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Solutions to the cosmological constant problems
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We critically review several recent approaches to solving the two cosmological constant problems.
The ‘‘old’’ problem is the discrepancy between the observed value ofrL and the large values suggested
by particle physics models. The second problem is the ‘‘time coincidence’’ between the epoch of galaxy
formation tG and the epoch ofL domination tL . It is conceivable that the ‘‘old’’ problem can be
resolved by fundamental physics alone, but we argue that in order to explain the ‘‘time coincidence’’ we must
account for anthropic selection effects. Our main focus here is on the discrete-L models in whichL can
change through nucleation of branes. We consider the cosmology of this type of model in the context of
inflation and discuss the observational constraints on the model parameters. The issue of multiple brane
nucleation raised by Fenget al. is discussed in some detail. We also review continuous-L models in which the
role of the cosmological constant is played by a slowly varying potential of a scalar field. We find that both
continuous and discrete models can in principle solve both cosmological constant problems, although the
required values of the parameters do not appear very natural. M-theory-motivated brane models, in which the
brane tension is determined by the brane coupling to the four-form field, do not seem to be viable, except
perhaps in a very tight corner of the parameter space. Finally, we point out that the time coincidence can also
be explained in models whereL is fixed, but the primordial density contrastQ5dr/r is treated as a random
variable.
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I. INTRODUCTION

The cosmological constantL presents us with at least tw
intriguing problems. Particle physics models suggest that
natural value for this constant is set by the Planck sc
M P;1018 GeV @we use the reduced Planck massM P

5(8pG)21/2#. The corresponding vacuum energy density
rL;M P

4 , which is some 120 orders of magnitude grea
than the observational bounds. In supersymmetric theo
one can expect a lower value,

rL;hSUSY
4 , ~1!

wherehSUSYis the supersymmetry breaking scale. Howev
with hSUSY*1 TeV, this is still 60 orders of magnitude to
high. Until recently, this discrepancy between the expec
and observed values was the only cosmological cons
problem. Its solution, many believed, was that something
small could only be zero, due to some unknown symmetry
dynamical cancellation.

Thus, it came as a surprise when recent observations@1#
provided evidence that the universe is accelerating, ra
than decelerating, suggesting a non-zero cosmolog
0556-2821/2001/64~2!/023517~16!/$20.00 64 0235
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constant.1 The observationally suggested values ofL corre-
spond torL;rM0, whererM0 is the present density of mat
ter. This brings yet another puzzle. It is difficult to unde
stand why we happen to live at the epoch whenrM;rL .
Another statement of the problem is why the time whenL
starts dominating the universe nearly coincides with the
och of galaxy formation,

tL;tG . ~2!

This is the so-called cosmic coincidence problem.
A number of proposed solutions to these problems h

recently appeared in the literature@4–9#. Some of them rely
on some form of the anthropic principle, while others do n
To our knowledge, the only approach that can explain b
puzzles is the one that attributes them to anthropic selec

1The surprise, however, was not total. In Ref.@2# ~well before the
supernova data@1# would give the first observational evidence
this direction! it was noted that anthropic selection effects wou
place the cosmological constant in the rangerL /rM0&10, and that
‘‘the actual value is likely to be comparable to this upper bound
For a flat universe this impliesVL;0.9, not far from the observed
value and certainly compatible with it, within the accuracy of t
prediction. Similar predictions where made in@3# at about the same
time.
©2001 The American Physical Society17-1
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effects. In this approach, the cosmological constant is
sumed to be a random variable that can take different va
in different parts of the universe.

The purpose of this paper is to give a critical analysis
the proposed approaches, both anthropic and otherwise.
main focus will be on the models with a discrete spectrum
L which have recently attracted much attention. We sh
consider these models in the framework of inflationary c
mology and discuss the calculation of the probability dis
bution forrL , as well as the observational constraints on
model parameters.

The paper is organized as follows. In Sec. II we revi
the motivation for consideringL as a random variable. In
Sec. III we discuss models whereL is a discrete variable, in
particular the models where there is a four-form contribut
to the cosmological constant, which may relax to a sm
value through nucleation of branes. In Sec. IV we anal
the cosmology of such models. In Sec. V we consider
possibility of coincident brane nucleation. In Sec. VI we d
cuss models where the cosmological constant is a continu
variable. In Sec. VII we consider the possibility of a slow
varying four-form field in theories with extra dimensions.
Sec. VIII we review some non-anthropic approaches to
problem. In Sec. IX we consider models where the time
incidence is explained by assuming that the primordial d
sity contrastQ5dr/r ~and not necessarilyL) is a random
variable. Our conclusions are summarized in Sec. X.

II. L AS A RANDOM VARIABLE

Not all values ofL are consistent with the existence
conscious observers. This observation was made by Ba
and Tipler @10# ~see also@11#!, but the first quantitative
analysis is due to Weinberg@12#. In a spatially flat universe
with a cosmological constant, gravitational clustering effe
tively stops att;tL . At later times, the vacuum energ
dominates and the universe enters a de Sitter stage of e
nential expansion. An anthropic bound onrL can be ob-
tained by requiring that it does not dominate before the r
shift zmax when the earliest galaxies are formed. Weinbe
took zmax;4 and obtained

rL&100rM0 . ~3!

This is a dramatic improvement over Eq.~1!, but it still falls
short of the observational bound by a factor of about 30.

The anthropic bound~3! specifies the value ofrL which
makes galaxy formation barely possible. However, as it w
pointed out in@2,3#, the observers are where the galaxies a
and thus most of the observers will detect not these marg
values, but rather the values that maximize the numbe
galaxies. More precisely, the probability distribution forrL

can be written as

dP~rL!5P* ~rL!n~rL!drL . ~4!

Here,P* (rL)drL is thea priori distribution, which is pro-
portional to the volume of those parts of the universe wh
rL takes values in the intervaldrL , andn(rL) is the aver-
age number of galaxies that form per unit volume with
02351
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given value ofrL . According to the ‘‘principle of medioc-
rity,’’ which assumes that we are typical observers, Eq.~4!
gives the probability distribution for us to observe a giv
value of rL . The calculation ofn(rL) is a standard astro
physical problem; it can be done, for example, using
Press-Schechter formalism@13#. The a priori distribution
P* (rL) should be determined from the theory of initial co
ditions, e.g., from an inflationary model.

Martel, Shapiro and Weinberg@14# ~see also@15#! pre-
sented a detailed calculation ofdP(rL) assuming a flata
priori distribution,

P* ~rL!5const ~5!

in the range of interest~3!. They found that the peak of th
resulting probability distribution is close to the observatio
ally suggested values ofrL . The cosmic time coincidence i
easy to understand in this approach@16,17# if one notes that
regions of the universe wheretL!tG do not form any gal-
axies at all, whereas regions wheretL@tG are suppressed b
‘‘phase space,’’ since they correspond to a very tiny range
L. It was shown in Ref.@16# that the probability distribution
for tG /tL is peaked attG /tL'1.5, and thus most observe
will find themselves in galaxies formed attG;tL .

This anthropic solution to the cosmological constant pro
lems is incomplete without a particle physics model th
would allow L to take different values and without a theo
of initial conditions, such as an inflationary cosmologic
model, that would allow one to calculate thea priori distri-
bution P* (rL).

One possibility is to consider models in which the role
the vacuum energy is played by a slowly varying poten
V(f) of some scalar fieldf, which is very weakly coupled
to ordinary matter. The values off are randomized by quan
tum fluctuations during inflation, and analysis shows that
resultinga priori distribution is indeed flat for a wide clas
of potentials@4,18#. The main challenge one has to face
this approach is to justify the exceedingly flat potentialV(f)
required by the model. We shall comment on this issue
Sec. VI. Before that, we shall consider an alternative po
bility which has recently attracted much attention. This
provided by models with a discrete spectrum ofrL .

III. MODELS WITH A DISCRETE SPECTRUM OF L

The first model of this type was suggested in an ea
paper by Abbott@19# as an attempt to solve the old cosm
logical constant problem. He considered a self-interact
scalar fieldf with a ‘‘washboard’’ potentialV(f) of the
form illustrated in Fig. 1. The potential has local minima
fn5nh with n50,61,62, . . . , separated from one anothe
by barriers. The vacuum atf5fn has energy density

rLn5ne1const ~6!

and can decay through bubble nucleation to the vacuum
fn21.

