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We construct an effective non-relativistic quantum field theory that describes bound states ofp1p2 pairs
and their hadronic decays. We then derive a general expression for the lifetime of the ground state at next-to-
leading order in isospin breaking. Chiral perturbation theory allows one to relate the decay rate to the two
S-wavepp scattering lengths and to several low-energy constants that occur in the chiral Lagrangian. Recent
predictions for the scattering lengths givet5(2.960.1)310215 s. This result may be confronted withp1p2

lifetime measurements, like the one presently carried out at CERN.
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I. INTRODUCTION

The DIRAC experiment at CERN@1# aims to measure the
lifetime of thep1p2 atom~pionium! in its ground state with
high precision. This atom decays predominantly into t
neutral pions,G.G2p0. The latter decay rate is proportion
to the square of the differencea02a2 of the strongS-wave
pp scattering lengths@2,3# with isospin I 50,2. The mea-
surement will therefore allow one to determine this diffe
ence, which may then be confronted with the predicted va
a02a250.26560.004 @4#. What makes this enterprise pa
ticularly exciting is the fact that one may determine in th
manner the nature of spontaneous chiral symmetry brea
in QCD by experiment: Should it turn out that the pred
tions @4# are in conflict with the results of DIRAC, on
would have to conclude@5# that spontaneous chiral symm
try breaking in QCD differs from the standard picture@6–8#.
An analogous determination of the nature of spontane
chiral symmetry breaking may be performed through
analysis ofKe4

decays, which allows one to measure t

scattering lengtha0 @9#.
In order to determine the scattering lengths through

measurement of the pionium lifetime, the theoretical expr
sion for the width must be known with a precision th
matches the accuracy of the lifetime measurement
DIRAC. In Ref. @10# ~see also@11#!, we have presented
compact expression forG2p0 in the framework of QCD~in-
cluding photons! by use of effective field theory technique
The result obtained contains all terms at leading and nex
leading order in the isospin breaking parametersa.1/137
and (mu2md)2. On the basis of this formula, a numeric
analysis was carried out in Ref.@12# at ordere2p2 in chiral
0556-2821/2001/64~1!/016008~21!/$20.00 64 0160
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perturbation theory~ChPT!. The aim of the present paper
~i! to give a complete description of the theory of thep1p2

atom decay, providing the details that were omitted
@10,12#, and~ii ! to update that numerical analysis by use
the information recently obtained in@4# on the scattering
lengths and on one of the low-energy constants.

We first briefly review previous work on the subject. Th
oretical investigations of hadronic atoms and, in particu
of p1p2 decay, have been performed in several settin
Potential scattering theory in the framework of quantum m
chanics has been used in@2,13–15#, and methods of quantum
field theory have been invoked as well@16–21#. In particular,
in Refs.@20#, the lifetime of thep1p2 atom was calculated
by use of two-body wave equations of 3D-constraint fie
theory. In Refs.@21#, thep1p2 atom decay was studied in
field-theoretical approach based on the Bethe-Salpeter e
tion. The results for thep1p2 atom lifetime obtained with
the two latter approaches contain the major next-to-lead
order terms in isospin breaking and agree both conceptu
and numerically. However, in these investigations the m
mentum dependence of the strongpp scattering amplitude
was neglected.

In several recent publications@22–27#, the decay of
p1p2 atoms has been studied in the framework of a n
relativistic effective Lagrangian—a method originally pr
posed by Caswell and Lepage@28# to investigate bound
states in general. This method has proven to be far m
efficient than conventional approaches based on relativ
bound-state equations. It allows one, e.g., to go beyond
approximation used in@20,21# for the scattering amplitudes
In our previous publications@10,12#, we have used the sam
method. We refer the reader to@12# for a comparison of the
various results obtained in the effective framework.
©2001 The American Physical Society08-1
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We now describe the general features of the system
we are going to study. Thep1p2 atom is a highly non-
relativistic, loosely bound system. The pions are mai
bound by the Coulomb force, and the atom decays predo
nantly through the strong interactions. The average mom
tum of the constituents in the c.m. frame is;0.5 MeV, and
the Bohr radius of the bound state is;400 fm. The decay
width of thep1p2 atom;0.2 eV is much smaller than th
binding energy ;23103 eV. For this reason, a non
relativistic framework provides the most economical a
powerful approach to the calculation of the characteristics
this sort of bound states. Since the strong interactions
tween pions at low energy can be described with ChPT,
theory of thep1p2 atom turns out to be a merger of
non-relativistic approach with ChPT. Owing to the might
the non-relativistic approach which almost trivializes the c
culations in the bound-state sector, we are able to determ
the first few coefficients in the chiral expansion of t
bound-state observables.

The paper is organized as follows. In Sec. II we disc
the foundations of the theory: the non-relativistic Lagran
ian, Green functions, and matching to the relativistic am
tudes. Bound states are discussed in Sec. III. Using F
bach’s formalism@29#, we derive a master equation for th
position of the poles in the resolvent. In Sec. IV w
derive—on the basis of the master equation—a general
pression for the decay width of thep1p2 atom in the
ground state, valid at next-to-leading order in isospin bre
ing. We then express this quantity, through the matching c
dition, by the relativisticp1p2→p0p0 scattering amplitude
at threshold. A numerical analysis of the decay width at or
e2p2 in ChPT is also carried out in this section. Section
contains our conclusions. Background material is relega
to the Appendixes: In Appendix A, we discuss the constr
tion of a general non-relativistic Lagrangian with pions a
photons. The scattering sector of the non-relativistic theor
discussed in Appendix B. In particular, we argue that
contributions of transverse photons to thep1p2→p0p0

scattering amplitude vanish at threshold at ordere2. There-
fore, these diagrams may be omitted in matching the rela
istic and non-relativistic amplitudes. Appendix C deals w
the bound states in the non-relativistic theory: we show th
for a large class of diagrams, transverse photons do not
tribute to the decay width at next-to-leading order in isos
breaking. On the basis of the results obtained in Append
B and C, we completely eliminate transverse photons fr
the theory. In Appendix D we compare two different matc
ing procedures. Finally, in Appendix E, theSU(3)3SU(3)
→SU(2)3SU(2) mapping of the pertinent combination o
electromagnetic low-energy constants in ChPT is provide

II. THE EFFECTIVE NON-RELATIVISTIC THEORY

In the framework of QCD~including photons!, the energy
levels and decay widths of pionium are functions of the fin
structure constanta.1/137, of the quark masses and of t
renormalization group invariant scale of QCD. In the follow
ing, we concentrate on the widthG of the ground state. It can
be expanded in powers ofa and of the quark mass differenc
01600
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md2mu ~up to logarithms!. The leading and next-to-leadin
order terms in this expansion are due to the decay into
neutral pions@2#:

G5G2p01O~d5!,

G2p05 2
9 a3p* ~a02a2!21O~d9/2!,

p* 5~Mp1
2

2Mp0
2

2 1
4 Mp1

2 a2!1/2, ~2.1!

wherea0 and a2 denote theS-wave pp scattering lengths
with isospin I 50 and I 52, respectively. We counta and
(md2mu)2 as small parameters of orderd. The leading term
in the decay width is then of orderd7/2. We describe in the
present article in detail the evaluation ofG2p0 up to and
including terms of orderd9/2, providing details omitted in
Refs.@10,12#.

A. Non-relativistic Lagrangian

The method used in@10# for describing the decay o
loosely bound states is an adaption of the procedure
posed by Caswell and Lepage some time ago@28# for de-
scribing bound states in quantum field theories. In
present case, we need to formulate a non-relativistic quan
field theory that describes strong and electromagnetic in
actions of pions in the very low-energy region. The releva
Lagrangian is a rather voluminous object—indeed, it co
tains an infinite number of terms. Fortunately, in the pres
case, only a small subset of that Lagrangian is finally need

The mathematical problem to be solved may be form
lated as follows: Construct a non-relativistic LagrangianLNR
that contains all terms needed to evaluate the decay widG
up to and including terms of orderd9/2. We relegate the
construction of this object to the Appendixes A, B, and
because the intermediate steps require lengthy calculati
whereas the final answer is amazingly simple. Indeed,
already mentioned in@10#, the following Lagrangian
achieves the goal:

LNR5L01LD1LC1LS ,

L05 (
i 56,0

p i
†S i ] t2Mp i1

D

2Mp i
D p i ,

LD5 (
i 56,0

p i
†S D2

8Mp i
3 1••• D p i ,

LC524pa~p2
† p2!D21~p1

† p1!,

LS5c1p1
† p2

† p1p21c2@p1
† p2

† ~p0!21H.c.#

1c3~p0
†p0!21c4@p1

† DJp2
† ~p0!2

1p1
† p2

† p0DJp01H.c.#, ~2.2!

where (uDJv)8uDv1vDu, and whereD21 denotes the in-
verse of the Laplacian.
8-2
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DECAYS OF THEp1p2 ATOM PHYSICAL REVIEW D 64 016008
The Lagrangian contains explicitly only the pionic d
grees of freedom—the sole remnant of the photons is c
tained in the Coulomb interaction described byLC . The
mass parametersMp i coincide with the physical masses
the charged (Mp1) and neutral (Mp0) pions. The role of the
low-energy constants~LECs! c1 , . . . ,c4 is discussed below

B. Green functions at aÄ0

The fundamental objects in the non-relativistic theory
Green functions of the pion fields. They are most straight
wardly evaluated with path integral techniques. For instan
the propagators of the free fields, associated withL0, read

GNR,i
0 ~x!5~2p!24E d4p e2 ipx

Mp i1p2/2Mp i2p02 i e

5 i ^0uTp̄ i~x!p̄ i
†~0!u0&, ~2.3!

where thep̄ i denotes a free field. Thei e contribution is
generated by a damping factor2e*d4x( ip i

†(x)p i(x) in the
action. To ease notation, we always omit this term in
following. As is seen from the integral representation~2.3!,
the propagatorGNR,i

0 vanishes for negative times, from

where we conclude that the free fieldsp̄ i annihilate the
vacuum. As a result of this, the LagrangianLNR conserves
the number of pions. This fact is, of course, built in—a te
like, e.g., (p0

†)4p0
21H.c. would violate this rule.

We now discuss Green functions in the presence of in
actions, and start the discussion for the case where the C
lomb term is absent,a50. Again, the relevant Green func
tions may be evaluated in the standard manner through
path integral. First, we note that all tadpole diagrams van
in ~split! dimensional regularization, and we adhere in t
following to this convention. The only corrections to th
two-point function are mass insertions, generated byLD .
Summing these up, we obtain

GNR,i~x!5~2p!24E d4p e2 ipx

v i~p!2p0
,

v i~p!5AMp i
2

1p2, ~2.4!

with

~ i ] t2AMp i
2

2D!GNR,i~x!52d4~x!. ~2.5!

