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We critically review several recent approaches to solving the two cosmological constant problems.
The “old” problem is the discrepancy between the observed valug ofaind the large values suggested
by particle physics models. The second problem is the “time coincidence” between the epoch of galaxy
formation tg and the epoch ofA dominationt,. It is conceivable that the “old” problem can be
resolved by fundamental physics alone, but we argue that in order to explain the “time coincidence” we must
account for anthropic selection effects. Our main focus here is on the digcratedels in whichA can
change through nucleation of branes. We consider the cosmology of this type of model in the context of
inflation and discuss the observational constraints on the model parameters. The issue of multiple brane
nucleation raised by Ferg} al.is discussed in some detail. We also review continubusodels in which the
role of the cosmological constant is played by a slowly varying potential of a scalar field. We find that both
continuous and discrete models can in principle solve both cosmological constant problems, although the
required values of the parameters do not appear very natural. M-theory-motivated brane models, in which the
brane tension is determined by the brane coupling to the four-form field, do not seem to be viable, except
perhaps in a very tight corner of the parameter space. Finally, we point out that the time coincidence can also
be explained in models wherk is fixed, but the primordial density contra@t= dp/p is treated as a random
variable.
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[. INTRODUCTION constant The observationally suggested valuesAotorre-
spond top ,~ pmo, Wherepyg is the present density of mat-
Th loical tant ¢ ith at least tw ter. This brings yet another puzzle. It is difficult to under-
_'he cosmological constant presents us with at [east wo - g4, why we happen to live at the epoch whgp~p, .
intriguing problems. Particle physics models suggest that thﬁ\nother statement of the problem is why the time when

natural \galue for this constant is set by the Planck scalegiats dominating the universe nearly coincides with the ep-
Mp~10 GeV [we use the reduced Planck mabp och of galaxy formation,

=(87G) *2]. The corresponding vacuum energy density is
pr~M3p, which is some 120 orders of magnitude greater thi~ig. 2
than the observational bounds. In supersymmetric theorie

Fhis is th lled ic coincid bl
one can expect a lower value, IS IS € SO-Called cosmic coinciaence problem.

A number of proposed solutions to these problems have
recently appeared in the literatué—9]. Some of them rely
4 on some form of the anthropic principle, while others do not.
PA™ susy: (@) To our knowledge, the only approach that can explain both
puzzles is the one that attributes them to anthropic selection

wherensysyis the supersymmetry breaking scale. However,
with gysy=1 TeV, this is still 60 orders of magnitude too

l .
high. Until recently, this discrepancy between the expected '€ SUrPrise, however, was not total. In Ref] (well before the
. supernova dat@l] would give the first observational evidence in
and observed values was the only cosmological constanf.. . "~ "~ s )
this direction it was noted that anthropic selection effects would

problem. Its solution, many believed, was that something SQlace the cosmological constant in the rapge pyo=<10, and that
small could only be zero, due to some unknown symmetry Ofighe actyal value is likely to be comparable to this upper bound.”

dynamical cancellation. For a flat universe this implieQ ,~0.9, not far from the observed

Thus, it came as a surprise when recent observafibhs value and certainly compatible with it, within the accuracy of the
provided evidence that the universe is accelerating, ratherediction. Similar predictions where made[8] at about the same
than decelerating, suggesting a non-zero cosmologicaime.
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effects. In this approach, the cosmological constant is asgiven value ofp, . According to the “principle of medioc-

sumed to be a random variable that can take different valuesdty,” which assumes that we are typical observers, Ej.

in different parts of the universe. gives the probability distribution for us to observe a given
The purpose of this paper is to give a critical analysis ofvalue of p, . The calculation ofv(p,) is a standard astro-

the proposed approaches, both anthropic and otherwise. Ophysical problem; it can be done, for example, using the

main focus will be on the models with a discrete spectrum ofPress-Schechter formalisfii3]. The a priori distribution

A which have recently attracted much attention. We shallP, (p,) should be determined from the theory of initial con-

consider these models in the framework of inflationary cosditions, e.g., from an inflationary model.

mology and discuss the calculation of the probability distri- Martel, Shapiro and Weinbergl4] (see alsq15]) pre-

bution forp, , as well as the observational constraints on thesented a detailed calculation dfP(p,) assuming a flaa

model parameters. priori distribution,
The paper is organized as follows. In Sec. Il we review
the motivation for considering\ as a random variable. In P, (pr)=const 5)

Sec. Il we discuss models whereis a discrete variable, in

particular the models where there is a four-form contributionin the range of interes3). They found that the peak of the
to the cosmological constant, which may relax to a smalkesulting probability distribution is close to the observation-
value through nucleation of branes. In Sec. IV we analyzeally suggested values @f, . The cosmic time coincidence is
the cosmology of such models. In Sec. V we consider theeasy to understand in this approdd,17] if one notes that
possibility of coincident brane nucleation. In Sec. VI we dis-regions of the universe whetg <tg do not form any gal-
cuss models where the cosmological constant is a continuowsies at all, whereas regions whee>ts are suppressed by
variable. In Sec. VII we consider the possibility of a slowly “phase space,” since they correspond to a very tiny range of
varying four-form field in theories with extra dimensions. In A. It was shown in Ref[16] that the probability distribution
Sec. VIII we review some non-anthropic approaches to théor tg/t, is peaked atg/t,~1.5, and thus most observers
problem. In Sec. IX we consider models where the time cowill find themselves in galaxies formed &a§~t, .

incidence is explained by assuming that the primordial den- This anthropic solution to the cosmological constant prob-
sity contrastQ= dp/p (and not necessariljt) is a random lems is incomplete without a particle physics model that

variable. Our conclusions are summarized in Sec. X. would allow A to take different values and without a theory
of initial conditions, such as an inflationary cosmological
Il. A AS A RANDOM VARIABLE model, that would allow one to calculate thepriori distri-
bution P, (pn).

Not all values ofA are consistent with the existence of  one possibility is to consider models in which the role of
conscious observers. This observation was made t_)y E}arroyy]e vacuum energy is played by a slowly varying potential
and T|.pI(.er [10] (see glso[ll]), but the .f|rst quantitative /(4 of some scalar fields, which is very weakly coupled
analysis is due to Weinbefd2]. In a spatially flat universe y, ordinary matter. The values gf are randomized by quan-
with a cosmological constant, gravitational clustering effec-y,m fiuctuations during inflation, and analysis shows that the
tively stops att~t,. At later times, the vacuum energy reqyitinga priori distribution is indeed flat for a wide class
dom!nates and_the universe enters a de Sitter stage of expgr potentials[4,18]. The main challenge one has to face in
nential expansion. An anthropic bound @ can be ob- i approach is to justify the exceedingly flat potentiéip)
tained by requiring that it does not dominate before the redieqyired by the model. We shall comment on this issue in
shift zmax when the earliest galaxies are formed. Weinberggec. v|. Before that, we shall consider an alternative possi-
took zma~4 and obtained bility which has recently attracted much attention. This is

rovided by models with a discrete spectrumpgf.
pA=100pyo- @ P y pectrumpg

This is a dramatic improvement over E@), but it still falls Ill. MODELS WITH A DISCRETE SPECTRUM OF A
short of the observational bound by a factor of about 30. i . .
The anthropic bound3) specifies the value gf, which The first model of this type was suggested in an early
makes galaxy formation barely possible. However, as it wa ari)erlby ﬁbtb(;[ttli] gls s}n r;ttemp; t%s:)el\ée;hseeﬁl-?nfeorj;?r;
pointed out i 2,3], the observers are where the galaxies are o9 Ica fFOIdS a 'tr? 0 “e .hbe c((j)”s tentialv £ th 9
and thus most of the observers will detect not these margin calar field with a “washboard™ potentia () ot the
values, but rather the values that maximize the number o rm illustrated in Fig. 1. The potential has local minima at

; . o ¢n=nn withn=0,=1,+2,. .. separated from one another
g:lnaﬁlgsv;/rli\:ltc;rneaf)sremsely, the probability distribution for by barriers. The vacuum ak= ¢, has energy density

dP(pr) =Py (pr)v(pr)dpy - (4) pAn=nNe+const ®)

Here, P, (pA)dp, is thea priori distribution, which is pro- and can decay through bubble nucleation to the vacuum at
portional to the volume of those parts of the universe wherep,_ ;.

