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QCD-like theories at finite baryon and isospin density
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We use two-color QCD as a model to study the effects of the simultaneous presence of chemical potentials
for isospin chargem I and for baryon numbermB . We determine the phase diagrams for two and four flavor
theories using the method of effective chiral Lagrangians at low densities and weak-coupling perturbation
theory at high densities. We determine the values of various condensates and densities as well as the spectrum
of excitations as functions ofm I andmB . A similar analysis of QCD with quarks in the adjoint representation
is also presented. Our results can be of relevance for lattice simulations of these theories. We predict a phase
of inhomogeneous condensation~Fulde-Ferrel-Larkin-Ovchinnikov phase! in the two color, two flavor theory,
while we do not expect it in the four flavor case or in other realizations of QCD with a positive measure.
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I. INTRODUCTION

QCD at a nonzero chemical potential has been the sub
of numerous studies recently. The phenomenon of qu
quark pairing and color superconductivity@1# has received
renewed attention in view of the recent observations@2# that
the superconducting gaps can be large and of possible
evance in astrophysics and heavy-ion collisions~see Ref.@3#
for a review!. The most interesting finite density phenome
~phase transitions, in particular! occur in the nonperturbative
regime, thus inviting lattice calculation methods. Howev
the lack of positivity of the Euclidean path integral preven
a straightforward application of lattice Monte Carlo tec
niques. QCD at finite density thus remains a theoretical c
lenge.

This is one of the reasons that certain QCD-like theor
with a positive Euclidean path-integral measure have a
attracted attention. Examples of such theories are two-c
QCD, QCD with adjoint quarks, or two-flavor QCD with a
isospin chemical potential@4–8,20#. In these theories, fo
each quark with a chemical potentialm there is another~con-
jugate! quark with exactly the same properties, except for
opposite sign ofm. The quenched approximation, commo
in lattice studies, is an approximation to such kind of the
ries, rather than to QCD at finite baryon density with
quarks having equal chemical potentials@9#.

In reality, dense baryon or quark matter, such as that a
ing in the interior of neutron stars or heavy-ion collisions,
characterized by different, not equal and not oppos
chemical potentials for different flavors of quarks. One c
describe such situations by the simultaneous presenc
chemical potentials for baryon chargemB and isospinm I .
The physics of this has been discussed@10# in the context of
neutron stars (mB@m I) and QCD at large density of isospi
and small baryon density (m I@mB) @8#. The most interesting
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result is the appearance of a phase where the ground
breaks translational and rotational symmetry. This phas
similar to the so-called Fulde-Ferrel-Larkin-Ovchinniko
~FFLO! phase of a BCS superconductor@11#.

In this paper we investigate the behavior of QCD-li
theories, in particular two-color QCD under the influence
both m I andmB . We shall use controllable analytical meth
ods in two regimes of these theories: a chiral effective L
grangian, based on the symmetries, in the low-density
gime, and weak-coupling perturbation theory in the hig
density regime. We shall determine the phase diagram in
mB ,m I plane, various condensates, and lowest lying exc
tions.

Our goal is to gain an understanding of the physics of
interplay betweenmB andm I . The theories we study~except
Nc5Nf52! have the advantage of having a positive Eucl
ean path-integral measure, and can therefore be studie
the lattice. Our results can be used as benchmarks for
merical lattice studies.

The presentation of our results is organized as follow
We start with two-color QCD. In Sec. II we give the low
energy effective Lagrangian upon which the sequel is bas
A qualitative argument for the structure of the phase diagr
is then given in Sec. III. In Sec. IV we analyze the propert
of the vacuum. As a result we find the classical values for
condensates and densities. Then in Sec. V we study the
pansion about the minimum in order to determine the mas
of the low-energy excitations. The extension of this theory
Nf54 with two up and two down flavors is discussed in Se
VI. The discussion of asymptotically high chemical pote
tials and the FFLO phase is in Sec. VII. Finally, in the la
section we summarize and comment on the relevance of
results for real QCD. The presentation of QCD with quar
in the adjoint representation is placed in the Appendix.
©2001 The American Physical Society03-1
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II. THE EFFECTIVE THEORY AT FINITE µB AND µI

Two color QCD at zero chemical potential is invaria
under SU(2Nf) rotations in the chiral limit, see, e.g., Re
@12#. This enhanced symmetry@as compared to the SU(Nf)
3SU(Nf)3U(1) of three color QCD# is manifest in the La-
grangian if we choose to represent this in a basis of quarkc

and conjugate quarksc̃ @4#. For Nf52 we use

C[S u

d

ũ

d̃

D [S uL

dL

s2t2~uR!*

s2t2~dR!*
D , ~1!

where the Pauli matricest2 and s2 act in color and spin
space, respectively.

