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We construct an effective non-relativistic quantum field theory that describes bound statésrofpairs
and their hadronic decays. We then derive a general expression for the lifetime of the ground state at next-to-
leading order in isospin breaking. Chiral perturbation theory allows one to relate the decay rate to the two
Swave 77 scattering lengths and to several low-energy constants that occur in the chiral Lagrangian. Recent
predictions for the scattering lengths give (2.9+0.1)x 10 % s. This result may be confronted with" 7~
lifetime measurements, like the one presently carried out at CERN.
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[. INTRODUCTION perturbation theoryChPT). The aim of the present paper is
(i) to give a complete description of the theory of thé 7~
The DIRAC experiment at CERNL] aims to measure the atom decay, providing the details that were omitted in
lifetime of thesr* =~ atom(pionium) in its ground state with  [10,12], and (i) to update that numerical analysis by use of
high precision. This atom decays predominantly into twothe information recently obtained if¥] on the scattering
neutral pions]'=1I",_0. The latter decay rate is proportional lengths and on one of the low-energy constants.
to the square of the differen@g—a, of the strongSwave We first briefly review previous work on the subject. The-
mar scattering length$2,3] with isospinl=0,2. The mea- oretical investigations of hadronic atoms and, in particular,
surement will therefore allow one to determine this differ-of 7" 7~ decay, have been performed in several settings.
ence, which may then be confronted with the predicted valugotential scattering theory in the framework of quantum me-
ap—a,=0.265+0.004[4]. What makes this enterprise par- c_hanlcs has been used_[lhlS—lE}, and methods of quantum
ticularly exciting is the fact that one may determine in thisfield theory have been invoked as WelB—21. In particular,
manner the nature of spontaneous chiral symmetry breakin Refs[20], the lifetime of ther™ 7~ atom was calculated
in QCD by experiment: Should it turn out that the predic-2Y USe of two-body wave equations of 3D-constraint field
tions [4] are in conflict with the results of DIRAC, one theory. In R?fs[zﬂ’ thesr"a~ atom decay was studied in a
would have to concludgs] that spontaneous chiral symme- field-theoretical approacrl bzised on the Bethe-Salpeter equa-
try breaking in QCD differs from the standard pictiiee-g]. tion. The results for ther™ 7~ atom lifetime obtained with

An analogous determination of the nature of spontaneouthe two latter approaches contain the major next-to-leading

chiral symmetry breaking may be performed through angrder terms in isospin breaking and agree both conceptually

vsis ofK. d hich all H and numerically. However, in these investigations the mo-
analysis ofKe, decays, which allows one to measure the,qnym dependence of the stromgr scattering amplitude

scattering lengtha, [9]. was neglected.

In order to determine the scattering lengths through a In several recent publicationi22—27, the decay of
measurement of the pionium lifetime, the theoretical expres«* 7~ atoms has been studied in the framework of a non-
sion for the width must be known with a precision that relativistic effective Lagrangian—a method originally pro-
matches the accuracy of the lifetime measurement ofosed by Caswell and Lepad@8] to investigate bound
DIRAC. In Ref.[10] (see alsd11]), we have presented a states in general. This method has proven to be far more
compact expression fdr, o in the framework of QCO(in-  efficient than conventional approaches based on relativistic
cluding photonsby use of effective field theory techniques. bound-state equations. It allows one, e.g., to go beyond the
The result obtained contains all terms at leading and next-tacapproximation used ifi20,21] for the scattering amplitudes.
leading order in the isospin breaking parameters1/137  In our previous publicationgl0,12), we have used the same
and (m,—mg)?. On the basis of this formula, a numerical method. We refer the reader 2] for a comparison of the
analysis was carried out in RdfL2] at ordere?p? in chiral  various results obtained in the effective framework.
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We now describe the general features of the system thahy—m, (up to logarithmg The leading and next-to-leading
we are going to study. Ther* 7~ atom is a highly non- order terms in this expansion are due to the decay into two
relativistic, loosely bound system. The pions are mainlyneutral piong2]:
bound by the Coulomb force, and the atom decays predomi-

nantly through the strong interactions. The average momen- I'=T;0+0(8%,

tum of the constituents in the c.m. frame~g.5 MeV, and

the Bohr radius of the bound state 5400 fm. The decay I',.0=5a%p* (ay—a,)%+0(8%9,

width of the 7" 7~ atom~0.2 eV is much smaller than the

binding energy ~2x10° eV. For this reason, a non- p*=(M2,—M2o— M2, a?)?, 2.1

relativistic framework provides the most economical and

powerful approach to the calculation of the characteristics oivherea, and a, denote theSwave =7 scattering lengths
this sort of bound states. Since the strong interactions bewith isospinl=0 and|=2, respectively. We cour# and
tween pions at low energy can be described with ChPT, thémy—m,)? as small parameters of ordér The leading term
theory of thewr* #~ atom turns out to be a merger of a in the decay width is then of ordet’’?>. We describe in the
non-relativistic approach with ChPT. Owing to the might of present article in detail the evaluation bf,,0 up to and
the non-relativistic approach which almost trivializes the cal-including terms of orde®? providing details omitted in
culations in the bound-state sector, we are able to determirRefs.[10,17.
the first few coefficients in the chiral expansion of the
bound-state observables.

The paper is organized as follows. In Sec. Il we discuss , o
the foundations of the theory: the non-relativistic Lagrang- "€ method used in10] for describing the decay of
ian, Green functions, and matching to the relativistic ampli-/00Sely bound states is an adaption of the procedure pro-
tudes. Bound states are discussed in Sec. lll. Using FesiRosed by Caswell and Lepage some time §2@) for de-
bach’s formalism(29], we derive a master equation for the SCribing bound states in quantum field theories. In the
position of the poles in the resolvent. In Sec. IV we present case, we need_ to formulate a non-relativistic quantum
derive—on the basis of the master equation—a general e)y_elq theory .that _descrlbes strong and eIecFromagnetlc inter-
pression for the decay width of the*z~ atom in the actions Qf pions in the very Iow-energy_reglon. The rglevant
ground state, valid at next-to-leading order in isospin break-2drangian is a rather voluminous object—indeed, it con-
ing. We then express this quantity, through the matching cont@ins an infinite number of terms. Fortungtely, in the present
dition, by the relativistior* 7w~ — 7970 scattering amplitude  €2Se only a small_subset of that Lagrangian is finally needed.
at threshold. A numerical analysis of the decay width at order 1h€ mathematical problem to be solved may be formu-
e?p? in ChPT is also carried out in this section. Section y lated as fqllows: Construct a non-relativistic Lagrangiak
contains our conclusions. Background material is relegatefat contains all terms needed to evagl/lzjate the decay width
to the Appendixes: In Appendix A, we discuss the constructP t0 and including terms of ordes™. We relegate the
tion of a general non-relativistic Lagrangian with pions andconstruction of this object to the Appendixes A, B, and C,
photons. The scattering sector of the non-relativistic theory i#€cause the intermediate steps require lengthy calculations,
discussed in Appendix B. In particular, we argue that thevhereas the final answer is amazingly simple. Indeed, as
contributions of transverse photons to the m~ — 7070 already mentioned in[10], the following Lagrangian
scattering amplitude vanish at threshold at oreferThere-  achieves the goal:
fore, these diagrams may be omitted in matching the relativ- _
istic and non-relativistic amplitudes. Appendix C deals with Eng=Lot Lot Lot Ls,
the bound states in the non-relativistic theory: we show that,
for a large class of diagrams, transverse photons do not con- Lo= > |
tribute to the decay width at next-to-leading order in isospin =,
breaking. On the basis of the results obtained in Appendixes

A. Non-relativistic Lagrangian

B and C, we completely eliminate transverse photons from A2
the theory. In Appendix D we compare two different match- Lp= E wiT T+ ) T,
ing procedures. Finally, in Appendix E, tIi&U(3) X SU(3) i=%,0 8M 7
—SU(2)XSU(2) mapping of the pertinent combination of
electromagnetic low-energy constants in ChPT is provided. L= —4ma(mw’ w_)A‘l(qﬂ T,
PO Tt 2

II. THE EFFECTIVE NON-RELATIVISTIC THEORY Le=cymym_mom_+Colm,m_(mo)"+H.C]

In the framework of QCOjincluding photong the energy +03(7T$770)2+ Cal 77'1&771(770)2
levels and decay widths of pionium are functions of the fine- Pt e
structure constant=1/137, of the quark masses and of the +mymlmeAme+H.C], (2.2

renormalization group invariant scale of QCD. In the follow-
ing, we concentrate on the widfhof the ground state. It can where (U1Av)=uAv+vAu, and whereA " denotes the in-
be expanded in powers afand of the quark mass difference verse of the Laplacian.
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The Lagrangian contains explicitly only the pionic de- PR
grees of freedom—the sole remnant of the photons is con- {
tained in the Coulomb interaction described By. The o . oo 0"

mass parametenfsl i coincide with the physical masses of
the charged ¥ .+) and neutral i1 ,0) pions. The role of the b c
low-energy constantd ECs) ¢, . .. ,c, is discussed below.

FIG. 1. Examples of diagrams generated by the Lagran@ah
ate=0. Solid(dashedlines correspond to chargédeutra) pions,
crosses denote mass insertions, and the filled circle stands for a

The fundamental objects in the non-relativistic theory arehigher-order derivative vertex.

Green functions of the pion fields. They are most straightfor-
wardly evaluated with path integral techniques. For instance, Gk (P3.P4;P1.P2)
the propagators of the free fields, associated wWighread

B. Green functions ata=0

dtp e~ 1P =i4 f %%y . . . déxe (Pt PoX— PexaPaxa)

GRri(¥)=(2m)~* .
NR JMWierZ/ZMwi—pO—Ie X (O] T, (Xg) 7 (x) 7 (X) 7 (%2)]0)c.

