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Brane-world cosmology of modulus stabilization with a bulk scalar field

James M. Cline and Hassan Firouzjahi
Physics Department, McGill University, 3600 University Street, Montre´al, Québec, Canada H3A 2T8

~Received 24 May 2000; published 11 June 2001!

We point out that the potential of Goldberger and Wise for stabilizing the distance between two 3-branes,
separated from each other along an extra dimension with a warp factor, has a metastable minimum when the
branes are infinitely separated. The classical evolution of the radion~brane separation! will place it in this false
minimum for generic initial conditions. In particular, inflation could do this if the expansion rate is sufficiently
large. We present a simplified version of the Goldberger-Wise mechanism in which the radion potential can be
computed exactly, and we calculate the rate of thermal transitions to the true minimum, showing that model
parameters can be chosen to ensure that the universe reaches the desired final state. Finiteness of bulk scalar
field brane potentials can have an important impact on the nucleation rate, and it can also significantly increase
the predicted mass of the radion.
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I. INTRODUCTION

One of the most striking proposals in current element
particle theory is the existence of extra dimensions which
hidden from us, not necessarily by their smallness, but
our confinement to a four-dimensional slice~a 3-brane! of
the full spacetime@1#. Randall and Sundrum@2# have pro-
duced a verion of this scenario which is particularly attra
tive because of its apparent links to deep theoretical de
opments: the conformal field theory/5D anti–de Sit
correspondence and holography@3#. On a more practica
level, their idea provides an explanation for why the Plan
scale is so much greater than the weak scale, independ
of supersymmetry. The cosmological implications of th
model have also been the subject of vigorous study@4#.

The Randall-Sundrum proposal involves a ‘‘Plan
brane’’ located at a positiony50 in a single additional di-
mension, and a second ‘‘TeV brane’’ located aty51, in our
conventions. The extra dimension is permeated by a nega
bulk vacuum energy density, so that the space between
branes is a slice of anti–de Sitter space. Solving the
Einstein equations results in the line element

ds25e22s(y)~dt22dxW2!2b2dy2, ~1!

s~y!5kby, yP@0,1#. ~2!

The constantk is related to the 4D and 5D Planck masses,M
andM p , respectively, by

k5
M3

M p
2 ~3!

where M p
2258pGN and the 5D gravitational action i

S5 1
2 M3*d5xA2gR. The warp factore2s(y) determines the

physical masses of particles on the TeV brane: even if a b
mass parameterm0 in the TeV brane Lagrangian is of orde
M p , the physical mass gets rescaled by

mphys5e2s̄m0 , s̄[s~1!5kb, ~4!
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as can be easily derived starting from a scalar field ac
written covariantly in terms of the metric~1!, S

5 1
2 *d4xe24s̄@e2s̄(]f)22m0

2f2#, and rescalingf so that
the kinetic term becomes canonically normalized.

In order form0 to be of order 100 GeV, the combinatio
kb must be approximately 36, so thate2s̄;10216. Yet in the
original proposal, the value ofb, which is the size of the
extra dimension, was completely undetermined. It is a mo
lus with no potential, which is phenomenologically una
ceptable. For one thing, the particle associated with 4D fl
tuations ofb, the radion, would couple to matter on the Te
brane similarly to gravitons, but more strongly by a factor
es̄ @5#. This would lead to a fifth force which could easil
have been detected. Furthermore, a massless radion lea
problems with cosmology: our brane universe would have
have a negative energy density to expand at the expe
rate, assuming that energy densities on the branes are t
to give a static extra dimension@6#. It was shown in Refs.
@7,8# ~see also@9#! that this problem disappears when the s
of the extra dimension is stabilized.

Radion stabilization is therefore a crucial ingredient of t
Randall-Sundrum idea. Goldberger and Wise have prese
an elegant mechanism for accomplishing this@10#, using a
bulk scalar field. Self-interactions of the field on the bran
forces it to take nonvanishing vacuum expectation val
~VEV’s!, v0 andv1 respectively, which are generally differ
ent from each other. The field thus has a gradient in the e
dimension, and the competition between the gradient
potential energies gives a preferred value for the size of
extra dimension. In other words, a potential for the radion
generated, which has a nontrivial minimum. It is easy to
the correct brane separation using natural values of the
rameters in the model.

Roughly speaking, the radion potential has the form

V~f!>lf4F S f

f D e

2
v1

v0
G2

~5!

with a nontrivial minimum atf5 f (v1 /v0)1/e. However,
there is another minimum atf50, which represents an in
©2001 The American Physical Society05-1



u
o
o

o
e
ut
se
ta

he
e

n
ha
re
all

t

he
e
th
fo

d
b
th
m

-
lk

d

tr

o
.

eak
-

ing
i-

ler
-

ld
-

t
ng
-

om

-
-
e

us-
n

JAMES M. CLINE AND HASSAN FIROUZJAHI PHYSICAL REVIEW D64 023505
finitely large extra dimension. This could not describe o
universe, because thene2s̄ would be zero, corresponding t
vanishing particle masses on the TeV brane. In the m
exact expression for the potential, we will show thatf50 is
actually a false vacuum—it has higher energy than the n
trivial minimum. Nevertheless, it is quite likely that th
metastable state could be reached through classical evol
in the early universe. The question then naturally ari
whether tunneling or thermal transitions to the desired s
occurs. This is the subject of our study.

