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Noise in gravitational wave detector suspension systems: A universal model

R. F. O’Connell
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001

~Received 23 October 2000; published 25 June 2001!

In a recent review of gravitational wave detectors, Ricci and Brillet discussed models for noise in the various
suspension systems and concluded that ‘‘ . . . there is probably no universal model . . . .’’ Here wepresent such
a model which is based on work carried out by Ford, Lewis, and the present author@Phys. Rev. A37, 4419
~1988!#; the latter work presents a very general dissipative model~which has been applied already to many
areas of physics! with the additional merit of being based on a microscopic Hamiltonian. In particular, we show
that all existing models fall within this framework. Also, our model demonstrates~a! the advantages of using
the Fourier transform of the memory function to parametrize the data from interferometric detectors such as the
Laser Interferometric Gravitational Wave Observatory~rather than the presently-used Zener function! and~b!
the fact that a normal-mode analysis is generally not adequate, consistent with a conclusion reached by Levin
@Phys. Rev. D57, 659 ~1998!#.

DOI: 10.1103/PhysRevD.64.022003 PACS number~s!: 04.80.Nn, 05.30.2d, 05.40.2a
is
ti

av
s

of
s
o
s
itiv
ic

al
m
n

ch
at

on

t
-
gi
.
e

-
on
r

ci
t

re

y
s
r

en

y

-
urier

x
in

ch

-
ted
ns
on-

the

o a
sis
our
nto

is
hat

nd
ena

f.
e
ad-
of
the

n

ive,
dy
A key element in the detection of gravitational waves
the mechanical system which is used to measure the rela
displacements of suspended mirrors@interferometric experi-
ments, such as the Laser Interferometric Gravitational W
Observatory~LIGO!# or the displacement of a resonant ma
antenna~bar experiments!. First, one has to take account
noise in interpreting the results and, secondly, one ha
understand in detail how the mechanical motion is read
~such as optical detection systems involving photocurrent
the case of interferometric detectors and either capac
transducers or superconducting quantum interference dev
in the case of the bar detectors!. Here, we present a gener
framework for describing noise effects in detectors syste
Our results apply to a very general dissipative environme
However, after outlining the very general framework whi
we have developed, for definiteness we will concentr
mostly on the LIGO-like experiments@1,2# and, more spe-
cifically, the test mass suspensions.

Many experimental investigations of LIGO suspensi
systems have been carried out already, notably by Weiss@3#,
Saulson@4#, and co-workers@5–7#. There are many differen
kinds of noise sources, etc.~thermal; quantum; seismic; re
sidual gas; internal friction, flexing, and creep; metrolo
cal;...! which affect the displacements of the suspension
there a general model which incorporates all such sourc
The answer is that Ford, Lewis and O’Connell~FLO! have
developed such a model@2# @which we refer to as the
independent-oscillator~IO! model# for other purposes. How
ever, it is clear that this model embraces nearly all situati
presently discussed in the gravitational wave detection lite
ture and our goal is to demonstrate its usefulness in spe
cases and to show, in particular, how it can be utilized
gain information about noise sources.

Turning to specifics, we consider a topic which has
ceived much attention in the recent literature@5–8# viz. the
effect of thermal noise on an extended mass suspended b
anelastic wire. The approach used by all these author
phenomenologicaland goes back to the work of Zene
@9–11#, who used such an approach to analyze experim
carried out as early as 1936@12#. In one variation of this
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approach@4,5,7#, internal damping in materials is treated b
consideration of a complex spring ‘‘constant’’~in momen-
tum space!, i.e., kx̃(v) is replaced byk@12 if(v)# x̃(v)
[keffx̃(v), wheref~v! is the Zener phenomenological func
tion and where in general a superposed tilde denotes Fo
transform and we have used2 i ~instead of the oft-used1 i !
to conform to our definition of Fourier transform@2#. In an-
other variation @6,7#, a frequency-dependent comple
Young’s modulus is employed. It was also realized that,
general,f~v! must have both real and imaginary parts whi
are related by a Kramers-Kronig~KK ! relation. However,
there is aserious problemarising from the fact that, in gen
eral, KK relations often have subtraction terms associa
with them ~see, for example, the case of the KK relatio
between the real and imaginary parts of the dielectric c
stant for a medium with a static electrical conductivity@13#!.
Thus, whereas there is a definite relationship between
real and imaginary parts off~v!, there is no way of knowing
precisely what it is from a phenomenological approach.

