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Noise in gravitational wave detector suspension systems: A universal model
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In a recent review of gravitational wave detectors, Ricci and Brillet discussed models for noise in the various
suspension systems and concluded that . there is probably no universal mdde . .” Here we present such
a model which is based on work carried out by Ford, Lewis, and the present &Btha. Rev. A37, 4419
(1988]; the latter work presents a very general dissipative m@dhich has been applied already to many
areas of physigawvith the additional merit of being based on a microscopic Hamiltonian. In particular, we show
that all existing models fall within this framework. Also, our model demonstraethe advantages of using
the Fourier transform of the memory function to parametrize the data from interferometric detectors such as the
Laser Interferometric Gravitational Wave Observat@mather than the presently-used Zener fundtiand (b)
the fact that a normal-mode analysis is generally not adequate, consistent with a conclusion reached by Levin
[Phys. Rev. D67, 659(1998].
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A key element in the detection of gravitational waves isapproacH4,5,7], internal damping in materials is treated by
the mechanical system which is used to measure the relativeonsideration of a complex spring “constan{ih momen-
displacements of suspended mirrpirsterferometric experi- tum spacg i.e., Kx(w) is replaced byk[1—i¢(w)]X(w)
ments, such as the Laser Interferometric Gravitational Wave=k X(w), where¢(w) is the Zener phenomenological func-
ObservatoryLIGO)] or the displacement of a resonant masstion and where in general a superposed tilde denotes Fourier
antennabar experimenis First, one has to take account of transform and we have usedi (instead of the oft-used i)
noise in interpreting the results and, secondly, one has tto conform to our definition of Fourier transforf@]. In an-
understand in detail how the mechanical motion is read ouvther variation [6,7], a frequency-dependent complex
(such as optical detection systems involving photocurrents itYoung’s modulus is employed. It was also realized that, in
the case of interferometric detectors and either capacitivgeneral¢(w) must have both real and imaginary parts which
transducers or superconducting quantum interference devicese related by a Kramers-Kronig<K) relation. However,
in the case of the bar detectprslere, we present a general there is aserious problenarising from the fact that, in gen-
framework for describing noise effects in detectors systemseral, KK relations often have subtraction terms associated
Our results apply to a very general dissipative environmentwith them (see, for example, the case of the KK relations
However, after outlining the very general framework which between the real and imaginary parts of the dielectric con-
we have developed, for definiteness we will concentratestant for a medium with a static electrical conductiitys]).
mostly on the LIGO-like experimentsl,2] and, more spe- Thus, whereas there is a definite relationship between the

cifically, the test mass suspensions. real and imaginary parts @f(w), there is no way of knowing
Many experimental investigations of LIGO suspensionprecisely what it is from a phenomenological approach.
systems have been carried out already, notably by W8iss Despite the fact that the use éfw) is ubiquitous in the

Saulsor(4], and co-worker$5—7]. There are many different literature, there appears to be no attempt to relate it to a
kinds of noise sources, ettthermal; quantum; seismic; re- simple microscopic model other than one particular analysis
sidual gas; internal friction, flexing, and creep; metrologi-by Zener based on thermoelastic damping, in contrast to our
cal;..) which affect the displacements of the suspension. Ispproach which displays the more general framework into
there a general model which incorporates all such sources#hich this parametrization fits. Furthermore, our approach is
The answer is that Ford, Lewis and O'Conn@LO) have based on a well-defined Hamiltonian, which leads to what
developed such a modé¢R] [which we refer to as the we dubbed the independent oscillatd®) model. This
independent-oscillatdilO) model for other purposes. How- model is the basis of work carried out by Ford, Lewis, and
ever, it is clear that this model embraces nearly all situationghe present author on dissipative and fluctuation phenomena
presently discussed in the gravitational wave detection literain quantum mechanidg], a review of which appears in Ref.
ture and our goal is to demonstrate its usefulness in specifid4]. In particular, we will point out that referring to the
cases and to show, in particular, how it can be utilized tospring as having a complex spring constant can be mislead-
gain information about noise sources. ing since, as we shall show explicitly, the imaginary part of
Turning to specifics, we consider a topic which has re-ke; does not depend in any way on the properties of the
ceived much attention in the recent literatise-8] viz. the  spring per sdapart from an overall nonessential factornof
effect of thermal noise on an extended mass suspended by arheremis the mass of the sprindut, instead, it depends on
anelastic wire. The approach used by all these authors ihe nature of the dissipative environméptimarily the sus-
phenomenologicaland goes back to the work of Zener pension wire in the case of LIGO
[9-11], who used such an approach to analyze experiments To put this work and our general approach in perspective,
carried out as early as 19382]. In one variation of this we will first present some historical background. The study
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of fluctuation phenomena in science began in essence iconvenient model, viz., the independent-oscillator model.
1827 with the observations of the Scottish botanist, RoberThe Hamiltonian of the 10 system is

