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Superhydrodynamics
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We present a covariant and supersymmetric theory of relativistic hydrodynamics in four-dimensional
Minkowski space.
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Relativistic fluid mechanics@1# is generally simpler to
formulate than its nonrelativistic counterpart. As it is al
believed to provide a more accurate description of hydro
namical phenomena, much work has been invested in its
velopment@2,3#. Recently, an interesting extension of th
theory to include non-Abelian charges and currents has b
proposed@4#. One of the important aspects of this formalis
is that it includes vorticity consistently at the Lagrangi
level, by developing a non-Abelian generalization of t
Clebsch decomposition of the vector conjugate to the c
rent; for a review with many references, see@5#.

In a related development, Jackiw and Polychronakos@6#
have presented a supersymmetric theory of fluid mecha
in ~211!-dimensional space-time. This model is rather s
cial, as it descends from a supermembrane theory in 311
dimensions@7–9#. It results in a supersymmetric generaliz
tion of the nonrelativistic planar Chaplygin gas@10#. An in-
teresting result obtained in@6# is that the vorticity in the
theory is generated by the fermion fields, rather than by
bosonic component of the fluid. In spite of these advanc
so far a relativistic and supersymmetric theory of fluid m
chanics in 311 dimensions is lacking. The present work co
tributes to filling this gap.

The main result of this work is a supersymmetric comp
nent action, which we present both in its Lagrangian a
Hamiltonian form, for a pseudo-classical conserved curr
Vm made up of bosonic as well as fermionic contribution
To be more precise, the current is constructed from two
scalar fields (C,N) and a chiral fermion fieldc6 :1

Vm5
1

G~C! S ]mN1
i

2
G8~C!c̄1gmc2D , ]•V50. ~1!

HereG(C) is some function of the real scalar fieldC which,
for the purpose of constructing models, needs no furt
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1Our conventions for chiral spinors are such thatg5c656c6

and c̄6g556c̄6 ; charge conjugation acts asc65Cc̄6
T , where

c̄65 ic7
† g0. It should also be noted that the Euclideang45 ig0 is

Hermitian, henceg0 is anti-Hermitian.
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specification. However, under particular conditions discus
below the current allows an elegant and straightforward
terpretation in terms of fluid flow.

The fields (C,N,c6) andVm representing the conserve
current are described by the supersymmetric Lagrangian

L52
1

2
G~C!@~]mC!22Vm

2 1c̄1 ]”Jc2#

2VmS ]mN1
i

2
G8~C!c̄1gmc2D

2
1

8
G9~C!c̄1c1c̄2c2 . ~2!

The infinitesimal supersymmetry transformations leaving
action invariant, parametrized by anti-commuting spinor p
rameterse6 , are

dC5 ē1c11 ē2c2 , dN5 iG~C!~ ē2c22 ē1c1!,

dc15~]”C1 iV” !e2 , dc25~]”C2 iV” !e1 , ~3!

dVm52i ē1smn]nc122i ē2smn]nc2 .

Under these transformations the variation of the Lagrang
is a total divergence:

dL5]m~ ē1B1m1 ē2B2m!, ~4!

where the vector-spinor fieldsB6m are given, modulo equa
tions of motion, by

B1m.2
1

2
G~C!gm~]”C2 iV” !c12

1

2
G8~C!gmc2c̄1c1 ,

~5!

B2m.2
1

2
G~C!gm~]”C1 iV” !c22

1

2
G8~C!gmc1c̄2c2 .

The commutator of two supersymmetry transformations~3!
closes as usual, modulo field equations. A complete
©2001 The American Physical Society01-1
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manifest off-shell formulation can be obtained from a sup
space treatment. The relevant superspace action is defin
terms of a real vector superfieldV with lowest components
(C,c6 ,Vm), and a pair of conjugate chiral superfield
(L1 ,L2) with lowest componentz such that Rez5N. The
superfield expression for the Lagrangian is

S5E d4xE d2u1E d2u2S 1

2
V~L11L2!2F~V! D .

~6!

