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Non-Gaussian correlations in the McLerran-Venugopalan model
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We argue that the statistical weight functionW@r# appearing in the McLerran-Venugopalan model of a large
nucleus is intrinsically non-Gaussian, even if we neglect quantum corrections. Based on the picture where the
nucleus of radiusR consists of a collection of color-neutral nucleons, each of radiusa!R, we show that to
leading order inas and a/R only the Gaussian part ofW@r# enters into the final expression for the gluon
number density. Thus, the existing results in the literature which assume a Gaussian weight remain valid.
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I. INTRODUCTION

With the first collisions at the Brookhaven Relativist
Heavy Ion Collider, the experimental frontier in both ener
and density has advanced. One of the goals of this mac
is to search for the so-called quark-gluon plasma~QGP!, a
deconfined state of QCD where quarks and gluons form a
of thermalized particles occupying a volume of space sign
cantly larger than that of a typical hadron. Theoretica
whether and when this occurs depends on the initial co
tions of the system. That is, what is the distribution of t
quarks and gluons immediately before the nuclei collide?

One particularly fruitful approach to the determination
parton distribution functions in nuclei has been t
McLerran-Venugopalan~MV ! model @1–3#. The key obser-
vation underpinning the MV model is that for large enou
nuclei and for small enough values of the longitudinal m
mentum fractionxF , a new hard scalek2, corresponding to
the large color charge per unit transverse area, enters int
problem. Consequently, whenk2@LQCD

2 , it is argued that a
classical treatment ought to provide a reasonable approx
tion to the gluon distribution. Three interrelated factors co
tribute to making the small-xF region conducive to a class
cal description. First, a large number of color charg
contribute to the source, implying that the vector poten
takes on large values within the nucleus. Second, the la
vector potential corresponds to the existence of a large n
ber of gluons, inviting us to apply the Weisza¨cker-Williams
technique. And, third, the new large scale appears in
running strong coupling constant,as(k

2), which is small for
sufficiently largek2. In the classical treatment advocated
Refs.@1–3#, quantum mechanical expectation values are
placed by averages over a suitably chosen ensemble of c
sources whose statistical weight function,W@r#, was argued
to take on a Gaussian form.

Quantum corrections to the MV model were first com
puted in Ref.@4#: they were found to be large due to cont
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butions of orderas ln(1/xF). The subsequent re-examinatio
of the foundations of the MV model performed in Ref.@5#
led to the formulation of a set of renormalization group equ
tions ~RGEs! describing the evolution of the weight functio
W@r# as one changes the separation scale between hard
soft partons@6–14#. Early on in the development of the RG
it was conjectured@5–7# that the MV model could be viewed
as an effective theory at smallxF , with the effects of the
quantum corrections absorbed into a renormalization of
weight function W@r#. This conjecture has recently bee
proved by the calculation in Ref.@12#. While explicit solu-
tions to the evolution equations forW@r# have not yet been
obtained, it is known that a Gaussian distribution isnot a
solution to these equations@7#.

While these developments were taking place, we set
to address a different issue, namely the poor infrared beh
ior of the correlation functions in the MV model. The two
point vector potential obtained in Ref.@5# grows like (x2)x2

at large distances (x*LQCD
21 ), signaling the onset of non

perturbative effects associated with confinement. In Ref.@15#
we observed that since individual nucleons do not exhib
net non-zero color charge, there should not be any lo
range (@LQCD

21 ) correlations between quarks. This requir
ment of color neutrality was cast into the form of a mat
ematical constraint on the two-point charge dens
correlation function. We found that the infrared divergen
appearing in the MV model is completely absent when
color neutrality condition is enforced@15#.

With the infrared divergences under control, it becam
clear that, at least in the classical treatment of Ref.@15#, the
xF dependence of the gluon distribution remained trivi
with xFdN/dxF independent ofxF . There are two fairly ob-
vious possible sources of non-trivialxF dependence, depend
ing on the value ofxF under consideration. First, we ca
imagine takingxF to be somewhat larger than the valu
specified in the MV model. In this situation, the longitudin
resolution of the gluons becomes good enough to star
probe the longitudinal structure of the Lorentz-contrac
nucleus which they see. This avenue of investigation w
pursued in Ref.@16#, where we developed a fully three
©2001 The American Physical Society04-1
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C. S. LAM AND GREGORY MAHLON PHYSICAL REVIEW D64 016004
dimensional treatment of the classical gluon field of a la
nucleus. Our view of the nucleus~radiusR) as containing
color-neutral nucleons~each of radiusa) played a vital role
in the calculation. Taking advantage of the smallness of
ratio a/R for a large nucleus, and assuming that the nucl
possesses a spherically symmetric distribution of co
charge in its rest frame, we found that the additionalxF

dependence manifests itself by the appearance of the co
nation q21(xFm)2 in some ~but not all! of the functions
parametrizing the final result@see Eqs.~5.18!–~5.20! of Ref.
@16##. Hereq is the transverse momentum of the gluon andm
is the nucleon mass. Over most of the region where
extended treatment is valid, (xFm)2!q2, implying that these
corrections are small.

