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We use two-color QCD as a model to study the effects of the simultaneous presence of chemical potentials
for isospin chargex, and for baryon numberg. We determine the phase diagrams for two and four flavor
theories using the method of effective chiral Lagrangians at low densities and weak-coupling perturbation
theory at high densities. We determine the values of various condensates and densities as well as the spectrum
of excitations as functions qf, andug . A similar analysis of QCD with quarks in the adjoint representation
is also presented. Our results can be of relevance for lattice simulations of these theories. We predict a phase
of inhomogeneous condensatitfulde-Ferrel-Larkin-Ovchinnikov phasi the two color, two flavor theory,
while we do not expect it in the four flavor case or in other realizations of QCD with a positive measure.
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I. INTRODUCTION result is the appearance of a phase where the ground state
breaks translational and rotational symmetry. This phase is
QCD at a nonzero chemical potential has been the subjesimilar to the so-called Fulde-Ferrel-Larkin-Ovchinnikov
of numerous studies recently. The phenomenon of quarkdFLO) phase of a BCS superconducfdd].
quark pairing and color superconductivity] has received In this paper we investigate the behavior of QCD-like
renewed attention in view of the recent observatidtighat  theories, in particular two-color QCD under the influence of
the superconducting gaps can be large and of possible reboth «, and wg. We shall use controllable analytical meth-
evance in astrophysics and heavy-ion collisiGsee Ref[3]  ods in two regimes of these theories: a chiral effective La-
for a review. The most interesting finite density phenomenagrangian, based on the symmetries, in the low-density re-
(phase transitions, in particufaoccur in the nonperturbative gime, and weak-coupling perturbation theory in the high-
regime, thus inviting lattice calculation methods. However,density regime. We shall determine the phase diagram in the
the lack of positivity of the Euclidean path integral prevents,, ., plane, various condensates, and lowest lying excita-
a straightforward application of lattice Monte Carlo tech-jgns.
niques. QCD at finite density thus remains a theoretical chal- goal is to gain an understanding of the physics of the

lenge. interplay betweemug andy, . The theories we studiexcept

_This is one of the reasons that certain QCD-like theorleNC: N¢=2) have the advantage of having a positive Euclid-
with a positive Euclidean path-integral measure have alsq

. . ean path-integral measure, and can therefore be studied on
attracted attention. Examples of such theories are tvvo—coIQ[rhe lattice. Our results can be used as benchmarks for nu-
QCD, QCD with adjoint quarks, or two-flavor QCD with an . ” .
isospin chemical potentig4—8,2d. In these theories, for merical lattice S“%d'es- . .
each quark with a chemical potentjalthere is anothefcon- The pregentatlon of our results is organlze_d as follows.
jugate quark with exactly the same properties, except for the/V€ Start with two-color QCD. In Sec. Il we give the low-
opposite sign ofx. The quenched approximation, common €Nergy effectwe Lagrangian upon which the sequel |s_based.
in lattice studies, is an approximation to such kind of theo-A dualitative argument for the structure of the phase diagram
fies, rather than to QCD at finite baryon density with alliS then givenin Sec. lll. In Sec. IV we analyze the properties
quarks having equal chemical potentifgs. of the vacuum. As a result we find the classical values for the
In reality, dense baryon or quark matter, such as that ariscondensates and densities. Then in Sec. V we study the ex-
ing in the interior of neutron stars or heavy-ion collisions, ispansion about the minimum in order to determine the masses
characterized by different, not equal and not oppositepf the low-energy excitations. The extension of this theory to
chemical potentials for different flavors of quarks. One canN;=4 with two up and two down flavors is discussed in Sec.
describe such situations by the simultaneous presence ®fl. The discussion of asymptotically high chemical poten-
chemical potentials for baryon charge; and isospinu, . tials and the FFLO phase is in Sec. VII. Finally, in the last
The physics of this has been discusfgd] in the context of  section we summarize and comment on the relevance of our
neutron starsgg> ;) and QCD at large density of isospin results for real QCD. The presentation of QCD with quarks
and small baryon densityu(> ug) [8]. The most interesting in the adjoint representation is placed in the Appendix.
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Il. THE EFFECTIVE THEORY AT FINITE pg AND y, F2 : 5 ;

. L ) L(2)=—=Tro, 29,2 +2FTr B+ u1)2"902
Two color QCD at zero chemical potential is invariant erf(>) 2 [(npBt )= d02]
under SU(2;) rotations in the chiral limit, see, e.g., Ref.