Such detailed questions about the viability of t
Goldberger-Wise mechanism are important because ther
few attractive alternatives at the moment. Reference@11# re-
cently studied Casimir energies of fields between the bra
as a possible origin of a stabilizing potential. They found t
stabilization in this way is indeed possible, but that the
sulting radion mass is too small to be phenomenologic
consistent if the size of the extra dimension is that taken
be that dictated by the hierarchy problem.

In Sec. II we derive the Goldberger-Wise potential for t
radion in a slightly simplified model which allows for th
exact solution of the potential. The classical evolution of
radion field is considered in Sec. III, where we show that
generic initial conditions, the universe reaches a state
which the radion is not stabilized, but instead the extra
mension has become infinitely large. This is a metasta
state however, and in Sec. IV the rate of transitions to
minimum energy state, with finite brane separation, is co
puted. Conclusions are given in Sec. V.

II. RADION POTENTIAL

Let c(y) be the bulk scalar field which will be respon
sible for stabilizing the radion. Its action consists of a bu
term plus interactions confined to the two branes, locate
coordinate positionsy50 andy51, respectively. Using the
variables of Eq. ~2! in place ofy, the 4D effective Lagrang-
ian for a staticc configuration can be written as

L52
k

2E2s̄

s̄
e24s@~]sc!21m̂2c2#ds2m0~c02v0!2

2e24s̄m1~c12v1!2, ~6!

wherem̂ is the dimensionless massm/k, c i are the values
of c at the respective branes, and the orbifold symme
c(s)5c(2s) is to be understood. In 5D, the fieldc, as
well as the VEV’sv i on the two branes, have dimensions
(mass)3/2, while the parametersmi have dimensions of mass
Denoting]sc5c8, the Euler-Lagrange equation forc is

k~c924c82m̂2c!52m0~c02v0!d~s!

12m1~c12v1!d~s2s̄ !. ~7!

The general solution has the form

c5e2s~Aens1Be2ns!,

n5A41m̂2[21e. ~8!
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To get the correct hierarchy between the Planck and w
scales, it is necessary to takem̂2 to be small, hence the no
tation e.

The brane terms induce boundary conditions specify
the discontinuity inc8 at the two branes. Imposing the orb
fold symmetryc(2s)5c(s), this implies that

c8~0!5m̂0~c02v0!,

c8~ s̄ !52m̂1~c12v1!, ~9!

where we definedm̂i5mi /k. Substituting the solution~8!
into Eq.~9! allows us to solve for the unknown coefficientsA
and B exactly. In this respect, the present model is simp
than that originally given in Ref.@10#. There the brane po
tentials were taken to be quartic functions, so thatA and B
could only be found in the approximation where the fie
valuesc i were very strongly pinned to their minimum en
ergy values,v i . In our model this would occur in the limi
mi→`. However, we can easily explore the effect of leavi
these parameters finite sinceA andB can be determined ex
actly. Let us denote

f̂5e2kb5e2s̄, ~10!

which will be convenient in the following, becausef̂ is pro-
portional to the canonically normalized radion field. ThenA
andB are given by

A5~2C1f̂n1C2f̂2!f̂n/D~f̂ !

B5~C3f̂2n2C4f̂2!f̂n/D~f̂ ! ~11!

where

C15m̂0v0~m̂12e!

C25m̂1v1~m̂01e!

C35m̂0v0~m̂1141e!

C45m̂1v1~m̂0242e!

D~f̂ !5
~C2C32C1C4f̂2n!

~m̂0m̂1v0v1!
. ~12!

It can be checked that in the limitm̂i→`, the field values on
the branes approachc i→v i . For finite m̂i , the competing
effect of minimizing the bulk energy causes departures fr
these values, however.

The solution forc can be substituted back into the La
grangian~6! to obtain the effective 4D potential for the ra
dion, V(f̂). However, rather than substituting directly, on
can take advantage of the fact thatc is a solution to the
Euler-Lagrange equation. Doing a partial integration and
ing the boundary terms in Eq.~7! gives a simpler expressio
5-2
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for V(f̂). In the general case where the brane potentials
denoted byVi(c), one can easily show that

L52(
i

e24s i@Vi~c i !2 1
2 c iVi8~c i !#. ~13!

In the present case, we obtain

V~f̂ !52L5m0v0~v02c0!1f̂4m1v1~v12c1!

5m0v0@v02~A1B!#1f̂4m1v1

3@v12f̂22~Af̂2n1f̂nB!#. ~14!

