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From the AdS/CFT correspondence, we learn that the classical evolution of supergravity in the bulk can be
reduced to a renormalization groiRG-) flow equation for the dual low-energy, strongly coupled and l&tge
gauge theory on the boundary. This result has been used to obtain interesting relations between the various
terms in the gravitational part of the boundary effective action, in particular the terms that affect the cosmo-
logical constant. It is found that once the cosmological constant is canceled in the UV theory, the RG-flow
symmetry of the boundary effective action automatically implies the existence of zero cosmological constant
solutions that extend all the way into the IR. Given the standand well foundeglcontradiction between the
RG-flow idea and the observational evidence of a small cosmological constant, this is considered to be
important progress, albeit incomplete, towards the final solution. Motivated by this success, it would be
interesting to see whether this RG stability extends outside the scope of strong 't Hooft coupling and the large
N regime that are implicitly assumed in the de Boer—Verlinde—Verlinde Hamilton-Jacobi formulation of the
holographic RG-flow equations of the boundary theory. In this paper, we address this question, where we start
first by identifying the modifications that are required in the Hamilton-Jacobi formulation of the bulk super-
gravity theory when the strong 't Hooft coupling and the laMjBmits are relaxed. Next, taking into account
the leading order corrections in these parameters, we derive new bulk-boundary relations, from which one can
read all the local terms in the boundary effective action. Finally, we use the resulting new constraints to
examine whether the RG stability of the cosmological extends to the new coupling regime. It would be also
interesting to use these constraints to study the Randall-Sundrum scenario in this case.
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[. INTRODUCTION feature of this duality is the existence of an intriguing rela-
tionship between infraredR) effects in the bulk theory and
According to the holographic principlgl,2], a macro- ultraviolet(UV) ones on the boundary. In a succeeding work
scopic region of space and everything inside it can be reprd<4], this relation was shown to be crucial in yielding the
sented by a boundary theory living on the boundary of thabound of one degree of freedom per Planck area as required
region! Furthermore, the boundary theory should not contairby the holographic principle.
more than one degree of freedom per Planck area. This ho- An immediate follow-up of the IR-UV relation above,
lographic principle has in the past few years found a remarkwhich is important to our work in this paper, is the interpre-
able realization in superstring theory due to new insightdation of the extra “radial” Dth coordinater, in the bulk
gained from the investigation of various superstring duali-space, as a renormalization grouR@) parameter of the
ties. At the heart of this string theory incarnation of the ho-(D —1)-dimensional quantum field theory living at its
lographic principle is growing evidence for an intimate con-boundary. Indeed, the radial evolution of tBedimensional
nection between quantum phenomena in gauge theory arullk fields was shown to share many features with an RG
classical aspects of gravity. Early examples illustrating suclilow [15—19. This fact was made elegantly more transparent
a relation are D-branef7,8], black hole entropy counting in the work of[15] by casting the Einstein equations in the
[9], and matrix theory10]. However, the clearest statement D-dimensional bulk into the form of a Hamiltonian flow
about the duality between gauge theory and gravity is madacross constanttimelike foliations. Specifically, it has been
within the framework of the recently discovered AQ8D  shown that the Hamilton-JacokiHJ) equation for the
—1)-dimensional conformal field theory (CET;) corre- D-dimensional Einstein gravity in the bulk, with the latter
spondenceg11-13. According to this correspondence the taken to be sliced along timelike foliations, can be written in
strong ‘t Hooft coupling, i.e.gs,N>1, and the largeN  the form of first-order RG-flow equations of the classical
limit, i.e., N>1, of certain O —1)-dimensional gauge theo- supergravity action. Furthermore, in the asymptotic limit
ries have a dual description in terms of a supergravity theoryvhere the UV boundary extends all the way to infinity, these
defined on one higher-dimensional bulk space. An importanRG-flow equations reduce to the standard Callan-Symanzik
equation including the the conformal anomaly tefi28], in
full accordance with the RG-flow ideas in quantum field
*Email: hambli@physics.ubc.ca theory. This result lends support to the identification of the
Recently, however, the entropy bound on spacelike and lightlikddUlk classical supergravity action with the boundary quan-
surfaces has been generalized to the case of flat Robertson-Walkéin effective action of the gauge theory as suggested in
geometries in Ref[3] and to more general geometries in Refs. Refs.[11,13.
[4,5]. See also Ref[6] for work related to the role of focusing In the standard Ad$CFT,_; correspondencéas de-
mechanism in holography. scribed above where the bulk spacetime is taken to be non-
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compact, the dual boundary theory is at infinite bulk radiuslargeN regime. It is the purpose of this paper to identify the
As such, it must have an infinite energy UV cutoff by virtue changes that are brought in the derivation of the RG-flow
of the IR-UV relation. Therefore, th®-dimensional bulk equation from the equation when the limits>1 and
graviton modes that extend all the way to the UV boundary®'/R?<1 are relaxed. In other words, we are interested in
are not normalizable and hence gravity decouples totally the calculation 9f tf;e leading-order corrections, in the param-
form the boundary, leaving out there pure Yang-Mills eters 1IN and a'/R“, to the HJ equation of the bulk super-

theory. However, as first pointed out in RE2Z1] by Randall gravity, and in the study of their consequences.

o We start in Sec. Il by reviewing briefly the
and Sundrum(RS), this situation changes as soon as one ] . .
considers the transverse bulk radius to bérdfe range. This AdSp-CFTp 4 correspondence to set notation and especially

) . ) to emphasis the emergence of the lalgand large 't Hooft
in effect translates into having a dual boundary theory a P g ary g

_ . . o li:oupling. In Sec. Ill, we introduce the leadiag corrections
finite bulk radius, and hence with a finite UV cutoff due t0 ;, the pulk supergravity actiof24—26. These corrections