The second possible source of non-trivialxF dependence
namely quantum corrections proportional toas ln(1/xF), was
proposed@1–3# even before the first calculation of these co
rections in Ref.@4# verified that they do indeed contain th
necessary logarithms. The idea is that a resummation of s
powers to all orders would convert the 1/xF appearing in the
leading-order expression fordN/dxF into 1/xF

11Cas for some
C. One of the goals of the studies conducted in Refs.@5–14#
may thus be phrased as the determination ofC. A priori it
would appear that in order to determine the gluon distri
tion in the interesting nonlinear regime, we would require
complete solution to the evolution equations forW@r# devel-
oped in Refs.@5–14#. And, furthermore, since a Gaussian
not a solution to these equations, it would seem that
general form of the gluon distribution obtained in Re
@5,15,16# could be fundamentally altered once the no
Gaussian correlations are taken into account. Such an
come would be at odds with related calculations based
different techniques@17–41# which already possess gener
agreement with the MV model. The purpose of this pape
to investigate this issue. Once again it will prove valuable
incorporate the physics associated with confinement~i.e., the
color neutrality of the nucleons! into the discussion. We will
demonstrate that to leading order in the strong coupling
a/R it is sufficient to consideronly the ~renormalized!
Gaussian contributions to the gluon number density. All c
tributions from the non-Gaussian portion ofW@r# are sup-
pressed by additional factors ofas and/ora/R. Thus, the MV
model remains in general agreement with the various o
approaches to small-xF physics referred to above, even if w
employ a non-Gaussian weight function.

In light of the arguments in favor of a Gaussian form f
W@r# put forth in Ref. @1#, the reader may be tempted
think that our conclusion is a trivial consequence of the c
tral limit theorem. However, as we will demonstrate, the ce
tral limit theorem does not apply to this case. Instead,
additional factors which suppress the non-Gaussian te
relative to their Gaussian counterparts come about becau
the fact that the individual nucleons are color neutral obje
which do not have significant color-charge correlations
distances much greater thana.

The remainder of this paper is organized into two m
sections. In the first, we begin with a review of the cent
limit theorem to establish the notation used in the subseq
01600
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discussion. We will pay particular attention to the conditio
under which the central limit theorem is valid, and then sh
that for a large nucleus these conditions are violated. T
essential observation is thatany non-trivial longitudinal cor-
relations, no matter how short range, spoil the Gaussian f
of the weight function in the very large nucleus (A1/3→`)
limit. In the second half of this paper we will return to th
three-dimensional framework for the MV model develop
in Ref. @16# and consider the additional terms which wou
be generated in the presence of non-Gaussian contribu
to W@r#. Assuming only that the nucleus consists of colo
neutral nucleons of radiusa which possess no nontrivial cor
relations at separations much larger thana, we will demon-
strate that no contributions beyond those already consid
in Refs. @5,15,16# are generated to leading order inas and
a/R. Thus, for a large enough nucleus, it is sufficient
know only the two-point function associated withW@r#,
even when the quantum corrections are taken into acco
We close with a few words about the implications of o
result.

II. GAUSSIAN AND NON-GAUSSIAN DISTRIBUTIONS

A Gaussian~or normal! distribution in a random variable
t usually comes about because of thecentral limit theorem.
In this section we review the conditions under which th
theorem is valid, and argue that all of these conditions
not, in general, satisfied by the color-charge distribution o
large nucleus, even when we omit radiative correctio
Hence, the statistical weight functionW@r# appearing in the
MV model is generically not expected to be a Gaussian, e
classically.

A. Generating functions

Let t be aD-dimensional random variable, with norma
ized distributionP(t). For what follows it is more conve-
nient to specify it by its moments:

^t it j•••tk&[E dDt t it j•••tkP~t!. ~2.1!

These two descriptions are equivalent because the Fo
transform ofP(t), namely

P̃~l!5E dDte2 i l•tP~t!, ~2.2!

has a Taylor series expansion in terms of the moments:

P̃~l!511 (
n51

`
~2 i !n

n!
^~t•l!n&. ~2.3!

The moments defined by Eq.~2.1! are reducible in the
following sense. Suppose that the distributionP(t) factor-
izes as

P~t!5)
i 51

D

p~t i !, ~2.4!
4-2
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wherep(t i) is some single variable distribution, i.e., suppo
that the components of the vectort are completely unrelated
to each other. In this case, the moment^t it j•••tk& factorizes
into ^t i&^t j&•••^tk&. More generally, however, the compo
nents oft will not be completely independent of each othe
Then, the factorization just described will fail: for examp
^t it j&Þ^t i&^t j&. The difference between these two quan
ties provides a measure of the amount of interdepende
between the components oft. This information may be con
veniently organized in terms of the~irreducible! cluster mo-
ments^^t it j•••tk&&, which are recursively defined throug
the relations

^t i&5^^t i&&, ~2.5a!