In the following, we will be interested in the situatio
whereV(f̂) has a nontrivial minimum for very small value
of f̂;10216, as needed to address the weak scale hiera
problem. It is therefore a good approximation to expa
V(f̂) near f̂50, keeping only the termsf̂n with n<2n.
This is accomplished by expanding the denominatorD(f̂) in
Eqs. ~11!, after which the potential can be written in th
simple form

V~f̂ !5Lf̂4@~11e42e1!f̂2e22h~11e4!f̂e1h2#
~15!

where we introduce the notation

e45
e

4
, e05

e

m̂0

, e15
e

m̂1

, ~16!

h5~11e0!
v1

v0
~17!

and

L54kv0
2 ~11e4!~11e0!22

S 11
4

m̂1

1e1D . ~18!

In the following it will be convenient for us to rewriteV(f̂)
in the form

V~f̂ !5L8f̂4~f̂e2c1!~f̂e2c2! ~19!

wherec6 are given by

c65hS ~11e4!6A~11e4!22~11e42e1!

~11e42e1!
D ~20!

andL85L(11e42e1).

III. PHENOMENOLOGY AND EARLY COSMOLOGY OF
THE MODEL

The warp factor which determines the hierarchy betwe
the weak and Planck scales can be found by minimizing
potential~19!. Expanding ine, it has a global minimum and
a local maximum at the respective valuesf̂1 and f̂2 :
02350
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f̂65S v1

v0
D 1/eS 11e0

11e42e1
D 1/e

~16Ae11e42 1
2 ee1!1/e

>S v1

v0
D 1/e

expF6A1

e S 1

m̂1

1
1

4 D 1
1

m̂0

1
1

m̂1

2
1

4 G .

~21!

The last approximation holds in the limit of smalle, e0 and
e1; it is not always an accurate approximation for the para
eter values of interest, so we will use the exact expressio
any computations which might be sensitive to the act
value. The positions of the zeros ofV, f̂5c6

1/e , are slightly

greater thanf̂6 , by the factor (11e4)1/e>e1/4, as can be
seen by comparing Eq.~21! with Eq. ~20!. The large hierar-
chy of f̂1;10216 is achieved by taking a moderately sma
ratio v1 /v0,1 and raising it to a large power,1 1/e. This
leads to the mass scale which functions like the cutoff on
TeV brane,

f̂1M p[MTeV ~22!

whereMTeV /(1 TeV) is a number of order unity, which w
will take to be one of the phenomenological free parame
of the model. The choice ofMTeV specifies precisely where
we want our cutoff scale to be. In Ref.@10# the exponential
corrections to (v1 /v0)1/e in Eq. ~21! were not considered
these change somewhat the values one might choose
v1 /v0 and e to get the correct hierarchy. The facto

e6A(1/m̂111/4)/e in particular can be significant.
References@7# and @5# showed that the canonically nor

malized radion field isf5 f f̂, wheref 5A6M3/k is another
scale of orderM p .2 The 4D effective action for the radion
and gravity is

S5
M3

2k E d4xA2g~12f̂3!R

1E d4xA2g@ 1
2 f 2]mf̂]mf̂2V~f̂ !#, ~23!

whereV(f̂) is the potential~19! andR is the Ricci scalar. To
get the correct strength of gravity, we must therefore hav

M3

k
5M p

25
1

8pGN
, f 5A6M p . ~24!

1An alternative possibility, takingv1 /v0.1 and e,0, corre-
sponding to a negative squared mass in the bulk Lagrangian~6!,
does not work. Although the negativem2 does not necessarily lea
to any instability, since the field is prevented from going to infin
by the potentials on the branes, the radion potential has no n
trivial minimum in this case.

2The choicef 5A24M3/k in Ref. @5# seems to correspond to a
unconventional normalization forM p .
5-3
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The radion mass isf 22 times the second derivative ofV
evaluated at its minimum. We find the value

mf
2 54

L

f 2 S 11
e

4
2

e

m̂1
D 21SA11

4

m̂1

12
Ae

m̂1
Dh2f̂1

2 e3/2,

~25!

which implies thatmf is of typically of ordere3/4 times the
TeV scale. The factor ofe3/4 leads to the prediction that th
radion will be lighter than the Kaluza-Klein excitations
the graviton, which would also be a signal of the new bra
physics @5#. However, we see that the corrections due
finite m̂1, which were not explicitly considered in@5#, can
possibly compensate this and make the radion heavie
m̂1;e.

Now let us turn to the evolution off̂ in the early uni-
verse. For this purpose it is important to understand that
depth of the potential at its global minimum, as well as t
height of the bump separating the minimum fromf̂50, is
set by the TeV scale. The values of the potential at th
extrema are approximately~to leading order ine4, but exact
in e1)

V~f̂6!>72h2Lf̂6
4 e4Ae11e4

11e42e1
~16Ae1!. ~26!

Since L;M p
4 , the depth at the minimum isV(f̂1);

2e3/2O(TeV)4—suppressed slightly by the factor ofe3/2.
The height of the bump atf̂2 can be considerably smalle
because of the exponential factors in Eq.~21!. Ignoring fac-
tors of order unity, for smalle,

UV~f̂2!

V~f̂1!
U;S f̂2

f̂1
D 4

[V4 ~27!

where

V[S 12Ae11e4

11Ae11e4
D 1/e

; expF2A1

e S 11
4

m̂1
D G . ~28!