Brown. It is interesting to note that these early observations 5 5

are still a source of great interest and controvdsy]. An b P 1 2 2
explanation of these results was first provided by Einstein H= ﬁJ’V(XH; 2_mj+ Emiwj(qj_x) —xf(1).
[16] using a discrete time assumption. Langevin later pre- 2)

sented an entirely new approaft7] in the form of a sto-

chastic differential equation. For a survey of this early workHeremis the mass of the quantum particle whitg and o,

we refer to the review by ChandrasekHas]. It soon be- refer to the mass and frequency of heat-bath oscillator
came apparent that a Langevin-type equation provides thaddition,x andp are the coordinate and momentum operators
framework for discussing fluctuation and dissipative phe-for the quantum particle angi andp; are the corresponding
nomena over a wide spectrum of physical phenomena.  quantities for the heat-bath oscillators.

In general, there is an intimate connection between fluc- The infinity of choices for then; and w; give this model
tuations and dissipation, which is referred to as theits great generality. In particular, it can describe nonrelativ-
fluctuation-dissipatior(FD) theorem. For example, Nyquist istic quantum electrodynamics, the Schwabl-Thirring model,
[19] showed that the random fluctuations in voltage across &he Ford-Kac-MazufFKM) model, and the Lamb modg2].
resistor measured by Johns&@0] are determined by its im- In this context, it should be noted that, wher¢hin Eq.
pedance. A general quantum formulation of the FD theorent2) has been put into a form in which all the heat-bath oscil-
appears in the celebrated paper of Callen and Weledh  lators interact with the central oscillator of interéte de-
This theorem is a key ingredient of the pioneering work oftectop but not with each other, we have shown that this is the
Kubo [22,23 on linear response theory in nonequilibrium most generaH one can write down to describe most types of
statistical mechanics. Correlations of the type discussed beghissipation encountered in the literature; in particular, it is
low are widely used in the work of Kubo and others. Anotherunitarily equivalent to the FKM model in which all the os-
major advance is contained in the work of M§#4], who  cillators are coupledas discussed in Sec. V E of R¢2]).
showed that a microscopic equation of motion can generally Use of the Heisenberg equations of motion leads to the
be transformed into the form of a generalized quantunGLE (1) describing the time development of the particle mo-