2 t
[12]. This enhanced symmetfas compared to the SN¢) FETH2 (ugB+m D2 (ngB+ )+ (ngB

XSU(_I\lf)XU(l) of three color QCI;Dig manifest .in the La- +u1)?]—F?m2 Re T(MY.). (3)
grangian if we choose to represent this in a basis of quarks
and conjugate quarks [4]. For N;=2 we use The u-dependent terms in the effective Lagrangian appear
through the covariant extension of the derivative:
u
) e oS — oS —[(ueB+mE+Z(ugB+ '] (@)
de
V= o= oor(UR)* | @ 903" o2 + [ (ueB+mE+3(ugB+u )T (5)
d oo1o(dR)* required by an extended local gauge symméttlyy There-

fore, to this order in chiral perturbation theory, the Lagrang-

where the Pauli matrices, and o, act in color and spin ian at finite x does not require any extra phenomenol_og|cal
space, respectively. parameters beyond the pion decay conskaand the chiral
Thé enhanced symmetry manifests itself in the |0W_condensate in the chiral limi®. This fact gives predictive

energy effective theory through the manifold of the Gold-POWer to chiral perturbation theory at fini';&_e. The chirgl
stone modes associated with the spontaneous breaking gpndensate can be traded for the vacuum pion mass using the
chiral symmetry. In our casl;=2 and the Goldstone mani- C€ll-Mann—Oaks—Renner relatiomm,=m is the quark

fold is SU4)/Sp(4), corresponding to the condensation of Mas$:
PTW¥—SU(4) flavor sextet. The fields on this manifold can be
represented by aX4 antisymmetric unitary matri¥ with

det>=1. : ; -

The effective Lagrangian for the field of Goldstone Ior]l lézllr;rgséh:sigﬁch\;ﬁalfc%ri?2|g$rr:~,%?g;3 l;g,idN?iozv er(\é%must
mpdes Is Qetermined by the symmetri_es inherited fro_m th?s spontaneously broken. Since we have regarded the had-
microscopic two color QCD Lagrangian. In the b&?S'S O onic modes as heavy the theory is expected to be valid only
SU(‘}) Sp'T‘OfS@ the mass matrix, baryon.charge matrix, andup to the mass of the lightest non-Goldstone hadron. How-
the isospin(third componentcharge matrix are ever, as we shall show, the phase diagram is very rich in the

effective range of the theory.

F?m2=mG. (6)

lll. THE PHASE DIAGRAM EXPECTED FROM THE p,=0
SPECTRUM
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One can understand main features of the phase diagram in
the ugu, plane by considering the low-energy spectrum of
0 0 the theory at finiteug determined in Ref[5]. In the
vacuum,ug= u,; =0, the spectrum consists of a degenerate
o 0 five-plet: three pionsm,, = (B=0, 1=0,+1), a
o’ baryon, and an antibaryap g* (diquark and antidiquark

with B==*=1 andl =0).
On the horizontal axisy,; =0, as a function ofug, there
is a phase transition corresponding to the condensation of
diquarks. This happens atg equal to the diquark mass di-
vided by its baryon charge, i.e., agtg=m_. Similarly, at
(2 us=0 there should be a transition corresponding to the con-
densation of pions. This happens whgp is equal to the
pion mass divided by its isospin charge, i.e.,;.at=m_..
This can also be concluded from the fact that there is a
and the resulting effective Lagrangian is simple discrete symmetryd«d accompanied byug< u; .
Therefore thewgu, phase diagram must be symmetric under
reflection aboujug= u, line.

INote on the notation: We use the normalization of the baryon AS @ function ofup the mass of the pion is constant as
charge different from Refl5]. The baryon charge of the quark is 10Ng asug<<m,, which means the transition a{ =m, hap-
not 1, as in Ref[5], but 1/2, which comes from M, so that the ~ pens at all suchug. Related to this horizontal line of phase
baryon(diquark inN.=2) has baryon charge 1. For simplicity, we transitions by a reflection against the diagonal, there is a
omit subscript 3 from 5. vertical line atug=m,_., the line where diquarks condense.
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After the two lines meet they must merge into a single  jugate field(i.e., betweerd andd in the first quadrant of the

= w line. This is because of the reflection symmetry and the,, | ., plane. Extremizing with respect to the direction
fact that the mass of the pion in the diquark condensatiofye find

phaseug>m, is equal toug according to Ref[5]. Two

different condensation modépion vs diquark compete at a=0 if y>1,
ums=u, thus the transition along theg= u, line is of first
order. cosa=y if y<l1, (12
IV. MINIMUM OF THE EFFECTIVE LAGRANGIAN where
In order to derive the phase diagram we study the mini- me .
mum of the classical theory. That is, we seek to minimize the y=—7 if w<us,
static part of the effective Lagrangian Ke
Lo(3)= —F2TIS (aB+ i3 (eB+ 1) m;
eff HBBT My MBBT My y= 7 it w>ug. (13
|