For example, ife50.01 as suggested by@10#, V4 is less than
10217. If the brane potential parameterm1 is not large, so
that m̂1&1, the suppression will be much greater. Figure

FIG. 1. V(f) versusf for e50.2, showing the smallness of th
barrier ~right! relative to the minimum~left!. Notice the difference
in vertical scales.
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illustrates the flatness of the potential for the casee50.2,
where the barrier is not so suppressed. The new mass s
V TeV !1 TeV is due to the small curvature of the radio
potential at the top of the barrier, and its smallness will p
an important role in the following.

Thus the barrier separating the true minimum atf̂1 from
the false one atf̂50 is extremely shallow. Moreover a ge
neric initial condition for the radion is a value likef̂;1,
quite different from the one we want to end up with,f̂
;10216. Clearly, the shape of the potential is such that,
we started with a generic initial value forf̂, it would easily
roll past the global minimum and the barrier, hardly notici
their presence. The pointf̂50 toward which it rolls is the
limit of infinite brane separation, phenomenologically disa
trous since gravity no longer couples at all to the visib
brane in this limit.

One might wonder whether inflation could prevent th
unwanted outcome, since then there would be a damp
term in thef equation of motion, possibly causing it to ro
slowly:

f̈13Hḟ1Veff8 ~f!50. ~29!

Indeed, with sufficiently large Hubble rateH, the motion
could be damped so thatf would roll to its global minimum.
The condition for slow-roll is that

Veff9 !9H2. ~30!

However, inflation is a two-edged sword in this instanc
because the effective potentialVeff for the radion gets addi-
tional contributions from the curvature of the universe duri
inflation. From Eq.~23! one can see that

Veff~f̂ !5V~f̂ !1
M3

2k
Rf̂25V~f̂ !16

M3

k
H2f̂2

5V~f̂ !1H2f2 ~31!

using the relationR512H2 which applies for de Sitter spac
and Eq.~24!. The new term tends to destroy the nontrivi
minimum of the radion potential. One can estimate the re
tive shift in the position of the minimum as

df̂1

f̂1

52
dV8~f̂1!

f̂1V9~f̂1!
52

H2

mf
2 . ~32!

This should be less than unity to avoid the disappearanc
the minimum altogether.

Combining the requirement that the global minimum s
vives with the slow-roll condition~30!, evaluated near the
minimum of the potential, we find the following constrain
on the Hubble rate:

1
9 mf

2 !H2,mf
2 . ~33!

This is a narrow range, if it exists at all. In fact, one nev
expects such a large Hubble rate in the Randall-Sund
scenario since the TeV scale is the cutoff:H should never
5-4
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exceedT2/M p;10216 TeV if the classical equations are t
be valid. The problem of radion stabilization might also
exacerbated because contributions to the energy densi
the universe which cause inflation can give additional ter
of the typef̂2 to Veff which are not considered in the abov
argument. For example, a field in the bulk which does
have its end points fixed on the branes has a 5D ene
density which is peaked on the visible brane@12#, r5(y)
;r0e2kby, and gives a contribution toVeff of

dV;r0E
0

1

dybe24kbyr0e2kby5br0f̂2, ~34!

remembering thate2kb5f̂. Such a contribution could de
stroy the nontrivial minimum even if Eq.~33! is satisfied. In
any case, it does not appear to be natural to tune the Hu
rate during inflation to try to solve the stabilization proble

IV. PHASE TRANSITION TO THE TRUE VACUUM

Since the barrier of the radion potential is too small
prevent the radion from rolling into the false minimum, pe
haps we can take advantage of this smallness to get tunn
or thermal transitions back into the true vacuum. The sit
tion is quite similar to that of ‘‘old inflation’’@13#, except
that in the latter, the transition was never able to comp
because the universe expanded too rapidly compared to
rate of nucleation of bubbles of the true vacuum. In t
present case this problem can be avoided because we ar
trying to use the radion for inflation. Indeed, a small amo
of inflation may take place before the tunneling occurs, si
the radion potential is greater than zero atf50,3 but we will
not insist that this be sufficient to solve the cosmologi
problems inflation is intended to solve—otherwise we wo
be stuck with the problems of old inflation. Instead we w
assume that inflation is driven by some other field, and c
sider the transitions of the radion starting from the time
reheating. The criterion that the phase transition complete
that the rate of bubble nucleation per unit volume,G/V, ex-
ceeds the rate of expansion of the universe per Hubble
ume:

G

V
*H4. ~35!

The reason is that the bubbles expand at nearly the spee
light, so the relevant volume is determined by the dista
which light will have traveled by a given time, which is o
order 1/H.

3In Eqs.~19! and ~31! we have neglected an additive constant
the potential which is needed to makeV50 at the true minimum, so
that the cosmological constant is zero. This neglect is necessar
finding the bounce solution, since otherwise the energy of
bounce would diverge, but one must remember that the false m
mum is not at zero energy when computing the Hubble rate.
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A. Euclidean bounce

To compute the nucleation rateG/V, one must construc
the bounce solution which is a saddle point of the Euclide
ized action@14#, in other words, with the sign of the potentia
reversed. This is a critical bubble solution with the bounda
conditions

f~r !ur 505f0 , f8~r !ur 5050,

f~r !ur→`50, f8~r !ur→`50. ~36!