p, takes values in the intervalp, , andv(p,) is the aver- The nucleation ratd’,; per unit spacetime volume is
age number of galaxies that form per unit volume with agiven by
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87 €
V(¢) S e ALK 19
n
where we have used E¢B) for H,,.
In order for the anthropic explanation to work, one needs
Yy
vV e=puo—(10°eV)*, 15
and in order to have successful baryogenesis, the energy den-
FIG. 1. The washboard potential. sity during inflation should exceed TeV)*, which corre-
sponds to
I, =A.e Bn 7
neo ) H=103 eV. (16)

whereB,, is the action of the Coleman—de Luccia instanton
[20] and the meaning of the subscriptwill become clear
shortly. The bubble radius at nucleati® is bounded by
0<R,<H,', where

Combining this with Eq(14), we see that the probabilities of
upward and downward jumps ip, during inflation are
nearly equal, except perhaps in the borderline case when

H~eY~10"2 eV. (17

(8)  An alternative discrete model, first discussed by Brown and
Teitelboim [25], assumes that the cosmological constant is

. . . ) gue to a four-form field,
is the square of the expansion rate of de Sitter space fille

with the vacuume¢,,. The horizon radius and the curvature F

radius of that space are both equalHg*®. Fobro=—— eh7?, (18
An analytic expression foB,, can be given in the thin -9

wall approximation, whers<R,, [20]. The general expres-

sion is somewhat cumbersome and we shall only consid

the limiting cases of interest. F&t,<H,*, B, is given by

hich can change its value through the nucleation of branes.
he total vacuum energy density is given by

the flat space expressi$pal] PA=Poaret F212, (19
(flat) _ 277% ot where pp,.,.<0 is the “bare” cosmological constant &t

By ™~ 2 & ©) =0. The change of the field strength across the brane is
approximately independent of In this regimeR,,~307/e, AF==*q, (20

so we should haveoH,/e<1. In the opposite limit,

oH, /€1, we have Hﬁl— Rn)<H;1 and whereq=const is fixed by the model. The four-form model

has recently attracted much attention because four-form
fields with appropriate couplings to branes naturally arise in

(wall) 2 -3 ) . .
By 2mioH, " (10 the context of M theory. In this case the brane tension is

The vacuum energy differeneeis unimportant in this case, [5.6]
and the action coincides with that for domain wall nucleation o=q Mp/\/f, (21)
[22]. The prefactor in Eq(7) can be estimated gsee e.qg.
[23]) and the effective thickness of the brane$isMy*, so that
- the thin wall approximation is justified.
An~o°R;. 11 At present we should hay€&|~ (—2ppare) 2 so that the

_ N ~ bare cosmological constant is almost neutralized. Then, in
Equations(9)—(11) apply under the condition that the gravi- the range of interest, the spectrum @f is nearly equidis-

tational effect of the wall is negligible, tant, with a separation
o<M3H,. (12 App=e~(—2ppard) A, (22
Upward quantum jumps fromp,_, to ¢, are also possible and the model is very similar to the Abbott's “washboard™
[24]. The corresponding nucleation rate is model. We expect
|ppard =(1 TeV)%, (23
F(nm:ex;{ 247 pn E) - (13 and it follows from Eq.(15) thatq=<10°°M3 and
For e<p, this can be approximated as o=(10"%eV)3, (24)
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where we have used the relati@il) betweens andg. Such \V4 (X)
small values ofg and o may appear problematic, but in a
recent papef6] Feng, March-Russell, Sethi and Wilczek
(FMSW) have argued that they can naturally arise due to
non-perturbative effects in M theory. With andH satisfy-

ing the bounds(24) and (16), the condition of negligible
brane gravity(12) is also satisfied, and thus Ed9),(10) can y y

be used. Xa X
With the aid of Egs.(21)—(24) it can be easily verified .
that the flat space bounce actit® is bounded by6] FIG. 2. Inflaton potential.
IV. COSMOLOGY OF THE FOUR-FORM MODELS
B(flad <12, (25)

A. A priori distribution

This inequality is saturated fqu, .~ (1TeV)* and We shall now discuss the four-form models with brane
nucleation in the context of inflationary cosmology. The en-
U4 13 1q-3 ergy density of the universe during inflation can be expressed
e~ P~10""eV. (26) as
If o and e significantly differ from these borderline values, Pr(X)=U(X)+pan, (30
thenB=1 and brane nucleation is unsuppressed. A similar

bound is obtained for the wall nucleation actitt0) using  WhereU(x) is the potential of the inflaton fielg, py, is the
Egs.(24) and (16): cosmological constant contributidd9), and indexn labels

the vacuum energies corresponding to different values of the
four-form field F. [The inflaton potential is generally

B(wall < 0, (27 F.dependent and has different fornts,(y) in different
vacua[5,26]. Here we shall disregard this difference, assum-
Here, the inequality is saturated for ing that the variation olJ(x) is negligible in the narrow
anthropic range op, that will be of interest to u$.The
H~ol3<~10 3eV. (28) minimum of U(y) is assumed to be &1,,,,=0. The space-
time during inflation is locally approximately de Sitter,
We note that Eqg921),(22) apply only to models based on M ds?=dt2—e?"ntdx?, (3D
theory, and therefore the constraifgs)), (25), and(27) are
also limited to this class of models. with H,(x) given by Eq.(8).

A different version of the four-form model has been de- A remarkable feature of inflation, which will play an im-
veloped by Bousso and Polchinst8P) [5]. They assume portant role in our discussion here, is that generically infla-
that several four-formd; are present, so that E419) is  tion never ends completely in the entire universe. The evo-
replaced by lution of the inflaton field y is influenced by quantum

fluctuations, and as a result thermalization does not occur
1 simultaneously in different parts of the universe. In most of
PA= Poare™ 5 > FZ. (290  the models, one finds that at any time there are parts of the
' universe that are still inflating and that the total volume of
inflating regions is growing with timg27,28. This picture is
The corresponding “chargesd; are not assumed to be very often referred to as stochastic, or eternal, inflation.
small, but BP have shown that with multiple four-forms the  The full range of the fieldy can be divided into the “dif-
spectrum of the allowed values @f, can be sufficiently fusion,” slow-roll, and thermalization parts, as illustrated in
dense to satisfy the conditiof15) in the range of interest. Fig. 2. In the diffusion rangey= x,, the inflaton dynamics
However, the situation here is quite different from that in theis dominated by quantum fluctuations. It is this regime that is
FMSW model. As pointed out by the authors themselvesfesponsible for the eternal nature of inflation. In the slow-roll
and further emphasized by Banks, Dine and M@8], the  regime,x4=x=x. , the inflaton rolls down its potential. As
vacua with nearby values of, have very different values of it reaches the thermalization poigt, , it starts oscillating
F; and are expected to have very different physical properabout the minimum of the potential, and its energy gets ther-
ties. There is no reason to expect theriori probabilities malized. The hypersurfaces= y, are therefore the bound-
for these vacua to be similar. Moreover, the low energyaries between inflating and thermalized regions of spacetime.
physics in different vacua is likely to be different, so the These surfaces play the role of the big bang for the corre-
process of galaxy formation and the types of life that cansponding thermalized regions. There is typically an infinite
evolve will also differ. It appears therefore that the anthropicnumber of such surfaces, each of them having an infinite
approach to solving the cosmological constant problems carvolume. (For a discussion of the spacetime structure of in-
not be applied to this cagee6]. flationary universe see, e.§29].)
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As the inflatony fluctuates, rolls down its potential, and We shall be mostly interested in the probability distribution
eventually thermalizes its energy, spherical branes nucleaia the anthropic rang€3), wherep,,, can be approximated
at the rateq7),(13) changing the local values of the four- by Eg.(6) with € from Eq.(22), and Eq.(38) takes the form
form field F. All possible values op ., will be taken on each
infinite thermalization surfacE, , and thea priori probabil- 0 ocex;{ - 8mle )

n .

ity P, » can be defined as the fraction of the volumeqf 3H% (39)

occupied by regions with vacuum energy dengiy, . [The
volume fraction on an infinite hypersurface can be defined byf inflation is well above the electroweak scaléd
calculating this fraction in a sphere of geodesic radend >10 eV, then the distribution(39) is nearly flat in the
taking the limitR—co.] anthropic range,

Brane nucleation can both decrease and increase the value
of pAn; the corresponding nucleation rates are related by Eq. Pn=~const. (40)
(13). For A-lowering events, the bubble radius is initially . )
smaller than the horizohl - and then grows in the comov-  The assumptiort37) may or may not be a good approxi-
ing coordinates, while fol -raising events the radius is ini- Mation, depending on the shape of the poteritlgk). A
tially larger than the horizon and then decreases in the cc3iMPle éxample of a model where this approximation is ad-
moving coordinates. In both cases, with an appropriat€duate is a “new inflation” type model with a very flat po-
definition of the nucleation time, the radius of the bubbletential n the diffusion range near thg maxmgml.bﬁx) and
nucleated at=0 asymptotically approachéﬁgleHnt [30]. a relatively steep dgclme to the minimum m_the slow roll
This means that the region affected by each nucleation evef@nge. Th? d|str|put|0r(38) IS e_stabhshed during the very
is a sphere of initial radiuslrjl. For a comoving observer in long diffusion period, and then it does not change much dur-

vacuum n, the probabilities per unit time to witness a ing the slow roll period if the duration of the slow roll is
A-raising ’or lowering event are shorter than the characteristic bubble nucleation time. Here

we shall assume that the approximati@?) is justified.

