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Non-Gaussian correlations in the McLerran-Venugopalan model
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We argue that the statistical weight functidfi p] appearing in the McLerran-Venugopalan model of a large
nucleus is intrinsically non-Gaussian, even if we neglect quantum corrections. Based on the picture where the
nucleus of radiuk consists of a collection of color-neutral nucleons, each of radidf, we show that to
leading order inag anda/R only the Gaussian part o[ p] enters into the final expression for the gluon
number density. Thus, the existing results in the literature which assume a Gaussian weight remain valid.
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. INTRODUCTION butions of orderxsIn(1/x). The subsequent re-examination
of the foundations of the MV model performed in RE5)

With the first collisions at the Brookhaven Relativistic led to the formulation of a set of renormalization group equa-
Heavy lon Collider, the experimental frontier in both energytions (RGE$ describing the evolution of the weight function
_amd density has advanced. One of the goals of this machlrw[p] as one changes the separation scale between hard and
is to search for the so-called quark-gluon plasi@&P, @ gyt partong6-14]. Early on in the development of the RGE

deconfined state of QCD where quarks and gluons form a S&ay a5 conjectured5—7] that the MV model could be viewed
of thermalized particles occupying a volume of space S|gn|f|—as an effective theory at smalk, with the effects of the

\(/:v?etxelfgnﬂ vtvhhaenn tt?l?st gécir;ygle(;slenrliid:)?ln.th-le;hii(i?cir:;ugglrllﬁiguantum corrections absorbed into a renormalization of the
tions of the system. That is, what is the distribution of thewe'ght function Wp]. This conjecture has recently been

guarks and gluons immediately before the nuclei collide? proved by the calculation in Ref12]. While explicit solu-

One particularly fruitful approach to the determination of ioNS to the evolution equations & p] have not yet been
parton distribution functions in nuclei has been theOPtained, it is known that a Gaussian distributiomist a
McLerran-VenugopalaiiMV) model[1-3]. The key obser- Solution to these equatiorg]. _
vation underpinning the MV model is that for large enough While these developments were taking place, we set out
nuclei and for small enough values of the longitudinal mo-t0 address a different issue, namely the poor infrared behav-
mentum fractionx. , a new hard scale?, corresponding to 10 of the correlation functions in the MV model. The '[;NO-
the large color charge per unit transverse area, enters into tip@int vector potential obtained in R¢b] grows like (x?)*
problem. Consequently, when’—>AécD, it is argued that a at large distancesx(zA(SéD), signaling the onset of non-
classical treatment ought to provide a reasonable approximgerturbative effects associated with confinement. In R
tion to the gluon distribution. Three interrelated factors con-we observed that since individual nucleons do not exhibit a
tribute to making the smaky region conducive to a classi- net non-zero color charge, there should not be any long-
cal description. First, a large number of color chargesange @AaéD) correlations between quarks. This require-
contribute to the source, implying that the vector potentialment of color neutrality was cast into the form of a math-
takes on large values within the nucleus. Second, the largematical constraint on the two-point charge density
vector potential corresponds to the existence of a large nuneorrelation function. We found that the infrared divergence
ber of gluons, inviting us to apply the Weis#a@r-Williams  appearing in the MV model is completely absent when the
technique. And, third, the new large scale appears in theolor neutrality condition is enforced5].
running strong coupling constant(«x2), which is small for With the infrared divergences under control, it became
sufficiently largex?. In the classical treatment advocated in clear that, at least in the classical treatment of RES], the
Refs.[1-3], quantum mechanical expectation values are rexg dependence of the gluon distribution remained trivial,
placed by averages over a suitably chosen ensemble of colaith x.dN/dx: independent okg . There are two fairly ob-
sources whose statistical weight functidM], p], was argued vious possible sources of non-trivigt dependence, depend-
to take on a Gaussian form. ing on the value ofxg under consideration. First, we can

Quantum corrections to the MV model were first com-imagine takingxg to be somewhat larger than the values
puted in Ref[4]: they were found to be large due to contri- specified in the MV model. In this situation, the longitudinal

resolution of the gluons becomes good enough to start to

probe the longitudinal structure of the Lorentz-contracted
*Electronic address: lam@physics.mcgill.ca nucleus which they see. This avenue of investigation was
Electronic address: mahlon@physics.mcgill.ca pursued in Ref[16], where we developed a fully three-
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dimensional treatment of the classical gluon field of a largediscussion. We will pay particular attention to the conditions
nucleus. Our view of the nucleusadiusR) as containing under which the central limit theorem is valid, and then show
color-neutral nucleongeach of radius) played a vital role  that for a large nucleus these conditions are violated. The
in the calculation. Taking advantage of the smallness of th@ssential observation is thaty non-trivial longitudinal cor-
ratio a/R for a large nucleus, and assuming that the nucleuéelations, no matter how short range, spoil the Gaussian form
possesses a spherically symmetric distribution of colof the weight function in the very large nucleua'(*—c)
charge in its rest frame, we found that the additioral limit. In the second half of this paper we will return to the

dependence manifests itself by the appearance of the comijirée-dimensional framework for the MV model developed
nation G2+ (xem)? in some (but not al) of the functions N Ref.[16] and consider the additional terms which would

parametrizing the final resulsee Eqs(5.18—(5.20 of Ref. be generated in the presence of non-Gaussian contributions

