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Adler function for light quarks in analytic perturbation theory
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The method of analytic perturbation theory, which avoids the problem of ghost-pole-type singularities and
gives a self-consistent description of both spacelike and timelike regions, is applied to describe the “light”
Adler function corresponding to the nonstrange vector channel of the inclusive decay-detiten. The role
of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by
using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with
the “experimental” Adler function down to the lowest energy scale.
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I. INTRODUCTION 2 (M2 ds s \2 s
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In studying the relationship between theoretical predic-
tions and experimental data, it is important to connect mea-

sured quantities with the most elementary theoretical object@hich extends down to smadl and therefore cannot be di-
to check direct consequences of the theory without makingectly calculated in the framework of standard perturbation
essential use of model assumptions. Some functions of geory (PT). Indeed, the hadronic correlation functibk(s)
single variable which are directly connected to experimenis parametrized by the perturbative running coupling which
tally measured quantities can play the role of these objects. Aas unphysical singularitishe ghost pole and correspond-
theoretical description of inclusive processes can be made iig cut9 and, therefore, is ill defined in the region of small
terms of functions of this sort. Among them is the Adler momenta. To avoid this problem, one usually applies the
function [1] which can be extracted from the experimentalfollowing procedure. The initial integrall) is rewritten by
data for the process @"e™ annihilation into hadrons and using the Cauchy theorem in the form of a contour integral in
the inclusive decay of the lepton. The mass of thelepton,  the complex plane with the contour running around a circle
M,=1.777 GeV, is large enough in order to produce decaysyith radiusl\/lf [4,5]:
with a hadronic mode. At the same time, in the context of

QCD, the mass is sufficiently small to allow one to investi-

gate effects lying beyond the framework of the perturbative 1 dz z
approach. At present, there is rich experimental material ob- T omi ‘Z‘:M27 1- M_f
tained from hadronic decays of thelepton. The first theo- !

retical analysis of hadronic decays of a heavy lepton was

performed in 19712] well before the experimental discov- whereD(z)= —zdlI(z)/dz is the Adler function. This trick
ery of ther lepton in 1975. Since then, the properties of theallows one, in principle, to avoid the problem of a direct

E z
14—y

z|D@. @

7 have been studied very intensively. calculation of theR, ratio by Eq.(1). However, in order to
The ratio of hadronic to leptonic widths for the inclusive perform this transformation self-consistently, it is necessary
decay of ther-lepton, to maintain correct analytic properties of the hadronic corre-

lation function, which are violated in the framework of stan-
dard PT.[The only singularities ofilI(s) should be a cut
_I'(7~—hadrong,) along the positive real axisThe analytic approach to QCD
R,= ' [6], the so-called analytic perturbation thed#PT) [7,8],
maintains these needed analytic properties and allows one to
give meaning to the initial expression. The APT description
is the most precise one for extracting of the values of thecan be equivalently phrased either on the basis of the expres-
fundamental QCD parameters at a low energy sf@leThe  sion (1) or on the contour representati¢?) [7].
initial theoretical expression fdR, contains an integral over The information obtained in measurements allows one
timelike momentum, to construct various “experimental” curves. In particular, in
Ref. [9] a quantityR,(s,) with a variable “mass”s,<M?,
has been considered. This quantity, defined for timelike mo-

I(r —lyw,)
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in the Euclidean region, including the Adler function. This  We now considebqcp in the framework the PT and APT
function can be extracted from thedata down to the lowest methods.
energy scal¢11].
In this paper we study the Adldd-function correspond- A. Perturbation theory
ing to 7 decay mediated by the nonstrange vector current via

— . The PT description is based on the contour representation
W~ —du. We use the APT method which, as noted, does no&n b P

h bl f hvsical sinqularit fh d can be developed in the following two ways. In Braat-
e_ncounter_t € problem of unphysical singu a““¢3 0 the rung g (Br) method[4] the quantity(6) is represented in the
ning coupling and gives a self-consistent description of bot

r}orm of a truncated power series with the expansion param-
the timelike, Eq.(1), and the spacelike, E@2), regions. P P P