+(peB+ m1)?] - F’m2 Re TAMZ)  (7)
The ansat8) is indeed a minimum of the classical theory
as we shall prove in the next section.
Since the vacuum energy is given by the value of the

of the Lagrangiar(3). Our ansatz for the minimum is

> =3\ cosat(Zgcosy+2, siny)sina, (€S) Lagrangian at the minimum we can draw the following con-
wherea and are variational parametefSy, = — M, while ~ ClUSIONS:
3 g andy, are given b _
P A o el®)
0 —-i 0 O ()= —om —4Gcosa,
s i 0 0 O B
B~ ' ILe(S
0 0 0 nB:—$=2F2MB[1+cos(2n)]sinza
0 0 i O B
ILei( 3
e n|=—$=2F2M,[1—cos(2n)]sin2a,
0O 0 0 i M
0 0o LD
2= 0O —-i 0 0f ©) <‘/’¢>:_T=4GSInaCOS7],
-i 0 0 O B
. . . aﬁeﬁ(z) . .
The ansatz is based on the following observations: three (7T>=—T=4G sina sin 7. (14)

terms compete for the alignment of the condensata«,
ugB, andy, 1. Each of them is independently minimized by T obtain the diquark and pion condensates we have intro-
v, 2g, andX, respectively. duced a diquark sourcgs and a pion sourcg, in Eq. (3).

. Inserting the ansatz gnd gsing tfanti)commutation relg— The condensates are the derivativesCf(S) with respect
t'?nr? ti)e;m{een the matrices involved we reduce the static I‘at'o the sources. The introduction of the sources is analogous
grangian to to that in Ref[5] and we refer to that paper for details. The
S 2 2 2 . phase diagram is shown in the left-hand side of Fig. 1. Itis in
Lei(2)=—F?[—(ug+ ui)coSa+ (ug—ui)cog2n)sifa agreement with our qualitative argument given in Sec. IIl. In

+ p2+ p?+4m? cosa]. (10  particular, the densities are discontinuous acrosggat u
>m, indicating a first-order phase transition. Note, how-
Extremizing with respect ta we find (for a+#0) ever, that the vacuum energy, E@0), is smooth across the
_ us=u, line. The values of the condensates are illustrated in
7=0 if w<us, Figs. 1 and 2.

T
n= > if > ug. (12) V. EXPANDING ABOUT THE MINIMUM

In order to determine the phase diagram we had to find
Note that forui= u? there is degeneracy in thedirection.  the minimum of the effective Lagrangia8) with respect to
This is a manifestation of the $P) rotational symmetryat . Having found this, we now determine the masses of low-
m=0) between the flavor which has=0 and its own con- energy excitations by expanding around the minimim
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n=4Fy,sin’(0) n=m2

n=0

A o‘ée« FIG. 1. Ne=2, Ny=2 (8o
<m>=4Gsin(c) n=0

=1): The figure on the left shows

g <=0 (G a schematic version of the phase
X P i) W)Yo diagram. To the right: The ratio of
4 A >=d the chiral condensate to its value
D=4F,sin’(0) ata=0 in the first quadrant of the
= =0 (mg 1) plane.
o ;
0 1 2 3

Hy/m,

A. Parametrization of the field % wherep is real andp andq are complex numbers. The fields

P, p, p* are neutral and charged pions andq* are

diquark/antidiquarks. Th& will change as a function oft
and we shall discuss the parameterization around a generic
minimum below.

The purpose of carrying out an expansionZgf in the I1

Here the second equality is imposed by the algebra of th{eleld,S about the mwmu@ 1S MOfOId' First, in order to
group[13]. The special unitary & 4 matrix Justify tha_lt the ansatt;8) is a minimum, we need to prove
that the linear terms il vanish. Second, the expansion of
Lei allows us to determine the dispersion relations for the
low-energy excitations.

