBLI PHYSICAL REVIEW D 64 024001
relation, truncating the bulk theory tor values larger~or
smaller! than some finiter 5r 0 amounts to introducing a
finite UV ~or IR! cutoff in the theory at the boundary@15#.
Therefore, allowing for the bulk transverser direction to be
interpreted as an RG scale. Indeed, by casting the bulk
stein equations into the form of Hamiltonian flow acro
timelike boundaries, ther evolution of the bulk fields were
shown in Ref.@15# to share many features with an RG flo
on the boundary.

Combining this holographic perspective of AdS5-CFT4
correspondence with the RG scale interpretation of the b
transverser coordinate, one aims to derive the low-ener
quantum effective actionSb on the boundary from the
knowledge of the bulk supergravity theory. As explain
above, we shall take the boundary to be at finite radiusr 0 so
that gravity does not decouple from the boundary theory.
this end, we start by defining some classical action for
supergravity theory in the bulk, which we denote
ST@f I ,g#. In addition the bulk metricGAB , ST@f I ,g# also
depends on some scalar fieldsf I that represent the variou
couplings of the boundary theory. In fact, it is the evoluti
of these scalar fields as a function of the bulk transversr
coordinate that eventually lead to the RG-flow equations
the boundary theory.4 For later reference, we choose the bu
metric to be of the form

ds25G ABdxAdxB

5~N21NmNm!dr212Nmdxmdr

1gmn~x,r !dxmdxn, ~7!

where A and B are taken to denote the bulk coordinat
(r ,xm) and m and n denote the boundary coordinates. W
assume the boundary metricgmn(x,r ) to be of Euclidean
signature, and we allow the scalarsf I(x,r ) to depend on all
bulk coordinates (r ,xm). N and Nm are the lapse and shif
functions, respectively. A convenient choice of coordina
are the Gaussian normal coordinates, whereNm50 and N
521. Using such coordinates, the metric in Eq.~7! takes on
the simple form

ds25dr21gmn~x,r !dxmdxn. ~8!

~More details on our notation and convention are presen
in the Appendix.!

Finally, one of the main ingredients in the AdS5-CFT4
correspondence is the identification of the classical su
gravity action ST@f I ,g# evaluated on a classical solutio
with specified boundary valuesgmn(x,r 0) andf I(x,r 0), with
the generating functional of gauge invariant correlators
gauge invariant observablesOI in the boundary theory living
at r 5r 0, that is, we have

4Because of the stress energy-momentum tensor of the s
fields f I , the background geometry in the bulk will deviate fro
that of a pure AdS5 form.
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5
1

Ag~x1!

d

df I 1~x1!
•••

1

Ag~xn!

d

df I n~xn!
ST@f I ,g#U

r 5r 0

.

~9!

By requiring that the scalar fieldsf I and the metricgmn stay
regular inside the bulk, there is in principle one unique s
pergravity classical solution for a given boundary value
f I andgmn . If we put the scalar fieldsf I to zero after doing
the variation, we do obtain the gauge invariant correlators
the unperturbedN54 supersymmetric Yang-Mills boundar
theory. If the fieldsf I are put to finite values, however, th
resulting boundary theory will correspond to a finitely pe
turbedN54 supersymmetric Yang-Mills theory.

Although the discussion, in this section, was so far limit
to the AdS5-CFT4 correspondence, one could easily gener
ize it to include the higher-dimensional AdSD spaces. We
would be then talking about an AdSD-CFTD21 correspon-
dence. In similarity with the AdS5-CFT4 correspondence, the
large N limit, N@1, and the large ’t Hooft coupling limit,
R2/a85AgYM

2 N@1 will also be involved in this case. In
particular, the interpretation of the radial AdSD coordinate
with an RG scale will also allow in this case for an identifi
cation of the radial evolution of the bulk fields with a R
flow. Thus, by working within the general framework o
AdSD-CFTD21 correspondence, our purpose next will be
go beyond the largeN, and largeR2/a8 limit, and consider
the leading corrections in 1/N and a8/R2 to the RG-flow
equations derived from the bulk HJ constraint.

III. HJ EQUATIONS AND THE HIGHER-CURVATURE
TERMS

In this section, we consider the derivation of the HJ co
straint of theD-dimensional bulk supergravity theory in th
presence of thea8 corrections coming from a quantum
theory of gravity such as string theory. In string theory, t
lowest-ordera8-corrections to the low-energy effective a
tion involve the higher-curvature terms, which are controll
by the expansion parametera8/R2, whereR is the character-
istic radius of the bulk space. Therefore, by virtue of t
relation R2/a85AgYM

2 N, the addition of the higher-
curvature terms will necessarily affect the large ’t Hooft co
pling limit gYM

2 N@1 involved in the AdSD /CFTD21 corre-
spondence as well the the RG-flow equations derived from
As in the approach of Refs.@15,17#, the changes that ar
brought by the higher-curvature corrections are most con
niently analyzed using the HJ theory of theD-dimensional
bulk supergravity theory. By casting the Einstein’s equatio
in the bulk into the form of a Hamiltonian evolution acro
timelike boundaries, one is led to the familiar HJ constra
of the canonical formalism of gravity. It has been shown
Refs.@15,17# that this constraint play a key role in the bulk
boundary correspondence, as they allow for a system
derivation of the (D21)-dimensional quantum effective ac
tion of the boundary theory from the knowledge of the bu

lar
1-4
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HOLOGRAPHIC RENORMALIZATION GROUP FLOW AND . . . PHYSICAL REVIEW D64 024001
theory. Furthermore, combining these results with the IR-
relation, a holographic RG-flow picture of the dual bounda
theory naturally emerges, as changes in the bulk coordi
r 5r 0 translates now into shifts in the energy scalem
5r /a8 of the dual boundary theory.