The enhanced symmetry manifests itself in the lo
energy effective theory through the manifold of the Go
stone modes associated with the spontaneous breakin
chiral symmetry. In our caseNf52 and the Goldstone man
fold is SU~4!/Sp~4!, corresponding to the condensation
CC—SU~4! flavor sextet. The fields on this manifold can b
represented by a 434 antisymmetric unitary matrixS with
detS51.

The effective Lagrangian for the fieldS of Goldstone
modes is determined by the symmetries inherited from
microscopic two color QCD Lagrangian. In the basis
SU~4! spinors~1! the mass matrix, baryon charge matrix, a
the isospin~third component! charge matrix are1

M[S 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0

D ,

B[
1

2 S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D ,

I[
1

2 S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D ~2!

and the resulting effective Lagrangian is

1Note on the notation: We use the normalization of the bary
charge different from Ref.@5#. The baryon charge of the quark
not 1, as in Ref.@5#, but 1/2, which comes from 1/Nc , so that the
baryon~diquark inNc52! has baryon charge 1. For simplicity, w
omit subscript 3 fromI 3.
01600
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Leff~S!5
F2

2
Tr ]nS]nS†12F2 Tr@~mBB1m I I !S†]0S#

2F2 Tr@S~mBB1m I I !S†~mBB1m I I !1~mBB

1m I I !2#2F2mp
2 Re Tr~MS!. ~3!

The m-dependent terms in the effective Lagrangian app
through the covariant extension of the derivative:

]0S→]0S2@~mBB1m I I !S1S~mBB1m I I !T# ~4!

]0S†→]0S1@~mBB1m I I !S1S~mBB1m I I !T#† ~5!

required by an extended local gauge symmetry@4#. There-
fore, to this order in chiral perturbation theory, the Lagran
ian at finitem does not require any extra phenomenologi
parameters beyond the pion decay constantF and the chiral
condensate in the chiral limitG. This fact gives predictive
power to chiral perturbation theory at finitem. The chiral
condensate can be traded for the vacuum pion mass usin
Gell-Mann–Oaks–Renner relation (m5mu5md is the quark
mass!:

F2mp
2 5mG. ~6!

In using the effective Lagrangian constructed above we m
of course assume that chiral symmetry forNc5Nf52 QCD
is spontaneously broken. Since we have regarded the
ronic modes as heavy the theory is expected to be valid o
up to the mass of the lightest non-Goldstone hadron. Ho
ever, as we shall show, the phase diagram is very rich in
effective range of the theory.

III. THE PHASE DIAGRAM EXPECTED FROM THE µIÄ0
SPECTRUM

One can understand main features of the phase diagra
the mBm I plane by considering the low-energy spectrum
the theory at finitemB determined in Ref.@5#. In the
vacuum,mB5m I50, the spectrum consists of a degener
five-plet: three pions p0 , p6 (B50, I 50,61), a
baryon, and an antibaryonq, q* ~diquark and antidiquark
with B561 andI 50).

On the horizontal axis,m I50, as a function ofmB , there
is a phase transition corresponding to the condensatio
diquarks. This happens atmB equal to the diquark mass d
vided by its baryon charge, i.e., atmB5mp . Similarly, at
mB50 there should be a transition corresponding to the c
densation of pions. This happens whenm I is equal to the
pion mass divided by its isospin charge, i.e., atm I5mp .
This can also be concluded from the fact that there i
simple discrete symmetry:d↔d̃ accompanied bymB↔m I .
Therefore themBm I phase diagram must be symmetric und
reflection aboutmB5m I line.

As a function ofmB the mass of the pion is constant a
long asmB,mp , which means the transition atm I5mp hap-
pens at all suchmB . Related to this horizontal line of phas
transitions by a reflection against the diagonal, there i
vertical line atmB5mp , the line where diquarks condens

n
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After the two lines meet they must merge into a singlemB
5m I line. This is because of the reflection symmetry and
fact that the mass of the pion in the diquark condensa
phasemB.mp is equal tomB according to Ref.@5#. Two
different condensation modes~pion vs diquark! compete at
mB5m I , thus the transition along themB5m I line is of first
order.

IV. MINIMUM OF THE EFFECTIVE LAGRANGIAN

In order to derive the phase diagram we study the m
mum of the classical theory. That is, we seek to minimize
static part of the effective Lagrangian

Leff~S̄ !52F2 Tr@S̄~mBB1m I I !S̄†~mBB1m I I !