^t it j&5^^t it j&&1^^t i&&^^t j&&, ~2.5b!

^t it jtk&5^^t it jtk&&1^^t i&&^^t jtk&&1^^t j&&^^t itk&&

1^^tk&&^^t it j&&1^^t i&&^^t j&&^^tk&&, ~2.5c!

^t it jtkt l&5^^t it jtkt l&&1^^t i&&^^t jtkt l&&

1^^t j&&^^t itkt l&&1^^tk&&^^t it jt l&&

1^^t l&&^^t it jtk&&1^^t it j&&^^tkt l&&

1^^t itk&&^^t jt l&&1^^t it l&&^^t jtk&&

1^^t i&&^^t j&&^^tkt l&&1^^t i&&^^tk&&^^t jt l&&

1^^t i&&^^t l&&^^t jtk&&1^^t j&&^^tk&&^^t it l&&

1^^t j&&^^t l&&^^t itk&&1^^tk&&^^t l&&^^t it j&&

1^^t i&&^^t j&&^^tk&&^^t l&&. ~2.5d!

The generalization to higher orders is obvious. It turns
that the cluster moments are generated by lnP̃(l), in the
same way that the ordinary moments are generated byP̃(l):

ln P̃~l!5 (
n51

`
~2 i !n

n!
^^~t•l!n&&. ~2.6!

A simple example is provided by the following Gaussi
distribution:

P~t!5
exp~2t2!

pD/2 . ~2.7!

All of the odd moments~reducible and irreducible! of Eq.
~2.7! vanish. Of the irreducible moments, only the two-po
function ^^t it j&& is nonvanishing. All other cluster momen
are zero, and the even reducible moments are expres
entirely in termŝ ^t it j&&.

B. Central limit theorem

Suppose the random variablet is independentlysampled
N times, yielding the valuest(p) (p51,2, . . . ,N). The cen-
tral limit theorem asserts that whenN@1, the mean value o
these measurements,
01600
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N (
p51

N

t(p), ~2.8!

obeys a Gaussian distribution with

^^t i&&5^^t i&&5^t i& ~2.9a!

and

^^t i t j&&5
^^t it j&&

N
. ~2.9b!

In other words, the distribution oft is given by

W~ t!5A detV

~2p!D expF2
1

2
~ t i2^t i&!V i j ~ t j2^t j&!G ,

~2.10!

where

~V21! i j [
^^t it j&&

N
. ~2.11!

The proof of the central limit theorem relies crucially o
the independence of samplings: the joint distributionQ of the
sampled variablest(p) must be factorizable, i.e.,

Q~t(1),t(2), . . . ,t(N)!5 )
p51

N

P~t(p)!. ~2.12!

In terms of Q, the probabilityW(t) for finding the mean
value t is given by

W~ t!5E dDt(1)E dDt(2)
•••

3E dDt(N)Q~t(1),t(2), . . . ,t (N)!

3dDS t2 (
p51

N

t(p)/ND . ~2.13!

Using the distribution given in Eq.~2.12!, the moment gen-
erating function is simply

W̃(l)E dDte2 i l•tW~ t!5@ P̃~l/N!#N. ~2.14!

This leads to the cluster moment generating function

ln W̃~l!5N ln P̃~l/N!5 (
n51

`
~2 i !n

n!

^^~t•l!n&&
Nn21 ,

~2.15!

where we have applied Eq.~2.6! to obtain the second line
Now consider theN@1 limit. If we approximate Eq.~2.15!
by just the first term, we obtainW(l)5 exp(2il•^t&), cor-
responding toW(t)5dD(t2^t&). If, instead, we include the
first two terms in the infinite series, we get
4-3
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C. S. LAM AND GREGORY MAHLON PHYSICAL REVIEW D64 016004
W̃~l!5 exp~2 i l•^t&2l il j^^t it j&&/2N!, ~2.16!

corresponding to the Gaussian distribution~2.10!. Deviations
from this Gaussian are suppressed by the additional pow
of 1/N present in the higher order terms.

C. Non-Gaussian distribution

The proof of the central limit theorem depends critica
on the assumption of independent sampling. If Eq.~2.12! is
violated, then the proof fails. Even a small correlation b
tween successive samplings is sufficient to destroy the c
clusion, as the following example illustrates.

Suppose we introduce a ‘‘nearest-neighbor’’ correlat
by replacing Eq.~2.12! with

Q~t(1),t(2), . . . ,t(N)!5F11 (
m51

N21
f ~t(m),t(m11)!

P~t(m)!P~t(m11)!G
3 )

p51

N

P~t(p)!. ~2.17!

To ensure that Eq.~2.17! is properly normalized, we furthe
assumef (t(m),t(m11)) to be symmetric in its arguments, an
that

E dDt(m) f ~t(m),t(m11)!50. ~2.18!

The moment generating function for the distribution~2.13! is
now

W̃~l!5@ P̃~l/N!#NH 11
~N21! f̃ ~l!

