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Brane-world cosmology of modulus stabilization with a bulk scalar field
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We point out that the potential of Goldberger and
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Wise for stabilizing the distance between two 3-branes,

separated from each other along an extra dimension with a warp factor, has a metastable minimum when the
branes are infinitely separated. The classical evolution of the rddiane separatiowill place it in this false

minimum for generic initial conditions. In particular, inflation could do this if the expansion rate is sufficiently
large. We present a simplified version of the Goldberger-Wise mechanism in which the radion potential can be
computed exactly, and we calculate the rate of thermal transitions to the true minimum, showing that model
parameters can be chosen to ensure that the universe reaches the desired final state. Finiteness of bulk scalar
field brane potentials can have an important impact on the nucleation rate, and it can also significantly increase

the predicted mass of the radion.
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I. INTRODUCTION

PACS nuni§er98.80.Cq

as can be easily derived starting from a scalar field action

written covariantly in terms of the metric(1), S

One of the most striking proposals in current elementary— %fd“xe“‘"[ez"(a(ﬁ)z—m§¢2], and rescalingg so that
partiC|e theOI’y iS the existence Of extra dimensions Wh|Ch arﬁ']e kinetic term becomes Canonica”y norma”zed_
hidden from us, not necessarily by their smallness, but by | order form, to be of order 100 GeV, the combination

our confinement to a four-dimensional slicg 3-bran¢ of
the full spacetimd1]. Randall and Sundrurf2] have pro-

duced a verion of this scenario which is particularly attrac-

tive because of its apparent links to deep theoretical deve
opments: the conformal field theory/5D anti—de Sitter
correspondence and holograph$]. On a more practical

level, their idea provides an explanation for why the Planckt?
scale is so much greater than the weak scale, independently:

of supersymmetry. The cosmological implications of this
model have also been the subject of vigorous sfddy

The Randall-Sundrum proposal involves a “Planck
brane” located at a positiog=0 in a single additional di-
mension, and a second “TeV brane” locatedyat 1, in our
conventions. The extra dimension is permeated by a negati
bulk vacuum energy density, so that the space between t
branes is a slice of anti—-de Sitter space. Solving the 5
Einstein equations results in the line element

ds?=e"2°0)(dt2— dx?) — b2dy?, 1)

o(y)=kby, ye[0,1]. 2

The constank is related to the 4D and 5D Planck mas3dds,
andM,, respectively, by

k= M2 ©)

where M’;2:87TGN and the 5D gravitational action is
S=1M3[d®\/—gR. The warp factoe *®) determines the

physical masses of particles on the TeV brane: even if a bare

mass parametan, in the TeV brane Lagrangian is of order
M,, the physical mass gets rescaled by

Mphys™ e ‘my, o=o(1l)=Kkb, (4)

kb must be approximately 36, so thet?~ 106, Yet in the
original proposal, the value df, which is the size of the
xtra dimension, was completely undetermined. It is a modu-
us with no potential, which is phenomenologically unac-
ceptable. For one thing, the particle associated with 4D fluc-
tuations ofb, the radion, would couple to matter on the TeV
rane similarly to gravitons, but more strongly by a factor of

€” [5]. This would lead to a fifth force which could easily
have been detected. Furthermore, a massless radion leads to
problems with cosmology: our brane universe would have to
have a negative energy density to expand at the expected
rate, assuming that energy densities on the branes are tuned

,8] (see als¢9]) that this problem disappears when the size

the extra dimension is stabilized.

Radion stabilization is therefore a crucial ingredient of the
Randall-Sundrum idea. Goldberger and Wise have presented
an elegant mechanism for accomplishing tHi§)], using a
bulk scalar field. Self-interactions of the field on the branes
forces it to take nonvanishing vacuum expectation values
(VEV's), vy andv, respectively, which are generally differ-
ent from each other. The field thus has a gradient in the extra
dimension, and the competition between the gradient and
potential energies gives a preferred value for the size of the
extra dimension. In other words, a potential for the radion is
generated, which has a nontrivial minimum. It is easy to get
the correct brane separation using natural values of the pa-
rameters in the model.

Roughly speaking, the radion potential has the form

ﬁ give a static extra dimensidi®]. It was shown in Refs.
by

2

®)

¢)E_Ul

/v

V(d)=rg*

with a nontrivial minimum at¢=f(v,/vo)Yc. However,
there is another minimum abt=0, which represents an in-
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finitely large extra dimension. This could not describe ourTo get the correct hierarchy between the Planck and weak

universe, because theT would be zero, corresponding to scales, it is necessary to tak® to be small, hence the no-
vanishing particle masses on the TeV brane. In the mor¢ation €.

exact expression for the potential, we will show tigat 0 is The brane terms induce boundary conditions specifying
actually a false vacuum—it has higher energy than the nonthe discontinuity ing' at the two branes. Imposing the orbi-
trivial minimum. Nevertheless, it is quite likely that the fold symmetry(—o)= (o), this implies that

metastable state could be reached through classical evolution

in the early universe. The question then naturally arises &' (0)=mo(o—vo),
whether tunneling or thermal transitions to the desired state
occurs. This is the subject of our study. W(;): — 1y (¢ —vy) 9)