1~mBB1m I I !2#2F2mp
2 Re Tr~MS̄ ! ~7!

of the Lagrangian~3!. Our ansatz for the minimum is

S̄[SM cosa1~SB cosh1S I sinh!sina, ~8!

wherea andh are variational parameters,SM[2M, while
SB andS I are given by

SB5S 0 2 i 0 0

i 0 0 0

0 0 0 2 i

0 0 i 0

D
and

S I5S 0 0 0 i

0 0 i 0

0 2 i 0 0

2 i 0 0 0

D . ~9!

The ansatz is based on the following observations: th
terms compete for the alignment of the condensate:mM,
mBB, andm I I . Each of them is independently minimized b
SM , SB , andS I , respectively.

Inserting the ansatz and using the~anti!commutation rela-
tions between the matrices involved we reduce the static
grangian to

Leff~S̄ !52F2@2~mB
21m I

2!cos2a1~mB
22m I

2!cos~2h!sin2a

1mB
21m I

214mp
2 cosa#. ~10!

Extremizing with respect toh we find ~for a5” 0)

h50 if m I,mB ,

h5
p

2
if m I.mB . ~11!

Note that formB
25m I

2 there is degeneracy in theh direction.
This is a manifestation of the SU~2! rotational symmetry~at
m50) between the flavor which hasm50 and its own con-
01600
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jugate field~i.e., betweend andd̃ in the first quadrant of the
m I ,mB plane!. Extremizing with respect to thea direction
we find

a50 if y.1,

cosa5y if y,1, ~12!

where

y5
mp

2

mB
2 if m I,mB ,

y5
mp

2

m I
2 if m I.mB . ~13!

The ansatz~8! is indeed a minimum of the classical theo
as we shall prove in the next section.

Since the vacuum energy is given by the value of
Lagrangian at the minimum we can draw the following co
clusions:

^c̄c&52
]Leff~S̄ !

]m
54G cosa,

nB52
]Leff~S̄ !

]mB
52F2mB@11cos~2h!#sin2a

nI52
]Leff~S̄ !

]m I
52F2m I@12cos~2h!#sin2a,

^cc&52
]Leff~S̄ !

] j B
54G sina cosh,

^p&52
]Leff~S̄ !

] j I
54G sina sinh. ~14!

To obtain the diquark and pion condensates we have in
duced a diquark sourcej B and a pion sourcej I in Eq. ~3!.
The condensates are the derivatives ofLeff(S̄) with respect
to the sources. The introduction of the sources is analog
to that in Ref.@5# and we refer to that paper for details. Th
phase diagram is shown in the left-hand side of Fig. 1. It is
agreement with our qualitative argument given in Sec. III.
particular, the densities are discontinuous across atmB5m I
.mp indicating a first-order phase transition. Note, ho
ever, that the vacuum energy, Eq.~10!, is smooth across the
mB5m I line. The values of the condensates are illustrated
Figs. 1 and 2.

V. EXPANDING ABOUT THE MINIMUM

In order to determine the phase diagram we had to fi
the minimum of the effective Lagrangian~3! with respect to
S. Having found this, we now determine the masses of lo
energy excitations by expanding around the minimumS̄.
3-3
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FIG. 1. Nc52, Nf52 (bD

51): The figure on the left shows
a schematic version of the phas
diagram. To the right: The ratio o
the chiral condensate to its valu
at a50 in the first quadrant of the
(mB ,m I) plane.
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A. Parametrization of the field S

A convenient way to parametrize the matrixS in the rep-
resentation of SU~4!/Sp~4! is based on its SU~4! transforma-
tion properties@13#:

S5US̄UT5U2S̄. ~15!

Here the second equality is imposed by the algebra of
group @13#. The special unitary 434 matrix

U5ei ~P/2F ! ~16!

contains the fluctuating fieldsP. At m50 the Lagrangian is
minimized byS5SM , aligned along the quark mass ter
mM:

SM[S 0 0 21 0

0 0 0 21

1 0 0 0

0 1 0 0

D . ~17!

With this choice the Hermitian fieldP is restricted by the
manifold to @13#

P[
1

A2 S p̃ p 0 q

p* 2 p̃ 2q 0

0 2q* p̃ p*

q* 0 p 2 p̃

D , ~18!
01600
e

wherep̃ is real andp andq are complex numbers. The field

p̃, p, p* are neutral and charged pions andq, q* are

diquark/antidiquarks. TheS̄ will change as a function ofm
and we shall discuss the parameterization around a gen
minimum below.

