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Adler function for light quarks in analytic perturbation theory
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The method of analytic perturbation theory, which avoids the problem of ghost-pole-type singularities and
gives a self-consistent description of both spacelike and timelike regions, is applied to describe the ‘‘light’’
Adler function corresponding to the nonstrange vector channel of the inclusive decay of thet lepton. The role
of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by
using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with
the ‘‘experimental’’ Adler function down to the lowest energy scale.
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I. INTRODUCTION

In studying the relationship between theoretical pred
tions and experimental data, it is important to connect m
sured quantities with the most elementary theoretical obj
to check direct consequences of the theory without mak
essential use of model assumptions. Some functions
single variable which are directly connected to experim
tally measured quantities can play the role of these object
theoretical description of inclusive processes can be mad
terms of functions of this sort. Among them is the Adl
function @1# which can be extracted from the experimen
data for the process ofe1e2 annihilation into hadrons and
the inclusive decay of thet lepton. The mass of thet lepton,
M t51.777 GeV, is large enough in order to produce dec
with a hadronic mode. At the same time, in the context
QCD, the mass is sufficiently small to allow one to inves
gate effects lying beyond the framework of the perturbat
approach. At present, there is rich experimental material
tained from hadronic decays of thet lepton. The first theo-
retical analysis of hadronic decays of a heavy lepton w
performed in 1971@2# well before the experimental discov
ery of thet lepton in 1975. Since then, the properties of t
t have been studied very intensively.

The ratio of hadronic to leptonic widths for the inclusiv
decay of thet-lepton,

Rt5
G~t2→hadronsnt!

G~t2→ l n̄ lnt!
,

is the most precise one for extracting of the values of
fundamental QCD parameters at a low energy scale@3#. The
initial theoretical expression forRt contains an integral ove
timelike momentum,
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Rt5
2

pE0

M t
2 ds

M t
2S 12

s

M t
2D 2S 112

s

M t
2D Im P~s!, ~1!

which extends down to smalls and therefore cannot be d
rectly calculated in the framework of standard perturbat
theory ~PT!. Indeed, the hadronic correlation functionP(s)
is parametrized by the perturbative running coupling wh
has unphysical singularities~the ghost pole and correspond
ing cuts! and, therefore, is ill defined in the region of sma
momenta. To avoid this problem, one usually applies
following procedure. The initial integral~1! is rewritten by
using the Cauchy theorem in the form of a contour integra
the complex plane with the contour running around a cir
with radiusM t

2 @4,5#:

Rt5
1

2p i Ruzu5M t
2

dz

z S 12
z

M t
2D 3S 11

z

M t
2DD~z!, ~2!

whereD(z)52zdP(z)/dz is the Adler function. This trick
allows one, in principle, to avoid the problem of a dire
calculation of theRt ratio by Eq.~1!. However, in order to
perform this transformation self-consistently, it is necess
to maintain correct analytic properties of the hadronic cor
lation function, which are violated in the framework of sta
dard PT.@The only singularities ofP(s) should be a cut
along the positive real axis.# The analytic approach to QCD
@6#, the so-called analytic perturbation theory~APT! @7,8#,
maintains these needed analytic properties and allows on
give meaning to the initial expression. The APT descripti
can be equivalently phrased either on the basis of the exp
sion ~1! or on the contour representation~2! @7#.

The information obtained int measurements allows on
to construct various ‘‘experimental’’ curves. In particular,
Ref. @9# a quantityRt(s0) with a variable ‘‘mass’’s0<M t

2 ,
has been considered. This quantity, defined for timelike m
menta, is similar to the ‘‘smeared’’ functions constructed,
example, according to the Poggio-Quinn-Weinberg meth
@10#. Thet-decay data also allow us to determine quantit
©2001 The American Physical Society05-1
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in the Euclidean region, including the Adler function. Th
function can be extracted from thet data down to the lowes
energy scale@11#.

In this paper we study the AdlerD-function correspond-
ing to t decay mediated by the nonstrange vector current
W2→dū. We use the APT method which, as noted, does
encounter the problem of unphysical singularities of the r
ning coupling and gives a self-consistent description of b
the timelike, Eq.~1!, and the spacelike, Eq.~2!, regions.