_ 2 ; - -
The region of integration in EqJ) includes the vicinity etera, = ag(Mz)/a. In this case the three-loop representa

of the quark-antiquark threshold. The perturbative expansioﬁIon for dqco I

kireaks dowzn in this nelghborhqoq due to singularities at 5ngD: a,+rja2+rjas, 7
=(mg+mg)© [12,10. Thus any finite order of the perturba-

tive expansion is unreliable near quark thresholds and, thergyhere the coefficients; andr, in the modified minimal
fore, all singular terms of thea(s/v)" type, wherev is the  syptraction 1S) scheme with three active flavors are
relative velocity of the quarks, have to be summed. Note that 5 2023 and,= 26.366[4].

this problem cannot be avoided by using the contour repre- The method proposed by Le Diberder and PicR) [5]
sentation(2) instead of Eq.(1), because these expressions ses the PT expansion of tidefunction

should be equivalent to each other in the framework of a

consistent method. For heavy quark systems one usually uses d(z)=a(z)+d;a%(z) +d,a(2), (8)
the nonrelativistic resummation factor obtained by using the

Schralinger equation with the Coulomb potential, which is where in theMS-schemed; = 1.640 andd,=6.371[16] for
known as the Sommerfeld-Sakharov fadtb8,14). But fora  three active quarks. The three-loop PT running coupling,
systematic description of the threshold region in the systera(z), is commonly written in the form of an expansion in

of light quarks it is necessary to apply a relativistic approachinverse powers of =In(—z/A? [3]. In the MS scheme it is
Here, we take into account threshold effects by using a new

relativistic resummation factor proposed in Rgf5], which 4 Bl 1[p2 B
was obtained for a QCD-like potential. a(z)= sl Tt —4(In2L— InL—-1)+ =l
Bo Bo L% Bo 0

II. ANALYTIC APPROACH TO = DECAY 9)

We start our consideration with a three-loop PT and APT _
analysis, neglecting, in the beginning, quark masses. It isvhere B,=11—2n/3, B;=102—38n/3 and BY°=2857/
convenient to separate the QCD contribution by representing— 5033,/18+ 325n]?/54 are the first thre@-function coef-
the R, ratio in the form ficients. The substitution of E8) into Eq. (6) leads to the

o following non-power representation:
R,=R:(1+ dqcp),

. . Soeo=AM(a)+d;AP(a) +d,AP)(a) (10)
where R, corresponds to the parton level description and
dacp is the QCD correction. We introduce QCD contribu- with
tions to the imaginary part of the hadronic correlatq(s), 5
and to the corresponding Adler functio(z) as follows: 1 dz z
AN (a)= 5— —|1- =] | 1+ —|a"2).
1 27l Jiz=m? Z M2 M?2
R(s)=—Im II(s+ie)/R%°=1+r(s), D(z)x1+d(2). 11
4 As noted above, the transformation to the contour repre-

. ) o sentation(6) requires the existence of certain analytic prop-
Then, one can writdocp as an integral over timelike mo-  grties of the correlator: namely, it must be an analytic func-
mentum(Minkowskian regiof tion in the complexz-plane with a cut along the positive real
2 axis. The correlator parametrized, as usual, by the PT run-
S ning coupling does not have this virtue. Moreover, the con-
- 1+2—2 r(s), (5) v . | l . . )
M2 M2 gnnona renorma ization group met.hod determines the run
ning coupling in the spacelike region, whereas the initial
or as a contour integra| in the Comp|ex p|a®c|idean eXpreSSior(l) contains an integration over timelike momen-
region tum, and there is the question of how to parametrize a quan-
tity defined for timelike momentum transfef$7]. To per-
7 form this procedure self-consistently, it is important to
1+ —2) d(z). (6 maintain correct analytic properties of the hadronic cor-
M relator[18—20. Because of this failure of analyticity, Egs.

