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Sphalerons in two Higgs doublet theories

Jackie Grant* and Mark Hindmarsh†

Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
~Received 12 January 2001; published 17 May 2001!

We undertake a comprehensive investigation of the properties of the sphaleron in electroweak theories with
two Higgs doublets. We do this in as model-independent a way as possible: by exploring the physical param-
eter space described by the masses and mixing angles of the Higgs particles. If there is a large split in the
masses of the neutral Higgs particles, there can be several sphaleron solutions, distinguished by their properties
under parity and the behavior of the Higgs field at the origin. In general, these solutions appear in parity
conjugate pairs and are not spherically symmetric, although the departure from spherical symmetry is small.
IncludingCP violation in the Higgs potential can change the energy of the sphaleron by up to 14% for a given
set of Higgs boson masses, with significant implications for the baryogenesis bound on the mass of the lightest
Higgs boson.
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I. INTRODUCTION

One of the major unsolved problems in particle cosm
ogy is to account for the baryon asymmetry of the Univer
This asymmetry is usually expressed in terms of the par
eterh, defined as the ratio between the baryon number d
sity nB and the entropy densitys: h5nB /s;10210. Sa-
kharov@1# laid down the framework for any explanation: th
theory of baryogenesis must contain baryon number (B) vio-
lation, charge conjugation (C) violation, combined charge
conjugation and parity (CP) violation, and a departure from
thermal equilibrium. The standard model is naturallyC and
P violating, and violatesCP through the couplings of fermi
onic charged currents to theW6 @the Cabibbo-Kobayashi
Maskawa~CKM! matrix#. It was also known to violate the
combination B1L ~where L is lepton number! non-
perturbatively@2#, and the realization that this rate is large
high temperature, and that the standard model could de
from equilibrium at a first order phase transition@3#, led to
considerable optimism that the origin of the baryon asymm
try could be found in known physics.

However, the standard model does not have a first o
phase transition for Higgs boson masses above about 75
@4,5#, and in any case is not thought to have enoughCP
violation. Current attention is focused on the minimal sup
symmetric standard model~MSSM!, where there are man
sources ofCP violation over and above the CKM matri
@6–8#, and the phase transition can be first order for Hig
boson masses up to 120 GeV, provided the right-handed
squark is very light and the left-handed top squark very m
sive @9–11#.

The currently accepted picture for the way these eleme
fit together was developed by Cohen, Kaplan, and Nel
@12# ~see also@13–15# for reviews!. A first order transition
proceeds by nucleation of bubbles of the new, stable, ph
The bubbles grow and merge until the new phase has ta
over. The effect ofCP violation in the theory is to make th

*Email address: jackieg@pact.cpes.susx.ac.uk
†Email address: m.b.hindmarsh@sussex.ac.uk
0556-2821/2001/64~1!/016002~25!/$20.00 64 0160
-
.
-

n-

t
art

-

er
eV

-

s
op
s-

ts
n

e.
en

fermion reflection coefficients off the wall chirally asymme
ric, which results in a chiral asymmetry building up in fro
of the advancing wall in the fermion species which coup
most strongly to the wall and have the largestCP violating
couplings. This chiral asymmetry is turned into a bary
asymmetry by the action of symmetric-phase sphalerons

As the wall sweeps by, the rate of baryon number vio
tion by sphalerons drops as the sphaleron mass incre
sharply. The formation of a sphaleron is a thermal activat
process and the rate can be estimated to go asGs
.exp(2Es(T)/T), whereEs(T) is the energy of the sphalero
at temperatureT. This rate must not be so large that th
baryon asymmetry is removed behind the bubble wall
sphaleron processes in thermal equilibrium, and this con
tion can be translated into a lower bound on the sphale
mass@16–18#

Es~Tc!/Tc*45. ~1!

Thus it is clear that any theory of baryogenesis require
careful calculation of the sphaleron mass. For example
turns out that condition~1! is not satisfied for any value o
Higgs boson mass in the standard model@4#.

It has been known for a long time that spherically sy
metric solutions exist in SU~2! gauge theory with a single
fundamental Higgs boson@19–21#, which is the bosonic sec
tor of the standard model at zero Weinberg angle. Howe
it was Klinkhamer and Manton@22# who realized that they
were unstable, with a single unstable mode, and that
formation and decay of a sphaleron results in a simultane
change of bothB and L number byNf ~the number of fer-
mion families!. They calculated numerically both the ma
and the Chern-Simons number, finding the mass to be
~4.2! MW /aW at a Higgs boson mass of 72~227! GeV,
whereaW5gW

2 /4p andMW is the mass of theW6 particle;
and the Chern-Simons number to be exactly 1/2.