Such detailed questions about the viability of the

Goldberger-Wise mechanism are important because there A% ere we definedn = m: /k Substituting the solutiori8)

. 4 i i=m;/k.
few attractive alternaylves at fche moment. Refereiidg re into Eq.(9) allows us to solve for the unknown coefficier{s
cently studied Casimir energies of fields between the branegnd B exactly. In this respect, the present model is simpler

as a possible origin of a stabilizing potential. They found thatthan that originally given in Ref.10]. There the brane po-

stabilization in this way is indeed possible, but that the r€4entials were taken to be quartic functions, so thand B

sultin_g radi_on mass is too small to be phenpmenologicallycould only be found in the approximation where the field
consistent if the size of the extra dimension is that taken tQ/aIueSz,/;- were very strongly pinned to their minimum en-
I

be that dictated by the hierarchy problem. ergy valuesy;. In our model this would occur in the limit

In Sec. Il we derive the Goldberger-Wise potential for them._)Oc However we can easilv explore the effect of leavin
radion in a slightly simplified model which allows for the ' > » WE can easily exp . 9
X ; X . these parameters finite sinfeandB can be determined ex-
exact solution of the potential. The classical evolution of theactl Let us denote
radion field is considered in Sec. Ill, where we show that for y:
generic initial conditions, the universe reaches a state in T
which the radion is not stabilized, but instead the extra di- p=e €

mension has become infinitely large. This is a metastable

state however, and in Sec. IV the rate of transitions to th&vhich will be convenient in the following, becauseis pro-
minimum energy state, with finite brane separation, is comPortional to the canonically normalized radion field. Then

puted. Conclusions are given in Sec. V. andB are given by
Il. RADION POTENTIAL A=(=C1$"+Cp0%) $"ID()
Let #(y) be the bulk scalar field which will be respon- B=(Csd "—C,32) 3"/D($) (11)

sible for stabilizing the radion. Its action consists of a bulk

term plus interactions confined to the two branes, located athere

coordinate positiong=0 andy=1, respectively. Using the

variableo of Eq. (2) in place ofy, the 4D effective Lagrang- Cy1=Muo(M;— €)
ian for a staticyy configuration can be written as

K (o R szl:ﬂlvl(lfho-f' €)
L=-3 f e [(,9)°+ P yP]do— mo( Yo~ vo)?
- Ca=Mgug(M,+4+€)
—e my (¢ —vy)?, (6) . .
- Cy=myvy(Mo—4—e€)
wherem is the dimensionless mas¥/k, i, are the values

of ¢ at the respective branes, and the orbifold symmetry _ 52y
Y(o)=i(— o) is to be understood. In 5D, the fielg, as D(¢)= (CZCES AC1C4¢ )' (12)
well as the VEV'sv; on the two branes, have dimensions of (MoMyv v 1)
(mass¥? while the parametens; have dimensions of mass. A
Denotingd, = ¢', the Euler-Lagrange equation fgris It can be checked that in the linmt;— 0, the field values on
. the branes approaci;—v;. For finite m;, the competing
k(" — 44" —mP i) =2mg(gho—v0) 8( ) effect of minimizing the bulk energy causes departures from

2 5 — 7 these values, however.
+2my(dr—vy)dlo—0). (D) The solution fory can be substituted back into the La-
grangian(6) to obtain the effective 4D potential for the ra-

The general solution has the form .
dion, V(¢). However, rather than substituting directly, one

y=e*’(Ae’’+Be "), can take advantage of the fact thatis a solution to the
Euler-Lagrange equation. Doing a partial integration and us-
v=V4+ml=2+e. (8 ing the boundary terms in E@7) gives a simpler expression
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for V(¢). In the general case where the brane potentials are - (v Vel 1+ey \Ye . \/71 Ve
denoted by;(#), one can easily show that b= vol \l+es—e (1xVe +es4—z€€)
1/e
. , 1/1 1 1 1 1
£=-3 e Vi) -2Vl (3 E(ﬂ> I T AT
! Uo € ml 4 mo ml 4
In the present case, we obtain (21

V(¢)=—L=Mvo(vo—tho) + ¢ M1 (v1—h1) The last approximation holds in the limit of small €, and
_ ~ 4 €,; itis not always an accurate approximation for the param-
=Mguo[vo— (A+B)]+ ¢ "M, eter values of interest, so we will use the exact expression in
X[v1— B 2AD "+ $'B)]. (14) any computatlghs which might be §e_nslt/|6ve to the actual

value. The positions of the zeros ¥f ¢=c:“, are slightly

In the following, we will be interested in the situation greater thang. , by the factor (1 e,)¥=e'* as can be

whereV(fﬁ) has a nontrivial minimum for very small values seen by comparing E¢21) with Eq. (20). The large hierar-

of $~10718 as needed to address the weak scale hierarchghy of ¢.~10"1%is achieved by taking a moderately small
problem. It is therefore a good approximation to expandatio v,/vy<1 and raising it to a large powérl/e. This