the IR-UV relation. In this case, there will exisormalizable 46 their origin in the vanishing of the beta function of the
fluctuations of theD-dimensional metric that propagate and string theory nonlinear sigma model. They are represented
couple as graviton modes of th® ¢ 1)-dimensional bound-  py higher-derivative local effective interactions involving the
ary theory. This generalization of the AJBCFT,_; corre-  higher-curvature gravitational terms. Next, we give a Hamil-
spondence leads also to a remarkable interplay between Eifonian formulation of the the bulk higher-curvature super-
stein equations of the coupled gravity-matter theory on theyravity action so obtained. As expected, we find that the HJ
boundary and the RG-flow equatioh$5-17,2]. In addi-  equations are changed since the canonical conjugate momen-
tion, it provides interesting relations between the variousum to the metric inherits in this case new terms coming
terms in the boundary quantum effective action, in particulafrom the o’ corrections. Even though it is tedious to calcu-
the boundary Newton constant, the cosmological constarate the changes that are brought by éHecorrections to the
and the scalar potentifl5-17,21. As a result, a cosmologi- HJ equations, their form and how they appear as higher-
cal constant is naturally prevented from being generated dyderivative nonrenormalizable effective interactions can be
namically along the RG-flow once it has been canceled atlerived systematically in string theory using effective field
higher energies inside the bulk, as pointed out in RES].  theory languagé¢23,27). In Sec. IV, we deal with the ques-
These results join and corroborate earlier findings on the roléon of how to incorporate the W corrections in the HJ
of large extra dimensions in the resolution of the cosmologi-equations. There is a striking similarity between our problem
cal constant puzzlg22]. here and the one we face when we make the transition from
In principle, the above results should continue to hold forthe classicalHJ equations to thguantumSchralinger equa-
any (D—1)-dimensional gauge theory provided that it cantion. In that context, using the WKB or semiclassical theory,
be represented as a relevant or marginal perturbdiiothe  the leading quantum corrections linearfinare found to be
sense of Ref[23)]) of a largeN superconformal field theory proportional to the second order variation of the actoin
or any deformation of it, for which the A¢gSCFT,_, cor-  a similar manner, the W corrections which would change
respondence has been established. It is important to poitihe RG-flow equations are taken to be represented by second
out, though, that two main assumptions went into the derivaerder variations of the supergravity bulk action. The inter-
tion of the RG-flow equation of the boundary gauge theorypretation of the HJ constraints of the bulk theory as giving us
from the HJ equation of the classical supergravity action inthe RG-flow equations of the boundary theory taken at the
the bulk, as presented first in R¢L5]. These two assump- radius where the HJ constraints are satisfied, rests also upon
tions are, inherently, part of the conditions that are involvectheir strong resemblance with Polchinski’'s ex&® equa-
in the derivation Ad§-CFTy_, correspondence. The first tion [28]. Therefore, in Sec. IV, we also use this connection
assumption concerns the requirement that the gauge theoty motivate the addition of the second order variations of the
must have a larg&l>1, (and thus a large gauge grougp  action as representing theNLtorrections. After adding the
that one can neglect the string loop effects represented by the’ and 1N corrections, we look in Sec. V for their implica-
1/N? corrections. Secondly, the gauge theory is required tdion on the relations between quantities in the boundary ac-
have a large 't Hooft Couplinq;%MN>1, which amounts to tion previously derived in Ref4.15,17, in particular those
taking the energy scale in the theory to be low enough so thadavolving the Newton constant, the scalar potential and the
one can ignore quantum gravity effects controlled by thecosmological constant. Furthermore, it would be interesting
“stringy” a'/R? correctionsa’ denotes as usual the squareto see whether the solution to the cosmological constant
of the string length, andR represents some characteristic problem as proposed in Refd5,17] is affected in this case.
radius of the bulk geomet’/Therefore, one expect to have Finally, in Sec. VII, we discuss our results and offer sugges-
significant modifications of the HJ equation and hence thdions for future directions. The Hamiltonian formulation of
RG-flow equations outside this low-energy strongly coupledgeneral relativity in the presence of higher-curvature terms is
presented in the Appendix.

IIl. AdS 5-CFTp_; CORRESPONDENCE AND

2To better understand these limits, we refer the reader to Sec. Il, HOLOGRAPHY
where we show that for type IIB superstrings on AdS®, the
string coupling is gs~g%y~1/N?, and the radius isR? We start by reviewing quickly some basic elements of the
~a'\JgZuN. AdSy-CFTy_ 4 correspondence. Our main concern here will
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be to motivate the largél>1, and the large 't Hooft cou- which describes the product-space geometry AdS,
pling g2,,N>1 limit, involved in the correspondence. Fur- where both factors have radiﬁéza’\/ngMN. Furthermore,
thermore, to simplify our presentation, we focus only on thewe know that the classical supergravity description can be
D=5 case since many of the features found in this casérusted only if the length scale of the D3-brane solution,
continue to hold for gener&. The most studied example in given by the metrid4), is much larger than the string scale
this category is the proposed duality between four-\/«’, which allows for the “stringy” quantum gravity effects
dimensional Yang-Mills theory witth’=4 supersymmetries to be neglected. This condition translates iRfe>a’, which

and type-IIB superstring theory on Ag8S> geometry. At yields the large 't Hooft coupling limit for the gauge theory
the heart of this duality is the existence of the relation begn the D3-branes world volume, i-@»Z(MN>1- In order to
tween the two different descriptions of a stackNparallel  suppress the string loop corrections, we also need to take
extremal D3-branes. One in terms of the low-energy four-gsﬁo’ and henc@iMﬂoy which amounts to taking the
dimensionalU(N), N'=4 supersymmetric gauge theory on |argeN limit, N>1. To summarize, the supergravity solution
its world-volume, and the other in terms of the classical suig expected to give exact information about tkie-4 super-
pergravity background of the type-Il closed superstringsymmetric Yang-Mills theory on the D3-branes world vol-
theory. An essential step in the derivation of the AFT,  yme, in the limit of largeN>1 and large 't Hooft coupling
correspondence is the understanding of the range of validit \2(MN>1' More on the two limits above after introducing
of each of the description above. For the classical supergra;,oiher key feature of the AGSCFT, correspondence be-
ity description, we need the form of the background string ;.\ that is the idea of RG flow and holography.

metric, the dilaton and the RR-gauge field for the stack of From the Ad$x S° geometry in Eq(4), we can see that

parallel extremal D3-branes. This is given by the following e coordinate transverse to the D3-branes can be regarded

form: as a renormalization group scale. Indeed, two excitations in
) ) the gauge theory on the D3-branes world volume, which are
ds?=(1+RYr#) " Vadx) + (1+RYr*) Y4 dr?+r2dQj), related by a scale transformations
D
Xi— €7/, )
e’= Ost 2

translate on the AdS factor of the geometry into two excita-

tions concentrated around different locations in the trans-

Corpg= (1+RYrH)~1—1, (3 verser direction, and which are related by the following
transformatiorf 12,29

wheredx?, denotes the flat four-dimensional metric for the

coordinates parallel to the D3-branes, and the ratus

R2=a’\gsN. For the low-energy supersymmetric Yang- i )
Mills description on the D3-branes worldvolume, we need! "€ AdS-CFT, correspondence provides us thus with a ho-

the relationg\z(M:gst between the couplings. lographic map between physics in the gauge theory on the

Another piece of knowledge which played an important Vorld-volume, which can be thought of as living on the
role in the Ff)ormulation of th(ge standaré) A);}SFT‘; co?re- AdS; boundary, and physics in one higher dimension in

spondence is the realization that the low-energy limit of thefo‘dSS bulk space. This holographic map is at the center of the

gauge theory on the D3-branes world volume, correspondin -UV relation according to whickiR) effects in the bulk

to @’ —0, may be taken directly in the supergravity descrip- i eotry ar((aj relft:lttedbt(iJV) ones_oln_ the_ ﬁ);unc:ﬁrythhis relﬁ_-
tion. On the supergravity side, the limit amounts simply to_o" trned out to be very crucial in yieiding the nolographic

taking the near horizon geometry corresponding to tthe bound of one degree of freedom per Planck area as required

—0 limit. Thus, finally, in the limita’—0 andr—0, with  PY the holographic principlg15].