For the purpose of deriving the changes to the HJ c
straint due to the higher-curvature corrections, we choose
theD-dimensional bulk spacetime the following supergrav
action:5

ST5S11S21S3 , ~10!

whereS1 , S2, andS3 are given by

S15E
D
AGdrdD21x@ $D%R12L1a0

$D%R21b0
$D%Rmn

$D%Rmn

1c0
$D%Rmnrs

$D%Rmnrs#, ~11!

S252E
D21

AgdD21x@K1K~K,¹K;a,b,c!#, ~12!

S35E
D
AGdrdD21xFV~f I !2

1

2
¹mf I¹mf I G . ~13!

In addition to curvature actionS1, the D-dimensional bulk
supergravity theory contains the matter actionS3 for the bulk
scalar fieldsf I , which through the bulk-boundary correspo
dence represent the various coupling of the dual bound
theory. The sum over repeated indexI of the bulk scalar
fields is assumed throughout all the paper. The curva
scalar $D%R, and the tensors$D%Rmn and $D%Rmnrs appearing
in the actionS1 are calculated using theD-dimensional bulk
metricGAB , with the coefficientsa0 , b0, andc0 parametriz-
ing for the time being only thea8/R2 corrections.6 Using the
Gaussian normal coordinates,GAB takes the form

ds25G ABdxAdxB5dr21gmn~x,r !dxmdxn. ~14!

Following Sec. I, our notation will be to take the upper ca
Latin letters such asA and B to denote theD-dimensional
bulk coordinates (xm,r ), where the lower case Greek indice
such asm andn are taken to denote the coordinates (xm;m
50,1, . . . ,D22) of the (D21)-dimensional boundary
theory. As usual,K is taken to denote the extrinsic curvatu
of the boundary surface, whose form is given byKmn

5 1
2 Lrgmn5gm

r¹rnn . WhereasK(K,¹K;a,b,c) is taken to
represent the additional surface terms corresponding to
higher-curvature terms in S1. The derivation of
K(K,¹K;a,b,c) was carried out in Ref.@24,25#, but its ex-
act form will not be necessary for our work here. It suffic

5Since we choose to work within the Einstein frame, we can
the D-dimensional Planck unit such thatkD51.

6Later, in Sec. IV, the coefficients of the higher-curvature ter
will include, in addition toa0 , b0, andc0, the contributionsa1 , b1,
andc1 from the 1/N corrections.
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to recall that the normal-derivative terms fromS1 are can-
celed by the variation of the surface terms inS2.

Using the choice of the metric in Eq.~14!, the
D-dimensional bulk equations of motion can be cast into
form of a Hamiltonian flow across the (D21)-dimensional
timelike boundaries, with the bulk transverser coordinate
playing the role of time. Based on the bulk actionST in Eq.
~10!, the Hamiltonian that generates this radial flow is e
plicitly derived in the Appendix, where we found

2
1

Ag
HT5~R12L1a0R 21b0RmnR mn

1c0RmnrsR mnrs!1S V~f!2
1

2
¹mf I¹mf I D

1S pmnpmn2
p2

D22D1
1

2
p Ip I22a0R

3S pmnpmn2
p2

D22D22b0Rmn

3S pm
rprn2

ppmn

D22 D14c0R mnrspmrpns

1
4c0

~D22!2Rp22
8c0

D22
R mnppmn, ~15!

with pmn andp I are the canonical momentum variables co
jugate togmn andp I , respectively. It is a standard fact, we
known in classical mechanics, that~given the bulk actionST)
the value of the canonical momentump I conjugate tof I , at
a given slicer 5const, is equal to the functional derivative o
the bulk actionSb induced on that slice, with respect tof I .
Furthermore, since the conjugate momentump I is related to
the radial flow off I , we have

1

Ag

dS b

df I 5p I5L rf
I52ḟ I . ~16!

Similarly, for the canonical momentum variablepmn conju-
gate to the the metricgmn , we have

1

Ag

dSb

dgmn 5pmn

5~Kmn2Kgmn!12a0R~Kmn2Kgmn!

2b0~KRmn1R rsKrsgmn!

1b0~R m
r Krn1R n

rKrm!24c0R mrnsKrs

1O~K3!, ~17!

or by taking the trace

p5gmnpmn5pm
m52~D22!K2~2a0D24a01b0!RK

2~b0D23b014c0!RmnKmn1O~K3!. ~18!

e
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~The details about the calculation of the conjugate mome
p I andpmn can be found in the Appendix.!

Hamiltonian flow across the boundary is a constrain
system, since it is still endowed with redundancies. T
choice of the foliation is arbitrary, and even after fixing on
the system is still endowed with redundancies. To rem
completely these redundancies, two set of constraint eq
tions on the initial data at the boundary are necessary.
first constraint translates simply into a statement regard
Poincare´ invariance on the boundary slices. It ensures t
the boundary effective action is invariant und
(D21)-dimensional coordinate transformations. The sec
constraint, which is most important for our purposes, is
Hamilton constraint. It requires to setHT50, which ensures
invariance of the constant-r slices under the local shifts. Us
ing Eq. ~15! for the HamiltonianHT , we obtain

S p2

D22
2pmnpmnD2

1

2
p Ip I12a0RS pmnpmn2

p2

D22D
12b0RmnS pm

rprn2
ppmn

D22 D24c0R mnrspmrpns

2
4c0

~D22!2Rp21
8c0

D22
R mnppmn

5~R12L1a0R 21b0RmnR mn1c0RmnrsR mnrs!