Despite the fact that the use off~v! is ubiquitous in the
literature, there appears to be no attempt to relate it t
simple microscopic model other than one particular analy
by Zener based on thermoelastic damping, in contrast to
approach which displays the more general framework i
which this parametrization fits. Furthermore, our approach
based on a well-defined Hamiltonian, which leads to w
we dubbed the independent oscillator~IO! model. This
model is the basis of work carried out by Ford, Lewis, a
the present author on dissipative and fluctuation phenom
in quantum mechanics@2#, a review of which appears in Re
@14#. In particular, we will point out that referring to th
spring as having a complex spring constant can be misle
ing since, as we shall show explicitly, the imaginary part
keff does not depend in any way on the properties of
spring per se~apart from an overall nonessential factor ofm
wherem is the mass of the spring! but, instead, it depends o
the nature of the dissipative environment~primarily the sus-
pension wire in the case of LIGO!.

To put this work and our general approach in perspect
we will first present some historical background. The stu
©2001 The American Physical Society03-1
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of fluctuation phenomena in science began in essenc
1827 with the observations of the Scottish botanist, Rob
Brown. It is interesting to note that these early observati
are still a source of great interest and controversy@15#. An
explanation of these results was first provided by Einst
@16# using a discrete time assumption. Langevin later p
sented an entirely new approach@17# in the form of a sto-
chastic differential equation. For a survey of this early wo
we refer to the review by Chandrasekhar@18#. It soon be-
came apparent that a Langevin-type equation provides
framework for discussing fluctuation and dissipative ph
nomena over a wide spectrum of physical phenomena.

In general, there is an intimate connection between fl
tuations and dissipation, which is referred to as
fluctuation-dissipation~FD! theorem. For example, Nyquis
@19# showed that the random fluctuations in voltage acros
resistor measured by Johnson@20# are determined by its im
pedance. A general quantum formulation of the FD theor
appears in the celebrated paper of Callen and Welton@21#.
This theorem is a key ingredient of the pioneering work
Kubo @22,23# on linear response theory in nonequilibriu
statistical mechanics. Correlations of the type discussed
low are widely used in the work of Kubo and others. Anoth
major advance is contained in the work of Mori@24#, who
showed that a microscopic equation of motion can gener
be transformed into the form of a generalized quant
Langevin equation~GLE!.

In recent years, there has been widespread interest in
sipative problems arising in a variety of areas in physics.
it turns out, solutions of many of these problems are enco
passed by a generalization of Langevin’s equation to enc
pass quantum, memory, and non-Markovian effects, as
as arbitrary temperature and the presence of an externa
tential V(x). As in Ref. @2#, we refer to this as the genera
ized quantum Langevin equation~GLE!:

mẍ1E
2`

t

dt8m~ t2t8!ẋ~ t8!1V8~x!5F~ t !1 f ~ t !, ~1!

where V8(x)5dV(x)/dx is the negative of the time
independent external force andm(t) is the so-called memory
function.F(t) is the random~fluctuation or noise! force and
f (t) is a c-number external force~due to a gravitationa
wave, for instance!. In addition ~keeping in mind that mea
surements ofDx generally involve a variety of readout sy
tems involving electrical measurements!, it should be
strongly emphasized that ‘‘--the description is more gene
than the language--’’@2# in that x(t) can be a generalize
displacement operator~so that, for instance,Dx could repre-
sent a voltage change!.

A detailed discussion of Eq.~1! appears in Ref.@2#. In
particular, it was pointed out the GLE corresponds to a m
roscopic description of a quantum system interacting wit
quantum-mechanical heat-bath and that this description
be precisely formulated, using such general principles
causality and the second law of thermodynamics. We a
stressed that this is a model-independent description. H
ever, the most general GLE can be realized with a simple
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convenient model, viz., the independent-oscillator mod
The Hamiltonian of the IO system is

H5
p2

2m
1V~x!1(

j
S pj

2

2mj
1

1

2
mjv j

2~qj2x!2D 2x f~ t !.

~2!