Ao Can the distribution(38) be identified with thea priori
KnFFnT—HESy (32)  probability distributionP, ,? The answer is “Yes, but only

3 in a restricted class of models.” An ensemble of comoving

observers gives a comoving-volume distribution fof,,

4o 4 which does not account for the fact that regions with differ-
Knl:r"l?Hn (33 ent values op,,, expand at different rates. The condition for
this effect to be negligible is that brane nucleations should

It follows from Eq.(13) that these probabilities are related by reshuffle the values of,, between different regions on a
time scalerg which is much shorter than the time it takes

Kin-1)1 = Kn (Foo1/fr), (34)  for the differential expansion rate to significantly modify the
distribution,
where
TB< TH - (41)
L, 247*M 3 : -
fo=H, %exg — —|. (355 As we noted in Sec. Il, the probabilities of upward and
Pn downward jumps irp, should be nearly equal, except per-

haps in the borderline cag&7). This means that the evolu-

Consider an ensemble of comoving observers ang|€)  tion of p, can be pictured as a random walk with steps taken
be the fraction of observers in tinth vacuum, whereéis the  on a timescaler~«x *~H®I'"!. The anthropic range3)

proper time along the observers’ world lines. The time evocomprisesN~10%py,/€ Steps, and thus
lution of p, is described by the equations

2
N2h3T -1 Pwmo B
dpn/dt:_(KnT+Knl)pn+K(nfl)Tpnfl"'K(n+1)ipn+%3-6) 75~ NH"T 104( € ) O-ZR(Z)e ! (42)

Let me for a moment that the inflaton potential r where we have used Eq§) and(11). [In this discussion we
meair:JsS uiscsr?aneeg a mome at ne inflaton potential rep, /e dropped the subscriptsand |, since the upward and
ged, downward nucleation rates are nearly equal, and the sub-

scriptn sinceH,, is nearly constant in the anthropic range.

U(x)=const, (37) The variation of the expansion rate in the anthropic range
of py is
so thatk,; andx,, do not change with time. Then the solu- A
tions of Eq.(36) approach the stationary distribution Ne
SH~——, (43
s [24m*ME MH
ppocf, “cHexg ——|. (38 . )
Pn and the timery can be estimated as
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T~ 16H~10"2M3H/pyo. (44) B(flat =270, (48)

The conditionTg< 7y can now be expressed as This is only marginall_y consistent_with the_boq(ﬁB). _
The brane nucleation rate during inflation is determined

25> M2R2 by the smaller of the two bounce actio(®, (10). Equation
eB< 10_67#' (45) (4_6) tells us that in models based on M-theory brane nucle-
Pmo ation can be suppressed only if the expansion rate during

o , y _inflation is H~10"3eV. Let N~30 be the number of
Parameter values satisfying this condition can be read”)é-foldings from the time when the comoving region corre-
found. , o ~ sponding to the presently observable universe crossed the
What happens in the opposite limit, wheg>7,? In this  prizon to the end of inflation. Then the size of this region at
case the differential expansion is important and the probi,e end of inflation isH eV, In order to have no brane

abilities for faster expanding regions with higher values of, ,c|eations in this region during this whole period, we have
pa are strongly enhanced. The predicted values ohould ;4 require

therefore be significantly higher than those obtained with a

flat a priori distribution. Martelet al.[14] have found that in I'H %e¥V<1, (49

the latter case the probability distribution is peakedoat

=0, the width of the peak being somewhat broader than th&or the parameter valudd6) this givesB=90, again mar-
observationally suggested value. Models witgs> 7, will  ginally consistent with Eq925),(27).

have the peak displaced towards higher valugs,oénd are We thus see that M-theory based four-form models could
therefore unlikely to give a good agreement with observain principle provide a solution to the cosmological constant
tions. A quantitative analysis of probability distributions in problems, but only if inflation is at a TeV scale andand e
such models can be given by a relatively straightforwardare in the tight corner of the parameter sp&&®. With such
generalization of the formalism developed in R&O0]. values of the parameters, the conditi@®) can be(margin-

We note finally that in models with borderline values of ally) satisfied. However, from E¢14) we then find a sig-
parameterg17) the a priori distribution (39) can signifi-  nificant bias towards\-lowering nucleation events, which
cantly deviate from flatness, with smaller valuespgfbeing ~ would shift thea priori distribution (39) towards lowerA.
favored. This would displace the peak of the resulting distri-This would result in a prediction near the lower anthropic
bution to negative values ¢f, and if anything would make bound p,~—ppo. The bias towardsA-lowering events
the observational situation even worse. might be compensated to some extent by the differential ex-
pansion rate, which adds relative volume to regions with
high A. However, both effects are exponential, and unless
) ) there is a conspiracy in the parameters of the model, the
~ Models of the type we are discussing here suggest that Wgifferential expansion is likely to be either insignificant or
live in a bubble surrounded by an expanding brane. The valgominant. In the latter case, tteepriori distribution would
ues Opr inside and outside the brane are different. Let U%e biased towards |arg@, and it Wou|d be ||ke|y to predict
fiI’St assume tha.t the ViSible Universe iS Contained W|th|n ai Cosm0|ogical constant much |arger than observed. In sum-
single bubble. This means that the brane surrounding ouhary, it seems difficult to obtain a flat priori distribution
bubble nucleated before the presently observable univers&en in the rangé46). Of course, the possibility cannot be
crossed the horizon during inflation. For this situation to beexcluded with our order of magnitude estimateS, and there
typical, the brane nucleation rates should be rather IOW, both']ay St|” be a Sma” Viab'e region Of parameter Space in th|s
during inflation and at present. This requires that the correporderline range. We note also that for models unrelated to
sponding bounce actions should be lafg;1. In M-theory M theory the allowed parameter space is much larger.
motivated models this is possible only for the borderline val- Suppose now that the visible universe contains more than
ues of the parameters, one bubble. This would generally result in microwave back-

a3 3 ground anisotropies of amplitud®l/ T= e/ py o, SO to avoid
H=e"~o"~107" eV. (46)  Conflict with observations we have to require

B. Observational constraints

However, as we discussed at the end of Sec. IVA, these €<10 5py0. (50)
values seem to be disfavored by observations.

The brane nucleation rate at present is given by [#5. This takes us far from the borderline valugs), and thus
with B and A from Egs.(9),(11). In order to have no brane the multiple bubble scenario cannot be realized in M-theory
nucleations in the observable universe in a Hubble time, w®&ased models. For non-M-theory models, a suitable set of
have to require that parameters can be easily found by choosingndH suffi-

ciently large, while keeping under the bound50).
rtg=1, (47) The multiple bubble scenario is feasible only if branes
have negligible interaction with ordinary matter. Otherwise
wheret, is the present cosmic time. For the parameter valuesve would see fireworks along the bubble boundaries, where
(46), A~(103eV)* and Eq. (47) gives expB(fa)  the branes hit the stars and where they hit one another. How-
=<10"116 or ever, the gravitational impact of the branes cannot be
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avoided. An observer outside an expanding spherical bubbla large modification of the inflaton potential. As a result the
does not experience any gravitational force until he is hit byinflaton will be displaced from the minimum of the potential,
the brane. While the brane passes through the observer, tlgen if it was at the minimum prior to the bubble nucleation.
part of his body inside the brane will experience an accelera- In our view, the empty universe problem is not a real
tion a= GM/R? relative to the part of the body still outside problem, and the attempts to solve it seem therefore unnec-
the brane. HereM = (47/3)eR® andR is the bubble radius essary. The problem disappears when the eternal nature of
at the moment of impact. WitRR~t, and € satisfying Eq. inflation is taken into account. As the inflaton fluctuates back
(50), we have a~Gety~(€e/puo)t, '=<10 *?cm/€. The and forth in the quantum diffusion regime, branes are con-
relative speed developed during the passage tifste Stantly being nucleated and all possible valuespgfare
~10"8sisAv=10 ?°cm/s, and the corresponding displace-reached. The slow rate of brane nucleation is not a problem,
ment is much smaller than the inter-atomic distance. For &ince an unlimited amount of time is available. Thermaliza-
brane passing through a sun-like stAt~10s and the dis- tion of the inflaton energy occurs at different times in differ-
placement is still smaller than the atomic scale. Thus, if &€nt parts of the universe, and each region inherits the local
brane is to sweep through the solar system, its only effectalue ofp, . Each possible value is represented in the ther-
would be to set up imperceptible vibrations in the objects itmalized regions of the universe. We are interested only in
leaves behind. those regions wherg, is in the anthropic ranges), because
What happens iB<1, so that brane nucleation is com- that is where all the galaxies are.
pletely unsuppressed? The main danger here is that the
vacuum energy will decay so fast that it will drop signifi- V. MULTIPLE BRANE NUCLEATION