A convenient way to parametrize the matBixin the rep-
resentation of SW)/Sp4) is based on its S4) transforma-
tion propertied13]:

S=UsUT=UZ. (15)

U:ei(H/ZF) (16)

contains the fluctuating fieldd. At x=0 the Lagrangian is

minimized by =3,,, aligned along the quark mass term B. Linear terms

mM:
To expandL¢; around, defined in Eq.(8) we need to
0 0 -1 O choose a parametrization of the field which can be used
00 0 -1 for all values ofe and . For «=0 we have already given a
Su= (17)  parametrization in Eq(18). For a given pair &>0,7) this
100 parametrization of¥ is no longer valid. We must expand
61 0 O about the rotate@ according to Eq(15). However, as it is

With this choice the Hermitian fieldl is restricted by the
manifold to[13]

useful not to change the parametrizatid®) with « and 7,
we extract the rotation frortd and write it explicitly. To do
this we first note that we can write the anségy as

E_Z(a, 7]):efa(EB cosn+3; sin n)EMEM

== Pr—p —a 0 (18) =VianEM=V(anEMV(a,) - (19)
20 —a- p p [
q* P -p Referring to Eq(15) we see that

FIG. 2. Bp=1,N{=2: The
left-most plot displays the isospin
charge density in the ug,um)
plane in units of £2m_. On the
right-hand side is shown the ratio
of the pion condensate to the chi-
ral condensate at=0. The first-
order phase transition is apparent.
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E(a,n)EU(a,n)g(a, n)UT(a, 7) C. Dispersion relations B
V. U(a=07n)V Vv The quadratic terms il of the expansion around de-
=ViapU(a@=0mV (4, )Viay termine the dispersion relations of the low-energy excita-
tions. Forug> u, the terms inl (X)) at second order il
XEV (Vo U (@= 0.0V, ) are | BTH er(2)
:V(a’n)EMU (azo,ﬂ)V(a’n) . (20)

‘2><2>—3Tr{(a I1- w[1,1118,0— g c0Sa[ B,11]5,0)?
Inserting this inCq (3) we find that the form of the Lagrang-

ian does not change provided that we substitute rotated val- +u3[BY Sy % sirfa+m2l12cosa}. (22
ues of M and wgB+ !,

The corresponding expression farg<<u, is obtained
from the above by switching andl symbols. Recall that we
have kept the parametrizatiqt8) at the cost of having ro-
\/E‘a o (1B+ DV tated (wgB+ 1) and M, see Eq.(21). Using this param-
’ ’ etrization of[1 we rewrite the above equation as

V{ia pMV(a,n =~ Sm COSa— (35 cosn+3, sinp)sina,

=(ugB cosa— ugBXgX )y Sina+ u,l)cosy ,
LE(E)=(9,0)%+ (3,0 118,0P)(3,p* + 11 8,0P* )
+ (ﬁvq_ MB5v0q COSCZ)(O"Vq* + #Bavoq* COSO[)
’Mé *\2 * 1 M2 i 2,12
+ - L(a+g*)?+4(pp* +p?)Isirfa+mz(p

+ (1 cosa— 12,2y sina

+ ugB)sin 7. (21

Using this and expanding = exp(I1/2F) to second order in
I1 we find that the terms liner ifil vanish.[The cancellation
takes place due to Eq§l2) and (13) arising from the con-

straintd L ¢(2)=0.] From this we conclude that the ansatz This allows us to read off the dispersion relations for each of
(8 for the minimum is at least a local extremum of the five modes.

the theory. As we now turn to focus on the terms quadratic in In the diquark condensation phase*0 the q and g*

IT we shall find that this local extremum is indeed afields mix. The dispersion relations are obtained by solving
minimum. for E=ipy:

+pp* +qg*)cosa. (23

—(E— ug cosa)?+p?

2 sir(a)l2 § e )2 P

+ g Sirf(@)/2+ mZ cosa

de _ =0. (24
—(E+ ugcosa) -+

i He )2 g 2 SirP()l2

+ g Sinf(@)/2+ mZ cosa

The mixing betweerq andq* implies that two of the low-

e : tha : q, E2=p%+ui(1+3coda)i2
energy excitations are linear combinations of diquark and

antidiquark modes. We denote thegnand g*. As these — upVui(1+3 coda)?/4+4p? coda. (26)
diguark/antidiquarks carry no isospin it is not surprising that
the dispersion relations are the same as found in [B&fln Note that one mode is massless fog>m,. .
the normal phaseq=0) There is no mixing in thep, p, p* sector. This implies
5 that we can interprep, p, andp* as#°, =+, and=~ and
q*, E=p"tmi+ug, directly read off the dispersion relations: Fer=0
g, E=p?+mZ—ug, (25) 7° E=\p?+mZ,
while for a#0 7t E=\p*+mitp,,
q*, E?=p?+ui(1+3coda)l2 7, E=\p*+mi—p,, (27)
+ upVup(1+3 coda)?/4+4p® coSa, while in the diquark condensation phase#0)
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FIG. 3. Bp=1, N;=2: The ratio masses of the pion modesrg as a function ofug andw, . From the leftm_+, m_o, andm_-. Note

that the mass of the~ excitation vanishes atg=u,>m,_ . The masses of thg* and theq excitations are the mirrors in thes =, plane
of m> andm , respectively.