Here F(V) is an arbitrary real function of the superfieldV,
with lowest scalar componentF(V)uu6505F(C). Reduction
of the superspace expression~6! in terms of components
leads, after elimination of a number of auxiliary fields a
some rescaling of the scalars, to the expression~2! with the
identificationG(C)5F9(C).

The field equations derived from the Lagrangian~2! are

]•V50, ]mN5G~C!Vm2
i

2
G8~C!c̄1gmc2 ,

~7!

G~C!hC52
1

2
G8~C!@~]C!21V22c̄1 ]”Jc2#

1
i

2
G9~C!c̄1V” c21

1

8
G-~C!c̄1c1c̄2c2

for the bosonic fields, and

G~C!]”c652
1

2
G8~C!~]”C7 iV” !c62

1

4
G9~C!c7c̄6c6

~8!

for the fermionic ones. The first two equations~7! indeed
reproduce Eq.~1!.

Because of translation invariance and supersymmetry,
theory described byL conserves the four-momentum and t
supercharges. The corresponding currents are provide
the energy-momentum tensor and the supercurrents. Fo
energy-momentum tensor we use the symmetrized versi

Tmn5G~C!F]mC]nC1VmVn1
1

4
c̄1~gm ]Jn1gn ]Jm!c2G

2
i

4
G8~C!c̄1~gmVn1gnVm!c2

2gmnF1

2
G~C!„~]C!21V21c̄1 ]”Jc2…

1
1

8
G9~C!c̄1c1c̄2c2G . ~9!

It is obtained from the non-symmetric translational Noeth
currentsQmn by the addition of an improvement term:Tmn

5Qmn1Vmn , where
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Vmn5
1

4
]l
„«mnklG~C!c̄1gkc2…, ]mVmn50. ~10!

The field equations~7! and~8! imply ]mTmn50, from which
the conservation of four-momentumPm5*d3xTm0 follows.
The supercurrents are obtained directly by Noether’s pro
dure and read~in an on-shell version!

S1m5G~C!~]”C2 iV” !gmc12
1

2
G8~C!gmc2c̄1c1 ,

~11!

S2m5G~C!~]”C1 iV” !gmc22
1

2
G8~C!gmc1c̄2c2 .

As on shell]•S650, the conservation of the supercharg
Q65*d3xS60 follows.

The manifestly covariant Lagrangian description of t
theory has an equivalent canonical formulation in terms o
Hamiltonian with a corresponding bracket structure. Fir
the canonical momenta are defined by

pC5
dLeff

dĊ
5G~C!Ċ, pN5

dLeff

dṄ
5V0 ,

p15g0

dLeff

dċ̄2

5
1

2
G~C!c1 , ~12!

p25g0

dLeff

dċ̄1

5
1

2
G~C!c2 .

The inclusion of theg0 in the definition of the fermionic
momenta is motivated by the general requirement that
charge conjugation properties of the momenta reflect th
of the fermion variables themselves. Furthermore, note
V0 is a canonical momentum, whereas the 3-vector fieldVW is
an auxiliary field, which can be eliminated by its algebra
field equation; in particular in the following we use the ide
tifications

V05pN , VW 5
1

G~C! S ¹W N1
i

2
G8~C!c̄1gW c2D . ~13!

As usual, the fermionic momenta are not independent,
the theory possesses the second-class constraints

x65p62
1

2
G~C!c6.0. ~14!

As a result, the dynamics of the theory is generated b
Hamiltonian—obtained fromL by a straightforward Leg-
endre transformation—and a set of Dirac-Poisson brac
derived by reduction of the standard Poisson brackets to
1-2



ne

-
a

et

qs
ns
n

; f

su-
: the

-

t:
rva-
of
the

ors

ical
ym-

eld

ad

RAPID COMMUNICATIONS

SUPERHYDRODYNAMICS PHYSICAL REVIEW D64 021701~R!
physical shell~14! in the full phase-space. In summary, o
first constructs a Hamiltonian density