Langevin equatioiGLE). tion, with
In recent years, there has been widespread interest in dis-
sipative problems arising in a variety of areas in physics. As ,U«(t)ZEj: mjwl_z cod w;t) f(1), 3)

it turns out, solutions of many of these problems are encom-

passed by a generalization of Langevin’'s equation to encom- . o )

pass quantum, memory, and non-Markovian effects, as weWhere6(t) is the Heaviside step function. Also

as arbitrary temperature and the presence of an external po-

Fential V(x). As in Ref. (2], we'refer to this as the general- F(t)zz mjijth(t), (4)
ized quantum Langevin equati¢GLE): i

t where q"(t) denotes the general solution of the homoge-
. / ING (7 1) — neous equation for the heat-bath oscillat@®responding to
+ - + = + X ; !
mx ﬁxdt pE—OXE) V) =FO+(1), (1) no interaction. These results were used to obtain thmdel-
independent result for the (symmetri¢ autocorrelation of

where V’(x)=dV(x)/dx is the negative of the time- F(O), viz,

independent external force apdt) is the so-called memory 1
function. F(t) is the randon{fluctuation or noisgforce and E(F(I)F(t')Jr F(t")F (1)
f(t) is a c-number external forcédue to a gravitational

wave, for instance In addition (keeping in mind that mea- 1 (= _ ]

surements ofAx generally involve a variety of readout sys- = fo do R (w+i07)]he cothh w/2kT)
tems involving electrical measurementsit should be

strongly emphasized that “--the description is more general Xcof w(t—t")], (5)

than the language--T2] in that x(t) can be a generalized
displacement operat@so that, for instanceAx could repre- wherezu(w) is the Fourier transform of the memory function
sent a voltage change w(t). This type of equation is referred to by Kufi2?] as the

A detailed discussion of Eql) appears in Ref[2]. In  second fluctuation-dissipation theorem and we note that it
particular, it was pointed out the GLE corresponds to a macean be written down explicitly once the GLE is obtained.
roscopic description of a quantum system interacting with gAlso, its evaluation requires only knowledge of R@v). On
guantum-mechanical heat-bath and that this description cahe other hand, the first fluctuation-dissipation theorem is an
be precisely formulated, using such general principles asquation involving the autocorrelation xft) and its explicit
causality and the second law of thermodynamics. We alsevaluation requires a knowledge of the generalized suscepti-
stressed that this is a model-independent description. Howbility a(w) (to be defined belowwhich is equivalent to
ever, the most general GLE can be realized with a simple ankhowing the solution to the GLE and also requires knowl-
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edge of both R@(w) and Imi(w). This solution is readily ~and where the second equality in E@3) follows from use
obtained whenV(x)=0, corresponding to the original Of the relation
Brownian motion problenj14]. As shown by FLO[25], a . 2~

solution is also possible in the case of an oscillator. Taking IM a(w) = 0| a(w)|*Ref(v), (14

_ 2 ;
V(x)=3mwox?, these authors obtaingdee Eqs(1)—(3) of which, in turn, follows directly from Eq(7). We note that

Ref. [25]] (120 and (13) are nothing more than the fluctuation-
5 _ - dissipation theorem of the first kinfR2] except that our
X(w)=a(o){F(w)+f(w)}, (6)  results are more explicisee Eq(31) below in this context

being related to a specific model.

where In a similar manner, we obtain, for the ensemble average

) P 4 of the product of the displacement and random force
a(w)=[—Mo +mes—ion(w)] ", (7)
1

and the superposed tilde is used to denote the Fourier trans- Cxe(7)= §<X(I)F(t')+ F(t")x(1))

form. Thus,X(w) is the Fourier transform of the operator

X(t): 1 (= - Lo

:ﬁJ:wdwCXF(w)e T (19
~ _ i wt
Y(w)= f,xdtx(t)e . (8) where
Also, since Eq(3) implies thatu(t) is O for negativet, we Cxr(®)=a(w)Crr(w)
have

=a(w)Reu(w)h v coth(iw/2KT). (16)

W w)= detﬂ(t)eiwtllm ©>0. (9) We now have all the tools we need at our disposal for the
0 calculation of observable quantities. For example, taking
=0 in Eq.(12), and using Eq(14), gives the ensemble av-
Thuszi(w) is analytic in the upper half-plane, le™0. erage of the square of the displacement due to noise
We have now all the tools we need to calculate various

correlation functions which represent, in essence, observable
quantities. Before doing so, it is convenient to rewrite €.
in the form

