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We present a covariant and supersymmetric theory of relativistic hydrodynamics in four-dimensional
Minkowski space.
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Relativistic fluid mechanic$1] is generally simpler to specification. However, under particular conditions discussed
formulate than its nonrelativistic counterpart. As it is alsobelow the current allows an elegant and straightforward in-
believed to provide a more accurate description of hydrodyterpretation in terms of fluid flow.
namical phenomena, much work has been invested in its de- The fields C,N,.) andV,, representing the conserved
velopment[2,3]. Recently, an interesting extension of the current are described by the supersymmetric Lagrangian:
theory to include non-Abelian charges and currents has been
proposed4]. One of the important aspects of this formalism 1 o
is that it includes vorticity consistently at the Lagrangian L=— EG(C)[(aMC)Z—VIZﬁ b
level, by developing a non-Abelian generalization of the
Clebsch decomposition of the vector conjugate to the cur- i o
rent; for a review with many references, ¢ —V#9,N+ EG’(C)w+ Yulb-

In a related development, Jackiw and Polychrondl&ds
have presented a supersymmetric theory of fluid mechanics 1 -
in (2+1)-dimensional space-time. This model is rather spe- - gG"(C)l//+ b 2
cial, as it descends from a supermembrane theory-i 3
dimensiong7-9]. It results in a supersymmetric generaliza- The infinitesimal supersymmetry transformations leaving the

tion of the nonrelativistic planar Chaplygin ge0]. Anin- action invariant, parametrized by anti-commuting spinor pa-
teresting result obtained if6] is that the vorticity in the ameterse, | are

theory is generated by the fermion fields, rather than by the
bosonic component of the fluid. In spite of these advances,

so far a relativistic and supersymmetric theory of fluid me- SC=e. p+e -, ON=IG(C)(e_th_—e i),
chanics in 3-1 dimensions is lacking. The present work con-
tributes to filling this gap. S, =(IC+iV)e_, Sp_=(IC—iV)e, , 3)

The main result of this work is a supersymmetric compo-
nent action, which we present both in its Lagrangian and _ _
Hamiltonian form, for a pseudo-classical conserved current oV, ,=2i€,0,,0"y —2i€ 0,,0" ) .
V,, made up of bosonic as well as fermionic contributions. . o .
To be more precise, the current is constructed from two rea+|Jnder thes_e transformations the variation of the Lagrangian
scalar fields C,N) and a chiral fermion fieldy. :* is a total divergence:

1 i B SL=0"(€.B,,+e B_,), (4)

V,==——|d N+ =G (C)pry,b_|, 9-V=0. (1)
BGe)\ 2 G where the vector-spinor field3. , are given, modulo equa-

tions of motion, by

HereG(C) is some function of the real scalar fieldwhich,

for the purpose of constructing models, needs no further

1 1 .
Bip=— EG(C) Y (0C—=V) iy — EG,(C) Yulb-th b
®)
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our conventions for chiral spinors are such thaiy.. =+ . B_,=— EG(C) Y (0CH+IV) - — EG’(C)VMQM S/
and Zi V5= i@t; charge conjugation acts a@zcﬂ, where
. =iyl y,. It should also be noted that the Euclidepr=iy, is ~ The commutator of two supersymmetry transformatiéjs
Hermitian, hencey, is anti-Hermitian. closes as usual, modulo field equations. A complete and
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manifest off-shell formulation can be obtained from a super- 1 —
space treatment. The relevant superspace action is defined in QW:Z!?A(SWKAG(C)% Yetp-),  9*Q,,=0. (10

terms of a real vector superfieM with lowest components
(C,¢~,V,), and a pair of conjugate chiral superfields
(A, ,A_) with lowest component such that Rg=N. The
superfield expression for the Lagrangian is

szfd“xf d20+fd20(%V(A++A)—F(V) .
(6)

Here F(V) is an arbitrary real function of the superfieltl
with lowest scalar componeﬁt(V)|Ht=0= F(C). Reduction

of the superspace expressioB) in terms of components
leads, after elimination of a number of auxiliary fields and
some rescaling of the scalars, to the expresg®mwith the
identificationG(C)=F"(C).