Herem is the mass of the quantum particle whilemj andv j
refer to the mass and frequency of heat-bath oscillatorj. In
addition,x andp are the coordinate and momentum operat
for the quantum particle andqj andpj are the corresponding
quantities for the heat-bath oscillators.

The infinity of choices for themj andv j give this model
its great generality. In particular, it can describe nonrela
istic quantum electrodynamics, the Schwabl-Thirring mod
the Ford-Kac-Mazur~FKM! model, and the Lamb model@2#.

In this context, it should be noted that, whereasH in Eq.
~2! has been put into a form in which all the heat-bath os
lators interact with the central oscillator of interest~the de-
tector! but not with each other, we have shown that this is
most generalH one can write down to describe most types
dissipation encountered in the literature; in particular, it
unitarily equivalent to the FKM model in which all the os
cillators are coupled~as discussed in Sec. V E of Ref.@2#!.

Use of the Heisenberg equations of motion leads to
GLE ~1! describing the time development of the particle m
tion, with

m~ t !5(
j

mjv j
2 cos~v j t !u~ t !, ~3!

whereu(t) is the Heaviside step function. Also

F~ t !5(
j

mjv j
2qj

h~ t !, ~4!

where qh(t) denotes the general solution of the homog
neous equation for the heat-bath oscillators~corresponding to
no interaction!. These results were used to obtain the~model-
independent! result for the ~symmetric! autocorrelation of
F(t), viz.,

1

2
^F~ t !F~ t8!1F~ t8!F~ t !&

5
1

p E
0

`

dv Re@m̃~v1 iO1!#\v coth~\v/2kT!

3cos@v~ t2t8!#, ~5!

wherem̃(v) is the Fourier transform of the memory functio
m(t). This type of equation is referred to by Kubo@22# as the
second fluctuation-dissipation theorem and we note tha
can be written down explicitly once the GLE is obtaine
Also, its evaluation requires only knowledge of Rem̃(v). On
the other hand, the first fluctuation-dissipation theorem is
equation involving the autocorrelation ofx(t) and its explicit
evaluation requires a knowledge of the generalized susce
bility a~v! ~to be defined below! which is equivalent to
knowing the solution to the GLE and also requires know
3-2
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NOISE IN GRAVITATIONAL WAVE DETECTOR . . . PHYSICAL REVIEW D 64 022003
edge of both Rem̃(v) and Imm̃(v). This solution is readily
obtained whenV(x)50, corresponding to the origina
Brownian motion problem@14#. As shown by FLO@25#, a
solution is also possible in the case of an oscillator. Tak
V(x)5 1

2 mv0
2x2, these authors obtained@see Eqs.~1!–~3! of

Ref. @25##

x̃~v!5a~v!$F̃~v!1 f̃ ~v!%, ~6!

where

a~v!5@2mv21mv0
22 ivm̃~v!#21, ~7!

and the superposed tilde is used to denote the Fourier tr
form. Thus, x̃(v) is the Fourier transform of the operato
x(t):

x̃~v!5E
2`

`

dtx~ t !eivt. ~8!

Also, since Eq.~3! implies thatm(t) is 0 for negativet, we
have

m̃~v!5E
0

`

dtm~ t !eivt,Im v.0. ~9!

Thus m̃(v) is analytic in the upper half-plane, Imv.0.
We have now all the tools we need to calculate vario

correlation functions which represent, in essence, observ
quantities. Before doing so, it is convenient to rewrite Eq.~5!
in the form

CFF~t![
1

2
^F~ t !F~ t8!1F~ t8!F~ t !&

5
1

2p E
2`

`

dvC̃FF~v!e2 ivt, ~10!

wheret5t2t8 and where

C̃FF~v!5Re@m̃~v1 i01!#\v coth~\v/2kT!. ~11!