M2 ds
o2 [ 2

5o 1 § dz 1
P72 Jig-mzz |\ T M2

p
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(5) and(6) are not equivalent in the framework of PT and, if use an explicit form for the analytic running coupling in the
one remains within PT, it is difficult to estimate the errorstimelike region,a,{s), that is derived by using the formula
introduced by this transformation. However, using the APT(9) in Eq. (13). The corresponding expression reads
method, it is possible to resolve these probléms.
aa(s)=al)(s)+1,(s)+A4(s), (17)
B. Analytic perturbation theory
In the framework of the analytic approathe functions whereal;)(s) is given in Eq.(16) and
d(z) andr(s) are expressed in terms of the effective spectral

function p(o) (6,19 -
Ay

In(s/A?
g AP

_1°Cdo' _1 =do :8882
d(Z)—;LEP(U), r(S)—;L?P(U)- (12

A AL Pabo_ 1 p2i g
The APT spectral function is defined as the imaginary part of 2= g B B2 n
the perturbative approximation i, on the physical cut 0 !
In(s/A? In?(s/A?
p(0)=0o(0) +di0s(0) +doo(o), (13 x¥+{1—(—2) ARBY, (19
a
where
en(o)=Imla} (o +ie)]. (14) A(s)= %waglg(s), B(s)= 72+ In%(s/A?).
The functiongy( ) in Eq.(13) defines the analytic space- . .
like, a,(2), and timelike,Ean(s), running couplings as fol- For the QCD correction(s) one can write dowi25]
fows: (9= Far(8) + AT1(8) + Ary(9), 19
1 (> do ~ 1 (=do -
Aa(2)= ;fo pt 4 C P aar{S)=;L — 2o(0). wherea,(s) is given by Eq.(17) and
15
(19 B 2 By In(s/A?)
As has been argued from general principles, the behavior of Ary=d; Bo) B2|™ E B? (2InB+1)
these couplings cannot be the saf®?]. It should be 0
stressed that, unlike the PT running coupling, the analytic In%(s/A?)
running coupling has no unphysical singularitigise ghost TA-A———|»
pole and branch pointsnd, therefore, possesses the correct m
analytic properties, arising from Kan-Lehmann analyticity
reflecting the general principles of the theory. For example, 4\%1 )
the one-loop APT result if5,19] Arp=d, Bo g'”(S/A ). (20)
2
(1) — (1) i Using Eq.(5) or equivalently Eq(6), we obtain the QCD
Ay (2)=ay’(2)+ e _ IIVe :
Bo A%2+7 correction to ther -ratio in terms ofp(o) as follows:
(16) s 3
~1) 41 1 . In(s/A?) 5_1fxda' 1JM,d0'20' o
A AP | I e A L Ve IVE
whereal{)(z) = 41 BoIn(—Z/A?)]. o |4
The analytic running couplingéhe exact two-loop and 2 p(o). (21)

the three-loop after an approximatjoren be written explic-
itly in the term of the Lambert functiof23,24). However, in
the framework of the APT approach there is little sensitivity
to the approximation in solving the renormalization group
equation for the running coupliid,8]. In the following, we

The first term of this expression is,, evaluated at ther
mass; it is obvious thab,, is not representable as a series
expansion in the running coupling.

The difference between the RLP) and APT contribu-
tions toR, can be transparently shown by the one-loop rela-

tion:
The nonperturbativea-expansion technique in QCI[21] also
leads to a well-defined procedure of analytic continuafits. 8 A2
2To distinguish APT and PT cases, we will use subscripts “an” 52}1): 5&)— R +O(A4ME). (22
and “pt.” Bo M2
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The additional term, which is “invisible” in the perturbative 1.5
expansion, turns out to be important numericfy26|. Due [ D
to the negative sign of this term, the QCD scale is larger in [ ST
this method,A ;> A, at the same value of the QCD cor- | S aeees i o
rection: (A an) = S Ap) = 6. It should be noted that 1.0 | i
due to the difference of shapes of the APT and PT running - /
couplings(see, for example, Ref27]), their values at the i :
scale do not differ very mucf28]. i
The APT analysis ofr decay in the three-loop level has 45|
been performed in Ref28]. This investigation together with
other resultgsee, for example, Ref§3,29,30) allows us to ;
formulate the following features of the APT methdd: this [ Q (GeV)