The purpose of carrying out an expansion ofLeff in theP

fields about the minimumS̄ is twofold. First, in order to
justify that the ansatz~8! is a minimum, we need to prove
that the linear terms inP vanish. Second, the expansion
Leff allows us to determine the dispersion relations for
low-energy excitations.

B. Linear terms

To expandLeff aroundS̄ defined in Eq.~8! we need to
choose a parametrization of theP field which can be used
for all values ofa andh. For a50 we have already given a
parametrization in Eq.~18!. For a given pair (a.0,h) this
parametrization ofS is no longer valid. We must expan
about the rotatedS̄ according to Eq.~15!. However, as it is
useful not to change the parametrization~18! with a andh,
we extract the rotation fromU and write it explicitly. To do
this we first note that we can write the ansatz~8! as

S̄~a,h!5e2a(SB cosh1S I sin h)SMSM

[V(a,h)
2 SM[V(a,h)SMV(a,h)

T . ~19!

Referring to Eq.~15! we see that
o
i-

t.
FIG. 2. bD51, Nf52: The
left-most plot displays the isospin
charge density in the (mB ,m I)
plane in units of 2F2mp . On the
right-hand side is shown the rati
of the pion condensate to the ch
ral condensate ata50. The first-
order phase transition is apparen
3-4
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S~a,h![U~a,h!S̄~a,h!UT~a,h!

5V(a,h)U~a50,h!V(a,h)
† V(a,h)

3SMV(a,h)
T V†

(a,h)
T UT~a50,h!V(a,h)

T

5V(a,h)SMU2~a50,h!V(a,h)
T . ~20!

Inserting this inLeff ~3! we find that the form of the Lagrang
ian does not change provided that we substitute rotated
ues ofM andmBB1m I I ,

V(a,h)
T MV(a,h)52SM cosa2~SB cosh1S I sinh!sina,

V(a,h)
† ~mBB1m I I !V(a,h)

5~mBB cosa2mBBSBSM sina1m I I !cosh

1~m I I cosa2m I IS ISM sina

1mBB!sinh. ~21!

Using this and expandingU5exp(iP/2F) to second order in
P we find that the terms liner inP vanish.@The cancellation
takes place due to Eqs.~12! and ~13! arising from the con-
straint]aL st(S̄)50.# From this we conclude that the ansa
~8! for the minimum is at least a local extremum
the theory. As we now turn to focus on the terms quadrati
P we shall find that this local extremum is indeed
minimum.
n

a

01600
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C. Dispersion relations

The quadratic terms inP of the expansion aroundS̄ de-
termine the dispersion relations of the low-energy exc
tions. FormB.m I the terms inLeff(S) at second order inP
are

Leff
(2)~S!5

1

2
Tr$~]nP2m I@ I ,P#dn02mB cosa@B,P#dn0!2

1mB
2@BSBSM ,P#2 sin2a1mp

2 P2 cosa%. ~22!

The corresponding expression formB,m I is obtained
from the above by switchingB andI symbols. Recall that we
have kept the parametrization~18! at the cost of having ro-
tated (mBB1m I I ) and M, see Eq.~21!. Using this param-
etrization ofP we rewrite the above equation as

Leff
(2)~S!5~]np̃!21~]np2m Idn0p!~]np* 1m Idn0p* !

1~]nq2mBdn0q cosa!~]nq* 1mBdn0q* cosa!

1
mB

2

4
@~q1q* !214~pp* 1 p̃2!#sin2a1mp

2 ~ p̃2

1pp* 1qq* !cosa. ~23!

This allows us to read off the dispersion relations for each
the five modes.

In the diquark condensation phasea5” 0 the q and q*
fields mix. The dispersion relations are obtained by solv
for E5 ip0:
detS mB
2 sin2~a!/2

2~E2mB cosa!21p2

1mB
2 sin2~a!/21mp

2 cosa

2~E1mB cosa!21p2

1mB
2 sin2~a!/21mp

2 cosa
mB

2 sin2~a!/2
D 50. ~24!
The mixing betweenq andq* implies that two of the low-
energy excitations are linear combinations of diquark a
antidiquark modes. We denote themq̃ and q̃* . As these
diquark/antidiquarks carry no isospin it is not surprising th
the dispersion relations are the same as found in Ref.@5#. In
the normal phase (a50)

q* , E5Ap21mp
2 1mB ,

q, E5Ap21mp
2 2mB , ~25!

while for a5” 0

q̃* , E25p21mB
2~113 cos2a!/2

1mBAmB
2~113 cos2a!2/414p2 cos2a,
d

t

q̃, E25p21mB
2~113 cos2a!/2

2mBAmB
2~113 cos2a!2/414p2 cos2a. ~26!