[16]]. Hereq is the transverse momentum of the gluon amd to W[p]. Assuming only that.the nucleus consists C.)f color-
: : neutral nucleons of radiuswhich possess no nontrivial cor-
is the nucleon mass. Over most of the region where ou

felations at separations much lar ill d -

: . 5 o . p ger tlearwe will demon
extendgd treatment is valiox¢m)“ <", implying that these strate that no contributions beyond those already considered
corrections are small.

: . in Refs.[5,15,14 are generated to leading order dny and
The second possible source of non-trivigldependence, 5/R Thys, for a large enough nucleus, it is sufficient to
namely quantum corrections proportionaldgIn(1/xg), was  know only the two-point function associated With[ p],

proposed1-3] even before the first calculation of these cor- eyen when the quantum corrections are taken into account.

rections in Ref[4] verified that they do indeed contain the We close with a few words about the imp”cations of our
necessary logarithms. The idea is that a resummation of suglasy|t.

powers to all orders would convert thext/appearing in the

. . . 1+C
leading-order expression foiN/dx into 1k; "~ for some Il. GAUSSIAN AND NON-GAUSSIAN DISTRIBUTIONS
C. One of the goals of the studies conducted in R¥s.14] ) o .
may thus be phrased as the determinatior€oA priori it A Gaussian(or norma) distribution in a random variable

would appear that in order to determine the gluon distribu{ usually comes about because of tentral limit theorem
tion in the interesting nonlinear regime, we would require aln this section we review the conditions under which this
complete solution to the evolution equations Vigfp] devel- theqrem is valid, qnq argue that all of these .COI’_]dItI_OnS are
oped in Refs[5—14]. And, furthermore, since a Gaussian is not, in general, satisfied by the color_—charge _d|str|but|on_ of a
not a solution to these equations, it would seem that thd2r9€ nucleus, even when we omit radiative corrections.
general form of the gluon distribution obtained in Refs. Hénce, the statistical weight functioh p] appearing in the
[5,15,1 could be fundamentally altered once the non-MV model is generically not expected to be a Gaussian, even

Gaussian correlations are taken into account. Such an ouglassically.
come would be at odds with related calculations based on
different technique$17—-41 which already possess general A. Generating functions

agreement with the MV model. The purpose of this paperis | ot ;. he aD-dimensional random variable, with normal-
to investigate this issue. Once again it will prove valuable tqqq distributionP(7). For what follows it is more conve-
incorporate the physics associated with confinengiestt the nient to specify it by its moments:
color neutrality of the nucleonsnto the discussion. We will
demonstrate that to leading order in the strong coupling and
a/R it is sufficient to consideronly the (renormalized (mi7j- - Tk>EJ d°7 77 mP(9). 2.
Gaussian contributions to the gluon number density. All con-
tributions from the non-Gaussian portion 4 p] are sup- These two descriptions are equivalent because the Fourier
pressed by additional factors af and/ora/R. Thus, the MV transform ofP(7), namely
model remains in general agreement with the various other
approaches to smatl- physics referred to above, even if we ~ D —in
employ a non-Gaussian weight function. P()‘):J’ d-re P(7), 2.2

In light of the arguments in favor of a Gaussian form for
W[p] put forth in Ref.[1], the reader may be tempted to has a Taylor series expansion in terms of the moments:
think that our conclusion is a trivial consequence of the cen-
tral limit theorem. However, as we will demonstrate, the cen- _ >
tral limit theorem does not apply to this case. Instead, the P(N)=1+ 2
additional factors which suppress the non-Gaussian terms n=t
relative to their Gaussian counterparts come about because of
the fact that the individual nucleons are color neutral object
which do not have significant color-charge correlations a
distances much greater than

The remainder of this paper is organized into two main D
sections. In the first, we begin with a review of the central P(7)= H p(7), (2.4)
limit theorem to establish the notation used in the subsequent =1

(—)"

n!