r/a’ fixed, one finds that the metric in E€L) reduces to the In the _ongmal Ad$-CFT, correspondence, the AdS
form boundary is taken to be at= +«, and as a result the range

of the r values extends all the way to infinity. Therefore,
5 R? while the theory in the AdSbulk space contains gravity, the
dsz=r—dx2+ = dr?+ R?d02 (4) dual CFT, theory on the boundary does not. This happens
R2Y9AIT 2 ' because the bulk gravitational modes that propagate all the
way to infinity are not normalizable, and therefore do not
fluctuate. In this paper, however, we are interested in the
3For a generaDp-brane, the relation between the couplings is much more general situation \(vhere gravity does not de-
g%y =0(a')P~3, and the dimensionless effective coupling, at en-couple at the boundary. qu this to happen, we follow the
ergy scaleE, is g24(E) = g2 NEP . Perturbation theory applies in Randall-Sundrum proposal in R¢21], and choose the AdS
UV for p<3, and in IR forp>3, and the two cases may be related transverse coordinate to run over a finite rangessry, in-
by S duality [12]. The special casp=3, presented in Sec. Il, cor- Stead over an infinite range. An immediate consequence of
responds toA’=4 supersymmetric Yang-Mills theory ib=4, thisis that, there exists now a normalizable gravitational col-
which is known to be a finite, conformally invariant quantum field lective mode at the boundary, which in this case is living at
theory. finite the radiusr =ry. Furthermore, in view of the IR-UV

r—e r. (6)
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relation, truncating the bulk theory to values larger(or (O, (x;)--- O, (X))
smalley than some finiter =r, amounts to introducing a ' "

finite UV (or IR) cutoff in the theory at the boundafy5]. 1 S 1 S |
Therefore, allowing for the bulk transversalirection to be = | o ot #9]
interpreted as an RG scale. Indeed, by casting the bulk Ein- Vg(xa) 910X g(xy) 66 (Xn) r=rg

stein equations into the form of Hamiltonian flow across )
timelike boundaries, the evolution of the bulk fields were

shown in Ref[15] to share many features with an RG flow
on the boundary.

Combining this holographic perspective of AASFT,
correspondence with the RG scale interpretation of the bul
transversa coordinate, one aims to derive the low-energy
guantum effective actionS, on the boundary from the
knowledge of the bulk supergravity theory. As explaine
above, we shall take the boundary to be at finite radiuso
that gravity does not decouple from the boundary theory. T

this end, we start by defining some classical action for théurbed/\/=4 supe_rsymmetric_: Ya_ng-MiI!s theory. -
supergravity theory in the bulk, which we denote by Although the discussion, in this section, was so far limited

S{[#',g]. In addition the bulk metris, Si[¢',g] also to the AdS-CFT, correspondence, one could easily general-

depends on some scalar fielg$ that represent the various ize it to include the_z higher-dimensional AgSspaces. We
couplings of the boundary theory. In fact, it is the evolution'Vould be t_he_n t_alkm_g about an AgSCFT,_, correspon-
of these scalar fields as a function of the bulk transverse dence. In similarity with the AGSCFT, correspondence, the
coordinate that eventually lead to the RG-flow equations of2r9e N limit, N>1, and the large 't Hooft coupling limit,

the boundary theor{/For later reference, we choose the bulk R/’ =VgyN>1 will also be involved in this case. In
metric to be of the form particular, the interpretation of the radial Agl®oordinate

with an RG scale will also allow in this case for an identifi-
cation of the radial evolution of the bulk fields with a RG
flow. Thus, by working within the general framework of

By requiring that the scalar fields' and the metrig,, stay
regular inside the bulk, there is in principle one unique su-
‘pergravity classical solution for a given boundary value for
¢' andg,,, . If we put the scalar fieldg' to zero after doing
the variation, we do obtain the gauge invariant correlators of
dthe unperturbedvV=4 supersymmetric Yang-Mills boundary
theory. If the fields¢' are put to finite values, however, the
6esulting boundary theory will correspond to a finitely per-

dszngBdXAdXB

=(N?+ NMN")dr2+ 2N, dx*dr AdS,-CFTy_ 4 correspondence, our purpose next will be to
go beyond the largé\, and largeR?/«’ limit, and consider
+gu,(x,r)dxfdx”, (7)  the leading corrections in W/ and «'/R? to the RG-flow

equations derived from the bulk HJ constraint.
where A and B are taken to denote the bulk coordinates
(r,x#) and x and v denote the boundary coordinates. We |, H; EQUATIONS AND THE HIGHER-CURVATURE

assume the boundary metrg, ,(x,r) to be of Euclidean TERMS
signature, and we allow the scalap§x,r) to depend on all
bulk coordinates r,x*). N and N* are the lapse and shift In this section, we consider the derivation of the HJ con-

functions, respectively. A convenient choice of coordinatesstraint of theD-dimensional bulk supergravity theory in the
are the Gaussian normal coordinates, whete=0 and N presence of t_hea’ Correcthns coming from a quantum
= —1. Using such coordinates, the metric in Ef).takes on  theory of gravity such as string theory. In string theory, the

the simple form lowest-ordera’-corrections to the low-energy effective ac-
tion involve the higher-curvature terms, which are controlled
) > : §
dszzdr2+gw(x,r)dx"de. ®) by the expansion parametef/R“, whereR is the character

istic radius of the bulk space. Therefore, by virtue of the
] ) ) relation R%a'= \/ngMN, the addition of the higher-
(More details on our notation and convention are presentegyryature terms will necessarily affect the large 't Hooft cou-
in the Appendix) o , _ pling limit g2,,N>1 involved in the Ad§/CFT,_; corre-
Finally, one of the main ingredients in the A4SFT,  qhongence as well the the RG-flow equations derived from it.
corrgspond_ence |s|the identification of the c_IassmaI SUPETAs in the approach of Ref§15,17, the changes that are
gravity actionSy[ #',g] evaluated on a claslsmal solution, poght by the higher-curvature corrections are most conve-
with specified boundary valueg,,(x,ro) and¢'(x,ro), With  niantiy analyzed using the HJ theory of tBedimensional
the generating functional of gauge invariant correlators oy, sypergravity theory. By casting the Einstein’s equations
gauge invariant observablé} in the boundary theory living i the bulk into the form of a Hamiltonian evolution across
atr=ro, thatis, we have timelike boundaries, one is led to the familiar HJ constraint
of the canonical formalism of gravity. It has been shown in
Refs.[15,17) that this constraint play a key role in the bulk-
“Because of the stress energy-momentum tensor of the scal®oundary correspondence, as they allow for a systematic
fields ¢', the background geometry in the bulk will deviate from derivation of the D —1)-dimensional quantum effective ac-
that of a pure Ad$form. tion of the boundary theory from the knowledge of the bulk
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theory. Furthermore, combining these results with the IR-UVto recall that the normal-derivative terms frogq are can-
relation, a holographic RG-flow picture of the dual boundaryceled by the variation of the surface termsSn

theory naturally emerges, as changes in the bulk coordinate Using the choice of the metric in Eq(14), the
r=ry translates now into shifts in the energy scale D-dimensional bulk equations of motion can be cast into a

=r/a’ of the dual boundary theory. form of a Hamiltonian flow across thed(— 1)-dimensional
For the purpose of deriving the changes to the HJ contimelike boundaries, with the bulk transversecoordinate

straint due to the higher-curvature corrections, we choose fdplaying the role of time. Based on the bulk acti&pin Eq.

the D-dimensional bulk spacetime the following supergravity (10), the Hamiltonian that generates this radial flow is ex-

action® plicitly derived in the Appendix, where we found
Si=5+5+S;, (10 1
' 5 — M= (R+2A+3gR 2+ bgR,, R4
whereS,, S,, andS; are given by \/a
1
+ CORMVpO'RMVPO-) + V( ¢) _EVM¢IVM¢I