The nucleation rateGn↓ per unit spacetime volume i
given by
7-2
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SOLUTIONS TO THE COSMOLOGICAL CONSTANT PROBLEMS PHYSICAL REVIEW D64 023517
Gn↓5Ane2Bn, ~7!

whereBn is the action of the Coleman–de Luccia instant
@20# and the meaning of the subscript↓ will become clear
shortly. The bubble radius at nucleationRn is bounded by
0,Rn,Hn

21 , where

Hn
25

rn

3M P
2

~8!

is the square of the expansion rate of de Sitter space fi
with the vacuumfn . The horizon radius and the curvatu
radius of that space are both equal toHn

21 .
An analytic expression forBn can be given in the thin

wall approximation, whend!Rn @20#. The general expres
sion is somewhat cumbersome and we shall only cons
the limiting cases of interest. ForRn!Hn

21 , Bn is given by
the flat space expression@21#

Bn
( f lat)'

27p2

2

s4

e3 , ~9!

approximately independent ofn. In this regimeRn'3s/e,
so we should havesHn /e!1. In the opposite limit,
sHn /e@1, we have (Hn

212Rn)!Hn
21 and

Bn
(wall)'2p2sHn

23 . ~10!

The vacuum energy differencee is unimportant in this case
and the action coincides with that for domain wall nucleat
@22#. The prefactor in Eq.~7! can be estimated as~see e.g.
@23#!

An;s2Rn
2 . ~11!

Equations~9!–~11! apply under the condition that the grav
tational effect of the wall is negligible,

s!M P
2Hn . ~12!

Upward quantum jumps fromfn21 to fn are also possible
@24#. The corresponding nucleation rate is

G (n21)↑5expF24p2M P
4 S 1

rn
2

1

rn21
D GGn↓ . ~13!

For e!rn this can be approximated as

FIG. 1. The washboard potential.
02351
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G (n21)↑5expS 2
8p2

3

e

Hn
4DGn↓ , ~14!

where we have used Eq.~8! for Hn .
In order for the anthropic explanation to work, one nee

e&rM0;~1023 eV!4, ~15!

and in order to have successful baryogenesis, the energy
sity during inflation should exceed~1 TeV)4, which corre-
sponds to

H*1023 eV. ~16!

Combining this with Eq.~14!, we see that the probabilities o
upward and downward jumps inrL during inflation are
nearly equal, except perhaps in the borderline case whe

H;e1/4;1023 eV. ~17!

An alternative discrete model, first discussed by Brown a
Teitelboim @25#, assumes that the cosmological constan
due to a four-form field,

Fabgd5
F

A2g
eabgd, ~18!

which can change its value through the nucleation of bran
The total vacuum energy density is given by

rL5rbare1F2/2, ~19!

where rbare,0 is the ‘‘bare’’ cosmological constant atF
50. The change of the field strength across the brane is

DF56q, ~20!

whereq5const is fixed by the model. The four-form mod
has recently attracted much attention because four-f
fields with appropriate couplings to branes naturally arise
the context of M theory. In this case the brane tension
@5,6#

s5qMP /A2, ~21!

and the effective thickness of the branes isd;M P
21 , so that

the thin wall approximation is justified.
At present we should haveuFu'(22rbare)

1/2, so that the
bare cosmological constant is almost neutralized. Then
the range of interest, the spectrum ofrL is nearly equidis-
tant, with a separation

DrL[e'~22rbare!
1/2q, ~22!

and the model is very similar to the Abbott’s ‘‘washboard
model. We expect

urbareu*~1 TeV!4, ~23!

and it follows from Eq.~15! that q&10290M P
2 and

s&~1023 eV!3, ~24!
7-3
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J. GARRIGA AND A. VILENKIN PHYSICAL REVIEW D 64 023517
where we have used the relation~21! betweens andq. Such
small values ofq and s may appear problematic, but in
recent paper@6# Feng, March-Russell, Sethi and Wilcze
~FMSW! have argued that they can naturally arise due
non-perturbative effects in M theory. Withs andH satisfy-
ing the bounds~24! and ~16!, the condition of negligible
brane gravity~12! is also satisfied, and thus Eqs.~9!,~10! can
be used.

With the aid of Eqs.~21!–~24! it can be easily verified
that the flat space bounce action~9! is bounded by@6#

B( f lat)&102. ~25!

This inequality is saturated forrbare;(1TeV)4 and

e1/4;s1/3;1023 eV. ~26!

If s ande significantly differ from these borderline value
then B&1 and brane nucleation is unsuppressed. A sim
bound is obtained for the wall nucleation action~10! using
Eqs.~24! and ~16!:

B(wall)&20. ~27!

Here, the inequality is saturated for

H;s1/3;1023 eV. ~28!

We note that Eqs.~21!,~22! apply only to models based on M
theory, and therefore the constraints~24!, ~25!, and~27! are
also limited to this class of models.

A different version of the four-form model has been d
veloped by Bousso and Polchinski~BP! @5#. They assume
that several four-formsFi are present, so that Eq.~19! is
replaced by

rL5rbare1
1

2 (
i

Fi
2 . ~29!

The corresponding ‘‘charges’’qi are not assumed to be ver
small, but BP have shown that with multiple four-forms t
spectrum of the allowed values ofrL can be sufficiently
dense to satisfy the condition~15! in the range of interest
However, the situation here is quite different from that in t
FMSW model. As pointed out by the authors themselv
and further emphasized by Banks, Dine and Motl@26#, the
vacua with nearby values ofrL have very different values o
Fi and are expected to have very different physical prop
ties. There is no reason to expect thea priori probabilities
for these vacua to be similar. Moreover, the low ene
physics in different vacua is likely to be different, so th
process of galaxy formation and the types of life that c
evolve will also differ. It appears therefore that the anthro
approach to solving the cosmological constant problems c
not be applied to this case@26#.
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IV. COSMOLOGY OF THE FOUR-FORM MODELS

A. A priori distribution

We shall now discuss the four-form models with bra
nucleation in the context of inflationary cosmology. The e
ergy density of the universe during inflation can be expres
as

rn~x!5U~x!1rLn , ~30!

whereU(x) is the potential of the inflaton fieldx, rLn is the
cosmological constant contribution~19!, and indexn labels
the vacuum energies corresponding to different values of
four-form field F. @The inflaton potential is generally
F-dependent and has different formsUn(x) in different
vacua@5,26#. Here we shall disregard this difference, assu
ing that the variation ofU(x) is negligible in the narrow
anthropic range ofrL that will be of interest to us.# The
minimum of U(x) is assumed to be atUmin50. The space-
time during inflation is locally approximately de Sitter,

ds25dt22e2Hntdx2, ~31!

with Hn(x) given by Eq.~8!.
A remarkable feature of inflation, which will play an im

portant role in our discussion here, is that generically infl
tion never ends completely in the entire universe. The e
lution of the inflaton field x is influenced by quantum
fluctuations, and as a result thermalization does not oc
simultaneously in different parts of the universe. In most
the models, one finds that at any time there are parts of
universe that are still inflating and that the total volume
inflating regions is growing with time@27,28#. This picture is
often referred to as stochastic, or eternal, inflation.

The full range of the fieldx can be divided into the ‘‘dif-
fusion,’’ slow-roll, and thermalization parts, as illustrated
Fig. 2. In the diffusion range,x&xq , the inflaton dynamics
is dominated by quantum fluctuations. It is this regime tha
responsible for the eternal nature of inflation. In the slow-r
regime,xq&x&x* , the inflaton rolls down its potential. As
it reaches the thermalization pointx* , it starts oscillating
about the minimum of the potential, and its energy gets th
malized. The hypersurfacesx5x* are therefore the bound
aries between inflating and thermalized regions of spaceti
These surfaces play the role of the big bang for the co
sponding thermalized regions. There is typically an infin
number of such surfaces, each of them having an infin
volume. ~For a discussion of the spacetime structure of
flationary universe see, e.g.,@29#.!

FIG. 2. Inflaton potential.
7-4
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SOLUTIONS TO THE COSMOLOGICAL CONSTANT PROBLEMS PHYSICAL REVIEW D64 023517
As the inflatonx fluctuates, rolls down its potential, an
eventually thermalizes its energy, spherical branes nucl
at the rates~7!,~13! changing the local values of the fou
form field F. All possible values ofrLn will be taken on each
infinite thermalization surfaceS* , and thea priori probabil-
ity P* n can be defined as the fraction of the volume ofS*
occupied by regions with vacuum energy densityrLn . @The
volume fraction on an infinite hypersurface can be defined
calculating this fraction in a sphere of geodesic radiusR and
taking the limitR→`.#

Brane nucleation can both decrease and increase the v
of rLn ; the corresponding nucleation rates are related by
~13!. For L-lowering events, the bubble radius is initial
smaller than the horizonHn

21 and then grows in the comov
ing coordinates, while forL-raising events the radius is in
tially larger than the horizon and then decreases in the
moving coordinates. In both cases, with an appropr
definition of the nucleation time, the radius of the bubb
nucleated att50 asymptotically approachesHn

21eHnt @30#.
This means that the region affected by each nucleation e
is a sphere of initial radiusHn

21 . For a comoving observer in
vacuum n, the probabilities per unit time to witness
L-raising or lowering event are

kn↑5Gn↑
4p

3
Hn

23 , ~32!

kn↓5Gn↓
4p

3
Hn

23 . ~33!