(= N)"). 2.3

The moments defined by E@2.1) are reducible in the
ollowing sense. Suppose that the distributiB(s) factor-
izes as
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wherep( ;) is some single variable distribution, i.e., suppose
that the components of the vectpare completely unrelated
to each other. In this case, the momentr; - - - 7,,) factorizes
into (7;){7j)- - - (7). More generally, however, the compo-
nents of+ will not be completely independent of each other.
Then, the factorization just described will fail: for example,
(ri7;)#(7i)(7j). The difference between these two quanti-
ties provides a measure of the amount of interdependencgd
between the components of This information may be con-
veniently organized in terms of tH@reducible cluster mo-
ments(( ;- - - 7)), which are recursively defined through

the relations

(=),
(rim)={rm) (7)),
(rimim) =777 H (TN 7m0 + () {{7i 7))
H{mDUnm) TN T(T9), (259

(riTimem) ={(Timmen)) H () Ty7em))

D Umimem) + (T (77 7))

N {(TiTimd) (i) {((7em))
H{mm) () + {rim)((770)

HrN ) + (i (m ({7 m))
HTN im0 + () (T (Tim))
HLTM T Tim) +(r) () ((7iTy))
HLTNUTNCTNT))- (2.50

The generalization to higher orders is obvious. It turns out
that the cluster moments are generated by(k), in the
same way that the ordinary moments are generateel(y:

1 N
=3 p; P, (2.9

obeys a Gaussian distribution with

() =mi)=(m) (2.99

(7))

(t)=—y (2.9b

In other words, the distribution dfis given by

(2.59
(2.5

det() 1
WGX[{_ E(t|_<7|>)Q|J(tJ_<TI>)}’

(2.10

W(t)=

where

<<TiTj>>

Q7= N

(2.11

The proof of the central limit theorem relies crucially on
the independence of samplings: the joint distributipaf the
sampled variablest® must be factorizable, i.e.,

N
Q(AD, A2 ANy = 1'[1 P(#P). (2.12
o2

In terms of Q, the probabilityW(t) for finding the mean
valuet is given by

W(t)zfd'%ﬂ)f dPA2. ..

% f dDT(N)Q(T(l),T(Z), o ,,.(N))
(="

n!

{(mN)M). (2.6

~ ~ N
In P()\)=n§1 S AN

p=1

X &P . (2.13

A simple example is provided by the following Gaussian

distribution: Using the distribution given in Eq2.12), the moment gen-

erating function is simply
_exp(—7)

(7 D

2.7 W(A)j dPte™ ™M 'W(t) =[P(AN)]N. (2.14
All of the odd momentdqreducible and irreducibjeof Eq.

(2.7) vanish. Of the irreducible moments, only the two-point
function((7;7;)) is nonvanishing. All other cluster moments
are zero, and the even reducible moments are expressible

entirely in terms((7;7))).

This leads to the cluster moment generating function

INWA)=NInBPWN)= S Sl <<(;'n)f)1 23

A=1 N
(2.15

where we have applied E¢2.6) to obtain the second line.

B. Central limit theorem

Suppose the random variabteis independenthsampled
N times, yielding the values® (p=1,2,...N). The cen-
tral limit theorem asserts that whé&1, the mean value of
these measurements,

Now consider theN>1 limit. If we approximate Eq(2.195
by just the first term, we obtaiW/(\)= exp(—i\- (7)), cor-
responding toN(t) = 6°(t— (). If, instead, we include the
first two terms in the infinite series, we get
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W)= exp—iN-( =N\ ((7m))2N),  (2.16 independent oN. Including theO(1/N) contributions does
not change this conclusion. The corresponding distribution
corresponding to the Gaussian distribut{@0. Deviations ~ W(t) is no longer a pure Gaussian: the central limit theorem
from this Gaussian are suppressed by the additional powedoes not hold in this case. While it is straightforward to

of 1/N present in the higher order terms. determine thénew) form of the distribution function for this
particular example, in general this task will not be so easy.
C. Non-Gaussian distribution Fortunately, all we need to know for what follows is the fact

o . that the resulting distribution is fundamentally non-Gaussian
The proof of _the celntral limit theorem erends crlt!cally when the successive measurements(aven mildly corre-
on the assumption of independent sampling. If EJ12 is  |5teq.

violated, then the proof fails. Even a small correlation be- 1 is useful to see a bit more about how the correlators

tween successive samplings is sufficient to destroy the COhange when we relax the assumption of independent mea-

clusion, as the fqllow(ijng example iIIustra’Fef].b ) at surements. With independent sampling, as in(®d.2), cor-
Suppose we introduce a “nearest-neighbor” correlation oaors such aé7P 749 () factorize into groups with

by replacing Eq(2.12) with the same superscripts. For example,

N—-1 f(T(m),T(erl))