m° E= m, ta_ltively usi_ng the arguments of S_ec. II. The_ most im_porta_nt
difference is that there are now diquarks which carry isospin:
there is an isospin tripletugu,, d;d,, u;d,+d;u,) and
three isosinglets. Agg increases, the masses of all six di-
guarks are decreasing as,— ug [5]. Among them isu;u,,
which becomes the lightest particle with positive isospin.
Therefore, for a giveug<<m,, the isospin charge conden-
sation occurs aft;=m,— ug (instead of the horizontal line
my=m_ as inNy=2)—compare Figs. 1 and 4. Atg>m,_.
the diquarkgincluding the ones carrying isospiare mass-
ss and the isospin is condensed already,at0. By the
g m, reflection symmetry, the baryon charge condensa-

mt E=\pTH gt

7, E=\p*tusz—u . (28

As one might expect we find that the* and 7~ modes
couple tou, . For ug=u,>m_ the ¥~ becomes massless.
For plots of the masses see Fig. 3.

The dispersion relations fqug<<u, in the first quadrant
are mirrors of the ones above. To obtain them one needs onli

0 switchp, g In EQs.(25—(28) and charged pions with 7 ¢ w;>m, sets in atug=0. The region of the phase

diquarks/antidiquarksp«q. ) . . o
Finally, since the masses of the excitations are positived""“gr"jlm to the right ofor above the lines, =m,— ug con-

— — tains a condensate afu,, which is favored by both.gz and
the value ofL.4(2) with 3 given in Eq.(8) is not only an iz y botiug

. . . . |-
e>§tr.emum \‘;"VS shown in thhe pr:_ewopg sectpn, Iblfjt IIS indeed a To complete the phase diagram in Fig. 4, note that the line
minimum. We assume that this minimum is global. w =m,— ug whereu,u, diquark condensation occurs con-

tinues also into the negative, half plane. Because the
VI. POSITIVITY AND N;{=4 PHASE DIAGRAM

Testing these results in lattice Monte Carlo simulations
requires care. The fermion determinant, though always real
in two color QCD, is not positive definite if bothg and u,
are nonzero. This can be seen by factorizing the determinant
into a product of the determinants farandd quarks with
chemical potentialgt, 4=ug* . Each of these determi-
nants is real but not positive definite 4, 4#0. So, unless
Mu==* uq, their product is not positive definite. Doubling
the number of quarks to save positivity will take us to the
N;=4 theory, with a significantly different phase diagram,
which we shall now discuss.

One can understand the phase diagram in tjs4
theory (two up quarksu, , and twodownquarksd, ,) quali-

A
Ba my

2We assume that the chiral symmetry is still brokeNat 4. The FIG. 4. Phase diagram of tiNy =4 two-color QCD, determined
results are trivially extended toNu quarks and Rld quarks if by a qualitative argument of Sec. VI. Solid lines &econd-order
chiral symmetry is assumed to be spontaneously broken for thgthase transitions where certain diquark or antidiquark condensates,
number of flavors. Likewise the results on adjoint QCD presentedndicated on the appropriate side of each line, appear. Subscripts
in the Appendix may be extended kbu quarks and\Nd quarks. refer to flavor. Dashed lines show the directionugf and gy axes.
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theory is invariant undep,— —w,, d«u substitution, a s
line m=pug—m, must exist in the positiveugw, quad- My | ud
rangle (see Fig. 4. Below this line the condensate of di-
quarks d.d,, carrying isospin —1, appears. By

puge—u, d—d reflection we obtain another lingy,= ug 'y
+m, above which the condensate @fd, appears. /////é//

An easier way to understand the phase diagram of Fig. 4 ///////%/
is to consideu andd quarks separately. Rotating by 45° and
using w, and uy axes one sees that the diagram is com- ud
pletely symmetric with respect t0 andd quarks, with con-
densation ofu,u, andd;d, diquarks or antidiquarks occur-
ring independently oncéuw,| or |uy exceed the vacuum
massm,, .