1S V~f!2
1

2
¹mf I¹mf I D . ~19!

To obtain the HJ constraint atr 5r 0, we simply have to
replace the canonical momenta in Eq.~19! by the functional
derivatives of the bulk actionSb induced onr 5r 0, with
respect to the conjugate variables. In terms of the actionSb ,
the HJ constraint reads

2a0

R
Ag

F dSb

dgmn

dS b

dgmn 2
1

D22 S gmn

dSb

dgmn
D 2G

12b0

Rmn

Ag
F dSb

dgm
r

dSb

dgrn
2

grs

D22

dSb

dgrs

dSb

dgmn
G

24c0

Rmnrs

Ag

dSb

dgmr

dSb

dgns
2

4c0

~D22!2

R
Ag

S gmn

dSb

dgmn
D 2

1
8c0

D22

Rmn

Ag
grs

dSb

dgrs

dSb

dgmn
1

1

Ag
F 1

D22 S gmn

dSb

dgmn
D 2

2
dSb

dgmn

dS b

dgmn 2
1

2

dS b

df I

dS b

df I G
5AgFV~f!2

1

2
¹mf I¹mf I1R12L1a0R 2

1b0RmnR mn1c0RmnrsR mnrsG . ~20!
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As advertised earlier, thea8 corrections from the bulk, in the
form of higher-curvature terms, modifies the HJ constra
This HJ constraint will play a central role in the remainde
Indeed, the bulk-boundary correspondence proposes to
place the bulk actionSb in Eq. ~20!, induced on the timelike
foliations, with that of an effective (D21)-dimensional
boundary theory. It is easy to see then that the HJ constr
in Eq. ~20! allows us to determine the coefficients of all th
local terms in that boundary action, which will in effect in
clude contributions from the higher-curvature corrections.
relation with the higher-curvature corrections, we shou
also notice that they do induce in the boundary Lagrang
quartic powers of the extrinsic curvatureK, schematically
denotes asK4, in addition to the quadratic termsK2. As a
consequence, the HamiltonianHT in Eq. ~15! must also in-
clude terms that are quartic in the conjugate momentumpmn,
such as asp4. The reason we chose not to include thep4

terms inHT , and focus only on the corrections coming fro
the quadratic terms inK, is that it is in principle possible to
generate the quartic terms such asK4, in a Wilsonian
manner,7 as effective interactions. This is done by integrati
out some very heavy auxiliary fieldx, with mass much
higher than the cutoff scale in the boundary theory, a
which enters the boundary Lagrangian in the formMx

2x2

1jxK2.
Finally, using the definition of the extrinsic curvatur

given by Eq.~A14! of the Appendix, the radial flow ofgmn

follows straightforwardly from the expression of the cano
cal momentumpmn in Eq. ~17!, and it is found to be

Kmn5
1

2
Lrgmn

52
1

2
ġmn

5S pmn2
p

D22
gmnD

1S 2a01
4c0

D22D Rp

D22
gmn1~b024c0!

R rsprs

D22
gmn

22a0Rpmn1~b024c0!
Rmnp

D22
2b0

3~R m
r prn1R n

rprm!14c0R mrnsprs, ~21!

K5Km
m

52
p

D22
1S 2a01b01

4c0

D22D Rp

D22

1~3b02Db024c0!
Rmnpmn

D22
. ~22!

7This way of viewing the higher-curvature corrections was su
gested to us by Herman Verlinde.
1-6
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Therefore, given the functional form of the boundary acti
Sb at slicer 5r 0, and using the first-order equations~16! and
~21!, one can unambiguously compute the radial evolution
the couplingsf I and the metricgmn in terms of their values
on that slice.

IV. 1ÕN CORRECTIONS AS A WKB APPROXIMATION

We have seen in Sec. I that the AdSD-CFTD21 correspon-
dence involves both the large ’t Hooft couplinggYM

2 N@1,
and the largeN@1 limit. Because of the relationR2/a8
5AgYM

2 N, relaxing the limitgYM
2 N@1 on the ’t Hooft cou-

pling reduces simply to the problem of incorporating t
a8/R2 corrections, as we have seen in Sec. II. This w
carried out systematically, by considering the effects of
bulk higher-curvature terms on the boundary theory. Wh
we turn to the largeN@1 limit, the derivation of the 1/N
corrections to the HJ constraint does not, unfortunately,
joy the same degree of simplicity. What we seem to be m
ing here is a systematic method, analogous to thea8/R2

corrections case, where the 1/N corrections could be, for
example, derived from first principles such as the op
closed string duality relation proposed in Ref.@30#. In the
absence of such systematic methods, our derivation of
1/N corrections relies simply on our experience and intuit
based on similar problems in other physical examples. O
such~well known! example is the problem we face when w
make the transition from theclassical HJ equation to the
quantumSchrödinger equation. To see this, we recall fro
quantum mechanics that the wave amplitude to be assoc
with the mechanical motion of a particle of massm have the
form

c5c0e( i /\)S, ~23!
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wherec satisfies the Schro¨dinger wave equation

\2

2m
¹2c2Vc5

\

i

]c

]t
. ~24!

In terms of the actionS the Schro¨dinger equation can be
written as

F 1

2m
~“S!21VG1

]S

]t
5

i\

2m
“

2S. ~25!

The last equation may be called the quantum-mechanica
equation; it reduces to the classical HJ equation in the li
as\, and therefore the Compton wavelength of the partic
goes to zero. Indeed, one is to note that¹2S arises in asso-
ciation with (¹S)2 in the evaluation of¹2c in the quantum-
mechanical wave equation. Therefore, Eq.~25! would be the
classical HJ equation if\¹2S!(¹S)2, or, equivalently, if
l/2p!p/(¹•p).