QAN 7™, AN =1+ 3 5y Am D <Ti<p>Tj<q)T<ks)Tl(s>>:j dDai”---fde‘N’Ti(F’)T}q’T(kS)TfS)
N y... N)
<11 P(#®). (217 XP(#t)--P(s)
Pt =(T) ()T, (2.24

To ensure that Eq2.17) is properly normalized, we further
assumd (7™, #™* 1) to be symmetric in its arguments, and
that

assuming thap, g, ands all take on distinct values. Of par-
ticular interest in connection with the MV model will be the
special case

J' AP AME (M M1y =0, (2.189 (TP D)= $PU 7 7)) + (1= SPN(7)(7). (225

In contrast, if the measurements are not independent, such as

The moment generating function for the distributi@il3 is in Eq. (2.17), then the factorizations obtained in Eq2.24

now and (2.295 are no longer valid. Additional non-factorizable
(N=1)F(N) correlators involving different superscripts will, in general,
\7V(A)=[I5()\/N)]N[ 1+~—2] ., (2.19 be present, signaling the breakdown of the central limit theo-
[P(AMN)] rem.
where o
D. Color charge distribution in a large nucleus
?()‘)EJ' de(l)J dDT(Z)efih»[Al)Jra'(z)]f(T(l),1_(2))_ Let p®(x),x) be the color charge density of a large
nucleus with colora and atomic weighA>1, at the trans-

(220 verse positiorx and the longitudinal position [a precise

_ finition ofx, is given in Eq.(3.3) below]. L
Note thatF(0)=0. Unlike Eq. (2.19, the irreducible mo- Ccmiuon ofxjis given in £q.(3.3 below]. Let

ments generated by %
PS(X)EL dxp(x),%) (2.26

5 - [ (N—l)?(x/N)]
INW(A)=NInP(AM/N)+ In§y 1+ ————7—

[P(NMN)]? be the accumulated two-dimensional charge density. On ac-
count of Lorentz contraction of the longitudinal size of the
relativistic nucleus, this is expected to be the relevant quan-

do not approach a linear function MfasN—ce. In fact, we tity governing the gluon distribution, provided that only va-

have lence quarks are included jm and provided that the longi-
~ . r tudinal wavelength of the gluon is much bigger than the
INW(A)=—iX-(7)+ IN[1-iX- $]+ O(IN), (2.22 longitudinal size of the relativistic nucleus. These are two of
where the basic assumptions underlying the MV mofket3].

The typical size ofp3(x) for a nucleus is of ordeA'®
0~ times the typical size op3(x) for a single nucleon. If we
¢i=i Wf()‘)|h=0- (223 jdentify AY3 with the number of measuremeriisof the pre-
. vious subsections and the accumulated charge density
For ¢+#0, Eq. (2.22 is nonlinear in\. This distribution  p3(x)/AY® with the mean valug; (with i —{a,x}), then the
possesses non-zero values &irof its irreducible moments, central limit theorem would forc®V(t) (that is, W[ p»(X)])
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TABLE I. Mapping between the notations used in the discussionhave non-trivial longitudinal correlations. Although all of the
of the central limit theorem and those associated with the MVhigher-order cluster moments of the distribution correspond-
model. ing to Eq. (2.28 are taken to vanish(implying that
W[p%(x;x)] is Gaussia)) because Eq(2.27) is violated,

Central limit theorem MV model the corresponding 2-dimensional distributiohf p5(x)] is
7P) PA(X[3%) nota Gaussian. The central limit theorem does not apply to
) x| this computation. Nevertheless, the result obtained in Ref.
i {aix} [16] remarkably turns out to have exactly the same form as if
N AL3 W[ p3(x)] had been Gaussidne., for sufficiently smalkg,
1 13 Ay 13 A it matches the results of Ref&,15]). In the next section we
t= Nz,ﬁ‘:lﬁp’ A™Tpa()=A"TE T dxp®(X) ,X) will see how this comes about, and consider the general con-
W(t) W[ po(X)] sequences of allowing for a non-Gaussian weight function.