- (2.7

=i(0[Tm(x)7{(0)[0), 23

Some of the diagrams generated by the interactions are
displayed in Fig. 1. There are two classes of diagrams: Mass
insertions generated bgy, and bubbles generated I8g.
. . The perturbative calculation is simply performed by an ex-
action. To ease notation, we ?"Ways omit this term in thepansion in the number of loops and mass insertions. The
following. As is Sf;‘e” from_ the integral rep_resentat(are), reason why this expansion is meaningful is the following. In
the propagatorGyg; vanishes for negative times, from . . “¢o o Pr=pi+ph=(P0,0), the elementary
where we conclude that the free fields annihilate the «pyijlding blocks” to calculate a diagram with any number of

vacuum. As a result of this, the Lagrangi@yz conserves pupbles are given by the loop integral
the number of pions. This fact is, of course, built in—a term

like, e.g., (ry)*m5+H.c. would violate this rule. 4O 1
We now discuss Green functions in the presence of inter- Ji(pO):f

actions, and start the discussion for the case where the Cou- (2m)Pi M i+12/(2M i) — P +1°

lomb term is absentg=0. Again, the relevant Green func-

tions may be evaluated in the standard manner through the % 1

path integral. First, we note that all tadpole diagrams vanish M_i+12/(2M i) —1°

in (split) dimensional regularization, and we adhere in the

following to this convention. The only corrections to the L

two-point function are mass insertions, generated/by. T 47

Summing these up, we obtain

where them; denotes a free field. Thee contribution is

(M i(P°—2M )"

at D—4,P°>2M .. (2.9
d4p efipx Th . . .. 0
e functionJ; is analytic in the compleX” plane, cut
wi(p)—p°’ along the real axis foP°>2M _i. As shown below, the con-
tributi%n to the scattering matrix element is obtained by put-
ting P*=2w, (p), wherep denotes the pion three momen-
wi(p)=\MZ+p?, (24 tum in the c.m. frame. The loop integral is then purely
imaginary. In the case where charged pions are running in
with the loop, the integral is of orddp|*? near threshold. For
neutral pions in the loop, it is proportional toM(,+
_ —M 0)Y? at the threshold®®=2M _+. In the case where
(19— VM %= A)Gpgri(X)=— 8*(x). (2.9 some of the vertices contain derivatiieenoted by the full
circle in Fig. Xc)], and/or when mass insertions occur in

Next we consider the four-point functions, relevant for internal lines, additional factorg| and/or M ,+—M ;o) ap-

elastic 7 scattering. To be specific, we consider the proces®ear. As a result of this, the expansion in the number of loops
and mass insertions is at the same time an expansi¢p| in

and in the isospin breaking paramebt,-—M 0. We con-

GNR,i<x>=<2w>-4f

+ - + -
T (P)T (P2) =7 (P3) T (Pa). (28 (lude that, to calculate the scattering amplitude at a given
order in the momenta or in the isospin breaking parameters,

The corresponding connected Green function is only a finite number of diagrams need to be considered.
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We now discuss mass insertions on the external linesare obtained from the residue of the relevant four-point func-
These have to be summed up in order to generate the correin, as we just discussed. Each contribution consists of a
pole positions alp?=~/Mi++pi2. On the other hand, the product of loop functiong;, including vertices with deriva-
insertions in the internal lines can be treated perturbativelylives and/or mass insertions. Near threshold, the loop expan-
For a detailed discussion of this issue we refer the intereste¥/On generates a power seriespin

reader to Ref[30]. The Green function is then of the form

Gﬁs<p3,p4;p1,p2>=ﬂ (0, (p)—p) 7t

XR*%(p3,Pa;P1,P2). (2.9

The scattering amplitude is obtained frdRT'= by putting
all momenta on their mass shell,

Ri;i|pi°=w+(pi):<7T+(p3)777(p4)0uﬂ 7T+(p1)777(p2)in>c
=i(2m)*5*(p1+P2—P3—Pa)
XTﬁﬁi(p3,p4;p1,p2), (2.10

with normalization

<7T+(p1)|7T+(p2)>:(277)353(p1_pz)-

Note that, since the two-point function has residue equal tQ,
one, the wave function renormalization constants are unity aSq

well.

A formula similar to Egs.(2.9),(2.10 holds for any 2

— 2 scattering process

7 (p) TH(P2) — 7' (P3) TM(Ps). (2.12

The corresponding relativistic amplitudes are related to the

non-relativistic ones through

T (P, Pa;P1.P2) = 4{W(P1)Wi( P2)W(P3)Win(Pg)} 2
X TR (P3,P4;:P1,P2)- (2.13

In the following, we denote the total and relative mo-

menta by

P=p;+p2, P=3(P1—P2). (2.14

Tnr=fo+|p[f1+p?fo+0O(|pl®), (2.16

where Tyg denotes a generic elastic scattering amplitude.
The coefficientsf; depend on the constants, on the pion
massM ., and on the scattering angle. The threshold ampli-

tudef, receives a contribution from the tree graph alone. By
use of the relatiorf2.13, we therefore find that

AMZe;=Tr'™,
8M2c,=TX= =750,

16M2cy =T, (2.17
whereTg ' stands for the relativistic matrix element, evalu-
ated at threshold in the equal mass case, in the absence of
electromagnetic interactions.

We have not yet specified what relativistic theory we are
nsidering—the relation€.17) are true for any of these.

t us consider QCD, and represent the threshold amplitudes
through the relevant scattering lengths in the isospin symme-
try limit m,=my. We then have

3MZ2c,=4m(2a,+a,),
3MZc,=4m(a,—ay),

3M2c,=2m(ay+2ay),

(2.18

whereM .. denotes the pion mass in QCDma=my. These
relations are true to all orders in the chiral expansion.

D. Matching with the chiral expansion

There is a second possibility to perform the matching.
Namely, one may arrange the couplingssuch thatlyg
reproduces the chiral expansion of the relativistic amplitude

Unless stated otherwise, we consider scattering processes gl-a given order in chiral perturbation theory. To arrive at the

ways in the c.m. fram@=0.

C. The low-energy constants—matching

We discuss the role of the low-energy constartghat

occur in the effective theory. We first consider the equal mass
case M +=M _o=M_, discard the Coulomb interaction

Lc, and write the corresponding LECs es, c,, Cs, and
c4. The matrix elements for the scattering processes
T Iy
0.0 0.0

T e e

(2.195

relevant expression, it is sufficient to work out the chiral
expansion of the threshold amplitudes at a given order in the
chiral expansion and to compare the result with Eq17).

At order p?, the chiral amplitudes are

s+t—2M?
T(rtm —ata )= T,
s—M?
T(7T+7T_4)7TO 0):_ F2 1
s+t+u—3M?2
T(WOWLWOWO):T, (2.19
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where %
1
M?=(m,+my)B, B=—[(0luu[0)|, (2.20 :
F —_——_—
and whereF is the pion decay constant in the chiral limit a b ¢

m,=my=0. In the isospin symmetry limi&=0, m,=mg,

the parameteM is further related to the pion mass through FIG. 2. Building blocks for the scattering amplitude, including

Coulomb interactions at ordef. Dotted lines denote the exchange
M2=M2+O(p4) 2.21) of a Coulomb photon.

o . .
mass insertion. After integration over the zero component of

The symbolss, t, u denote the standard Mandelstam vari- the loop momentum, the integral to be evaluated is

ables. It follows that

L Vi(p.PO) = 2 f dil 1 1
_ ,PY)=e — ;
Ci=—+ -, P (2m)9 1|2 P°—2M .+ — (p—1)2IM ,+
2F?2
d=D-1. (2.29
— 3
Co=———+t-, The contribution to the scattering amplitudes is obtained by
8F evaluating this expression 8°=2w, (p). The result is
o= — V(P 2W, (p)) = — T i+ O(|pl,d—3)
= ,2W =- —ia ,d—3),
C3 16F2+ , (2.22 (P +(p 4|p| c p
(2.29
where the ellipses denote higher-order terms in the quar, here
mass expansion. With these values of the LECs, the tree
graphs ofLygr reproduce the leading order in the chiral ex- M - 1 1 2|p|
i i imilarty Oe=5rrpn 3 —=— S[In47+T"(1)]+In—
pansion of the threshold amplitudes. Similarty, can be <~ 2[p| M d—3 2 “
related to the momentum dependence {7 7~ (2.26
—>’7TO’7TO),

is the infrared-divergent Coulomb phasd].
— 1 Next, we consider the two-loop diagram Figcg omit-
C4:W e (223  ting mass insertions. Again integrating over the zero compo-
m nents of the loop momenta, the corresponding amplitude is
expressed in terms of
E. Including the Coulomb interaction

2 d
We now consider Green functions at order and relax B.(P%) = © j d,
the equal mass condition for the pions. There are two classes (2m)?4) P°—2M .+ — Ii/MW+
of diagrams: The first one contains the same diagrams as g
T 1 dl,

Tnr, but now evaluated a¥l .+ # M o, and with couplings >
¢; that depend orw and m,—my; see below. The second lli—15]2 PO—2M + —13/M .+
class contains diagrams with one virtual Coulomb photon.

Feynman graphs where the Coulomb photon is attached iBvaluating this expression &°= 2w, (p), we find
such a manner that pions must propagate in time in order to

connect the two vertices—the self-energy graph is an aM’ .
example—all vanish. This is because one may close the con- Bc(2W+(p))=——5—
tour of integration over the zero-component of the photon

momentum in a half-plane where there is no singularity in +0O(|p|,d—3),
the propagators. Since the self-energy diagrams vanish, the
mass parametensl .+ and M o in the Lagrangian may be _ -3 1 ,

identified with the physical masses. The two-point functions Alp)=p ﬁ"”“’_r (D).

for the charged and neutral pion field are therefore still given (2.28

by the expressiori2.4). We now consider virtual Coulomb

diagrams that are built from diagrams displayed in Fig. 2.The ultraviolet divergences in diagrams that contajnare

The crosses in the figure denote mass insertions. We evaluatemoved in the standard manner by adding counterterms to
the contributions from Figs.(B), 2(c), and start the discus- the LagrangiarCyg. For the consistency of the method it is
sion with the Coulomb vertex diagram Fig(b2, with no  important to notice that the diagrams obtained by adding

(2.27

2lp| ..
A(/.L)+2|n7—1—l77
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mass insertions and/or using vertices with derivative cou-

1
plings, are suppressed by powers of momenta with respect to Cy= T(1_2,<)Jr .
the leading term8, andV.. . They will not be needed in the 32F"M 7o
following. )

2 2 . .
The structure of the elastic scattering amplitudes up tdVith k=M7./M7,—1. The ellipses stand either for terms at
and including terms of ordew is now as follows. First we 0(«), or higher-order contributions in the chiral expansion.
note that, since the propagators are not affected by the selfhe terms of ordek are proportional tar at this order in the

energy diagrams, the reduction formu(@s9),(2.10 are still  chiral expansion—Eq(2.31) displays thea-dependence of
valid. We write the generic scattering amplitude as the couplingsc; mentioned above.
This concludes our discussion of the evaluation of Green
Tnr=TRrT aTyr+O(a?), (2.29  functions in the non-relativistic theory.