The field equations derived from the Lagrangiah are

9-V=0, a#N:G(C)vM—%G'(C)Zﬂw,,
@)

1 SN
G(C)DCz—EG’(C)[(&C)2+V2—¢/+/91,/;_]
i _ 1 _
+ EG”(C)MWIL + gG”’(C) (/AR /A
for the bosonic fields, and
1 ) 1 —
G(C)h=—5G (C)ICFIV) o~ G (C) = -

8

for the fermionic ones. The first two equatiofig indeed
reproduce Eq(1).

The field equation$7) and(8) imply ¢“T =0, from which

the conservation of four—momentulfmﬂzfd3xTM0 follows.

The supercurrents are obtained directly by Noether’s proce-
dure and readin an on-shell version

1 _
S.,=G(CNIC—IV)y, b~ 56 (C)y, It
(11)

1 —
S ,=C(C)C+IV)yu - = 5C(Chyudbi -y

As on shellg-S. =0, the conservation of the supercharges
Q. =[d3xS.  follows.

The manifestly covariant Lagrangian description of the
theory has an equivalent canonical formulation in terms of a
Hamiltonian with a corresponding bracket structure. First,
the canonical momenta are defined by

5£eff ; 5£eff
m7c=—-=G(C)C, my=——=V,
cT 58 (©) NT TSR 0
SLos 1
Ti=Yo — —5G(C)¢s, (12)
St
5L 1
777:70%256((3)1//7-
oYy

The inclusion of they, in the definition of the fermionic
momenta is motivated by the general requirement that the

Because of translation invariance and supersymmetry, theharge conjugation properties of the momenta reflect those

theory described by conserves the four-momentum and the

of the fermion variables themselves. Furthermore, note that

supercharges. The corresponding currents are provided hyo is a canonical momentum, whereas the 3-vector fiéld

the energy-momentum tensor and the supercurrents. For thg,

auxiliary field, which can be eliminated by its algebraic

energy-momentum tensor we use the symmetrized versionsie|q equation; in particular in the following we use the iden-

1— - -
T,,=6G(C)4,C0,CH+V,V,+ Zt/q( Y0t V0, )

i —
_ZG’(C) er( ’y,u,VV+ ’)/va.) -

1 22—
_g/.w EG(C)(((?C) +V +¢+ﬂ¢7)

1 — _
+§G”(C)¢+¢+¢—¢—}- C)

tifications

V:L §N+|§G’(C)$+§¢_ . (13

V0:7TN, G(C)

As usual, the fermionic momenta are not independent, and
the theory possesses the second-class constraints

1
Xi:ﬂ-i_EG(C)lpt:O- (14

As a result, the dynamics of the theory is generated by a

It is obtained from the non-symmetric translational NoetherHamiltonian—obtained fromZ by a straightforward Leg-

currents® ,,, by the addition of an improvement ternn,,,

=0,,+Q,,, where

endre transformation—and a set of Dirac-Poisson brackets
derived by reduction of the standard Poisson brackets to the
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physical shell(14) in the full phase-space. In summary, one The canonical expressions for the supercharges are
first constructs a Hamiltonian density

1 1 i . B 5 N
H=5600) et 2 G(C) N5 G (Crmutrs you- Q+—f d°r| (me—IG(C)my) ¢y
. 1 _
+5GOTCr+ 7Ty ) +(G(C)YC—iTN) Yo + 76 (Chyod ¥t |,
s ] — . \? (20)
+3600)| TN+ 56 (C)v v

(mc+iIG(C)my) -+ (G(C)VC+iVN) yoip -

Q,=J dr

1 _
+ 36 () yoi by

1 _ _
+§G”(C)‘/I+¢+¢—‘/f—a (15)

where it is to be noted tha = y-V now denotes a three-
dimensional contraction. Subsequently the field equations are o ) )
obtained from the Hamiltoniam = [d°x* by the Dirac- Like the Hamiltonian generates the time-evolution, the su-
Poisson brackets percharges generate the supersymmetry transformations: the

results(3) are reproduced by the brackets

doA={AH}*, (16

. _ S(es)A={Ae.Q.}*. (21)
defined in terms of the elementary brackets or antibrackets