V() near =0, keeping only the termg" with n<2v.
This is accomplished by expanding the denomin&6e) in

Egs. (11), after which the potential can be written in the

simple form
V()= AP [(1+ 4= €1) $* =271+ €4) b+ 7]
(15
where we introduce the notation
€ € €
€47, €T &=, (16)
mo ml
U1
n=(1+¢€g)— (17
Vo
and
1+ €,) (14 €) 2
A=4kvg( QI 0 (18
1+ ~ + 61
m;

In the following it will be convenient for us to rewrité( )
in the form

V(g)=A'd*(pc—c ) (ds—c) (19)

wherec.. are given by

(1+ €)= V(1+€y)?—(1+e€4—€;)
C==7 (1+es,—€q) 20

andA'=A(1+ 64_61).

IIl. PHENOMENOLOGY AND EARLY COSMOLOGY OF
THE MODEL

leads to the mass scale which functions like the cutoff on the
TeV brane,

b My=Mrey (22)

whereM /(1 TeV) is a number of order unity, which we
will take to be one of the phenomenological free parameters
of the model. The choice d¥l., specifies precisely where
we want our cutoff scale to be. In Rg¢fL0] the exponential
corrections to ¢, /v,)Y¢ in Eq. (21) were not considered:;
these change somewhat the values one might choose for
v,lvg and € to get the correct hierarchy. The factor
g™ VWM +14)e in particular can be significant.

Reference$7] and[5] showed that the canonically nor-
malized radion field isp= f ¢, wheref = \6M?3/k is another

scale of ordeM,, .2 The 4D effective action for the radion
and gravity is

M3 .
S= ﬁf d*xyV—g(1-¢3R
+ [ aalia, b s, @9

whereV( ) is the potentia(19) andR is the Ricci scalar. To
get the correct strength of gravity, we must therefore have

3

M 1
—_— 2:— =
o =Mp 87Gy’ f=\6M,. (24)

IAn alternative possibility, taking;/v,>1 and e<0, corre-
sponding to a negative squared mass in the bulk Lagran@an
does not work. Although the negative? does not necessarily lead
to any instability, since the field is prevented from going to infinity

The warp factor which determines the hierarc;hy t,)e,tweerﬂ)y the potentials on the branes, the radion potential has no non-
the weak and Planck scales can be found by minimizing thg;yiai minimum in this case.

potential(19). Expanding ine, it has a global minimum and

a local maximum at the respective valugs and ¢ _ :

2The choicef = \24M3/k in Ref. [5] seems to correspond to an
unconventional normalization favl, .
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30 0.10 L, illustrates the flatness of the potential for the case0.2,
20 | 0.08 | i where the barrier is not so suppressed. The new mass scale
() TeV <1 TeV is due to the small curvature of the radion
s 008 T 1 potential at the top of the barrier, and its smallness will play
> o0 1 0.04 1 an important role in the following.
10 b 002 F Thus the barrier separating the true minimum}&at from
20 . . . 0.00 L the false one aszo is extremely shallow. Moreover a ge-
0 ! ¢2 8 00 02 °‘4¢°'6 08 1.0 neric initial condition for the radion is a value Iiké~1,

. quite different from the one we want to end up with,
FIG. 1. V(¢) versus¢ for e=0.2, showing the smallness of the 10716, Clearly, the shape of the potential is such that, if

_barner_(nght) relative to the minimunyleft). Notice the difference we started with a generic initial value fé/r, it would easily
in vertical scales. L . e
roll past the global minimum and the barrier, hardly noticing

their presence. The poirt=0 toward which it rolls is the

limit of infinite brane separation, phenomenologically disas-

trous since gravity no longer couples at all to the visible

brane in this limit.

72> €2 One might wonder whether inflation could prevent this
unwanted outcome, since then there would be a damping

(29 termin the¢ equation of motion, possibly causing it to roll
slowly:

The radion mass i$ 2 times the second derivative of
evaluated at its minimum. We find the value

€ e\t 4 €
1+-——— 1+ A—+2\A/—_
4 m m m

A

2 _
I"f1¢—4f—2
1

which implies thatm, is of typically of ordere®* times the
TeV scale. The factor 0é** leads to the prediction that the . R
+3Hp+V =0. 29

radion will be lighter than the Kaluza-Klein excitations of ¢ ¢ Ver( &) 9
the graviton, which would also be a signal of the new brangndeed, with sufficiently large Hubble ratd, the motion
physics[5]. However, we see that the corrections due tocould be damped so thatwould roll to its global minimum.
finite m;, which were not explicitly considered ifb], can  The condition for slow-roll is that
possibly compensate this and make the radion heavier, if
r’hl"" €.