It is clear from the discussion above that the key elem
in the transition from the classical to the quantum HJ eq
tion is the relation between the wave functionc and the
action given by Eq.~23!, and the Schro¨dinger wave equation
~24! describing the propagation ofc. It is exactly the analog
of these relations that we would need in the AdSD-CFTD21
correspondence, to be able to derive the 1/N corrections to
the HJ constraint in a systematic way, and which we do
have.8 Despite this difficulty, one can still use the abov
analogy, in particular the quantum-mechanical HJ equa
in Eq. ~25!, to discuss the 1/N corrections. The analogy be
comes even more clear if we think of 1/N asA\. With this in
mind, it is natural to write down the following equation fo
the HJ constraint:
quation,
2a
R
Ag

F dSb

dgmn

dS b

dgmn 2
1

D22 S gmn

dSb

dgmn
D 2G12b

Rmn

Ag
F dSb

dgm
r

dSb

dgrn
2

grs

D22

dSb

dgrs

dSb

dgmn
G24c

Rmnrs

Ag

dSb

dgmr

dSb

dgns

2
4c

~D22!2

R
Ag

S gmn

dSb

dgmn
D 2

1
8c

D22

Rmn

Ag
grs

dSb

dgrs

dSb

dgmn
1

1

Ag
Fe1

d2Sb

dgmndgmn

1e2grs

d

dgrs
gmn

dS b

dgmn 1e3

d2S b

df Idf I G1
1

Ag
F 1

D22 S gmn

dSb

dgmn
D 2

2
dSb

dgmn

dS b

dgmn 2
1

2

dS b

df I

dS b

df I G
5AgFV~f!2

1

2
¹mf I¹mf I1R12L1aR 21bRmnR mn1cRmnrsR mnrsG , ~26!

wheree1 , e2, ande3 are the coefficients parametrizing the 1/N corrections to the HJ constraint in the same way thata0 , b0,
andc0 parametrize thea8 corrections in Eq.~20!. In fact, in writing down the HJ constraint~26!, we have replaceda0 , b0 and
c0 by the new coefficientsa, b, and c allowing the latter to include extra 1/N contributions besides thea8 corrections.
Therefore, we can write

a5a01a1 , b5b01b1 , c5c01c1 , ~27!

wherea1 , b1, andc1 are taken to parametrize the 1/N corrections.

8In Ref. @15#, it was suggested that the HJ constraint can be considered as the classical limit of the quantum Wheeler-DeWitt e
which when written asei /\S, contains an additional term proportional to a second order variation of the actionS.
1-7
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In this paper, we take the point of view that Eq.~27!
represents the correct HJ constraint taking into account
leading order corrections ina8 and 1/N. Using Eq.~27!, we
shall determine in the next section the various bulk-bound
relations that follow from it.

V. THE LOCAL BOUNDARY ACTION TERMS
REVISITED

One of the remarkable features of the AdSD-CFTD21 cor-
respondence is that the bulk-boundary correspondenc
captured by the HJ constraint in Eq.~26!. The latter has, in
particular, the advantage of containing both thea8 and 1/N
corrections~in the leading order!. Extending, therefore, pre
vious work on the RG-flow beyond the low-energy, stro
coupling, largeN limit. It is also important to realize that th
HJ constraint in Eq.~26! proposes that we replace the bu
actionSb , induced on the timelike slice due the foliation
the bulk spacetime, with that of an unknown effective (D
21)-dimensional boundary theory, whose action we den
by actionSeff. With this in view, the HJ constraint now play
the role of a functional differential equation allowing for th
determination of the functional form of the local terms in t
boundary actionSeff, as we shall see below.

It is well know that the RG flow of quantum field theor
in a curved background induces, in the effective action,
Einstein gravity term plus a cosmological constant. Indee
computation of thêTmn& for the quantum field and its sub
sequent regularization is found to renormalize both the E
stein tensor and the cosmological constant. Therefore, a
cutoff scalem, a general form for the effective actionSeff is
given by

S eff~g,f!5Sl~g,f!1Snl~g,f!, ~28!

where Sl represent the local part of the effective acti
whose form is
02400
e

ry

is

te

n
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-
he

Sl~g,f!5E
D21

AgdD21xFk~f!S R2
1

2
¹mf I¹mf I D

1U~f!2A~f!R 22B~f!R mnRmn

2C~f!R mnrsRmnrsG , ~29!

whereR, R 2, R mnRmn , andR mnrsRmnrs denote the (D
21)-dimensional curvature terms constructed form
boundary metricgmn in Eq. ~14!. The boundary values of the
scalar fieldsf I are to be equated with the dimensionle
coupling constants of the boundary theory, andU(f), k(f),
A(f), B(f), and C(f) are local functions of these cou
plings. Snl contains, on the other hand, all higher derivati
and nonlocal terms subject to the symmetries inherited fr
the bulk.9 In terms of the nonlocal actionSnl , the boundary
theory operatorŝOI& and energy-momentum tensor^Tmn&,
are given by

1

Ag

dSnl

df I [^OI&, ~30!

1

Ag

dSnl

dgmn
[^Tmn&. ~31!

Our goal now is to determine the local boundary terms
S eff. For this, we need to insert the effective actionS eff into
the HJ constraint~26!, equating contributions from the lef
hand side with terms on the right hand side that have
same functional form. By treating the metricgmn and the
scalarsf I as arbitrary classical fields, this procedure gen
ates a set of bulk-boundary relations for the unknown fu
tions in the local actionSl , which are
cal action
2L1V5F1

4

D21

D22
U22

1

2
~] IU !2G1F2

e1

4
~D221!U2

e2

4
~D21!2U1e3] I] IUG , ~32!