. . . 13 . Ill. EFFECT OF NON-GAUSSIAN CONTRIBUTIONS
to be Gaussian in the limit of larga™~, provided that the

conditions needed to prove the theorem are obeyed. With We have just demonstrated that we do not expect the sta-

this mapping, the superscriptin the random variable{" tistical weight functionW[ p,(x)] to have a Gaussian form,

corresponds tey, and Ti(p) corresponds tp?(x|,x). Asum-  €ven in the purely classical case. On the other hand, a Gauss-

mary of these connections appears in Table I. ian has been frequently employed in the literature dealing
As discussed in Sec. Il C, a necessary condition for thavith the MV model[1-5,12,15,16,27,42—48n this section

central limit theorem to hold is that the correlat@nép)rj(m we will argue that for a large enough nucleus, the results
o T(ks)> must factorize into groups with identical super- which would be obtained with a non-Gaussian weight func-

scripts. In particular, consider the translation of E2.25 tion are identical to those which follow from a Gaussian
into the MV model. The color neutrality condition tells us weight fun_ct|o_n to Igadmg order i andA™. That_ IS, the_
that<pa(xH X))=0. Therefore, we are left with new contributions introduced by the non-Gaussian weight

are suppressed by additional factorsaqfand/or do not con-

{p3(x X)pP(x/ X)) =(p3(x X)pP(x] X)) tain as many factors &3, Our conclusion is a consequence
[ [ I [ .
of the color neutrality of the nucleons: all non-trivial corre-
= 5(xH—xH’)<p§(x)pg(x’)>. lations are limited to length scales of ord‘e&AgéD. Be-

2.27) yond the color neutrality of individual nucleons, we will as-

sume nothing about the form W[p()?)]. Our discussion is
This is effectively the form of correlator argued for in Ref. framed in terms of the three-dimensional extension of the
[1] and employed extensively in the literature MV model introduced in Ref.16], with the addition of non-
[2-5,12,15,27,42-48 zero higher-point cluster moments.
However, there are two reasons why it is desirable to go

beyond the Gaussian approximation represented by Eda_ piagrammatic representation of the gluon number density
(2.27). First, at very smalkg the quantum corrections in the ) ) .
MV model become large. If we wish to incorporate these_ Magine a very large nucleus as viewed in its rest frame.
corrections via the RGE analysis of Ref5—14], we must The qurrtlentf corresponding to this situation may be written in
go beyond the Gaussian approximation, since a Gaussian {a€ Simple form
not a solution to these equationg]. Second, if we go to 0_ 1_12_13_

’ J=p(—2z,%x), J;=3=31=0, 3.1
somewhat larger values of: (where the quantum correc- r=P(=20X) reerr @D

tions may not be too largethe presence of longitudinal h lov th bscrioto denot r
correlations between quark charges within a nucleon and thghere we employ the subscripto denote rest frame quan-
tities. In this frame the Yang-Mills equations for the vector

fact that the longitudinal size of a nucleon is not exactly zero . A .
begin to have an effect, even classically. In Ref], we potential possess the “obvious” time-independent Coulomb

employ the form solution. Furthermore, since .only\?io, we have gyA? _
=¢-A,=0: the Coulomb solution is the same as the covari-
({p3(x ,x)pb(xH’ X')))oc 820 5(XH_X\D52(X_X,) ant gauge solution in this frame. Thus, we conclude that even

when we boost to the laboratory frame, it is natural to begin
—C(xH—xﬁ x—x")], (2.28 with the covariant gauge solution for the vector potential

[16]. Indeed, it has been observed that although the expres-
whereC(x”—x”’ ;X—X") is a reasonably smooth function pa- sion for the gluon number density is most easily written in
rametrizing the mutual correlations between pairs of quarksterms of the vector potential in the light-cone galigee Eq.
This function enforces the color neutrality condition. The (3.10 below], it is nevertheless easiest to work in terms of
nonfactorizability of Eq.(2.28 tells us that for a nucleus the covariant gauge expression for the curfd2;13,17,27T.
with a non-zero longitudinal thickness we should not expect In the laboratory frame, where the nucleus is moving
any single layer to be color neutral by itself. Equivalently, along the+z axis with speeg@3, we take the source to be of
we may view the color neutrality condition as forcing us to the form[16]
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1 e (==} o0 (=] o
+ -——_ 1t —
J =3 p(X,x), J 23 , J=0. (3.2 , /®
The longitudinal coordinat® is defined by /® /® ﬁ /®
H 2+ + + + .
L . /® /®
XHE;X_— §X+. (33) /® /®
The parameter B e o .,
2(1-5) FIG. 1. Diagrammatic representation of the series expansion for
&= W (3.4 the light-cone gauge vector potential, £§.5). The circled crosses

denote the positions at which the sources are being evaluated. The
measures how close the source is to being exactly on thgots represent the ordered integrations coming from the gauge
light conel As explained in Ref[16], we prefer to work transformation into the light-cone gauge. A propagator connects
with natural (order unity quantities, and keep track of all ©ach of these points to the sources.
small and large parameters explicitly throughAt the end by ) ) )
of the calculation we let— 0. Interestingly, in terms of;, factor of.g . Figure 1 _|IIustrates the flrst. few dlagrams cor-
the function describing the source is still spherical: the Lor-"€Sponding to the series. Tineth order diagram consists of
entz contraction that shrinks~ towards zero in the lap M copies of the source, represented by the circled crosses. In
frame is exactly compensated by the factos. lReflecting  E9- (35 they appear as the nested multiple commutator

this fact, we will frequently use the notatio?“az(xn iX).