Next we consider the four-point functions, relevant f
elasticpp scattering. To be specific, we consider the proc

p1~p1!p2~p2!→p1~p3!p2~p4!. ~2.6!

The corresponding connected Green function is
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GNR
6;6~p3 ,p4 ;p1 ,p2!

5 i 4E d4x1 . . . d4x4e2 i (p1x11p2x22p3x32p4x4)

3^0uTp1~x3!p2~x4!p1
† ~x1!p2

† ~x2!u0&c .

~2.7!

Some of the diagrams generated by the interactions
displayed in Fig. 1. There are two classes of diagrams: M
insertions generated byLD , and bubbles generated byLS .
The perturbative calculation is simply performed by an e
pansion in the number of loops and mass insertions.
reason why this expansion is meaningful is the following.
the c.m. frame Pm5p1

m1p2
m5(P0,0), the elementary

‘‘building blocks’’ to calculate a diagram with any number o
bubbles are given by the loop integral

Ji~P0!5E dDl

~2p!Di

1

Mp i1 l2/~2Mp i !2P01 l 0

3
1

Mp i1 l2/~2Mp i !2 l 0

5
iM p i

4p
„Mp i~P022Mp i !…1/2

at D→4,P0.2Mp i. ~2.8!

The function Ji is analytic in the complexP0 plane, cut
along the real axis forP0.2Mp i. As shown below, the con
tribution to the scattering matrix element is obtained by p
ting P052w1(p), wherep denotes the pion three momen
tum in the c.m. frame. The loop integral is then pure
imaginary. In the case where charged pions are running
the loop, the integral is of orderupu1/2 near threshold. For
neutral pions in the loop, it is proportional to (Mp1

2Mp0)1/2 at the thresholdP052Mp1. In the case where
some of the vertices contain derivatives@denoted by the full
circle in Fig. 1~c!#, and/or when mass insertions occur
internal lines, additional factorsupu and/or (Mp12Mp0) ap-
pear. As a result of this, the expansion in the number of lo
and mass insertions is at the same time an expansion inupu
and in the isospin breaking parameterMp12Mp0. We con-
clude that, to calculate the scattering amplitude at a gi
order in the momenta or in the isospin breaking paramet
only a finite number of diagrams need to be considered.

FIG. 1. Examples of diagrams generated by the Lagrangian~2.2!
at e50. Solid~dashed! lines correspond to charged~neutral! pions,
crosses denote mass insertions, and the filled circle stands
higher-order derivative vertex.
8-3
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We now discuss mass insertions on the external lin
These have to be summed up in order to generate the co
pole positions atpi

05AMp1
2

1pi
2. On the other hand, the

insertions in the internal lines can be treated perturbativ
For a detailed discussion of this issue we refer the intere
reader to Ref.@30#. The Green function is then of the form

GNR
6;6~p3 ,p4 ;p1 ,p2!5)

i
„v1~pi !2pi

0
…

21

3R6;6~p3 ,p4 ;p1 ,p2!. ~2.9!

The scattering amplitude is obtained fromR6;6 by putting
all momenta on their mass shell,

R6;6up
i
05w1(pi )

5^p1~p3!p2~p4!outup1~p1!p2~p2!in&c

8 i ~2p!4d4~p11p22p32p4!

3TNR
6;6~p3 ,p4 ;p1 ,p2!, ~2.10!

with normalization

^p1~p1!up1~p2!&5~2p!3d3~p12p2!. ~2.11!

Note that, since the two-point function has residue equa
one, the wave function renormalization constants are unit
well.

A formula similar to Eqs.~2.9!,~2.10! holds for any 2
→2 scattering process

p i~p1!pk~p2!→p l~p3!pm~p4!. ~2.12!

The corresponding relativistic amplitudes are related to
non-relativistic ones through

TR
lm; ik~p3 ,p4 ;p1 ,p2!54$wi~p1!wk~p2!wl~p3!wm~p4!%1/2

3TNR
lm; ik~p3 ,p4 ;p1 ,p2!. ~2.13!

In the following, we denote the total and relative m
menta by

P5p11p2 , p5 1
2 ~p12p2!. ~2.14!

Unless stated otherwise, we consider scattering processe
ways in the c.m. frameP50.

C. The low-energy constants—matching

We discuss the role of the low-energy constantsci that
occur in the effective theory. We first consider the equal m
case Mp15Mp05Mp , discard the Coulomb interactio
LC , and write the corresponding LECs asc̄1 , c̄2 , c̄3, and
c̄4. The matrix elements for the scattering processes

p1p2→p1p2,

p1p2→p0p0, p0p0→p1p2,

p0p0→p0p0, ~2.15!
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are obtained from the residue of the relevant four-point fu
tion, as we just discussed. Each contribution consists o
product of loop functionsJi , including vertices with deriva-
tives and/or mass insertions. Near threshold, the loop exp
sion generates a power series inp,

T̄NR5 f̄ 01upu f̄ 11p2 f̄ 21O~ upu3!, ~2.16!

where T̄NR denotes a generic elastic scattering amplitu
The coefficientsf̄ i depend on the constantsc̄i , on the pion
massMp , and on the scattering angle. The threshold am
tude f̄ 0 receives a contribution from the tree graph alone.
use of the relation~2.13!, we therefore find that

4Mp
2 c̄15TR

6;6 ,

8Mp
2 c̄25TR

00;65TR
6;00,

16Mp
2 c̄35TR

00;00, ~2.17!

whereT̄R
6;6 stands for the relativistic matrix element, eval

ated at threshold in the equal mass case, in the absenc
electromagnetic interactions.

We have not yet specified what relativistic theory we a
considering—the relations~2.17! are true for any of these
Let us consider QCD, and represent the threshold amplitu
through the relevant scattering lengths in the isospin sym
try limit mu5md . We then have

3Mp
2 c̄154p~2a01a2!,

3Mp
2 c̄254p~a22a0!,

3Mp
2 c̄352p~a012a2!, ~2.18!

whereMp denotes the pion mass in QCD atmu5md . These
relations are true to all orders in the chiral expansion.

D. Matching with the chiral expansion

There is a second possibility to perform the matchin
Namely, one may arrange the couplingsci such thatLNR
reproduces the chiral expansion of the relativistic amplitu
to a given order in chiral perturbation theory. To arrive at t
relevant expression, it is sufficient to work out the chir
expansion of the threshold amplitudes at a given order in
chiral expansion and to compare the result with Eq.~2.17!.
At order p2, the chiral amplitudes are

T~p1p2→p1p2!5
s1t22M2

F2
,

T~p1p2→p0p0!52
s2M2

F2
,

T~p0p0→p0p0!5
s1t1u23M2

F2
, ~2.19!
8-4
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DECAYS OF THEp1p2 ATOM PHYSICAL REVIEW D 64 016008
where

M25~mu1md!B, B5
1

F2
u^0uūuu0&u, ~2.20!

and whereF is the pion decay constant in the chiral lim
mu5md50. In the isospin symmetry limita50, mu5md ,
the parameterM is further related to the pion mass throug

Mp
2 5M21O~p4!. ~2.21!

The symbolss, t, u denote the standard Mandelstam va
ables. It follows that

c̄15
1

2F2
1•••,

c̄252
3

8F2
1•••,

c̄35
1

16F2
1•••, ~2.22!

where the ellipses denote higher-order terms in the qu
mass expansion. With these values of the LECs, the
graphs ofLNR reproduce the leading order in the chiral e
pansion of the threshold amplitudes. Similarly,c̄4 can be
related to the momentum dependence ofT(p1p2

→p0p0),

c̄45
1

32F2Mp
2

1•••. ~2.23!

E. Including the Coulomb interaction

We now consider Green functions at ordera, and relax
the equal mass condition for the pions. There are two cla
of diagrams: The first one contains the same diagrams
T̄NR , but now evaluated atMp1ÞMp0, and with couplings
ci that depend ona and mu2md ; see below. The secon
class contains diagrams with one virtual Coulomb phot
Feynman graphs where the Coulomb photon is attache
such a manner that pions must propagate in time in orde
connect the two vertices—the self-energy graph is
example—all vanish. This is because one may close the
tour of integration over the zero-component of the pho
momentum in a half-plane where there is no singularity
the propagators. Since the self-energy diagrams vanish
mass parametersMp1 and Mp0 in the Lagrangian may be
identified with the physical masses. The two-point functio
for the charged and neutral pion field are therefore still giv
by the expression~2.4!. We now consider virtual Coulomb
diagrams that are built from diagrams displayed in Fig.
The crosses in the figure denote mass insertions. We eva
the contributions from Figs. 2~b!, 2~c!, and start the discus
sion with the Coulomb vertex diagram Fig. 2~b!, with no
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mass insertion. After integration over the zero componen
the loop momentum, the integral to be evaluated is

Vc~p,P0!5e2E ddl

~2p!d

1

u lu2

1

P022Mp12~p2 l!2/Mp1

,

d5D21. ~2.24!

The contribution to the scattering amplitudes is obtained
evaluating this expression atP052w1(p). The result is

Vc„p,2w1~p!…52
paMp1

4upu
2 iauc1O~ upu,d23!,

~2.25!

where

uc5
Mp1

2upu
md23H 1

d23
2

1

2
@ ln 4p1G8~1!#1 ln

2upu
m J

~2.26!

is the infrared-divergent Coulomb phase@31#.
Next, we consider the two-loop diagram Fig. 2~c!, omit-

ting mass insertions. Again integrating over the zero com
nents of the loop momenta, the corresponding amplitud
expressed in terms of

Bc~P0!5
e2

~2p!2dE ddl1

P022Mp12 l1
2/Mp1

3
1

u l12 l2u2

ddl2

P022Mp12 l2
2/Mp1

. ~2.27!

Evaluating this expression atP052w1(p), we find

Bc„2w1~p!…52
aMp1

2

8p H L~m!12 ln
2upu
m

212 ipJ
1O~ upu,d23!,

L~m!5m2(d23)H 1

d23
2 ln 4p2G8~1!J .

~2.28!

The ultraviolet divergences in diagrams that containBc are
removed in the standard manner by adding counterterm
the LagrangianLNR . For the consistency of the method it
important to notice that the diagrams obtained by add

FIG. 2. Building blocks for the scattering amplitude, includin
Coulomb interactions at ordere2. Dotted lines denote the exchang
of a Coulomb photon.
8-5
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mass insertions and/or using vertices with derivative c
plings, are suppressed by powers of momenta with respe
the leading termsBc andVc . They will not be needed in the
following.