@ P̃~l/N!#2 J , ~2.19!

where

f̃ ~l![E dDt(1)E dDt(2)e2 i l•[ t(1)1t(2)] f ~t(1),t(2)!.

~2.20!

Note that f̃ (0)50. Unlike Eq. ~2.15!, the irreducible mo-
ments generated by

ln W̃~l!5N ln P̃~l/N!1 lnH 11
~N21! f̃ ~l/N!

@ P̃~l/N!#2 J
~2.21!

do not approach a linear function ofl asN→`. In fact, we
have

ln W̃~l!52 i l•^t&1 ln@12 i l•f#1O~1/N!, ~2.22!

where

f j[ i
]

]l j
f̃ ~l!ul50 . ~2.23!

For fÞ0, Eq. ~2.22! is nonlinear inl. This distribution
possesses non-zero values forall of its irreducible moments
01600
rs

-
n-

independent ofN. Including theO(1/N) contributions does
not change this conclusion. The corresponding distribut
W(t) is no longer a pure Gaussian: the central limit theor
does not hold in this case. While it is straightforward
determine the~new! form of the distribution function for this
particular example, in general this task will not be so ea
Fortunately, all we need to know for what follows is the fa
that the resulting distribution is fundamentally non-Gauss
when the successive measurements are~even mildly! corre-
lated.

It is useful to see a bit more about how the correlat
change when we relax the assumption of independent m
surements. With independent sampling, as in Eq.~2.12!, cor-
relators such aŝt i

(p)t j
(q)
•••tk

(s)& factorize into groups with
the same superscripts. For example,

^t i
(p)t j

(q)tk
(s)t l

(s)&5E dDt(1)
•••E dDt(N)t i

(p)t j
(q)tk

(s)t l
(s)

3P~t(1)!•••P~t(N)!

5^t i&^t j&^tkt l&, ~2.24!

assuming thatp, q, ands all take on distinct values. Of par
ticular interest in connection with the MV model will be th
special case

^t i
(p)t j

(q)&5dpq^t it j&1~12dpq!^t i&^t j&. ~2.25!

In contrast, if the measurements are not independent, suc
in Eq. ~2.17!, then the factorizations obtained in Eqs.~2.24!
and ~2.25! are no longer valid. Additional non-factorizabl
correlators involving different superscripts will, in genera
be present, signaling the breakdown of the central limit th
rem.

D. Color charge distribution in a large nucleus

Let ra(xi ,x) be the color charge density of a larg
nucleus with colora and atomic weightA@1, at the trans-
verse positionx and the longitudinal positionxi @a precise
definition of xi is given in Eq.~3.3! below#. Let

r2
a~x![E

2`

`

dxir
a~xi ,x! ~2.26!

be the accumulated two-dimensional charge density. On
count of Lorentz contraction of the longitudinal size of th
relativistic nucleus, this is expected to be the relevant qu
tity governing the gluon distribution, provided that only v
lence quarks are included inr, and provided that the longi
tudinal wavelength of the gluon is much bigger than t
longitudinal size of the relativistic nucleus. These are two
the basic assumptions underlying the MV model@1–3#.

The typical size ofr2
a(x) for a nucleus is of orderA1/3

times the typical size ofr2
a(x) for a single nucleon. If we

identify A1/3 with the number of measurementsN of the pre-
vious subsections and the accumulated charge den
r2

a(x)/A1/3 with the mean valuet i ~with i→$a,x%), then the
central limit theorem would forceW(t) „that is,W@r2(x)#…
4-4
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to be Gaussian in the limit of largeA1/3, provided that the
conditions needed to prove the theorem are obeyed. W
this mapping, the superscriptp in the random variablet i

(p)

corresponds toxi , andt i
(p) corresponds tora(xi ,x). A sum-

mary of these connections appears in Table I.
As discussed in Sec. II C, a necessary condition for

central limit theorem to hold is that the correlators^t i
(p)t j

(q)

•••tk
(s)& must factorize into groups with identical supe

scripts. In particular, consider the translation of Eq.~2.25!
into the MV model. The color neutrality condition tells u
that ^ra(xi ,x)&50. Therefore, we are left with

^^ra~xi ,x!rb~xi8 ,x8!&&5^ra~xi ,x!rb~xi8 ,x8!&

5d~xi2xi8!^r2
a~x!r2

b~x8!&.

~2.27!

This is effectively the form of correlator argued for in Re
@1# and employed extensively in the literatu
@2–5,12,15,27,42–48#.

However, there are two reasons why it is desirable to
beyond the Gaussian approximation represented by
~2.27!. First, at very smallxF the quantum corrections in th
MV model become large. If we wish to incorporate the
corrections via the RGE analysis of Refs.@5–14#, we must
go beyond the Gaussian approximation, since a Gaussia
not a solution to these equations@7#. Second, if we go to
somewhat larger values ofxF ~where the quantum correc
tions may not be too large!, the presence of longitudina
correlations between quark charges within a nucleon and
fact that the longitudinal size of a nucleon is not exactly z
begin to have an effect, even classically. In Ref.@16#, we
employ the form

^^ra~xi ,x!rb~xi8 ,x8!&&}dab@d~xi2xi8!d2~x2x8!