S = f VGdrd® X[ PR+ 2A +aP'R?+ by PR, [DIRA”
D

2
a
+CO{D}R,wprr{D}R”VW], (11 +| T — D 2) + 5 M~ 2a9R
2
szzzf JgdP~IX[K + K(K,VK;a,b,c)], (12 X| 7, ———=| = 2bR,,
D-1 D-2
Y3
D-1 1 | | X | at PV — T +4coR TP’
S3= | VGdrd® x| V(¢) -5V ,¢'V4e!|. (13) p D-2 0™ wrpo
D
4c, , 8Co )
In addition to curvature actio;, the D-dimensional bulk + (D—Z)ZRW ~ =g Rwmm, (15

supergravity theory contains the matter act®rfor the bulk

scalar fieldsp', which through the bulk-boundary correspon- yjth 7,, andm, are the canonical momentum variables con-
dence represent the various coupling of the dual boundary,gate tog#* and ', respectively. It is a standard fact, well
theory. The sum over repeated indexf the bulk scalar  known in classical mechanics, thgiven the bulk actiorS;)
fields is assumed throughout all the paper. The curvaturg,e value of the canonical momentum conjugate tag', at

D D H !
;calar{ }R’ and the tensoréD}RM and }R;wpo appearing 3 given slicer = const, is equal to the functional derivative of
in the actionS,; are calculated using the-dimensional bulk  the pulk actions,, induced on that slice, with respect .

metric Gag, With the coefficientsaoé by, andcy parametriz- £y rthermore, since the conjugate momentupis related to
ing for the time being only the'/R? correctiong. Using the the radial flow of¢', we have

Gaussian normal coordinates, g takes the form
1 65y

ds?=G apgdX*dxB=dr?+g,,(x,r)dx*dx". (14 \/_awzwlzgrd,lz_gi,l_

(16)
Following Sec. I, our notation will be to take the upper case

Latin letters such a#® and B to denote theD-dimensional Similarly, for the canonical momentum variabié*” conju-
bulk coordinatesxX*,r), where the lower case Greek indices gate to the the metrig,,, we have

such asu and v are taken to denote the coordinates;(u

=0,1,...D—2) of the [O-1)-dimensional boundary 1 685,

theory. As usualK is taken to denote the extrinsic curvature 7 W T Tuv

of the boundary surface, whose form is given Ky, 9

=1,,9,,=9,°V, n,. WhereasC(K,VK;a,b,c) is taken to _ _ _

represgnt the additional surface terms corresponding to the (Kuy=K8u,) ¥ 280R (K, = KG,))

higher-curvature terms inS;. The derivation of —bo(KR,, + RPK 69,)

K(K,VK;a,b,c) was carried out in Ref.24,25, but its ex-

act form will not be necessary for our work here. It suffices +bo(REK,,+RIK, ) —4CoR e KT
+0O(K?3), (17)

5Since we choose to work within the Einstein frame, we can us
the D-dimensional Planck unit such thap=1.

.Lgter, in Sec. IV the coefficients of the hlghgr-cgrvature terms 7T=g’”’7'rﬂ,,= 77“#= —(D—2)K —(2a,D — 4a,+by) RK
will include, in addition toag, by, andc,, the contributiong, , b4,
andc; from the 1N corrections. —(bgD —3bg+4co) R, K+ O(K3). (18

r by taking the trace
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(The details about the calculation of the conjugate momentas advertised earlier, the’ corrections from the bulk, in the
a, and 7*” can be found in the Appendix. form of higher-curvature terms, modifies the HJ constraint.
Hamiltonian flow across the boundary is a constrainedrhis HJ constraint will play a central role in the remainder.
system, since it is still endowed with redundancies. Thedndeed, the bulk-boundary correspondence proposes to re-
choice of the foliation is arbitrary, and even after fixing one, place the bulk actio®, in Eq. (20), induced on the timelike
the system is still endowed with redundancies. To removédoliations, with that of an effective O —1)-dimensional
completely these redundancies, two set of constraint equdroundary theory. It is easy to see then that the HJ constraint
tions on the initial data at the boundary are necessary. Thia Eq. (20) allows us to determine the coefficients of all the
first constraint translates simply into a statement regardingpcal terms in that boundary action, which will in effect in-
Poincareinvariance on the boundary slices. It ensures thatlude contributions from the higher-curvature corrections. In
the boundary effective action is invariant underrelation with the higher-curvature corrections, we should
(D —1)-dimensional coordinate transformations. The seconé@lso notice that they do induce in the boundary Lagrangian,
constraint, which is most important for our purposes, is thequartic powers of the extrinsic curvatuke schematically
Hamilton constraint. It requires to set;=0, which ensures denotes a¥k*, in addition to the quadratic term¢?. As a

invariance of the constamtslices under the local shifts. Us-
ing Eq. (15) for the Hamiltonian*, we obtain

consequence, the Hamiltonigdd; in Eq. (15 must also in-
clude terms that are quartic in the conjugate momentuit
such as asr®. The reason we chose not to include thé

2 1 2 terms inHy, and focus only on the corrections coming from
(ﬁ_ 77,“,77“”> 5 m+2ayR 7TM,,7T/“/—D_2> the quadratic terms .|K, is that it is in pnngple p0_55|blle to
generate the quartic terms such K4, in a Wilsonian
uv manner’, as effective interactions. This is done by integrating
+2boR,, | 1 = 55 | T4CoR pypem P out some very heavy auxiliary fielgy, with mass much
higher than the cutoff scale in the boundary theory, and
4cg , 8¢ v which enters the boundary Lagrangian in the foMriX
_(D—Z)ZRW +D 273#,,7717 +§XK2 - o o
Finally, using the definition of the extrinsic curvature
=(R+2A+agR2+ boR W/ R¥Y+CoR yype R*P7) given by Eq.(A14) of the Appendix, the radial flow of,,
follows straightforwardly from the expression of the canoni-
+(V(¢)_%Vﬂ¢|vy¢l>_ (190  cal momentumr*” in Eq. (17), and it is found to be
. . . 1
To obtain the HJ constraint at=r,, we simply have to K, ,= §£r9uv
replace the canonical momenta in Ef9) by the functional
derivatives of the bulk actiors, induced onr=rg, with 1.
respect to the conjugate variables. In terms of the acjpn = 59

the HJ constraint reads

o
=\ Tuv— mgw

) 88, Sy 1 ( 5Sb>2
aO v Ouv
Jgld9,, 89*" D—-2\7#"4g,, P 4o | R b4 i
aO D-2 D_Zg,u,v ( 0 CO) D 2 nv
+2b RI-LV 58[) 5Sb gpa’ 5$b 58b
°"Jg | 89” 89,, D-2 59, & Ruvm
\/a 5g'u gpv gpo’ gMV _2aOR7T/LV+(bO_4C0)D_2 _bo
Rm,, 58, S, 4c, R( 5sb)2 , , 21
—-— v X (R 2R +4coR ,pem,
°7Jg 09, 09,, (D27 Jg\ % 5g,, (ROTpnt Rympu) +4CR ) (2D
800 Ry, 0S8, 68, 1[ 1 ( 5sb)2 K=K~
Yoo G EIL
D 2 P S 1] D—2\#"§
Jg Ypo 99,0 g 9uv N acy | R
88, 58S, 168, azsb} T T D2 | P 552
89, 694" 2 5¢' 64 R,
. +(3bg— Dbg—4cy) D—3 (22)
=\g| V(#) =5 V,6'V#¢! + R+2A +agR
+boR,,R* +CoR ,,0eR*“P7|. (20 "This way of viewing the higher-curvature corrections was sug-
. e gested to us by Herman Verlinde.
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Therefore, given the functional form of the boundary actionwhere s satisfies the Schdinger wave equation
S, at slicer =r,, and using the first-order equatiofi®) and