The structure of the elastic scattering amplitudes up
and including terms of ordera is now as follows. First we
note that, since the propagators are not affected by the
energy diagrams, the reduction formulas~2.9!,~2.10! are still
valid. We write the generic scattering amplitude as

TNR5TNR
0 1aTNR

1 1O~a2!, ~2.29!

whereTNR
1 contains one virtual Coulomb photon. The expa

sion of the first term in powers of the center of mass m
menta is as in Eq.~2.16!, with coefficientsf i that now also
depend on the pion mass difference, and ona through the
coupling constantsci . Omitting the tree contribution from
one-Coulomb exchange displayed in Fig. 2~a!, we write the
second term as

TNR
1 5

Mp1

upu H g01upug11upu ln
2upu

Mp1

g21p2g31•••J .

~2.30!

The coefficientsgi contain in general infrared divergence
generated by the vertex diagramVc . Otherwise, the structure
of thegi is again the same as the one of the coefficientsf i in
TNR

0 . Power counting also works in this general case: ther
only a finite number of diagrams that contribute to a giv
coefficient f i or gi . Finally, the relation to the amplitude i
the underlying relativistic theory1 is again given by Eq.
~2.13!.

One may perform the matching to the chiral expans
also in this general case. First, we note thata is then counted
as a quantity of orderp2. Second, the chiral representatio
~2.19! is valid at orderp2 also in the presence of electroma
netic interactions, provided that one~i! identifies the quantity
M in Eq. ~2.19! with the neutral pion mass, and~ii ! adds the
one-photon exchange amplitude in thep1p2→p1p2

channel. Let us match the amplitudes at orderp2. Counting
powers ofF2, it is easy to see that loop diagramsTNR

1 do not
contribute—the matching relations become@10#

c15
1

2F2
~11k!1•••, ~2.31!

c252
3

8F2 S 11
k

6D1•••,

c35
1

16F2
1•••,

1Both the relativistic and non-relativistic amplitudes must
evaluated by using the same infrared regulator, such that the C
lomb phase can be identified on both sides. We find it convenien
use dimensional regularization.
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c45
1

32F2Mp0
2 ~122k!1•••,

with k5Mp1
2 /Mp0

2
21. The ellipses stand either for terms

o(k), or higher-order contributions in the chiral expansio
The terms of orderk are proportional toa at this order in the
chiral expansion—Eq.~2.31! displays thea-dependence of
the couplingsci mentioned above.

This concludes our discussion of the evaluation of Gre
functions in the non-relativistic theory.

III. PIONIUM IN THE NON-RELATIVISTIC FRAMEWORK

The bound states and their decays are most convenie
described in a Hamiltonian framework. The effective theo
discussed above renders the pertinent calculations ra
straightforward, as we will now show.

A. Hamiltonian and Fock space

The non-relativistic LagrangianLNR gives rise to the fol-
lowing Hamiltonian:

H5H01HD1HC1HS5H01HC1V,

HG5E d3x HG~0,x!,

G50,D,C,S,

H05 (
i 56,0

p i
†S Mp i2

D

2Mp i
D p i ,

HD52 (
i 56,0

p i
†S D2

8Mp i
3 1••• D p i ,

HC54pa~p2
† p2!D21~p1

† p1!,

HS52c1p1
† p2

† p1p22c2@p1
† p2

† ~p0!21H.c.#

2c3~p0
†p0!22c4@p1

† DJp2
† ~p0!2

1p1
† p2

† p0DJp01H.c.#. ~3.1!

It is convenient to introduce creation and annihilation ope
tors:

@ai~p!,ak
†~q!#5~2p!3d3~p2q!d ik , i ,k56,0,

p i~0,x!5E dn~p!eipxai~p!, dn~p!5
d3p

~2p!3
.

~3.2!

The free Hamiltonian becomes

H05E dn~p!(
i

S Mp i1
p2

2Mp i
D ai

†~p!ai~p!, ~3.3!
u-
to
8-6
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and the propagator, evaluated with the free fields

p̄ i~x0,x!5eiH0x0
p̄ i~0,x!e2 iH0x0

, ~3.4!

of course agrees with Eq.~2.3!. We will also need the two-
particle states with zero total charge,

uP,p&15a1
† ~p1!a2

† ~p2!u0&,

uP,p&05a0
†~p1!a0

†~p2!u0&. ~3.5!

In terms of these, the unperturbed pionium ground stat
given by

uC0 ,P&5E dn~q!C0~q!uP,q&1 , ~3.6!

whereC0(q) is the Coulomb wave function in the mome
tum space

C0~q!5
~64pg5!1/2

~q21g2!2
, g5

1

2
aMp1, ~3.7!

and

~H01HC!uC0 ,P&5~E01ECM!uC0 ,P&,

E052Mp1S 12
a2

8 D , ECM5
P2

4Mp1

. ~3.8!

The perturbationV renders the ground state unstable. W
discuss in the remaining part of this article how the cor
sponding width can be evaluated.

B. Resolvents—the master equation

To determine the width of the ground state, we have c
sidered in Ref.@10# the scattering amplitude in the neutr
-

01600
is

-

-

channel,p0p0→p0p0, and determined the position of it
poles in the complex energy plane. Here, we instead m
use of resolvents. While the two descriptions are perfec
equivalent, we find that the use of the resolvent renders
calculations even simpler. We begin the discussion with
quantity

GC~z!5
1

z2H02HC
, ~3.9!

whose matrix elements between the charged states~3.5! de-
velop poles at the position of the energy levels of the unp
turbed pionium. To remove the c.m. momentum of the ma
elements, we introduce the notation

„qur ~z!up…5E dn~P! 1^P,quR~z!u0,p&1 , ~3.10!

where R(z) denotes any operator in Fock space. One c
now easily relate the matrix element ofGC to Schwinger’s
Green function@32#,

„qugC~z!up…5
~2p!3d3~q2p!

E2q2/Mp1

2
1

E2q2/Mp1

4pa

uq2pu2
1

E2p2/Mp1

2
1

E2q2/Mp1

4pahI ~E;q,p!
1

E2p2/Mp1

,

~3.11!

with
I ~E;q,p!5E
0

1 x2hdx

@~q2p!2x1h2/a2~12x!2~E2q2/Mp1!~E2p2/Mp1!#
, ~3.12!
whereh5 1
2 a(2E/Mp1)21/2 andE5z22Mp1. This func-

tion has poles ath51,2, . . . . Inorder to calculate the posi
tion of the poles in the real world, withVÞ0, we consider
the full resolvent

G~z!5
1

z2H
. ~3.13!

Expanding in powers of the perturbationV, one finds thatG
satisfies the equation

G5GC1GCt GC ,

t5V1VGCt. ~3.14!
We remove the ground state singularity fromGC ,

ḠC5GCH12E dn~P!uC0 ,P&^C0 ,PuJ , ~3.15!

introduce

t̄5V1VḠCt̄, ~3.16!

and find forG the representation

G5ḠC1ḠCt̄ ḠC1~11ḠCt̄!P0~11 t̄ ḠC!, ~3.17!

where
8-7
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P05E dn~P!uC0 ,P&^C0 ,Pu

z2ECM2E02~C0ut̄~z;P!uC0!
, ~3.18!

and

~C0ut̄ ~z;P!uC0!5E dn~P8!^C0 ,P8ut̄ ~z!uC0 ,P&.

~3.19!

The singularity generated by the ground state pole is ab
in the barred quantities. Therefore, the pertinent pole m
occur through a zero in the denominator of the express
~3.18!. In the c.m. frame, the relevant eigenvalue equation
be solved is

z2E02„C0ut̄ ~z!uC0…50, ~3.20!

where the matrix element denotes the quantity on the l
hand side of Eq.~3.19!, evaluated in the c.m. frameP50.

The master equation~3.20! is a compact form of the con
ventional Rayleigh-Schro¨dinger perturbation theory. Not
that it fixes the convergence domain of the perturbat
theory: the theory is applicable as long as the energy-le
shift does not become comparable to the distance betw
the ground-state and the first radial-excited Coulomb po
Equation~3.20! is valid for a general potential—containing
e.g., the interaction with the transverse photons—since in
derivation, we did not use the explicit form of the interacti
Hamiltonian in Eq.~3.1!.

C. Singularity structure of the resolvent

We find it instructive to shortly discuss the analytic stru
ture of the matrix elements of the resolventG, and the loca-
tion of the shifted ground state pole. First, from Eq.~3.20!, it
is seen that this pole will occur at the same position for a
channel. Second, it is expected on general grounds tha
pole will move to the second Riemann sheet. Indeed, c
sider the operatort̄ in the second iterative approximation

t̄5V1VḠCV1O~V3!. ~3.21!

To evaluate the matrix element between charged state
required, we insert a complete set of neutral states in
second term. The eigenvalue equation becomes

z5E01
Mp1

3 a3

8p
$2c122c2

2J0~z!1•••%, ~3.22!

whereJ0 denotes the loop integral~2.8!. This function has a
branch point atz52Mp0, and its imaginary part has th
same sign as the imaginary part ofz throughout the cutz
plane. Therefore, Eq.~3.22! has no solution on the first Rie
mann sheet. On the other hand, if we analytically continueJ0
from the upper rim of the cut to the second Riemann sh
we find that a zero at
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z5Rez1 i Im z,

Rez5E02
a3Mp1

3

8p
c11•••,

Im z52
a3Mp1

3 Mp0

16p2
r1/2c2

21•••, ~3.23!

with r52Mp0(Mp12Mp02Mp1a2/8).
The imaginary part is of orderd7/2. We demonstrate be

low that it is the only term at this order. Using Eq.~2.18! and
G522 Imz, one recovers@22# the leading order result~2.1!.

Similar arguments apply to all the other pole position
@Of course, in order to correctly describe the new positio
of the exited energy levels, our original LagrangianLNR
must be enlarged.# We conclude that the 2-particle matri
elements ofG are analytic functions in the complexz plane,
cut along the real axis for Rez.2Mp0. The poles are lo-
cated on the second Riemann sheet.

IV. PIONIUM DECAYS

A. Perturbative solution of the bound-state equation

In order to find the solution to Eq.~3.20! at orderd9/2, it
is convenient to reduce Eq.~3.16! to a one-channel problem
with an effective potentialW. We use a projector% on the
two-particle statesuP,q&1 ,

%5E dn~P!dn~q!uP,q&11^P,qu,

%0512%, ~4.1!

and find in the standard manner

% t̄%5%W%1%W%ḠC% t̄%,

W5V1V%0ḠC$12%0V%0ḠC%21%0V. ~4.2!