2C~xi2xi8 ;x2x8!#, ~2.28!

whereC(xi2xi8 ;x2x8) is a reasonably smooth function p
rametrizing the mutual correlations between pairs of qua
This function enforces the color neutrality condition. T
nonfactorizability of Eq.~2.28! tells us that for a nucleus
with a non-zero longitudinal thickness we should not exp
any single layer to be color neutral by itself. Equivalent
we may view the color neutrality condition as forcing us

TABLE I. Mapping between the notations used in the discuss
of the central limit theorem and those associated with the M
model.

Central limit theorem MV model

t i
(p) ra(xi ;x)

~p! xi

i $a;x%
N A1/3

t i[
1
N

(p51
N t i

(p) A21/3r2
a(x)[A21/3*2`

` dxir
a(xi ,x)

W(t) W@r2(x)#
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have non-trivial longitudinal correlations. Although all of th
higher-order cluster moments of the distribution correspo
ing to Eq. ~2.28! are taken to vanish„implying that
W@ra(xi ;x)# is Gaussian…, because Eq.~2.27! is violated,
the corresponding 2-dimensional distributionW@r2

a(x)# is
not a Gaussian. The central limit theorem does not apply
this computation. Nevertheless, the result obtained in R
@16# remarkably turns out to have exactly the same form a
W@r2

a(x)# had been Gaussian~i.e., for sufficiently smallxF ,
it matches the results of Refs.@5,15#!. In the next section we
will see how this comes about, and consider the general c
sequences of allowing for a non-Gaussian weight functio

III. EFFECT OF NON-GAUSSIAN CONTRIBUTIONS

We have just demonstrated that we do not expect the
tistical weight functionW@r2(x)# to have a Gaussian form
even in the purely classical case. On the other hand, a Ga
ian has been frequently employed in the literature dea
with the MV model@1–5,12,15,16,27,42–48#. In this section
we will argue that for a large enough nucleus, the resu
which would be obtained with a non-Gaussian weight fun
tion are identical to those which follow from a Gaussi
weight function to leading order inas andA1/3. That is, the
new contributions introduced by the non-Gaussian wei
are suppressed by additional factors ofas and/or do not con-
tain as many factors ofA1/3. Our conclusion is a consequenc
of the color neutrality of the nucleons: all non-trivial corr
lations are limited to length scales of ordera;LQCD

21 . Be-
yond the color neutrality of individual nucleons, we will a
sume nothing about the form ofW@r(xW )#. Our discussion is
framed in terms of the three-dimensional extension of
MV model introduced in Ref.@16#, with the addition of non-
zero higher-point cluster moments.

A. Diagrammatic representation of the gluon number density

Imagine a very large nucleus as viewed in its rest fram
The current corresponding to this situation may be written
the simple form

Jr
05r~2zr ,xr !, Jr

15Jr
25Jr

350, ~3.1!

where we employ the subscriptr to denote rest frame quan
tities. In this frame the Yang-Mills equations for the vect
potential possess the ‘‘obvious’’ time-independent Coulo
solution. Furthermore, since onlyAr

0Þ0, we have]0Ar
0

5]•Ar50: the Coulomb solution is the same as the cova
ant gauge solution in this frame. Thus, we conclude that e
when we boost to the laboratory frame, it is natural to be
with the covariant gauge solution for the vector potent
@16#. Indeed, it has been observed that although the exp
sion for the gluon number density is most easily written
terms of the vector potential in the light-cone gauge@see Eq.
~3.10! below#, it is nevertheless easiest to work in terms
the covariant gauge expression for the current@12,13,17,27#.

In the laboratory frame, where the nucleus is movi
along the1z axis with speedb, we take the source to be o
the form @16#

n
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J15
1

«
r~xi ,x!, J25

«

2
J1, J50. ~3.2!

The longitudinal coordinatexi is defined by

xi[
1

«
x22

«

2
x1. ~3.3!

The parameter

«[A2~12b!

11b
~3.4!

measures how close the source is to being exactly on
light cone.1 As explained in Ref.@16#, we prefer to work
with natural ~order unity! quantities, and keep track of a
small and large parameters explicitly through«. At the end
of the calculation we let«→0. Interestingly, in terms ofxi ,
the function describing the source is still spherical: the L
entz contraction that shrinksx2 towards zero in the lab
frame is exactly compensated by the factor 1/«. Reflecting
this fact, we will frequently use the notationxW[(xi ;x).

As explained above, it is natural to first solve the Yan
Mills equations for the vector potential in the covaria
gauge, using the covariant gauge source~3.2!, and to subse-
quently transform the result into the light-cone gaugeA1

50. The result of this procedure may be written in the fo

Aj~qi ;x!5
g

iq i
(

m51

`

~2 ig2!m21E
2`

`

dmxi↓

3exp~2 iq ixi1!E d3jW1] jG~xi12j i1 ;x2j1!