It follows from Eq.~13! that these probabilities are related b

k (n21)↑5kn↓~ f n21 / f n!, ~34!

where

f n5Hn
23expS 2

24p2M P
4

rn
D . ~35!

Consider an ensemble of comoving observers and letpn(t)
be the fraction of observers in thenth vacuum, wheret is the
proper time along the observers’ world lines. The time e
lution of pn is described by the equations

dpn /dt52~kn↑1kn↓!pn1k (n21)↑pn211k (n11)↓pn11 .
~36!

Let us assume for a moment that the inflaton potential
mains unchanged,

U~x!5const, ~37!

so thatkn↑ andkn↓ do not change with time. Then the solu
tions of Eq.~36! approach the stationary distribution

pn} f n
21}Hn

3expS 24p2M P
4

rn
D . ~38!
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We shall be mostly interested in the probability distributi
in the anthropic range~3!, whererLn can be approximated
by Eq. ~6! with e from Eq. ~22!, and Eq.~38! takes the form

pn}expS 2
8p2e

3H4 nD . ~39!

If inflation is well above the electroweak scale,H
@1023 eV, then the distribution~39! is nearly flat in the
anthropic range,

pn'const. ~40!

The assumption~37! may or may not be a good approx
mation, depending on the shape of the potentialU(x). A
simple example of a model where this approximation is
equate is a ‘‘new inflation’’ type model with a very flat po
tential in the diffusion range near the maximum ofU(x) and
a relatively steep decline to the minimum in the slow r
range. The distribution~38! is established during the ver
long diffusion period, and then it does not change much d
ing the slow roll period if the duration of the slow roll i
shorter than the characteristic bubble nucleation time. H
we shall assume that the approximation~37! is justified.

Can the distribution~38! be identified with thea priori
probability distributionP* n? The answer is ‘‘Yes, but only
in a restricted class of models.’’ An ensemble of comovi
observers gives a comoving-volume distribution forrLn ,
which does not account for the fact that regions with diffe
ent values ofrLn expand at different rates. The condition fo
this effect to be negligible is that brane nucleations sho
reshuffle the values ofrLn between different regions on
time scaletB which is much shorter than the timetH it takes
for the differential expansion rate to significantly modify th
distribution,

tB!tH . ~41!

As we noted in Sec. II, the probabilities of upward a
downward jumps inrL should be nearly equal, except pe
haps in the borderline case~17!. This means that the evolu
tion of rL can be pictured as a random walk with steps tak
on a timescalet;k21;H3G21. The anthropic range~3!
comprisesN;102rM0 /e steps, and thus

tB;N2H3G21;104S rM0

e D 2 H3

s2R0
2 eB, ~42!

where we have used Eqs.~7! and~11!. @In this discussion we
have dropped the subscripts↑ and↓, since the upward and
downward nucleation rates are nearly equal, and the s
script n sinceHn is nearly constant in the anthropic range#

The variation of the expansion rate in the anthropic ran
of rL is

dH;
Ne

M P
2H

, ~43!

and the timetH can be estimated as
7-5
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J. GARRIGA AND A. VILENKIN PHYSICAL REVIEW D 64 023517
tH;1/dH;1022M P
2H/rM0 . ~44!

The conditiontB!tH can now be expressed as

eB!1026
e2s2M P

2R0
2

H2rM0
3 . ~45!

Parameter values satisfying this condition can be rea
found.

What happens in the opposite limit, whentB@tH? In this
case the differential expansion is important and the pr
abilities for faster expanding regions with higher values
rL are strongly enhanced. The predicted values ofrL should
therefore be significantly higher than those obtained wit
flat a priori distribution. Martelet al. @14# have found that in
the latter case the probability distribution is peaked atrL

50, the width of the peak being somewhat broader than
observationally suggested value. Models withtB@tH will
have the peak displaced towards higher values ofrL and are
therefore unlikely to give a good agreement with obser
tions. A quantitative analysis of probability distributions
such models can be given by a relatively straightforw
generalization of the formalism developed in Ref.@30#.

We note finally that in models with borderline values
parameters~17! the a priori distribution ~39! can signifi-
cantly deviate from flatness, with smaller values ofrL being
favored. This would displace the peak of the resulting dis
bution to negative values ofrL and if anything would make
the observational situation even worse.

B. Observational constraints

Models of the type we are discussing here suggest tha
live in a bubble surrounded by an expanding brane. The
ues ofrL inside and outside the brane are different. Let
first assume that the visible universe is contained withi
single bubble. This means that the brane surrounding
bubble nucleated before the presently observable univ
crossed the horizon during inflation. For this situation to
typical, the brane nucleation rates should be rather low, b
during inflation and at present. This requires that the co
sponding bounce actions should be large,B@1. In M-theory
motivated models this is possible only for the borderline v
ues of the parameters,

H;e1/4;s1/3;1023 eV. ~46!

However, as we discussed at the end of Sec. IV A, th
values seem to be disfavored by observations.

The brane nucleation rate at present is given by Eq.~7!
with B andA from Eqs.~9!,~11!. In order to have no brane
nucleations in the observable universe in a Hubble time,
have to require that

Gt0
4&1, ~47!

wheret0 is the present cosmic time. For the parameter val
~46!, A;(1023 eV)4 and Eq. ~47! gives exp(2B(flat))
&102116, or
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B( f lat)*270. ~48!

This is only marginally consistent with the bound~25!.
The brane nucleation rate during inflation is determin

by the smaller of the two bounce actions~9!, ~10!. Equation
~46! tells us that in models based on M-theory brane nuc
ation can be suppressed only if the expansion rate du
inflation is H;1023 eV. Let N;30 be the number of
e-foldings from the time when the comoving region corr
sponding to the presently observable universe crossed
horizon to the end of inflation. Then the size of this region
the end of inflation isH21eN. In order to have no brane
nucleations in this region during this whole period, we ha
to require

GH24e3N&1. ~49!

For the parameter values~46! this givesB*90, again mar-
ginally consistent with Eqs.~25!,~27!.

We thus see that M-theory based four-form models co
in principle provide a solution to the cosmological consta
problems, but only if inflation is at a TeV scale ands ande
are in the tight corner of the parameter space~46!. With such
values of the parameters, the condition~45! can be~margin-
ally! satisfied. However, from Eq.~14! we then find a sig-
nificant bias towardsL-lowering nucleation events, which
would shift thea priori distribution ~39! towards lowerL.
This would result in a prediction near the lower anthrop
bound rL;2rM0. The bias towardsL-lowering events
might be compensated to some extent by the differential
pansion rate, which adds relative volume to regions w
high L. However, both effects are exponential, and unle
there is a conspiracy in the parameters of the model,
differential expansion is likely to be either insignificant
dominant. In the latter case, thea priori distribution would
be biased towards largeL, and it would be likely to predict
a cosmological constant much larger than observed. In s
mary, it seems difficult to obtain a flata priori distribution
even in the range~46!. Of course, the possibility cannot b
excluded with our order of magnitude estimates, and th
may still be a small viable region of parameter space in t
borderline range. We note also that for models unrelated
M theory the allowed parameter space is much larger.

Suppose now that the visible universe contains more t
one bubble. This would generally result in microwave bac
ground anisotropies of amplitudedT/T*e/rM0, so to avoid
conflict with observations we have to require

e&1025rM0 . ~50!

This takes us far from the borderline values~46!, and thus
the multiple bubble scenario cannot be realized in M-the
based models. For non-M-theory models, a suitable se
parameters can be easily found by choosings and H suffi-
ciently large, while keepinge under the bound~50!.

The multiple bubble scenario is feasible only if bran
have negligible interaction with ordinary matter. Otherwi
we would see fireworks along the bubble boundaries, wh
the branes hit the stars and where they hit one another. H
ever, the gravitational impact of the branes cannot
7-6
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avoided. An observer outside an expanding spherical bu
does not experience any gravitational force until he is hit
the brane. While the brane passes through the observer
part of his body inside the brane will experience an accele
tion a5GM/R2 relative to the part of the body still outsid
the brane. Here,M5(4p/3)eR3 andR is the bubble radius
at the moment of impact. WithR;t0 and e satisfying Eq.
~50!, we have a;Get0;(e/rM0)t0

21&10212cm/s2. The
relative speed developed during the passage timeDt
;1028 s isDv&10220cm/s, and the corresponding displac
ment is much smaller than the inter-atomic distance. Fo
brane passing through a sun-like star,Dt;10 s and the dis-
placement is still smaller than the atomic scale. Thus,
brane is to sweep through the solar system, its only ef
would be to set up imperceptible vibrations in the object
leaves behind.