15F1

2

D23

D22
kU2] Ik] IUG1F2

a

2

D21

D22
U22

b

2

1

D22
U22c

1

~D21!2 U2G
1F2

e1

4
~D225!k2

e2

4
~D23!2k1e3] I] IUG , ~33!

a5F1

4

D21

D22
k22

1

2

D25

D22
UA2

1

2
] Ik] Ik1] IU] IAG1F2a

D23

D22
kU22c

~D21!~D23!

~D22!2 kUG
1Fe1S D229

4
A1BD1

e2

4
~D25!2A2e3] I] IAG , ~34!

9The usual quartic, quadratic and logarithmic divergences for quantum fields coupled to curved spacetime are contained in the lo
Sl throughU, k and (A,B,C), respectively. The nonlocal actionSnl may also contain extra logarithmic divergences.
1-8
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b5F2k22
1

2

D25

D22
UB1] IU] IBG1F2b

D23

D22
kU24ckUG1Fe1S D225

4
B12A14CD1

e2

4
~D25!2B2e3] I] IBG ,

~35!

c5F2
1

2

D29

D22
UC1] IU] ICG1Fe1

4
~D2217!C1

e2

4
~D29!2CG , ~36!

b I] Ik5F2~D21!k1
2~D22!

U G1Fe1

2

~D221!~D22!

U
k1

e2

2

~D22!~D21!2

U
k22e3

~D22!

U
] I] IkG , ~37!
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where the beta functionsb I ’s are defined by

b I~f!522
D22

U
] IU. ~38!

In addition, we have to this order in the expansion, ter
involving the functional derivatives of the nonlocal actio
Snl . The bulk-boundary relations for them are

^Tm
m&[^T&5

b I

2
^OI&, ~39!

V5F ^T&2

D22
2^Tmn&^Tmn&2

1

2
^O I&^OI&G

1@e1^T
mnTmn&1e2^T

2&1e3^O IOI&#. ~40!

In the next section, we shall use these new bulk/bound
relations to study the cosmological constant problem. In p
ticular, we are interested to see whether the solution p
posed in Ref.@15#, for the vanishing ofL, continues to hold
in the presence of thea8 and the 1/N corrections.

VI. WHAT IS NEW ON THE COSMOLOGICAL
CONSTANT PROBLEM?

The problem of the cosmological constant is why t
vacuum energy density is zero or extremely small by part
physics standards. It is a hard problem because it invo
not only the high-energy but the low-energy physics as w
It is not sufficient, for example, to find a cosmological co
stant that is zero at high energies~near the Planck scale!, one
must also explain the absence of the vacuum contribution
the scales run to low energies. This low-energy aspect of
cosmological constant is, in fact, the most puzzling, a
seems to require some fundamental new ideas in the b
principles of low-energy effective field theories, RG flow
and gravity. But the low-energy physics in the standa
framework of four-dimensional effective field theory do
not seem to offer a solution to the problem.10 On the other
hand, it is very hard to change the low-energy theory in
sensible way, given all of the well known theoretical a

10For a complete review on these issues see the paper by W
berg in Ref.@22#
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experimental success. Faced with this riddle, one way
would be to imagine a scenario in which the observed fo
dimensional universe, where the problem is severely po
is related to a world of a higher dimension. If the highe
dimensional world does not obey the usual assumption
four-dimensional low-energy effective field theories, whi
lead to the cosmological constant problem, one may t
find a solution to this problem within in this scenario.

In the following we will reexamine the cosmological con
stant problem using a scenario in which the observed fo
dimensional universe is embedded into a higher-dimensio
background of dimensionD55. Our approach is directly
motivated by the new insights from string theory through t
AdS5-CFT4 correspondence, as well as by recent ideas
have appeared in the study of warped string compactifica
scenarios along the lines of Randall and Sundrum11 in Refs.
@21,15,22,16#, reviving earlier work by Rubakov and
Shaposhnikov@22#. The starting point of our discussion i
the holographic formulation of the RG equations in whi
the RG scale is treated as a physical extra dimension.
also assume the warp geometry for the five-dimensional b
spacetime,12 which generalizes the AdS5-CFT4 duality to
four-dimensional boundary theories with dynamical gravi
as our world. Following Ref.@15#, and applying the results o
Sec. V to a five-dimensional bulk spacetime of warp geo
etry andL50, one finds that the HJ evolution equations
the bulk can also be reformulated as an RG-flow equation13

for the four-dimensional boundary effective action, even
ter the inclusion of thea8 and 1/N corrections. Our calcula-
tions, therefore, extends previous results found within
context of classical five-dimensional supergravity@15#, and
thus within the largeN and large ’t Hooft coupling limit, to
the regime where these limits are relaxed. In particular, n
interesting bulk-boundary relations were found, suggest

in-

11Despite recent attempts in, Ref.@15# it does not exist yet a
complete and consistent embedding of the Randall-Sundrum
nario within string or M-theory.

12Such backgrounds could be obtained, for example, via F-the
compactification on Calabi-Yau fourfolds@31,32#

13To find the RG-flow equations of the boundary effective theo
one solves for the evolution equations in Eqs.~21! and ~16! using
the warp geometry ansatz for the bulk, after replacing by the c
straints from the HJ constraint in Eq.~26!.
1-9
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an intimate connection between the RG-flow symmetry
the boundary effective action and the bulk Einstein’s eq
tions.