3S )
k52

m E d3jW kG~xik2j ik ;x2jk!D
3vr~jW1!r~jW2!•••r~jWm!b , ~3.5!

whereqi is the momentum conjugate toxi , i.e.,

Aj~qi ;x![E
2`

`

dxi exp~2 iq ixi!A
j~xi ,x!. ~3.6!

The power counting rules we will present in Sec. III B a
simplified by usingA(qi ;x) instead ofA(xi ,x).

Although Eq.~3.5! appears complicated at first glance,
is easily understood in terms of the diagrammatic repres
tation introduced in Ref.@16#. The light-cone gauge vecto
potential is a non-linear function of the source, containing
possible ‘‘powers’’ ofr. Note that the series begins at ord
g and that each additional occurrence of the source ad

1We define the light-cone coordinates to bex652x75(x0

6x3)/A2. The transverse coordinatesx1 andx2 form a two-vector
which we write in boldface:x. Our metric has the signature (2,
1,1,1). Thus, the scalar product in light-cone coordinates re
qmxm52q1x22q2x11q•x.
01600
he

-

-

n-

ll

a

factor of g2. Figure 1 illustrates the first few diagrams co
responding to the series. Themth order diagram consists o
m copies of the source, represented by the circled crosse
Eq. ~3.5! they appear as the nested multiple commutator

vr~jW1!r~jW2!•••r~jWm!b

[†††•••†r~jW1!,r~jW2!‡,r~jW3!‡,•••‡,r~jWm!‡.

~3.7!

To each source we attach a propagator~Green’s function!
connecting the source point (j ik ,jk) to the point (xik ,x):

G~xik2j ik ;x2jk!52
1

4p

1

A~xik2j ik!
21~x2jk!

2
.

~3.8!

Herex is the transverse position at which we wish to kno
the vector potential. The index labelling the uppermo
propagator on the diagram represents the derivative indic
in Eq. ~3.5!. Finally, we have an ordered integration over t
longitudinal variablesxik :

E
2`

`

dmxi↓[E
2`

`

dxi1E
2`

xi1
dxi2•••E

2`

xim21
dxim . ~3.9!

Mathematically, this integration results from the gauge tra
formation to the light-cone gauge from the covariant gau
Physically this integration corresponds to the final state r
catterings which would be present in a computation of
gluon number density based entirely on the covariant ga
@28–31#. The ordered integration is represented by the d
on the vertical line. The dots are to slide up and down
entire length of the line without passing one another. A
though we have written all of the integrations over an infin
range, in practice the source provides non-zero contributi
only over a region of sizeR, the nuclear radius.

The next step is to connect the gluon number density
the two-point correlation function for the vector potenti
@16,49#:
s

FIG. 1. Diagrammatic representation of the series expansion
the light-cone gauge vector potential, Eq.~3.5!. The circled crosses
denote the positions at which the sources are being evaluated.
dots represent the ordered integrations coming from the ga
transformation into the light-cone gauge. A propagator conne
each of these points to the sources.
4-6
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dN

dqid
2q

[
qi

4p3E d2xE d2x8eiq•(x2x8)

3^Ai
a~qi ;x!Ai

a~2qi ;x8!&. ~3.10!

Intuitively, the result in Eq.~3.10! may be understood by
envisioning the expansion of the vector potential in terms
creation and annihilation operators and recognizing t
^AA& contains the number operator@3,42#. The vector poten-
tial appearing in Eq.~3.10! is in the light-cone gauge. Thi
choice reflects the fact that the intuitive picture of the par
model is most transparently realized in the light-cone ga
@49–52#. Strictly speaking, the angled brackets in Eq.~3.10!
represent a quantum-mechanical expectation value. In
MV model, we make a classical approximation to this qua
tity by performing an ensemble average with an appropr

weighting functionW@r(xW )#.

Given a specific form forW@r(xW )#, we may~in principle!
evaluate Eq.~3.10! by inserting two copies of Eq.~3.5!, per-
forming the required average term by term, and summing
resulting series. Diagrammatically, the quantity^AA& may
be represented by drawing all possible pairs of diagrams
a singleA, with the understanding that all possible contra
tions should be performed~see Figs. 2–4 for the first thre
orders in this expansion!. For a Gaussian weight function
only pairwise contractions appear. On the other hand, fo
non-Gaussian distribution, contractions connecting three
more sources must also be considered. Because the nuc

are neutral,̂ r(xW )&50. Hence there must be no uncontract
sources left over in any diagram.

B. Power counting rules

To proceed further, we must make some reasonable
sumptions about the correlation functions corresponding
the moments ofW@r(xW )#. Let us parametrize them-point
correlation function (m.1) by

FIG. 2. The lowest-order contribution to the gluon number d
sity, Eq.~3.10!. According to the power-counting rules described
the text, this diagram is proportional toasA.
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^^r~xW1!r~xW2!•••r~xWm!&&

[SmS 1

m (
j 51

m

xW j D
3Dm~xW12xW2 ;xW22xW3 ; . . . ;xWm212xWm!. ~3.11!