1 . .
whereTy contains one virtual Coulomb photon. The expan-y; pjoNjUM IN THE NON-RELATIVISTIC FRAMEWORK
sion of the first term in powers of the center of mass mo-

menta is as in Eq(2.16, with coefficientst; that now also The bound states and their decays are most conveniently
depend on the pion mass difference, andaothrough the  jegerined in a Hamiltonian framework. The effective theory

coupling constants; . Omitting the tree contribution from  giscssed above renders the pertinent calculations rather
one-Coulomb exchange displayed in Figa)2 we write the straightforward, as we will now show.

second term as
. Mg 2|p , A. Hamiltonian and Fock space
TNR:_|p| 90+|p|91+|p||n—M g2t P°gat-- . The non-relativistic Lagrangiafiyg gives rise to the fol-
e lowing Hamiltonian:

(2.30

The coefficientsy; contain in general infrared divergences,
generated by the vertex diagrarp. Otherwise, the structure

H:H0+ HD+ Hc+ HS:H0+ Hc‘l‘V,

of theg; is again the same as the one of the coefficiénis Hr= J d3X Hp(0),
Tor. Power counting also works in this general case: there is
only a finite number of diagrams that contribute to a given I'=0D.C.S

coefficientf; or g; . Finally, the relation to the amplitude in
the underlying relativistic theotyis again given by Eq.

A
(213) . . . HOZ 2 7T|‘IL M AT T | T
One may perform the matching to the chiral expansion i=%,0 2M i
also in this general case. First, we note thas then counted
as a quantity of ordep?. Second, the chiral representation A2

(2.19 is valid at ordemp? also in the presence of electromag- Hp=— 2 7TiT +oe |,
netic interactions, provided that ofi¢ identifies the quantity
M in Eqg. (2.19 with the neutral pion mass, aril) adds the
one-photon exchange amplitude in the' 7 — =7 7~
channel. Let us match the amplitudes at orper Counting
powers ofF?, it is easy to see that loop diagramﬁR do not

contribute—the matching relations becofi®]

HC=477a(77t 77',)A_1(71'TF T,
He=—cCym il mom_—c[mhml (m)2+H.cl]

t_ N2 TRt 2
—C3(momo) —Cyl m L AT (7o)

Clzi(l_’_’()_i_”_, (2.30) +’7TT+7T1;’7TOK’7TO+H.C.]. (3.0
It is convenient to introduce creation and annihilation opera-
3 tors:

c z__(1+£ v

> gr2l” 6 ’ [a(p).af(q)]=(27)°8%(p—q)di, i,k==.0,

Cam 4. w-(OX)=j dv(p)e™a(p), dw(p)= Tp

T A ! 2m?
(3.2

The free Hamiltonian becomes
!Both the relativistic and non-relativistic amplitudes must be

evaluated by using the same infrared regulator, such that the Cou-
lomb phase can be identified on both sides. We find it convenient to Ho= f dv(p)z
use dimensional regularization. !

2

M i+

)a?(p)amm, 3.3

ko
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and the propagator, evaluated with the free fields channel, 7%7°— 7°#°, and determined the position of its
_ e . poles in the complex energy plane. Here, we instead make
(X0, x) = e 7, (0 x) e~ Hox, (3.4  use of resolvents. While the two descriptions are perfectly

] ) equivalent, we find that the use of the resolvent renders the
of course agrees with E¢2.3). We will also need the two-  c5|cylations even simpler. We begin the discussion with the

particle states with zero total charge, quantity
P,p)+=al.(p1)a’ (p)[0), - .
(D)= —7——, .
z—Hy—H
|P.p)o=25(P1)5(P2)[0). (3.5 o~ Me
In terms of these, the unperturbed pionium ground state isvhose matrix elements between the charged st&t&s de-
given by velop poles at the position of the energy levels of the unper-
turbed pionium. To remove the c.m. momentum of the matrix
v, P>:f du(@)Wo(q)|P.q) (3.6) elements, we introduce the notation
¥vhereqfo(q) is the Coulomb wave function in the momen- (qlr(Z)Ip)=f du(P) (P,qR(2)|0,p)s, (3.10
um space
(64/77’)/5)1/2 .
Vo(g)= ————, y==aM_, (3.7  Where R(z) denotes any operator in Fock space. One can
(q2+ )2 2 now easily relate the matrix element Gf. to Schwinger’s
Green function32],
and
(Ho+Ho)[¥o,P)=(Eo+Ecm)|¥o.P), (2m)38%(q—p)
@ge(@|p)=——— ———
2 > E—q M ot
o
E0:2Mﬂ.+(1_§), ECM:4MW+ (38) 1 Ao 1
—q2 _A2E_n2
The perturbationV renders the ground state unstable. We E=a"/M,+ [q=p|" E-pTM,
discuss in the remaining part of this article how the corre-
sponding width can be evaluated. —————A7wanl(E;q,p) —————,
ponaing e g, T EGR ET
B. Resolvents—the master equation (3.11
To determine the width of the ground state, we have con-
sidered in Ref[10] the scattering amplitude in the neutral with
I(E;q,p)= ' X T (3.12
P o[- Bt (LX) A(E— IM ) (E—pPIM )] |
|
where p=%a(—E/M,+) Y2 andE=z—2M ,+. This func-  We remove the ground state singularity fradg,
tion has poles ap=1,2, ... . Inorder to calculate the posi-
tion of the poles in the real world, witkl #0, we consider = _ _
the full resolvent GC_GC[l f dv(P)|¥o,PY(Wo Pl (319
1 introduce
7=V+VGer, (3.16
Expanding in powers of the perturbatidh one finds thaG
satisfies the equation and find forG the representation
G=Gc+Gc7Ge, G=Gc+Ger Get (1+GenIlg(1+ 7 Ge), (3.19
7=V+VGc7r. (3.19  where
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dv(P)|W¥,,PY{V¥,,P z=Rez+ilmz,
Hozf (P)|¥y )(_o | . (318
Z—Ecn—Eo— (Wo|#(z:P)| W) M2,
and 8
— — agMi*M’TO 1/2.2
(‘Polr(z;P)l*Po)=fdv(P')<\1fo,P’|r(z)|\1fo,P>_ Imz=——"—%—p"Cot -, (3.23
(3.19

with p=2M _o(M +—M _o— M _+?/8).
. . , M . .
The singularity generated by the ground state pole is absent The imaginary part is of ordes””. We demonstrate be-
in the barred quantities. Therefore, the pertinent pole musPW thatitis the only term at this order. Using H@.18 and
occur through a zero in the denominator of the expressioh = —2 Imz, one recoverg22] the leading order resulg.1).

(3.18. In the c.m. frame, the relevant eigenvalue equation to Similar arguments apply to all the other pole positions.
be solved is [Of course, in order to correctly describe the new positions

of the exited energy levels, our original Lagrangidqg
must be enlarged.We conclude that the 2-particle matrix
elements ofG are analytic functions in the compleplane,

cut along the real axis for Re>2M 0. The poles are lo-
where the matrix element denotes the quantity on the leftcated on the second Riemann sheet.

hand side of Eq(3.19, evaluated in the c.m. franfe=0.

The master equatiof8.20 is a compact form of the con- IV. PIONIUM DECAYS
ventional Rayleigh-Schdinger perturbation theory. Note _ _ _
that it fixes the convergence domain of the perturbation  A. Perturbative solution of the bound-state equation

theory: the theory is applicable as long as the energy-level |n order to find the solution to Eq3.20) at orders®?, it
shift does not become comparable to the distance betwega convenient to reduce E¢3.16) to a one-channel problem

the ground-state and the first radial-excited Coulomb polesyjth an effective potentialV. We use a projectop on the
Equation(3.20 is valid for a general potential—containing, tyo-particle state$P,q)., ,

e.g., the interaction with the transverse photons—since in the

z2—Eo— (Vo[ 7 (2)|¥)=0, (3.20

derivation, we did not use the explicit form of the interaction
Hamiltonian in Eq.(3.1). e=| dv(P)dv(q)|P,q), (P.,q],
C. Singularity structure of the resolvent 2o=1-0, 4.7)

We find it instructive to shortly discuss the analytic struc-and find in the standard manner
ture of the matrix elements of the resolvést and the loca-

tion of the shifted ground state pole. First, from E8.20), it oro=0Wpo+0oWoGco70,
is seen that this pole will occur at the same position for any
channel. Second, it is expected on general grounds that the W=V+V0,Gc{l-0oVeoGel tooV. (4.2)

pole will move to the second Riemann sheet. Indeed, con-

sider the operato?in the second iterative approximation ~ This result is still perfectly general. In the case considered
here, one may simplify the expression for the effective po-

T=V+VGV+0(V3). (3.2)  tential, replacingGc by Go=(z—Hg) %,

_ -1
To evaluate the matrix element between charged states as W=V+VGo{1l-0oVeoGo} "QoV- (4.3
required, we insert a complete set of neutral states in the

. . The matrix elements of the effective potential can be ex-
second term. The eigenvalue equation becomes

panded in powers of momenta, because there are no nearby
singularities. Specifically, we write