Let us now address the consequences of the RG-
symmetry of the boundary effective action, in the prese
of the leading order corrections ina8 and 1/N, on the four-
dimensional cosmological constant. Using the same line
reasoning as in Ref.@15#, our RG-flow equations also imply
that once we have a solution for the gravitational part of
boundary effective action at one scale, there is a solu
along the whole RG trajectory. As a result, assuming that
boundary cosmological constant is canceled at high ener
~due to extended supersymmetry, for example!, it will natu-
rally remain zero under the RG flow. So it appears as if
boundary cosmological constant continues to decouple f
the RG-induced vacuum energy of the matter fluctuatio
even after relaxing the largeN and the large ’t Hooft cou-
pling limit. As we will show now, this decoupling arises du
to a cancellation between the contraction rate of the w
factor and any variation in the matter induced vacuum
ergy, in close similarity with with the mechanism propos
in Ref. @15#. Using a five-dimensional background of wa
geometry with vanishingL as our bulk spacetime, the fiel
equations that follow from the effective action~28! are then
the four-dimensional Einstein equation and the scalar fi
equations

kS Rmn2
1

2
gmnRD2

1

2
gmnU~f!

5~A (1)Hmn1B (2)Hmn1CHmn!

1T mn
f ~k,A,B,C,f,gmn!2^Tmn&, ~41!

¹m~k¹mf I !1] IkS R2
1

2
¹lf I¹lf I D

5~] IAR 21] IBR mnRmn1] ICR mnrsRmnrs!

2] IU2^OI&, ~42!

where (1)Hmn , (2)Hmn , andHmn are the contributions to the
field equations from the higher curvature terms, and
given by

(1)Hmn52¹m¹nR22gmnhR2
1

2
gmnR 212RRmn ,

~43!

(2)Hmn52¹a¹nR a
m2hRmn2

1

2
gmnhR12R m

aRan

2
1

2
gmnR abRab , ~44!

Hmn52¹m¹nR24hRmn12RmabgR n
abg

2
1

2
gmnR abgdRabgd24RmaR a

n

14R abRambn . ~45!
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T mn
f represents the stress energy-momentum tensor of

scalar fieldsf I . In addition, f I , T mn
f also depend on the

functionsk,A,B,C, their covariant derivatives and the var
ous curvature terms of the metricgmn . ^Tmn& and^OI& were
defined earlier in Eqs.~30! and ~31!, and they represent th
boundary expectation values to which the metricgmn and the
scalar fieldsf I couple, respectively.

At this point, one could make use of the RG-flow equ
tions of the boundary effective theory to deduce the RG
jectories of all the quantities appearing in the field equatio
~41! and ~42!, and show the decoupling mechanism that
claimed to arise for the cosmological constant. Since t
approach has already been used in the previous litera
such as in Ref.@15#, what we propose here is a much simpl
and direct method making use of the bulk-boundary relati
derived in Sec. V. To address the consequences of the b
boundary relations on the boundary cosmological const
let us take the trace of the four-dimensional Einstein’s eq
tions in Eq.~41!, yielding

kR5^T&22U12~3A1B1C!hR5kL (4), ~46!

where we have assumed the boundary theory to be a
energy scale much less than the cutoff scalem, so that the
scalar fields are practically independent of the fo
dimensional boundary coordinates, i.e.,¹mf I(x)50.
Clearly, the terms on the right-hand side of Eq.~46! repre-
sents the effective cosmological constant on the bound
We would haveL (4)50 if the first two terms on the right-
hand side of Eq.~46! cancel each other, and the third term
zero. First how do we make the third term vanish? Since
HJ constraint, and the hence the bulk-boundary relations
rived from it, are nothing more than constraints on the var
tions of bothSl , and Snl in S eff, one may consider thes
constraints for any boundary field configuration, including
preferred one, such that 3A1B1C50. Using this condition,
the trace of the Einstein equation in Eq.~46! becomes

kR5^T&22U5kL (4). ~47!

The condition 3A1B1C50 is easily seen to be satisfied
the higher-curvature contributions entered the local effec
Sl in Eq. ~29! as a Gauss-Bonnet term (R 224R mnRmn

1R mnrsRmnrs). This Gauss-Bonnet term was considered
Ref. @16# and @18# in the study of naked singularities withi
the context of brane world scenarios. This is not the poin
view we take here. We consider, instead, the situation wh
the condition 3A1B1C50 is satisfied for arbitrary coeffi-
cientsA, B, and C. But since the Gauss-Bonnet term is
topological invariant on the four-dimensional boundary, on
two of them are independent, so me may chooseC50. The
coefficientsA and B satisfy then the condition 3A1B50.
Using the bulk-boundary relations~34!, ~35!, and ~36!, the
conditionsC50 and 3A1B50 translate in thus into condi
tions on the bulk parameters (a,b,c), wherec50 anda and
b being related to each other.

Now, let us turn to the remaining two terms on the righ
hand side of Eq.~47!. At first sight it is not obvious whŷT&
and 2U should cancel each other. However, by invoki
1-10
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again the fact that the HJ constraint is simply a condition
the variations ofSl andSnl which hold for an arbitrary field
configuration, one may consider it for a flat boundary spa
time with constant scalars. In this case, using the bu
boundary relations in Eqs.~32! and ~40!, after settingD55
andL50, we find that̂ T& and 2U are given by the follow-
ing expressions:

~2U !2512V16~] IU !2124~3e112e2!U212e3] I] IU,
~48!

^T&2512V16^O I&
223~e114e2!^T2&212e3^O I

2&.
~49!