Note that one mode is massless formB.mp .
There is no mixing in thep̃, p, p* sector. This implies

that we can interpretp̃, p, andp* asp0, p1, andp2 and
directly read off the dispersion relations: Fora50

p0, E5Ap21mp
2 ,

p1, E5Ap21mp
2 1m I ,

p2, E5Ap21mp
2 2m I , ~27!

while in the diquark condensation phase (a5” 0)
3-5
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FIG. 3. bD51, Nf52: The ratio masses of the pion modes tomp as a function ofmB andm I . From the leftmp1, mp0, andmp2. Note

that the mass of thep2 excitation vanishes atmB5m I.mp . The masses of theq̃* and theq̃ excitations are the mirrors in themB5m I plane
of mp

1 andmp
2 , respectively.
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p0, E5Ap21mB
2,

p1, E5Ap21mB
21m I ,

p2, E5Ap21mB
22m I . ~28!

As one might expect we find that thep1 and p2 modes
couple tom I . For mB5m I.mp the p2 becomes massless
For plots of the masses see Fig. 3.

The dispersion relations formB,m I in the first quadrant
are mirrors of the ones above. To obtain them one needs
to switchm I↔mB in Eqs.~25!–~28! and charged pions with
diquarks/antidiquarks:p↔q.

Finally, since the masses of the excitations are posit
the value ofLeff(S̄) with S̄ given in Eq.~8! is not only an
extremum as shown in the previous section, but is indee
minimum. We assume that this minimum is global.

VI. POSITIVITY AND NfÄ4 PHASE DIAGRAM

Testing these results in lattice Monte Carlo simulatio
requires care. The fermion determinant, though always
in two color QCD, is not positive definite if bothmB andm I
are nonzero. This can be seen by factorizing the determi
into a product of the determinants foru and d quarks with
chemical potentialsmu,d5mB6m I . Each of these determi
nants is real but not positive definite ifmu,d5” 0. So, unless
mu56md , their product is not positive definite. Doublin
the number of quarks to save positivity will take us to t
Nf54 theory, with a significantly different phase diagra
which we shall now discuss.2

One can understand the phase diagram in thisNf54
theory~two up quarksu1,2 and twodownquarksd1,2) quali-

2We assume that the chiral symmetry is still broken atNf54. The
results are trivially extended to 2Nu quarks and 2Nd quarks if
chiral symmetry is assumed to be spontaneously broken for
number of flavors. Likewise the results on adjoint QCD presen
in the Appendix may be extended toNu quarks andNd quarks.
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tatively using the arguments of Sec. III. The most importa
difference is that there are now diquarks which carry isosp
there is an isospin triplet (u1u2 , d1d2 , u1d21d1u2) and
three isosinglets. AsmB increases, the masses of all six d
quarks are decreasing asmp2mB @5#. Among them isu1u2,
which becomes the lightest particle with positive isosp
Therefore, for a givenmB,mp , the isospin charge conden
sation occurs atm I5mp2mB ~instead of the horizontal line
m I5mp as inNf52)—compare Figs. 1 and 4. AtmB.mp

the diquarks~including the ones carrying isospin! are mass-
less and the isospin is condensed already atm I50. By the
mB↔m I reflection symmetry, the baryon charge conden
tion for m I.mp sets in atmB50. The region of the phase
diagram to the right of~or above! the linem I5mp2mB con-
tains a condensate ofu1u2, which is favored by bothmB and
m I .

To complete the phase diagram in Fig. 4, note that the
m I5mp2mB whereu1u2 diquark condensation occurs con
tinues also into the negativem I half plane. Because the

at
d

FIG. 4. Phase diagram of theNf54 two-color QCD, determined
by a qualitative argument of Sec. VI. Solid lines are~second-order!
phase transitions where certain diquark or antidiquark condens
indicated on the appropriate side of each line, appear. Subsc
refer to flavor. Dashed lines show the direction ofmu andmd axes.
3-6
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QCD-LIKE THEORIES AT FINITE BARYON AND . . . PHYSICAL REVIEW D64 016003
theory is invariant underm I→2m I , d↔u substitution, a
line mI5mB2mp must exist in the positivemBm I quad-
rangle ~see Fig. 4!. Below this line the condensate of d
quarks d1d2, carrying isospin 21, appears. By
mB↔m I , d↔d̄ reflection we obtain another line,m I5mB

1mp above which the condensate ofd̄1d̄2 appears.
An easier way to understand the phase diagram of Fi

is to consideru andd quarks separately. Rotating by 45° an
using mu and md axes one sees that the diagram is co
pletely symmetric with respect tou andd quarks, with con-
densation ofu1u2 andd1d2 diquarks or antidiquarks occur
ring independently onceumuu or umdu exceed the vacuum
massmp .