This result is still perfectly general. In the case conside
here, one may simplify the expression for the effective p
tential, replacingḠC by G05(z2H0)21,

W5V1V%0G0$12%0V%0G0%
21%0V. ~4.3!

The matrix elements of the effective potential can be
panded in powers of momenta, because there are no ne
singularities. Specifically, we write

„quw~z!up…5~2p!3d3~q2p!S 2
p4

4Mp1
3 1••• D 1w~z!

1w1~z!p21w2~z!q21w3~z!pq1•••.

~4.4!

If we now iterate Eq.~4.2!, at the order of accuracy we ar
working, the decay width of thep1p2 atom G2p0

522 Imz is given by
8-8
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G2p052
a3Mp1

3

4p
Im w@112 Rew^ḡC~E0!&#1O~d5!,

~4.5!

wherew5w(E0), and

^ḡC~E0!&5E ddq

~2p!d

ddp

~2p!d
„quḡC~E0!up…. ~4.6!

In order to calculate this integral, one needs to defi
Schwinger’s Green function ind dimensions. In field theory
the Fourier transform of the Coulomb potential ind dimen-
sions is given by exactly the same expression as in th
dimensions—consequently, the first two terms in the rep
sentation~3.11! are also valid atdÞ3. For the last term, the
integral is convergent, and we may work atd53. The inte-
gral is then equal to

^ḡC~E0!&5
aMp1

2

8p
j,

j52 lna231L~m!1 ln
Mp1

2

m2
. ~4.7!

The quantities Rew and Imw can be determined from itera
tions of Eq.~4.2! to the needed accuracy,

Rew52c1 ,

Im w52
Mp0

2p
r1/2S 11

5r

8Mp0
2 D ~c222rc4!2

3S 12r
Mp0

2 c3
2

4p2 D . ~4.8!

We have now expressed the decay width of thep1p2 atom
in terms of the non-relativistic couplingsc1•••c4. It remains
to determine the relevant combination of these coupli
from the matching of the relativistic and non-relativistic am
plitudes.

B. Matching to the threshold amplitude

We determine the non-relativistic couplings that enter
expression for the decay width through Eq.~4.8!, and start
the discussion with the couplingsc1 andc3. These contribute
to the decay width at orderd9/2, becauser counts as a quan
tity of orderd. Therefore, these two couplings are needed
orderd0 ~no isospin breaking!, as a result of which we may
replace them by the isospin symmetric quantitiesc̄1 and c̄3
in Eqs.~2.18!. It remains to determine the combination of th
couplingsc2 and c4 that enter Eq.~4.8!. As we will now
show, it suffices for this purpose to calculate the real par
the p1p2→p0p0 amplitude at orderd in the non-
relativistic and in the relativistic theories.

Whereas the Hamiltonian framework is very convenie
to discuss the energy spectrum, it is more convenient to
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culate scattering amplitudes in the Lagrangian framew
discussed in Sec. II. In the relativistic theory, the on-sh
amplitude forp1p2→p0p0 contains infrared singularities
that exponentiate@33#,

TR
00;65exp~aB00;6!T̂R

00;6 ,

B00;6522pE dDl

~2p!Di

P 2~ l !

l 2
,

P~ l !5
2p11 l

l 212lp1

1
2p22 l

l 222lp2

, ~4.9!

wherep1 ,p2 denote the 4-momenta of incomingp1 andp2

mesons. In Ref.@33# it is demonstrated that—using a photo
mass as an infrared regulator—the residual amplitudeT̂R

00;6

is free of infrared singularities. Here we assume that
same is true in dimensional regularization. We find

B00;65 iuc1
pMp1

4upu
2

3

2p
1O~ upu,D24!, ~4.10!

whereuc is defined by Eq.~2.26!. The infrared divergences
cancel in the real part ofB00;6 at threshold, whereas th
imaginary part is divergent atD→4.

One may verify that at ordera, exactly the same diver
gent Coulomb phase appears in the non-relativistic am
tudes. Indeed, if one performs the calculation atdÞ3 and
splits off the phase according to

TNR
00;6~q,p!5eiaucT̂NR

00;6~q,p!, ~4.11!

then there are no infrared singularities in the amplitu
T̂NR

00;6(q,p) at threshold in the limitd→3, at orderd. For the
real part, we find2

ReT̂NR
00;6~q,p!5

B1

upu
1B2ln

2upu

Mp1

1
1

4Mp1
2 ReAthr

12001o~p!,

~4.12!

where

B15
paMp1

2
c21o~d!,

B252
aMp1

2

2p
c1c21o~d!. ~4.13!

The singular contributions;1/upu, lnupu are generated by the
exchange of one Coulomb photon@see Figs. 2~b!, 2~c!#. At
O(d), the constant term in Eq.~4.12! is equal to

2Note that in Ref.@10#, the non-relativistic scattering amplitude
defined with an opposite sign.
8-9
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1

4Mp1
2 ReAthr

120052c224Mp0
2 kS c41

c2c3
2Mp0

2

8p2 D
1

aMp1
2

4p S 12L~m!2 ln
Mp1

2

m2 D c1c2 ,

~4.14!

whereL(m) is given by Eq.~2.28!, andk is the same as in
Eq. ~2.31!. The ultraviolet divergence contained inL(m)
may be absorbed in the renormalization of the couplingc2.
This procedure at the same time eliminates the ultravi
divergence in the expression for the decay width.

In the following, we assume that—up to and includin
terms of orderd—the relativistic amplitude does have th
same singularity structure, as a function of the momentump,
as the non-relativistic amplitude~4.12!. We can then match
the non-relativistic expression to the relativistic one in t
standard manner, using Eq.~2.13!. The quantity ReAthr

1200 in
Eq. ~4.12! corresponds to the one introduced in Ref.@34#, in
the context of the relativistic theory~modulo the Coulomb
phase, which does, however, not contribute to the amplit
at ordere2p2.!. The logarithmic singularity is absent in th
amplitude at ordere2p2 at which the calculations in Ref.@34#
were carried out—it first emerges at ordere2p4 @35#, see
Appendix D. Finally, the relation~4.14! represents the
matching condition between the regular part of the relativ
tic p1p2→p0p0 scattering amplitude at threshold and t
pertinent combination of non-relativistic coupling consta
ci .

C. General expression for the decay width

Substituting the results of the matching into the expr
sion for thep1p2 atom decay width~4.5!, and using Eqs.
~4.7! and ~4.8!, we obtain

G2p05 2
9 a3p* A 2~11K !, ~4.15!

A52
3

32p
ReAthr

12001o~d!,

K5
k

9
~a012a2!22

2a

3
~ ln a21!~2a01a2!

1o~d!,

p* 5~Mp1
2

2Mp0
2

2 1
4 Mp1

2 a2!1/2.

This is the general expression for thep1p2 atom decay
width, valid at next-to-leading order in isospin breaking, a
to all orders in the chiral expansion. Note that all mention
the non-relativistic theory has disappeared in the final re
that relates the observable quantity~the decay width! to the
relativistic scattering amplitude at threshold.

The primary objective of the DIRAC experiment is
measure the differencea02a2 of the S-wavepp scattering
lengths that are defined in the isospin-symmetric world. T
expression~4.15! is not yet suited for this purpose, because
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relates the width to the scattering amplitude at thresho
This quantity contains the combinationa02a2 we are look-
ing for, together with isospin breaking contributions. One h
to evaluate these and subtract them from the measured
plitude. ChPT allows one to achieve this goal—order by
der in the expansion in the quark mass.

D. Amplitude at O„e2p2
…

The normalization of the quantityA is chosen such that
in the isospin symmetry limit, it coincides with the differenc
a02a2 of theS-wave scattering lengths. In the general ca
we expand the amplitude in powers of the isospin break
parametersa andmu2md ,

A5a02a21h1~md2mu!21h2a1o~d!. ~4.16!

This decomposition is true irrespective of the chiral expa
sion. The scattering lengths as well as the coefficientshi are
functions of the quark massm̂ and of the renormalization
group invariant scale of QCD. What is the meaning ofa0
2a2 in the presence of isospin-violating interactions?
clarify the issue, we consider the expressionA at leading
order in the chiral expansion. From Eq.~2.19!, we find

A5
3

32pF2
~4Mp1

2
2M2!1O~p4,e2p2!. ~4.17!

To bring this into the form~4.16!, we note that, in the
isospin-symmetry limit mu5md ,a50, the scattering
lengths can be expanded in powers of the pion mass, defi
to be the position of the pole in the correlator of two ax
currents. It is an algebraically perfectly legitimate procedu
to identify this mass with the charged pion mass. We adh
in the following to this procedure, in order to agree with t
standard conventions in ChPT. The expression for the dif
ence of the scattering lengths then reads

a02a25
9Mp1

2

32pF2
1O~p4!. ~4.18!

Comparing this with Eq.~4.17!, we find

A5a02a21
3~Mp1

2
2M2!

32pF2
1O~p4,e2p2!. ~4.19!

From this result, we may read off the coefficienth2 at lead-
ing order in the chiral expansion,

h25
3~Mp1

2
2M2!

32apF2
1O~m̂!. ~4.20!

@To be precise, the first term on the right-hand side of t
equation should be evaluated ata50. To ease notation, we
omit this request here and in the following.# On the other
hand, the above calculation is not accurate enough to de
mine h1 at leading order, because for this purpose, the a
plitude is needed at orderp4. This procedure may obviously
8-10
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be carried out order by order in the chiral expansion—all t
is needed is the chiral expansion of the scattering amplit
at threshold, atmuÞmd , aÞ0. As a result of this, the quan
tities hi are represented as a power series in the quark m
m̂ ~up to logarithms!.

The evaluation of the amplitude forp1p2→p0p0 has
been carried out atO(p4,e2p2) in Ref. @34#. This result al-
lows us therefore to determine the coefficienth1 (h2) at or-
der p0 (p2). Some remarks are in order.

~i! In Ref. @34#, the scattering amplitude has been eva
ated atmu5md . For our purposes, the expression for gene
mu andmd is needed. On the other hand, up to and includ
terms of orderp4, the strong amplitude does not conta
mu2md terms. The only source for such contributions is t
tree graph, whereM2 is expressed in terms of the neutr
pion mass. The generalization of the result~Ref. @34#! to the
unequal mass case is therefore straightforward.

~ii ! The normalization point in Ref.@34# is chosen to be
the neutral pion mass. According to our definitions, we ha
to normalize all low-energy constants at the charged p
mass. The terms that emerge from the shift of the normal
tion point are proportional toDp5Mp1

2
2Mp0

2 and are in-
cluded in the expressions given below.