The region of integration in Eq.~1! includes the vicinity
of the quark-antiquark threshold. The perturbative expans
breaks down in this neighborhood due to singularities as
5(mq1mq̄)2 @12,10#. Thus any finite order of the perturba
tive expansion is unreliable near quark thresholds and, th
fore, all singular terms of the (aS /v)n type, wherev is the
relative velocity of the quarks, have to be summed. Note
this problem cannot be avoided by using the contour rep
sentation~2! instead of Eq.~1!, because these expressio
should be equivalent to each other in the framework o
consistent method. For heavy quark systems one usually
the nonrelativistic resummation factor obtained by using
Schrödinger equation with the Coulomb potential, which
known as the Sommerfeld-Sakharov factor@13,14#. But for a
systematic description of the threshold region in the sys
of light quarks it is necessary to apply a relativistic approa
Here, we take into account threshold effects by using a n
relativistic resummation factor proposed in Ref.@15#, which
was obtained for a QCD-like potential.

II. ANALYTIC APPROACH TO t DECAY

We start our consideration with a three-loop PT and A
analysis, neglecting, in the beginning, quark masses. I
convenient to separate the QCD contribution by represen
the Rt ratio in the form

Rt5Rt
0~11dQCD!, ~3!

where Rt
0 corresponds to the parton level description a

dQCD is the QCD correction. We introduce QCD contrib
tions to the imaginary part of the hadronic correlator,r (s),
and to the corresponding Adler function,d(z) as follows:

R~s!5
1

p
Im P~s1 i e!/Rt

0511r ~s!, D~z!}11d~z!.

~4!

Then, one can writedQCD as an integral over timelike mo
mentum~Minkowskian region!

dQCD52E
0

M t
2 ds

M t
2 S 12

s

M t
2D 2S 112

s

M t
2D r ~s!, ~5!

or as a contour integral in the complex plane~Euclidean
region!

dQCD5
1

2p i Ruzu5M t
2

dz

z S 12
z

M t
2D 3S 11

z

M t
2D d~z!. ~6!
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We now considerdQCD in the framework the PT and APT
methods.

A. Perturbation theory

The PT description is based on the contour representa
and can be developed in the following two ways. In Bra
en’s ~Br! method@4# the quantity~6! is represented in the
form of a truncated power series with the expansion para
eter at[aS(M t

2)/p. In this case the three-loop represen
tion for dQCD is

dQCD
Br 5at1r 1at

21r 2at
3 , ~7!

where the coefficientsr 1 and r 2 in the modified minimal
subtraction (MS) scheme with three active flavors arer 1
55.2023 andr 2526.366@4#.

The method proposed by Le Diberder and Pich~LP! @5#
uses the PT expansion of thed-function

d~z!5a~z!1d1a2~z!1d2a3~z!, ~8!

where in theMS-schemed151.640 andd256.371@16# for
three active quarks. The three-loop PT running coupli
a(z), is commonly written in the form of an expansion
inverse powers ofL[ ln(2z/L2) @3#. In theMS scheme it is

a~z!5
4

b0L H 12
b1

b0
2

lnL

L
1

1

L2 Fb1
2

b0
4 ~ ln2L2 ln L21!1

b2

b0
3G J ,

~9!

where b051122nf /3, b15102238nf /3 and b2
MS52857/

225033nf /181325nf
2/54 are the first threeb-function coef-

ficients. The substitution of Eq.~8! into Eq. ~6! leads to the
following non-power representation:

dQCD
LP 5A(1)~a!1d1A(2)~a!1d2A(2)~a! ~10!

with

A(n)~a!5
1

2p i Ruzu5M t
2

dz

z S 12
z

M t
2D 3S 11

z

M t
2D an~z!.

~11!

As noted above, the transformation to the contour rep
sentation~6! requires the existence of certain analytic pro
erties of the correlator: namely, it must be an analytic fun
tion in the complexz-plane with a cut along the positive rea
axis. The correlator parametrized, as usual, by the PT r
ning coupling does not have this virtue. Moreover, the co
ventional renormalization group method determines the r
ning coupling in the spacelike region, whereas the init
expression~1! contains an integration over timelike mome
tum, and there is the question of how to parametrize a qu
tity defined for timelike momentum transfers@17#. To per-
form this procedure self-consistently, it is important
maintain correct analytic properties of the hadronic c
relator @18–20#. Because of this failure of analyticity, Eqs
5-2
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~5! and~6! are not equivalent in the framework of PT and,
one remains within PT, it is difficult to estimate the erro
introduced by this transformation. However, using the A
method, it is possible to resolve these problems.1

B. Analytic perturbation theory

In the framework of the analytic approach,2 the functions
d(z) andr (s) are expressed in terms of the effective spec
function r(s) @6,19#

d~z!5
1

pE0

` ds

s2z
r~s!, r ~s!5

1

pEs

`ds

s
r~s!. ~12!