What happens ifB,1, so that brane nucleation is com
pletely unsuppressed? The main danger here is that
vacuum energy will decay so fast that it will drop signi
cantly in less than a Hubble time. This can be countered
choosinge so small that the change inrL is negligible even
after nucleation of a large number of bubbles. This ca
however, is almost indistinguishable from that of a sca
field with a very flat potential, which will be discussed
Sec. VI.

C. No empty universe problem

Here we shall comment on the so called empty unive
problem which was encountered in all earlier work on d
creteL models@31,19,25,5,6,9,26#. The scenario these au
thors had in mind is that the universe starts with a la
cosmological constant and relaxes, within the available c
mic time, to a metastable vacuum with an observationa
acceptable value ofL. The problem is that, in order to mak
the present vacuum sufficiently stable, the brane nuclea
has to be strongly suppressed. One then finds that the tim
takes the universe to evolve to the low-energy vacuum is
large that, by the time when the process is complete,
matter that the universe initially had gets diluted to an
tremely low density. So one ends up with an empty unive
dominated by the cosmological constant.

A number of solutions to this problem have been p
posed. FMSW suggested@6# that the nucleation rate of mul
tiple coincident branes may be enhanced due to the incre
density of states. They argued that this would lead to a ra
descent of the vacuum energy towards lower values. To
sure the long lifetime of the present vacuum, they argued
this rate enhancement may not apply to the vacuum with
lowest positive value ofrL . Bousso and Polchinski@5#, who
considered brane nucleation with large jumps inrL , sug-
gested that the penultimate vacuum could have a high en
density. The inflaton field would then be excited to hi
values of its potential by quantum fluctuations. When
ultimate brane nucleates, the inflaton rolls down the poten
thermalizing its energy and providing a high density of m
ter. Alternatively, they suggested that the nucleation of
ultimate bubble, which in their model is accompanied by
large change in the four-form fieldF, can be accompanied b
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a large modification of the inflaton potential. As a result t
inflaton will be displaced from the minimum of the potentia
even if it was at the minimum prior to the bubble nucleatio

In our view, the empty universe problem is not a re
problem, and the attempts to solve it seem therefore unn
essary. The problem disappears when the eternal natur
inflation is taken into account. As the inflaton fluctuates ba
and forth in the quantum diffusion regime, branes are c
stantly being nucleated and all possible values ofrL are
reached. The slow rate of brane nucleation is not a probl
since an unlimited amount of time is available. Thermaliz
tion of the inflaton energy occurs at different times in diffe
ent parts of the universe, and each region inherits the lo
value ofrL . Each possible value is represented in the th
malized regions of the universe. We are interested only
those regions whererL is in the anthropic range~3!, because
that is where all the galaxies are.

V. MULTIPLE BRANE NUCLEATION

Up till now we assumed that brane nucleations change
four-form fieldF by a single unit, Eq.~20!. However, nucle-
ation of multiple coincident branes is also possible. Fok
coincident branes there is aU(k) super Yang-Mills~SYM!
living on the world volume. In FMSW@6# it was argued that
the nucleation of coincident branes would be enhanced b
large degeneracy factor

D5eS,

whereS is the ‘‘entropy’’ of the SYM fields. For 2-branes
arising from the wrapping of a 4D-brane on a degenerat
2-cycle, FMSW estimated this entropy as

S;kbR2T2. ~51!

Herekb counts the effective number of degrees of freed
which live on the brane. There are theoretical uncertaintie
the exponentb, but FMSW suggest that it should be betwe
2 and 3/2.R is the radius of the Coleman–de Luccia insta
ton, which coincides with the size of the ‘‘bubble’’ at th
time of nucleation, andT is some effective temperature
FMSW considered two different candidates for the effect
temperature. One of them was the effective ambient de S
temperature@32# T0 before brane nucleation, and the oth
was the geometric mean ofT0 and the effective temperatur
TI of the new de Sitter space inside the nucleated branT
;(TIT0)1/2.

It is easy to understand, however, that the relevant ef
tive temperature corresponding to the Coleman–de Luc
~CdL! instanton is in fact none of the above, but simply t
effective de Sitter temperature of the~211!-dimensional
world volume of the brane

T5
1

2pR
. ~52!

This is the temperature experienced by the degrees of f
dom living in the wall~and it is in fact higher thanT0 and
TI). The prefactorD is a determinant arising from Gaussia
7-7
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J. GARRIGA AND A. VILENKIN PHYSICAL REVIEW D 64 023517
integration of perturbations around the instanton solution,
cluding all light degrees of freedom. Such determina
where discussed in some detail in@23#. A scalar field of mass
m living on the ~211!-dimensional world volume gives
contribution

Ds5ez8(0)/2 ~53!

wherez(z) is the Zeta function of the scalar fluctuation o
erator on the 3-sphere. Its derivative at the origin is given
@23#

z8~0!52zR8 ~22!2y2ln~sinpy!1
2

p2E
0

py

xln~sinx!dx,

~54!

wherey2512m2R2 andzR is the usual Riemann Zeta func
tion ~this expression is valid for light fields, withmR,1).

For instance, the contribution of a conformally coupl
scalar field can be obtained by takingm25(3/4)R22, which
gives

z8~0!52zR8 ~22!2
1

4
ln21

7

8p2 zR~3!'20.1276.

Hence, the effective degeneracy factor contributed by a c
formal scalar field is given by

Dcon f.'e2.0638'0.91,1. ~55!

The first thing to note is that this factor is not an enhan
ment, but a suppression. Hence, the determinant cannot
ply be thought of as the exponential of an entropy.

In fact, the CdL instanton is not a thermal instanton, bu
zero temperature instanton. Thermal instantons for br
nucleation are static and have the topologyS23S1 ~rather
thanS3), where theS2 is the 2D-brane at fixed time and th
S1 is the periodic Euclidean time. Thermal instantons do
fact exist also in de Sitter space, but they have not rece
too much attention because their Euclidean action is alw
larger than that of the maximally symmetric CdL. For the
mal instantons~in flat or in de Sitter space! the determinanta
prefactor is given byD5e2DF/T, whereDF5DE2TS is the
free energy contribution of light degrees of freedom on
brane. Such prefactors have been considered in@33#. The
free energy consists of the vacuum energyDE ~or Casimir
energy on the two-sphere! minus the product of the tempera
ture times the entropy. While the entropy is always positi
the sign of the Casimir contribution is notoriously depend
on the type of field. In fact, for thermal instantons in de Sit
the temperature is always smaller or equal to the invers
the size of the bubble, and hence the sign of the free en
contribution can easily be dominated by the Casimir con
bution, which can have either sign. Although as mention
above the CdL instanton is not thermal, this considerat
may help clarify why the prefactorD need not represent a
enhancement. Depending on the field content it may re
sent a suppression.

Another thing to note about Eq.~55! is that it is indepen-
dent ofR. Roughly speaking, this is consistent with the fa
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that the effective temperature isT}R21. In general, how-
ever, the degeneracy factor will depend onR and on the mass
of the particle. For light minimally coupled scalars, Eqs.~53!
and ~54! give

Ds'
ezR8(22)

p1/2mR
~mR!1!.

There can be a strong enhancement in the nucleation ra
there are very light massless scalar fields. In the limitm
→0 the factor goes to infinity. This is because a massl
scalar has a normalizable zero mode on the sphere, co
sponding to the symmetryf→f1const. In this case, the
zero mode must be treated as a collective coordinate.
nucleation rate is proportional to the rangedf of the fieldf,
because the bubbles can be nucleated with any average
of the scalar field with equal probability@23#

dDs~m250!5 lim
m2→0

@mDs~m!#~pR3!1/2df

5ezR8(22)R1/2df.

As we shall discuss in some examples below, some sca
are likely to pick up masses of order of the intrinsic curv
ture of the 211 sphere, and for theseDs is also independen
of the radius.

Let us briefly consider the field content on the brane. F
k coincident 4D-branes in ten dimensions, the effect
theory isU(k) super Yang-Mills~SYM! theory. This con-
sists of aU(k) gauge field plus 5(k221) scalar degrees o
freedom in the adjoint representation ofSU(k) plus 5 scalar
singlets plus the corresponding fermionic degrees of fr
dom.

If the branes are flat~as in the case when there is n
external four-form field!, then the theory is supersymmetr
and all scalar degrees of freedom are massless. For the
of a single brane, the five scalars represent the golds
modes of the broken translational symmetry. That is, th
correspond to transverse displacements of the brane. Fo
case of two branes, there are 10 such displacements. Fiv
them correspond to simultaneous motion of both bran
These are the singlets underSU(2). Therest are in the ad-
joint representation, and if they acquire an expectation va
they give mass to two of the four gauge bosons. For insta
when the two branes move apart, one of the adjoint sca
acquires an expectation value and two of the gauge bos
get a mass, breaking the symmetryU(2)→U(1)3U(1).