H5
1

2G~C!
pC

2 1
1

2
G~C!pN

2 2
i

2
G8~C!pNc̄1g0c2

1
1

2
G~C!„~¹W C!21c̄1¹”Jc2…

1
1

2G~C! S ¹W N1
i

2
G8~C!c̄1gW c2D 2

1
1

8
G9~C!c̄1c1c̄2c2 , ~15!

where it is to be noted that¹” 5gW •¹W now denotes a three
dimensional contraction. Subsequently the field equations
obtained from the HamiltonianH5*d3xH by the Dirac-
Poisson brackets

]0A5$A,H%* , ~16!

defined in terms of the elementary brackets or antibrack

$C~r ,t !,pC~r 8,t !%* 5d3~r2r 8!,

$N~r ,t !,pN~r 8,t !%* 5d3~r2r 8!,

$pC~r ,t !,c̄6~r 8,t !%* 5
G8~C!

2G~C!
c̄6~r ,t !d3~r2r 8!, ~17!

$c6~r ,t !,pC~r 8,t !%* 52
G8~C!

2G~C!
c6~r ,t !d3~r2r 8!,

$c6~r ,t !,c̄7~r 8,t !%* 5
g0~17g5!

2G~C!
d3~r2r 8!.

In particular we note that the equation

ṗN5$pN ,Heff%* 5¹W •F 1

G~C! S ¹W N1
i

2
G8~C!c̄1gW c2D G ,

~18!

after the identification~13! is equivalent withV̇05¹W •VW , or
]•V50. A somewhat tedious calculation shows that E
~16! and ~17! indeed reproduce all covariant field equatio
~7! and~8!. We can now construct the canonical expressio
for the conserved four-momentum and the supercharges
the energy-momentum vector we find the results

P05H5E d3rH,

~19!

Pi5E d3r FpC¹ iC1pN¹ iN1
1

2
G~C!c̄1g0¹J ic2G .
02170
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The canonical expressions for the supercharges are

Q15E d3r F „pC2 iG~C!pN…c1

1„G~C!¹” C2 i¹” N…g0c11
1

4
G8~C!g0c2c̄1c1G ,

~20!

Q25E d3r F „pC1 iG~C!pN…c21„G~C!¹” C1 i¹” N…g0c2

1
1

4
G8~C!g0c1c̄2c2G .

Like the Hamiltonian generates the time-evolution, the
percharges generate the supersymmetry transformations
results~3! are reproduced by the brackets

d~e6!A5$A,ē6Q6%* . ~21!

The supercharges satisfy the standard super-Poincare´ alge-
bra, in particular$Q6 ,Q̄7%* 52P” . Note that the supersym
metry transformation rule implies vm[$Vm ,Q6%*
52ismn]nc6 , wherevm is a conserved fermionic curren
]•v50, as expected from supersymmetry and the conse
tion law of Vm . It is also of interest to discuss the brackets
the current components among themselves. By applying
identifications~13! one finds the non-trivial results

$V0~r ,t !,VW ~r 8,t !%* 5
1

G~C!
¹W rd

3~r2r 8!,

and

$Vi~r ,t !,Vj~r 8,t !%* 5
„G8~C!…2

„G~C!…3
c̄1g0s i j c2

3d3~r2r 8!. ~22!

Note that the charge-conjugation properties of the spin
guarantee thatc̄1g0s i j c25 ic2

† s i j c25 ic1
† s i j c1 , as in

our conventionss i j is anti-Hermitian.
For easy comparison we have performed the canon

analysis in terms of the fields related by the linear supers
metry transformations~3!, at the price of dealing with off-
diagonal terms in the Dirac-Poisson brackets~17!. Observe,
however, that the brackets can be diagonalized by a fi
redefinition

F65AG~C!c6 . ~23!

Indeed, in terms of the new fermion fields the brackets re

$C~r ,t !,pC~r 8,t !%* 5d3~r2r 8!,
1-3
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$N~r ,t !,pN~r 8,t !%* 5d3~r2r 8!,
~24!