<x2(t))=ifw dww|a(w)|?Refi(w)coth i w/2kT
o () coth(7 w/2kT)

1 =ﬁjxdww|a(w)|2Reﬁ(w)cotf‘(ﬁw/ZKT)
Cer()=5(FIOF(t') +F(t)F(D) e

L ) EfooP(w)dw, (17

where
wherer=t—t’ and where

i
_ 2 5a~
Crr(w)=RdT(w+i0")]hw cothhw/2kT).  (11) P(w)=Tola(w)|"Ref(w)cothho/KT), (18

In deriving this result we have used the fact that the inteis the power spectrum of the coordinate fluctuations.

grand on the right side of Eq5) is an even function ofo.  In @ similar manner, from Eq$10) and(11), we have
Next, using Egs(6) and (10), it is straightforward to prove .
that the noise contributiopobtained by setting (t)=0] to <F2(t))zf Pr(w)dw, (19)
the coordinate autocorrelation is given [36] 0

1 where

Cad 1= 5 (XOX(E) +X(E)x(1)) .
1 (= Pr(w)= ;Reﬁ(w)cotf(ﬁw/ZkT). (20
=5 f dwCy(w)e 7, (12)
w It is clear from Eqs(18) and (20) that
where P(0)=|a(0)|?Pr(). (21)
Cyu()=|a()|*Crr(w)=1 Im a w)coth i w/2KT), In particular, we note the key role played fifw), given by

(13 Egs.(9) and(3), in all of these results. Once more, we stress
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their generality, which follows from the infinity of choices (w)~—iciw+Ccyticy/w. (26)
for the memory function displayed in E).

In the case of resonant bar detectgi$w) is taken to be wherec,, c,, andc; are positive constants, at least one of
my, wherey is a constant. Thus, in particular, if we take which must be nonzero.
wo<v and substitute Eq7) into Eq. (17), we immediately Next, we examine the question of where resonances occur
find the well-known high-temperature resukx?(t))  in our expressionl7) for (x?(t)). Substituting Eq(7) in Eq.
=kT/mw3 and the zero-temperature resul{x?(t))  (18) we obtain
=(h/2mwg). However, in the case of nonresonant LIGO

detectors, which are responsive to a range of frequencies, the( ;)= h ‘0 Re,u(w)cot}"(h:)/ZkT) .

frequency dependence pf{ w) is essential. T of 2 5 ©@ ~ )
Next, in order to make contact with the approaches which M| @™~ @0~ 1 Imz(w) | +[oRep(w)]

use the Zener function, we write= mwg, so that the gener- (27)

alized susceptibility(7) may be written as . . . .
puibility7) may From henceforth, we will assume weak coupling since this is

a(w)={—mw?+Ke 1, (22) {Ee situz;ipn for gravity wave detectors; this corresponds to
e conditions

where wo>ReTi(w),IMTi(w). (29)
i . . .
Ket= k[ 1— Ewﬁ(w)] =k{1—id(w)}. (23) I[27t]h|s case, the resonance frequency is shifted by an amount
In other words, the quantity¥(w) appearing in phenomeno- _
logical theories is simply given by A‘”Ozﬁm‘ A(wo) <wo. (29)

- We will now examine Eq(27) in two cases of interest.
$(w)= Ew“(‘”)' (24) (a) Resonance ab~w,. This corresponds to the situa-
tion for bar detectors. In this case, we may have- w3
However, from our perspective, it is not helpful to discuss~2w(w— wy) and hence
the results in terms of an effective complex spring constant

kess Since from Eq(3) we see thaj(t) depends only on the P(w)= h Rei(w)coth(h w/2KT)
parameters of the heat-bath. In fact, as emphasized in Ref. 47rm? ) ) 1 _ 2
[2], the memory function is independent of the external po- o {o— (0ot Awg)}*+ |5 —ReL(w)