We have deferred the rigorous derivation of this phase
diagram to future work. However, the phase diagram of an-
other theory: two(or any color QCD with N=2 adjoint
quarks (Dyson indexBp=4) is derived in the Appendix.
This theory is similar tdN{=4 (Bp=1), considered in this
section, in that it also has diquarks with nonzero isospin:
anddd. The phase diagrams of these two theories are simi-
lar.

VII. LARGE p AND FFLO

The phase diagram we obtained using chiral perturbation
theory is valid only as long as the chemical potentials remain
small compared to the chiral scale, my, which is the mass
of the lightest hadron not included in the chiral Lagrangian.
We can, however, study an opposite regime of very large
when quarks are asymptotically free. FIG. 5. Two color QCD at small and large chemical potentials:

Let us first consideN{=2. On theug axis, u;=0, the  Upper figure shows;=2 and lower figure displaysl;=4. Solid
system is a Fermi liquid aft andd quarks with equal chemi- lines are phase transitions and gray areas illustrate regions of phase
cal potentials. The ground state is a superfluid state witlspace which remain undetermined. The lines above the clouds are
nonzero(ud) condensate, which has the same quantum numdrawn out of scale. Dashed lines show the directiopgfand uq
ber as the diquark condensate considered previously in thexes.
framework of the chiral perturbation theory. Thus it is natu- ) ) )
ral to assume no phase transition on fhag axis. Analo- decouple completely. TheEt<A) physics on the diagonal is

N thusNs=1 QCD at zero chemical potential. The theory is
go.usly,-the gr01£1d state at largs cohtalnsud Cooper _confining [16] and one expects a gap for the lightexd
pairs, sinceu andd hayg the same Ferml energy; and there iSharyon. This baryon cannot be generated unjesss larger
likely no phasc_e transition separating this phase from the oWz a5 this mass gap. Therefore there is a strip along the diag-
m, phase of pion condensate. In both cases of laugeand

w, all fermions acquire a gap~ug e %9 [14], herec
=372%/2 andg is the (smal) gauge coupling. The propor-
tionality factor has been calculated in REE5].

onal where nqdd) or (dd) condensates are present.
Consider now the regions near the axes, sayuhene.
When u, is small no isospin charge is generated. One ex-
S . ., pects two phase transitiofit1,10], at x;~0.71A and 0.74.
e s eni I he narow window te g Siate s e FFLO phse
. ' with spatial varying diquark condensate. Similarly, there is a
cally, {ud) and(ud) condensates cannot be formed unlessstrip of another FFLO phase near the axis. We note that
the m|smatch of the Fermi momenta is small. Thus, excepfhe evaluation in Ref.10] applies equally well td\.= 3 and
for small regions near th@g and u; axes, in most of the N =2 and support the occurrence of FFLO in two color two
(mp ) plane the only condensates that can be formed arggyor QCD.
(uuy and(dd) (or (dd)). These Cooper pairs are color an- We summarize what is said above in Fig. 5. Since we can
tisymmetric and flavor symmetric, and must hence carry spisolve our model analytically only in the two extreme limits,
or orbital moment and break rotational symmetry. we have no information about how the lines are connected in
The region near the diagonalg=w, requires special the region of intermediate chemical potentials. Unfortu-
consideration. On the diagongly;=0 and nod quarks are nately, two color QCD has a sign problemNyg=2, so it is
present, while thel quarks are paired. Below the scale of the not clear whether one can find out about it on the lattice.
BCS gap for theu quark one should expect thequark to For N;=4, it is more convenient to work in the variables
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my and wg. When|u,|#|ugyl, the preferable pairing isu  at nonzerqug, with u,=0. The results of our paper are also

anddd or dd. Whenuy=0, the E<A) theory reduces to testable. FoBp=1, Ny=4, andfp=4, N;y=2 the fermion
vacuum QCD withN; =2 which has confinement and a mass determinant is positive for ajg and u, .
gap for thed,d, diquark. Whenu is less tharmyg, there The low-energy effective theory approach, in principle,
should not be anw quarks in the System_ Thus the phaseapp”es even if pOS|t|V|ty of the miCFOSCOpiC theory is lost.
diagram should resemble Fig. 5, where all lines are secongor example, it applies to three color QCB{=2) at non-
order. Theu,u, condensate is always favorable and noZero baryon and isospin chemical potential. However, the
FFLO-type transitions occur. low-energy effective theory is valid only for energies much
An interesting point is that the nonhomogeneous FFLOess than the smallest non-Goldstone hadron mass, and in
phase can occur only in tHé;=2 case, and is not expected this regime there is no effect of the baryon chemical poten-
to arise in theN;=4 case. This observation is a special caseial- Low-energy effective QCD is, on the contrary, affected
of a more general relation: the FFLO phase in Euclidearif differentchemical potentials are introduced for different
QCD is excluded if the measure is positive. This might beduark flavors[18,8. The isospin case, where two quark
argued along the following lines, using QCD inequalitieschemical potentials of the same magnitude, but opposite
[17]. The measure in the QCD-like theories is real because c#ign. are introduced, was studied in Re]. Comparing that
the additional symmetries of the Dirac operalrFor N, ~ Work with the one present_ed' here we Iearn that QCD with
=2 (Bp=1) at finite baryon and isospin chemical potential 5o=1, 2, and 4 are very similar on the axis. In all cases