The rest is then straightforward. We find

h15O~m̂!,

h25
3Dp

em

32paF2 S 11
Mp1

2

12p2F2 F23

8
1 l̄ 11

3

4
l̄ 3G D

1
3Mp1

2

256p2F2
p~ki !1O~m̂2!, ~4.21!

where p(ki) stands for the following combination of th
electromagnetic low-energy constants@34#,

p~ki !523019k̄116k̄312k̄61 k̄81 4
3 Z~ k̄112k̄216k̄4

112k̄626k̄8!, ~4.22!

and

Dp
em5Dpumu5md

, Z5
Dp

em

8paF2
. ~4.23!

The quantitiesk̄i denote again the running coupling co
stantski

r(m) at scalem5Mp1. Note that according to ou
counting, the quantityLp5 ln(Mp1

2 /Mp0
2 ) introduced in Ref.

@34# is of orderd and hence does not contribute toh2. Fur-
ther,F may be expressed throughFp according to@7#

Fp5FS 11
Mp1

2

16p2F2
l̄ 41O~m̂2!D . ~4.24!

For the numerical analysis, one has to specify the value
the low-energy constants that enter the expression forh2. We
are not aware of an estimate for theSU(2)3SU(2) cou-
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plings k̄i . On the other hand, the corresponding couplingsKi
in SU(3)3SU(3) @36# have been estimated by invoking
e.g., sum rules or a resonance saturation hypothesis@37–39#.
In order to use this information, we need to relate the c
plings k̄i to theirSU(3) counterpartsKi . In Appendix E, we
show that

p~ki !5P~Ki !28Z l̄ 4 , ~4.25!

where

P~Ki !5
128p2

3
@26~K1

r 1K3
r !13K4

r 25K5
r 1K6

r 16~K8
r

1K10
r 1K11

r !#2~18128Z!ln
Mp1

2

m2

22ZS ln
msB0

m2
11D 230, ~4.26!

and whereKi
r denote the running couplings introduced

@36#. Taking into account this relation, we may rewrite th
formula for the width in the following form:

G2p05 2
9 a3p* ~a02a21e!2~11K !, ~4.27!

with

e5
3Dp

em

32pFp
2 S 11

Mp1
2

12p2Fp
2 F23

8
1 l̄ 11

3

4
l̄ 3G D

1
3aMp1

2

256p2Fp
2

P~Ki !1O„m̂~mu2md!2,am̂2
…1o~d!.

~4.28!

The quantityK is given in Eq.~4.15!.

E. Numerical analysis

In the numerical evaluation of the lifetime, we use fora0
and a2 the values from the recent analysis in Ref.@4#, a0
50.22060.005, a2520.044460.001, a02a250.265
60.004. To evaluate the correctione, we first recall that the
non-electromagnetic part of the pion mass difference is t
of order ;0.1 MeV @40#. Therefore, we identifyDp

em with
the experimentally measured total shiftDp . Further, in the
calculations we replacemsB0 by MK1

2
2Mp1

2 /2, according
to our definition of the isospin symmetry limit. The value
used for the low-energy constants in the strong sector
l̄ 1520.460.6, l̄ 352.962.4 @4#. For Ki

r(m), we use the
values given by Baur and Urech in Ref.@37#, Table 1:K1

r

526.4, K3
r 56.4, K4

r 526.2, K5
r 519.9, K6

r 58.6, K8
r 5K10

r

50, K11
r 50.6 ~in units of 1023). We evaluateP(Ki) at scale

m5M r . Further, we attribute an uncertainty 2/16p2—that
stems from dimensional arguments—to eachKi

r . The values
of Ki

r obtained both by Moussallam@38# and by Bijnens and
Prades@39#, lie then within the uncertainties attributed. Th
8-11
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same is true, if the saturation is assumed not at scalm
5M r , but somewhere within the interval 0.5 GeV<m
<1.0 GeV. Finally, we useFp592.4 MeV. Adding the un-
certainties inl 1 ,l 3 ,a0 ,a2, and inKi quadratically, we obtain

e5~0.6160.16!31022,

K5~1.1560.03!31022, ~4.29!

or

G2p05 2
9 a3p* ~a02a2!2~11dG!,

dG5~5.861.2!31022. ~4.30!

This amounts to a six percent correction to leading-or
formula by Deseret al. @2#. In the total decay widthG, the
decay into 2p0 is by far the dominating mode. For exampl
the decay width into a 2g pair, which is the first subleading
mode ind counting, isG2g5a5Mp1/4 @1,41# at leading or-
der in the d expansion, as a result of which one h
G2g /G2p0.331023. For this reason, one may safely ide
tify t2p0 with the total lifetime,

t8G2p0
21

5~2.960.1!310215 s. ~4.31!

We add the following remarks concerning these numbers
The bulk part in the uncertainty in the lifetime is due

the uncertainty in the difference of the scattering lengthsa0
2a2, which results in60.085310215 s.

The uncertainties in the constantsKi increase this to
60.091310215 s. Including the remaining uncertaintie
does not change this number in the digits displayed.

The numbers in Eqs.~4.29!–~4.31! differ from the corre-
sponding ones in our previous paper@12#, because the
present values of the scattering lengths, ofl̄ 1 and of Fp

differ from the ones used there. The above values ofa0 ,a2
are the result of a complete analysis@4# at orderp6—they
replace the ones used in@12#, taken from the preliminary
numerical result cited in Ref.@42#. The present value ofl̄ 1 is
based on the same analysis@4#. The bulk part in the change
of the lifetime is of course due to the updated value ofa0
2a2, because this combination of scattering lengths en
the expression for the decay rate at leading order.

The vacuum polarization correction to the lifetime, that
not taken into account here, amounts@22# to a contribution of
20.01310215 s.

We expect that the higher-order contributions to t
p1p2 atom decay width in ChPT are negligibly small. Co
sequently, an accurate determination ofa02a2 from a pre-
cise lifetime measurement is indeed feasible.

V. SUMMARY

~i! We have considered decays of thep1p2 atom in its
ground state. Aside from a kinematical factor, the decay
can be expanded in powers of the isospin breaking par
etersa and (mu2md)2. It is convenient to book these pa
rameters as terms of orderd.

~ii ! To calculate the leading and next-to-leading ord
01600
r

rs

te
-

r

term in thed expansion of the width, we have constructed
non-relativistic Lagrangian that describes the low-energy
teractions of pions and photons. In this framework, the m
trix elements of the resolvent 1/(z2H) develop poles on the
second Riemann sheet in the complexz plane. The positions
of the poles are related to the energy levels and widths in
standard manner. By using Feshbach’s technique, we h
derived the master equation~3.20! for the position of the
ground-state pole.

~iii ! On the basis of this equation, we have calculated
decay width of the ground state of pionium in terms of t
parameters of the non-relativistic Lagrangian. At leading a
next-to-leading order in thed expansion, only the channe
Ap1p2→p0p0 is open. Furthermore, at this order of acc
racy, transverse photons do not contribute—the relevant
grangian becomes then very simple, see Eq.~2.2!. Matching
the non-relativistic amplitude to the relativistic one, we ha
then expressed the decay width in terms of the relativi
scattering amplitude, up to terms that vanish faster thand9/2.
The relevant formula is displayed in Eq.~4.15!.

~iv! At this stage, one may invoke ChPT, which allow
one to expand the isospin breaking terms in powers of
quark mass, and thus to get contact with measurable qu
ties. The result is given in Eq.~4.27!, that displays the width
in terms of the combinationa02a2 of S-wave scattering
lengths, and a correction that we have calculated at ordea

andm̂a. The quark mass difference shows up only at ord
(mu2md)2m̂. We expect this term to be completely neg
gible. The recently determined values@4# of thepp S-wave
scattering lengths gives

t5~2.960.1!310215 s. ~5.1!

~v! Since the isospin breaking corrections at ordera and
m̂a are small, we expect that chiral corrections at high
order as well as higher-order terms in isospin breaking
irrelevant for data on the lifetime obtained in the foreseea
future.
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APPENDIX A: GENERAL NON-RELATIVISTIC
LAGRANGIAN

In this appendix, we outline general rules for the constr
tion of a non-relativistic Lagrangian that describes lo
energy interactions of pions and photons. The Lagrang
does not contain terms that correspond to transitions betw
sectors with different number of heavy particles~pions!,
since these belong to hard processes and are hidden in
couplings of the non-relativistic Lagrangian. For this reas
in order to describepp scattering in the non-relativistic
8-12
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framework, it suffices to consider Lagrangians in the sec
with one or two pions~including any number of photons!.
The theory must be invariant under space rotations,C, P, T
and gauge transformations. On the other hand, due, e.g
the presence of photons, the Lagrangian is not invariant
der Galilei transformations. The appropriate building bloc
are provided by the covariant derivatives of the charged p
fields

Dtp65] tp67 ieA0p6 ,
Dp65¹p66 ieAp6 , ~A1!

and the electric and magnetic fields
E52¹A02Ȧ, B5rotA. ~A2!

For the neutral pion field, the covariant derivative coincid
with the ordinary one.

The Lagrangian consists of an infinite tower of operat
with increasing mass dimension. All possible operators
lowed by the symmetries must be included. In particular
the one-pion sector, the Lagrangian is given by

L15 1
2 ~E22B2!1p0

†H i ] t2Mp01
D

2Mp0

1
D2

8Mp0
3 1•••J

3p01(
6

p6
† H iD t2Mp11

D2

2Mp1

1
D4

8Mp1
3

1•••J p6 , ~A3!

complemented, e.g., with all possible non-minimal couplin
containingE andB, that we have not explicitly displayed. A
tree level, this Lagrangian reproduces the relativistic re
for the scattering amplitudep1mg→p1ng at O(em1n),
to all orders in the momentum expansion.

In the two-pion sector of zero total charge, one has
construct the operators that contain four pion fields and
number of photon fields. The lowest-order Lagrangians w
zero and two space derivatives are given by

L 2
(0)5c1p1

† p2
† p1p21c2~p1

† p2
† p0p01H.c.!

1c3p0
†p0

†p0p0 , ~A4!

L 2
(2)5c4$~p1

† DI2p2
† !~p0p0!1~p1

† p2
† !~p0DI2p0!

1H.c.%1c5$~p1
† DI2p2

† !~p1p2!1H.c.%

1c6$@p1
† p1#D2@p2

† p2#1c7$~p0
†DI2p0

†!~p0p0!