The case of interest to us is not a flat brane, but a 4
brane wrapped on a degenerating two cycle. The world v
ume of the resulting 2D-brane in 4 Euclidean dimensions
not flat either, but forms a 3-sphere of radiusR. In this situ-
ation, we do not expect the theory to be supersymme
This is just as well, since in order for the instanton to ma
any sense, some of the adjoint scalars must pick up mass
one loop. Otherwise the instanton would have too many z
modes and too many negative modes. To simplify, let
consider the 3-sphere in 4 non-compact dimensions. For
case of a single brane, the transverse displacements c
7-8
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SOLUTIONS TO THE COSMOLOGICAL CONSTANT PROBLEMS PHYSICAL REVIEW D64 023517
spond to a scalar field of massm2523R22 @34#. This scalar
field has a single negative mode, which is the constanl
50 mode. A negative mode is precisely what is needed
an instanton to contribute to the imaginary part of t
vacuum energy, and hence to contribute to false vacuum
cay @21#. Also, there are four normalizable zero mode
which are the spherical harmonics withl 51. These corre-
spond to the four space-time translational modes of the
stanton, which have to be treated as collective coordina
This Goldstone field gives a determinantal prefactor of
form @23#

D5
s2R2

4
ezR8 (22)V,

whereV5VT is the spacetime volume. The prefactorA in
the nucleation rate~11! is obtained after dividing byV.

If there are 2 coincident branes, then in principle the
would be two such fieldsf1 and f2 corresponding to the
independent transverse displacements of the brane. How
only the combinationf15(f11f2) will correspond to a
singlet under SU(2). The orthogonal combinationf2

5(f12f2) will be in the adjoint. As mentioned above,
the instanton with two coincident branes is to make a
sense, this combination must acquire a positive mass at
loop so that there is a single negative mode, not two,
four normalizable zero modes in total. In other words,
order for the instanton to make sense, the branes must a
each other. If they repelled each other or if they did n
‘‘interact,’’ then the two brane configuration would in fact b
an accidental superposition of two independent bubble
the ‘‘dilute gas’’ of instantons. The mass off2 can be esti-
mated as follows. The mass of the gauge fieldAm is given by
mA(f2);M P

2 f (d), whereM P is the Planck mass,d is the
distance between branes andf (d)'d for d@M P

21 . This is
because this vector corresponds to fundamental str
stretching from one brane to the other. For smaller distan
d&M P

21 , we may expect a milder behavior for the ma
which we may heuristically parametrize as a powerf (d)
'd(M Pd)n, with n.0. The canonical field is related to th
distance throughf2;ds1/2. Hence

mA
2;M P

4 f 2~s21/2f2!.

On a flat brane, the effective potential induced by a ga
field of massmA is proportional tomA

3 . However, it can be
shown that on a sphere there is also a term of ordermA

2R21

which will in fact dominate at smallmA . When these terms
are added to the tree level potential23R22f2

2 , the scalar
acquires a very tiny expectation value^f2&
;(s/RMP

4 )1/2ns1/2M P
21 . In the broken phase,f2 has a

positive mass squared of ordermf2

2 ;nR22. The gauge

bosons will in turn acquire imperceptibly tiny massesmA
2

!R22.
To summarize, some of the scalars may get very la

masses from the wrapping on a degenerating cycle. Th
will decouple, and presumably will not contribute to the d
generacy factor. Others, corresponding to the relative p
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tion of the 2-branes in 311 dimensions will get masses o
order R21, and hence will contribute degeneracy factors
order one, just like the conformally coupled field discuss
above. For the massless or nearly massless gauge field
contribution to the degeneracy factor will be of order o
~the vectors have no zero modes on the sphere, so unlike
case of a scalar, a tiny mass will not cause a large deg
eracy factor!. Similar considerations could be applied to fe
mions. Thus we expect the total prefactor to be of order

Dtotal;Vs2R2eakb
~56!

wherea is a numerical factor andkb is, as in Eq.~51!, an
estimate of the effective number of degrees of freedom.
a flat brane at weak coupling,b52, but as argued by FMSW
it could be lower for the wrapped brane. Unfortunately, wit
out going into a very detailed analysis~which is outside the
scope of this paper! we are unable to determine the sign
the constanta. However, as argued above, this value see
to be rather insensitive to the value ofR or to the value of the
ambient de Sitter temperature.

For a,0 the nucleation of multiple branes is suppress
and we are back to the situation described in Sec. IV B.
a.0 a disaster may occur because transitions into d
anti–de Sitter space through multiple brane nucleation se
to be unsuppressed due to a large degeneracy factor. FM
suggested that the disaster could be averted by an anth
argument. If the stepe in the vacuum energy is of the orde
of 3 in units ofrM0, allowing the values. . . ,-2,1,4, . . . then
the stringent anthropic bound for a negative cosmolog
constantrL*2rM0 would tell us that the vacuum energy
in fact the lowest allowed value in the list, that isrL;rM0
~note that this argument requires a certain adjustment of
step e in order to explain the observed value!. However,
there is another problem which is how to explain the stabi
of this vacuum once it has been reached. In the FMSW s
nario, the stability was attributed to the fact that in t
vacuum withrL;rM0 the effective temperature of the bran
would be so low that the degeneracy factor is switched
However, as we have seen, the degeneracy factor is q
independent on the ambient de Sitter temperatures and h
it does not seem to switch off. The same mechanism
would enhance coincident brane nucleation from a high
ergy vacuum, would cause the disastrous decay of ‘‘ou
vacuum.

Finally, we note that even if a mechanism could be d
vised to switch off the degeneracy factor, so that the pres
vacuum is stable, the time coincidencetG;tL would be left
unexplained by this approach~just as in the non-anthropic
models discussed in Sec. VIII!. Also, the unsuppresse
nucleation of coincident branes seems to preclude ete
inflation, and even if one may intuitively argue that the low
est anthropic value is the most probable, the actual proba
ity distribution for positiverL seems hard to estimate.

VI. SCALAR FIELD WITH A VERY FLAT POTENTIAL

In this class of models, what we perceive as a cosmolo
cal constant is in fact a potentialV(f) of a scalar fieldf(x).
7-9
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J. GARRIGA AND A. VILENKIN PHYSICAL REVIEW D 64 023517
The potential does not have a succession of minima a
Abbott’s washboard model, but its slope is assumed to b
small that the evolution off is slow on the cosmologica
time scale. This is achieved if the slow roll conditions

M P
2V9!V&rM0 , ~57!

M PV8!V&rM0 , ~58!

are satisfied up to the present time~here it is assumed tha
any ‘‘true’’ cosmological constant is also included in th
potentialV.! These conditions ensure that the field is ov
damped by the Hubble expansion, and that the kinetic ene
is negligible compared with the potential energy~so that the
equation of state is basically that of a cosmological cons
term.! The field f is also assumed to have negligible co
plings to all fields other than gravity.

Let us now suppose, as in the previous sections, that t
was a period of inflation driven by a different scalar fieldx.
During inflation, massless scalar fields are randomized
quantum fluctuations, which cause their root mean squa
value to increase with time asDf;H(Ht)1/2, whereH is the
inflationary expansion rate. If we consider a field of massm,
this effect competes with the classical drift down to the b
tom of the potential, and after some time of ordert
;Hm22 a stationary distribution with root mean squar
Df;H2m21 is established. This can be interpreted in ter
of the Gibbons-Hawking temperatureT;H of de Sitter
space as the conditionV(f);m2f2;T4. In this example,
all field valuesufu!H2/m would be almost equally probabl
after the end of inflation. This discussion, however, assum
that inflation proceeds at almost the same rate for all fi
values in the range considered. That is, the differential
pansion ratedH;V(f)(HM P

2 )21 is ignored.
The case of interest to us is slightly more general beca

the potential need not be quadratic, and also because w
not necessarily interested in field values nearf50. Rather,
we are interested in field values for which the energy den
is in the anthropically allowed range

2rM0&V~f!&100rM0 . ~59!

The differential expansion ratedH;V(f)(HM P
2 )21 will be

negligible if the timet;(Df)anth
2 H23 that it takes for the

field to fluctuate across the anthropic range off correspond-
ing to Eq. ~59! is smaller than (dH)21 for the same range
This requires

~Df!anth!
H2

10rM0
1/2

M P . ~60!