approach maintains the correct analytic properties and leads , [ ) | ) A )
to a self-consistent procedure of analytic continuation from “g.o 0.5 1.0 1.5 2.0

the spacelike to the timelike regioifij) it has much im- _ _ _
proved convergence properties and turns out to be stable FIG. 1. The light Adler function corresponding to the non-
with respect to higher-loop correctionij) renormalization strange vector channel efdecay data. The solid curve is the APT

scheme dependence of the results obtained within thigesult. The experimental curglashed ling corresponding to the
method is reduced dramatically ALEPH data and the perturbative result with power corrections

(dotted ling are taken from Refl11].

C. The vector channel in7 decay more suitable for relating theoretical predictions with experi-
Experimentally theR,-ratio can be separated into three Mental data. It is obvious that the PT approximation cannot
parts be applied at the low energy scale. Besides, any finite order
of the operator product expansion fails to describe the infra-
R,=R,vtR,A*TR;s. (23)  red tail of theD-function. APT’s good behavior in the infra-

red region, in principle, allows us to consider tBefunction
The termsR, andR, 5 are contributions coming from the down to a low energy scale.
nonstrange hadronic decays associated with ved&tdprand
axial-vector @) quark currents respectively, aml, s con- IIl. THE VECTOR CHANNEL D-FUNCTION
tains strange decay$). ] ] ) ]
Within the perturbative approximation with massless In this section we describe the Adler function correspond-

quarks the vector and axial-vector contributionsRtocoin- ing to inclusiver decay. By using a dispersion relation for
cide with each other the hadronic correlatofl(g®), one can represent the Adler

function as follows, wheré&(s) is defined by Eq(4),
3 2
Riv=R:a=5 |Vudl“(1+ dqcp) (24) D(Q2)=Q2J ds R(s) . (25
0 (s+Q%)?
where|V,4 denotes the Cabibbo-Kobayashi-Maskawa ma- _ , _ ,
trix element. However, the experimental measurements VW& Will deriveR(s) by applying the APT approach while
[31,37 show that these components are not equal to eacificorporating threshold resummation.
other. The corresponding difference is associated with non-
perturbative QCD effects which are usually described in the A. Threshold effects
form of power corrections. The experimental data for the A gescription of quark-antiquark systems near threshold
isovector spectral function of the ALEPH Collaborati®]  requires us to take into account the resummation factor
have been used in Refl1] to extract the AdleDy-function  \hich summarizes the threshold singularities of the pertur-
which we show as the dashed line in Fig. 1._The experimenpative series of theds/v)™ type. In a nonrelativistic ap-
tal D-function turns out to be a smooth function without any proximation, this is the well known Sommerfeld-Sakharov
trace of resonance structure. Tefunction obtained in Ref.  factor[13,14). For a systematic relativistic analysis of quark-
[33] from the data for electron-positron annihilation into gntiquark systems, it is essential from the very beginning to
hadrons also has a similar property. One can expect that thgaye a relativistic generalization of this factor. Moreover, it
Adler D-function defined in the Euclidean region reflectsjs jmportant to take into account the difference between the
more a_dequqtely the _quark—hgdron d.uallty than do quantltlegomomb potential in the case of QED and the quark-
determined in the Minkowskian regidnand, therefore, is  antiquark potential in the case of QCD. The corresponding
relativistic resummation factor has been found in R&8].
This derivation is based on the fact that properties of the
3The Minkowskian and Euclidean characteristics which are assoquark-antiquark system near threshold can be described by
ciated with the process of electron-positron annihilation into hadthe Bethe-Salpeter amplitudgss(x) atx=0 and, therefore,
rons have been considered in Re¥4]. at relative timer=0. Thus, the amplitudggg(0) can be
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expressed in terms of a quasipotential wave funcfid®. =1.77 which agrees well with the experimental data pre-
The quasipotential formulation in relativistic configuration sented by the ALEPHR®Y)'=1.775+0.017 [31], and the
space{36] allows one to give the following explicit expres- opAL, R®P'=1.764+0.016[32], Collaborations. The value
sion for the relativistic resummation factor: of the parameten obtained here is slightly more than in the
B X(x) _ Amag standard analysis. For example, the ALEPH Collaboration
S0 = 1—exd —X(x)]’ X()= 3sinhy’ (29 result is A=370= 1304pt*= 38neor MeV. In this connection,
note that a more accurate account of the so-cattéderms
where x is the rapidity which is related te by 2mcosty  in the treatment of high energy experimental data for time-
=Vs. The relativistic resummation factaq26) reproduces |ike processes leads to an increase in the valued®0]. It
both the expected nonrelati\_/istic and uItr_areIativistic Ii_mitsshomd be emphasized that the value/ofturns out to be
and corresponds to a QCD-like quark-antiquark potential. - gjgnificantly smaller than the value extracted from thaata