So far, only the trace of the Einstein equation in Eq.~41! and
the identities~48! and~49! ~from the HJ constraint! did enter
our analysis of the boundary cosmological constant.
progress further we make of the equation of motion forf I ,
which for ¹mf I50 and flat boundary spacetime reads

] IU1^OI&50. ~50!

Now, inserting Eq.~50! into both (2U)2 and ^T&2, and
evaluating their difference afterwards, we find

~2U !22^T&2512e3@^O I
2&2] I] IU#13e1@24U1^T2&#

112e2@4U1^T2&#. ~51!

The above relation cannot be simplified further since
have already made used of all the equations that are avai
to us ~which are the equations of motion and the HJ co
straint!. The consequences of this relation on the cosmolo
cal constant problem within the holographic RG-flow a
proach are the topic of the next section.

VII. DISCUSSION

It appears from Eq.~51! that 2U and^T& would not can-
cel each other in the presence of the leading 1/N corrections,
parametrized by thee1 , e2, and e3 coefficients. From Eq.
~47!, we see that this mismatch between 2U and^T& implies
a nonzero effective cosmological constantL (4) on the
boundary, which is in clear distinction from the results
Ref. @15#. In Ref. @15#, since the authors were only consi
ering the largeN limit, for them e15e25e350, and thus
they obtained the cancellation between 2U and ^T&, neces-
sary for the vanishing of the boundary cosmological co
stant. In geometric terms, this result was interpreted as m
ing that there exist a natural mechanism in which the vacu
energy that is generated on the four-dimensional br
world, as we flow towards the IR, is canceled by the e
decreasing warp factor of the five-dimensional geome
From the holographic RG-flow perspective~based on the HJ
formalism!, this result shows that, in the strong ’t Hooft co
pling and largeN regime, the potential energyU is canceled
by the trace of the stress energy tensor at all scales, once
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is achieved at one particular scale,14 yielding thus the RG
stability of the cosmological constant. Given the usual di
culties in reconciling the RG-flow intuition and the observ
tional evidence for a small cosmological constant, this
certainly a useful progress towards the final solution. It
important to notice that the RG stability of the cosmologic
constantL (4) established in the strong ’t Hooft coupling an
large N regime of the boundary theory, is not restricted
any preferred value forL (4). This leaves, of course, the que
tion of whether it is possible to pick up naturally initial con
ditions in the UV for whichL (4)50.

In our actual calculation, we have not addressed at all
question, rather what we were interested in is to extend
RG stability of the cosmological constant to the regim
where the strong ’t Hooft coupling and the largeN limits are
relaxed. What we found, in this case, is that the fate of
RG-stability mechanism, of Ref.@15#, is not sensitive to the
a8 corrections, which were introduced to account for t
relaxation of the strong ’t Hooft coupling limit. Howeve
one sees from Eq.~51! that the 1/N corrections do seem, on
the other hand, to ruin the RG stability of the cosmologic
constant if no other equations are supplemented at this o
to Eq. ~51!. As we have seen in Sec. IV, the derivation
1/N corrections are less systematic and much harder
implement in the HJ formulation than thea8 corrections.
Using the analogy with the transition from the HJ equation
the Schro¨dinger equation, and treating 1/N as A\, the 1/N
corrections are expressed as the second order variation o
boundary action. Although this is a good starting point
probe the effects of the 1/N corrections, it is clear that one
needs further information and better knowledge, especi
on the side of the boundary matter sector15 to remove the
arbitrariness left in the coefficientse1 , e2, and e3 param-
etrizing the 1/N corrections. It is very plausible that whe
more systematic methods become available16 further rela-
tions could be found between the potentialU and the bound-
ary operators such as^O I

2& and ^T2&, leading to the cancel-
lation among the terms on the right-hand side of Eq.~51!. So
instead of using Eq.~51! to declare the failure of the RG
stability of the cosmological constant, outside the regime
strong ’t Hooft coupling and largeN limits, we take the point
of view that it calls for a better understanding of the 1N
corrections beyond the simple addition of the second or
variation of the boundary effective action to the HJ co
straint.

Going now back to Eq.~51!, it is very plausible just from
the CFT point of view, to have a theory where

14Both interpretations hold only in the case of a five-dimensio
background of warp geometry.

15After all it is the matter fields on the boundary that form repr
sentations of the boundary gauge group, which makes them s
tive to the choice ofN.

16According to suggestions made in@15#, systematic methods fo
deriving the 1/N corrections could be found using the nonlocal lo
equations in Ref.@33# or string field theory.
1-11
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^O I
2&}] I] IU, ~52!

^T2&}^T&;U. ~53!

Furthermore, in Eq.~26! since both of the coefficientse1 and
e2 multiply the second order variation of the boundary effe
tive action, with the respect to the metricgmn , we expect that
they are not independent, and hencee1}e2. Combining this
relation with the relations from Eq.~52! and~53!, we see that
there is much room for the right-hand side of~51! to vanish,
allowing us to recover the RG stability of the cosmologic
constant in the presence of the leading 1/N corrections.
Hopefully, we will come back in future work to prove th
additional relations~52! and~53! needed to preserve the ca
cellation between the potential energyU and the and the
trace of the stress-energy tensor^T& in Eq. ~51!.

Finally, it would be interesting to use the new bul
boundary relations derived in Sec. V to study the Rand
Sundrum scenario. We treat this question in Ref.@34#.
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APPENDIX

The purpose of this section is to give a Hamiltonian fo
mulation of the higher-curvature theory considered in S
III, which is represented by theD-dimensional bulk action

ST5S11S21S3 , ~A1!

whereS1 , S2, andS3 are given by

S15E
D
AGdrdD21x@ $D%R12L1a0

$D%R21b0
$D%Rmn

$D%Rmn

1c0
$D%Rmnrs

$D%Rmnrs#, ~A2!