At Mh*12MW new solutions appear@23,24#, which have
different boundary conditions at the origin: the Higgs fie
does not vanish. These spontaneously violate parity and
cur in P conjugate pairs with slightly lower energy than th
©2001 The American Physical Society02-1
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original sphaleron, which correspondingly develops a sec
negative eigenvalue. These are termeddeformed sphalerons
or bisphalerons.

Several authors have considered models with two Hi
doublets. Kastening, Peccei, and Zhang~KPZ! @25# studied
models withCP violation, but did not use the most gener
spherically symmetric ansatz, limiting themselves to a pa
conserving form. Bachas, Tinyakov, and Tomaras~BTT!
@26#, on the other hand, considered a two-doublet theory w
no explicit CP violation, used aC conserving ansatz, chos
the masses of the pseudoscalar (MA) and the charged Higg
boson (MH6) to be zero, and chose the mixing between
two scalar Higgs bosons to be zero. They found newP vio-
lating solutions, specific to multi-doublet models, atMH
*5MW , where MH is the mass of the secondCP even
Higgs boson. They did not calculate the Chern-Simons nu
ber, but we show that these solutions appear inP conjugate
pairs and are in fact sphalerons, in that they have Ch
Simons number near 1/2, and one unstable mode. In view
the difference in behavior of the two Higgs fields as t
origin is approached, we call themrelative winding (RW)
sphalerons. More recently, Kleihaus@27# looked at the
bisphalerons in a restricted two-doublet Higgs model.

Sphalerons in the MSSM were studied by Moreno, O
nin, and Quiros~MOQ! @28#, who included one-loop correc
tions, both quantum and thermal. However, they again
not allow forP violating bisphalerons or RW sphalerons, a
did not consider the effect ofCP violation either, which can
appear in the guise of complex values of the soft SU
breaking terms in the potential.

All of the above work was carried out at zero Weinbe
angle with a spherically symmetric ansatz: there have b
several studies of sphalerons in the standard model in the
SU(2)3U(1) theory@29–31#, where one is forced to adop
the more complicated axially symmetric ansatz: Ref.@29#
used the axially symmetric ansatz in a numerical compu
tion, @30# expanded in powers ofg8/g using a partial wave
decomposition, and@31# estimated the energy by construc
ing a non-contractible loop in field configuration spa
which was sensitive touW . The upshot of this work is tha
working at the physical value of the Weinberg angle chan
the energy of the sphaleron by about 1%. It is interesting
note that the SU(2)3U(1) theory also contains charge
sphaleron solutions@32#.

Here we report on work on sphalerons in the two-doub
Higgs model~2DHM! in which we study the properties o
sphalerons in as general a set of realistic models as poss
although we do use the zero Weinberg angle approxima
and a spherically symmetric ansatz. We try to express par
eter space in terms of physical quantities: Higgs bo
masses and mixing angles, which helps us avoid region
parameter space which have already been ruled out by
CERNe1e2 collider LEP, or where the vacuum is unstab
It also means one can take into account ultraviolet radia
corrections by using the 1-loop corrected values for
masses and mixing angles.

We are interested in the energy, the Chern-Simons n
ber, the symmetry properties, and the eigenvalues of the
mal modes of the various sphaleron solutions in the the
01600
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as functions of the physical parameters. From the poin
view of the computation of the rate of baryon number vio
tion, the mass is certainly the most important quantity, f
lowed by the number and magnitude of negative eigenva
of the fluctuation operator in the sphaleron background:
largest contribution to the baryon number violation ra
comes from the sphaleron with lowest energy and hence o
one negative eigenvalue. The Chern-Simons number and
symmetry properties underC, P, and spatial rotations, ar
also interesting as they help classify the solutions.

We first check our results against the existing literatu
principally Yaffe @24# and BTT@26#, and then reexamine th
sphaleron in a more realistic part of parameter space, wh
MA andMH6 are above their experimental bounds. We fi
that in large regions of parameter space, particularly wh
one of the neutral Higgs bosons is heavy~above about 6
MW), the RW sphaleron is the lowest energy sphaler
When there isCP violation in the Higgs sector, the would-b
pseudoscalar Higgs boson can play the role of the he
Higgs boson, and the other two Higgs bosons can rem
relatively light. The fractional energy difference between t
RW and the ordinary~Klinkhamer-Manton! sphaleron is
small, about 1% in the parameter ranges we explored.

We encounter a problem withP violating sphalerons
when eitherMA2MH6, or the amount ofCP violation is
non-zero: there is a departure from spherical symmetry in
energy density, signaling an inconsistency in the ansatz
the field profiles. However, the energy density in the no
spherically symmetric terms is small, at most about 0.2%
the dominant spherically symmetric terms, so it is a go
approximation to ignore them.