The exact choice made for them21 difference coordinates
is arbitrary and unimportant to our argument. What do
matter is the fact that the source corresponds to a la
nucleus of radiusR which is in turn composed ofA nucleons,
each of radiusa. The nucleons themselves are color neutr
Because of confinement, we do not expect the field to
correlated at distances much greater thana: what is happen-
ing inside one nucleon is largely independent of what is h
pening inside of the others. Thus, the functionDm ought to
be small unlessuxW i2xW j u&a for all pairs of points. Further-
more, the center-of-mass coordinate ought to point at a
sition somewhere inside the nucleus~i.e., it should have a
magnitude&R) in order forSm to take on a non-negligible
value.

The above physical considerations are sufficient to all
us to determine the order of magnitude of an arbitrary d
gram in terms of powers ofas andR/a (A1/3). The powers
of the coupling are simple. Recall that each of the diagra
for the gluon number density~3.10! are formed by gluing
together two copies of the expansion for the vector poten
~3.5!. Since Eq.~3.5! contains only odd powers ofg, the
diagram representing the contribution to Eq.~3.10! with a
total of j sources contains the factorg2 j 22 ~or, equivalently,
as

j 21).
Now let us consider the integrations which go into t

computation of the contributions tôAi
a(qi ;x)Ai

a(2qi ;x8)&.
The integrand for a given diagram will contain seve
propagators plus factors ofSm andDm , depending upon how
the sources are contracted. As described above,Dm contains
the length scalea whereasSm contains the length scaleR.
The Green’s functions contain no intrinsic scale of their ow
What we would like to know is how many powers ofR/a
;A1/3 are generated when we perform the required integ

- FIG. 3. The contributions to the gluon number density~3.10! at
3rd order inr. According to the power-counting rules described
the text, both diagrams are proportional toas

2A.
4-7
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FIG. 4. The contributions to the gluon number density~3.10! at 4th order inr. Diagrams~f!–~h! are non-planar, whereas diagrams~i!–~k!
represent the~non-Gaussian! contribution from an irreducible 4-point charge density correlation function. According to the power-cou
rules described in the text, diagrams~a!–~e! are proportional toas

3A4/3 whereas diagrams~f!–~k! are proportional toas
3A.
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tions, which range over all possible locations of the sour
as well as the entire length of the two vertical lines.

To first approximation, the functionSm in Eq. ~3.11! is
essentially a constant when we stay well inside the la
nucleus since the individual nucleons are identical insofa
the strong interaction is concerned. Thus, the quan
^Ai

a(qi ;x)Ai
a(2qi ;x8)& computed from the expansion give

in Eq. ~3.5! is of the form

~R/a!cF~qi ;x2x8!;~A1/3!cF~qi ;x2x8! ~3.12!

whereF is a dimensionless function. For a given diagra
the powerc is equal to the number of independent clust
01600
s

e
s
y

,
s

formed when the vertical lines are removed. Two clusters
independent if they can be represented by a planar diag
~no crossings!. For example,c51 for the diagrams in Figs
2, 3, and 4~f!–4~k!, whereasc52 for the diagrams in Figs
4~a!–4~e!.

The origin of the factor ofA1/3 for each independent clus
ter is the divergence which appears in some of the integ
tions when we takeSm5const: these are the integration
which get cut off at the scaleR instead of the scalea. To see
this, imagine that we have changed the integration variab
to a set of sum and difference coordinates. The sum~center-
of-mass! coordinates describe the positions of the clust
4-8



w
st
he
r-
-
a
to
a-
b
is
dia
no
e
be

i-
-
s

th
-

s
4
w
o

of
nt
er
us
u

s

rly
o

th
m
th

u-

x-

set

re-

ely
if
e
e a

ions

ing

o-
ng
es
sis
is
o

his
ian
on

lator
-

ion
p-

sics
t is

t
a

alue

ted
r:
ill
wn
ill

e to
-

ll
ll,

ve
we
the
and

ur

NON-GAUSSIAN CORRELATIONS IN THE McLERRAN- . . . PHYSICAL REVIEW D 64 016004
~whether or not these clusters are independent!.2 The differ-
ence coordinates describe cluster-cluster separations as
as the internal separations of the components of each clu
All of the difference integrals are finite and so inherit t
scalea associated withDm . On the other hand, the cente
of-mass integrations are insensitive toa: so long as the clus
ter is located somewhere inside the nucleus, the integr
can be significant. Hence, these integrations produce fac
of R instead ofa. In the absence of the ordering of the loc
tions of the points on the vertical lines, then, we would o
tain a factor (R/a)k for k clusters. What the ordering does
to force clusters which cross each other in nonplanar
grams to maintain a relative separation which does
greatly exceeda. Thus, if only c clusters are free to mov
independently of each other, the factor we obtain will
only (R/a)c;(A1/3)c.