Now let us turn to the evolution o in the early uni-  However, inflation is a two-edged sword in this instance,
verse. For this purpose |t- IS |mp0rtan.t 1-:0 understand that thgecause the effective potentmﬁ for the radion gets addi-
depth of the potential at its global minimum, as well as thetjonal contributions from the curvature of the universe during

height of the bump separating the minimum frabe=0, is inflation. From Eq.(23) one can see that
set by the TeV scale. The values of the potential at these

VI<9HZ. (30)

. . . . . M3 . . M3 .
gxtrema are approximate(yo leading order ire,, but exact Vi) = V() + —— RB2=V() + 6~ H2h2
in €p) 2k k
. N =V($)+H?¢? (3D)
V(do=F 2P0 T 1 e, (29
47 €1

using the relatiolR=12H? which applies for de Sitter space

. 4 . LA and Eq.(24). The new term tends to destroy the nontrivial
Smg/e ANMP‘; the depth at the minimum '3/(‘1”)72’ minimum of the radion potential. One can estimate the rela-
—e¥0(TeV) —suppressed slightly by the factor e’ tive shift in the position of the minimum as

The height of the bump ap_ can be considerably smaller

because of the exponential factors in E2l). Ignoring fac- 5. V' () H? 32
tors of order unity, for smalk, ST =~ . 32
Y b dNV(B M
~ ~ o\ 4
V(¢-) - & =04 27) This should be less than unity to avoid the disappearance of
V(¢,) b, the minimum altogether.

Combining the requirement that the global minimum sur-
where vives with the slow-roll condition(30), evaluated near the
minimum of the potential, we find the following constraint

1— e te, )| 1 4 on the Hubble rate:
Q= —————=| ~exg—/—|1+—]|. (28
1+Verte € m; gmi<HZ2<m?. (33

For example, ife=0.01 as suggested by0], Q% is less than  This is a narrow range, if it exists at all. In fact, one never
10" If the brane potential parameter, is not large, so  expects such a large Hubble rate in the Randall-Sundrum
thatm,;=<1, the suppression will be much greater. Figure 1scenario since the TeV scale is the cutdff:should never
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exceedT?/M,~10 '® TeV if the classical equations are to A. Euclidean bounce
be valid. The problem of radion stabilization might also be compute the nucleation raf¥'V, one must construct

exacerbated because contributions to the energy density gfa hounce solution which is a saddle point of the Euclidean-
the universe which cause inflation can give additional terms, o actior[14], in other words, with the sign of the potential
of the typed? to Vi which are not considered in the above reversed. This is a critical bubble solution with the boundary
argument. For example, a field in the bulk which does notonditions
have its end points fixed on the branes has a 5D energy
density which is peaked on the visible braf2], ps(y) d()—0=d0, &' (r)|=0=0,
~ poe?¥?Y and gives a contribution t¥y of

¢(r)|rﬂoc:01 ¢/(r)|rﬂw:0- (36)

1
6V~p0f dybe DYy e2bY=hp,h?, (34  The value of$, which ensures the desired behaviorras
0 —oo cannot be computed analytically because the motion of
the field is damped by the termd’/r in the equation of
remembering thae *°=¢. Such a contribution could de- motion. We will consider bubble nucleation at finite tem-
stroy the nontrivial minimum even if Eq33) is satisfied. In ~ perature in the higfT limit, where the bounce solutions are
any case, it does not appear to be natural to tune the Hubblree dimensional. The equation of motion is
rate during inflation to try to solve the stabilization problem.

1
—(1%¢") =+ V(). (37)
IV. PHASE TRANSITION TO THE TRUE VACUUM r

Since the barrier of the radion potential is too small toywhere nowV, includes thermal corrections, which are much
prevent the radion from rolling into the false minimum, per-|5rger than theH2¢2 term considered in E¢31):
haps we can take advantage of this smallness to get tunneling

or thermal transitions back into the true vacuum. The situa- T2 T

tion is quite similar to that of “old inflation”[13], except Ver(d)=V() + ﬂmtzh(@— Emf‘h( ®)

that in the latter, the transition was never able to complete

because the universe expanded too rapidly compared to the b4

rate of nucleation of bubbles of the true vacuum. In the + 52,2 Min(4) Vo, (39
present case this problem can be avoided because we are not

trying to use the radion for inflation. Indeed, a small amount mtzh(¢)=V”(¢)+ 2 T2y(4)(0) (39)

of inflation may take place before the tunneling occurs, since

the radion potential is greater than zerafat0,” but we will 00 c,=3.9 if the renormalization scale is taken to be
not insist that this be sufficient to solve the cosmologlcalequa| toT. The leading thermal correction is of ordBf¢?

problems inflation is intended to solve—otherwise we woul WhereasH24? is suppressed bygle relative to this. The
be stuck with the problems of old inflation. Instead we will cubic term md  becomes irr:)aginary i V"l(¢)

assume that inflation is driven by some other field, and CON= " 12/ /()0 tg five: take th | vart
sider the transitions of the radion starting from the time of ' ¢ )V'*(0) becomes negative; we take the real par