We also looked at the sphaleron in the restricted para
eter space afforded by the~tree level! MSSM, confirming the
results of@28# that the sphaleron energy depends mainly
the mass of the lightest Higgs boson and on tanb, and find-
ing no RW or bisphaleron solutions.

Finally, we amplify the point made in@33# that introduc-
ing CP violation makes a significant difference to th
sphaleron mass, and may significantly change bounds on
Higgs mass from electroweak baryogenesis.

We do not explicitly compute quantum or thermal corre
tions @18,34–39# as they are model-dependent. However,
particle masses are expressed in units ofMW , a reasonable
approximation to the 1-loop sphaleron mass~in units of
MW /aW) can be obtained by interpreting the masses a
mixing angles as loop-corrected quantities evaluated a
energy scaleMW @39#. This approximation justifiably ignores
small corrections due to radiatively induced operators of
mension higher than 4, but does not take into account
cubic term in the effective potential. This means our calc
lations are less accurate near the phase transition. Howe
as the error is in the Higgs potential, which generally co
tributes less than 10% to the energy, the resulting uncerta
is not large.

The plan of the paper is as follows. In Sec. II we descr
the bosonic sector of the two Higgs doublet SU~2! elec-
troweak theory. We discuss the various parametrization
the scalar potential, and provide translation tables in App
dix A. We show how we use physical masses and mix
2-2
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SPHALERONS IN TWO HIGGS DOUBLET THEORIES PHYSICAL REVIEW D64 016002
angles as independent parameters of the theory. Althoug
this approach the stability of the vacuum is automatic, as
chooses the masses of the physical particles to be real,
are still the problems of boundedness and global minim
tion to be overcome. We solve the boundedness prob
straight forwardly, but with two Higgs doublets, finding th
global minimum of the potential is non-trivial, and we a
forced to use numerical methods.

In Sec. III we discuss the sphaleron solutions and th
symmetry properties. In Sec. IV we describe the numer
method we use to find the solutions: although the New
method has been used before@24,26# there are some difficul-
ties associated with the boundary conditions that were
highlighted by previous authors. In Sec. V we present
results. Section VI contains discussions and conclusions

Throughout this paper we use\5c5kB51, a metric
with signature (1,2,2,2), andMW580.4 GeV.

II. TWO HIGGS DOUBLET ELECTROWEAK THEORY

We shall be working with an SU~2! theory with two
Higgs doubletsfa , with subscripta51,2. Although we
should strictly work with the full SU(2)3U(1) theory, ne-
glecting the U~1! coupling is a reasonable approximation
make when studying the sphaleron.

The relevant Lagrangian is

L52
1

4
Fmn

a Famn1~Dmfa!†~Dmfa!2V~f1 ,f2!. ~2!

Here, the covariant derivativeDmfa5]mfa1gWm
a tafa

with antihermitian generatorsta5sa/2i .
on
en

an
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This Lagrangian may have discrete symmetries, includ
parity, charge conjugation invariance, andCP @40#. These
transformations are realized on the Higgs fields by

P: fa~ t,xj !→fa~ t,2xj !, ~3!

C: fa~ t,xj !→2 is2e2 i2uafa* ~ t,xj !, ~4!

CP: fa~ t,xj !→2 is2e2 i2uafa* ~ t,2xj !, ~5!

whereua are phase factors that can only be determined
reference to the complete theory. The transformations on
gauge fields are

P: Wm~ t,xj !→Wm~ t,2xj !, ~6!

C: Wm~ t,xj !→~2 is2!Wm* ~ t,xj !~2 is2!†, ~7!

CP: Wm~ t,xj !→~2 is2!Wm* ~ t,2xj !~2 is2!†. ~8!

With these transformations the only place a departure fr
C, P, or CP invariance can occur in Lagrangian~2! is in the
Higgs potential termV(f1 ,f2).

A. The Higgs potential

The most general two Higgs doublets potential has 14
parameters, assuming that the energy density at the minim
is zero. We shall consider one with a discrete symmetry
posed on dimension four terms,f1→f1 , f2→2f2, which
suppresses flavor changing neutral currents@41#, and results
in a potential with 10 real parameters. One of these par
eters may be removed by a phase redefinition of the fields
detail in Appendix A, and the potential may be written
V~f1 ,f2!5~l11l3!S f1
†f12

y1
2

2 D 2

1~l21l3!S f2
†f22

y2
2

2 D 2

12l3S f1
†f12

y1
2

2 D S f2
†f22

y2
2

2 D
1l4@f1

†f1f2
†f22Re2~f1

†f2!2Im2~f1
†f2!#1~l11x1!S Re~f1

†f2!2
y1y2

2 D 2

1~l12x1!Im2~f1
†f2!12x2S Re~f1

†f2!2
y1y2

2 D Im~f1
†f2!. ~9!
eld

n
s
es
of

of
ms
This form of the potential is convenient as the vacuum c
figuration, which we take as the zero of the potential is
tirely real:

fa
vac5

ya

A2
F0

1G . ~10!