We have deferred the rigorous derivation of this pha
diagram to future work. However, the phase diagram of
other theory: two~or any! color QCD with Nf52 adjoint
quarks ~Dyson indexbD54) is derived in the Appendix
This theory is similar toNf54 (bD51), considered in this
section, in that it also has diquarks with nonzero isospin:uu
anddd. The phase diagrams of these two theories are s
lar.

VII. LARGE µ AND FFLO

The phase diagram we obtained using chiral perturba
theory is valid only as long as the chemical potentials rem
small compared to the chiral scale, ormr which is the mass
of the lightest hadron not included in the chiral Lagrangia
We can, however, study an opposite regime of very largem,
when quarks are asymptotically free.

Let us first considerNf52. On themB axis, m I50, the
system is a Fermi liquid ofu andd quarks with equal chemi
cal potentials. The ground state is a superfluid state w
nonzerô ud& condensate, which has the same quantum n
ber as the diquark condensate considered previously in
framework of the chiral perturbation theory. Thus it is na
ral to assume no phase transition on themB axis. Analo-
gously, the ground state at largem I containsud̄ Cooper
pairs, sinceu andd̄ have the same Fermi energy; and there
likely no phase transition separating this phase from the l
m I phase of pion condensate. In both cases of largemB and
m I all fermions acquire a gapD;mg25e2c/g @14#, herec
53p2/A2 andg is the ~small! gauge coupling. The propor
tionality factor has been calculated in Ref.@15#.

WhenmB andm I are nonvanishing, the chemical potent
for the u and d quarks have different magnitudes. Gene
cally, ^ud& and ^ud̄& condensates cannot be formed unle
the mismatch of the Fermi momenta is small. Thus, exc
for small regions near themB and m I axes, in most of the
(mB ,m I) plane the only condensates that can be formed

^uu& and ^dd& ~or ^d̄d̄&). These Cooper pairs are color a
tisymmetric and flavor symmetric, and must hence carry s
or orbital moment and break rotational symmetry.

The region near the diagonalmB5m I requires specia
consideration. On the diagonalmd50 and nod quarks are
present, while theu quarks are paired. Below the scale of t
BCS gap for theu quark one should expect theu quark to
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decouple completely. The (E!D) physics on the diagonal is
thus Nf51 QCD at zero chemical potential. The theory
confining @16# and one expects a gap for the lightestdd
baryon. This baryon cannot be generated unlessmd is larger
than this mass gap. Therefore there is a strip along the d
onal where nô dd& or ^d̄d̄& condensates are present.

Consider now the regions near the axes, say themB one.
When m I is small no isospin charge is generated. One
pects two phase transitions@11,10#, atm I'0.71D and 0.75D.
In the narrow window the ground state is the FFLO pha
with spatial varying diquark condensate. Similarly, there i
strip of another FFLO phase near them I axis. We note that
the evaluation in Ref.@10# applies equally well toNc53 and
Nc52 and support the occurrence of FFLO in two color tw
flavor QCD.

We summarize what is said above in Fig. 5. Since we
solve our model analytically only in the two extreme limit
we have no information about how the lines are connecte
the region of intermediate chemical potentials. Unfor
nately, two color QCD has a sign problem atNf52, so it is
not clear whether one can find out about it on the lattice

For Nf54, it is more convenient to work in the variable

FIG. 5. Two color QCD at small and large chemical potentia
Upper figure showsNf52 and lower figure displaysNf54. Solid
lines are phase transitions and gray areas illustrate regions of p
space which remain undetermined. The lines above the clouds
drawn out of scale. Dashed lines show the direction ofmu andmd

axes.
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mu and md . When umuu5” umdu, the preferable pairing isuu

and dd or d̄d̄. Whenmd50, the (E!D) theory reduces to
vacuum QCD withNf52 which has confinement and a ma
gap for thed1d2 diquark. Whenmd is less thanmdd , there
should not be anyd quarks in the system. Thus the pha
diagram should resemble Fig. 5, where all lines are sec
order. The u1u2 condensate is always favorable and
FFLO-type transitions occur.