(21), one can unambiguously compute the radial evolution of 2 2 _hay
the couplings¢' and the metrig,,,, in terms of their values %V YVY=T e (24)
on that slice.
In terms of the actiorS the Schrdinger equation can be

IV. 1/N CORRECTIONS AS A WKB APPROXIMATION written as

We have seen in Sec. | that the AgEFT, _; correspon- 1 S ik
dence involves both the large 't Hooft couplirgﬁMN>1, —(VS)2+V|+—=-—V?S, (25
and the largeN>1 limit. Because of the relatiolR?/ a’ 2m gt 2m

— i imitg2 !
= VgymN, relaxing the limitgy,,N>1 on the 't Hooft cou-  The |ast equation may be called the quantum-mechanical HJ
pling reduces simply to the problem of incorporating theeqyation: it reduces to the classical HJ equation in the limit

1 R2 ; ; ;
@ /R corrections, as we have seen in Sec. |l. This Wa%s#, and therefore the Compton wavelength of the particle,
carried out systematically, by considering the effects of th oes to zero. Indeed. one is to note tKZS arises in asso-

bulk higher-curvature terms on the boundary theory. Whe Liation with (VS)? in the evaluation o 2 in the quantum-

we tumn to the largeN>1 limit, the derivation of the N mechanical wave equation. Therefore, E2b) would be the

porrecuons to the HJ copstreyr)t does not, unfortunately, €N\ 1ssical HI equation #V2S<(VS)2, or, equivalently, if
joy the same degree of simplicity. What we seem to be miss;

! . - N2m<pl(V-p).

2
Ny here is a systematic method, anqlogous to dféR It is clear from the discussion above that the key element
corrections case, where theNl/corrections could be, for

example, derived from first principles such as the openjn the transition from the classical to the quantum HJ equa-
closed string duality relation proposed in RE0]. In the tion is the relation between the wave functignand the

absence of such systematic methods, our derivation of thaCtIon given by Eq(23), and the Schrdinger wave equation

1/N corrections relies simply on our experience and intuition&4) describing the propagation gi. It is exactly the analog

based on similar problems in other physical examples. ondf these relations that we would need in the AdSFTp

such(well known) example is the problem we face when we fﬁéraipgggset?;ﬁ] ,t tlﬁ ges agleer;gtiie\,r\l,\;e tgﬁ dtv?/Lri?: %tl\?vgs dtg not
make the transition from thelassical HJ equation to the Y Y

. : . have® Despite this difficulty, one can still use the above
guantumSchralinger equation. To see this, we recall from ; : . :
- . ._.analogy, in particular the quantum-mechanical HJ equation
guantum mechanics that the wave amplitude to be associated

with the mechanical motion of a particle of maaave the ' Eq. (25), to discuss the N cqrrect|ons. The a_nalogy. be-
form comes even more clear if we think oNLas /7. With this in

_ mind, it is natural to write down the following equation for
= ioe'Ms, (23)  the HJ constraint:

R[ 88, 85, 1 58 |2 Ruw| 8Sp 6Sy  Gpe Sp 85, Ruvps 9So 88,
4 glog,, 69" D_z(gwﬁgw) Jg | 897 39,, D-259,, 60, = \g 09 59us
4c R 88, \> 8¢ R,, 85 88, 1 5°S,
- (D-2)? Ta(g‘”&gw) D2 g %7 5g,, 5g,w+¢_§[e1 59,,,09""
+€20,0 ° gr” 5Sbv+e3 52|Sb| +i - (g V&Sb)z_ o% 551)”_}@?&?}
89,0 Sg* op' 8¢ \/5 D—-2\7#"5g,, 89,, 69" 2 8¢ S¢
=g V(¢)—%VM¢'V“¢'+R+2A+aR2+ DR, R4 HCR o R4, (26)

wheree;, e,, andes are the coefficients parametrizing théNi¢orrections to the HJ constraint in the same way thatb,

andc, parametrize thex' corrections in Eq(20). In fact, in writing down the HJ constraif26), we have replaced,, b, and
co by the new coefficients, b, and ¢ allowing the latter to include extra N/ contributions besides the' corrections.
Therefore, we can write

a:ao+al, b:b0+b1, C:CO+C1, (27)

wherea,, by, andc; are taken to parametrize theNLtorrections.

8In Ref.[15], it was suggested that the HJ constraint can be considered as the classical limit of the quantum Wheeler-DeWitt equation,
which when written ag'/*S, contains an additional term proportional to a second order variation of the &tion
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In this paper, we take the point of view that EQ7)
represents the correct HJ constraint taking into account the 5|(9,¢>):f Vod®x
leading order corrections ia’ and 1N. Using Eq.(27), we bt
shall determine in the next section the various bulk-boundary + U(¢)_A(¢)R2_B(¢)RMVRMV
relations that follow from it.

K<¢>(R—%V“¢'Vﬂ¢')

—C(P)RH"PIR , (29

nrpo

V. THE LOCAL BOUNDARY ACTION TERMS
REVISITED

whereR, R?, R*'R,,, andR*"""R denote the D
_ ’ ’ Mmv MmYpo

One of the r_emarkable features of the ASSFTp_, cor —1)-dimensional curvature terms constructed form the
respondence is that the bulk-boundary correspondence bsoundary metrig,, in Eq. (14). The boundary values of the
captured by the HJ constraint in E@6). The latter has, in . | kY ) ' . . )

. o scalar fields¢' are to be equated with the dimensionless

particular, the advantage of containing both theand 1N coupling constants of the boundary theory, &hdb), «(d)
corrections(in the leading order Extending, therefore, pre- ' ' '

vious work on the RG-flow beyond the low-energy, strong“‘}.((ﬁ)' §(¢)’ tar]d () tﬁre ![(r)]cal hfungnoulwlsh.ofhthedse.cotL_J-
coupling, largeN limit. It is also important to realize that the PIINGS. on Contains, on the othér hand, ail higher derivative

HJ constraint in Eq(26) proposes that we replace the bulk and nonéocal terms subject to the symmetries inherited from
actionS,,, induced on the timelike slice due the foliation of the bulk-" In terms of the nonlocal actiody, the boundary

the bulk spacetime, with that of an unknown effectiv@ ( theory operator¢©,) and energy-momentum tensgr ),

—1)-dimensional boundary theory, whose action we denot&© 9IVen by
by actionS®". With this in view, the HJ constraint now plays

the role of a functional differential equation allowing for the 1 S

determination of the functional form of the local terms in the \/_a 54 o, (30)
boundary actiors®", as we shall see below.