This form also makes clear what are the sources ofCP vio-
lation in the theory. Ignoring couplings to other fields, it c
be seen that whenx250 there is a discrete symmetry

fa→2 is2fa* , ~11!
-
-
which sends Im(f1

†f2)→2Im(f1
†f2). This can be identi-

fied as charge conjugation invariance. Thusx2 is a C break-
ing parameter. In the presence of fermions,C andP are not
separately conserved, and we generally refer to the fi
properties according to their behavior underCP, and tox2
as aCP violating parameter, giving rise to a mixing betwee
theCP odd andCP even neutral Higgs. When one include
the other fields of the full theory one can find further sourc
of CP violation, such as the phases in the CKM matrices
the quarks and, if neutrinos are massive, leptons.

In Appendix A we write down how the nine parameters
Eq. ~9! relate to the parameters of the two more usual for
of this potential.
2-3
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It is useful to determine as many as possible of the n
parameters in the potential from physical ones. The phys
parameters at hand are the four masses of the Higgs part
the three mixing angles of the neutral Higgs bosons, and
vacuum expectation value (y) of the Higgs boson@which is
determined fromMW , and the SU~2! gauge couplingg#.
This leaves one undetermined parameter which may be
sen in various ways.

In the absence ofCP violation, we automatically have
x250, and our input parameters are;y, Mh and MH ~the
masses of theCP even scalars!, MA ~the mass of theCP odd
scalar!, MH6 ~the mass of the charged scalar!, f ~the mixing
angle between theCP even scalars!, tanb andl3, ~the only
parameter we choose by hand!. This gives non-zero value
for the other eight of our nine parameters.

In the presence ofCP violation our input parameter
again includey, Mh , MH , MA , MH6, f, andl3. However,
now we also haveuCP ~the mixing angle between theCP
even and theCP odd neutral Higgs sector which is entire
responsible for thex2 term!, and the third mixing anglec.
For a non-zerouCP , tanb is determined by the masses a
mixings, and although we still denote the three neutral Hig
boson masses asMh , MH , andMA we stress that they ar
not respectivelyCP even,CP even, andCP odd, but have
some combination of these properties depending on the
ues ofuCP andf.

The conversion between the parameters of Eq.~9! and
these masses and mixings is carried out in the charged s
through

l45
2MH6

2

y2
, ~12!

and in the neutral sector by writing

y2X[D21~c,uCP ,f! M P~Mh ,MH ,MA! D~c,uCP ,f!,
~13!

whereM P is a diagonal mass matrix given by

M P[Diag@MH
2 ,Mh

2 ,MA
2 #, ~14!

andD is the orthogonal matrix which diagonalisesX. Defin-
ing rotation matrices in the usual way,

Rz~a!5F cosa sina 0

2sina cosa 0

0 0 1
G ,

Ry~a!5F cosa 0 2sina

0 1 0

sina 0 cosa
G , ~15!

we can arrange for the mixing anglesc,uCP ,f to be the
usual Euler angles, through

D~c,uCP ,f![Rz~c!Ry~u!Rz~f!. ~16!
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The X(c,uCP ,f,Mh ,MH ,MA) of Eq. ~13! can be obtained
as a function of the parameters of Eq.~9!, by expanding
about the vacuum state Eq.~10!, to give

X~1,1!5
1

2
@4~l11l3!cos2b1~l11x1!sin2b#, ~17!

X~1,2!5X~2,1!5
1

2
~4l31l11x1!cosb sinb,

~18!

X~1,3!5X~3,1!5
1

2
x2 sinb, ~19!

X~2,2!5
1

2
@4~l21l3!sin2b1~l11x1!cos2b#, ~20!

X~2,3!5X~3,2!5
1

2
x2 cosb, ~21!

X~3,3!5
1

2
~l12x1!. ~22!