The value off0 which ensures the desired behavior asr
→` cannot be computed analytically because the motion
the field is damped by the termf8/r in the equation of
motion. We will consider bubble nucleation at finite tem
perature in the highT limit, where the bounce solutions ar
three dimensional. The equation of motion is

1

r 2
~r 2f8!851Veff8 ~f!, ~37!

where nowVeff includes thermal corrections, which are mu
larger than theH2f2 term considered in Eq.~31!:

Veff~f!>V~f!1
T2

24
mth

2 ~f!2
T

12p
mth

3 ~f!

1
cb

64p2 mth
4 ~f!2V0 , ~38!

mth
2 ~f!5V9~f!1 1

24 T2V(4)~0! ~39!

where cb>3.9 if the renormalization scale is taken to b
equal toT. The leading thermal correction is of orderT2f2,
whereasH2f2 is suppressed byT2/M p

2 relative to this. The
cubic term mth

3 becomes imaginary if V9(f)
1(T2/24)V(4)(0) becomes negative; we take the real p
only. The term 1

24 T2V(4)(0) represents the thermal mas
which appears in the cubic and quartic terms when ring d
grams are resummed@15#. We subtract a constant termV0
from Veff so thatVeff(0)50, as is needed to properly com
pute the action associated with the bounce solution.

The thermal corrections to the effective radion poten
cause the bounce solution to fall exponentially at larger:

f;
c

r
e2r /r 0, ~40!

where 1/r 0;hAL/ f 4T if L/ f 4!1 @the exact expression i
1/r 05AlU* T, in terms of quantities to be defined below,
Eqs. ~43! and ~55!#. Once the bounce solution is known,
must be substituted back into the action, which can be w
ten as

S5
4p

T E
0

`

drr 2@ 1
2 f821Veff~f!#. ~41!

The nucleation rate is given by

for
e
i-
5-5
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G

V
5

uv2u
2p S S

2p D 3/2

uDu21/2e2S ~42!

wherev2 is the imaginary frequency of the unstable mo
of fluctuations around the bounce solution, andD is the fluc-
tuation determinant factor, to be described below. A typi
profile for the bounce solution is shown in Fig. 2.

For the numerical determination of the bounce solut
and action, as well as understanding their parametric de
dences, it is convenient to rescale the radius and the fiel

r 5
r̃

AlT
, l5

L8

f 4
c2

2 , ~43!

f5ZTf̃, Z5
f c2

1/e

T
. ~44!

Then the action takes the form

S5
Z2

Al
S̃~e,m̂1 ,l,Z!, ~45!

S̃54pE
0

`

dr̃ r̃ 2H 1
2 ~f̃821f̃2f 2!1Z2f̃4f 0

2
1

12p

Al

Z2 F S c1

c2
112Z2f̃2f 2D 3/2

2S c1

c2
D 3/2G

1
3cb

8p2 l f 2f̃2S c1

c2
16Z2f̃2f 2D J ~46!

where

f 0~f̃ !5~f̃e21!S f̃e2
c1

c2
D

f n11~f̃ !5S 11
1

42n
f]f̃D f n~f̃ !. ~47!

In the following, it will be helpful to keep in mind thatZ can
be extremely small, of orderV in Eq. ~28! whene is small,
whereasAl tends to be closer to unity, depending on t
mass of the radion and the definition of the TeV scale~22!:

FIG. 2. The bounce solution, for the parameterse50.01, m̂1

50.1, mf5T5100 GeV andMTeV51 TeV. The rescalingf

→f̃ and r→ r̃ is given in Eqs.~43!,~44!.
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l

n
n-

by

Al5
e23/4

2A6

mf

MTeV

~12Ae11e4!

SA11
4

m̂1

12
Ae

m̂1
D 1/2. ~48!

In the rescaled variables, the valuef̃51 corresponds to
the first zero of the potential, which would be the starti
point of the bounce if energy was conserved in the mech
cal analog problem, i.e., if there was no viscous damp
term f8/r in the equation of motion. The actual startin
point turns out to have a value in the rangef̃0;1.5–3 be-
cause of this. The rescaled actionS̃ depends mainly on the
model parameterse andm̂1, for the parameter values whic
are of interest to us. All the sensitive exponential depende
on e, namely the factorc2

1/e , is removed fromS̃. Numeri-
cally we find that

S̃> 2
3 m̂1~em̂1!23/4, ~49!

except whenm̂1 becomes close toe. For m̂1 slightly smaller
than e, e1 starts to exceed 1, andc2 becomes negative
signaling the onset of an instability in the radion potent
toward coincidence of the two brane positions. Figure
shows the dependence of log(S̃/m̂1) versus log(em̂1).