cantly in less than a Hubble time. This can be countered by Up till now we assumed that brane nucleations change the
choosinge so small that the change @, is negligible even . . .
nge ge | giar v four-form field F by a single unit, Eq(20). However, nucle-

after nucleation of a large number of bubbles. This case

however, is almost indistinguishable from that of a scalal‘é‘tif)n _gf mLkJ)ItipIe cor:ncid_enL;tl)(ranes is ?ISO pﬁﬁsitél\e(.MRor
field with a very flat potential, which will be discussed in coincident branes there ista(k) super Yang-Mills(SYM)
Sec. VI living on the world volume. In FMSW6] it was argued that
o the nucleation of coincident branes would be enhanced by a
large degeneracy factor
C. No empty universe problem s
D=e>
Here we shall comment on the so called empty universe
problem which was encountered in all earlier work on dis-where S is the “entropy” of the SYM fields. For 2-branes

crete A models[31,19,25,5,6,9,26 The scenario these au- arising from the wrapping of a 4D-brane on a degenerating

thors had in mind is that the universe starts with a largep-cycle, FMSW estimated this entropy as

cosmological constant and relaxes, within the available cos-

mic time, to a metastable vacuum with an observationally S~kPR?T?. (51)

acceptable value of. The problem is that, in order to make

the present vacuum sufficiently stable, the brane nucleationlere k? counts the effective number of degrees of freedom

has to be strongly suppressed. One then finds that the timeMthich live on the brane. There are theoretical uncertainties in

takes the universe to evolve to the low-energy vacuum is sthe exponen, but FMSW suggest that it should be between

large that, by the time when the process is complete, ang and 3/2.Ris the radius of the Coleman—de Luccia instan-

matter that the universe initially had gets diluted to an ex-ton, which coincides with the size of the “bubble” at the

tremely low density. So one ends up with an empty universdime of nucleation, andr is some effective temperature.

dominated by the cosmological constant. FMSW considered two different candidates for the effective
A number of solutions to this problem have been pro-temperature. One of them was the effective ambient de Sitter

posed. FMSW suggesté¢@] that the nucleation rate of mul- temperaturd32] T, before brane nucleation, and the other

tiple coincident branes may be enhanced due to the increas&ds the geometric mean @f and the effective temperature

density of states. They argued that this would lead to a rapid, of the new de Sitter space inside the nucleated biane

descent of the vacuum energy towards lower values. To en~(T,T,)*2

sure the long lifetime of the present vacuum, they argued that It is easy to understand, however, that the relevant effec-

this rate enhancement may not apply to the vacuum with théive temperature corresponding to the Coleman—de Luccia

lowest positive value of, . Bousso and Polchinskb], who  (CdL) instanton is in fact none of the above, but simply the

considered brane nucleation with large jumpspin, sug- effective de Sitter temperature of thH@+1)-dimensional

gested that the penultimate vacuum could have a high energyorld volume of the brane

density. The inflaton field would then be excited to high

values of its potential by quantum fluctuations. When the T— L (52)

ultimate brane nucleates, the inflaton rolls down the potential 27R’

thermalizing its energy and providing a high density of mat-

ter. Alternatively, they suggested that the nucleation of theThis is the temperature experienced by the degrees of free-

ultimate bubble, which in their model is accompanied by adom living in the wall(and it is in fact higher tha, and

large change in the four-form fielg, can be accompanied by T,). The prefactoD is a determinant arising from Gaussian
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integration of perturbations around the instanton solution, inthat the effective temperature ®&<R™1. In general, how-
cluding all light degrees of freedom. Such determinantsever, the degeneracy factor will depend®and on the mass
where discussed in some detai[B8]. A scalar field of mass of the particle. For light minimally coupled scalars, E€s3)
m living on the (2+1)-dimensional world volume gives a and(54) give
contribution
elr'(-2)

Dsze{ (0)/2 (53) Ds%ﬁTrnR (mR<1)

where{(z) is the Zeta function of the scalar fluctuation op-

erator on the 3-sphere. Its derivative at the origin is given byl Néreé can be a strong enhancement in the nucleation rate if
[23] there are very light massless scalar fields. In the limit

—0 the factor goes to infinity. This is because a massless
i 2 (my . scalar has a normalizable zero mode on the sphere, corre-
g’(O)=2§§(—2)—yzln(sm7ry)+?L xIn(sinx)dx, sponding to the symmetrg— ¢+ const. In this case, the
(54) zero mode must be treated as a collective coordinate. The
nucleation rate is proportional to the rangi¢ of the field ¢,
wherey?=1—m?R? and{R is the usual Riemann Zeta func- because the bubbles can be nucleated with any average value

tion (this expression is valid for light fields, witmR<1).  of the scalar field with equal probabilif23]

For instance, the contribution of a conformally coupled X _ a1
scalar field can be obtained by takingf= (3/4)R™2, which oDg(m*=0)= lim [mDg(m)](7R>)"“6¢
gives m?—0

1 7 =elR' (F2RV254,
{'(0)=2¢r(—2)— Zln2+ WgR(S)m —0.1276.
™ As we shall discuss in some examples below, some scalars
gre likely to pick up masses of order of the intrinsic curva-
ture of the 2+1 sphere, and for thed®, is also independent
of the radius.
Deont~€ 9%%8<0.91< 1. (55) Let us briefly consider the field content on the brane. For
k coincident 4D-branes in ten dimensions, the effective
The first thing to note is that this factor is not an enhancetheory isU(k) super Yang-Mills(SYM) theory. This con-
ment, but a suppression. Hence, the determinant cannot singists of aU (k) gauge field plus 5(>—1) scalar degrees of
ply be thought of as the exponential of an entropy. freedom in the adjoint representation®¥(k) plus 5 scalar
In fact, the CdL instanton is not a thermal instanton, but asinglets plus the corresponding fermionic degrees of free-
zero temperature instanton. Thermal instantons for brandom.
nucleation are static and have the topoldgfy< St (rather If the branes are flatas in the case when there is no
thanS®), where theS? is the 2D-brane at fixed time and the external four-form fieldl then the theory is supersymmetric
St is the periodic Euclidean time. Thermal instantons do inand all scalar degrees of freedom are massless. For the case
fact exist also in de Sitter space, but they have not receivedf a single brane, the five scalars represent the goldstone
too much attention because their Euclidean action is alwaymodes of the broken translational symmetry. That is, they
larger than that of the maximally symmetric CdL. For ther-correspond to transverse displacements of the brane. For the
mal instantongin flat or in de Sitter spagehe determinantal case of two branes, there are 10 such displacements. Five of
prefactor is given byp=e *F/T whereAF=AE—TSisthe them correspond to simultaneous motion of both branes.
free energy contribution of light degrees of freedom on theThese are the singlets undetJ(2). Therest are in the ad-
brane. Such prefactors have been considere@38. The joint representation, and if they acquire an expectation value
free energy consists of the vacuum enefgy (or Casimir  they give mass to two of the four gauge bosons. For instance,
energy on the two-sphereninus the product of the tempera- when the two branes move apart, one of the adjoint scalars
ture times the entropy. While the entropy is always positive acquires an expectation value and two of the gauge bosons
the sign of the Casimir contribution is notoriously dependenget a mass, breaking the symmetty2)—U(1)xXU(1).
on the type of field. In fact, for thermal instantons in de Sitter The case of interest to us is not a flat brane, but a 4D-
the temperature is always smaller or equal to the inverse dfrane wrapped on a degenerating two cycle. The world vol-
the size of the bubble, and hence the sign of the free energyme of the resulting 2D-brane in 4 Euclidean dimensions is
contribution can easily be dominated by the Casimir contri-not flat either, but forms a 3-sphere of radRsln this situ-
bution, which can have either sign. Although as mentionedation, we do not expect the theory to be supersymmetric.
above the CdL instanton is not thermal, this consideratiorThis is just as well, since in order for the instanton to make
may help clarify why the prefactdd need not represent an any sense, some of the adjoint scalars must pick up masses at
enhancement. Depending on the field content it may represne loop. Otherwise the instanton would have too many zero
sent a suppression. modes and too many negative modes. To simplify, let us
Another thing to note about E@55) is that it is indepen-  consider the 3-sphere in 4 non-compact dimensions. For the
dent of R. Roughly speaking, this is consistent with the factcase of a single brane, the transverse displacements corre-