Finally, we note that every diagram will pick up an add
tional factor (R/a)2;A2/3 when the Fourier transform indi
cated in Eq.~3.10! is performed. The origin is the same a
above: the integration overx2x8 gets cut off at the scalea
whereas the integration over (x1x8)/2 is cut off at the scale
R. Assembling all of the pieces, we have the result that
diagram containingj sources andc independent clusters con
tains the factoras

j 21(A1/3)c12.
With our power-counting rules in hand, we may now cla

sify the relative contributions of the diagrams in Figs. 2–
The lowest order diagram is given in Fig. 2, and contains t
sources and a single cluster. Hence, its contribution is
orderasA. The third-order diagrams of Fig. 3 have a total
three sources tied together as a single cluster. Their co
bution is therefore orderas

2A and is suppressed by a pow
of as relative to the leading order diagram. Finally, let
look at the fourth-order diagrams of Fig. 4. According to o
power-counting rules, diagrams 4~a!–4~e! all contribute at
theas

3A4/3 level ~four sources and two independent cluster!,
whereas diagrams 4~f!–4~k! produce onlyas

3A. We imagine
that we have a very large nucleus such thatas

2A1/3 is of order
1 or greater. Thus, we consider diagrams 4~a!–4~e! to be as
important as the leading order, whereas diagrams 4~f!–4~k!
are subleading, being suppressed by one factor ofa/R
;A21/3.

The generalization to higher orders is obvious. Clea
the leading diagrams are all ladders: they contain only tw
point contractions which do not cross, thus producing
maximum number of independent clusters for a given nu
ber of sources. All other diagrams are suppressed: either
contain extra factors ofas or they have fewer factors ofA1/3.
Therefore, theA andas dependence of the leading contrib
tions to the final result must look like

xF

dN

dxFd2q
5c0asA~11c1as

2A1/31c2as
4A2/31••• !.

~3.13!

2Note that transverse position (x1x8)/2 of the clusters is not in-
tegrated over when computing^Ai

a(qi ;x)Ai
a(2qi ;x8)&. Hence, the

only center-of-mass integrations present are longitudinal in nat
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But this is exactly the form obtained by expanding the e
pressions contained in Eqs.~5.18!–~5.20! of Ref. @16#. In
fact, the set of diagrams described above is precisely the
of diagrams considered in Ref.@16#. Moreover, it is also the
set of diagrams whose two-dimensional reduction cor
sponds to those terms which were retained in Refs.@5,15#.
These contributions are easily resummed into a relativ
simple ‘‘exponential’’ @5,15,16#. Thus, we see that even
the weight functionW@r(xW )# is non-Gaussian, we obtain th
same result to leading order as if we had chosen to us
Gaussian weight function instead.

IV. IMPLICATIONS

We have just demonstrated that the non-Gaussian port
of the statistical weight functionW@r(xW )# in the MV model
do not contribute to the gluon number density at lead
order. On the other hand, the results of Ref.@12# suggest that
the quantum corrections to the MV model may be incorp
rated by solving the RGE for the weight function and usi
this ~non-Gaussian! result to perform the ensemble averag
required to compute the gluon number density. A synthe
of these two conclusions has the following implication: it
sufficient to solve the RGE for the new value of the tw
point charge-density correlation function and to use t
renormalized correlator as defining an effective Gauss
weight function to be input to the MV model. The separati
scale between hard and soft partons appearing in Ref.@12#
may be recast as a dependence of the renormalized corre
on xF . In terms of Eq.~2.28!, this dependence can poten
tially show up in the detailed shape of the smooth funct
C(xW2xW8), as well as in the prefactors which were su
pressed in writing down Eq.~2.28!. In terms of the expansion
~3.13!, this means that theci ’s would bexF dependent. Since
the quantum corrections presumably incorporate the phy
of the Yukawa cloud believed to surround the nucleons, i
possible that the detailed relation betweena and R could
change somewhat, again in anxF-dependent way. Note tha
in order for the Gaussian contributions alone to provide
reasonable description, it is necessary that the effective v
of a/R not become large. That is, the scalesa andR charac-
teristic of the two factors in Eq.~3.11! must remain distinct.
Physically this means that the Yukawa clouds associa
with different nucleons must not mix in a nontrivial manne
otherwise, the contributions from higher-order moments w
be non-negligible. At present, however, not enough is kno
about the solution to the RGE to say whether or not this w
happen.

There is a second case in which our conclusions ceas
hold. In Ref.@5# it was argued that not only should the RGE
improved MV model apply to nuclei at sufficiently sma
values ofxF , but that it should also apply to hadrons as we
at even smaller values ofxF . Our argument doesnot apply
to this situation. For a hadron we would effectively ha
a/R51, meaning that all of the suppressed contributions
have dropped are no longer unimportant. In this situation
full non-Gaussian solution to the RGE has relevance
must be taken into account.e.
4-9
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