the additional symmetry is a pion condensate forms a§=m;.
In the ug,u, plane the phase diagram distinguish&s

04Cysm,DoyCysm,=D* =1, 2, and 4. ForBp=1 the pion condensate competes
against the diquark condensate, and a novel first-order phase
with transition takes place atg= u,>m_; for Bp=2 there is no
wg dependencéor ug<my); and forBp=4 theu, andugy
[0q,03]=0 and (rﬁ:l, (29 dependence separat® lowest order in chiral perturbation
theory).
where C=ivy,v,, 7, acts in color space, and; in flavor In the high-density limit we have used weak-coupling per-
space. This relation holds farg#0 andu,#0. If the mea- turbation theory to study the phase diagram. We have found
sure is positivegby doubling of flavorsthe relation leads to that theories with positivity do not possess a phase of inho-
a QCD inequality for the diquarke]. SinceoyCys7, only ~ mogeneous condensation—the FFLO phase. For example,
mix flavors with identical chemical potential so do the fa- Ny=2 QCD with adjoint quarks §p=4) is positive and
vored diquark channels forg#0 andw,#0. However, a does not display FFLO phase. On the contrdMys= 2, two
necessary condition for the FFLO phase is thatdledi-  color QCD (Bp=1), does have regions of FFLO phase at
quark channel is dominant farg#0 andu, #0 (for degen-  large ug and w; (ug>pu Or w;>ug), while there is no
erate massgsHence positivity excludes the FFLO phase. positivity.
(The argument for QCD with quarks in the adjoint represen-
tation, B p=4, is equivalent—except in this case we need to ACKNOWLEDGMENTS
assume that quark annihilation diagrams can be neglgdted.
suggests that a relationship might exist between the presence The authors thank the DOE Institute for Nuclear Theory
of a translation-invariance-breaking phase and (iesence at the University of Washington for its hospitality. K.S.
of) positivity in the corresponding Euclidean theory. thanks D. Toublan and J. Verbaarschot for discussions.

VIIl. DISCUSSION AND CONCLUSIONS APPENDIX: QUARKS IN THE ADJOINT

. - REPRESENTATION
One of the main obstacles to the study of QCD at finite

baryon chemical potential is the loss of positivity of Euclid-  In this appendix we give results for QCD with quarks in
ean path-integral measure. Without positivity the standardhe adjoint color representation. This version of QCD does
lattice approach fails. One of the ways to gain insight intonot have a problem with positivity. Fdd;=1 the determi-
behavior of QCD at finite density is to study QCD-like theo- nant is real and positive definiteee, e.g., the first reference
ries with pseudoreal fermion content. Classified according tof Ref.[6]). QCD with quarks in the adjoint color represen-
the Dyson index of the Dirac operatBg, such theories are tation belongs to the universality class labeled by Dyson in-
N.=2 QCD with fundamental quarksgp=1, and anyN,  dexBp=4 [19], and its low-energy limit is also described by
QCD with adjoint quarks—8p=4. chiral perturbation theory. Following the line of Secs. II-IV
Such QCD-like theories are studied here and in Rdfs. we considerN;=2 and determine the phase diagram with
[5] and [8]. We have studied the effects sfmultaneous m=m,=m,. We expect to find a phase diagram similar to
baryon and isospin chemical potentials in two limits: low andthat of =1, N;=4 since in both cases the lightest excita-
high density. The low-energy limit is studied by means oftion on theug axis is a diquark.
effective low-energy approach—the chiral Lagrangian. Re- The symmetries of QCD with quarks in the adjoint color
cent first-principle lattice studies of two color QCD at finite representation allow for a chiral Goldstone manifold with
g [6] have confirmed predictions from the effective theoryN;(2N¢+1)—1 degrees of freedom. The Goldstone fi2ld
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FIG. 6. Bp=4: Left: chiral
condensate foru in QCD with
quarks in the adjoint color repre-
sentation. Measured in units of the
chiral condensate attg=u,;=0.
Right: diquark condensate far.
Plots in thed sector are obtained
from these by a rotation about
pueg=m =0 by — /2.