As explained above, it is natural to first solve the Yang- [p(EDp(&) -+ p(€m)]
Mills equations for the vector potential in the covariant B . S . -
gauge, using the covariant gauge soui&€), and to subse- =[L---[p(€1),p(E2)1p(£3)], - - - 1. p(Em)]-
quently transform the result into the light-cone gauyé (3.7
=0. The result of this procedure may be written in the form
w To each source we attach a propaga@reen’s functioh
Aj(q” ;X):% 2 (— i92)m71J’ dmx;, connecting the source poin§|f, &) to the point &, X):
[m=1 -
1 1
X exp( —igx )f d3&,01G (X, — &1:X— &) C(Xjk— &k X—&)=—— .
e AT (X €102+ (X~ £

(3.9

m

I1 f dPEG(Xjk— i X— §k))

X
k=2

Herex is the transverse position at which we wish to know

- - R the vector potential. The index labelling the uppermost
X[p(é)p(&2)- - - p(&m], (3.9 propagator on the diagram represents the derivative indicated
in Eq. (3.5. Finally, we have an ordered integration over the
longitudinal variables:

Aj(qH ;X)E foc dXH exp(—qux”)A"(xH ,X). (3.6) J'oo o X|1 X|m—1
- - deHlEJ, dlef, dXHZ-'-f7 dX”m. (3.9

The power counting rules we will present in Sec. Il B are

simplified by usingA(q; ;x) instead ofA(x),x). _ Mathematically, this integration results from the gauge trans-
~ Although Eq.(3.5) appears complicated at first glance, it formation to the light-cone gauge from the covariant gauge.
is easily understood in terms of the diagrammatic represenspysically this integration corresponds to the final state res-
tation introduced in Refl16]. The light-cone gauge vector catterings which would be present in a computation of the
potential is a non-linear function of the source, cpntaining a”gluon number density based entirely on the covariant gauge
possible “powers” ofp. Note that the series begins at order[28_3j]_ The ordered integration is represented by the dots
g and that each additional occurrence of the source adds @h the vertical line. The dots are to slide up and down the
entire length of the line without passing one another. Al-
though we have written all of the integrations over an infinite
We define the light-cone coordinates to Bé=—x. = (x° range, in practice the source provides non-zero contributions
+x3)/\/2. The transverse coordinates andx? form a two-vector ~ Only over a region of siz&, the nuclear radius.

whereq is the momentum conjugate 1q, i.e.,

which we write in boldfacex. Our metric has the signature-( The next step is to connect the gluon number density to
+,+,+). Thus, the scalar product in light-cone coordinates read¢he two-point correlation function for the vector potential
qx*=—q"x —q x"+0g-x. [16,49:
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. oo =@ e ()

FIG. 2. The lowest-order contribution to the gluon number den- £, 3. The contributions to the gluon number dené&yl0 at
sity, Eq.(3.10. According to the power-counting rules described in 3rq order inp. According to the power-counting rules described in

the text, this diagram is proportional taA. the text, both diagrams are proportionaldgA.
dNZ Eilsf dzxf d2x’ @it (< x') {(p(XD)p(X2) - - - p(Xm)))
qud q 4w 1 m
X (AR ) AN —qp;x)). (3.10 ESm(EJ'Z]_ Xi)
xDm(§1—§2;§2—§3; o ;im_l—im). (3.11

Intuitively, the result in Eq.(3.10 may be understood by

envisioning the expansion of the vector potential in terms ofrhe exact choice made for thie— 1 difference coordinates
creation and annihilation operators and recognizing thajs arbitrary and unimportant to our argument. What does
(AA) contains the number operaf{@,42]. The vector poten- matter is the fact that the source corresponds to a large
tial appearing in Eq(3.10 is in the light-cone gauge. This nucleus of radiu® which is in turn composed @& nucleons,
choice reflects the fact that the intuitive picture of the partoreach of radius. The nucleons themselves are color neutral.
model is most transparently realized in the light-cone gaug®ecause of confinement, we do not expect the field to be
[49-52. Strictly speaking, the angled brackets in E8j10  correlated at distances much greater thawhat is happen-
represent a quantum-mechanical expectation value. In thi@g inside one nucleon is largely independent of what is hap-
MV model, we make a classical approximation to this quan-ening inside of the others. Thus, the functiby, ought to

tity by performing an ensemble average with an appropriatde small unles$>2i—>2j|sa for all pairs of points. Further-
weighting functionW[p()Z)]_ more, the center-of-mass coordinate ought to point at a po-