1 12\/(4)
reheating. The criterion that the phase transition completes @?}IY'hThe term_m;l;]V (bO) regreser;‘_[s tthe theLmaI _mazs_,
that the rate of bubble nucleation per unit volurhéy, ex- which appears in the cubic and quartic terms when ring dia-

ceeds the rate of expansion of the universe per Hubble Voerams are resummeld 5. We s_ubtract a constant terit,
ume: rom Vg SO thatVe(0)=0, as is needed to properly com-

pute the action associated with the bounce solution.
The thermal corrections to the effective radion potential
=H4 (35)  cause the bounce solution to fall exponentially at large

<l

c
— _a— g
The reason is that the bubbles expand at nearly the speed of ¢ r € ' (40

light, so the relevant volume is determined by the distance

which light will have traveled by a given time, which is of where 1f~ nA/f*T if A/f4<1 [the exact expression is

order 1H. 1lro=yNU, T, in terms of quantities to be defined below, in
Egs. (43) and (55)]. Once the bounce solution is known, it
must be substituted back into the action, which can be writ-

3In Egs.(19) and(31) we have neglected an additive constant in ten as

the potential which is needed to ma¥e-0 at the true minimum, so P
. ; . . 3 ) 5
that the cosmological constant is zero. This neglect is necessary for S= ?f drr 3" 2+ Ves($)]. (41)
finding the bounce solution, since otherwise the energy of the 0
bounce would diverge, but one must remember that the false mini-
mum is not at zero energy when computing the Hubble rate. The nucleation rate is given by
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2.0 : : 2
15 ‘\ {1 0F——0
. =
51.0t 152
05 1 -4t
005 20 _ 40 ©0 20 40 60

r T

FIG. 2. The bounce solution, for the parameters0.01, m;
=0.1, m,;=T=100 GeV andMr,=1 TeV. The rescalings

— @ andr—T is given in Eqs(43),(44).

I o]

V' 2x

S 3/2
5) D" Y%e® (42

wherew_ is the imaginary frequency of the unstable mode
of fluctuations around the bounce solution, @nds the fluc-
tuation determinant factor, to be described below. A typical

profile for the bounce solution is shown in Fig. 2.

For the numerical determination of the bounce solution

PHYSICAL REVIEW D64 023505

log(8/.)

———- £=005
—-—-- =01

-4 3 2 - 0 1
log(efh,)

FIG. 3. logo(S/m;) versus logy(em,), whereS is the rescaled

bounce action, Eq(46). The other parameters ara,=T=100
GeV andM =1 TeV.

(1=Vertes)

4 \/; 1/2°
1+ —+2—
m m

1

673/4 m¢

B 2\/6 Mrev

NN

(48)

and action, as well as understanding their parametric depen- ~
dences, it is convenient to rescale the radius and the field by In the rescaled variables, the valde=1 corresponds to

r A’ ’
rzﬁ, 7\:f—4C,, (43)
_ fcllf
d=2ZT¢p, Z= ?_ (44
Then the action takes the form
Z2. .
S=—=S(e,m;,\,Z), (45)

W\
S= 477f d"er[ O PR A e
0

1 N - 312 c 3/2
o [

127 72

3¢y ~ [ Cy ~
+ g2 24’ C—+622¢2f2)} (46)

where

fo( =3+ 1) 3+ =

~ 1 ~
fn+1(¢):(1+m¢%>fn(¢)- (47)

In the following, it will be helpful to keep in mind that can
be extremely small, of orde® in Eq. (28) whene is small,

the first zero of the potential, which would be the starting
point of the bounce if energy was conserved in the mechani-
cal analog problem, i.e., if there was no viscous damping
term ¢'/r in the equation of motion. The actual starting
point turns out to have a value in the rangg~1.5—-3 be-
cause of this. The rescaled actiBrdepends mainly on the

model parameters and ﬁ]l, for the parameter values which

are of interest to us. All the sensitive exponential dependence
on €, namely the factoc¥¢, is removed fromS. Numeri-

cally we find that
S=%my(em;) ¥ (49)

except whemm; becomes close te. Form, slightly smaller
than e, e; starts to exceed 1, anc. becomes negative,
signaling the onset of an instability in the radion potential
toward coincidence of the two brane positions. Figure 3

shows the dependence of I&jty) versus logém,).
We have computed the bounce solution and the corre-

sponding action for a range of parameterand m; which
can be consistent with the solution to the hierarchy problem

(i.e., that¢p~ 1016 at the global minimum The size of the
bounce in position space, measured as the width at half

maximum, is small neae=rAnl, and reaches a larger con-
stant value asn,—o0. Using the rescaled radial variabie

=r AT, the dependence of the width erandm;, is shown
in Fig. 4.