In deriving this result we have used the fact that the in
grand on the right side of Eq.~5! is an even function ofv.
Next, using Eqs.~6! and ~10!, it is straightforward to prove
that the noise contribution@obtained by settingf (t)50# to
the coordinate autocorrelation is given by@26#

Cxx~t![
1

2
^x~ t !x~ t8!1x~ t8!x~ t !&

5
1

2p E
2`

`

dvC̃xx~v!e2 ivt, ~12!

where

C̃xx~v!5ua~v!u2C̃FF~v!5\ Im a~v!coth~\v/2kT!,
~13!
02200
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and where the second equality in Eq.~13! follows from use
of the relation

Im a~v!5vua~v!u2 Rem̃~v!, ~14!

which, in turn, follows directly from Eq.~7!. We note that
~12! and ~13! are nothing more than the fluctuation
dissipation theorem of the first kind@22# except that our
results are more explicit@see Eq.~31! below in this context#
being related to a specific model.

In a similar manner, we obtain, for the ensemble aver
of the product of the displacement and random force

CXF~t!5
1

2
^x~ t !F~ t8!1F~ t8!x~ t !&

5
1

2p E
2`

`

dvC̃XF~v!e2 ivt, ~15!

where

C̃XF~v!5a~v!C̃FF~v!

5a~v!Rem̃~v!\v coth~\v/2kT!. ~16!

We now have all the tools we need at our disposal for
calculation of observable quantities. For example, takingt
50 in Eq. ~12!, and using Eq.~14!, gives the ensemble av
erage of the square of the displacement due to noise

^x2~ t !&5
\

2p E
2`

`

dvvua~v!u2 Rem̃~v!coth~\v/2kT!

5
\

p E
0

`

dvvua~v!u2 Rem̃~v!coth~\v/2kT!

[E
0

`

P~v!dv, ~17!

where

P~v!5
\

p
vua~v!u2 Rem̃~v!coth~\v/2kT!, ~18!

is the power spectrum of the coordinate fluctuations.
In a similar manner, from Eqs.~10! and ~11!, we have

^F2~ t !&[E
0

`

PF~v!dv, ~19!

where

PF~v!5
\

p
Rem̃~v!coth~\v/2kT!. ~20!

It is clear from Eqs.~18! and ~20! that

P~v!5ua~v!u2PF~v!. ~21!

In particular, we note the key role played bym̃(v), given by
Eqs.~9! and~3!, in all of these results. Once more, we stre
3-3
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R. F. O’CONNELL PHYSICAL REVIEW D 64 022003
their generality, which follows from the infinity of choice
for the memory function displayed in Eq.~3!.

In the case of resonant bar detectors,m̃(v) is taken to be
mg, whereg is a constant. Thus, in particular, if we tak
v0!g and substitute Eq.~7! into Eq. ~17!, we immediately
find the well-known high-temperature result̂x2(t)&
5kT/mv0

2 and the zero-temperature result̂x2(t)&
5(\/2mv0). However, in the case of nonresonant LIG
detectors, which are responsive to a range of frequencies
frequency dependence ofm̃(v) is essential.

Next, in order to make contact with the approaches wh
use the Zener function, we writek5mv0

2, so that the gener
alized susceptibility~7! may be written as

a~v!5$2mv21keff%
21, ~22!

where

keff5kH 12
i

k
vm̃~v!J [k$12 if~v!%. ~23!

In other words, the quantityf~v! appearing in phenomeno
logical theories is simply given by

f~v!5
1

k
vm̃~v!. ~24!

However, from our perspective, it is not helpful to discu
the results in terms of an effective complex spring const
keff since from Eq.~3! we see thatm(t) depends only on the
parameters of the heat-bath. In fact, as emphasized in
@2#, the memory function is independent of the external p
tential, the particle mass and the temperatureT. In other
words, the imaginary part ofkeff does not depend in any wa
on the properties of the spring~apart from an overall nones
sential factor ofm! but, instead, it depends on the nature
the dissipative environment~primarily the suspension wire in
the case of LIGO!.

There are several key reasons why it is better to fit
experimental results by usingm̃(v) instead off~v! @apart
from the fact that Eq.~23! could be misleading since it tend
to obscure the fact thatf~v! itself can also have an imag
nary part#. These stem from the fact that we know a lot abo
the properties ofm̃(v), regardless of the nature of the he
bath. Most important, as discussed in Ref.@2#, m̃(z) is not
only analytic in the upper half-plane, Imz.0, but it is what
is referred to as apositive real functionwith the consequence
that the relation between its real and imaginary parts is gi
by the Stieltjes inversion theorem, i.e., a Kramers-Kro
relation with at most one subtraction term, which can
absorbed into the particle mass term. Thus, in esse
Rem̃(v) characterizes the functionm̃(v) and, as can be see
from Eqs.~18! and ~20!, this is the key ingredient in deter
mining observable results. Another useful characteristic
m̃(v) is the reality condition@2#, viz.,

m̃~v1 iO1!5m̃~2v1 i01!* . ~25!