: o - . Lo sition somewhere inside the nucle@i®., it should have a
Given a specific form foWV[ p(x)], we may(in principle) magnitude<R) in order for S, to take on a non-negligible

evaluate Eq(3.10 by inserting two copies of Eq3.5), per-
forming the required average term by term, and summing th\e/alue' . . . -

i ) Di ticallv. th ’ A The above physical considerations are sufficient to allow
resulting series. iagrammatcatly, e qu_antm _> MaY ~ ys to determine the order of magnitude of an arbitrary dia-
be represented by drawing all possible pairs of diagrams foéram in terms of powers ok, andR/a (AY3). The powers

a singleA, with the understanding that all possible contrac-g¢ i coupling are simple. Recall that each of the diagrams
tions should_ be perfor_med;ee Figs. 2—.4 for t_he first th_ree for the gluon number densit{3.10 are formed by gluing
orders in this expansionFor a Gaussian weight function, ogether two copies of the expansion for the vector potential
only pairwise contractions appear. On the other hand, for 23 5. Since Eq.(3.5 contains only odd powers df, the
non-Gaussian distribution, contractions connecting three ogiagram representing the contribution to E§.10 with a
more sources must also be considered. Because the nucleqssal of j sources contains the factgf! ~2 (or, equivalently,
are neutral{p(x))=0. Hence there must be no uncontracteda’" b,
sources left over in any diagram. Now let us consider the integrations which go into the
computation of the contributions {&?(q ;X)Af(—q;;x’)).
The integrand for a given diagram will contain several
B. Power counting rules propagators plus factors 6}, andD,,, depending upon how
the sources are contracted. As described abibygcontains
To proceed further, we must make some reasonable aghe length scale whereassS,, contains the length scaR.
sumptions about the correlation functions corresponding tqhe Green’s functions contain no intrinsic scale of their own.
the moments o[ p(x)]. Let us parametrize therpoint  What we would like to know is how many powers Bfa
correlation function ih>1) by ~ A3 are generated when we perform the required integra-
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FIG. 4. The contributions to the gluon number den§&i 0 at 4th order irp. Diagramg(f)—(h) are non-planar, whereas diagrafns-(k)
represent thénon-Gaussiancontribution from an irreducible 4-point charge density correlation function. According to the power-counting

rules described in the text, diagrarf@—(e) are proportional tcngA‘”3 whereas diagramé)—(k) are proportional tcugA.

tions, which range over all possible locations of the sourceformed when the vertical lines are removed. Two clusters are
as well as the entire length of the two vertical lines. independent if they can be represented by a planar diagram
To first approximation, the functios, in Eq. (3.1) is  (no crossings For examplec=1 for the diagrams in Figs.
essentially a constant when we stay well inside the large, 3, and 4f)—4(k), whereasc=2 for the diagrams in Figs.
nucleus since the individual nucleons are identical insofar ag(g)—4(e).
the strong interaction is concerned. Thus, the quantity The origin of the factor oA for each independent clus-
(AT(a):)AT(—qj;x")) computed from the expansion given ter s the divergence which appears in some of the integra-
in Eq. (3.9 is of the form tions when we takeS,,=const: these are the integrations
c } / 1/3\¢ ) ’ which get cut off at the scalR instead of the scala. To see
(RI2)TF(qyx=x)~ (AT)F (gyix—x") - (3.12 this, in?agine that we have changed the integration variables
whereF is a dimensionless function. For a given diagram,to a set of sum and difference coordinates. The ¢center-
the powerc is equal to the number of independent clustersof-mas$ coordinates describe the positions of the clusters
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(whether or not these clusters are independefihe differ-  But this is exactly the form obtained by expanding the ex-
ence coordinates describe cluster-cluster separations as wpliessions contained in Eq&5.18—(5.20 of Ref. [16]. In

as the internal separations of the components of each clustdact, the set of diagrams described above is precisely the set
All of the difference integrals are finite and so inherit the of diagrams considered in RéfL6]. Moreover, it is also the
scalea associated witiD,,,. On the other hand, the center- set of diagrams whose two-dimensional reduction corre-
of-mass integrations are insensitiveatoso long as the clus- sponds to those terms which were retained in Rgl5)].