Hence, the effective degeneracy factor contributed by a co
formal scalar field is given by
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spond to a scalar field of mas¥= —3R 2 [34]. This scalar tion of the 2-branes in 81 dimensions will get masses of
field has a single negative mode, which is the constant orderR™%, and hence will contribute degeneracy factors of
=0 mode. A negative mode is precisely what is needed foorder one, just like the conformally coupled field discussed
an instanton to contribute to the imaginary part of theabove. For the massless or nearly massless gauge fields the
vacuum energy, and hence to contribute to false vacuum deontribution to the degeneracy factor will be of order one
cay [21]. Also, there are four normalizable zero modes,(the vectors have no zero modes on the sphere, so unlike the
which are the spherical harmonics witke 1. These corre- case of a scalar, a tiny mass will not cause a large degen-
spond to the four space-time translational modes of the ineracy factoy. Similar considerations could be applied to fer-
stanton, which have to be treated as collective coordinatesnions. Thus we expect the total prefactor to be of order

This Goldstone field gives a determinantal prefactor of the

form [23] D (ora~ Q o2R2e2 (56)
o°R? R(-2)0) wherea is a numerical factor an#” is, as in Eq.(51), an
' estimate of the effective number of degrees of freedom. For
a flat brane at weak coupling= 2, but as argued by FMSW
where(Q=VT is the spacetime volume. The prefactoin it could be lower for the wrapped brane. Unfortunately, with-
the nucleation ratéll) is obtained after dividing by). out going into a very detailed analyqihich is outside the
If there are 2 coincident branes, then in principle therescope of this papgmwe are unable to determine the sign of
would be two such fieldsp, and ¢, corresponding to the the constana. However, as argued above, this value seems
independent transverse displacements of the brane. Howeveo, be rather insensitive to the valueRbr to the value of the
only the combinationg, = (¢, + ¢,) will correspond to a ambient de Sitter temperature.
singlet under SU(2). The orthogonal combination¢_ For a<0 the nucleation of multiple branes is suppressed
=(¢,— ¢,) will be in the adjoint. As mentioned above, if and we are back to the situation described in Sec. IV B. For
the instanton with two coincident branes is to make anya>0 a disaster may occur because transitions into deep
sense, this combination must acquire a positive mass at oranti—de Sitter space through multiple brane nucleation seem
loop so that there is a single negative mode, not two, antb be unsuppressed due to a large degeneracy factor. FMSW
four normalizable zero modes in total. In other words, insuggested that the disaster could be averted by an anthropic
order for the instanton to make sense, the branes must attramtgument. If the step in the vacuum energy is of the order
each other. If they repelled each other or if they did notof 3 in units of py,o, allowing the values...,-2,1,4... then
“interact,” then the two brane configuration would in fact be the stringent anthropic bound for a negative cosmological
an accidental superposition of two independent bubbles igonstantp, = — p\o would tell us that the vacuum energy is
the “dilute gas™ of instantons. The mass @f_ can be esti- in fact the lowest allowed value in the list, thatds ~ pwmo
mated as follows. The mass of the gauge fi|dis given by  (note that this argument requires a certain adjustment of the
ma($_)~M3f(d), whereM5 is the Planck mass] is the  step e in order to explain the observed vajuddowever,
distance between branes afd)~d for d>M;,1_ This is  there is another problem which is how to explain the stability
because this vector corresponds to fundamental stringgf this vacuum once it has been reached. In the FMSW sce-
stretching from one brane to the other. For smaller distance#ario, the stability was attributed to the fact that in the
d=My', we may expect a milder behavior for the mass,vacuum withp,~ py the effective temperature of the brane
which we may heuristically parametrize as a powed)  Would be so low that the degeneracy factor is switched off.
~d(Mpd)", with n>0. The canonical field is related to the However, as we have seen, the degeneracy factor is quite

D=

distance throught_~da 2 Hence independent on the ambient de Sitter temperatures and hence
it does not seem to switch off. The same mechanism that
ma~M&f2(o¥2¢ ). would enhance coincident brane nucleation from a high en-

ergy vacuum, would cause the disastrous decay of “our”

On a flat brane, the effective potential induced by a gaug&acuum. _ _
field of massm, is proportional tom3 . However, it can be ~_Finally, we note that even if a mechanism could be de-
shown that on a sphere there is also a term of ongkR 1 vised to switch off the degeneracy factor, so that the present
which will in fact dominate at smalin, . When these terms Vacuum is stable, the time coinciderige~-t, would be left
are added to the tree level potentiaBR 2¢?2, the scalar unexplalm_ad by thls.approac(hust as in the non-anthropic
. . . - models discussed in Sec. VI Also, the unsuppressed

acquires a very tiny expectation value{¢_) . e
~(IRMYY2 12\ =1 I the broken phases_ has a _nucle;aﬂon of comqldent bran_es seems to preclude eternal

P P ¢ 2 5 hﬁ inflation, and even if one may intuitively argue that the low-
positive mass squared of ordem, ~nR™". The gauge gt anthropic value is the most probabie, the actual probabil-
bosons will in turn acquire imperceptibly tiny massaﬁ ity distribution for positivep, seems hard to estimate.
<R2,

To summarize, some of the scalars may get very large \,, SCALAR FIELD WITH A VERY FLAT POTENTIAL
masses from the wrapping on a degenerating cycle. These
will decouple, and presumably will not contribute to the de- In this class of models, what we perceive as a cosmologi-
generacy factor. Others, corresponding to the relative posial constant is in fact a potentidl ¢) of a scalar fieldp(x).
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The potential does not have a succession of minima as in A. Solving both cosmological constant problems
Abbott’'s washboard model, byt its slope is assumed tq be so cgnsider a potential of the forif]
small that the evolution ot is slow on the cosmological
time scale. This is achieved if the slow roll conditions 1
V(¢)=pparet §M2¢2a (61)
M2V"<V=puo, (57)
wherepp e represents the “true” cosmological constant. If
MpV'<V=puo, (58  ppare @and u? have opposite signs, then the effective vacuum
energy will be very small when
are satisfied up to the present tirtteere it is assumed that
any “true” cosmological constant is also included in the |bl=12pparel ™| . (62
potential V.) These conditions ensure that the field is over- . . .
damped by the Hubble expansion, and that the kinetic energ"e anthzrop|c _ange 1S - given by A€)antn
is negligible compared with the potential energgp that the - 100wmol #°pbarel - Then, conditiong57), (58) and(60)
equation of state is basically that of a cosmological constarif™P!Y
term) The field ¢ is also assumed to have negligible cou- 12
plings to all fields other than gravity. Pwvo Pwmo Pwmo
Let in th i tions, that th 2 vz 14 vy (63
et us now suppose, as in the previous sections, that there H? |pparel M p |pparel M p
was a period of inflation driven by a different scalar figid
During inflation, massless scalar fields are randomized byrom the cosmic microwave background temperature fluc-
quantum fluctuations, which cause their root mean squaretiations we know thaH=<10 °M;. This leaves a wide
value to increase with time as¢~H(Ht)2, whereH isthe  range of possibilities for the value of the mass parameter,
inflationary expansion rate. If we consider a field of mass
this effect competes with the classical drift down to the bot- 167 15
: : ~ (10 167— 10129
tom of the potential, and after some time of order w~(
~Hm™?2 a stationary distribution with root mean squared

A¢~H?m™ ! is established. This can be interpreted in termsspanning some 47 orders of magnitude. Provided ghiatin
of the Gibbons-Hawking temgerzatur“?~H of de Sitter  thjs range, the priori probability distributionP, (¢) for ¢
space as the conditio(¢)~m-¢“~T". In this example, il be flat. The probability distribution for the effective cos-

all field values| ¢| <H?/m would be almost equally probable mglogical constanp ,=V(¢) is given by
after the end of inflation. This discussion, however, assumes

that inflation proceeds at almost the same rate for all field 1

values in the range considered. That is, the differential ex- Pe(py)=—Pi(¢),

pansion rat@H~V(qﬁ)(HM§,)*l is ignored. v
The case of interest to us is slightly more general becau

3
p

, (64)
|Pbare| 2

) - S&nd it will also be very flat, since’ is almost constant in the
the potential need not be quadratic, and also because we aéiﬁthropic range. As mentioned in Sec. I, a #apriori dis-

hot negessanly m'gergsted in field valugs ngar 0. Rather, _tribution for the effective cosmological constant in the an-
we are interested in field values for which the energy dens'“fhropic range entails an automatic explanation for the two

is in the anthropically allowed range cosmological constant puzzIgs6,17).