M3+a3
z=Ey+ gw {—c,—2c33o(2)+---},  (3.22 4
@w(z)|p)=(2m)°6°(a—p) EUTVERE Rt
whereJ, denotes the loop integré2.8). This function has a "’
branch point atz=2M .0, and its imaginary part has the +W1(2)p?+W,(2) g7+ Ws(2)pg+ - - -
same sign as the imaginary part othroughout the cut (4.4

plane. Therefore, Eq3.22 has no solution on the first Rie-

mann sheet. On the other hand, if we analytically contilye If we now iterate Eq(4.2), at the order of accuracy we are
from the upper rim of the cut to the second Riemann sheetyorking, the decay width of them™#~ atom T',.0
we find that a zero at =—2Imzis given by
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M3, o culate scattering amplitudes in the Lagrangian framework
[yp0=— 7 “—Imw[ 1+ 2 Rew(gc(Eq))]+O(6%), discussed in Sec. Il. In the relativistic theory, the on-shell
v

@5 amplitude form" 7~ — 7°7#° contains infrared singularities
: that exponentiatg33],

wherew=w(E;), and . A0
(Eo) T = exp( B0 ) T |

d

p J—
(9c(Eo))= f (2m9 (2w )d(Q|gc(Eo)|p)- (4.9 B0 _ o f d®l P
(2m)Pi 12
In order to calculate this integral, one needs to define
Schwinger’s Green function id dimensions. In field theory, 2p,+ 2p,— |
the Fourier transform of the Coulomb potentialdrdimen- (1)= ! + 2 , (4.9
sions is given by exactly the same expression as in three 12+ 2lp; 12—2lp,

dimensions—consequently, the first two terms in the repre-

sentation(3.11) are also valid atl# 3. For the last term, the Wwherep,,p, denote the 4-momenta of incoming™ and 7~
integral is convergent, and we may workdat 3. The inte- mesons. In Ref.33] it is demonstrated that—using a photon
gral is then equal to mass as an infrared regulator—the residual ampliftife"

is free of infrared singularities. Here we assume that the

2
— aM7. same is true in dimensional regularization. We find
(9c(Eo)) =5 &,
ROO _ | 9+WM =3 L o(plD-4). (41
M2, 0ct o7~ 55 TOUPLD=4), (410
§=2Ina—3+A(p)+In—r. 4.7
o

where 6, is defined by Eq(2.26). The infrared divergences
cancel in the real part oB®* at threshold, whereas the
imaginary part is divergent & —4.

One may verify that at ordew, exactly the same diver-
Rew=—c;, gent Coulomb phase appears in the non-relativistic ampli-
tudes. Indeed, if one performs the calculationd&3 and
splits off the phase according to

The quantities Re/ and Imw can be determined from itera-
tions of Eq.(4.2) to the needed accuracy,

M 0 5p
= T2 _ 2
Imw 5 P (1+ Ve )(cz 2pCy)

n? TRR (a,p) =€ *"THE(a.p), (4.19
1- pM 0C3 4.9 then there are no infrared singularities in the amplitude
4m? |’ ' TO%*(q,p) at threshold in the limid— 3, at orders. For the

real part, we find
We have now expressed the decay width of thier~ atom

in terms of the non-relativistic couplings - - - c4. It remains 2|p|
to determine the relevant combination of these coupllngsRe R > (9,p) = | | 2In—+—2ReAtT”‘°°+ o(p),
from the matching of the relativistic and non-relativistic am- Mz at
plitudes. (4.12
B. Matching to the threshold amplitude where
We determine the non-relativistic couplings that enter the TaM +
expression for the decay width through E4.8), and start Bi= R co+0(9),

the discussion with the couplings andc;. These contribute

to the decay width at ordei®?, because counts as a quan- M2

tity of order 6. Therefore, these two couplings are needed at B,= — AM e C1Co+0( ). (4.13
order 6° (no isospin breaking as a result of which we may 2 27 12

replace them by the isospin symmetric quantittigsand cg
in Egs.(2.18. It remains to determine the combination of the
couplingsc, andc, that enter Eq(4.8). As we will now
show, it suffices for this purpose to calculate the real part o
the 7t 7 —#%7° amplitude at orders in the non-
relativistic and in the relativistic theories.

Whereas the Hamiltonian framework is very convenient ?Note that in Ref[10], the non-relativistic scattering amplitude is

to discuss the energy spectrum, it is more convenient to cablefined with an opposite sign.

The singular contributions-1/|p|, In|p| are generated by the
exchange of one Coulomb photgsee Figs. @), 2(c)]. At
(), the constant term in Ed4.12) is equal to
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relates the width to the scattering amplitude at threshold.
This quantity contains the combinatieg—a, we are look-

ing for, together with isospin breaking contributions. One has
to evaluate these and subtract them from the measured am-

2012
C,Cc5M 7o

1
———ReA;, P=2c,—4M%k
.

Cyt >

- 8

aMi* Mi+ plitude. ChPT allows one to achieve this goal—order by or-
t | 1A~ 2 C1C2, der in the expansion in the quark mass.

(4.14 D. Amplitude at O(e?p?)

whereA(u) is given by Eq.(2.28, andk is the same as in The normalization of the quantityl is chosen such that,
Eqg. (2.3). The ultraviolet divergence contained if(u) in the isospin symmetry limit, it coincides with the difference
may be absorbed in the renormalization of the coupling ay—a, of the Swave scattering lengths. In the general case,
This procedure at the same time eliminates the ultravioletve expand the amplitude in powers of the isospin breaking

divergence in the expression for the decay width. parametersy and m,—my,
In the following, we assume that—up to and including 5
terms of orderd—the relativistic amplitude does have the A=ap—az+hy(mg—m,)“+ha+0(s). (4.16

same singularity structure, as a function of the momergum his d o . . f the chiral
as the non-relativistic amplitud@.12. We can then match This decomposition is true irrespective of the chiral expan-

the non-relativistic expression to the relativistic one in thesmn..The scattering lengths as well as the coefﬂcﬂan.nm.e
standard manner, using E(¢13 The quantity R@&:FOO in fUnCUOnS Of- the quark mass and of the renorma.llzatlon
Eq. (4.12 corresponds to the one introduced in R&4], in ~ group invariant scale of QCD. What is the meaningagf
the context of the relativistic theorgmodulo the Coulomb —a; in the presence of isospin-violating interactions? To
phase, which does, however, not contribute to the amplitudelarify the issue, we consider the expressidnat leading
at ordere?p?.). The logarithmic singularity is absent in the order in the chiral expansion. From E@.19, we find
amplitude at ordee?p? at which the calculations in Ref34]
were carried out—it first emerges at ordefp* [35], see
Appendix D. Finally, the relation(4.14 represents the
matching condition between the regular part of the relativis-
tic " 7~ — 77" scattering amplitude at threshold and the To bring this into the form(4.16, we note that, in the
pertinent combination of non-relativistic coupling constantsisospin-symmetry limit m,=my,«=0, the scattering
Ci. lengths can be expanded in powers of the pion mass, defined
to be the position of the pole in the correlator of two axial
C. General expression for the decay width currents. It is an algebraically perfectly legitimate procedure

Substituting the results of the matching into the expres—j[0 identify this mass with the charged pion mass. We adhere

. - . : the following to this procedure, in order to agree with the
sion for thewr* 7~ atom decay width(4.5), and using Egs. n : : . .
(4.7) and (4.8), we obtain standard conventions in ChPT. The expression for the differ-

ence of the scattering lengths then reads

A

= 3Mz(mfﬁ—|v|2>+0(|o4,e2|oz>. (4.17)

Iy 0=3ap* A%(1+K), (4.15 o’
_ at 4
3 ao_az— > +O(p ) (418
A== zo—ReAj *+0(d), 32wk
Comparing this with Eq(4.17), we find
K ) 2a
K—§(ao+232) _?(lna’_l)(zao'i‘az) 3(Mi+_M2) P
A=ag—a,+ >— +0(p*,ep%). (419
+0( 5)’ 327TF
% _ /np2 2 1342 212 From this result, we may read off the coefficidnt at lead-
p —(M +_M O_ZM +a) . . . . .
o @ w ing order in the chiral expansion,
This is the general expression for the" 7~ atom decay (M2 — M2
width, valid at next-to-leading order in isospin breaking, and h, = (M7 ) +0(M) (4.20
to all orders in the chiral expansion. Note that all mention of 2 32a7F? ' ’

the non-relativistic theory has disappeared in the final result

that relates the observable quantitiie decay widthto the [To be precise, the first term on the right-hand side of this

relativistic scattering amplitude at threshold. equation should be evaluated@+0. To ease notation, we
The primary objective of the DIRAC experiment is to omit this request here and in the followifdon the other

measure the differenca,—a, of the Swave 7= scattering  hand, the above calculation is not accurate enough to deter-

lengths that are defined in the isospin-symmetric world. Thamine h; at leading order, because for this purpose, the am-

expressior(4.15 is not yet suited for this purpose, because itplitude is needed at ord@’. This procedure may obviously

016008-10



DECAYS OF THE# 7~ ATOM PHYSICAL REVIEW D 64 016008

be carried out order by order in the chiral expansion—all thablingsﬂ. On the other hand, the corresponding coupliigs
is needed is the chiral expansion of the scattering amplitudg, Sy(3)x SU(3) [36] have been estimated by invoking,
at threshold, am,# my, a#0. As a result of this, the quan- e g., sum rules or a resonance saturation hypoth@gis39.
tities h; are represented as a power series in the quark mass order to use this information, we need to relate the cou-
m (up to logarithms plingsk; to theirSU(3) counterpartk; . In Appendix E, we
The evaluation of the amplitude far* 7~ — 7°7° has  show that
been carried out aD(p*,e?p?) in Ref.[34]. This result al-
lows us therefore to determine the coefficiént(h,) at or- p(k))=P(K,)—8Zl,, (4.29
derp® (p?). Some remarks are in order.
(i) In Ref.[34], the scattering amplitude has been evalu-Where

ated atm,=mg . For our purposes, the expression for generic 5

m, andmy is needed. On the other hand, up to and including p(k )= ! [ —6(K]+K5)+ 3K}, —5K5+ Kg+6(Kg
terms of orderp*, the strong amplitude does not contain ' 3 Lt 4 >0 8
m,— My terms. The only source for such contributions is the M2

tree graph, wherd? is expressed in terms of the neutral
pion mass. The generalization of the reg®ef.[34]) to the
unequal mass case is therefore straightforward.