ter is located somewhere inside the nucleus, the integrantihese contributions are easily resummed into a relatively
can be significant. Hence, these integrations produce factosmple “exponential’[5,15,16. Thus, we see that even if

of Rinstead ofa. In the absence of the ordering of the loca- the weight functiodW[ p(x)] is non-Gaussian, we obtain the
tions of the pOintS on the vertical lines, then, we would Ob'same result to |eading order as if we had chosen to use a
tain a factor R/a)X for k clusters. What the ordering does is Gaussian weight function instead.

to force clusters which cross each other in nonplanar dia-

grams to maintain a relative separation which does not

greatly exceeda. Thus, if onlyc clusters are free to move IV. IMPLICATIONS
independently of each other, the factor we obtain will be ) ) .
only (R/a)®~ (A¥3)c, We have just demonstrated that the non-Gaussian portions

Finally, we note that every diagram will pick up an addi- of the statistical weight functioldv[p(i)] in the MV model
tional factor R/a)?~A?3 when the Fourier transform indi- do not contribute to the gluon number density at leading
cated in Eq.3.10 is performed. The origin is the same as order. On the other hand, the results of R&R] suggest that
above: the integration ove—x’ gets cut off at the scala  the quantum corrections to the MV model may be incorpo-
whereas the integration ovex+{x’)/2 is cut off at the scale rated by solving the RGE for the weight function and using
R. Assembling all of the pieces, we have the result that théhis (non-Gaussianresult to perform the ensemble averages
diagram containing sources and independent clusters con- required to compute the gluon number density. A synthesis
tains the factomjsfl(Am)C*Z_ of these two conclusions has the following implication: it is

With our power-counting rules in hand, we may now clas-sufficient to solve the RGE for the new value of the two
sify the relative contributions of the diagrams in Figs. 2—4.point charge-density correlation function and to use this
The lowest order diagram is given in Fig. 2, and contains twg€normalized correlator as defining an effective Gaussian
sources and a single cluster. Hence, its contribution is ofveight function to be input to the MV model. The separation
ordera A. The third-order diagrams of Fig. 3 have a total of scale between hard and soft partons appearing in [R&f.
three sources tied together as a single cluster. Their contrmay be recast as a dependence of the renormalized correlator
bution is therefore ordew?A and is suppressed by a power ON Xg . In terms of Eq.(2.28, this dependence can poten-
of as relative to the leading order diagram. Finally, let us ti@lly show up in the detailed shape of the smooth function
look at the fourth-order diagrams of Fig. 4. According to ourC(x—x"), as well as in the prefactors which were sup-
power-counting rules, diagramgai-4(e) all contribute at pressed in writing down Ed2.28). In terms of the expansion
the «2A%? level (four sources and two independent clusters (3.13), this means that the'’s would bexg dependent. Since
whereas diagrams(8—4(k) produce onlyagA. We imagine the quantum corrections. presumably incorporate the phys!cs
that we have a very large nucleus such #2A3is of order of the Yukawa cloud believed to surround the nucleons, it is
1 or greater. Thus, we consider diagrania)44(e) to be as possible that the detailed relation betwesrand R could
important as the leading order, whereas diagratfis-4(k) change somewhat, again in &p-dependent way. Note that

are subleading, being suppressed by one factora/@@ N order for the Gaussian contributions alone to provide a
~A13 reasonable description, it is necessary that the effective value

The generalization to higher orders is obvious. ClearlyOf @R not become large. That is, the scaéeandR charac-

the leading diagrams are all ladders: they contain only twol€ristic of the two factors in E3.11) must remain distinct.
point contractions which do not cross, thus producing thed’hysically this means that the Yukawa clouds associated
maximum number of independent clusters for a given numWith different nucleons must not mix in a nontrivial manner:
ber of sources. All other diagrams are suppressed: either th&}fherwise, the contributions from higher-order moments will
contain extra factors of, or they have fewer factors @3 be non-negllg|b_le. At present, however, not enough is knovyn
Therefore, theh and «, dependence of the leading contribu- about the solution to the RGE to say whether or not this will

tions to the final result must look like appen. ' ' '
There is a second case in which our conclusions cease to

dN _hold. In Ref.[5] it was argued that not_only sh(_)u_ld the RGE-

Xe = =CoasA(1+ Cra2AY3+ coaAZ3+ .. ), improved MV model apply to nuclei at sufficiently small

dxgd<q values ofxg, but that it should also apply to hadrons as well,

3.13 at even smaller values of- . Our argument doesot apply

to this situation. For a hadron we would effectively have
a/R=1, meaning that all of the suppressed contributions we
Note that transverse position x')/2 of the clusters is not in- have dropped are no longer unimportant. In this situation the
tegrated over when computi@\(q; ;x)Af(—q;;x")). Hence, the ~ full non-Gaussian solution to the RGE has relevance and

only center-of-mass integrations present are longitudinal in naturemust be taken into account.
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