J— << <
Pmo=V(¢)=100y0. (59 B. A small mass from instantons?

The differential expansion raigH ~V($)(HM3) ~* will be The challenge in the scenario presented above is to ex-
negligible if the timet~ (A ¢)3,,,H " that it takes for the ~Pplain the small mass parameté#). In Ref.[4] we suggested

field to fluctuate across the anthropic rangepotorrespond- that this can be achieved through instanton effects. For in-
ing to Eq.(59) is smaller than §H) ! for the same range. Stanceg¢ could be a pseudo Goldstone boson, the phase of a

This requires scalar field® = ne'?’” which spontaneously breaks a global
U(1) symmetry. Since global charge can be swallowed by
H2 wormholes, a small mass term for the fiebdwill be gener-
(Ad)anth< ——z Mp - (600  ated through gravitational instantof5,36.
10pyo Another possibility is that the phase may have an “ax-

ion” coupling of the form
If this condition is not satisfied, then tlaepriori probability
for the field values with a higheV(¢) would be exponen- a—sdbl?F 65
tially enhanced with respect to the field values at the lower 7 ’
anthropic end. This would result in a prediction for the ef-
fective cosmological constant which would be too high com-whereF is the field strength of a “hidden” gauge sector with
pared with observations. Therefore, in what follows, we shallgauge coupling constanris. The coupling(65) will give a
demand that our potential satisfies E@s?), (58) and(60). small mass to the pseudoscatarthrough instanton effects.
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We should mention, however, that there may be certain More generally, as noted in Reff9], the effective La-
limitations in implementing this idea in the present context.grangian for a scalar fielgh at large distances will include
Consider an instanton-induced potential of the form nonminimal kinetic terms:

V()= pparet A’cod ¢/ 7). L=F2()(d,) >~ V() +- - -. 67)

HereF plays the role of a field renormalization, which in fact
ay depend ony, and we have omitted terms with more
derivatives ofys. If F is very large, then the field redefinition

In order to solve the cosmological constant problem we nee

A42Pbare-
dp=Fdy
Combining this with the slow roll condition&7) and (58)
we find will result in a very flat effective potential fog.
Take for instanceF =e?Mp and V= pp et (M?/2) 472,
wheremis a not too large mass parametsee below. After

7>M pf;b—are. the change of variables we obtain
MO
. 2 1 28 2 2
Thus, the expectation valug must be truly huge compared L=(9,)"~ poare™ 5 M"Mp[IN($/Mp) ]+ - - -.

with the Planck scale.

In usual axion models, the effective vertéss) can be  The effective potential is now very flat at large The slow
obtained in the following way. The scalar field has (o) conditions(57) and(58) are satisfied for
Yukawa interactions of the forh®WwW¥ with an “exotic”
fermion ¥ (hereh is the Yukawa coupling constantThe
fermion in turn interacts with the non-Abelian gauge fields, $= ¢min= MPWI”H_O-
and the couplind65) is generated at one loop. The mass of 0
the fermions in the broken phase is giventby~h#. Inour  The antropic rangen®¢>~ | p,arel Will satisfy this condition
case, this mass is extremely Iargenle'ssh is extremely  provided thatm<|ppare Y°Mp L. Finally, the condition(60)
smal), and so we can hardly trust the field theory model forjg easily satisfied by choosing a sufficiently high Hubble rate
generating Eq(65). _ during inflationH2> 1032 (bl mir) -

Perhaps more worrisome is the effect of wormholes. For Thus, starting from a Lagrangia67) with fairly simple

small symmetry breaking scalef MSP the scaleA” in the  functionsF andV we have been able to satisfy all necessary
instanton potential is of ordevipe >, whereS~Mp/7 is  conditions to solve both cosmological constant problems. Of
the wormhole aCtiOfﬁBS,Sq. The radius of the wormhole is course, one may wonder WWShOUld have exponentia| be-
given byR~(Mp2)~ "2 This radius approaches the Planck havior whenV is only polynomial, and it would be good to

scale asy approache$/p, and the process becomes unsup-find a well motivated physical setup where this Lagrangian
pressed. The instanton calculation becomes unreliable fafmerges in a natural way.

higher values ofp, but it is not clear what would prevent
nonperturbative gravitational effects from completely de-
stroying the global symmetry.

Therefore, as mentioned above, the generation of a small In theories with extra dimensions, the four form field
mass through instantons may not have a straightforwardtrength is dynamical above the compactification energy
implementation in the present context. Clearly, this issue descale. Donoghue suggestd] that in the early universe the
serves further investigatiofsee e.g[36)). four-form might take a continuum of different values in dif-
ferent parts of the universe, and that it might get frozen to
these values as the universe cooled down below the compac-
tification scale. However, it is easy to show that the effective
Consider a potential of the forfii8] cosmological constant can vary from place to place only if

the size of the internal space is also variable. As a result, the
V($)=poaret M*T(N ), (66) effect of the four form is more properly described as a con-

) ) ) tribution to the effective potential for the radius modulus of
whereM is a reasonable mass parameter &rgla function  the extra space.

eter in the argument of is chosen to be very small, then foyr-dimensional spacetim#t and an internal spacs,
V() will be very flat. In particular, the mass term of the

field ¢ which has two powers of will be very small. Wein- ds?=g,,,(x)dx“dXx" + aij(x,y)dy'dy!, (68)
berg suggestefl 8] that perhaps the smallness Jfcan be

attributed to a large running of the field renormalization ~ where u,v=0,...,3 are thefour-dimensional indices and
from some fiducial short distance scaleto the large scales i,j=1,...n are the internal space indices. The field strength
in which the cosmological constant is relevant-0. takes the form, F=f(X,y)ws+ ..., where w,=+g

2

VII. A SLOWLY VARYING FOUR-FORM?

C. A very flat potential from field renormalization
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(A\,dx#) is the four-dimensional volume form gE andK is defined by~Rij =(K/n)}ij . In general, the potential
—deg,,) and the ellipsis denote terms with at least onemay have a minimum but this need not be n¥ar0. For
internal index(these do not behave as a four-form upon di-n>1 one can adjust the parameteYg and F, so that the
mensional reduction The equations of motion reduce to  minimum is at the right height to fit observations, but this
would be the usual fine-tunin@or n=1 the minimum must
dG=0, (69) have negative effective cosmological constant, so this tuning
where G=*F=f(x,y)w,+--- is the dual of the field is not p'ossmlﬁ We may aI;q consider the possm!llty that the
B i . field ¢ is away from the minimum, but slowly rolling so that
strength ando,= \E(/\idy) is the volume form on the in- . : .
B . . . the effective potentiaV (i) plays the role of an effective
ternal space ¢=dels;;). Consider two different pointg, . . .
J D cosmological constant, as described in Sec. VI. The problem
andx, on the 4D manifoldM, and a curvey,, joining them.