If this condition is not satisfied, then thea priori probability
for the field values with a higherV(f) would be exponen-
tially enhanced with respect to the field values at the low
anthropic end. This would result in a prediction for the e
fective cosmological constant which would be too high co
pared with observations. Therefore, in what follows, we sh
demand that our potential satisfies Eqs.~57!, ~58! and ~60!.
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A. Solving both cosmological constant problems

Consider a potential of the form@4#

V~f!5rbare1
1

2
m2f2, ~61!

whererbare represents the ‘‘true’’ cosmological constant.
rbare andm2 have opposite signs, then the effective vacuu
energy will be very small when

ufu'u2rbareu1/2umu21. ~62!

The anthropic range is given by (Df)anth
;100rM0um2rbareu21/2. Then, conditions~57!, ~58! and~60!
imply

103
rM0

1/2

H2

rM0

urbareu1/2M P

!umu!
rM0

urbareu1/2M P

. ~63!

From the cosmic microwave background temperature fl
tuations we know thatH&1025M P . This leaves a wide
range of possibilities for the value of the mass paramete

m;~1021672102120!
M P

3

urbareu1/2
, ~64!

spanning some 47 orders of magnitude. Provided thatm is in
this range, thea priori probability distributionP* (f) for f
will be flat. The probability distribution for the effective cos
mological constantrf5V(f) is given by

P* ~rf!5
1

V8
P* ~f!,

and it will also be very flat, sinceV8 is almost constant in the
anthropic range. As mentioned in Sec. II, a flata priori dis-
tribution for the effective cosmological constant in the a
thropic range entails an automatic explanation for the t
cosmological constant puzzles@16,17#.

B. A small mass from instantons?

The challenge in the scenario presented above is to
plain the small mass parameter~64!. In Ref.@4# we suggested
that this can be achieved through instanton effects. For
stance,f could be a pseudo Goldstone boson, the phase
scalar fieldF5heif/h which spontaneously breaks a glob
U(1) symmetry. Since global charge can be swallowed
wormholes, a small mass term for the fieldf will be gener-
ated through gravitational instantons@35,36#.

Another possibility is that the phase may have an ‘‘a
ion’’ coupling of the form

as

h
fF̃F, ~65!

whereF is the field strength of a ‘‘hidden’’ gauge sector wit
gauge coupling constantas . The coupling~65! will give a
small mass to the pseudoscalarf through instanton effects.
7-10
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SOLUTIONS TO THE COSMOLOGICAL CONSTANT PROBLEMS PHYSICAL REVIEW D64 023517
We should mention, however, that there may be cer
limitations in implementing this idea in the present conte
Consider an instanton-induced potential of the form

V~f!5rbare1L4cos~f/h!.

In order to solve the cosmological constant problem we n

L4*rbare .

Combining this with the slow roll conditions~57! and ~58!
we find

h@M P

rbare

rM0
.

Thus, the expectation valueh must be truly huge compare
with the Planck scale.

In usual axion models, the effective vertex~65! can be
obtained in the following way. The scalar fieldF has
Yukawa interactions of the formhFC̄C with an ‘‘exotic’’
fermion C ~here h is the Yukawa coupling constant!. The
fermion in turn interacts with the non-Abelian gauge field
and the coupling~65! is generated at one loop. The mass
the fermions in the broken phase is given bymC;hh. In our
case, this mass is extremely large~unlessh is extremely
small!, and so we can hardly trust the field theory model
generating Eq.~65!.

Perhaps more worrisome is the effect of wormholes.
small symmetry breaking scaleh&M P the scaleL4 in the
instanton potential is of orderM P

4e2S, whereS;M P /h is
the wormhole action@35,36#. The radius of the wormhole is
given byR;(M Ph)21/2. This radius approaches the Plan
scale ash approachesM P , and the process becomes unsu
pressed. The instanton calculation becomes unreliable
higher values ofh, but it is not clear what would preven
nonperturbative gravitational effects from completely d
stroying the global symmetry.

Therefore, as mentioned above, the generation of a s
mass through instantons may not have a straightforw
implementation in the present context. Clearly, this issue
serves further investigation~see e.g.@36#!.

C. A very flat potential from field renormalization

Consider a potential of the form@18#

V~f!5rbare1M4f ~lf!, ~66!

whereM is a reasonable mass parameter andf is a function
of order one with no large or small parameters. If the para
eterl in the argument off is chosen to be very small, the
V(f) will be very flat. In particular, the mass term of th
field f which has two powers ofl will be very small. Wein-
berg suggested@18# that perhaps the smallness ofl can be
attributed to a large running of the field renormalizationZm
from some fiducial short distance scalem to the large scales
in which the cosmological constant is relevant,m→0.
02351
in
.

d

,
f

r

r

-
or

-

all
rd
e-

-

More generally, as noted in Ref.@9#, the effective La-
grangian for a scalar fieldc at large distances will include
nonminimal kinetic terms:

L5F2~c!~]mc!22V~c!1•••. ~67!

HereF plays the role of a field renormalization, which in fa
may depend onc, and we have omitted terms with mor
derivatives ofc. If F is very large, then the field redefinitio

df5Fdc

will result in a very flat effective potential forf.
Take for instanceF5ec/M P and V5rbare1(m2/2)c2,

wherem is a not too large mass parameter~see below!. After
the change of variables we obtain

L5~]mf!22rbare2
1

2
m2M P

2 @ ln~f/M P!#21•••.

The effective potential is now very flat at largef. The slow
roll conditions~57! and ~58! are satisfied for

f*fmin5M P

m2

H0
2 ln

m

H0
.

The antropic rangem2c2;urbareu will satisfy this condition
provided thatm!urbareu1/2M P

21 . Finally, the condition~60!
is easily satisfied by choosing a sufficiently high Hubble r
during inflationH2@103r0M

1/2 (f/fmin).
Thus, starting from a Lagrangian~67! with fairly simple

functionsF andV we have been able to satisfy all necessa
conditions to solve both cosmological constant problems.
course, one may wonder whyF should have exponential be
havior whenV is only polynomial, and it would be good to
find a well motivated physical setup where this Lagrang
emerges in a natural way.

VII. A SLOWLY VARYING FOUR-FORM?

In theories with extra dimensions, the four form fie
strength is dynamical above the compactification ene
scale. Donoghue suggested@9# that in the early universe the
four-form might take a continuum of different values in di
ferent parts of the universe, and that it might get frozen
these values as the universe cooled down below the com
tification scale. However, it is easy to show that the effect
cosmological constant can vary from place to place only
the size of the internal space is also variable. As a result,
effect of the four form is more properly described as a co
tribution to the effective potential for the radius modulus
the extra space.

Let the higher dimensional manifold be the product o
four-dimensional spacetimeM and an internal spaceS,

ds25gmn~x!dxmdxn1s i j ~x,y!dyidyj , ~68!

where m,n50, . . . ,3 are thefour-dimensional indices and
i , j 51, . . . ,n are the internal space indices. The field stren
takes the form, F5 f (x,y)v41 . . . , where v45Ag
7-11
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(`mdxm) is the four-dimensional volume form (g5
2detgmn) and the ellipsis denote terms with at least o
internal index~these do not behave as a four-form upon
mensional reduction!. The equations of motion reduce to

dG50, ~69!

where G5* F5 f (x,y)vn1••• is the dual of the field
strength andvn5As(` idyi) is the volume form on the in-
ternal space (s5dets i j ). Consider two different pointsx1
andx2 on the 4D manifoldM, and a curveg12 joining them.
Applying Stokes theorem to the ‘‘cylinder’’g123S ~whereS
is the internal space!, and using the equations of motion~69!,
we immediately find that

E
S;x1

G2E
S;x2

G5E
S3g12

dG50, ~70!

for arbitraryx1 andx2. Assume that the internal metric fac
torizes as

s i j 5e2c(x)s̃ i j ~y!.

Then, Eq.~70! implies

f̄ ~x!5 f 0e2nc(x),

where f̄ (x) is the average off (x,y) over the internal space
and f 0 is a constant. Kaluza-Klein modes average to zero
the internal space and do not contribute tof̄ . However such
modes are massive in the reduced theory and do not be
as an effective cosmological constant. It follows that the c
tribution of the four form to the effective cosmological co
stant is

1

2
F2[

1

234!ES
FmnrsFmnrsAsdny5

1

2
F0

2e2nc(x),

~71!

whereF0
25 f 0

2*SAs̃dny5const.
In the dimensionally reduced theory,c(x) is a four di-

mensional scalar field, and Eq.~71! is just a contribution to
its effective potentialV(c). At the classical level, there ar
two other such contributions, due to a bare higher dim
sional cosmological constantLbare

(41n) and due to the curvatur
of the internal manifold. Following Refs.@37#, it is easy to
show that in terms of the Einstein frame metricḡmn

5encgmn , the effective action takes the form

S5
M P

2

2 E Aḡd4xF R̄2
n~21n!

2
ḡmn]mc]nc2V~c!G ,

with

V~c!5L0e2nc1
F0

2

2
e23nc2

K

2
e2(21n)c.