Inverting Eqs.~17!–~22! gives1

x252AX~1,3!21X~2,3!2, ~23!

b5arctan@X~1,3!/X~2,3!#, ~24!

l15@X~1,1!cosb2X~1,2!sinb

22l3 cos 2b cosb#
1

2 cos3b
, ~25!

l25@X~2,2!sinb2X~1,2!cosb

12l3 cos 2b sinb#
1

2 sin3b
, ~26!

l1522l31X~1,2!
1

sinb cosb
1X~3,3!, ~27!

x1522l31X~1,2!
1

sinb cosb
2X~3,3!, ~28!

where theX above are theX(c,uCP ,f,Mh ,MH ,MA) as
given by Eq.~13!. And we have chosen2p,2b,p from
which, depending on the sign ofX(1,2) andX(1,3), we can
set the sign ofx2. Although it is unconventional to allowb
to take negative values, it is a natural consequence of all
ing the mixing angles to vary over their full range.

1We have corrected two typographical errors from@33#: a
swapped cos and sin in Eq.~25! and Eq.~26!, and a sign error in
Eq. ~28!.
2-4
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B. Boundedness and stability of the Higgs potential

Before proceeding, we re-examine the conditions on
potential which derive from its boundedness and the stab
of the vacuum state. For boundedness we need consider
the quartic terms of Eq.~9! to find the large field behavior o
the potential. We write our doublets as

fa5uAQa uF cosraeika

sinraeiva G . ~29!

This will allow us to express the potential in terms of ind
pendent quantities. The quartic terms of Eq.~9! can then be
written as

V5aQ1
21bQ2

21c~h1 ,h2!Q1Q2 , ~30!

where

h15cosr1cosr2 cos~k22k1!1sinr1sinr2 cos~v22v1!,
~31!

h25cosr1 cosr2 sin~k22k1!1sinr1 sinr2 sin~v22v1!,
~32!

and

a5l11l3 , ~33!

b5l21l3 , ~34!

c~h1 ,h2!52l31l41~l12l41x1!h1
2

1~l12l42x1!h2
212x2h1h2 . ~35!

The variablesQ1 , Q2 , h1, and h2 are then independen
Furthermore,Q1 andQ2 are by definition non-negative, an
h1 andh2 are constrained to lie in the unit disk

0<h1
21h2

2<1. ~36!

The potential can now be viewed as a quadratic form inQ1 ,
Q2, in which case the form must be positive for all values
h1 , h2 in the unit disk. If cmin(h1 ,h2) is the minimum
value of c(h1 ,h2) for all h1 and h2, the condition for the
form to be positive and the potential bounded are

a1b>0, ~37!

ab2
cmin

2

4
>0. ~38!

On substituting the values ofa, b, andcmin into Eqs.~37! and
~38! we obtain

l11l212l3>0, ~39!

4l1l214~l11l2!l32~4l31lC!lC>0, ~40!

where
01600
r
y
nly

f

lC5H l12uAx1
22x2

2u if l12uAx1
22x2

2u>l4 ,

l4 otherwise.
~41!

Equations~39! and~40! are the necessary and sufficient co
ditions for a bounded quartic potential. In@33# we considered
only Eqs.~39! and ~40! for the second case of Eq.~41!.

The condition for the vacuum of Eq.~10! to be a mini-
mum is simply

mh
2.0, mH

2 .0, mA
2.0, mH6

2
.0. ~42!

On substituting masses and mixings from Eqs.~12! and~13!,
and Eqs.~23!–~28! into the inequalities Eqs.~39! and ~40!
we could derive six conditions directly on masses and m
ing angles. Vice versa, by substituting the expressions for
masses in to the parameters of the potential, six conditi
could be obtained directly on the parameters of Eq.~9!. In
practice, we picked masses and mixings, calculated the
rameters of Eq.~9!, and then verified that Eqs.~39! and~40!
held.

C. Global minimization

While the constraints of Eq.~42! guarantee that Eq.~10!
is a minimum of the potential, they do not guarantee that i
a global minimum. We are dealing with a large number
parameters, and before we proceed we need to be aware
for some regions of this parameter space the minimum of
~10! is not a global minimum. We were unable to find all b
the simplest analytic conditions on the parameters of
potential that constrained Eq.~10! to be a global minimum.

Our approach was perforce numerical: we ran theMAPLE

extremization routineEXTREMA which took as input param
eters the masses and mixings mentioned above. Howeve
found this extremization routine was not fully reliable an
did not find all the extrema. We instead adapted the c
written to find sphaleron solutions to find extrema with co
stant fields, and looked for configurations with negative e
ergy. In Appendix B we give more details of our numeric
method of finding global minima.

III. SPHALERON ANSATZ AND SPHERICAL SYMMETRY

A sphaleron is a static, unstable solution to the field eq
tions representing the highest energy field configuration i
path connecting one vacuum to another. It is easiest to l
for spherically symmetric solutions, and so we use
spherically symmetric ansatz of@42#, extended to allowP, C
@25#, andCP violation @33#:

fa5
1

2

y

A2
~Fa1 iGax̂asa!F0

1G ~43!