tential, the particle mass and the temperatlireln other

words, the imaginary part d&f.; does not depend in any way h

on the properties of the spriri@part from an overall nones- =mcotk(ﬁw/2kT)5[w—(w0+Aw0)]

sential factor ofm) but, instead, it depends on the nature of -

he dissipative environmefprimarily th nsion wire in

:hg ‘2;:6'0("’)‘; L?(fo) onmeprimarily the suspension wire = a2 S0 (0ot dwg)] for KT>fao, (30
There are several key reasons why it is better to fit the

experimental results by using(w) instead ofé(w) [apart  which is the usual weak-coupling high-temperature reso-

from the fact that Eq(23) could be misleading since it tends nance result. Also, of course, if(w)=my=const, we see

to obscure the fact thap(w) itself can also have an imagi- from Eq. (29 thatAwy=0, i.e., there is no resonance shift.

nary parf. These stem from the fact that we know a lot about  (b) Resonance ab~w;. These corresponds to the case

the properties ofx(w), regardless of the nature of the heat of the LIGO detectors and arise because @) also con-

bath. Most important, as discussed in Ref], 7.(z) is not  tains the factor Rg(w) which, in terms of the heat-bath

only analytic in the upper half-plane, Im»0, but it is what  parameters, is given by2]

is referred to as positive real functiorwith the consequence

that the relation between its real and imaginary parts is given ~ cpa, T 2

by the Stieltjes inversion theorem, i.e., a Kramers-Kronig ReA(@+i0 )]_52 mjoil§lo—w))+ 6o+ w))],

relation with at most one subtraction term, which can be (32)

absorbed into the particle mass term. Thus, in essence,

Re7i(w) characterizes the functigia(w) and, as can be seen and thus we see explicitly that resonances also occur at the

from Egs.(18) and(20), this is the key ingredient in deter- normal-mode frequencies of the heat-bath. Thus, in the case

mining observable results. Another useful characteristic opf LIGO, this will give information on the nature of the

7i(w) is the reality conditiorf2], viz., dissipative effect of the suspension wires. All of these prop-
erties should be a guide to the experiment in choosing suit-
(w+i0") =n(—w+i0")*. (25) able parameters to fit the data. In particular, we note that,

because of the presence of thelKe) in both the numerator

Also, (@) must have the asymptotic forp26] and denominator of Eq27), the contribution of the indi-
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vidual normal modes td(w) is not additive, i.e., the so- 3

called expansion theorefi28] is not valid. Our conclusion P(w)ﬁmReﬁ(w)COt*"(ﬁw/ZkT)

that the normal-mode decomposition used by other authors

[4] is not correct is consistent with the work of Le\i29]. In 2kT _

fact, we regard Levin's approach and our approach to be — ot Rea(e) for KT<hw (32)

complementary as far as an analysis of the LIGO experiment, yhat the expansion theorem is valid in this limit. Experi-

?S concernedand in this context he goes_beypnd_ our anaIySISmentally, there seems to be some evidencerftw) being

in one respect by considering the spatial distribution of theproportional to o (the so-called “structural damping
dissipation but our results can easily be generalized to thig, qel ” corresponding to a frequency-independefiiw)
situation simply by integration over the detector surjdmat [1,4,30,31), which corresponds to a power spectriit)
whereas Levin's analysis is solely confined to the LIGO case._ ,,~3 which falls rapidly at higher frequencies. It is also of
and high temperatures, our analysis is applicable to all gravinterest to note that our general framework clearly has wider
tational wave detector systems as well as to a plethora ofpplications, in particular, it is relevant to the measurement

dissipative systems discussed in the literature. of the Newtonian constan® by use of a torsion balance
However, for high frequencies and weak couplipg  using a time-of-swing method where it was found that the
> wo>Reu(w),Im (w)], “spring constant” appears to increase with frequefidg].
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