$pC~r ,t !,F̄6~r 8,t !%* 5$F6~r ,t !,pC~r 8,t !%* 50,

$F6~r ,t !,F̄7~r 8,t !%* 5
1

2
g0~17g5!d3~r2r 8!,

but of course the supersymmetry transformations~3! now
become non-linear. We do not present the new express
here for the energy-momentum and supercurrents; howe
the conserved current~1! is of particular interest and we
observe that after the field redefinition~23! its space compo-
nents read

VW 5
1

G~C!
¹W N1

iG8~C!

2„G~C!…2
F̄1gW F2 . ~25!

To complete its hydrodynamical interpretation, we relate
fields in our model to the fluid densityr and velocityum .
First we consider the bosonic reduction, obtained by req
ing the fermion field to vanish:F650. The field equations
~7! then reduce to

Vm5rum5
1

G~C!
]mN, Vm

2 52r2, ]•V50,

~26!

G~C!hC5
1

2
G8~C!„2~]C!21r2

….

In the present context the current-conservation conditio
to be interpreted as the equation of continuity in hydrod
namics, while the last equation in Eq.~26! can be used to
express the densityr in terms of the fieldC. The first equa-
tion in Eq.~26! then implies that the velocity field for fixedr
~i.e., for fixedC) depends only on one degree of freedom,N.
This is also the situtation encountered in potential flo
when um5]mu, (]u)2521. Therefore our bosonic mode
describes potential flow with vanishing vorticity, provided

]mu5
1

rG~C!
]mN. ~27!

Such a relation is consistently realized if either]mr;]mu
;Vm , or else ifN can be expressed entirely in terms ofu,
independent ofr: ]N/]r50. In the first case]mC;Vm , and
the bosonic part of the energy-momentum tensor manife
takes the perfect fluid form; indeed, if]mC5kum , then

Tmn
(B)5pgmn1~p1«!umum , ~28!
02170
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where the pressure and energy density are given by2 p5«
51

2G(C)(k21r2). The case ]N/]r50 is realized if N
52mu, r52m/G(C), with m a constant of proportionality
It follows that N must satisfy the condition (]N)2524m2

5const, while the combination of these conditions with E
~26! gives

@G~C!#5/2

G8~C!
]m

„AG~C!]mC…52m2. ~29!

For example, ifG(C)51/C, we find the imaginary-mass
Klein-Gordon equation

~h1m2!AC50, ~30!

which allows non-trivial stationary solutions for the dens
r52mC. The more general AnsatzG(C)5Cp leads to the
non-linear relation

hC(p12)/25m2p~p12!C2(3p12)/2. ~31!

If the fermion fields are switched on, the potential charac
of the flow disappears; indeed, as

Vm5rum5
1

G~C!
]mN1

iG8~C!

2„G~C!…2
F̄1gmF2 , ~32!

the velocity is now parametrized in terms of one bosonic a
two fermionic degrees of freedom. As Eq.~22! shows, the
vorticity is non-zero as a result of the fermionic contributio
indeed. In terms of the redefined fieldsF these bracket rela
tions take the form

$Vi~r ,t !,Vj~r 8,t !%* 5S G8~C!

@G~C!#2D 2

F̄1g0s i j F2d3~r2r 8!.

~33!

In particular, for the caseG(C)51/C the coefficients of the
bi-fermion term on the right-hand side of Eqs.~32! and~33!
reduce to constants, and the current is a linear combina
of free boson and fermion currents.

The models constructed here can be generalized to
clude vorticity from bosonic potentials, by a supersymmet
extension of the Clebsch decomposition ofVm ; this is ex-
plained elsewhere@11#. Consistent extensions of the mode
at the quantum level are of potential interest in cosmolo
where they could provide an effective description of an ea
supersymmetric phase of the universe, and in conden
matter physics, where they might apply to quantum flu
like 3He-4He mixtures, up to effects proportional to th
mass-differences of these isotopes.

2It is possible to modify the action~6! so as to add a constant term
to the energy; then the equation of state is changed top1m25«
2m25

1
2 G(C)(k21r2); details are given in@11#.
1-4
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