W05
1

A2

1

g
A0x̂a

sa

2i
~44!
2-5
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Wi5
1

A2

1

g F ~A21b!

r
«ai j x̂ j1

a

r
~dai2 x̂ax̂i !1A1x̂ax̂i G sa

2i
~45!

whereFa5aa1 iba andGa5ca1 ida , andFa , Ga , a, b,
A0, andA1 are functions of the radial coordinater.

We work in the radial gauge whereA1 is zero, and as we
are looking for static solutions we setA0 to zero. We have
scaled separately the Higgs boson and gauge parts of
ansatz so that the kinetic contribution to the energy is of
form 1

2 f A8
2, where f A generically denotes the field

aa ,ba ,ca ,da ,a,b.
Under theP, C, andCP transformations of Eqs.~3!–~8!,

where we have setua50, the fieldsf A , A0, andA1 trans-
form as shown in Table I.

On substituting ansatz Eqs.~43!–~45! into the Lagrangian
~2! we find the static energy functional

E@ f A#5
MW

g2 E dr du df r 2 sinu@K1VH# ~46!

wherer is in units ofMW
21 , and

K5K01K1x̂3 , ~47!

VH5V01V1x̂31V2x̂3x̂3 . ~48!

K0 , K1 , V0 , V1, andV2 are given in Appendix C, andx̂3

52f1
v†saf2

vxa/y1y2 is the third component of a unit radia
vector. Hence this ansatz is potentially inconsistent ifK1 ,
V1, andV2 are non-zero.

If the field configuration conservesC: Fa5aa and Ga
5ca , and we have the usual ansatz of@42#. This givesK1
50 and V150, although V2 may be non-zero ifMA
ÞMH6, and the field configuration hascaÞ0. If the field
configuration conservesP: Ga50, and again all three of the
dangerous termsK1 , V1, andV2 vanish. In the presence o
two Higgs doublets Bachas, Tinyakov, and Tomaras@26#
~for RWS! and Kleihaus@27# ~for bisphalerons! used aC
conserving ansatz and worked with parameters for wh
MA5MH650 and thereby conserved spherical symme
On introducingC violating terms Kastening, Peccei, an
Zhang@25# used aP conserving ansatz to find the ordina

TABLE I. P, C, andCP transformations for the fields of ansa
~43!–~45!.

P C CP

aa→1aa aa→1aa aa→1aa

ba→1ba ba→2ba ba→2ba

ca→2ca ca→1ca ca→2ca

da→2da da→2da da→1da

a→2a a→1a a→2a
b→1b b→1b b→1b
A0→2A0 A0→1A0 A0→2A0

A1→2A1 A1→1A1 A1→2A1
01600
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sphaleron, while in extending to the MSSM Moreno, Oakn
and Quiros@28# used aC and P conserving ansatz for the
sphaleron, and so again neither@25# nor @28# would have
noticed any departure from spherical symmetry.

The functionsK0 , V0, andV2 for the C conserving an-
satz, and the conditions on parameters and solutions w
conserve exact spherical symmetry are given in Appendix
If we allow an ansatz which does not conserveP, C, or CP
Fa5aa1 iba andGa5ca1 ida , andK1 , V1, andV2 can all
be nonzero.K0 , K1 , V0 , V1, andV2 for this case are also
given in Appendix C.

Our strategy is to assumef A[ f A(r ) and integrate over
x̂35cosu of Eqs.~46!–~48! to give

E@ f A#5
MW

aW
E dr r 2FK01V01

1

3
V2G . ~49!

If solutions, corresponding to extrema of Eq.~49!, have field
profiles for whichK150, V150, andV250, then the solu-
tions are exactly spherically symmetric, and the ansatz
succeeded. Otherwise, the solutions are not exactly sph
cally symmetric, withK1 , V1, andV2 measuring the depar
ture from spherical symmetry. We can then regard Eq.~49!
as the first term in an expansion in spherical harmonics,
our procedure finds a good approximation to thel 50 modes
provided thatK1 , V1, andV2 are all small in comparison to
K0 andV0.

In our previous paper@33# we assumed spherical symm
try at the level of the static energy functional by imposing

Fa5l~r !Ga , ~50!

which is too restrictive when it comes to findingC and P
violating solutions inC violating theories.