The action of the bounce can be much greater than or
much less than 1, depending on the parametersefom,

whereasy\ tends to be closer to unity, depending on the<1, S<1, while for larger values of and m;, S>1.

mass of the radion and the definition of the TeV sda®:

Where the crossover occur§< 1) depends om,, T and
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100 T 1.0 T : 2
B—-Ha¢e=001
Aa—=Ae=0.02 ]
80 | +—+e=003 1
— o—>oe=005
iz
s 60
o
S
< 40 ¢
g -0.2 L L -6 L L L
0 200 _ 400 600 O 5 10 15 20
20 ¢ r r
o FIG. 5. The potential for small fluctuations around the bounce

solution, U(T) =X?V"(¢y(r)), as a function of, for the param-
eterse=0.02, m;=5 (left) ande=0.1, m,=25 (right).

log(fh,)

FIG. 4. Half widthw of the bounce solution, in terms of the _ ~
rescaled radial distande=r N T, versus logy(my,), for the same Where primes now denot/dr, X=12Z?¢*f,, and thef,
parameters as in Fig. 3. are defined in Eq47). Except when the radion mass is sig-

nificantly larger than 100 Ge\\ is much smaller than 1, and

Mrey. This behavior can be inferred from Fig.(8howing U is dominated by the first two terms in E(1). Of these,
S) and the dependences of the coefficient in the relaBon the first (f,) always dominates <1, while the secondX)
=(2% \/ng_ Rather than presenting further results Sdi- can be important near=0 if Z=1. The two different cases
rectly, however, we will turn to the more relevant quantity, are illustrated in Fig. 5. Since<l?¢'>5< c./c_, bothf, and
the rate of bubble nucleation. For this we need to determing gre negative at=0, so that
the prefactor ok~ in the rate.

B. Prefactor of the bubble nucleation rate Uo=U(0)=— €32y /1+ Ai [2+ In Py

The bounce action is the most important quantity deter- My
mining the rate of tunneling, since it appears in the exponent 22,1 ~
of the rate(42). Since we do not have a model for the infla- +12Z%¢5(2 + In ¢o)] (53

tion and reheating of the universe which must occur prior to , ) ) )
the bubble nucleation, hence an exact prediction for the re2nd thus the smallest eigenvalue of E%p) is negative. This
heating temperature which enters the rate, it would not bé& the unstable mode of the saddle point solution, with imagi-
worthwhile to compute the prefactors in E@2) very accu- nary frequency of order
rately; however, we can estimate their size. ) )

First, consider the frequency _ of the unstable mode. wZ~UohT" (54)
w? is the negative eigenvalue of the Satlirmer-like equa- . )
tion for small fluctuationss¢ around the bounce solution, Recall that|w_| appears in the prefactor of the nucleation
which we will denote byg,(r): ratel'/V. B

Asr—o, U(r) approaches a maximum value

" 2 ’ azveﬁ 2
—(&;5 +F5q§ + 5 Sp=w=d¢p. (50 c. 3 c. 3¢, c,
bp(r) U*EU(OC):E 1—;\/)\E+m7\a), (55)
Rescaling the radius and background field exactly as in Egs.
(43),(44), Eq. (50) becomes which determines the asymptotic behavior of the fluctuations
5 2 at larger: S¢p~e~ Wt The quctuationg around the false
. ?(w, +UT)6p= W5¢’ (57  vacuum state ¢=0) thus have a mass given by
M=V _,=U,\T?, (56)
~ 1 &ZVeﬁ ~
Ur)= \T2 32 (¢n(1)) which will be relevant for the following.

Next we must estimate the functional determinant factor

3\ c. 12AZdt5)?
=f4+ X——|[ f4\| — + X+—F—— det[— 92— V2+V"(pp)]

- D= , 5
i Ak def — #2— V2+V"(0)] 80

6c. | c where 7 is imaginary time ¢<[0,1/T]), V2 is the three-

b + . . . . .

+ _2)\<_f4+ X(fa+ zfg/fz)) (52) dimensional Laplaciang,, is the bounce solution, and the
87 \c- prime on det means that the three translational zero-mode
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eigenvalues must be omitted from the determinant for fluc\We have numerically evaluated the intedrgffor each set of
tuations around the bounce. These zero modes correspondparameters. Our estimate for the fluctuation determinant fac-
spatial translations of the bubble solution. Because of theitor in the nucleation rate can then be written as
removal,D has dimensions of (energyj, as is required to
. . 2112\ 3/2
get a rate per unit volume in E¢42). _yp [MTUS
Referencg 16] has given a thorough account of how to DI+~ Ty (62)
compute D by a method which was discussed for one-
dimensional systems ifiL7]. In 3D one should classify the
eigenvalues of the fluctuation operators by the quantum
numbersn and |, denoting Matsubara and angular momen- Putting the above ingredients together to find the rate
tum excitations, respectively. TheR can be written as a of bubble nucleation per unit volumd,/V, we see that
product,D=II, D, . the latter depends on five undetermined parameters:
Referencd 16] shows that the contribution tB from the ¢, ml, Mg, Mrey and the temperaturd. Reference[7]
Ith partial wave can be expressed, to leading order in a peshowed that, as Iong as the energy density on the TeV brane
turbative expansion in the potentid(r), as is much less thaM$.,, the usual 4D effective theory gov-
erns the Hubble rate:

C. Results for the nucleation rate

Dy =(1+h()2 L, (58)
p
2_
The quantityh(*) has the Green’s function solution H _3M§’ (63
% wherep is the total energy density,
hf“=2J drrl s g kK (k1) (hp(1)) = m?]
0 2 \
P=9x 35T TPy
—2] drrlys [U(r)—-U,]
: f \T f \T 12 _
ps=2¢"+V(d)—V(d,)
(59
4
using the modified Bessel functiohsndK, and the masm 1+ —(1+ ey
of the field in the false vacuum, E¢6). For general Mat- ~3M2 2 my (64)
subara frequencies,=27nT, one definesc= \m?+ 2. — 8T TeVie 4 e
The subdeterminant for the=0 (zero-temperatujesec- 1+ —+2—
tor of the theory has the usual ultraviolet divergences of m;  my

qguantum field theory, namely the vacuum diagré@n [the

dot represents one insertion 4f ¢)], which should be ab- We take the number of relativistic degrees of freedgg,
sorbed by renormalization of the zero of energy for the rato be 100. The kinetic energy of the radion is zero sigce
dion potential. Since we are not attempting to solve the cos=0 in the false vacuum, sp,, is essentially the potential
mological constant problem here, we are going to ignore alenergy of the radion in the false vacuum, assuming that the
of this and compute only the fact@, ;, which contains the 4D cosmological constant is zero:V(¢)—V(¢.,)
translational zero modes—or more precisely, which has th&|v((:/,+)|, which is given by Eq(26). Depending on the
zero modes removed. This removal is accomplished by reparameters, this can be comparable in size or dominate over

placing the energy density of radiation. Using our estimates for the
prefactor of the tunneling rate, the logarithm of the ratio of
dh{® T'/V to H* can be written as
1+h{M— (60)
dk r 2\/_U3 <3M,2))2 g\ 32
In——7= T (—) —S (65
Notice that this quantity has dimensions of (mags)and VH (27r)52 P ly

there are 2+ 1=3 such factors, so thaD| 2 has dimen-

sions of (mas% as required. From Eq59) one can show whereSis the action of the bounce solution. The criterion for
that completion of the phase transition to the true vacuum state is

that InC/VH*>0. The saddle point approximation leading

dh® 1 to Eq.(42) is only valid if the actionSis not much less than
1 _ —— 1. Otherwise, the barrier is not effective for preventing the
dx?  AT?US field from rolling to the true minimum, as in a second order

phase transition. This situation occurs in the vicinity of

In(I'/VH*~150 in the following results; thus the transition
(61)  region wherd/VH*=1 is well within the realm of validity

of the approximation.

~-u,|.

= f:dyyzﬂslz()’)Kl(Y)] U<%
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(a) fiducial values (b) T = 400 GeV —oo, as was effectively focused on in R¢f.0], is not the
optimal one for achieving a large nucleation rate.

It might be thought that our analysis is rendered less im-
portant by the fact that one can always obtain fast nucleation
simply by going to high enough temperatures. However, it
must be remembered that the TeV scale functions as the
high-energy cutoff in the Randall-Sundrum scenario: the
whole semiclassical description breaks down at super-TeV

0_1,5-1 4-1312-11 -1 0.1_5-1_4_1_3-1 211 scales, where quantum gravity effects start to become impor-
loge loge tant. From this point of view, the temperatures of 100—-300
(c) m, = 400 GeV (M, =2TeV GeV which we are discussing are already rather high, and a

fairly efficient mechanism of reheating at the end of inflation
will be needed to generate them.

V. DISCUSSION

In this paper we have presented a somewhat simpler

0 100 model of radion stabilization by a bulk field/§ than that of
-1.5-1.4-1.3-1.2-1.1 1 -1.5-1.4-1.3-1.2-1.1 -1 Goldberger and Wis€10]; although the physics is qualita-
loge loge tively identical, we are able to write the radion potential

R exactly, and thus explore the effect of letting the stabilizing

FIG. 6. Contours of IM{/VH*) in the plane of log(m,) versus  field’s VEV's on the branes be pinned more or less strongly

log;(€). The shaded regions are where the tunneling rate is t0gg their minimum energy values. One such effect is that the

small for the phase transition to complete) hasT=m;=100  mass of the radion can be significantly increased for small
GeV, Mrey=1 TeV. The other figures are the same except for they5)yes of the parameten;, which is the coefficient of the

followi h b) T=400 GeV, =400 GeV,(d) M . . ~
ollowing changes1b) ev.(©) my eV.(d) Mrev potential forys on the TeV brane. Moreover ifi, /k=m; is