An interesting point is that the nonhomogeneous FF
phase can occur only in theNf52 case, and is not expecte
to arise in theNf54 case. This observation is a special ca
of a more general relation: the FFLO phase in Euclide
QCD is excluded if the measure is positive. This might
argued along the following lines, using QCD inequaliti
@17#. The measure in the QCD-like theories is real becaus
the additional symmetries of the Dirac operatorD. For Nc
52 (bD51) at finite baryon and isospin chemical potent
the additional symmetry is

sdCg5t2DsdCg5t25D*

with

@sd ,s3#50 and sd
251, ~29!

where C5 ig0g2 , t2 acts in color space, ands3 in flavor
space. This relation holds formB5” 0 andm I5” 0. If the mea-
sure is positive~by doubling of flavors! the relation leads to
a QCD inequality for the diquarks@4#. SincesdCg5t2 only
mix flavors with identical chemical potential so do the f
vored diquark channels formB5” 0 andm I5” 0. However, a
necessary condition for the FFLO phase is that theud di-
quark channel is dominant formB5” 0 andm I5” 0 ~for degen-
erate masses!. Hence positivity excludes the FFLO phas
~The argument for QCD with quarks in the adjoint repres
tation,b D54, is equivalent—except in this case we need
assume that quark annihilation diagrams can be neglecte! It
suggests that a relationship might exist between the pres
of a translation-invariance-breaking phase and the~absence
of! positivity in the corresponding Euclidean theory.

VIII. DISCUSSION AND CONCLUSIONS

One of the main obstacles to the study of QCD at fin
baryon chemical potential is the loss of positivity of Eucli
ean path-integral measure. Without positivity the stand
lattice approach fails. One of the ways to gain insight in
behavior of QCD at finite density is to study QCD-like the
ries with pseudoreal fermion content. Classified according
the Dyson index of the Dirac operatorbD , such theories are
Nc52 QCD with fundamental quarks—bD51, and any-Nc
QCD with adjoint quarks—bD54.

Such QCD-like theories are studied here and in Refs.@4#,
@5# and @8#. We have studied the effects ofsimultaneous
baryon and isospin chemical potentials in two limits: low a
high density. The low-energy limit is studied by means
effective low-energy approach—the chiral Lagrangian. R
cent first-principle lattice studies of two color QCD at fini
mB @6# have confirmed predictions from the effective theo
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at nonzeromB , with m I50. The results of our paper are als
testable. ForbD51, Nf54, andbD54, Nf52 the fermion
determinant is positive for allmB andm I .

The low-energy effective theory approach, in princip
applies even if positivity of the microscopic theory is los
For example, it applies to three color QCD (bD52) at non-
zero baryon and isospin chemical potential. However,
low-energy effective theory is valid only for energies mu
less than the smallest non-Goldstone hadron mass, an
this regime there is no effect of the baryon chemical pot
tial. Low-energy effective QCD is, on the contrary, affect
if different chemical potentials are introduced for differe
quark flavors@18,8#. The isospin case, where two qua
chemical potentials of the same magnitude, but oppo
sign, are introduced, was studied in Ref.@8#. Comparing that
work with the one presented here we learn that QCD w
bD51, 2, and 4 are very similar on them I axis. In all cases
a pion condensate forms atm I5mp .

In the mB ,m I plane the phase diagram distinguishesbD
51, 2, and 4. ForbD51 the pion condensate compet
against the diquark condensate, and a novel first-order p
transition takes place atmB5m I.mp ; for bD52 there is no
mB dependence~for mB,mN); and forbD54 themu andmd
dependence separate~to lowest order in chiral perturbation
theory!.

In the high-density limit we have used weak-coupling p
turbation theory to study the phase diagram. We have fo
that theories with positivity do not possess a phase of in
mogeneous condensation—the FFLO phase. For exam
Nf52 QCD with adjoint quarks (bD54) is positive and
does not display FFLO phase. On the contrary,Nf52, two
color QCD (bD51), does have regions of FFLO phase
large mB and m I (mB@m I or m I@mB), while there is no
positivity.
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APPENDIX: QUARKS IN THE ADJOINT
REPRESENTATION

In this appendix we give results for QCD with quarks
the adjoint color representation. This version of QCD do
not have a problem with positivity. ForNf51 the determi-
nant is real and positive definite~see, e.g., the first referenc
of Ref. @6#!. QCD with quarks in the adjoint color represe
tation belongs to the universality class labeled by Dyson
dexbD54 @19#, and its low-energy limit is also described b
chiral perturbation theory. Following the line of Secs. II–I
we considerNf52 and determine the phase diagram w
m[mu5md . We expect to find a phase diagram similar
that of bD51, Nf54 since in both cases the lightest excit
tion on themB axis is a diquark.