The APT spectral function is defined as the imaginary par
the perturbative approximation todpt on the physical cut

r~s!5%0~s!1d1%1~s!1d2%2~s!, ~13!

where

%n~s!5Im@apt
n11~s1 i e!#. ~14!

The function%0(s) in Eq. ~13! defines the analytic space
like, aan(z), and timelike,ãan(s), running couplings as fol-
lows:

aan~z!5
1

pE0

` ds

s2z
%0~s!, ãan~s!5

1

pEs

`ds

s
%0~s!.

~15!

As has been argued from general principles, the behavio
these couplings cannot be the same@22#. It should be
stressed that, unlike the PT running coupling, the anal
running coupling has no unphysical singularities~the ghost
pole and branch points! and, therefore, possesses the corr
analytic properties, arising from Ka¨llén-Lehmann analyticity
reflecting the general principles of the theory. For examp
the one-loop APT result is@6,19#

aan
(1)~z!5apt

(1)~z!1
4

b0

L2

L21z
,

~16!

ãan
(1)~s!5

4

b0
F1

2
2

1

p
arctan

ln~s/L2!

p G ,
whereapt

(1)(z)54/@b0ln(2z/L2)#.
The analytic running couplings~the exact two-loop and

the three-loop after an approximation! can be written explic-
itly in the term of the Lambert function@23,24#. However, in
the framework of the APT approach there is little sensitiv
to the approximation in solving the renormalization gro
equation for the running coupling@7,8#. In the following, we

1The nonperturbativea-expansion technique in QCD@21# also
leads to a well-defined procedure of analytic continuation@18#.

2To distinguish APT and PT cases, we will use subscripts ‘‘a
and ‘‘pt.’’
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use an explicit form for the analytic running coupling in th
timelike region,ãan(s), that is derived by using the formul
~9! in Eq. ~13!. The corresponding expression reads

ãan~s!5ãan
(1)~s!1D̃1~s!1D̃2~s!, ~17!

whereãan
(1)(s) is given in Eq.~16! and

D̃152
4b1

b0
3

1

B2 F lnB112A
ln~s/L2!

p G ,
D̃25

4pb1
2

b0
5

1

B4 H S b2b0

b1
2

212A21 ln2BD
3

ln~s/L2!

p
1F12

ln2~s/L2!

p2 GAlnBJ , ~18!

A~s!5
b0

4
pãan

(1)~s!, B~s![Ap21 ln2~s/L2!.

For the QCD correctionr (s) one can write down@25#

r an~s!5ãan~s!1Dr 1~s!1Dr 2~s!, ~19!

whereãan(s) is given by Eq.~17! and

Dr 15d1S 4

b0
D 2 1

B2 H 12
b1

b0
2

p

B2 F ~2lnB11!
ln~s/L2!

p

1A2A
ln2~s/L2!

p2 G J ,

Dr 25d2S 4

b0
D 3 1

B4
ln~s/L2!. ~20!

Using Eq.~5! or equivalently Eq.~6!, we obtain the QCD
correction to theRt-ratio in terms ofr(s) as follows:

dan5
1

pEM t
2

` ds

s
r~s!1

1

pE0

M t
2 ds

s F2
s

M t
2

22S s

M t
2D 3

1S s

M t
2D 4Gr~s!. ~21!

The first term of this expression isr an evaluated at thet
mass; it is obvious thatdan is not representable as a seri
expansion in the running coupling.