(ii) The normalization point in Ref.34] is chosen to be
the neutral pion mass. According to our definitions, we have —2Z
to normalize all low-energy constants at the charged pion

mass. The terms that emerge from the shift of the normalizaénd wherek! denote the running couplings introduced in

1 1 1 — 2 —_— 2 1 - - . . -
tion point are proportional t&,=M?7.—M7, and are in-  [36]. Taking into account this relation, we may rewrite the

cluded in the expressions given below. - formula for the width in the following form:
The rest is then straightforward. We find

KK )] — (18+ 282)|nM—”2+

msBO

In > +l)—30, (4.26
Mm

A ['y.0=5a°p*(ap—ax+€)%(1+K), (4.27)
h;=0(m),
with
3A8™ M2, [23 _ 3 2
"2 Spmar? | i2n2r2| 8 Tl 38,7 Mo 123, 3'_}
T ar €= + — 4+ + —
32rF2\ " 127%F2(8 1 470
2
+ ~
+ —"—p(k;)+0O(m?), (4.20) 3aM?, . .
22 K . _ 2 2
256m°F +—256772F3TP(K.)+O(m(mu mMg)*,@m?)+0(4).
where p(k;) stands for the following combination of the 4.29
electromagnetic low-energy constapssl], :
- - The quantityK is given in Eq.(4.15).
p(ki)=— 30+ 9Kk, + 6ks+ 2K+ kg + 3 Z(K; + 2k, + 6k, f e g
i 1276_ 6?8)1 (4.22 E. Numerical analysis
In the numerical evaluation of the lifetime, we use &r
and and a, the values from the recent analysis in REf], a,
om =0.220+=0.005, a,=-—0.0444:0.001, ay—a,=0.265
AZ +0.004. To evaluate the correctien we first recall that the

em__
A’?T _Avr|mu:md1

(4.23

non-electromagnetic part of the pion mass difference is tiny,
of order ~0.1 MeV [40]. Therefore, we identifyA®™ with
The quantitiesk; denote again the running coupling con- the experimentally measured total shift.. Further, in the
stantsk{(u) at scalex=M .. Note that according to our calculations we replacesB, by Mﬁ+—Mi+/2, according
counting, the quantity. ,=In(M2,/M>2;) introduced in Ref. to our definition of the isospin symmetry limit. The values
[34] is of orderd and hence does not contributettg. Fur- ~ used for the low-energy constants in the strong sector are
ther, F may be expressed through, according tq7] l,=—0.4+0.6, 13=2.9+2.4 [4]. For K{(u), we use the
values given by Baur and Urech in R¢87], Table 1:K}

- — “ s =—-6.4,K5=6.4,K,=—6.2, K;=19.9, K{=8.6, Kg=K/,
Fr=F| 1+ mlﬂ—O(m )| (4.24 =0, K;=0.6(in units of 10 3). We evaluaté’(K;) at scale
u=M,. Further, we attribute an uncertainty 2fi%B—that
For the numerical analysis, one has to specify the values aftems from dimensional arguments—to e&h The values
the low-energy constants that enter the expressiohfowwe  of K| obtained both by Moussallaf38] and by Bijnens and
are not aware of an estimate for tdJ(2)XSU(2) cou- Pradeq39], lie then within the uncertainties attributed. The

- 8maF?

2
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same is true, if the saturation is assumed not at sgale term in thed expansion of the width, we have constructed a
=M,, but somewhere within the interval 0.5 GeY. non-relativistic Lagrangian that describes the low-energy in-
<1.0 GeV. Finally, we us& ,=92.4 MeV. Adding the un- teractions of pions and photons. In this framework, the ma-
certainties in;,l5,a5,a,, and inK; quadratically, we obtain trix elements of the resolvent Z/{ H) develop poles on the
second Riemann sheet in the compigxane. The positions

€=(0.61+0.16 x 10" %, of the poles are related to the energy levels and widths in the

s standard manner. By using Feshbach’s technique, we have
K=(1.15£0.03 X107, (429 derived the master equatidi®.20 for the position of the
or ground-state pole.

(iii) On the basis of this equation, we have calculated the

[,0=2a%p* (ag—ay)%(1+ &), decay width of the ground state of pionium in terms of the

parameters of the non-relativistic Lagrangian. At leading and

6r=(5.8+1.2)x10 2. (4.30  next-to-leading order in thé expansion, only the channel

A, +.-— 7% is open. Furthermore, at this order of accu-
This amounts to a six percent correction to leading-orderacy, transverse photons do not contribute—the relevant La-
formula by Deseet al. [2]. In the total decay widtl", the  grangian becomes then very simple, see B®). Matching
decay into 2r° is by far the dominating mode. For example, the non-relativistic amplitude to the relativistic one, we have
the decay width into a {2 pair, which is the first subleading then expressed the decay width in terms of the relativistic
mode inéd counting, isl',,= a®M ,+14 [1,41] at leading or-  scattering amplitude, up to terms that vanish faster ##n
der in the § expansion, as a result of which one hasThe relevant formula is displayed in E@.15.
[y, /T 50=3X 103, For this reason, one may safely iden-  (iv) At this stage, one may invoke ChPT, which allows

tify 7,0 with the total lifetime, one to expand the isospin breaking terms in powers of the
. quark mass, and thus to get contact with measurable quanti-
=T, 5=(2.9+0.)x10 " s. (4.3) ties. The result is given in Eq4.27), that displays the width

_ _ in terms of the combinatiora,—a, of Swave scattering
We add the following remarks concerning these numbers. |engths, and a correction that we have calculated at axder

The bU|k. parF in the 'uncertainty in the Iifetime is due to andma. The quark mass difference shows up only at order
the uncertainty in the difference of the scattering lengths 9n . .
(m,—my)“m. We expect this term to be completely negli-

—a,, which results in+0.085<10 % s, _ .
1ghe uncertainties in the constank§ increase this to gible. The recently determined valug§ of the 7w S-wave
scattering lengths gives

+0.091x10 *®s. Including the remaining uncertainties
does not change this number in the digits displayed.

The numbers in Eqg4.29—(4.31) differ from the corre-
sponding ones in our previous papgt2], because the

present values of the scattering lengths,lefand of F .

7=(2.9+0.1)x10 *° s, (5.1

(v) Since the isospin breaking corrections at ordeand

: ma are small, we expect that chiral corrections at higher
differ from the ones used there. The above valueag@t,  order as well as higher-order terms in isospin breaking are

P 6
are the result of a complete analy$# at orderp°—they  jirelevant for data on the lifetime obtained in the foreseeable
replace the ones used [12], taken from the preliminary ¢ tre.

numerical result cited in Ref42]. The present value df; is
based on the same analy§#. The bulk part in the change
of the lifetime is of course due to the updated valueagf
—a,, because this combination of scattering lengths enters We are grateful to H. Leutwyler, L.L. Nemenov, and J.
the expression for the decay rate at leading order. Schacher for useful discussions. V.E.L. acknowledges the
The vacuum polarization correction to the lifetime, that isUniversity of Bern for hospitality. This work was supported
not taken into account here, amouf2g] to a contribution of  in part by the Swiss National Science Foundation, and by
—-0.01x10 . TMR, BBW-Contract No. 97.0131 and EC-Contract No.
We expect that the higher-order contributions to theERBFMRX-CT980169 (EURODANE).
77~ atom decay width in ChPT are negligibly small. Con-
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sequently, an accurate determinationagf-a, from a pre- APPENDIX A: GENERAL NON-RELATIVISTIC
cise lifetime measurement is indeed feasible. LAGRANGIAN
V. SUMMARY In this appendix, we outline general rules for the construc-

tion of a non-relativistic Lagrangian that describes low-
(i) We have considered decays of thé 7~ atom in its  energy interactions of pions and photons. The Lagrangian
ground state. Aside from a kinematical factor, the decay rateloes not contain terms that correspond to transitions between
can be expanded in powers of the isospin breaking paransectors with different number of heavy particlgsions,
etersa and (m,—my)?2. It is convenient to book these pa- since these belong to hard processes and are hidden in the
rameters as terms of ordér couplings of the non-relativistic Lagrangian. For this reason,
(i) To calculate the leading and next-to-leading orderin order to describers scattering in the non-relativistic
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framework, it suffices to consider Lagrangians in the sectors In the isospin symmetry limig=0, m,=mg, the follow-
with one or two piongincluding any number of photops ing relations hold for the corresponding couplings
The theory must be invariant under space rotati@<®, T ¢, ... c,:

and gauge transformations. On the other hand, due, e.g., to Ca=3(Ci+Cy), Cy=1(Cs+Cs+Cp). (AB)
the presence of photons, the Lagrangian is not invariant un-

der Galilei transformations. The appropriate building blocks|n the sectors with one or two pions, the Lagrangian is there-
are provided by the covariant derivatives of the charged piofiore given by

fields L=Li+ LD+ L+, (A7)
Dime=dim-FieAym,
Dm.=Vwm.*ieAnw., (Al)  where the ellipses stand for non-minimal, or higher-
dimensional operators or higher-order terms with covariant
and the electric and magnetic fields time derivatives. On the mass shell, the latter terms are
E=-VA,—A, B=rotA. (A2)  eliminated by using the equation of motiggOM). How-

ever, they need to be included if one decides to renormalize
For the neutral pion field, the covariant derivative coincidesGreen functiong30]. At tree level, the LagrangiafA7) re-
with the ordinary one. produces the relativistic result for the scattering amplitude
The Lagrangian consists of an infinite tower of operatorkm+ my—kmw+ny, k=1,2 atO(e™" "), to all orders in the
with increasing mass dimension. All possible operators alimomentum expansion.
lowed by the symmetries must be included. In particular, in  The scattering amplitudes in the non-relativistic theory

the one-pion sector, the Lagrangian is given by are related—through the reduction formula—to the residues
A2 of the pertinent Green functions in a standard mariiste
£1=%(EZ—BZ)+W$[ 19y—M o+ +— that, in the non-relativistic theory, one has to sum up all
Moo 8Mzo insertions~p*, p®, ... in the external legs of the pions, in
D2 D order to ensure that the poles sit at the correct position, ac-