Here M P
2 5M

*
21nV0 and L05Lbare

(41n)V0, where M* is the

higher dimensional Planck mass,V05*SAs̃dny5const.,
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andK is defined byR̃i j 5(K/n)s̃ i j . In general, the potentia
may have a minimum but this need not be nearV50. For
n.1 one can adjust the parametersL0 and F0 so that the
minimum is at the right height to fit observations, but th
would be the usual fine-tuning~for n51 the minimum must
have negative effective cosmological constant, so this tun
is not possible!. We may also consider the possibility that th
field c is away from the minimum, but slowly rolling so tha
the effective potentialV(c) plays the role of an effective
cosmological constant, as described in Sec. VI. The prob
is that if the slow roll conditions are met, thenc would have
a negligible mass and would mediate long range interacti
of gravitational strength, which are ruled out by observ
tions.

VIII. NON-ANTHROPIC APPROACHES

Here we comment on some attempts to solve the cos
coincidence problem without resorting to the anthropic pr
ciple. In a recent paper@7# Arkani-Hamedet al.suggested an
explanation to the approximate coincidence of several c
mological timescales: the time of matter-radiation equa
teq , the time ofL-dominationtL , and the time of galaxy
formationtG . They assume that the Planck scaleM P and the
electroweak scaleMw are the only relevant scales and arg
that the temperature at matter-radiation equality and
vacuum energy should then be given by

Teq;Mw
2 /M P , ~72!

rL;~Mw
2 /M P!4. ~73!

It follows immediately from Eqs.~72!,~73! that teq;tL .
This coincidence should of course be understood in a v
rough sense, since the actual values ofteq and tL in our
universe differ by a few orders of magnitude. Now, assum
the density fluctuation amplitude

Q[dr/r;1025, ~74!

and using a more accurate value forteq /tL , the authors show
from Eq. ~73! that the epoch of galaxy formation is at

tG;tL . ~75!

In our view, a relation like Eq.~73! may account for the
smallness ofL and may even explain its observed valu
However, the cosmic coincidence~75! would remain unex-
plained. The time ofL-domination is determined by th
value of L, while the epoch of galaxy formation is dete
mined by the amplitude of density fluctuationsQ. Even if we
explain the value ofL, we still have to explain why the value
of Q is such thattG;tL . Moreover, the accuracy of a few
orders of magnitude is not sufficient to explain the cosm
time coincidence: observations indicate that the coincide
~75! is accurate within one order of magnitude.

Another non-anthropic approach to solving the cosmic
incidence problem involvesk-essence, a scalar field with
non-trivial kinetic term@8#. k-essence has a positive effectiv
pressure during the radiation era and starts acting as an
7-12
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fective cosmological constant with the onset of matter do
nation. With a suitable choice of parameters it dominates
universe attL;tG . However, one could also choose para
eters to obtaintL!tG or tL@tG . This model can explain
why L-domination occurs att.teq , but it cannot accoun
for the coincidence~75!.

IX. MODELS WITH VARIABLE Q

Several authors have recently expressed the view tha
anthropic principle can perhaps be applied to the cosmol
cal constant problem—but to nothing else@38,26#. For in-
stance, Weinberg has remarked@18# that we cannot explain
the masses and charges of the elementary particles by as
ing that they depend on the expectation values of sc
fields with very flat potentials. These light fields wou
couple to the elementary particles, and would have been
served in collisions and decays.

While this remark may be true, we can still apply th
anthropic principle to variables which determine the lar
scale properties of the Universe, and which generically
into the category of ‘‘initial conditions.’’ Examples of thes
are the amplitude of primordial fluctuationsQ @41,39,16#, the
density parameterV @40,39#, or even the baryon asymmetr
In the inflationary context, these parameters depend on
path that the inflaton field takes in going from the diffusi
regime to thermalization. The inflaton potential represen
in Fig. 2 is one-dimensional, and there is a single path fr
the top of the potential to the local minimum. Howeve
more generally, the inflaton has several components,
there may be a continuum of paths from the diffusion reg
to a given minimum. Even if the low energy particle physi
Lagrangian is the same in all thermalized regions, and e
if there are no exotic light degrees of freedom after therm
ization, these regions may start with different initial cond
tions which will be more or less favorable to galaxy form
tion.

Consider for instance@39# a two component scalar fiel
x5x11 ix25uxueiQ, with potentialV(x)5(g1x1

21g2x2
2)/2.

This potential produces inflation foruxu*M P . However, the
amplitude of density perturbationsQ depends on the direc
tion Q of approach to the minimum,Q;m(Q)N(uxu)M P

21 .
Here m2(Q)5g1cos2Q1g2sin2Q and N;uxu2M P

22;60 is
the number of e-foldings from the time the present Hub
scale first crossed the horizon until the end of inflation. T
minimum atx50 will be reached from different direction
in different thermalized regions, and therefore these regi
will have a different value ofQ as an initial condition. This
example illustrates thatQ can easily be made into a rando
variable. In general, itsa priori distributionP* (Q) ~i.e. its
volume distribution at the time of thermalization! will not
necessarily be flat in the anthropically allowed range. F
any given model, this distribution can be calculated using
numerical methods of Ref.@29#. To proceed, however, we
shall heuristically parametrize it as

dP* ~Q!;Q2adlnQ, ~76!

wherea is a constant~this may not necessarily be a goo
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estimate for the particular model presented above, but
shall use it anyway for the sake of argument!.

We may now take a point of view which is ‘‘complemen
tary’’ to the one used in the preceeding sections. Let us
sume that the cosmological constant is truly a constan
order Mw

8 M P
26 determined from the fundamental theory~as

assumed e.g. in@7#!, and thatQ is a random variable with
prior distribution~76!. If a.0, then low values ofQ will be
favoreda priori. However, ifQ is too low, galaxies will not
have time to form before the timetL when the cosmologica
constant starts dominating. With this, we would basica
explain why Q;1025 as well as the time coincidencetG
;tL . These arguments can be made more quantitative in
following way. The probability distribution for a galaxy to
form at timetG is given by

dP~ tG!}P* ~Q!
dn~ tG ,tL ,Q!

dtG
dlnQdtG . ~77!

Here,n(tG ,tL ,Q) is the fraction of matter that clusters up
the time tG in a universe where the density contrast at t
time of recombination isQ and where the cosmological con
stant is such that it will start dominating at the timetL . This
fraction can be easily estimated by using the Press-Schec
approximation. In Ref.@16# it was shown@see Eq.~27! of
that reference# that after integrating overQ the probability
distribution for tG is given by

dP~ tG!}
dFa

dx
dx ~78!

where

F~x!5
5

6 S 11x

x D 1/2E
0

x dw

w1/6~11w!3/2
,

and

x5sinh2~ tG /tL!.

~Following @16#, we are using the convention thattL is the
time at whichVL5VMsinh21, whereV i are the fractional
densities of cosmological constant and non-relativistic ma
respectively.! The distribution~78! is plotted in Fig. 3 for
different values ofa, and we see that for moderate values
a it presents a rather prominent peak attG;tL , as expected
from the general arguments above.

Finally, one may take the view that bothL and Q are
random variables. This possibility was considered in@16#,
where it was shown that a decreasinga priori distribution for
Q pushes the cosmological constant to small values, so
both tG andtL tend to be very large. In this case, a new tim
scale comes into play. This is the so-called cooling bound
tcb @41#. For timest.tcb gravitationally collapsing clouds o
galactic mass cannot fragment into stars because they ar
cold to reach the usual ‘‘cooling’’ line emission threshold
and they stay as pressure supported configurations for a
long time. Thus, usual galaxy formation is suppressed a
t;tcb'331010 yr. This time is determined from micro
7-13
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J. GARRIGA AND A. VILENKIN PHYSICAL REVIEW D 64 023517
physical parameters such as the fine structure constant
proton mass and the fraction of baryonic matter. Since
time of galaxy formation cannot be arbitrarily large, in th
situation where bothQ andL are random variables we ex
pect tG;tL;tcb ~see@16# for details!. There are many un
certainties associated with the calculation oftcb . Perhaps
after some of these uncertainties are removed, we may a
ally find thattcb@tG;tL . This hypothetical situation would
suggest that one of the time scalestG andtL is not a random
variable, or that if both of them are, then theira priori dis-
tribution must have a rather peculiar behavior. This in tu
would give us information on the theories of initial cond
tions giving rise to thesea priori distributions.

These examples seem to suggest that the applicabilit
anthropic reasoning, once it is accepted, may easily go
yond the issue of the cosmological constant problem.