The difference between the PT~LP! and APT contribu-
tions toRt can be transparently shown by the one-loop re
tion:

dan
(1)5dpt

(1)2
8

b0

L2

M t
2

1O~L4/M t
4!. ~22!’
5-3
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The additional term, which is ‘‘invisible’’ in the perturbativ
expansion, turns out to be important numerically@7,26#. Due
to the negative sign of this term, the QCD scale is large
this method,Lan.Lpt , at the same value of the QCD co
rection: dan(Lan)5dpt(Lpt)5dexp. It should be noted tha
due to the difference of shapes of the APT and PT runn
couplings~see, for example, Ref.@27#!, their values at thet
scale do not differ very much@28#.

The APT analysis oft decay in the three-loop level ha
been performed in Ref.@28#. This investigation together with
other results~see, for example, Refs.@8,29,30#! allows us to
formulate the following features of the APT method:~i! this
approach maintains the correct analytic properties and le
to a self-consistent procedure of analytic continuation fr
the spacelike to the timelike region;~ii ! it has much im-
proved convergence properties and turns out to be st
with respect to higher-loop corrections;~iii ! renormalization
scheme dependence of the results obtained within
method is reduced dramatically.

C. The vector channel int decay

Experimentally theRt-ratio can be separated into thre
parts

Rt5Rt,V1Rt,A1Rt,S . ~23!

The termsRt,V andRt,A are contributions coming from th
nonstrange hadronic decays associated with vector (V) and
axial-vector (A) quark currents respectively, andRt,S con-
tains strange decays (S).

Within the perturbative approximation with massle
quarks the vector and axial-vector contributions toRt coin-
cide with each other

Rt,V5Rt,A5
3

2
uVudu2~11dQCD!, ~24!

where uVudu denotes the Cabibbo-Kobayashi-Maskawa m
trix element. However, the experimental measureme
@31,32# show that these components are not equal to e
other. The corresponding difference is associated with n
perturbative QCD effects which are usually described in
form of power corrections. The experimental data for t
isovector spectral function of the ALEPH Collaboration@31#
have been used in Ref.@11# to extract the AdlerDV-function
which we show as the dashed line in Fig. 1. The experim
tal D-function turns out to be a smooth function without a
trace of resonance structure. TheD-function obtained in Ref.
@33# from the data for electron-positron annihilation in
hadrons also has a similar property. One can expect tha
Adler D-function defined in the Euclidean region reflec
more adequately the quark-hadron duality than do quant
determined in the Minkowskian region,3 and, therefore, is

3The Minkowskian and Euclidean characteristics which are as
ciated with the process of electron-positron annihilation into h
rons have been considered in Ref.@34#.
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more suitable for relating theoretical predictions with expe
mental data. It is obvious that the PT approximation can
be applied at the low energy scale. Besides, any finite o
of the operator product expansion fails to describe the in
red tail of theD-function. APT’s good behavior in the infra
red region, in principle, allows us to consider theD-function
down to a low energy scale.

III. THE VECTOR CHANNEL D-FUNCTION

In this section we describe the Adler function correspon
ing to inclusivet decay. By using a dispersion relation fo
the hadronic correlatorP(q2), one can represent the Adle
function as follows, whereR(s) is defined by Eq.~4!,

D~Q2!5Q2E
0

`

ds
R~s!

~s1Q2!2
. ~25!

We will deriveR(s) by applying the APT approach while
incorporating threshold resummation.

A. Threshold effects

A description of quark-antiquark systems near thresh
requires us to take into account the resummation fac
which summarizes the threshold singularities of the per
bative series of the (aS /v)n type. In a nonrelativistic ap-
proximation, this is the well known Sommerfeld-Sakhar
factor @13,14#. For a systematic relativistic analysis of quar
antiquark systems, it is essential from the very beginning
have a relativistic generalization of this factor. Moreover
is important to take into account the difference between
Coulomb potential in the case of QED and the qua
antiquark potential in the case of QCD. The correspond
relativistic resummation factor has been found in Ref.@15#.
This derivation is based on the fact that properties of
quark-antiquark system near threshold can be describe
the Bethe-Salpeter amplitudexBS(x) at x50 and, therefore,
at relative timet50. Thus, the amplitudexBS(0) can be

o-
-

FIG. 1. The light Adler function corresponding to the no
strange vector channel oft decay data. The solid curve is the AP
result. The experimental curve~dashed line! corresponding to the
ALEPH data and the perturbative result with power correctio
~dotted line! are taken from Ref.@11#.
5-4
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expressed in terms of a quasipotential wave function@35#.
The quasipotential formulation in relativistic configuratio
space@36# allows one to give the following explicit expres
sion for the relativistic resummation factor:

S~x!5
X~x!