We have computed the bounce solution and the co
sponding action for a range of parameterse and m̂1 which
can be consistent with the solution to the hierarchy probl
~i.e., thatf̂;10216 at the global minimum!. The size of the
bounce in position space, measured as the width at
maximum, is small neare5m̂1, and reaches a larger con
stant value asm̂1→`. Using the rescaled radial variabler̃
5rAlT, the dependence of the width one andm̂1 is shown
in Fig. 4.

The action of the bounce can be much greater than
much less than 1, depending on the parameters: fore;m̂1

!1, S!1, while for larger values ofe and m̂1 , S@1.
Where the crossover occurs (S;1) depends onmf , T and

FIG. 3. log10(S̃/m̂1) versus log10(em̂1), whereS̃ is the rescaled
bounce action, Eq.~46!. The other parameters aremf5T5100
GeV andMTeV51 TeV.
5-6
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MTeV . This behavior can be inferred from Fig. 3~showing
S̃) and the dependences of the coefficient in the relatioS
5(Z2/Al)S̃. Rather than presenting further results forS di-
rectly, however, we will turn to the more relevant quanti
the rate of bubble nucleation. For this we need to determ
the prefactor ofe2S in the rate.

B. Prefactor of the bubble nucleation rate

The bounce action is the most important quantity de
mining the rate of tunneling, since it appears in the expon
of the rate~42!. Since we do not have a model for the infl
tion and reheating of the universe which must occur prior
the bubble nucleation, hence an exact prediction for the
heating temperature which enters the rate, it would not
worthwhile to compute the prefactors in Eq.~42! very accu-
rately; however, we can estimate their size.

First, consider the frequencyv2 of the unstable mode
v2

2 is the negative eigenvalue of the Schro¨dinger-like equa-
tion for small fluctuationsdf around the bounce solution
which we will denote byfb(r ):

2S df91
2

r
df8D1

]2Veff

]f2 U
fb(r )

df5v2
2 df. ~50!

Rescaling the radius and background field exactly as in E
~43!,~44!, Eq. ~50! becomes

2S df91
2

r̃
df8D 1U~ r̃ !df5

v2
2

lT2df, ~51!

U~ r̃ !5
1

lT2

]2Veff

]f2
„f̃b~r !…

5 f 41X2
3Al

p S f 4Ac1

c2

1X1
12~Zf̃ f 3!2

Ac1

c2

1X
D

1
6cb

8p2 lS c1

c2

f 41X~ f 412 f 3
2/ f 2!D ~52!

FIG. 4. Half width w̃ of the bounce solution, in terms of th

rescaled radial distancer̃ 5rAlT, versus log10(m̂1), for the same
parameters as in Fig. 3.
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where primes now denoted/dr̃, X512Z2f̃2f 2, and thef i
are defined in Eq.~47!. Except when the radion mass is si
nificantly larger than 100 GeV,l is much smaller than 1, and
U is dominated by the first two terms in Eq.~51!. Of these,
the first (f 4) always dominates ifZ!1, while the second~X!
can be important nearr 50 if Z*1. The two different cases
are illustrated in Fig. 5. Since 1,f̃0

e,c1 /c2 , both f 4 and
X are negative atr 50, so that

U0[U~0!>2e3/2A11
4

m̂1

@21 ln f̃0

112Z2f̃0
2~ 1

2 1 ln f̃0!# ~53!

and thus the smallest eigenvalue of Eq.~50! is negative. This
is the unstable mode of the saddle point solution, with ima
nary frequency of order

v2
2 ;U0lT2. ~54!

Recall thatuv2u appears in the prefactor of the nucleatio
rateG/V.

As r̃→`, U( r̃ ) approaches a maximum value

U* [U~`!5
c1

c2
S 12

3

p
Al

c1

c2
1

3cb

4p2 l
c1

c2
D , ~55!

which determines the asymptotic behavior of the fluctuatio
at larger̃ : df;e2AU

*
r̃ . The fluctuations around the fals

vacuum state (f50) thus have a mass given by

m25Vf509 5U* lT2, ~56!

which will be relevant for the following.
Next we must estimate the functional determinant fact

D5
det8@2]t

22¹21V9~fb!#

det@2]t
22¹21V9~0!#

, ~57!

where t is imaginary time (tP@0,1/T#), ¹2 is the three-
dimensional Laplacian,fb is the bounce solution, and th
prime on det8 means that the three translational zero-mo

FIG. 5. The potential for small fluctuations around the boun

solution, U( r̃ )5X2V9„fb( r̃ )…, as a function ofr̃ , for the param-

eterse50.02, m̂155 ~left! ande50.1, m̂1525 ~right!.
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eigenvalues must be omitted from the determinant for fl
tuations around the bounce. These zero modes correspo
spatial translations of the bubble solution. Because of th
removal,D has dimensions of (energy)26, as is required to
get a rate per unit volume in Eq.~42!.

Reference@16# has given a thorough account of how
compute D by a method which was discussed for on
dimensional systems in@17#. In 3D one should classify the
eigenvalues of the fluctuation operators by the quan
numbersn and l, denoting Matsubara and angular mome
tum excitations, respectively. ThenD can be written as a
product,D5)n,lDn,l .