may in this case be represented by a special unitary symmet- m2 m2
ric matrix[13]. The effective Lagrangian remains to be given cof af) = —’27 if —;T< 1. (A5)
by Eq. (3) provided that we replaca1 by Mt Mt
0 010 = . .
As for Bp=1 we can prove thakt is a local minimum by
|0 0 01 expanding around the minimum. The proof goes along the
M= 1.0 0 0O (AL Jines of theBp=1. First we choose a representation of the
01 0 0 field corresponding to the grectiOIE:M. Instead of

changing this representation 2srotate with increasingeg
The additional degrees of freedom as comparedStp and u, we again choose to absorb the rotation sipB
=1 [N{(2N¢+1)—1>N¢(2N;—1)—1)] allow for a dif- +ul and M. The analogue of E(21) is
ferent vacuum structure. The ansatz for the vacuum field is

now Vi(ay,aq)(ueB+ m)V(ay, aq)
S=3Wcosa,+3,sina,+3Pcosay+34sinay, = (ugB+u[(2{)? cosa, + 3,2 siney]
(A2) +(ueB+uD[(E)2cosag+3 2D Tsinay],
wheres (¥, 3@ ' and3, are defined as (A6)
0 01 0 0 0 0 O T W )
000 0 00 0 1 Viiay, agd MV(ay,aq) =2’ cosa,+ 3, sina,
v = (A i
M™11 0 0 0" "M {0 0 0 o +3Vcosag+34sinay.
0 0 0O 0100 (AT)
i 0 0 O 0O 0 0 O with
0 0 0O 0O i 0O ;
*=lo 0 i o] ™ |o o0 0 o0 Viay ag)=—i3e @2 i3 e« (Ag)
0O 0 0 O 0 0 0 i

(A3) Inserting these rotated versions pgB+ u,| and M into
. . . Le#(2) in Eq. (3) we get theBp=4 effective Lagrangian at
With this ansatz theu, and w4 terms do not mix at the (, ). Expanding this to second orderfih one finds that
classical level as can be seen from the Lagrangian at th@e |inear terms iril drop out due to the extremum condi-

minimum: tions of Ler(S) in Eq. (A4) with respect toa, and ag.
o 1 Hence the ansatz put forward in E@\2) is indeed a local
Le(Z)=— EFZ[ —cog2ay) u2—cog 2ag) ui+ pl+ uf extremum. Note that the quadratic terms/Inmix the u and
d sectors, i.e., thet andd sectors only separate at the clas-
+4m?2(cosay,+ cosay)]. (a4)  sical level. As forgp=1 we will evaluate the condensates
i and densities classically. Assuming that the local extremum
Extremizing with respect to the directions we find is a global minimum we draw the following conclusions:
; ILer(S)
afZO if —2>1, f=u,d, <Z¢>f=—L=2GCOSaf, f=u,d,

Mt Jamg
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FIG. 7. The baryon and isos-
pin charge densities foBpy=4.

Leﬁ nB(,u,B ,/.L|). nght
ni(pme m)-
aﬁeﬁ(g) <lﬂlﬁ>f:26 Sinaf , f=u,d. (AlO)
=2F?[(sirfa,+sirfag) ug The flavor mixing diquark has zero vacuum expectation
_ _ value outside theug and u, axis. On theug axis it is of
~ i sinay+ ag)sin(ag = ay) ], A9 course degenerate with the two flavor diagonal diquark con-
_ densates. For illustrations, see Figs. 6 and 7. Finally, let us
I ILe(2) comment on the possibility of realizing the FFLO state at
! I large ug and smalldu, (or vice versa The theory allows
for two flavor diagonal diquarks and one flavor mixing di-
= 2F?[(sirPay + Sirfag) g q 9

quark. The two flavor diagonal diquark condensates are only
— ug SiN(ay+ ag)sin(ag— ay)]. mildly affected bydu,. The flavor mixing state exists only
on the ug axis as it competes against the flavor diagonal
For Bp=4 andN;=2, two of the three diquarks are flavor condensates. The FFLO state is therefore not expected to
diagonal,y{ Cysi; . Introducing diquark sources for the di- occur. This is consistent with the general relation stated at
agonal ones we find the end of Sec. VII.
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