12exp@2X~x!#
, X~x!5

4paS

3sinhx
, ~26!

where x is the rapidity which is related tos by 2mcoshx
5As. The relativistic resummation factor~26! reproduces
both the expected nonrelativistic and ultrarelativistic lim
and corresponds to a QCD-like quark-antiquark potentia

A convenient way to incorporate quark mass effects is
use an approximate expression@10,12# which here can be
written as

R~s!5T~v !@11g~v !r ~s!#Q~s24m2!, ~27!

where

T~v !5v
32v2

2
, g~v !5

4p

3 F p

2v
2

31v
4 S p

2
2

3

4p D G ,
v5A12

4m2

s
. ~28!

We introduce effective quark masses, which incorpor
some nonperturbative contributions and turn out to be cl
to the constituent masses. In the description of the n
strange vector component of theD-function we neglect the
difference of the quark mass values and setmu5md5m.

The threshold resummation factor~26! leads to the fol-
lowing modification of the expression~27!:

RV~s!5T~v !FS~x!2
1

2
X~x!1g~v !r ~s!GQ~s24m2!,

~29!

which one can use to calculate the vector component of
Rt ratio

Rt,V53SEWuVudu2E
0

M t
2 ds

M t
2 S 12

s

M t
2D 2S 11

2s

M t
2DRV~s!,

~30!

where SEW denotes the electroweak factor@37#, SEW
51.019460.0040; the light vectorD-function is defined by
Eq. ~25! with R→RV .

B. Results

We derive theDV-function and the value ofRt,V by using
Eq. ~29! with the expression~19! for r (s) and the timelike
running coupling~17! in the S-factor. In Fig. 1 we plot this
D-function ~solid curve! which was calculated by using th
parameterL5420 MeV and the value of the quark mass
mu5md5250 MeV. Note that, practically, the same valu
of the light quark masses have been obtained in R
@38,39#. These values are close to the constituent qu
masses and incorporate some nonperturbative effects.
shape of the infrared tail of theD-function is rather sensitive
to the value of these masses. We obtain the value ofRt,V
01600
o

e
e

n-

e

s.
rk
he

51.77 which agrees well with the experimental data p
sented by the ALEPH,Rt,V

expt51.77560.017 @31#, and the
OPAL, Rt,V

expt51.76460.016@32#, Collaborations. The value
of the parameterL obtained here is slightly more than in th
standard analysis. For example, the ALEPH Collaborat
result is L5370613expt638theor MeV. In this connection,
note that a more accurate account of the so-calledp2-terms
in the treatment of high energy experimental data for tim
like processes leads to an increase in the value ofaS @20#. It
should be emphasized that the value ofL turns out to be
significantly smaller than the value extracted from thet data
in Ref. @28#, which shows the importance of threshold e
fects. In Fig. 1 we also show, besides the experimental cu
~dashed line!, the curve corresponding to the perturbati
result with power corrections~dotted line!, both of which are
taken from Ref.@11#. Note also that using the above valu
of quark masses, we find that the one-loop APT descript
gives a result~not shown in the figure! which is close to the
three-loop one and reproduces well the experimental beh
ior of the D-function.

IV. CONCLUSION

In this paper we have considered the Adler function c
responding to the nonstrange vector channel data fromt de-
cay. This function, defined in the Euclidean region, is
smooth function and represents a convenient testing gro
for theoretical methods. We have proposed the method of
‘‘light’’ vector D-function description. The conventiona
method of approximating this function as a sum of pertur
tive terms and power corrections cannot describe the
energy scale region because both the logarithmic and po
expansions diverge at small momenta. We have used
analytic approach to QCD which is not in conflict with th
general principles of the theory and, in the infrared regi
has a regular behavior. The new relativistic resummation f
tor, which corresponds to a QCD-like quark-antiquark qu
sipotential, has been used to incorporate the threshold
fects. We have shown that our approach allows us
describe well the experimental data fort-lepton decay in
terms of theD-function down to the lowest energy scale a
for Rt in the nonstrange vector channel. We have found t
the influence of relativistic threshold resummation is imp
tant and leads to a significant reduction of the value of
QCD scale parameterL extracted from thet data.
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