Reference@16# shows that the contribution toD from the
l th partial wave can be expressed, to leading order in a
turbative expansion in the potentialU(r ), as

Dn,l>~11hl
(1)!2l 11. ~58!

The quantityhl
(1) has the Green’s function solution

hl
(1)52E

0

`

drrI l 11/2~kr !Kl~kr !@V9„fb~r !…2m2#

52E
0

`

dr̃ r̃ I l 11/2S k r̃

AlT
D KlS k r̃

AlT
D @U~ r̃ !2U* #

~59!

using the modified Bessel functionsI andK, and the massm
of the field in the false vacuum, Eq.~56!. For general Mat-
subara frequencies,n52pnT, one definesk5Am21n2.

The subdeterminant for then50 ~zero-temperature! sec-
tor of the theory has the usual ultraviolet divergences
quantum field theory, namely the vacuum diagramq• @the
dot represents one insertion ofV(f)], which should be ab-
sorbed by renormalization of the zero of energy for the
dion potential. Since we are not attempting to solve the c
mological constant problem here, we are going to ignore
of this and compute only the factorD0,1, which contains the
translational zero modes—or more precisely, which has
zero modes removed. This removal is accomplished by
placing

11h1
(1)→

dh1
(1)

dk2
. ~60!

Notice that this quantity has dimensions of (mass)22, and
there are 2l 1153 such factors, so thatuDu21/2 has dimen-
sions of (mass)3, as required. From Eq.~59! one can show
that

dh1
(1)

dk2
5

1

lT2U
*
2 I U ,

I U[E
0

`

dyy2@ I 3/2~y!K1~y!#FUS y

AU*
D 2U* G . ~61!
02350
-
to

ir

-

m
-

r-

f

-
s-
ll

e
e-

We have numerically evaluated the integralI U for each set of
parameters. Our estimate for the fluctuation determinant
tor in the nucleation rate can then be written as

uDu21/2;S lT2U
*
2

I U
D 3/2

. ~62!

C. Results for the nucleation rate

Putting the above ingredients together to find the r
of bubble nucleation per unit volume,G/V, we see that
the latter depends on five undetermined paramet
e, m̂1 , mf , MTeV and the temperatureT. Reference@7#
showed that, as long as the energy density on the TeV b
is much less thanMTeV

4 , the usual 4D effective theory gov
erns the Hubble rate:

H25
r

3M p
2 , ~63!

wherer is the total energy density,

r5g*
p2

30
T41rf ,

rf5 1
2 ḟ21V~f!2V~f1!

> 3
8 MTeV

2 mf
2

A11
4

m̂1

~11Ae1!

A11
4

m̂1

12
Ae

m̂1

. ~64!

We take the number of relativistic degrees of freedom,g* ,
to be 100. The kinetic energy of the radion is zero sincef
50 in the false vacuum, sorf is essentially the potentia
energy of the radion in the false vacuum, assuming that
4D cosmological constant is zero:V(f)2V(f1)
5uV(f̂1)u, which is given by Eq.~26!. Depending on the
parameters, this can be comparable in size or dominate
the energy density of radiation. Using our estimates for
prefactor of the tunneling rate, the logarithm of the ratio
G/V to H4 can be written as

ln
G

VH4 > lnFl2AU0U
*
3

~2p!5/2
T4S 3M p

2

r D 2S S

I U
D 3/2G2S ~65!

whereS is the action of the bounce solution. The criterion f
completion of the phase transition to the true vacuum stat
that ln(G/VH4).0. The saddle point approximation leadin
to Eq. ~42! is only valid if the actionS is not much less than
1. Otherwise, the barrier is not effective for preventing t
field from rolling to the true minimum, as in a second ord
phase transition. This situation occurs in the vicinity
ln(G/VH4);150 in the following results; thus the transitio
region whereG/VH451 is well within the realm of validity
of the approximation.
5-8
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In Fig. 6 we show the contours of constant ln(G/VH4) in
the plane of log10(m̂1) and log10(e), starting with the fiducial
valuesT5mf5100 GeV,MTeV51 TeV for the other pa-
rameters, and showing how the results change when any
of these is increased. There is no explicit dependence onm̂0
because it appears only in the formula for the radion ma
The dependences can be understood from the prefa
Z2/Al in the action, Eq.~45!:

Z2

Al
;e3/4

MTeV
3 V2

T2mf

, ~66!

where we recall thatZ andl are given by Eqs.~43!,~44! and
V by Eq. ~28!. The factorV is responsible for suppressin
the bounce action whene!1 or em̂1!1, explaining the
shape of the allowed regions in each graph. Nucleation
bubbles containing the true minimum becomes faster w
the temperature or the radion mass is increased, but slow
the definition of the TeV scale in increased. These dep
dences are dictated not only by the size of the barrier
tween the two minima in the effective potential, but also
the size of the bubbles.