+— cording to the relativistic dispersion lapf= (M2 +p?)*2.
2M+  8M . On the other hand, insertions in the internal lines are treated
perturbatively. For more details, we refer the reader to Ref.
[30].] The loop corrections to the Green functions are then
calculated in a standard manner, by using Feynman diagram-
matic techniques, with one important modification. It is well

complemented, e.g., with all possible non-minimal couplingéf”own th_at in the non-relativistic theory, in the presence of
containingE andB, that we have not explicitly displayed. At light particles (photons, the Feynman integrals should be

tree level, this Lagrangian reproduces the relativistic resulP™oPerly butchered, in order to avoid contributions from the
for the scattering amplituder+my— 7+ny at O(e™") loop momenta at a hard scale—otherwise, loop corrections to

to all orders in the momentum expansion. the Green functions would lead to a breakdown of the count-
In the two-pion sector of zero total charge, one has tdng rules in the non-relativistic theory. A suitable procedure
construct the operators that contain four pion fields and anfUilt on top of the Feynman rules in the non-relativistic
number of photon fields. The lowest-order Lagrangians witHn€ory is provided by the so-called threshold expan§#8)
zero and two space derivatives are given by (see alsd44]), that enables one to disentangle the contribu-
LO=cimlalm,m_+cy(mhal momy+H.C) tions coming from different regions of loop momenta, by
expanding the integrands—in the dimensional regularization

><7TO+2 TrT_F{iDt—M,Trl-

+..-}wt, (A3)

+Cymymh oo, (A4)  scheme—in all possible small kinematical variables. Here,
(2)_ tR2_t Tt 22 we adopt a simple and physically transparent formulation of
£37=Cal(m D) (momo) + (. =) (moD o) such a procedurp45]. First, we put a momentum cutoff on
+H.cl+e{ (i D?7l ) (7, 7m_)+H.c) all three-dimensional Feynman integrals, after having per-
formed the integrals over all zero components of virtual four-
teg{[mh m 1D 7wl a_ ]+ co{(wiD?7l) (momo) vectors (by eventually using split dimensional regulariza-
tion). Then we choose the cutoff mass to be much smaller
+H.cl, (AS) " than the hard scale, given by the pion mass. Next, we expand

- the integrands both in external and integration momenta. In
whereuD?v=uD?v +vD?u. Note that the couplings; are  the presence of the cutoff, this is a well-defined procedure.
not necessarily real, as a result of which the Lagrangian igt the last step, we remove the cutoff and calculate the inte-
not, in general, Hermitiarisee below. Again, we do not grals, with the expanded integrands, in dimensional regular-
display explicitly non-minimal couplings that, apart from co- ization. This sequence of steps systematically removes the
variant space derivatives, contain the vectoandB. More-  hard-momentum contribution from the integrals, which at
over, we do not display covariant time derivatives, or higher{ow energies is given by a polynomial in the external mo-

order Lagrangiang {", £, ... which contain 4, 6...  menta.
space derivatives. In the absence of photons, the Lagrangian All couplings in the non-relativistic Lagrangian are deter-
£+ £§?) is equivalent to the one given in RR26). mined by matching to the relativistic theory. In the presence
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[\ 9] + »
a b

FIG. 4. Self-energy of the charged pion@fe?). The twisted

line denotes a transverse photon. The counterterm diagkam
w >ﬂ: stems from the LagrangiaifB6).

ci=c+ acM+ (my—my)2c@+0( ),

FIG. 3. Diagrams contributing to the decay of thé 7~ atom
into two photons in the relativistic theory. Ci(n):Ci(n)(M2+ LECY (A8)
T L 7

of photons, the non-relativistic Lagrangian is, in general, NOlyhere, by convention, we have defined the isospin-
Hermltlan—becagse these conste}n_ts are not real. This is d‘é%mmetric world witha=0, and mg=m, as the one in
to the fact that in the non-relativistic approach, one hasyhich the common mass of the pion triplet coincides with
shielded some of the intermediate states—those with massg$e mass of the charged pion in the real wdnidte that in
below the two-pion threshold—that appear in the relativistiCihe relativistic pion scattering amplitudes, odd powers of
theory and that belong to the class of hard processes in tr}ﬁd_mu never appedr Consequently, the powers éfin the
non-relativistic terminology. The imaginary part of such dia- expansion of the Green functions around the isospin symme-
grams then contributes to the imaginary part of the couplinggy jimit stem from different sources. The explicit powers are
of the non-relativistic Lagrangian. For example, the decay oy ;e to the coupling to photons, and the implicit powers are
the =" 7~ atom into two photons in the relativistic theory is encoded in the couplings of the Lagrangian, as well as the
described—at leading order im and in m—Dby the imagi- charged and neutral pion mass difference. In the calculations,
nary parts of the diagrams depicted in Fig. 3. These diagramsne has to carefully keep track of all these sources of correc-
are not present in the non-relativistic theory. On the othetions in a given order iro.
hand, they contribute to the imaginary part of the coefficient The Lagrangian(A7) contains an infinite number of op-
c, at orderO(e?). erators. In actual calculations, only a few of them are needed.
The next remark concerns power counting. In fact, weln particular, we will make it plausible that, in order to cal-
have three different types of power counting in our theory: culate the pionium decay width @(s%9), it suffices to
(i) Non-relativistic power counting. The Green work with the Lagrangian given in Eq2.2). The arguments
functions—calculated at a fixed order in an expansion in thén favor of this simplification are provided in the following
couplinge—are expanded in powers of external 3-momentawo Appendixes.
of the particles, and in the mass differeMe - —M o in the
manner described in Secs. lIBand Il E. APPENDIX B: THRESHOLD EXPANSION AND THE ROLE
(ii) Chiral power counting. After matching to ChPT, the OF TRANSVERSE PHOTONS
couplings are given in a form of a series in the quark masses
and e. The coefficients contain the low-energy constants We illustrate the evaluation of the scattering amplitude in
(LECs) of ChPT. This procedure is systematic in the sensahe non-relativistic theory in the presence of photons. We
that matching at higher chiral order does not affect the resultvork in the Coulomb gauge, which allows a clear-cut sepa-
obtained at lower orders. ration of Coulomb and transverse photons, and argue that the
(i) Counting the isospin-breaking parametér After  radiative corrections to the* 7~ — w°#° scattering ampli-
matching to ChPT, the couplings in the non-relativistic La-tude, generated by transverse photons, vanish at threshold at
grangian can be rewritten as ordere?.

1. Pion self-energy

We start with the two-point function of the charged pions. The self-energy correct(ed} due to the diagram Fig.(4)
is given by

| 1

i | dxePX(0|T7.(x)7L(0)]0)= ' -

J x€P(0[Tr.(x) 7. (0)[0) M -+ +p%(2M +) = p°=2(p%p) -
&2 o p?— (ph 12

. o(e%). B2

%(p".p) Mi+f(27'r)Di —IZ[Mﬁ++(p—|)2/(2Mw+)_p°+|°]+ (e") (B2)

The threshold expansion of the above integral amountsiéoplace a caret above the threshold-expanded quajtities
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$(0.p)= e f it [, (1] 1 [P 2 1
P 2M2. ) (2m)? NPT PR M_+ 2M_+/(Q+]I])2 ’
p2
Q=M _++ —p° d=D-1. (B3)
Performing the remaining integration, we obtain
N e? pdgen L(DI(2-d) e? 5 20 1
E(Q,p)= > pQ —d+—>TpQ L(M)+|n—_§ +-.--, when d—3, (84)
M (4m)92r| 1+ 5 B M K
L(u)=pud"3 1—1r'1+|4+1 B5
(1)=p"% =5 = 5[ ()+Indm+1] ). (B5)

As usual,u denotes the scale of dimensional regularization.
In order to remove the divergence from the two-point function, one introduces the counterterm

2 2
e D
AL=———— 2 f17-rT:D2

iD{(—M_ ++
6mM2, < t

)m, fi=L(p)+fi(w). (B6)

ot

The contribution to the two-point function is displayed in couples to two pions in a minimal way, as well as through
Fig. 4(b). The quantityf’(x) denotes the finite, scale depen- the non-minimal vertices which contain more space deriva-
dent part of the coupling constafy. tives acting on the fields.

To calculate the wave function renormalization constant Some preliminary remarks are in order. After applying the
for charged pions, one has to reverse the liffB&. Namely,  threshold expansion to a given diagram, one always ends up
we perform the limitQ—0 (mass-shell limit in the non- with a homogeneous integrand, and naive power counting is
relativistic theory at d>3, in order to avoid the infrared restored. Since a strong bubble introduces a suppression fac-
singularity. Since the rati (p°®p)/Q vanishes a€)—0,  tor in a diagram with no photontee Sec. )l we expect
the self-energy diagram Fig(@ does not contribute to the that—even in the presence of photons—diagrams containing
wave function renormalization constant. The sole contribumore strong bubbles will be more suppressed, and, for a

tion comes from the counterterm given by EB6), given topology, it suffices to consider diagrams with a mini-
mal number of strong bubbles. The same consideration ap-

2 plies to diagrams with non-minimal photon couplings, and to

Z.(p?)=1— 12 p2. (B7) diagrams with derivative_ couplings in strong four-pion verti-
6772M77+ ces: since power counting holds, we expect that these are

suppressed with respect to the diagrams of the same topol-

Note thatZ.(0)=1. This feature is due to the derivative 09y, but with a minimal number of derivatives in the verti-
coupling of transverse photons, and to the use of the thresi§€S.

old expansion, which guarantees that the non-relativistic We start with the diagrams where the photon couples only
power counting is not altered by loop corrections. to two pions. According to the above discussion, we do not

consider diagrams with non-minimal couplings, and restrict
ourselves to the non-derivative strong Lagrandiad). The
set of all topologically distinct diagrams with one virtual
We now discuss the radiative corrections to thém transverse photon coupled in a minimal way to two pions, is
— %70 scattering amplitude at ordef, due to transverse depicted in Fig. 5. In each class, we single out a representa-
photons. We have to consider diagrams with any number dfive with a minimal number of strong loops.
strong bubblegincluding of course the tree diagramsand The corrections to the external leffSig. 5a)] vanish at
attach one virtual photon line to these diagrams in all posthreshold, becaus&.(0)=1. Next, we consider the dia-
sible ways. The photon couples to two piditke relevant gram corresponding to the exchange of a transverse photon
part of the Lagrangian is given by EGA3)], as well as to the  between the initialz" v~ pair [Fig. 5(b)]. The integral to be
vertices with four piongsee Eq.A5)]. Further, the photon calculated in this case is given by