X. CONCLUSIONS

The anthropic principle has a bad reputation. It is oft
regarded as a handwaving argument relying on poorly un
stood phenomena like intelligent life and having no pred
tive power. Although this criticism is not entirely un
grounded, there is a class of cosmological models where
use of anthropic principle is not only justified but may in fa
be inevitable, and where it can be used to make quantita
predictions. These are the models in which some cosmol
cal parameters, or physical ‘‘constants,’’ take different v
ues in different parts of the universe. In such models,
cannot predict the precise values of the parameters tha
are going to observe. One can only hope to calculate
corresponding probability distributions. The criteria for ju
tifying ~and compelling! the use of anthropic principle ar
that the model should provide~i! a mechanism for variation
of the parameters and~ii ! a way of calculating the probability
distributions. Once the probabilities are calculated, one
predict that the parameters are going to be observed with
certain range of values, say, at a 95% confidence level. T
seems to be as quantitative as one can possibly get in
class of models.

From a practical point of view, parameters that we c
hope to determine anthropically should satisfy the condit
that they do not affect life processes, and preferably sho

FIG. 3. Probability distribution fortG /tL , the time of galaxy
formation as compared to the time when the cosmological cons
starts dominating. HereL is taken to be a fundamental constant b
the density contrastQ is treated as a random variable witha priori
volume distribution}Q2a at the time of thermalization. The plot i
shown fora51.5, 3 and 5. The distributions present rather w
defined peaks attG;tL .
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also not affect the poorly understood astrophysical proce
such as star formation@40,16,26#. So for example the gravi-
tational constant may be hard to determine anthropic
with our present level of understanding, since it affects b
the evolution of life and star formation. However, gravi
does not change chemistry, which is already a big simp
cation. So it is not inconceivable that the value of Newton
constant may in the future receive an anthropic explanat

In this paper we discussed anthropic approaches to s
ing the two cosmological constant problems~CCPs!. The
first ~old! CCP is the discrepancy between the observ
small value ofrL and the large values suggested by parti
physics models. The second~time coincidence! CCP is the
puzzling coincidence between the epoch of galaxy format
tG and the epoch ofL-dominationtL . While it is conceiv-
able that the old CCP can be resolved by fundamental ph
ics @42,43,7,44#, we have argued that the time coinciden
problem calls for an anthropic explanation.

We first considered models with a discrete spectrum
rL . These include Abbott’s scalar field model with a ‘‘was
board’’ potential@19#, as well as models in whichrL can
change through brane nucleation accompanied by a cha
of the four-form fieldF @25,5,6,9#. Such models can solve
both CCPs, provided that~i! the separation between the di
crete values ofrL is e&rM0, whererM0 is the present mat-
ter density,~ii ! the probability distribution forrL at the end
of inflation is nearly flat,P* (rL)'const, and~iii ! the brane
nucleation rate is sufficiently low, so that the present vacu
energy does not drop significantly in less than a Hubble tim
We discussed the cosmology of this class of models,
calculation of the prior distributionP* (rL), and the obser-
vational constraints on the model parameters.

The required values of the ‘‘level separation’’e may ap-
pear uncomfortably small, but Feng, March-Russell, Se
and Wilczek~FMSW! @6# have argued that they can natural
arise due to non-perturbative effects in M theory.
M-theory-related models, the brane tensions is related toe
throughe;srbare

1/2 /M p and should also be very small. Ou
analysis shows that in such models the conditions~i!–~iii !
cannot be satisfied without fine-tuning of the parameters

It was conjectured by Weinberg@12# that the condition
~ii ! of a flat a priori distribution forL would automatically
be satisfied in any particle physics model where the cos
logical constant is a random variable. In Ref.@4# we showed
that this conjecture is not always satisfied in models wh
the role of the cosmological constant is played by a slow
varying field. Here, we have shown that the conjecture
generically not satisfied in four-form models either. In fa
this condition has to be enforced in order to fit observatio
This, in turn, places severe constraints on the model par
eters. Hence, in trying to solve the cosmological const
problems by anthropic means, the flata priori distribution
for L cannot be taken for granted and the problem of cal
lating P* has to be addressed.

Bousso and Polchinsky@5# have studied models with mul
tiple four-form fieldsFi and found that the spectrum of th
allowed values ofrL can be sufficiently dense even for larg
brane tensions. However, in this case the vacua with nea
values ofrL have very different values ofFi , and a flat
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SOLUTIONS TO THE COSMOLOGICAL CONSTANT PROBLEMS PHYSICAL REVIEW D64 023517
probability distribution required in~ii ! is rather unlikely.
Moreover, the low-energy physics in such vacua is likely
be different, and it appears that the anthropic approach
solving the CCPs cannot be applied in this case@26#.

For models unrelated to M-theory,s ande are generally
unrelated, and values consistent with the constraints~i!–~iii !
can easily be found. However, if one gives up the M-the
connection, then the FMSW argument cannot be used,
one has to seek an alternative explanation for the tiny va
of e. Alternatively, one might seek modifications of th
FMSW model that could relax the relation betweene ands.

All of the earlier discussions of the cosmology of discre
L models encountered the ‘‘empty universe problem
@31,19,25,5,6,9,26#. In order to make the present vacuu
sufficiently stable, the brane nucleation has to be stron
suppressed. One then finds that the time it takes the univ
to evolve from some initial high value ofrL to the present
low value is much greater than the present Hubble time. T
suggests that by the time the process is complete, any m
that the universe initially had may get diluted to an e
tremely low density, so that one would end up with an em
universe dominated by the cosmological constant.

We have argued that the empty universe problem dis
pears when the eternal nature of inflation is taken into
count. During inflation, brane nucleations leading to high
and lower values ofrL have nearly equal probabilities. As
result, the values ofrL are randomized, with different part
of the universe thermalizing with different values. The r
sulting probability distributionP* (rL) can be calculated us
ing the stochastic formalism we developed in Sec. IV. T
slow rate of brane nucleation is not a problem in eter
inflation, since an unlimited amount of time is available.

FMSW suggested an interesting possibility that nucleat
of multiple branes could be enhanced by a large degene
factor due to the light fields living on the branes. If true, th
could significantly modify the brane model cosmology.
Sec. V we studied multiple brane nucleation in some de
and found that the pre-exponential factor in the brane nu
ation rate can both enhance and suppress multiple b
nucleation, depending on the field content of the branes.
also concluded that models in which multiple brane nuc
ation dominates can be ruled out, because in such mo
there is nothing to prevent our present vacuum from tunn
ing down to deep anti–de Sitter space.

We also discussed models with a continuous spectrum
rL , in which the role of the cosmological constant is play
by the potentialV(f) of a scalar fieldf(x). The potential
has to be very flat, so that its value does not significan
evolve on the present Hubble time scale. The values of
field f are randomized by quantum fluctuations during infl
tion, and models can easily be constructed in which the
sulting probability distribution forV(f) is nearly flat in the
range of interest, thus solving both CCPs. The challenge
is to justify the very flat potentials required in this class
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models. Possibilities include a pseudo-Goldstone field wh
acquires a potential through instanton effects@4#, a large run-
ning of the field renormalization@18#, and a non-minimal
kinetic term with an exponentialf-dependence@9#. We have
pointed out some difficulties of the instanton approach.

We thus see that both discrete and continuousL models
could in principle solve both of the CCPs. However, none
the models that have been suggested so far appears pa
larly well motivated or natural.

An alternative approach is to assume that the old CCP
be solved within the fundamental theory. The cosmologi
constant is then truly a constant and is given by an exp
sion such asrL;Mw

4 M P
22 , as in@7#. At the same time, the

amplitude of density fluctuationsQ could be a random vari-
able, so that the epoch of galaxy formationtG is different in
different parts of the universe. We have shown in Sec. V
that, for a wide class of prior distributionsP* (Q), most of
the galaxies will be in regions wheretG;tL , thus explaining
the cosmic time coincidence. It would be interesting to e
tend this analysis and calculate the distributionP* (Q) for
some models with a variableQ. One would then have som
idea of how naturally the distributions of the required ty
can be obtained.

Notes added

After this paper was submitted for publication, a revis
version of Ref.@6# has appeared. There, it is pointed out th
the relation~21! between the tensions and the charge den
sity q of the brane does not hold for branes wrapping
degenerating cycles. Instead, the tension is suppressed b
exponential factor relative to the charge. We note two pot
tial problems with this picture. First, as it was argued in R
@45#, the brane charge and tension appear to be unprote
against renormalization below the supersymmetry break
scale. Such renormalization would make the brane chargq
unacceptably large. Second, if for some reason the br
parameters do not get renormalized, then, in order to sa
the anthropic constraint~22! on q, the brane tension has to b
exceedingly small. The instanton action~9! would then be
small and brane nucleation would be completely uns
pressed.

A new approach to explaining very flat scalar potenti
and branes with a very small four-form charge has been s
gested in Ref.@45#, where these features are attributed to
spontaneously broken discrete symmetry.
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