A convenient way to incorporate quark mass effects is 1Q "Ref. [28], which shows the importance of threshold ef-
use an approximate expressipt0,12 which here can be tots |n Fig. 1 we also show, besides the experimental curve

written as (dashed ling the curve corresponding to the perturbative
R(S)=T(v)[1+9(v)r(s)]O(s—4m?), (27)  result with power correctionglotted ling, both of which are
taken from Ref[11]. Note also that using the above values
where of quark masses, we find that the one-loop APT description
3-v A7\ w 3+v (7w 3 gives a resultnot shown in the figupewhich is close to the
T(v)=v v 9)=—o 5 ' three-loop one and reproduces well the experimental behav-
2 3|2v 4 _ _
ior of the D-function.

2 A4

v=1\/1-—— (289
S IV. CONCLUSION

We introduce effective quark masses, which incorporate In this paper we have considered the Adler function cor-
some nonperturbative contributions and turn out to be closéesponding to the nonstrange vector channel data frafe-

to the constituent masses. In the description of the noncay. This function, defined in the Euclidean region, is a
strange vector component of tifunction we neglect the Smooth function and represents a convenient testing ground

difference of the quark mass values and gt my=m. for theoretical methods. We have proposed the method of the
The threshold resummation fact(26) leads to the fol- “light” vector D-function description. The conventional
lowing modification of the expressio27): method of approximating this function as a sum of perturba-

tive terms and power corrections cannot describe the low
) energy scale region because both the logarithmic and power
O(s—4m"), expansions diverge at small momenta. We have used the
(29) analytic approach to QCD which is not in conflict with the
general principles of the theory and, in the infrared region,

which one can use to calculate the vector component of thaas a regular behavior. The new relativistic resummation fac-
R, ratio tor, which corresponds to a QCD-like quark-antiquark qua-
sipotential, has been used to incorporate the threshold ef-
fects. We have shown that our approach allows us to
describe well the experimental data feflepton decay in
(30) terms of theD-function down to the lowest energy scale and

for R, in the nonstrange vector channel. We have found that
where Sg,, denotes the electroweak factdB7], Sz,  the influence of relativistic threshold resummation is impor-
=1.0194+0.0040; the light vectoD-function is defined by tant and leads to a significant reduction of the value of the
Eqg. (25) with R—Ry,. QCD scale parametek extracted from ther data.

Ry(8)=T(v)

1
S(X)—§X(X)+g(v)r(5)

2
S

M2

2s
1+ W RV(S),

T

, (M2 ds
R, v=3Sew|Vudl fo M_E 1

B. Results
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