The symmetries of QCD with quarks in the adjoint col
representation allow for a chiral Goldstone manifold w
Nf(2Nf11)21 degrees of freedom. The Goldstone fieldS
3-8
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FIG. 6. bD54: Left: chiral
condensate foru in QCD with
quarks in the adjoint color repre
sentation. Measured in units of th
chiral condensate atmB5m I50.
Right: diquark condensate foru.
Plots in thed sector are obtained
from these by a rotation abou
mB5m I50 by 2p/2.
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may in this case be represented by a special unitary sym
ric matrix @13#. The effective Lagrangian remains to be giv
by Eq. ~3! provided that we replaceM by

M[S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D . ~A1!

The additional degrees of freedom as compared tobD
51 @Nf(2Nf11)21.Nf(2Nf21)21)] allow for a dif-
ferent vacuum structure. The ansatz for the vacuum fiel
now

S̄[SM
(u)cosau1Su sinau1SM

(d)cosad1Sd sinad ,
~A2!

whereSM
(u) , SM

(d) , Su , andSd are defined as

SM
(u)5S 0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

D , SM
(d)5S 0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

D ,

Su5S i 0 0 0

0 0 0 0

0 0 i 0

0 0 0 0

D , Sd5S 0 0 0 0

0 i 0 0

0 0 0 0

0 0 0 i

D .

~A3!

With this ansatz themu and md terms do not mix at the
classical level as can be seen from the Lagrangian at
minimum:

Leff~S̄ !52
1

2
F2@2cos~2au!mu

22cos~2ad!md
21mu

21md
2

14mp
2 ~cosau1cosad!#. ~A4!

Extremizing with respect to thea directions we find

a f50 if
mp

2

m f
2
.1, f 5u,d,
01600
et-
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he

cos~a f !5
mp

2

m f
2

if
mp

2

m f
2
,1. ~A5!

As for bD51 we can prove thatS̄ is a local minimum by
expanding around the minimum. The proof goes along
lines of thebD51. First we choose a representation of theP

field corresponding to the directionS̄5M. Instead of
changing this representation asS̄ rotate with increasingmB
and m I we again choose to absorb the rotation inmBB
1m I I andM. The analogue of Eq.~21! is

V†~au ,ad!~mBB1m I I !V~au ,ad!

5~mBB1m I I !@~SM
(u)!2 cosau1SuSM

(u)†sinau#

1~mBB1m I I !@~SM
(d)!2 cosad1SdSM

(d)†sinad#,

~A6!

VT~au ,ad!MV~au ,ad!5SM
(u)cosau1Su sinau

1SM
(d)cosad1Sd sinad .

~A7!

with

V~au ,ad!52 iSuei (au/2)SM
(u)

2 iSuei (ad/2)SM
(d)

. ~A8!

Inserting these rotated versions ofmBB1m I I and M into
Leff(S̄) in Eq. ~3! we get thebD54 effective Lagrangian a
(au ,ad). Expanding this to second order inP one finds that
the linear terms inP drop out due to the extremum cond
tions of Leff(S̄) in Eq. ~A4! with respect toau and ad .
Hence the ansatz put forward in Eq.~A2! is indeed a local
extremum. Note that the quadratic terms inP mix theu and
d sectors, i.e., theu andd sectors only separate at the cla
sical level. As forbD51 we will evaluate the condensate
and densities classically. Assuming that the local extrem
is a global minimum we draw the following conclusions:

^c̄c& f52
]Leff~S̄ !

]mf
52G cosa f , f 5u,d,
3-9
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FIG. 7. The baryon and isos
pin charge densities forbD54.
Left: nB(mB ,m I). Right:
nI(mB ,m I).
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]Leff~S̄ !

]mB

52F2@~sin2au1sin2ad!mB

2m I sin~au1ad!sin~ad2au!#, ~A9!

nI52
]Leff~S̄ !

]m I

52F2@~sin2au1sin2ad!m I

2mB sin~au1ad!sin~ad2au!#.

For bD54 andNf52, two of the three diquarks are flavo
diagonal,c f

TCg5c f . Introducing diquark sources for the d
agonal ones we find
m
ch

B

r-

to

,

S
cl

01600
^cc& f52G sina f , f 5u,d. ~A10!

The flavor mixing diquark has zero vacuum expectat
value outside themB and m I axis. On themB axis it is of
course degenerate with the two flavor diagonal diquark c
densates. For illustrations, see Figs. 6 and 7. Finally, le
comment on the possibility of realizing the FFLO state
large mB and smalldm I ~or vice versa!. The theory allows
for two flavor diagonal diquarks and one flavor mixing d
quark. The two flavor diagonal diquark condensates are o
mildly affected bydm I . The flavor mixing state exists only
on the mB axis as it competes against the flavor diago
condensates. The FFLO state is therefore not expecte
occur. This is consistent with the general relation stated
the end of Sec. VII.
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