It is well know that the RG flow of quantum field theory
in a curved background induces, in the effective action, an 1 08y 31)

Einstein gravity term plus a cosmological constant. Indeed, a \/6 5g/”_ Tun)-
computation of théT,,,) for the quantum field and its sub-
sequent regularization is found to renormalize both the Ein-
stein tensor and the cosmological constant. Therefore, at th§e
cutoff scaleu, a general form for the effective acti®@f" is
given by

Our goal now is to determine the local boundary terms in

ffFor this, we need to insert the effective acti§ff into

the HJ constraint26), equating contributions from the left

hand side with terms on the right hand side that have the
SeM(g,6)=5/(9,¢)+Sy(g,d), (28)  same functional form. By treating the metmy,, and the

scalars¢' as arbitrary classical fields, this procedure gener-
where S, represent the local part of the effective actionates a set of bulk-boundary relations for the unknown func-
whose form is tions in the local actiors;, which are

2A+V= EEU2— 1(a U)?|+ —E(Dz—l)u—%(D—l)ZUJre d'gU (32)
4D-2 2" 4 4 ek
1_1D—3 Ui eaUl s aD—1U2 b 1 U2 1 U2
S|12D_2KYT oK 2b-2° 2D-2° SDd-1)2
e e
+{—ZI(DZ—5)K—f(D—3)2K+e3a'alu}, (33)
[1Dp-1, 1D—5UA 1 e o+ D-3 ! (D—-1)(D-3)
a= ZD—ZK T5D->2 —Eﬂkr?uc d'Uog, —a—D_ZK - C—Q—(D_z) K
D2— e, ) |
+| ey ——A+B|+  (D—5)24—ed' 9 Al, (34)

9The usual quartic, quadratic and logarithmic divergences for quantum fields coupled to curved spacetime are contained in the local action
S, throughU, « and (4,B,C), respectively. The nonlocal actia$y, may also contain extra logarithmic divergences.
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b=| k2 =22 UB+ UGB +| b kU~ 4ckU S s oarac)+ 2(D-5)B- eyl
—_—K _Em +d'Uog B|+| — D_2K —4ckU |+ | e 2 + + +Z( - ) —e3d 0,5,
(35
|- L120 e duac+ | E D2 - 170+ Zp-9)c 36
°="2b-2 +IUa |+ (D =1NC+ (D-9)%C|, (36)
[ 2(D-2)] [e;(D?-1)(D-2) e, (D-2)(D—1)? (D-2)
I = —(D- - D S D e [
ﬁﬁ|K - (D 1)K+ U 2 ] K+ 2 U K €3 U (98|K y (37)
|
where the beta functiong"’s are defined by experimental success. Faced with this riddle, one way out
would be to imagine a scenario in which the observed four-
B(4)= —2D_2¢~7,U. (38) dimensional universe, where the problem is severely posed,

U is related to a world of a higher dimension. If the higher-
- ) ) ) dimensional world does not obey the usual assumptions of
In addition, we have to this order in the expansion, termgoyr-dimensional low-energy effective field theories, which
involving the functional derivatives of the nonlocal action |gad to the cosmological constant problem, one may then

Sni- The bulk-boundary relations for them are find a solution to this problem within in this scenario.

| In the following we will reexamine the cosmological con-
(TE)=(T)= %((901 (39 stant problem using a scenario in which the observed four-
dimensional universe is embedded into a higher-dimensional
(Ty? 1 background of dimensio®=5. Our approach is directly
V= —(TEYT ) — =(O'YO) motivated by the new insights from string theory thr.ough the
D-2 w2 AdSs-CFT, correspondence, as well as by recent ideas that
+[91<T”VTW>+92<T2>+93<@'O|>]- (40) have appeared in the study of warped string compactification

scenarios along the lines of Randall and Sundfum Refs.
In the next section, we shall use these new bulk/boundar}21,15,22,16 reviving earlier work by Rubakov and
relations to study the cosmological constant problem. In parShaposhnikoy22]. The starting point of our discussion is
ticular, we are interested to see whether the solution prothe holographic formulation of the RG equations in which
posed in Ref[15], for the vanishing of\, continues to hold the RG scale is treated as a physical extra dimension. We

in the presence of tha’ and the 1IN corrections. also assume the warp geometry for the five-dimensional bulk
spacetimé? which generalizes the AGSCFT, duality to
VI. WHAT IS NEW ON THE COSMOLOGICAL four-dimensional bOUndary theories with dynamical gravity,
CONSTANT PROBLEM? as our world. Following Ref.15], and applying the results of

Sec. V to a five-dimensional bulk spacetime of warp geom-

The problem of the cosmological constant is why theetry andA =0, one finds that the HJ evolution equations in
vacuum energy density is zero or extremely small by particlehe bulk can also be reformulated as an RG-flow equalfons
physics standards. It is a hard problem because it involvegr the four-dimensional boundary effective action, even af-
not only the high-energy but the low-energy physics as wellter the inclusion of thex’ and 1N corrections. Our calcula-
It is not sufficient, for example, to find a cosmological con-tions, therefore, extends previous results found within the
stant that is zero at high energi@ear the Planck scaleone  context of classical five-dimensional supergrayity], and
must also explain the absence of the vacuum contributions agus within the largeN and large 't Hooft coupling limit, to
the scales run to low energies. This low-energy aspect of thghe regime where these limits are relaxed. In particular, new

cosmological constant is, in fact, the most puzzling, andnteresting bulk-boundary relations were found, suggesting
seems to require some fundamental new ideas in the basic

principles of low-energy effective field theories, RG flow,
and gravity. But the low-energy physics in the standard
;rgtm See\‘lécr)rrlktoofoff]% l:r;dggﬁjr:;lﬁn;l tﬁze;:gti J[Iﬁ(l)dn t?heeogi{hi(:es complete and consistent embedding of the Randall-Sundrum sce-
hand, it is very hard to change the low-energy theory in anil;'o within string or M-theory.

. . - Such backgrounds could be obtained, for example, via F-theory
sensible way, given all of the well known theoretical andcompactification on Calabi-Yau fourfold81,32

1370 find the RG-flow equations of the boundary effective theory,
one solves for the evolution equations in E(&l) and (16) using
OFor a complete review on these issues see the paper by Weithe warp geometry ansatz for the bulk, after replacing by the con-
berg in Ref[22] straints from the HJ constraint in E(R6).

UDespite recent attempts in, Rdfl5] it does not exist yet a
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an intimate connection between the RG-flow symmetry of7? ' represents the stress energy-momentum tensor of the

the boundary effective action and the bulk Einstein's equascalar fieldse'. In addition, ¢', 7%, also depend on the

. . il y y72%

tions. functions x,.A,B,C, their covariant derivatives and the vari-
Let us now address the con_sequen'ces'of the RG-floy,s curvature terms of the metgg,, . (T,,) and(O,) were

symmetry of the boundary .effec-tl\,/e action, in the presencjefined earlier in Eqs(30) and (31), and they represent the

of the leading order corrections i’ and 1N, on the four- b0 nqary expectation values to which the megj; and the

dimensional cosmological constant. Using the same line 0f5 |4, fields¢' couple, respectively.