1H.c.%, ~A5!

whereuDI2v8uD2v1vD2u. Note that the couplingsci are
not necessarily real, as a result of which the Lagrangia
not, in general, Hermitian~see below!. Again, we do not
display explicitly non-minimal couplings that, apart from c
variant space derivatives, contain the vectorsE andB. More-
over, we do not display covariant time derivatives, or high
order LagrangiansL 2

(4) , L 2
(6) , . . . which contain 4, 6, . . .

space derivatives. In the absence of photons, the Lagran
L 2

(0)1L 2
(2) is equivalent to the one given in Ref.@26#.
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In the isospin symmetry limita50, mu5md , the follow-
ing relations hold for the corresponding couplin
c̄1 , . . . ,c̄7:

c̄35 1
2 ~ c̄11 c̄2!, c̄75 1

2 ~ c̄41 c̄51 c̄6!. ~A6!

In the sectors with one or two pions, the Lagrangian is the
fore given by

L5L11L 2
(0)1L 2

(2)1•••, ~A7!

where the ellipses stand for non-minimal, or highe
dimensional operators or higher-order terms with covari
time derivatives. On the mass shell, the latter terms
eliminated by using the equation of motion~EOM!. How-
ever, they need to be included if one decides to renorma
Green functions@30#. At tree level, the Lagrangian~A7! re-
produces the relativistic result for the scattering amplitu
kp1mg→kp1ng, k51,2 atO(em1n), to all orders in the
momentum expansion.

The scattering amplitudes in the non-relativistic theo
are related—through the reduction formula—to the resid
of the pertinent Green functions in a standard manner.@Note
that, in the non-relativistic theory, one has to sum up
insertions;p4, p6, . . . in the external legs of the pions, i
order to ensure that the poles sit at the correct position,
cording to the relativistic dispersion lawpi

05(Mp i
2

1pi
2)1/2.

On the other hand, insertions in the internal lines are trea
perturbatively. For more details, we refer the reader to R
@30#.# The loop corrections to the Green functions are th
calculated in a standard manner, by using Feynman diagr
matic techniques, with one important modification. It is w
known that in the non-relativistic theory, in the presence
light particles ~photons!, the Feynman integrals should b
properly butchered, in order to avoid contributions from t
loop momenta at a hard scale—otherwise, loop correction
the Green functions would lead to a breakdown of the cou
ing rules in the non-relativistic theory. A suitable procedu
built on top of the Feynman rules in the non-relativis
theory is provided by the so-called threshold expansion@43#
~see also@44#!, that enables one to disentangle the contrib
tions coming from different regions of loop momenta, b
expanding the integrands—in the dimensional regulariza
scheme—in all possible small kinematical variables. He
we adopt a simple and physically transparent formulation
such a procedure@45#. First, we put a momentum cutoff o
all three-dimensional Feynman integrals, after having p
formed the integrals over all zero components of virtual fo
vectors ~by eventually using split dimensional regulariz
tion!. Then we choose the cutoff mass to be much sma
than the hard scale, given by the pion mass. Next, we exp
the integrands both in external and integration momenta
the presence of the cutoff, this is a well-defined procedu
At the last step, we remove the cutoff and calculate the in
grals, with the expanded integrands, in dimensional regu
ization. This sequence of steps systematically removes
hard-momentum contribution from the integrals, which
low energies is given by a polynomial in the external m
menta.

All couplings in the non-relativistic Lagrangian are dete
mined by matching to the relativistic theory. In the presen
8-13
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of photons, the non-relativistic Lagrangian is, in general,
Hermitian—because these constants are not real. This is
to the fact that in the non-relativistic approach, one h
shielded some of the intermediate states—those with ma
below the two-pion threshold—that appear in the relativis
theory and that belong to the class of hard processes in
non-relativistic terminology. The imaginary part of such d
grams then contributes to the imaginary part of the coupli
of the non-relativistic Lagrangian. For example, the decay
thep1p2 atom into two photons in the relativistic theory
described—at leading order ina and in m̂—by the imagi-
nary parts of the diagrams depicted in Fig. 3. These diagr
are not present in the non-relativistic theory. On the ot
hand, they contribute to the imaginary part of the coeffici
c1 at orderO(e4).

The next remark concerns power counting. In fact,
have three different types of power counting in our theor

~i! Non-relativistic power counting. The Gree
functions—calculated at a fixed order in an expansion in
couplinge—are expanded in powers of external 3-mome
of the particles, and in the mass differenceMp12Mp0 in the
manner described in Secs. II B and II E.

~ii ! Chiral power counting. After matching to ChPT, th
couplings are given in a form of a series in the quark mas
and e. The coefficients contain the low-energy consta
~LECs! of ChPT. This procedure is systematic in the sen
that matching at higher chiral order does not affect the re
obtained at lower orders.

~iii ! Counting the isospin-breaking parameterd. After
matching to ChPT, the couplings in the non-relativistic L
grangian can be rewritten as

FIG. 3. Diagrams contributing to the decay of thep1p2 atom
into two photons in the relativistic theory.
01600
t
ue
s
es

c
he
-
s
f

s
r
t

e

e
a

es
s
e
lt

-

ci5ci
(0)1aci

(1)1~md2mu!2ci
(2)1o~d!,

ci
(n)5ci

(n)~Mp1
2 ,LECs!, ~A8!

where, by convention, we have defined the isosp
symmetric world witha50, and md5mu as the one in
which the common mass of the pion triplet coincides w
the mass of the charged pion in the real world@note that in
the relativistic pion scattering amplitudes, odd powers
md2mu never appear#. Consequently, the powers ofd in the
expansion of the Green functions around the isospin sym
try limit stem from different sources. The explicit powers a
due to the coupling to photons, and the implicit powers
encoded in the couplings of the Lagrangian, as well as
charged and neutral pion mass difference. In the calculati
one has to carefully keep track of all these sources of cor
tions in a given order ind.

The Lagrangian~A7! contains an infinite number of op
erators. In actual calculations, only a few of them are need
In particular, we will make it plausible that, in order to ca
culate the pionium decay width atO(d9/2), it suffices to
work with the Lagrangian given in Eq.~2.2!. The arguments
in favor of this simplification are provided in the followin
two Appendixes.

APPENDIX B: THRESHOLD EXPANSION AND THE ROLE
OF TRANSVERSE PHOTONS

We illustrate the evaluation of the scattering amplitude
the non-relativistic theory in the presence of photons.
work in the Coulomb gauge, which allows a clear-cut se
ration of Coulomb and transverse photons, and argue tha
radiative corrections to thep1p2→p0p0 scattering ampli-
tude, generated by transverse photons, vanish at thresho
ordere2.

FIG. 4. Self-energy of the charged pion atO(e2). The twisted
line denotes a transverse photon. The counterterm diagram~b!
stems from the Lagrangian~B6!.
1. Pion self-energy

We start with the two-point function of the charged pions. The self-energy correction atO(e2) due to the diagram Fig. 4~a!
is given by

i E dx eipx^0uTp6~x!p6
† ~0!u0&5

1

Mp11p2/~2Mp1!2p02S~p0,p!
, ~B1!

S~p0,p!5
e2

Mp1
2 E dDl

~2p!Di

p22~pl!2/ l2

2 l 2@Mp11~p2 l!2/~2Mp1!2p01 l 0#
1O~e4!. ~B2!

The threshold expansion of the above integral amounts to~we place a caret above the threshold-expanded quantities!
8-14
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Ŝ~V,p!5
e2

2Mp1
2 E ddl

~2p!d S p22
~pl!2

l2
D 1

u lu H 1

V1u lu
1S pl

Mp1

2
l2

2Mp1
D 1

~V1u lu!2
1•••J ,

V5Mp11
p2

2Mp1

2p0, d5D21. ~B3!

Performing the remaining integration, we obtain

Ŝ~V,p!5
e2

2Mp1
2 p2Vd22

G~d!G~22d!

~4p!d/2GS 11
d

2D 1•••→ e2

6p2Mp1
2 p2VH L~m!1 ln

2V

m
2

1

3J 1•••, when d→3, ~B4!

L~m!5md23S 1

d23
2

1

2
@G8~1!1 ln 4p11# D . ~B5!

As usual,m denotes the scale of dimensional regularization.
In order to remove the divergence from the two-point function, one introduces the counterterm

DL52
e2

6p2Mp1
2 (

6
f 1p6

† D2S iD t2Mp11
D2

2Mp1
D p6 , f 15L~m!1 f 1

r ~m!. ~B6!
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The contribution to the two-point function is displayed
Fig. 4~b!. The quantityf 1

r (m) denotes the finite, scale depe
dent part of the coupling constantf 1.

To calculate the wave function renormalization const
for charged pions, one has to reverse the limits@30#. Namely,
we perform the limitV→0 ~mass-shell limit in the non-
relativistic theory! at d.3, in order to avoid the infrared

singularity. Since the ratioŜ(p0,p)/V vanishes asV→0,
the self-energy diagram Fig. 4~a! does not contribute to the
wave function renormalization constant. The sole contri
tion comes from the counterterm given by Eq.~B6!,

Z6~p2!512
e2f 1

6p2Mp1
2 p2. ~B7!

Note thatZ6(0)51. This feature is due to the derivativ
coupling of transverse photons, and to the use of the thr
old expansion, which guarantees that the non-relativi
power counting is not altered by loop corrections.

2. Scattering amplitudep¿pÀ\p0p0 at order e2

We now discuss the radiative corrections to thep1p2

→p0p0 scattering amplitude at ordere2, due to transverse
photons. We have to consider diagrams with any numbe
strong bubbles@including of course the tree diagrams#, and
attach one virtual photon line to these diagrams in all p
sible ways. The photon couples to two pions@the relevant
part of the Lagrangian is given by Eq.~A3!#, as well as to the
vertices with four pions@see Eq.~A5!#. Further, the photon
01600
t
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couples to two pions in a minimal way, as well as throu
the non-minimal vertices which contain more space deri
tives acting on the fields.

Some preliminary remarks are in order. After applying t
threshold expansion to a given diagram, one always end
with a homogeneous integrand, and naive power countin
restored. Since a strong bubble introduces a suppression
tor in a diagram with no photons~see Sec. II!, we expect
that—even in the presence of photons—diagrams contain
more strong bubbles will be more suppressed, and, fo
given topology, it suffices to consider diagrams with a mi
mal number of strong bubbles. The same consideration
plies to diagrams with non-minimal photon couplings, and
diagrams with derivative couplings in strong four-pion ver
ces: since power counting holds, we expect that these
suppressed with respect to the diagrams of the same to
ogy, but with a minimal number of derivatives in the ver
ces.