. o # is that if the slow roll conditions are met, thenwould have
Apply|_ng Stokes theorem tq the cy||nde_ry12><8 (wh_ereS a negligible mass and would mediate long range interactions
is the internal spageand using the equations of moti(o),

we immediately find that g:‘) ngsrawtatlonal strength, which are ruled out by observa-

f G—f sz dG=0, (70) VIIl. NON-ANTHROPIC APPROACHES
Sixy Sixp SXy12

Here we comment on some attempts to solve the cosmic

for arbitraryx; andx,. Assume that the internal metric fac- .incigence problem without resorting to the anthropic prin-

torizes as ciple. In a recent papé] Arkani-Hamedet al. suggested an
200 explanation to the approximate coincidence of several cos-
aij =€ ai(y). mological timescales: the time of matter-radiation equality
Then, Eq.(70) implies teq, the time of A-dominationt, , and the time of galaxy
formationts . They assume that the Planck scislg and the
f(x)=foe "X, electroweak scal®l,, are the only relevant scales and argue

that the temperature at matter-radiation equality and the

wheref(x) is the average of(x,y) over the internal space vacuum energy should then be given by
andf, is a constant. Kaluza-Klein modes average to zero on
0 g Teq~M2/M5p, (72)

the internal space and do not contributef tdcHowever such
modes are massive in the reduced theory and do not behave ~(M2/Mp)* (73)
as an effective cosmological constant. It follows that the con- Pa wiR

tribution of the four form to the effective cosmological con- |; fgliows immediately from Eqs(72),(73) that teq~t, .

stant is This coincidence should of course be understood in a very
1 1 1 rough sense, since the actual valuestgf andt, in our
—F?2= E Fuvpo\/;dny:_FZG—mb(x) universe differ by a few orders of magnitude. Now, assuming
2 2x4! g 20 ' i i i
S the density fluctuation amplitude

(71
Q=6plp~10"°, (74)
whereF2=f2[ s\/od"y = const.
In the dimensionally reduced theory(x) is a four di- and using a more accurate value fgy/t, , the authors show
mensional scalar field, and E¢71) is just a contribution to  from Eg. (73) that the epoch of galaxy formation is at
its effective potentiaM (). At the classical level, there are Lot 75
¢l

two other such contributions, due to a bare higher dimen-
4

i i +n)
sional cosmological constant{*"" and due to the curvature In our view, a relation like Eq(73) may account for the

of the internal manifold. Following Ref$37], it is easy 0 gmaliness ofA and may even explain its observed value.
show that in terms of the Einstein frame metrt,,  However, the cosmic coincidend@5) would remain unex-
=e"’g,,, the effective action takes the form plained. The time ofA-domination is determined by the
2 value of A, while the epoch of galaxy formation is deter-
S— %J \/E—d“x[ﬁ— n(2+ n)af*‘”& o —N() mined by the amplitude of density fluctuatioBs Even if we
2 2 mEy ’ explain the value of\, we still have to explain why the value
, of Q is such that;~t, . Moreover, the accuracy of a few
with orders of magnitude is not sufficient to explain the cosmic
P time coincidence: observations indicate that the coincidence
- Fo K . S .
V() =Age "+ 23— g (+my, (75) is accurate within one order of magm.tude. _
2 2 Another non-anthropic approach to solving the cosmic co-
2 x24n i (a+n) ) incidence problem involvek-essence, a scalar field with a
Here Mp=M. "V and Ag=Apare Vo, WhereM, is the  non.trivial kinetic terni8]. k-essence has a positive effective
higher dimensional Planck masS/,0=fS\/;d”y=const., pressure during the radiation era and starts acting as an ef-
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fective cosmological constant with the onset of matter domi-estimate for the particular model presented above, but we
nation. With a suitable choice of parameters it dominates thehall use it anyway for the sake of argument

universe at,~tg. However, one could also choose param- We may now take a point of view which is “complemen-
eters to obtaint,<tg or ty,>tg. This model can explain tary” to the one used in the preceeding sections. Let us as-
why A-domination occurs at>t.,, but it cannot account sume that the cosmological constant is truly a constant of

eqr
for the coincidencé75). orderM8M - ® determined from the fundamental thedas
assumed e.g. ifi7]), and thatQ is a random variable with
IX. MODELS WITH VARIABLE Q prior distribution(76). If >0, then low values o will be

favoreda priori. However, ifQ is too low, galaxies will not
Several authors have recently expressed the view that thgve time to form before the timntg when the cosmological
anthropic principle can perhaps be applied to the cosmologiconstant starts dominating. With this, we would basically
cal constant problem—but to nothing elE#8,26. For in-  explain why Q~10"° as well as the time coincidendg
stance, Weinberg has remarkigk8] that we cannot explain  —t, . These arguments can be made more quantitative in the
the masses and charges of the elementary particles by assuf§iowing way. The probability distribution for a galaxy to
ing that they depend on the expectation values of scalaiorm at timetg is given by
fields with very flat potentials. These light fields would
couple to the elementary particles, and would have been ob- dv(tg,t,,Q)
served in collisions and decays. dP(te) Py (Q) — g dInQdte. (77)
While this remark may be true, we can still apply the ¢
anthropic principle to variables which determine the largeHere, v(ts,t, ,Q) is the fraction of matter that clusters up to
scale properties of the Universe, and which generically falkhe timetg in a universe where the density contrast at the
into the category of “initial conditions.” Examples of these time of recombination i€ and where the cosmological con-
are the amplitude of primordial fluctuatio@s[41,39,16, the  stant is such that it will start dominating at the time. This
density paramete® [40,39, or even the baryon asymmetry. fraction can be easily estimated by using the Press-Schechter
In the inflationary context, these parameters depend on th@pproximation. In Ref[16] it was shown[see Eq.(27) of

path that the inflaton field takes in going from the diffusion that referencbthat after integrating OVEQ the probab|||ty
regime to thermalization. The inflaton potential representedjistribution fort is given by

in Fig. 2 is one-dimensional, and there is a single path from

the top of the potential to the local minimum. However, dF«

more generally, the inflaton has several components, and dP(tg)* o -dx (78)
there may be a continuum of paths from the diffusion region

to a given minimum. Even if the low energy patrticle physicsyhere

Lagrangian is the same in all thermalized regions, and even

if there are no exotic light degrees of freedom after thermal- 5(14+x\Y2 rx dw
ization, these regions may start with different initial condi- F(x)= 5| % f s vy
tions which will be more or less favorable to galaxy forma- oW A(1+w)
tion.

Consider for instancg39] a two component scalar field and
X=x1+ix2=|x|e'®, with potentialV(x) = (g1xi +92x3) /2. x=sint(tg/ty).

This potential produces inflation fox|=Mp. However, the

amplitude of density perturbatior@ depends on the direc- (Following [16], we are using the convention thigt is the

tion ® of approach to the minimunQ~m(®)N(|x|)Mz*.  time at whichQ,=Qsinl?1, whereQ; are the fractional
Here m?(®)=g,co$0+g,sirf® and N~|X|2M;2~60 is  densities of cosmological constant and non-relativistic matter
the number of e-foldings from the time the present Hubblerespectively. The distribution(78) is plotted in Fig. 3 for
scale first crossed the horizon until the end of inflation. Thedifferent values ok, and we see that for moderate values of
minimum aty=0 will be reached from different directions « it presents a rather prominent peakk gt-t, , as expected

in different thermalized regions, and therefore these regionfom the general arguments above.

will have a different value of) as an initial condition. This Finally, one may take the view that both and Q are
example illustrates tha can easily be made into a random random variables. This possibility was considered 16],
variable. In general, ita priori distribution P, (Q) (i.e. its  where it was shown that a decreasagriori distribution for
volume distribution at the time of thermalizatjowill not Q pushes the cosmological constant to small values, so that
necessarily be flat in the anthropically allowed range. Fobothts andt, tend to be very large. In this case, a new time
any given model, this distribution can be calculated using thecale comes into play. This is the so-called cooling boundary
numerical methods of Ref29]. To proceed, however, we t., [41]. For timest>t., gravitationally collapsing clouds of

shall heuristically parametrize it as galactic mass cannot fragment into stars because they are too
cold to reach the usual “cooling” line emission thresholds,
dP, (Q)~Q «dInQ, (76) and they stay as pressure supported configurations for a very

long time. Thus, usual galaxy formation is suppressed after
where « is a constantthis may not necessarily be a good t~t.,~3x10'° yr. This time is determined from micro-
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dp/dtc also not affect the poorly understood astrophysical processes
such as star formatio#0,16,26. So for example the gravi-
tational constant may be hard to determine anthropically
with our present level of understanding, since it affects both
the evolution of life and star formation. However, gravity
does not change chemistry, which is already a big simplifi-

0 1 2 3 4 tGS/ tAG cation. So it is not inconceivable that the value of Newton’s

constant may in the future receive an anthropic explanation.