The supercharges satisfy the standard super-Poiratgee

{C(r,t),mc(r' ,H)}*=8%(r—r"), bra, in particulag Q- ,6;}* =2P. Note that the supersym-
metry transformation rule  implies w,={V,,Q.}*
IN(r 1), (' D = 83(r—r") =2io,,0"y., wherew, is a conserved fermionic current:

d-w=0, as expected from supersymmetry and the conserva-

tion law of vV, . Itis also of interest to discuss the brackets of
G'(C)— 5 , the current components among themselves. By applying the
2G(C)¢’i(r't) (r=r, A7) identifications(13) one finds the non-trivial results

{arc(r,t), e (r/ )} =

’ R 1 .
(0.0 7l 0} = = e (=1, Va(r 0.V 0] =g Vo1,
01 7o) and
R L e e Rl A] .
G'(C))—
: (r' Vv =—— 0.
In particular we note that the equation Vilr, 0, v;(r', b} (G(C))? Yryoig-

X 83 (r—r’). (22)

€N+'§G'<C>EJ¢”,
18

: - 1

— * —
= Her ™ =V [G(C) Note that the charge-conjugation properties of the spinors
guarantee thaty, Yo =iy’ oy =iyl oy, , as in
our conventionsr;; is anti-Hermitian.

For easy comparison we have performed the canonical
analysis in terms of the fields related by the linear supersym-
metry transformation$3), at the price of dealing with off-
%iiagonal terms in the Dirac-Poisson brackgt). Observe,
?{owever, that the brackets can be diagonalized by a field
redefinition

after the identification(13) is equivalent withV,=V -V, or
d-V=0. A somewhat tedious calculation shows that Eqs
(16) and(17) indeed reproduce all covariant field equations
(7) and(8). We can now construct the canonical expression
for the conserved four-momentum and the supercharges; f
the energy-momentum vector we find the results

p0=H:f o, ®.=G(C)p. . (23
(19 Indeed, in terms of the new fermion fields the brackets read

1 — -
mcViCH+ myViN+ S G(C) s voVigr- |-

Pi:J d3r

{C(rvt)vﬂ-c(rlat)}* = 53(r_r’)1
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IN(r,t), my(r' )} = S(r—r"), where the pressure and energy density are givenpbye
(24) =1G(C)(k¥*+p?. The casedN/dp=0 is realized if N
=2mé, p=2m/G(C), with m a constant of proportionality.
[e(r,0), @ (1 D)V ={D.(r,1), 7c(r' ,1)}* =0, It follows that N must satisfy the conditionaN)?= —4m?
=const, while the combination of these conditions with Eq.
(26) gives
. 1 0
{q)i(r,t),q);(r',t)}*z—y(1175)63(I’—I"), 5/2
2 [G(C)]*2 -
W& (\/G(C)&MC)—Zm . (29

but of course the supersymmetry transformatig8s now

become non-linear. We do not present the new expressiontsyr example, ifG(C)=1/C, we find the imaginary-mass
here for the energy-momentum and supercurrents; howevekjein-Gordon equation

the conserved currentl) is of particular interest and we

observe that after the field redefinitig23) its space compo-

nents read (O+m?)yC=0, (30)
which allows non-trivial stationary solutions for the density
o1 L iG'(C) — . p=2mC. The more general Ansatz(C)=CP leads to the
V= N+ LOJEVO NN (25) non-linear relation
G(C) " 2(C)?