S252E
D21

AgdD21x@K1K~K,¹K;a0 ,b0 ,c0!#,

~A3!

S35E
D
AGdrdD21xFV~f!2

1

2
¹mf¹mfG . ~A4!
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All the terms appearing inS1 , S2, andS3 were introduced
and defined in Sec. III.

To obtain a Hamiltonian formulation of the bulk actio
ST , it will be useful to resort to the well-known technique
general relativity, which consists of slicing th
D-dimensional bulk spacetimeM, with metricGAB , into an
arbitrary foliation defined by the isosurfaces$S% @32#. For
the purpose of studying of the holographic RG flow of the
ries induced ontimelikeboundaries sitting at different loca
tions in the radial direction of the bulk spacetimeM, we
choose to foliateM along timelike isosurfaces. Because
this, there will be some sign flips between our formulas a
the ones that we would have obtained had we chosen a
liation along spacelike slices. So, given that (M,GAB) is the
D-dimensional bulk spacetime,17 we can foliate it by a fam-
ily of ( D21)-dimensional timelike hyper surfaces,$S r%, pa-
rametrized by the scalar functionr 5const. Thus, we can
write the bulk metricGAB as

ds25GABdxAdxB5G rr dr212G rmdrdxm1Gmndxmdxn.
~A5!

Here and throughout all the paper our notational conventi
will be to take the upper case Latin letters such asA andB to
denote theD-dimensional indices (0,1, . . . ,D22,r ) over
M, and the lower case Greek indices such asm and n to
denote the (D21)-dimensional indices (0,1, . . . ,D22)
spanning theS r hypersurface.

Let r m be a vector field onM satisfying r m¹mr 511,
and let nm be the spacelike inward pointing vector field
normal to the timelike hypersurface with normalizatio
G mnnmnn511. By introducing thelapse function N and
shift vector Nm, r m admits a decomposition in terms of it
normal and tangential components with respect toS r , as
follows:

r m5Nm2Nnm, ~A6!

whereN andNm are given by

N52r mnm52~nm¹mr !21, ~A7!

Nm5gmnr n. ~A8!

In terms of these definitions the metric in Eq.~A5! can be
rewritten as

ds25~N21NmNm!dr212Nmdxmdr1gmn~x,r !dxmdxn,
~A9!

where the boundary metric onS r is related to the bulk metric
by the formulagmn5Gmn2nmnn . Using the Gaussian nor
mal coordinates, corresponding to the gauge choiceNm50
andN521, the metric in~A9! takes on the simple form

17In general, even thoughM could be geometrically differen
from the pure AdSD form ~due to the possible bulk-matter stres
energy momentum tensor back reaction!, it still has the same topol-
ogy, allowing, therefore, the derivation of the gauge invariant c
relators on the CFTD21 boundary from AdSD bulk action@11#.
1-12
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ds25dr21gmn~x,r !dxmdxn. ~A10!

Another concept entering the description of the bulk spa
time M in terms of its foliations$S r%, is the notion of ex-
trinsic curvatureKmn , which is defined by

Kmn5gm
r¹rnn ,

5
1

2
Lrgmn . ~A11!

The meaning given toKmn is that it accounts for the ‘‘bend
ing’’ of S r in M. Finally, to obtain a Hamiltonian functiona
for general relativity, we need to express the gravitaio
action in Eq.~A1! in terms of the quantities (gmn ,Kmn ;Nm

50, N521), and their time and space derivatives. Splitti
ST along the timelike foliations, we find the following La
grangian:

LT5Ag@R12L1a0R 21b0RmnR mn1c0RmnrsR mnrs

1~K22KmnKmn!12a0R~K22KmnKmn!

12b0Rmn~KKmn2KmrKr
n!

14c0R mnrsKmrKns1O~K4!#

1AgFV~f!2
1

2
¹mf I¹mf I2

1

2
~ḟ I !2G , ~A12!

whereRmnrs , Rmn , andR denote the (D21)-dimensional
Riemann tensor, Ricci tensor, and Ricci scalar, respectiv
The sum over the scalar field indexI is understood in the tex
and hereafter. Using this Lagrangian, the canonical mom
conjugate tof I andgmn are

p I5
1

Ag

]LT

]ḟ I
52ḟ I ,

pmn5
1

Ag

]LT

]g
mn5~Kmn2Kgmn!12a0R~Kmn2Kgmn!

2b0~KRmn1RrsKrsgmn!

1b0~R m
r Krn1R n

rKrm!
,’’

um

,’’

02400
-

l

y.

ta

24c0R mrnsKrs1O~K3!,

p5gmnpmn5pm
m

52~D22!K2~2a0D24a01b0!RK

2~b0D23b014c0!RmnKmn1O~K3!, ~A13!

where

ḟ I5L rf
I5

df I

dr
,

Kmn5
1

2
Lrgmn52

1

2
ġmn52

1

2

dgmn

dr
. ~A14!

Replacingḟ I andġmn in LT by their canonical momenta, an
performing the Legendre transformation, we find the follo
ing expression for the total Hamiltonian:

2
1

Ag
HT5~R12L1a0R 21b0RmnR mn

1c0RmnrsR mnrs!1S V~f!2
1

2
¹mf I¹mf I D

1S pmnpmn2
p2

D22D1
1

2
p Ip I22a0R

3S pmnpmn2
p2

D22D22b0Rmn

3S pm
rprn2

ppmn

D22 D14c0R mnrspmrpns

1
4c0

~D22!2Rp22
8c0

D22
R mnppmn. ~A15!
,’’
,’’
,’’
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