2. Scattering amplitude =+ 7~ — 7%= at order €?
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1 1

[M,++(p=DZ(2M ,+)—p% +1°) 12(M .+ +(p—1(2M ,+)—p° —1°]°
(B8)

J+f'y(|p|):_

ezf d®l (2_(p|)2
M2, ) (2m)Pi 12

One has still to multiply this integral with the purely strong contribution for several typical diagrams and show that these
amplitude in order to get the contribution of the diagram indo not contribute at ordei®?. The procedure goes in several
Fig. 5b). In this expressionp denotes the relative momen- steps.

tum of thew ™ 7~ pair in the c.m. frame, anp® , p° are the (1) As was mentioned in Sec. lll B, the master equation
energies ofr™ and 7w~ particles. We put the external par- (3.20 for the position of the bound-state pole is valid also in
ticles on the mass shellpﬁ =p°=M_++p?(2M ) the case of a general non-relativistic Lagrangian. Expanding
+0(p*), and perform the threshold expansion in the inte-in @ Taylor series around=E, gives

gral. Note that with this procedure, the integrands also

should be expanded in th®@(p?*) remainder ofp%. The (Wo| 7 (Eo)| Vo)

z—Eq= +.... ()

threshold-expanded integral in E@®8) can be rewritten in d —
the following manner: 1- d—aj(‘l’o|T(Eo)|‘I’o)
. e’ a1, (ph?) 1 One may evaluate the denominator in this expression by re-
Jo—(IpD)= Mw+f (2m)0 W p== 12 12— 2pl e taining only leading contributions te(E,), given by strong
bubbles with Coulomb ladders,
e’lpl | ie?p| ( 2|p| iM o
= + L(w)+In—no+---. P e T U2 N2 2/
M. gam | DI @r(@Ip)=—c1— - —p" D)+ ci(ac()+ -,
(B9) (C2
Again, it is seen that this particular contribution vanishes at/v_here p(2)=M o(z—2M ,0), and where the quantity
threshold. (9c(2)) is defined in analogy with Eq4.6) for the case of

We have also investigated the remaining contributions degenericz. The explicit expression for this quantity is given
picted in Fig. 5. All these contributions vanish at threshold.py
Moreover, we have considered all topologically distinct sets
of diagrams where the virtual photons couple to four-pion <a:(z)>:(&)—C(Z»+<51—c(z)>+<§1—c(z)>,
vertices, depicted in Fig. 6. Again, in each set we have re-
stricted ourselves to the diagram with a minimal number of  _ M+
strong loops, and with a minimal number of derivatives in  {Jo-c(2))= 2. M A+(2M e —2))',
strong and electromagnetic vertices. We have found that the
contributions from all these diagrams vanish at threshold. - aM?,
To conclude, we have considered all topologically distinct (g, _(z))=——"
diagrams for the scattering process = — 7°xC in the 8m
non-relativistic theory, where one virtual photon couples in

A(p)—1+In 5

Mm

4M,,+(2M,,+—z))

all possible ways to strong diagrams. From each class of _ aM_ . n
diagrams, we have singled out the representative with a <9n—c(2)>=W V(2—n)—-V¥(1)~- 177
minimal number of strong loops, and a minimal number of (C3)

derivatives in the vertices. We have checked that each such

diagram vanishes at threshold. Using power counting, thevhere W (x) denotes the logarithmic derivative of Gamma
same is seen to be true for the diagrams with more loopgunction. The quantityy was defined after Eq.3.12, and
and/or higher-order couplings. For this reason, we expecA (u) is given in Eq.(2.28. Using the above expressions, it
that all radiative corrections to the* =~ — 7970 scattering  is easily seen that the width is modified @53 in the
amplitude—due to transverse photons—vanish at thresholgresence of the denominator in E1). Consequently, at
at ordere?. We therefore neglect the transverse photons irthe accuracy we are working, one may use

the non-relativistic theory, while matching the relativistic and

non-relativistic amplitudes at threshold. ['=-2Imz=—-2ImWy| 7 (Ep)|¥y). (CH
APPENDIX C: CONTRIBUTION OF TRANSVERSE (2) In general, the couplings in the non-relativistic La-
PHOTbNS TO THE DECAY WIDTH grangian are not real. Decay processes with an energy release

at the hard scale contribute to the imaginary part of these
We consider the role of transverse photons in the calculaconstants. The only possible intermediate states in such dia-
tion of the decay width of ther* 77~ atom. We evaluate their grams areny and w°+n+y. Since the anomaly-induced de-
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FIG. 6. The same as in Fig. 5, but with at least one vertex
describing the coupling of a transverse photon to four pidiied

, ’ circles. Ellipses stand for any number of strong loops.
O@ ..... o YOS
\\ \\ M o
AN A Y

T kO
I'yp0= ?|T2w0(ko)|2,

d e
d®p _
. Taq0(ko)= | ——=Vo(p)+(p[7(Eo)[Ko)o,
e’ (2)
N (C7
A Y
N
£ where
FIG. 5. Radiative corrections to the scattering amplitude 2 o

at 7~ —a%7°, minimal couplings. The twisted lines denote trans- Ko=Ko| ={M ,o(Eqg—2M ,0)}"*~O( 6%
verse photons. Ellipses stand for any number of charged and neutral
pion loops. Mass insertions are not displayed. is the magnitude of the relative 3-momentum of the neutral

pion pair in the final state, and the subscripts O distin-
cay into7°+ y cannot proceed from the ground state due toguish between charged™ 7=~ and neutralz®#° state vec-
C invariance, the states with a minimal number of photonggrs, respectively.
are 2y and 7%+2y. However, the decay width into tWo  The leading strong contribution i, o(ko) Starts at
photons is of ordes® [1,41, and the decay width inter®  O(6%?). It is straightforwardly seen from Eq¢C2), (C3),
+2y starts, at least, at the same orderdnTherefore, at  and(C7) that in order to evaluate width a(5%9, it suffices
order 5% one may assume that all couplings in the non-to calculateT,,o(ko) at O(5%%). Here we are interested in
relativistic Lagrangian are real, and that the Hamiltonianthe contributions to this quantity due transverse photons. The
constructed from this Lagrangian is Hermitian. diagrams that may potentially contribute in the lowest order
For a Hermitian Hamiltonian, the operaterobeys the in & are depicted in Fig. 7—these are the self-endfgygs.
unitarity condition 7(a), 7(b)] and vertex[Figs. Ad), 7(e)] corrections to the
lowest-order strong four-pion non-derivative vertex, with
e\ P g = any number of Coulomb photons. In addition, there are the
7 (Eo) = 7 (Eo) = —2mi 7 (Eo) 5(Eg—Ho~Hc)7 (EO()éS) diagramgFig. 7(c)] that stem from the counterterm Lagrang-
ian, Eq. (B6)—they are needed to renormalize the self-
—. i ) energy diagrams. These diagrams are the counterparts of dia-
where the symbob is defined as follows: in order to evalu- grams depicted in Figs.(#®, 5(b), apart from the fact that in
ate the right-hand side of E(C5), one inserts a complete set the |atter there are no Coulomb ladders. One may consider
of eigenstates Ho+Hc)|B)=EzlB), omitting the ground  the counterparts for other diagrams depicted in Fig. 5 and
state of the boundr™ 7~ system. It is easy to see that the Fig. 6 which, however, are expected to be at least as sup-
only allowed states are those containing eithef 7~ pressed in powers af in the bound-state calculations, as the
+Ny, N=0 or 27°+ Ny, N=2k=0 scattering state&he  ones displayed in Fig. 7. Further, aiming to establish the
decay into 2r°+ [odd number of photorisrom the ground  power in & where these diagrams start to contribute, we may
state is forbidden byC invariance. The contribution from  omijt the Coulomb ladders: diagrams with Coulomb photons
7" 7~ + Ny vanishes due to lack of phase space. So we havgannot be amplified with respect to the diagrams with no
Coulomb photons. In order to prove this, we note that any

'=Ty0+ 55000, +55004,+---  (real couplings. additional Coulomb exchange in a given diagram adds an
(C6) integration measured®p, the Coulomb potentiala|p
—q|~2, and the energy denominatorz<---—2M +
It can be easily seen that the decay width inte®2 2y  —P?/M,+)~'. As the momenta scale like or «*, depend-

starts atO(s8'3), and the decays into states containing fouring on the topology of the diagram, it is seen straightfor-

and more photons are even more suppressed. Consequent@rdly that a diagram with an additional Coulomb photon, at
I'=T,_0+0(5. worst, contributes to the same orderdras the original one.

(3) From the unitarity condition the following expression  The contribution to the matrix elementgj coming from
for the decay width into 2° final state is readily obtained: the diagram in Fig. @ (with no Coulomb photonsis
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FIG. 7. Self-energy and vertex corrections to the decay width of

complemented with the counterterm contribution. In the
Hamiltonian formalism, one has first to use the EOM in or-
der to eliminate the time derivative in the counterterm La-
grangian(B6). We find

,99')9
f{g‘-

7 The contribution from diagram Fig. (& should be
4
>\
N
A Y

€

. N 2
the =" 7~ atom:(a),(b) self-energy correctiongg) contribution of _ e“fic, d t =20t
the counterterm(d),(e) vertex corrections. The twisted lines stand T 6772M2+ d*x Z‘ (3 D7) (momo) +H.C.
for transverse photons. .
+ee (C9
— . 2(Q0,p)
Fig. 7a_ __ ! . . . . . .
+(pl7 (Eg)[ko)o? "= —2c, Q, The contribution from this Hamiltonian to the above matrix
reads
d-3
- c,e2p? [ y?+p? 2
EEVE 2c.e°fy
Moe A Mg +(PlAH|ko)o=———5P%. (C10
37T M77+

I(d)r(2—d)
Xt

(4m)92r| 1+ 9 As was expected, the contribution from the counterterm, Fig.
2 7(c), cancels the UV divergence from self-energy diagrams
Fig. 7(a) and Fig. 1b).
2 Finally, folding this result with the ground-state wave
QOZZMHJFP__EO, (C9) function,.and rescaling the integration momentum @s
M+ —yp, it is seen that the totalself-energy+ counterterm

contribution toT,,o(ko) starts atO(5%?), and therefore can
where, in order to be consistent with the matching, we havge neglected. Note that one should not be worried about the
used again the threshold expansion. The quait{t§2,,p?) (spurious UV divergence in the integral over the momentum
in this expression is the self-energy part introduced in Eqp—these divergences cancel once all contributions in the
(B3), calculated at the off-shell valu@, of the parametef)  given order inae are summed up30].