reasoning as in Ref15], our RG-flow equations also imply At this point, one could make use of the RG-flow equa-

that once we have a solution for the gravitational part of the;qns of the houndary effective theory to deduce the RG tra-
boundary effective action at one scale, there is a solutiof iyries of all the quantities appearing in the field equations
along the whole RG trajectory. As a result, assuming that th 41) and (42), and show the decoupling mechanism that is
boundary cosmological constant is canceled'at high energiggaimed to arise for the cosmological constant. Since this
(due to extended supersymmetry, for exampilewill natu-  50510ach has already been used in the previous literature
rally remain zero under the RG flow. So it appears as if they;ch as in Ref15], what we propose here is a much simpler
boundary cosmological constant continues to decouple from girect method making use of the bulk-boundary relations
the RG-induced vacuum energy of the matter fluctualionSyerived in Sec. V. To address the consequences of the bulk-
even after relaxing the largdd and the large 't HoOft cou- 1,4 nqary relations on the boundary cosmological constant,

pling limit. As we will show now, this de?"up"”g arises due |o( s take the trace of the four-dimensional Einstein’s equa-
to a cancellation between the contraction rate of the WarBons in Eq.(41), yielding

factor and any variation in the matter induced vacuum en-
ergy, in close similarity with with the mechanism proposed kR=(T)—2U+2(3A+B+C)OR=kA®, (46
in Ref. [15]. Using a five-dimensional background of warp
geometry with vanishing\ as our bulk spacetime, the field where we have assumed the boundary theory to be at an
equations that follow from the effective aCtI(DES) are then energy scale much less than the cutoff Sqal&o that the
the fqur'dimensional Einstein equation and the scalar ﬁel(écalar f|e|ds are practica”y independent Of the four-
equations dimensional boundary coordinates, i.eVMqﬁ'(x):O.
Clearly, the terms on the right-hand side of E46) repre-
1 . .
—2g,,U(®) sents the effective cosmological constant on the boundary.
2=k We would haveA¥=0 if the first two terms on the right-
hand side of Eq(46) cancel each other, and the third term is
zero. First how do we make the third term vanish? Since the
+T;fy(K,A,B,C,¢,gw)—<TM>, (41)  HJ constraint, and the hence the bulk-boundary relations de-
rived from it, are nothing more than constraints on the varia-

1
K 'RMV— Egle

— 1 2
_(-A( )H}LV+B( )H,U,V+CH/.LV)

| 1., | tions of bothS,, and S, in S, one may consider these
Vu(kVEP)+ 06| R=5 VPV & constraints for any boundary field configuration, including a
preferred one, such that8+ B+ C=0. Using this condition,
=(9 AR*+ NBRH¥R 1+ ICR¥PIR 4 pe) the trace of the Einstein equation in E46) becomes
—aU—(0y), (42) KkR=(T)—2U=xA®. (47)

whereH ,,, ®H ,,, andH ,, are the contributions to the

field equations from the higher curvature terms, and arThe condition 34+ B+C=0 is easily seen to be satisfied if

She higher-curvature contributions entered the local effective

given by S in Eq. (29) as a Gauss-Bonnet termR¢—4R*'R,,,
1 +RHUPIR,,00). This Gauss-Bonnet term was considered in
MH,,=2V,V,R-2g,, 0R~ ngRer 2RR,,. Ref.[16] and[18] in the study of naked singularities within
43) the context of brane world scenarios. This is not the point of

view we take here. We consider, instead, the situation where
the condition 34+ B+C=0 is satisfied for arbitrary coeffi-
OR+2RRay cients A, 15, andC. But since the Gauss-Bonnet term is a
topological invariant on the four-dimensional boundary, only

1
@y,,=2V,V,R*,—OR,,— 5%

1 two of them are independent, so me may cha@sé®. The
~59wR PRag (44)  coefficients.A and B satisfy then the condition.3+ B=0.
Using the bulk-boundary relation84), (35), and (36), the
_ @ conditionsC=0 and 34+ B=0 translate in thus into condi-
H,,=2V,V,R—40R,,+ 2R ,.z,R :F”

tions on the bulk parameters,b,c), wherec=0 anda and
wBys N b being related to each other.

=59 R Rapys = 4R uaR Now, let us turn to the remaining two terms on the right-
hand side of Eq(47). At first sight it is not obvious whyT)

+4AR PR (45 and 2J should cancel each other. However, by invoking

auPv:
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again the fact that the HJ constraint is simply a condition oris achieved at one particular scafeyielding thus the RG

the variations ofS; and S, which hold for an arbitrary field

stability of the cosmological constant. Given the usual diffi-

qonfigu_ration, one may consider it for a flat bogndary spaceeulties in reconciling the RG-flow intuition and the observa-
time with constant scalars. In this case, using the bulktional evidence for a small cosmological constant, this is

boundary relations in Eq$32) and(40), after settingD=5
andA =0, we find tha{ T) and 2U are given by the follow-
ing expressions:

(2U)2=12V+6(9,U)%+24(3e, + 2e,)U—12e59'9,U,
(48)

<T>2=12v+6<(9|>2—3(el+4ez)<T2>—12€3<012>-( )
49

So far, only the trace of the Einstein equation in &) and
the identitieg48) and(49) (from the HJ constraintdid enter

certainly a useful progress towards the final solution. It is
important to notice that the RG stability of the cosmological
constantA () established in the strong 't Hooft coupling and

large N regime of the boundary theory, is not restricted to
any preferred value fok (). This leaves, of course, the ques-

tion of whether it is possible to pick up naturally initial con-

ditions in the UV for whichA ¥=0.

In our actual calculation, we have not addressed at all this
question, rather what we were interested in is to extend the
RG stability of the cosmological constant to the regimes
where the strong 't Hooft coupling and the lari§ydimits are
relaxed. What we found, in this case, is that the fate of the

our analysis of the boundary cosmological constant. TdQRG-stability mechanism, of Ref15], is not sensitive to the

progress further we make of the equation of motion 4oy
which forVMqﬁ':O and flat boundary spacetime reads

HU+(0)=0. (50

Now, inserting Eq.(50) into both (2U)? and (T)2, and
evaluating their difference afterwards, we find

(2U)2—(T)2=12e5[(O?)— 9'9,U]+3e,[ 24U +(T?)]
+12e,[4U+(T?)]. (51)

The above relation cannot be simplified further since w

have already made used of all the equations that are availabl
to us (which are the equations of motion and the HJ con-

strain). The consequences of this relation on the cosmologi
cal constant problem within the holographic RG-flow ap-
proach are the topic of the next section.

VIl. DISCUSSION

It appears from Eq(51) that 2U and(T) would not can-
cel each other in the presence of the leadinyg dérrections,
parametrized by the,;, e,, and e coefficients. From Eq.
(47), we see that this mismatch betweed and§T> implies
a nonzero effective cosmological constant®) on the
boundary, which is in clear distinction from the results of
Ref.[15]. In Ref.[15], since the authors were only consid-
ering the largeN limit, for them e;=e,=e3=0, and thus
they obtained the cancellation betweed 2nd(T), neces-

a’ corrections, which were introduced to account for the
relaxation of the strong 't Hooft coupling limit. However,
one sees from Ed51) that the 1N corrections do seem, on
the other hand, to ruin the RG stability of the cosmological
constant if no other equations are supplemented at this order
to Eq. (51). As we have seen in Sec. IV, the derivation of
1/N corrections are less systematic and much harder to
implement in the HJ formulation than the' corrections.
Using the analogy with the transition from the HJ equation to
the Schrdinger equation, and treatingNl/as %, the 1N
corrections are expressed as the second order variation of the
boundary action. Although this is a good starting point to

eprobe the effects of the W/ corrections, it is clear that one

neeeds further information and better knowledge, especially
on the side of the boundary matter settdo remove the
arbitrariness left in the coefficients;, e,, ande; param-
etrizing the 1N corrections. It is very plausible that when
more systematic methods become avail$bferther rela-
tions could be found between the potentiahnd the bound-
ary operators such d©?) and(T?), leading to the cancel-
lation among the terms on the right-hand side of &4). So
instead of using Eq(51) to declare the failure of the RG
stability of the cosmological constant, outside the regime of
strong 't Hooft coupling and largl limits, we take the point
of view that it calls for a better understanding of théN1/
corrections beyond the simple addition of the second order
variation of the boundary effective action to the HJ con-
straint.