We start with the diagrams where the photon couples o
to two pions. According to the above discussion, we do
consider diagrams with non-minimal couplings, and rest
ourselves to the non-derivative strong Lagrangian~A4!. The
set of all topologically distinct diagrams with one virtu
transverse photon coupled in a minimal way to two pions
depicted in Fig. 5. In each class, we single out a represe
tive with a minimal number of strong loops.

The corrections to the external legs@Fig. 5~a!# vanish at
threshold, becauseZ6(0)51. Next, we consider the dia
gram corresponding to the exchange of a transverse ph
between the initialp1p2 pair @Fig. 5~b!#. The integral to be
calculated in this case is given by
8-15
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J12g~ upu!52
e2

Mp1
2 E dDl

~2p!Di
S p22

~pl!2

l2
D 1

@Mp11~p2 l!2/~2Mp1!2p1
0 1 l 0!

1

l 2~Mp11~p2 l!2/~2Mp1!2p2
0 2 l 0#

.

~B8!
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One has still to multiply this integral with the purely stron
amplitude in order to get the contribution of the diagram
Fig. 5~b!. In this expression,p denotes the relative momen
tum of thep1p2 pair in the c.m. frame, andp1

0 , p2
0 are the

energies ofp1 and p2 particles. We put the external pa
ticles on the mass shell,p1

0 5p2
0 5Mp11p2/(2Mp1)

1O(p4), and perform the threshold expansion in the in
gral. Note that with this procedure, the integrands a
should be expanded in theO(p4) remainder ofp6

0 . The
threshold-expanded integral in Eq.~B8! can be rewritten in
the following manner:

Ĵ12g~ upu!5
e2

Mp1

E ddl

~2p!d

1

u lu2
S p22

~pl!2

l2
D 1

l222pl
1•••

5
e2upu

16Mp1

1
ie2upu

8pMp1
S L~m!1 ln

2upu
m D1•••.

~B9!

Again, it is seen that this particular contribution vanishes
threshold.

We have also investigated the remaining contributions
picted in Fig. 5. All these contributions vanish at thresho
Moreover, we have considered all topologically distinct s
of diagrams where the virtual photons couple to four-p
vertices, depicted in Fig. 6. Again, in each set we have
stricted ourselves to the diagram with a minimal number
strong loops, and with a minimal number of derivatives
strong and electromagnetic vertices. We have found that
contributions from all these diagrams vanish at threshold

To conclude, we have considered all topologically distin
diagrams for the scattering processp1p2→p0p0 in the
non-relativistic theory, where one virtual photon couples
all possible ways to strong diagrams. From each class
diagrams, we have singled out the representative wit
minimal number of strong loops, and a minimal number
derivatives in the vertices. We have checked that each s
diagram vanishes at threshold. Using power counting,
same is seen to be true for the diagrams with more loo
and/or higher-order couplings. For this reason, we exp
that all radiative corrections to thep1p2→p0p0 scattering
amplitude—due to transverse photons—vanish at thres
at ordere2. We therefore neglect the transverse photons
the non-relativistic theory, while matching the relativistic a
non-relativistic amplitudes at threshold.

APPENDIX C: CONTRIBUTION OF TRANSVERSE
PHOTONS TO THE DECAY WIDTH

We consider the role of transverse photons in the calc
tion of the decay width of thep1p2 atom. We evaluate thei
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contribution for several typical diagrams and show that th
do not contribute at orderd9/2. The procedure goes in sever
steps.

~1! As was mentioned in Sec. III B, the master equati
~3.20! for the position of the bound-state pole is valid also
the case of a general non-relativistic Lagrangian. Expand
in a Taylor series aroundz5E0 gives

z2E05
„C0ut̄ ~E0!uC0…

12
d

dE0
„C0ut̄~E0!uC0…

1•••. ~C1!

One may evaluate the denominator in this expression by
taining only leading contributions tot̄ (E0), given by strong
bubbles with Coulomb ladders,

„qut̄ ~z!up…52c12
iM p0

2p
r1/2~z!c2

21c1
2^ḡC~z!&1•••,

~C2!

where r(z)5Mp0(z22Mp0), and where the quantity

^ḡC(z)& is defined in analogy with Eq.~4.6! for the case of
genericz. The explicit expression for this quantity is give
by

^ḡC~z!&5^ḡ02C~z!&1^ḡ12C~z!&1^ḡn2C~z!&,

^ḡ02C~z!&5
Mp1

4p
„Mp1~2Mp12z!…1/2,

^ḡ12C~z!&5
aMp1

2

8p S L~m!211 ln
4Mp1~2Mp12z!

m2 D ,

^ḡn2C~z!&5
aMp1

2

4p S C~22h!2C~1!2
112h

11h D ,

~C3!

where C(x) denotes the logarithmic derivative of Gamm
function. The quantityh was defined after Eq.~3.12!, and
L(m) is given in Eq.~2.28!. Using the above expressions,
is easily seen that the width is modified atO(d11/2) in the
presence of the denominator in Eq.~C1!. Consequently, at
the accuracy we are working, one may use

G522 Imz522 Im „C0ut̄ ~E0!uC0…. ~C4!

~2! In general, the couplings in the non-relativistic L
grangian are not real. Decay processes with an energy rel
at the hard scale contribute to the imaginary part of th
constants. The only possible intermediate states in such
grams areng and p01ng. Since the anomaly-induced de
8-16
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cay intop01g cannot proceed from the ground state due
C invariance, the states with a minimal number of photo
are 2g and p012g. However, the decay width into two
photons is of orderd5 @1,41#, and the decay width intop0

12g starts, at least, at the same order ind. Therefore, at
order d9/2 one may assume that all couplings in the no
relativistic Lagrangian are real, and that the Hamilton
constructed from this Lagrangian is Hermitian.

For a Hermitian Hamiltonian, the operatort̄ obeys the
unitarity condition

t̄ ~E0!2 t̄†~E0!522p i t̄ ~E0!d̄~E02H02HC!t̄†~E0!,
~C5!

where the symbold̄ is defined as follows: in order to evalu
ate the right-hand side of Eq.~C5!, one inserts a complete se
of eigenstates (H01HC)ub&5Ebub&, omitting the ground
state of the boundp1p2 system. It is easy to see that th
only allowed states are those containing eitherp1p2

1Ng, N>0 or 2p01Ng, N52k>0 scattering states~the
decay into 2p01 @odd number of photons# from the ground
state is forbidden byC invariance!. The contribution from
p1p21Ng vanishes due to lack of phase space. So we h

G5G2p01G2p012g1G2p014g1••• ~real couplings!.
~C6!

It can be easily seen that the decay width into 2p012g
starts atO(d11/2), and the decays into states containing fo
and more photons are even more suppressed. Consequ
G5G2p01O(d5).

~3! From the unitarity condition the following expressio
for the decay width into 2p0 final state is readily obtained

FIG. 5. Radiative corrections to the scattering amplitu
p1p2→p0p0, minimal couplings. The twisted lines denote tran
verse photons. Ellipses stand for any number of charged and ne
pion loops. Mass insertions are not displayed.
01600
o
s

-
n

ve

r
tly,

G2p05
Mp0k0

4p
uT2p0~k0!u2,

T2p0~k0!5E d3p

~2p!3
C0~p!1„put̄~E0!uk0…0 ,

~C7!

where

k05uk0u5$Mp0~E022Mp0!%1/2;O~d1/2!

is the magnitude of the relative 3-momentum of the neu
pion pair in the final state, and the subscripts1, 0 distin-
guish between chargedp1p2 and neutralp0p0 state vec-
tors, respectively.

The leading strong contribution inT2p0(k0) starts at
O(d3/2). It is straightforwardly seen from Eqs.~C2!, ~C3!,
and~C7! that in order to evaluate width atO(d9/2), it suffices
to calculateT2p0(k0) at O(d5/2). Here we are interested in
the contributions to this quantity due transverse photons.
diagrams that may potentially contribute in the lowest ord
in d are depicted in Fig. 7—these are the self-energy@Figs.
7~a!, 7~b!# and vertex@Figs. 7~d!, 7~e!# corrections to the
lowest-order strong four-pion non-derivative vertex, wi
any number of Coulomb photons. In addition, there are
diagrams@Fig. 7~c!# that stem from the counterterm Lagran
ian, Eq. ~B6!—they are needed to renormalize the se
energy diagrams. These diagrams are the counterparts of
grams depicted in Figs. 5~a!, 5~b!, apart from the fact that in
the latter there are no Coulomb ladders. One may cons
the counterparts for other diagrams depicted in Fig. 5 a
Fig. 6 which, however, are expected to be at least as s
pressed in powers ofd in the bound-state calculations, as th
ones displayed in Fig. 7. Further, aiming to establish
power ind where these diagrams start to contribute, we m
omit the Coulomb ladders: diagrams with Coulomb photo
cannot be amplified with respect to the diagrams with
Coulomb photons. In order to prove this, we note that a
additional Coulomb exchange in a given diagram adds
integration measured3p, the Coulomb potentialaup
2qu22, and the energy denominator (z2•••22Mp1

2p2/Mp1)21. As the momenta scale likea or a2, depend-
ing on the topology of the diagram, it is seen straightf
wardly that a diagram with an additional Coulomb photon,
worst, contributes to the same order ina as the original one.

The contribution to the matrix element oft̄, coming from
the diagram in Fig. 7~a! ~with no Coulomb photons! is

ral

FIG. 6. The same as in Fig. 5, but with at least one ver
describing the coupling of a transverse photon to four pions~filled
circles!. Ellipses stand for any number of strong loops.
8-17
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1„put̄ ~E0!uk0…0
Fig. 7a522c2

Ŝ~V0 ,p!

V0

52
c2e2p2

Mp1
2 S g21p2

Mp1
D d23

3
G~d!G~22d!

~4p!d/2GS 11
d

2D 1•••,

V052Mp11
p2

Mp1

2E0 , ~C8!

where, in order to be consistent with the matching, we h
used again the threshold expansion. The quantityŜ(V0 ,p2)
in this expression is the self-energy part introduced in
~B3!, calculated at the off-shell valueV0 of the parameterV
—for this reason, one does not encounter an infrared di
gence performing the limitd→3.

FIG. 7. Self-energy and vertex corrections to the decay width
the p1p2 atom:~a!,~b! self-energy corrections,~c! contribution of
the counterterm,~d!,~e! vertex corrections. The twisted lines stan
for transverse photons.
ho
it
tity
d.

lo
pe

dia
c

01600
e

.

r-

The contribution from diagram Fig. 7~a! should be
complemented with the counterterm contribution. In t
Hamiltonian formalism, one has first to use the EOM in o
der to eliminate the time derivative in the counterterm L
grangian~B6!. We find

DH52
e2f 1c2

6p2Mp1
2 E ddxH(

6
~p1

† DI2p2
† !~p0p0!1H.c.J

1••• . ~C9!