—for this reason, one does not encounter an infrared diver- The contribution coming from the diagram in Figdy is
gence performing the limid— 3. given by

— - e’c, [ d% p%*q®—(pq)?
(Pl (B ko - 32 |

M2.) (2md  |p—qf®
" 1 1
Eo—2M .+ —0%/M .+ Eq—2M +—|p—q|— p%(2M ,+) — q*/(2M ,+)
eZC dd 2M2 2 1
_ 22J qdpq (pa) N 1
Mo ) (2m) lp—ql* Ep—2M_+—0%M .+

Again, the threshold expansion provides one with a howidth atO(5%?), nor to the matching condition at threshold.
mogeneous expression. After rescaling the momenta, it ia|though we have not provided a mathematical proof, we

immediately seen that the contribution to the quantityhajieve that this result is true in general. For this reason, we

T,.o(ko) starts atO(5”?) and therefore can be neglected. . o
The contribution from diagram(@) is identical to the one completely neglect transverse photons in our non-relativistic
from 7(e). Additional diagrams may be treated in an analo-theory. The rest is then straightforward: one eliminates the

gous manner—using power-counting arguments, we expe€toulomb photons by using EOM, and retains only those
them to be even more suppressed. terms in the Lagrangian that contribute to the decay width at

In summary, we have seen that, for a large class of dia©(5%?9. In this manner, one arrives at the Lagrangian dis-
grams, transverse photons contribute neither to the decgyayed in Eq.(2.2.
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APPENDIX D: MATCHING PROCEDURES divergences. Here, we use dimensional regularizafidhe

In this paper, we have matched the amplitudes in the relagoefllznm(ogz?fg]l‘b(x) in Ref.[34] has to be changed according
tivistic and non-relativistic theories at physical space dimen- Tﬂé infréred-diver ent quantity, is defined b
sion d=3. In this case, both amplitudes contain singular gentq IR Y

pieces that behave likg| ~* and Irjp| in the vicinity of the D-4

threshold. In addition, there is the infrared-divergent Cou- )\IR:M— __E[l"’(l)_}_m 4m+1]|. (D3

lomb phase. The matching is performed at threshold, for the 1672\D—4 2

finite parts of the amplitudes that are obtained after removing ) o .

the Coulomb phase, and subtracting the singular pieces. Th.e.r('ast of the diagram is infrared finite at threshold. In
In the literature[44], there are examples of a different the vicinity of the threshold,

matching condition, where the matching is performed for the

full amplitude at threshold ai+ 3. The threshold singulari- 2G 1 maMqe 0+ 16ma

ties then, in general, transform into polesdat 3 that cancel &G (8= aM2, 4fp 0T OTAMR

at a final stage. In this appendix, we compare these matching

conditions in two specific examples: we consider the two a N
diagrams depicted in Fig. 8, and their non-relativistic coun- + > In 7; +3] . (D4)
terparts. As we will see, the two matching conditions lead to m e

exactly the same result. - .
Let us start with the vertex correction depicted in Fig.” we reverse the sequence of limiting procedures, we find
8(a), that gives rise to the Coulomb phase, and to|fije? L
singular behavior in the real part of the amplitude. In the = @
non-relativistic theory, the corresponding vertex integral is &Gy —y(5)— 4AM? . [ 16makip+ 2w w? ]
given by Egs.(2.24), (2.295, and (2.26). If one instead re- i (D5)
verses the order of limiting procedures and calculates the
same integral gp=0, d+ 3, one finds that the integral van- This procedure therefore again amounts to dropping the Cou-
ishes V.(p,2w(p))=0 (the symbol “tilde” is used to distin- lomb phase and the singular piece that behaves|pike'.
guish the quantities calculated by using this particular seThe matching condition is not altered since for the particular
quence of limiting procedurgsBoth the Coulomb phase and combination ofV. andG ., _, that appears in this condition,
the |p|~! singularity disappear when this prescription is ) _ ) ~
used. Ve—4M7.G, _,=V.—4M_ .G, _,
Let us now turn to the same diagram in the relativistic

2
ot

In +3

theory. The infrared-singular contribution at threshold is con- _ 1 | M,2,+
tained in the functiorG _ (s) defined by =~ 4NR™ g2l 2 +3].
(D)
G (5) f dPq 1
+-/\S)= Di 2,2 P) Let us now consider the diagram depicted in Fidp)&hat
(2m)71 q7(a"—2qpy)(a°+2qp2) leads to a logarithmic singularity at threshold. The corre-
) . sponding loop integral in the non-relativistic theory is given
-— — Ian+i77} N+ 5 by Egs.(2.27) and(2.28. If one reverses the order of limit-
. 7 32m ing procedures, one finds.(2w(p))=0.
2 2 In the relativistic theory, it suffices to consider the scalar
M*n'* 4o int |
X|In——+1]|- 2 In integra
u? 327%sor 1-o?
R(P) Zf dl_d%q D,+()D,+(P—1)
l-o l+o =-¢€ - p Pat at(P=
—4Li| —— |+ 22— 2|, (D1) ‘ (2m)®i (2m)Pi
1+o 1-o
XD +(q)D+(P=-q)D(l1-q), (D7)

where pZ=p3=MZ2,, s=(pi+p)?>4M2,, o=(1  with D,+(a)=(M2,—g? %, D(q)=(g?) *. One need not
—4M2./s)*2, and consider diagrams with derivative couplings: those can be
expressed through the integR@L(P) and through integrals
that are suppressed at threshold as comparBg(t®), or are

) i xdtint . -
Li(x)= L|2(1—x):f . (D2) infrared finite.
1 1-t The explicit expression foR.(P) is given in Ref.[46],

This function was considered before in RE34], where the
authors had introduced a photon mass to tame the infrarec®we thank M. Knecht for correspondence on this point.
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2 21/(3
21n P +In2+ L)
ot 272

Ry(P)=—
7 e ¢ 1287M2,

—lm

\ \ +0(|p)),

\ \ Pr=(2y/MZ,+p%0). (D10)

If we first setp=0 and then consider the limD—4, we

a b find
FIG. 8. Diagrams that generate a singular behavior of the ~ Mi+
mt o~ — %7 scattering amplitude at threshold in the relativistic Re(P)=— 1287MZ. —A(pu)=In——+1+In2
theory: (a) vertex correction(b) internal exchange of the photon. 7t K
214(3)
[2(1+e)(M%,) 12 +—
Re(P)=¢ 2m
(4m)Pe(1-2¢)
P#=(2M ;+,0), (D11)
p? H . o I
X (1— 5 421_ 4 , with A(u) given in Eq.(2.28. For the combination that
4M° . (1+2¢)(1-¢) appears in the matching condition, we have
4 3 4 =
D8 B —16M* . R=B.~16M*. R,
whereD=4-2¢, and aMi+ M727+
= - —In—+1+
. 4 3 p2 = A(p)—In 2 1+In2
= 1 +8; _;— 1
47201 2 4M727+
21£(3)
+ > |- (D12
3 p2 2m
Ha=3F,| L1+e,1+2e,5+e,2—e;——|, (D9) ) - )
2 AM~ Consequently, the matching condition remains unaffected by
the interchange of the limiting procedures.
where, in difference with Ref[46], P? is defined in To conclude, for these two diagrams we have checked that
Minkowski space. the result of matching is the same for the two prescriptions.
At D=4, the integral near threshold in the c.m. frameWe expect that this conclusion holds in the general case as
(P=0) behaves af43] well.

APPENDIX E: THE MAPPING SU(3)XSU(3)—SU(2)XSU(2)

In order to perform the mappin§U(2) X SU(2)— SU(3)xX SU(3) for the constant&; andK;, we evaluate the neutral

pion mass and the amplitude’ 7~ — #%#0 in the SU(3)xX SU(3) framework, expand the result in powers rAm‘mS and
compare it with itsSU(2) X SU(2) analogue.
From the expressions for the neutral pion mass, we find the relation

10K} + 10K, — 185+ 9K’ — 10kE — 10k — 2kG = 12K + 12K, — 18K 5+ 9K+ 10K L+ 10K — 12K 5 — 12K — 10K — 10Kf1(0|.51)

Matching the coefficients of andm in the 7+ 7~ — 7%#° amplitudes, we find
10K} — 8K} + 185 — 9K, = 12K — 6K, + 18K — 9K, + 10K 5 — 8K, (E2)
and

20K — 16K, + 18k5— 9K, — 10kE + 26K — 2kG + 36k = 24K | — 12K, + 18K — 9K, + 20K 5 — 16K 5 — 12K+ 24K s — 10K,
+26K o+ 36K, — 1447, — 72Z,LE . (E3)

Here,Z, is theSU(3) X SU(3) analogue of the coupling. In the order of the quark mass expansion considered here, we may
identify Z, with Z. Combining the relationgEl), (E2), and(E3), we obtain Egs(4.25 and(4.26).
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The couplingK{ can be expressg@8] as a convolution of a QCD correlation function with the photon propagator, plus a
contribution from the QED counterterms. We have checkedRifkf) in Eq. (4.26) is independent of the QCD scagle, that
must be introduced in the QCD Lagrangian after taking into account electromagnetic E3&849.
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