Also, m̃(v) must have the asymptotic form@26#
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m̃~v!'2 ic1v1c21 ic3/v. ~26!

wherec1 , c2 , andc3 are positive constants, at least one
which must be nonzero.

Next, we examine the question of where resonances o
in our expression~17! for ^x2(t)&. Substituting Eq.~7! in Eq.
~18! we obtain

P~v!5
\

p

v Rem̃~v!coth~\v/2kT!

H m2S v22v0
22

v

m
Im m̃~v! D 2

1@v Rem̃~v!#2J .

~27!

From henceforth, we will assume weak coupling since this
the situation for gravity wave detectors; this corresponds
the conditions

v0@Rem̃~v!,Im m̃~v!. ~28!

In this case, the resonance frequency is shifted by an am
@27#

Dv05
1

2m
Im m̃~v0!!v0 . ~29!

We will now examine Eq.~27! in two cases of interest.
~a! Resonance atv'v0 . This corresponds to the situa

tion for bar detectors. In this case, we may havev22v0
2

'2v(v2v0) and hence

P~v!5
\

4pm2

Rem̃~v!coth~\v/2kT!

v2F $v2~v01Dv0!%21H 1

2m
Rem̃~v!J 2G

5
\

2mv2 coth~\v/2kT!d@v2~v01Dv0!#

→ kT

mv0
2 d@v2~v01Dv0!# for kT@\v0 , ~30!

which is the usual weak-coupling high-temperature re
nance result. Also, of course, ifm̃(v)5mg5const, we see
from Eq. ~29! that Dv050, i.e., there is no resonance shif

~b! Resonance atv'v j . These corresponds to the ca
of the LIGO detectors and arise because Eq.~17! also con-
tains the factor Rem̃(v) which, in terms of the heat-bath
parameters, is given by@2#

Re@m̃~v1 i01!#5
p

2 (
j

mjv j
2@d~v2v j !1d~v1v j !#,

~31!

and thus we see explicitly that resonances also occur at
normal-mode frequencies of the heat-bath. Thus, in the c
of LIGO, this will give information on the nature of the
dissipative effect of the suspension wires. All of these pro
erties should be a guide to the experiment in choosing s
able parameters to fit the data. In particular, we note th
because of the presence of the Rem̃(v) in both the numerator
and denominator of Eq.~27!, the contribution of the indi-
3-4
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vidual normal modes toP(v) is not additive, i.e., the so
called expansion theorem@28# is not valid. Our conclusion
that the normal-mode decomposition used by other auth
@4# is not correct is consistent with the work of Levin@29#. In
fact, we regard Levin’s approach and our approach to
complementary as far as an analysis of the LIGO experim
is concerned~and in this context he goes beyond our analy
in one respect by considering the spatial distribution of
dissipation but our results can easily be generalized to
situation simply by integration over the detector surface! but
whereas Levin’s analysis is solely confined to the LIGO c
and high temperatures, our analysis is applicable to all gr
tational wave detector systems as well as to a plethora
dissipative systems discussed in the literature.

However, for high frequencies and weak coupling@v
@v0@Rem(v),Im m̃(v)#,
A

ck

ow
s
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P~v!→ \

pm2v2 Rem̃~v!coth~\v/2kT!

→ 2kT

pm2v4 Rem̃~v! for kT!\v ~32!

so that the expansion theorem is valid in this limit. Expe
mentally, there seems to be some evidence form̃(v) being
proportional to v ~the so-called ‘‘structural damping
model,’’ corresponding to a frequency-independentf~v!
@1,4,30,31#!, which corresponds to a power spectrumP(v)
;v23 which falls rapidly at higher frequencies. It is also
interest to note that our general framework clearly has wi
applications, in particular, it is relevant to the measurem
of the Newtonian constantG by use of a torsion balanc
using a time-of-swing method where it was found that t
‘‘spring constant’’ appears to increase with frequency@32#.
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