A. Properties of solutions

We can classify solutions according to which of the sy
metries C, P, and CP they preserve. The ordinar
~Klinkhamer-Manton@22#! SU~2! sphaleron preserves bot
C, and P, and its extension to aC conserving two Higgs
doublet theory therefore hasa50, ba50, ca50, andda
50. Kunz and Brihaye@23# and Yaffe @24# showed that,
with one Higgs doublet, there existP violating solutions at
large Higgs boson mass with lower energy than the ordin
sphaleron, this solution is named the bisphaleron as it oc
in P conjugate pairs. The appearance of a bisphaleron s
tion is signaled by the ordinary sphaleron developing an
tra negative eigenvalue as the Higgs boson mass increase
a C conserving theory these solutions areC invariant and
haveba50 andda50, and are distinguished from the ord
nary sphaleron by non-zeroca and a. To date they have
been investigated with onlyMh , MH , and tanb non zero,
which corresponds toMH65MA50 in a C conserving
theory, where they maintain spherical symmetry. Howe
with MH6ÞMA or a non-zerouCP ; V2, or K1 , V1, andV2
respectively can all be non-zero. Hence, departure fr
spherical symmetry is generic, even in the pure SU~2! two
doublet model.
2-6
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SPHALERONS IN TWO HIGGS DOUBLET THEORIES PHYSICAL REVIEW D64 016002
Bachas, Tinyakov, and Tomaras@26# investigated two
Higgs doublets models and found moreP violating solutions
at lower Higgs boson masses than the bisphaleron. Altho
again occurring inP conjugate pairs, they are distinguishe
from the bisphaleron in that their boundary conditions
quire more than one Higgs doublet: the two Higgs fie
have a relative winding around the 3-sphere of gau
inequivalent field values of constantuf1u anduf2u. Thus we
refer to them as relative winding or RW sphalerons or RW
If we refer just to a sphaleron, we shall henceforth gener
mean the ordinaryP andC conserving sphaleron. Note tha
RW sphalerons are spherically symmetric inC conserving
theories only whenMA5MH6.

The defining characteristic of a sphaleron is that it rep
sents the highest point of a minimum energy path star
and ending in the vacuum, along which the Chern-Sim
number changes by61. The Chern-Simons number is d
fined as

nCS5
g2

16p2
« i jkE d3xFWi

a] jWk
a1

1

3
g«abcWi

aWj
bWk

cG
~51!

5
g2

32p2E d3xK0, ~52!

where]mKm5Fmn
a F̃amn. Under a gauge transformation,nCS

changes by an integer: hence, field configurations with in
ger nCS are gauge equivalent to the vacuumWi

a50. One
should also note thatnCS is odd underCP.

Ordinary sphalerons have half-integer Chern-Simo
numbernCS, which by choice of a suitable gauge can
taken to be precisely 1/2. However, Yaffe found that t
bisphalerons pairs hadnCS51/26n, wheren was typically
fairly small, and depended on the parameters in the Hi
potential. Bachas, Tinyakov, and Tomaras did not calcu
the Chern-Simons number of their relative winding spha
rons pairs, but we also find them to come in pairs withnCS
51/26n. That solutions which spontaneously violateCP in
this way should come in such pairs is clear, as field confi
rations with nCS51/22n can be obtained from one wit
nCS51/21n by a combination of aCP and a gauge trans
formation.

IV. FINDING SOLUTIONS

A. Method

We will be finding solutions to a static energy function
of the form
01600
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E@ f A#5
MW

aW
E dr E~ f A!, ~53!

where

E~ f A!5
1

2
f G8

21
1

2
r 2f H8

21P~ f A!. ~54!

Here,P( f A) is a polynomial in the 10 fieldsf A , which we
divide into gauge fieldsf G5a,b and Higgs fields f H
5aa ,ba ,ca ,da .

We use a Newton method, following@24#, which is an
efficient way of finding extrema~and not just minima!. The
method can be briefly characterized as updating the fieldf A
by an amountd f A , given by the solution of

d2E
d f Bd f A

d f B52
dE
d f A

, ~55!

which we can abbreviate as

E 9d f 52E 8. ~56!

Provided E 9 has no zero eigenvalues, the equation ha
unique solution, subject to boundary conditions which
detail below. We sometimes added a fraction ofd f which,
although slower, occasionally produced a more stable c
vergence. The procedure is started from an initial guess
f A , and then repeated with each improved configuration,
til E 8 is small enough so thatd f .0.