The contribution from this Hamiltonian to the above matr
reads

1~puDHuk0!05
2c2e2f 1

3p2Mp1
2 p2. ~C10!

As was expected, the contribution from the counterterm, F
7~c!, cancels the UV divergence from self-energy diagra
Fig. 7~a! and Fig. 7~b!.

Finally, folding this result with the ground-state wav
function, and rescaling the integration momentum asp
→gp, it is seen that the total~self-energy1 counterterm!
contribution toT2p0(k0) starts atO(d9/2), and therefore can
be neglected. Note that one should not be worried about
~spurious! UV divergence in the integral over the momentu
p—these divergences cancel once all contributions in
given order ina are summed up@30#.

The contribution coming from the diagram in Fig. 7~d! is
given by

f

1„put̄ ~E0!uk0…0
Fig. 7d52

e2c2

Mp1
2 E ddq

~2p!d

p2q22~pq!2

up2qu3

3
1

E022Mp12q2/Mp1

1

E022Mp12up2qu2p2/~2Mp1!2q2/~2Mp1!

5
e2c2

Mp1
2 E ddq

~2p!d

p2q22~pq!2

up2qu4

1

E022Mp12q2/Mp1

1••• . ~C11!
d.
we
we

stic
the
se
at

is-
Again, the threshold expansion provides one with a
mogeneous expression. After rescaling the momenta,
immediately seen that the contribution to the quan
T2p0(k0) starts atO(d7/2) and therefore can be neglecte
The contribution from diagram 7~d! is identical to the one
from 7~e!. Additional diagrams may be treated in an ana
gous manner—using power-counting arguments, we ex
them to be even more suppressed.

In summary, we have seen that, for a large class of
grams, transverse photons contribute neither to the de
-
is

-
ct

-
ay

width atO(d9/2), nor to the matching condition at threshol
Although we have not provided a mathematical proof,
believe that this result is true in general. For this reason,
completely neglect transverse photons in our non-relativi
theory. The rest is then straightforward: one eliminates
Coulomb photons by using EOM, and retains only tho
terms in the Lagrangian that contribute to the decay width
O(d9/2). In this manner, one arrives at the Lagrangian d
played in Eq.~2.2!.
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APPENDIX D: MATCHING PROCEDURES

In this paper, we have matched the amplitudes in the r
tivistic and non-relativistic theories at physical space dim
sion d53. In this case, both amplitudes contain singu
pieces that behave likeupu21 and lnupu in the vicinity of the
threshold. In addition, there is the infrared-divergent Co
lomb phase. The matching is performed at threshold, for
finite parts of the amplitudes that are obtained after remov
the Coulomb phase, and subtracting the singular pieces.

In the literature@44#, there are examples of a differen
matching condition, where the matching is performed for
full amplitude at threshold atdÞ3. The threshold singulari
ties then, in general, transform into poles atd53 that cancel
at a final stage. In this appendix, we compare these matc
conditions in two specific examples: we consider the t
diagrams depicted in Fig. 8, and their non-relativistic cou
terparts. As we will see, the two matching conditions lead
exactly the same result.

Let us start with the vertex correction depicted in F
8~a!, that gives rise to the Coulomb phase, and to theupu21

singular behavior in the real part of the amplitude. In t
non-relativistic theory, the corresponding vertex integral
given by Eqs.~2.24!, ~2.25!, and ~2.26!. If one instead re-
verses the order of limiting procedures and calculates
same integral atp50, dÞ3, one finds that the integral van
ishes,Ṽc„p,2w(p)…50 ~the symbol ‘‘tilde’’ is used to distin-
guish the quantities calculated by using this particular
quence of limiting procedures!. Both the Coulomb phase an
the upu21 singularity disappear when this prescription
used.

Let us now turn to the same diagram in the relativis
theory. The infrared-singular contribution at threshold is co
tained in the functionG12g(s) defined by

G12g~s!5E dDq

~2p!Di

1

q2~q222qp1!~q212qp2!

52
2

ss H ln
12s

11s
1 ipJ Fl IR1

1

32p2

3S ln
Mp1

2

m2
11D G2

1

32p2ss
F2p i ln

4s2

12s2

24 LiS 12s

11s D12p22 ln2
11s

12sG , ~D1!

where p1
25p2

25Mp1
2 , s5(p11p2)2.4Mp1

2 , s5(1
24Mp1

2 /s)1/2, and

Li ~x!5Li2~12x!5E
1

xdt ln t

12t
. ~D2!

This function was considered before in Ref.@34#, where the
authors had introduced a photon mass to tame the infr
01600
a-
-
r

-
e
g

e

ng
o
-
o

.

s

e

-

-

ed

divergences. Here, we use dimensional regularization.@The
definition of Li2(x) in Ref. @34# has to be changed accordin
to Eq. ~D2!.3#

The infrared-divergent quantityl IR is defined by

l IR5
mD24

16p2 S 1

D24
2

1

2
@G8~1!1 ln 4p11# D . ~D3!

The rest of the diagram is infrared finite at threshold.
the vicinity of the threshold,

e2G12g~s!→ 1

4Mp1
2 H 2

paMp1

4upu
2 iauc116pal IR

1
a

2p S ln
Mp1

2

m2
13D J . ~D4!

If we reverse the sequence of limiting procedures, we fin

e2G̃12g~s!→ 1

4Mp1
2 H 16pal IR1

a

2p S ln
Mp1

2

m2
13D J .

~D5!

This procedure therefore again amounts to dropping the C
lomb phase and the singular piece that behaves likeupu21.
The matching condition is not altered since for the particu
combination ofVc andG12g that appears in this condition

Vc24Mp1
2 G12g5Ṽc24Mp1

2 G̃12g

524l IR2
1

8p2 S ln
Mp1

2

m2
13D .

~D6!

Let us now consider the diagram depicted in Fig. 8~b! that
leads to a logarithmic singularity at threshold. The cor
sponding loop integral in the non-relativistic theory is giv
by Eqs.~2.27! and~2.28!. If one reverses the order of limit
ing procedures, one findsB̃c„2w(p)…50.

In the relativistic theory, it suffices to consider the sca
integral

Rc~P!52e2E dDl

~2p!Di

dDq

~2p!Di
Dp1~ l !Dp1~P2 l !

3Dp1~q!Dp1~P2q!D~ l 2q!, ~D7!

with Dp1(q)5(Mp1
2

2q2)21, D(q)5(q2)21. One need not
consider diagrams with derivative couplings: those can
expressed through the integralRc(P) and through integrals
that are suppressed at threshold as compared toRc(P), or are
infrared finite.

The explicit expression forRc(P) is given in Ref.@46#,

3We thank M. Knecht for correspondence on this point.
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Rc~P!5e2
G2~11«!~Mp1

2
!2122«

~4p!D«~122«!

3H S 12
P2

4Mp1
2 D G4

22
H4

~112«!~12«!J ,

~D8!

whereD5422«, and

G452F1S 1,11«;
3

2
;

P2

4Mp1
2 D ,

H453F2S 1,11«,112«;
3

2
1«,22«;

P2

4Mp1
2 D , ~D9!

where, in difference with Ref.@46#, P2 is defined in
Minkowski space.

At D54, the integral near threshold in the c.m. fram
(P50) behaves as@43#

FIG. 8. Diagrams that generate a singular behavior of
p1p2→p0p0 scattering amplitude at threshold in the relativis
theory: ~a! vertex correction,~b! internal exchange of the photon.
01600
Rc~P!52
a

128pMp1
2 S 2 ln

2upu

Mp1

1 ln 21
21z~3!

2p2
2 ip D

1O~ upu!,

Pm5~2AMp1
2

1p2,0!. ~D10!

If we first setp50 and then consider the limitD→4, we
find

R̃c~P!52
a

128pMp1
2 S 2L~m!2 ln

Mp1
2

m2
111 ln 2

1
21z~3!

2p2 D ,

Pm5~2Mp1,0!, ~D11!

with L(m) given in Eq. ~2.28!. For the combination tha
appears in the matching condition, we have

Bc216Mp1
4 Rc5B̃c216Mp1

4 R̃c

5
aMp1

2

8p S 2L~m!2 ln
Mp1

2

m2
111 ln 2

1
21z~3!

2p2 D . ~D12!

Consequently, the matching condition remains unaffected
the interchange of the limiting procedures.

To conclude, for these two diagrams we have checked
the result of matching is the same for the two prescriptio
We expect that this conclusion holds in the general case
well.

e

l

may
APPENDIX E: THE MAPPING SU„3…ÃSU„3…\SU„2…ÃSU„2…

In order to perform the mappingSU(2)3SU(2)→SU(3)3SU(3) for the constantski andKi , we evaluate the neutra
pion mass and the amplitudep1p2→p0p0 in the SU(3)3SU(3) framework, expand the result in powers ofm̂/ms and
compare it with itsSU(2)3SU(2) analogue.

From the expressions for the neutral pion mass, we find the relation

10k1
r 110k2

r 218k3
r 19k4

r 210k5
r 210k6

r 22k7
r 512K1

r 112K2
r 218K3

r 19K4
r 110K5

r 110K6
r 212K7

r 212K8
r 210K9

r 210K10
r .
~E1!

Matching the coefficients ofs andm̂ in the p1p2→p0p0 amplitudes, we find

10k1
r 28k2

r 118k3
r 29k4

r 512K1
r 26K2

r 118K3
r 29K4

r 110K5
r 28K6

r , ~E2!

and

20k1
r 216k2

r 118k3
r 29k4

r 210k5
r 126k6

r 22k7
r 136k8

r 524K1
r 212K2

r 118K3
r 29K4

r 120K5
r 216K6

r 212K7
r 124K8

r 210K9
r

126K10
r 136K11

r 2144Z0L4
r 272Z0L5

r . ~E3!

Here,Z0 is theSU(3)3SU(3) analogue of the couplingZ. In the order of the quark mass expansion considered here, we
identify Z0 with Z. Combining the relations~E1!, ~E2!, and~E3!, we obtain Eqs.~4.25! and ~4.26!.
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The couplingKi
r can be expressed@38# as a convolution of a QCD correlation function with the photon propagator, plu

contribution from the QED counterterms. We have checked thatP(ki) in Eq. ~4.26! is independent of the QCD scalem0 that
must be introduced in the QCD Lagrangian after taking into account electromagnetic effects@38,39#.
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