FIG. 3. Probability distribution fotg/t, , the time of galaxy In this paper we discussed anthropic approaches to solv-
formation as compared to the time when the cosmological constadfld the two cosmological constant problerGCPS. The
starts dominating. Herd is taken to be a fundamental constant but first (old) CCP is the discrepancy between the observed
the density contradp is treated as a random variable wiitpriori small value ofp, and the large values suggested by particle
volume distributiore<Q ¢ at the time of thermalization. The plotis physics models. The secoritime coincidencg CCP is the
shown fora=1.5, 3 and 5. The distributions present rather well puzzling coincidence between the epoch of galaxy formation
defined peaks aiz~t, . tg and the epoch of\ -dominationt, . While it is conceiv-

able that the old CCP can be resolved by fundamental phys-
physical parameters such as the fine structure constant, thes [42,43,7,44, we have argued that the time coincidence
proton mass and the fraction of baryonic matter. Since thgroblem calls for an anthropic explanation.
time of galaxy formation cannot be arbitrarily large, in the We first considered models with a discrete spectrum of
situation where botlQ and A are random variables we ex- p, . These include Abbott's scalar field model with a “wash-
pecttg~t,~t., (see[16] for detaily. There are many un- board” potential[19], as well as models in whicp, can
certainties associated with the calculationtgf. Perhaps change through brane nucleation accompanied by a change
after some of these uncertainties are removed, we may actef the four-form fieldF [25,5,6,9. Such models can solve
ally find thatt,,>ts~t, . This hypothetical situation would both CCPs, provided thét) the separation between the dis-
suggest that one of the time scatgsandt, is not a random crete values op, is e<py o, Wherepy, is the present mat-
variable, or that if both of them are, then thairpriori dis-  ter density(ii) the probability distribution fop, at the end
tribution must have a rather peculiar behavior. This in turnof inflation is nearly flat,P, (p,)~const, andiii) the brane
would give us information on the theories of initial condi- nucleation rate is sufficiently low, so that the present vacuum
tions giving rise to thesa priori distributions. energy does not drop significantly in less than a Hubble time.

These examples seem to suggest that the applicability diVe discussed the cosmology of this class of models, the
anthropic reasoning, once it is accepted, may easily go besalculation of the prior distributiorP, (p,), and the obser-
yond the issue of the cosmological constant problem. vational constraints on the model parameters.

The required values of the “level separatioa”may ap-
% CONCLUSIONS pear qncomfortably small, but Feng, March-Russell, Sethi
' and Wilczek(FMSW) [6] have argued that they can naturally

The anthropic principle has a bad reputation. It is oftendfise due to non-perturbative effects in M theory. In
regarded as a handwaving argument relying on poorly undeM-theory-related models, the brane tensiiis related toe
stood phenomena like intelligent life and having no predic-through €~<prare/|\/| and should also be very small. Our
tive power. Although this criticism is not entirely un- analysis shows that in such models the conditiGps(iii )
grounded, there is a class of cosmological models where theannot be satisfied without fine-tuning of the parameters.
use of anthropic principle is not only justified but may in fact It was conjectured by Weinberd2] that the condition
be inevitable, and where it can be used to make quantitativéi) of a flata priori distribution for A would automatically
predictions. These are the models in which some cosmologhe satisfied in any particle physics model where the cosmo-
cal parameters, or physical “constants,” take different val-logical constant is a random variable. In Ref] we showed
ues in different parts of the universe. In such models, onéghat this conjecture is not always satisfied in models where
cannot predict the precise values of the parameters that wibe role of the cosmological constant is played by a slowly
are going to observe. One can only hope to calculate thearying field. Here, we have shown that the conjecture is
corresponding probability distributions. The criteria for jus- generically not satisfied in four-form models either. In fact,
tifying (and compelling the use of anthropic principle are this condition has to be enforced in order to fit observations.
that the model should providé) a mechanism for variation This, in turn, places severe constraints on the model param-
of the parameters ar(d) a way of calculating the probability eters. Hence, in trying to solve the cosmological constant
distributions. Once the probabilities are calculated, one caproblems by anthropic means, the featpriori distribution
predict that the parameters are going to be observed within#®r A cannot be taken for granted and the problem of calcu-
certain range of values, say, at a 95% confidence level. Thikiting P, has to be addressed.
seems to be as quantitative as one can possibly get in this Bousso and Polchinsky] have studied models with mul-
class of models. tiple four-form fieldsF; and found that the spectrum of the

From a practical point of view, parameters that we carnallowed values op, can be sufficiently dense even for large
hope to determine anthropically should satisfy the conditiorbrane tensions. However, in this case the vacua with nearby
that they do not affect life processes, and preferably shoulstalues ofp, have very different values of;, and a flat
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probability distribution required inii) is rather unlikely. models. Possibilities include a pseudo-Goldstone field which
Moreover, the low-energy physics in such vacua is likely toacquires a potential through instanton effddtk a large run-
be different, and it appears that the anthropic approach taing of the field renormalizatiofl8], and a non-minimal

solving the CCPs cannot be applied in this cHg. kinetic term with an exponentiab-dependencg]. We have
For models unrelated to M-theory, and e are generally pointed out some difficulties of the instanton approach.
unrelated, and values consistent with the constraipsiii ) We thus see that both discrete and continudaushodels

can easily be found. However, if one gives up the M-theorycould in principle solve both of the CCPs. However, none of
connection, then the FMSW argument cannot be used, anthe models that have been suggested so far appears particu-
one has to seek an alternative explanation for the tiny valutrly well motivated or natural.
of e. Alternatively, one might seek modifications of the An alternative approach is to assume that the old CCP can
FMSW model that could relax the relation betweeando.  be solved within the fundamental theory. The cosmological
All of the earlier discussions of the cosmology of discreteconstant is then truly a constant and is given by an expres-
A models encountered the “empty universe problem” sion such a$A~M€VM;2, as in[7]. At the same time, the
[31,19,25,5,6,9,26 In order to make the present vacuum amplitude of density fluctuation® could be a random vari-
sufficiently stable, the brane nucleation has to be stronglyble, so that the epoch of galaxy formatignis different in
suppressed. One then finds that the time it takes the universkfferent parts of the universe. We have shown in Sec. VIl
to evolve from some initial high value gf, to the present that, for a wide class of prior distributiorg, (Q), most of
low value is much greater than the present Hubble time. Thighe galaxies will be in regions whetg~t, , thus explaining
suggests that by the time the process is complete, any mattgte cosmic time coincidence. It would be interesting to ex-
that the universe initially had may get diluted to an ex-tend this analysis and calculate the distributiBp(Q) for
tremely low density, so that one would end up with an emptysome models with a variabl®. One would then have some
universe dominated by the cosmological constant. idea of how naturally the distributions of the required type
We have argued that the empty universe problem disapean be obtained.
pears when the eternal nature of inflation is taken into ac-
count. During inflation, brane nucleations leading to higher Notes added
and lower values of, have nearly equal probabilities. As a
result, the values o, are randomized, with different parts
of the universe thermalizing with different values. The re-
_sulting probabilit_y distribu_tiorVD*(pA) can be c_alculated US- ity q of the brane does not hold for branes wrapping on
ing the stochastic formalism we developed in Sec. IV. Theyeqenerating cycles. Instead, the tension is suppressed by an
slow rate of brane nucleation is not a problem in etemakxponential factor relative to the charge. We note two poten-
inflation, since an unlimited amount of time is available. 5| problems with this picture. First, as it was argued in Ref.
FMSW suggested an interesting possibility that nucleatlor[45], the brane charge and tension appear to be unprotected
of multiple branes could be enhanced by a large degeneracy,sinst renormalization below the supersymmetry breaking
factor due to the light fields living on the branes. If true, thisg 51a  Such renormalization would make the brane charge
could significantly modify the brane model cosmology. In,5ccentably large. Second, if for some reason the brane
Sec. V we studied multiple brane nucleation in some det""'t;arameters do not get renormalized, then, in order to satisfy
and found that the pre-exponential factor in the brane nucleg, o anthropic constrair22) on g, the brane tension has to be
ation rate can both enhance and suppress multiple brar@xceedingly small. The instanton acti¢® would then be
nucleation, depending on the field content of the branes. We.4i1 and ‘brane nucleation would be completely unsup-
algo conclpded that models in which muItipIg brane nucle- ressed.
ation QOmme}tes can be ruled out, because in such models 5 a., approach to explaining very flat scalar potentials
there is nothing to prevent our present vacuum from tunnelz 4 branes with a very small four-form charge has been sug-

ing dow? to dc_ieep an(‘;i—de dSIitter_shpace. _ ested in Ref[45], where these features are attributed to a
We also discussed models with a continuous spectrum Qo nianeously broken discrete symmetry.

P, in which the role of the cosmological constant is played
by the potentialV(¢) of a scalar field$(x). The potential
has to be very flat, so that its value does not significantly
evolve on the present Hubble time scale. The values of the J.G. is grateful to Alex Pomarol and to Klaus Kirsten for
field ¢ are randomized by quantum fluctuations during infla-useful and enjoyable discussions. This work was supported
tion, and models can easily be constructed in which the reby the Templeton Foundation under grant COS 253. J.G. is
sulting probability distribution foNV(¢) is nearly flat in the partially supported by CICYT, under grant AEN99-0766,
range of interest, thus solving both CCPs. The challenge hernd by the Yamada Foundation. A.V. is partially supported
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After this paper was submitted for publication, a revised
version of Ref[6] has appeared. There, it is pointed out that
the relation(21) between the tensioor and the charge den-
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