Going now back to Eq51), it is very plausible just from
the CFT point of view, to have a theory where

sary for the vanishing of the boundary cosmological con-

stant. In geometric terms, this result was interpreted as meal

n_

ing that there exist a natural mechanism in which the vacuum 4goth interpretations hold only in the case of a five-dimensional

energy that is generated on the four-dimensional bran

Background of warp geometry.

world, as we flow towards the IR, is canceled by the ever °after all it is the matter fields on the boundary that form repre-
decreasing warp factor of the five-dimensional geometrysentations of the boundary gauge group, which makes them sensi-

From the holographic RG-flow perspectieased on the HJ
formalism), this result shows that, in the strong 't Hooft cou-
pling and largeN regime, the potential energy is canceled

tive to the choice of\.
18according to suggestions made[ih5], systematic methods for
deriving the 1N corrections could be found using the nonlocal loop

by the trace of the stress energy tensor at all scales, once théguations in Ref{33] or string field theory.
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(of)«a'a,u, (52)  All the terms appearing i;, S,, andS; were introduced
and defined in Sec. Ill.
(T)o(T)~U. (53) To obtain a Hamiltonian formulation of the bulk action

St, it will be useful to resort to the well-known technique in

Furthermore, in Eq(26) since both of the coefficienes and ~ 9eneral - relativity, ~which consists of slicing the
e, multiply the second order variation of the boundary effec-P-dimensional bulk spacetimé4, with metric G, into an
tive action, with the respect to the metgg, , we expect that arbitrary foliation defined by the isosurfacgs} [32]. For
they are not independent, and hemge e,. Combining this the purpose of studying of the holographic RG flow of theo-
relation with the relations from E@52) and(53), we see that ries induced ortimelike boundaries sitting at different loca-
there is much room for the right-hand side(6f) to vanish, ~tions in the radial direction of the bulk spacetime, we
allowing us to recover the RG stability of the cosmologicalchoose to fo_llate/\/l along_ t|me_I|ke isosurfaces. Because of
constant in the presence of the leadingN 1¢orrections. this, there will be some sign flips b_etween our formulas and
Hopefully, we will come back in future work to prove the h€ ones that we would have obtained had we chosen a fo-
additional relation$52) and(53) needed to preserve the can- liation along spacelike slices. So, given thatl(Gg) is the
cellation between the potential energy and the and the D-dimensional bulk spacetinté,we can foliate it by a fam-
trace of the stress-energy ten<di in Eq. (51). ily of (D —1)-dimensional timelike hyper surfacgs,,}, pa-
Finally, it would be interesting to use the new bulk- rar_netrlzed by the.scalar function=const. Thus, we can
boundary relations derived in Sec. V to study the RandallWrite the bulk metricG,g as
Sundrum scenario. We treat this question in Ra4]. dsz=QAdeAdezgrrdr2+ngdrdxf‘Jrgde“de.

(AS5)
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APPENDIX whereN andN# are given by
The purpose of this section is to give a Hamiltonian for- N=—rtn,=—(n*V,r)4, (A7)

mulation of the higher-curvature theory considered in Sec.

Il, which is represented by thB-dimensional bulk action Nu=0,,r" (A8)

In terms of these definitions the metric in E@5) can be
Sr=51+5+Ss, (Al) " rewritten as

whereS,, S,, andS; are given by ds?=(N?+N,N#)dr?+2N dx“dr+g,,(x,r)dx“dx”,
(A9)

S, = f VGdrd® [ PPIR+2A +ay®'R2+ by{P'R,,[P'R#”  where the boundary metric diy is related to the bulk metric

D by the formulag,,=G,,—n,n,. Using the Gaussian nor-
+CO{D}RMVP(T{D}R#VPU], (A2) ~ mal coordinates, corresponding to the gauge chbite-0
andN=—1, the metric in(A9) takes on the simple form

sz=2fD 1\/adD‘lx[KJrIC(K,VK;aO,bO,CO)],
(A3) YIn general, even thougtM could be geometrically different
from the pure Adg§ form (due to the possible bulk-matter stress-
1 energy momentum tensor back reacjianstill has the same topol-
V(d))—EVMqSV”d) i (A4) ogy, allowing, therefore, the derivation of the gauge invariant cor-
relators on the CHJ_; boundary from Ad§ bulk action[11].

ngf JGdrdP~1x
D
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ds?=dr2+g,,(x,r)dx“dx". (A10) —4CoR preKPT+O(K?),
Another concept entering the description of the bulk space-
time M in terms of its foliations{X,}, is the notion of ex- S ——
pv 2

trinsic curvatureK ,,, which is defined by

M

= —(D-2)K—(2a,D — 4ay+by) RK

Kuv=9,"V,n,,
v 3
—(boD—3b0+4CO)RM,,KM +O(K?), (A13)

1
= E‘Crg,uv . (All)

where
The meaning given t& ,, is that it accounts for the “bend-

ing” of X, in M. Finally, to obtain a Hamiltonian functional

for general relativity, we need to express the gravitaional - | d¢'
action in Eq.(Al) in terms of the quantitiesg,, K ,, ;N* b =L =
=0, N=—1), and their time and space derivatives. Splitting

S; along the timelike foliations, we find the following La-

grangian: . 1 1. 1dg,,

R HVPO v E‘Grg,uvz_zg,uvz_z dr -

2 (A14)
Lr=Vg[R+2A+agR2+byR,,R*" +CoR yupe
+(K?2=K, K“") +2agR(KZ =K , K~")

Replacingg' andg,,, in £+ by their canonical momenta, and

+2byR,,,(KKH#Y = KHPK ) ] _ !
performing the Legendre transformation, we find the follow-

F4COR 4ype KK+ O(K] ing expression for the total Hamiltonian:
1 1.
+Y V(h)— 5,8V ¢ = S (47, (A12) .
. . — —=Hr=(R+2A+ayR?+bgR,,R*

whereR,,,,, R,,, andR denote the D —1)-dimensional \/a
Riemann tensor, Ricci tensor, and Ricci scalar, respectively. 1
The sum over the scalar field indels understood in the text +CoRurpo R *P7) +| V() =5V, 'V !
and hereafter. Using this Lagrangian, the canonical momenta 2

conjugate tog' and g, are
_|_

2
T
T, T )+—7T|7T|—2a0R

N Vo w2 "2
|—T_-|__ ' ’
0 T
g d¢ X WMVWMV_D_z)_ZbOR,U«V
1 L
’7T,uV:__TMV:(K,U-V_Kguv)+2a0R(K#V_KgMV) -
g g X[ Tm T g ) HACOR e
—bo(KR,,+ R, K
o( KRyt RyeKP7G ) 4co 2_ 8% v Al15
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