Interestingly, the borderline between allowed and forb
den regions of parameter space falls within the range wh
is relevant from the point of view of building a model o
radion stabilization. That is, some choices which would o
erwise have been natural and acceptable are ruled out by
considerations. We see furthermore that the choice ofm̂1

FIG. 6. Contours of ln(G/VH4) in the plane of log10(m̂1) versus
log10(e). The shaded regions are where the tunneling rate is
small for the phase transition to complete.~a! has T5mf5100
GeV, MTeV51 TeV. The other figures are the same except for
following changes:~b! T5400 GeV,~c! mf5400 GeV,~d! MTeV

52 TeV.
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→`, as was effectively focused on in Ref.@10#, is not the
optimal one for achieving a large nucleation rate.

It might be thought that our analysis is rendered less
portant by the fact that one can always obtain fast nuclea
simply by going to high enough temperatures. However
must be remembered that the TeV scale functions as
high-energy cutoff in the Randall-Sundrum scenario:
whole semiclassical description breaks down at super-T
scales, where quantum gravity effects start to become im
tant. From this point of view, the temperatures of 100–3
GeV which we are discussing are already rather high, an
fairly efficient mechanism of reheating at the end of inflati
will be needed to generate them.

V. DISCUSSION

In this paper we have presented a somewhat sim
model of radion stabilization by a bulk field (c) than that of
Goldberger and Wise@10#; although the physics is qualita
tively identical, we are able to write the radion potent
exactly, and thus explore the effect of letting the stabilizi
field’s VEV’s on the branes be pinned more or less stron
to their minimum energy values. One such effect is that
mass of the radion can be significantly increased for sm
values of the parameterm1, which is the coefficient of the
potential forc on the TeV brane. Moreover ifm1 /k[m̂1 is
accidentally close toe, approximately the minimum value
consistent with a stable potential, the radion mass can sta
diverge, by the factor (12e/42e/m̂1)21/2. This modifies
somewhat the expectation expressed in Ref.@5# that the ra-
dion mass will be small relative to the TeV scale, due to
factor of e3/4.

Our main focus was on the problem that the radion pot
tial has a local minimum at infinite brane separation, and t
the barrier between the true and false minima is so small
for generic initial conditions, one would expect the tru
minimum to be bypassed as the radion field rolls through
We showed that for a large range of parameters, the h
temperature phase transition to the true minimum is able
complete, thus overcoming the problem. There are howe
significant constraints on the model parameters, and the
tial temperature after inflation, to insure this successful o
come.

There remain some outstanding issues. The form of
radion effective potential is such that the field is able to rea
f50 in a finite amount of time; yetf50 represents infinite
brane separation in the extra dimension. This paradox
situation may be due to the assumption that the stabiliz
field, c, is always in its minimum energy configuration
any given moment. In realityc must require a finite amoun
of time to respond to changes in the radion. Thus one sho
solve the coupled problem for time-varyingf and c to do
better. This is probably a difficult problem, which we lea
to future study.

A related question is whether it is correct to treat therm
fluctuations of the radion fieldf analogously to a norma
scalar field with values in the range (2`,`). Sincef is
related to the size of the extra dimension byf5 f e2kb, its

o

e
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range is@0,f #. We have not studied what effect this mig
have on the thermal part of the effective potential; instead
assumed that the usual treatment suffices.

Another approximation we made was to ignore the ba
reaction of the stabilizing field on the geometry. Referen
@18# has given a method of finding exact solutions to t
coupled equations for the warp factora(y) and the stabiliz-
ing field c(y). This method cannot be applied in the prese
case because it works only for bulk scalar potentials wit
special form that, among other things, requires them to
unbounded from below. Moreover, since the method of@18#
generates only static solutions to the equation of motion
cannot be used to deduce the radion potential, which
probe of the response of the geometry when it is pertur
away from a static solution. On the other hand,@18# does
show that the neglect of the backreaction is justified for
parameter values which most closely resemble
Goldberger-Wise model.

One might at first feel uneasy about using a 4D effect
description of the problem when in reality our initial cond
tion is a universe with an infinitely large extra dimension.
the Randall-Sundrum scenario, however, this is justified
cause the graviton is trapped on the transverse length sca
1/k;1/M p , rather than the size of the 5th dimension~see
also @19#!. Moreover the 4D Friedmann equation~63! was
shown by Ref.@7# to be valid without actually assuming th
.
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radion to be stabilized.4 Difficulties with the ‘‘wrong’’ rate
of expansion (H}r instead ofH}Ar @20#! arise only when
one fine-tunes the brane energy densities to prevent ra
motion even in the absence of stabilization, which we are
doing here. In any case, changing the form of the expans
rate would have a small effect on our results since this al
only the logarithmic term in Eq.~65!, not the overwhelm-
ingly dominant termS.

The problem of shallow barriers in moduli potentials
not unique to the Randall-Sundrum scenario, and a new
for addressing it was recently presented in Ref.@21#. The
coupling of the kinetic terms of matter fields to the modul
can give the damping of the modulus motion needed to m
it settle in the true minimum in some cases. This effect mi
provide an alternative to the thermal mechanism we h
discussed here.
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Geneviève Boisvert for perceptive criticisms of the man
script.

4The extra dimension is free to expand in this case, and the kin
energy of the radion simply appears as an additional contributio
the energy density of the universe, as in Eqs.~63!,~64!.
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