Dc(p+2)/2: mZp(p+ Z)C_(3p+2)/2. (31)

To complete its hydrodynamical interpretation, we relate thaf the fermion fields are switched on, the potential character
fields in our model to the fluid density and velocityu,.  of the flow disappears; indeed, as

First we consider the bosonic reduction, obtained by requir-
ing the fermion field to vanish® . =0. The field equations

(7) then reduce to _ 1 iG'(C) —
V, =pu,= d, N+ b d_ 32
w= PYu G(C) " 2(G(C))? + Y (32)

the velocity is now parametrized in terms of one bosonic and
two fermionic degrees of freedom. As E@®2) shows, the

(26)  Vvorticity is non-zero as a result of the fermionic contribution
indeed. In terms of the redefined fieldsthese bracket rela-
tions take the form

IN, Vi=—p?2  §.V=0,

VumPUTGC)

1
G(c)Oc= EG’(C)(—(&C)2+p2).

G'(C)

2

(33

In the present context the current-conservation condition is{Vi(r,t),Vj(r’,t)}* =<
to be interpreted as the equation of continuity in hydrody-
namics, while the last equation in E6) can be used to

EXpress the densit;y'in tgrms of the fieldj'. The first equa- -, particular, for the cas&(C)=1/C the coefficients of the
tion in Eq.(26) then implies that the velocity field for fixed bi-fermion term on the right-hand side of Eq82) and (33)

(|.e_., f_or fixedC) depends only on one degr_ee of free_chn, reduce to constants, and the current is a linear combination
This is also the situtation encountered in potential flow,Of free boson and fermion currents

whenu,=4,0, (90)°=—1. Therefore our bosonic model ™ e models constructed here can be generalized to in-

describes potential flow with vanishing vorticity, provided clude vorticity from bosonic potentials, by a supersymmetric
extension of the Clebsch decomposition\of; this is ex-
plained elsewhergl1]. Consistent extensions of the models

N. (27 at the quantum level are of potential interest in cosmology,
where they could provide an effective description of an early
supersymmetric phase of the universe, and in condensed

Such a relation is consistently realized if eithgfp~d,0  matter physics, where they might apply to quantum fluids

~V,, or else ifN can be expressed entirely in terms@f  |ike 3He“*He mixtures, up to effects proportional to the

independent op: JN/dp=0. In the first C&S@MCNV#, and mass-differences of these isotopes.

the bosonic part of the energy-momentum tensor manifestly

takes the perfect fluid form; indeed, df,C=«u,,, then

0 60

2t is possible to modify the actiof) so as to add a constant term
®) to the energy; then the equation of state is changeptq®=¢
T,r=P9u,t(pte)u,u,, (28)  _ ,2=1G(C)(x?+p?); details are given ifi11].

021701-4



RAPID COMMUNICATIONS

SUPERHYDRODYNAMICS PHYSICAL REVIEW D64 021701R)

[1] L. D. Landau and E. M. LifshitzFluid Mechanics(Pergamon [5] R. Jackiw, “Lectures on Fluid Mechanics,” physics/0010042.
Press, New York, 1959 [6] R. Jackiw and A. P. Polychronakos, Phys. Rev62) 085019
[2] B. Carter, inA Random Walk in Relativity and Cosmolpgy (2000.
edited by N. Dadhich, J. Krishna Rao, J. V. Narlikar, and C. V. [7] Y. Bergner and R. Jackiw, physics/0103092.
Visveshwara(Wiley Eastern, Bombay, 1985p. 48; in Rela- [8] B. de Wit, J. Hoppe, and H. Nicolai, Nucl. PhyB305[FS23,

tivistic Fluid Dynamics edited by A. Anile and Y. Choquet- 525(1988; M. Bordemann and J. Hoppe, Phys. Lett3B7,
Bruhat (Springer Verlag, Heidelberg, 198%. 1; B. Carter 315 (1993; J. Hoppe, ibid. 329 10 (1994; see also
and D. Langlois, Phys. Rev. B1, 5855(1995. hep-th/9311059.

[3] V. V. Lebedev and |. M. Khalatnikov, Zh’.IEp. Teor. Fiz83, [9] M. Hassaine and P. A. Horvathy, hep-th/0101044, v2.
1601(1982 [Sov. Phys. JETB6, 923(1982]; I. M. Khalat- [10] S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phy&1, 1

nikov and V. V. Lebedev, Phys. Let®1A, 70 (1982. (1909 (as quoted if5]).
[4] R. Jackiw, V. P. Nair, and So-Young Pi, Phys. Rev.6R [11] J. W. van Holten, T. S. Nyawelo, and S. Groot Nibbelifirk
085018(2000. preparation

021701-5