=2 TeV. A . L
accidentally close ta, approximately the minimum value
consistent with a stable potential, the radion mass can start to

- S ~ 77" diverge, by the factor (% e/4—e/m;)~ Y2 This modifies
the plane of logy(m;) and log(¢), starting with the fiducial  gqme\hat the expectation expressed in R&fthat the ra-
valuesT=m; =100 GeV,Mr,=1 TeV for the other pa-  4ion mass will be small relative to the TeV scale, due to a
rameters, and showing how the results change when any oRg.iy of ¢34
of these is increased. There is no explicit dependena®®n  Our main focus was on the problem that the radion poten-
because it appears only in the formula for the radion massial has a local minimum at infinite brane separation, and that
The dependences can be understood from the prefact@ie barrier between the true and false minima is so small that
Z?/\\ in the action, Eq(45): for generic initial conditions, one would expect the true
minimum to be bypassed as the radion field rolls through it.
72 M2 02 We showed that for a large range of parameters, the high-
. 7 Tevi (66) temperature phase transition to the true minimum is able to
I\ T2m¢ ’ complete, thus overcoming the problem. There are however
significant constraints on the model parameters, and the ini-

) tial temperature after inflation, to insure this successful out-
where we recall tha and\ are given by Eqsi43),(44) and  gme.

Q by Eq.(28). The factor() is responsible for suppressing  There remain some outstanding issues. The form of the
the bounce action whee<1 or em;<1, explaining the radion effective potential is such that the field is able to reach
shape of the allowed regions in each graph. Nucleation ofy=0 in a finite amount of time; yep=0 represents infinite
bubbles containing the true minimum becomes faster wheprane separation in the extra dimension. This paradoxical
the temperature or the radion mass is increased, but slower éftuation may be due to the assumption that the stabilizing
the definition of the TeV scale in increased. These deperfield, i, is always in its minimum energy configuration at
dences are dictated not only by the size of the barrier beany given moment. In realityy must require a finite amount
tween the two minima in the effective potential, but also byof time to respond to changes in the radion. Thus one should
the size of the bubbles. solve the coupled problem for time-varying and ¢ to do
Interestingly, the borderline between allowed and forbid-petter. This is probably a difficult problem, which we leave
den regions of parameter space falls within the range whicly future study.
is relevant from the point of view of building a model of A related question is whether it is correct to treat thermal
radion stabilization. That is, some choices which would oth<lyctuations of the radion field> analogously to a normal
erwise have been natural and acceptable are ruled out by o4galar field with values in the range-¢0,). Since ¢ is

considerations. We see furthermore that the choicenpf related to the size of the extra dimension byfe P its

In Fig. 6 we show the contours of constantlifi(H?) in
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range is[0,f]. We have not studied what effect this might radion to be stabilized| Difficulties with the “wrong” rate

have on the thermal part of the effective potential; instead wef expansion Ko p instead ofH« \/E [20]) arise only when

assumed that the usual treatment suffices. one fine-tunes the brane energy densities to prevent radion
Another approximation we made was to ignore the backmotion even in the absence of stabilization, which we are not

reaction of the stabilizing field on the geometry. Referencel0ing here. In any case, changing the form of the expansion
[18] has given a method of finding exact solutions to thefate would have a small effect on our results since this alters

coupled equations for the warp factafy) and the stabiliz- Ic:%ll}; tggni?ngaag;t?er?r%term in Eq(65), not the overwhelm-

ing field y(y). This method cannot be applied in the present’ “rp,o problem of shallow barriers in moduli potentials is
case because it works only for bulk scalar potentials with gt unique to the Randall-Sundrum scenario, and a new idea
special form that, among other things, requires them to bgor addressing it was recently presented in Héfl]. The
unbounded from below. Moreover, since the metho@il®  coupling of the kinetic terms of matter fields to the modulus
generates only static solutions to the equation of motion, itan give the damping of the modulus motion needed to make
cannot be used to deduce the radion potential, which is # settle in the true minimum in some cases. This effect might
probe of the response of the geometry when it is perturbeQ_FOVide an alternative to the thermal mechanism we have
away from a static solution. On the other hahtig] does discussed here.
show that the neglect of the backreaction is justified for the
parameter values which most closely resemble the
Goldberger-Wise model. We thank Mark Wise and Rob Myers for enlightening
One might at first feel uneasy about using a 4D effectivediscussions, Guy Moore for helpful correspondence and
description of the problem when in reality our initial condi- Genevige Boisvert for perceptive criticisms of the manu-
tion is a universe with an infinitely large extra dimension. InScript.
the Randall-Sundrum scenario, however, this is justified be-
cause the graviton is trapped on the transverse length scale of
1k~1M,, rather than the size of the 5th dimensi@ee “The extra dimension is free to expand in this case, and the kinetic
also[19]). Moreover the 4D Friedmann equati@63) was  energy of the radion simply appears as an additional contribution to
shown by Ref[7] to be valid without actually assuming the the energy density of the universe, as in EGS),(64).
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