A particular advantage to using this method is that
cause we are calculatingE 9, it is straight forward to get the
negative curvature eigenvalues,v2, from the diagonalization
of E 9 at each solution. To achieve this we use

1

2
E 9F d f G

rd f H
G5v2F d f G

rd f H
G , ~57!

from

d2E@ f A#5
MW

aW
E drF d f G

rd f H
GT 1

2
E 9F d f G

rd f H
G , ~58!

where it is understood that theE 9 of Eqs.~57! and ~58! has
been differentiated with respect tof G andr f H , and not as in
the Newton method of Eq.~55! with respect tof G and f H .
TABLE II. Boundary conditions for the ordinaryC, andP conserving sphaleron.

r→0 a→0 b→A2 aa→0 ba→0 ca→0 da→0

r→` a→0 b→2A2 a1→2 cosb b1→0 c1→0 d1→0
a2→2 sinb b2→0 c2→0 d2→0
2-7
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TABLE III. Boundary conditions at the origin for the (P violating! bisphaleron. The boundary condition
at infinity are the same as for the sphaleron, Table II.

r→0 a→A2 sin 2Q a1→2K1 cosb cosQ a2→2K2 sinb cosQ

b→2A2cos 2Q b1→2L1 cosb cosQ b2→2L2 sinb cosQ

c1→2K1 cosb sinQ c2→2K2 sinb sinQ

d1→2L1 cosb sinQ d2→2L2 sinb sinQ
re
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e
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nd-
B. Boundary conditions

Next we turn our attention to boundary conditions. Befo
we look at specific conditions for different solutions, we co
sider the terms of Eq.~C8! of Appendix C~up to numerical
factors!

K0
G}

1

r 2
~a21b222!21~aa

21ba
21ca

21da
2 !~a21b212!

12A2b~aa
21ba

22ca
22da

2 !24A2a~aaca1bada!.

~59!

We introduce new fieldsx, Ka , La , C, andQa defined by

2b1 ia5A2xexp~ iC!, ~60!

aa1 ica52
ya

y
Kaexp~ iQa!, ~61!

ba1 ida52
ya

y
Laexp~ iQa!, ~62!

and rewrite Eq.~59! as

K0}
1

r 2
~x221!21~2x212!@cos2b~K 1

21L 1
2!

1sin2b~K 2
21L 2

2!#24x cos2b~K 1
21L 1

2!

3Re@exp~2 iC1 i2Q1!#24x sin2b~K 2
21L 2

2!

3Re@exp~2 iC1 i2Q2!#. ~63!

We have a boundary condition from the finiteness of
energy density, due to the first term in Eq.~63! which can be
expressed as

x2→1 as r→0. ~64!

From the finiteness of the gauge current density@which is
proportional to the second, third, and fourth terms in E
~63!# and using Eq.~64!, we also have
01600
-

e

.

~K 1
21L 1

2!Re@exp~2 iC1 i2Q1!#→K 1
21L 1

2

~K 2
21L 2

2!Re@exp~2 iC1 i2Q2!#→K 2
21L 2

2J as r→0.

~65!

To satisfy Eq.~65! we require

either
K 1

21L 1
2→0

K 2
21L 2

2→0J or
Q1→C/21n1p

Q2→C/21n2pJ as r→0,

~66!

wheren1 ,n2PZ. Equation~66! can be rewritten as

either K a
21L a

2→0

or Q12Q2→~n12n2!p
J as r→0. ~67!

Equations~64! and~67! are then our boundary conditions a
r→0. The boundary conditions asr→` can be obtained
from finiteness ofK0 @Eq. ~C1!# and ofV0 @Eq. ~C4!#.

The ordinary sphaleron satisfies Eq.~67! by having

~K a
21L a

2 !ur 5050. ~68!

The full set of boundary conditions for the sphaleron a
given in Table II.

Bisphaleron pairs have different boundary conditions.
satisfy Eq.~67!, whered is a small positive angle, they hav

2Q1ur 5052Q2ur 505Cur 50[2Q52p6d. ~69!

The boundary conditions on thef A of these solutions are
given in Table III.

Relative winding sphalerons pairs satisfy Eq.~67! through

2~Q12p!ur 5052Q2ur 505Cur 5052p6d. ~70!

From Eq. ~67! we see that sincen15n2 for bisphalerons
while n15n211 for RWS, RWS unlike bisphalerons ca
only occur in multi-doublet theories. The integersn1 andn2
represent the winding numbers of the Higgs fields around
3-spheres of constantuf1u and uf2u, with only their differ-
ence having any gauge-invariant meaning. The RWS bou
ary conditions are given in Table IV.
t
TABLE IV. Boundary conditions at the origin for the (P violating! RWS. The boundary conditions a
infinity are the same as for the sphaleron, Table II.

r→0 a→A2 sinC a1→2K1 cosb cosQ1 a2→2K2 sinb cosQ2

b→2A2cosC b1→2L1 cosb cosQ1 b2→2L2 sinb cosQ2

c1→2K1 cosb sinQ1 c2→2K2 sinb sinQ2

d1→2L1 cosb sinQ1 d2→2L2 sinb sinQ2
2-8
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TABLE V. Energy (MW /aW), negative eigenvalues (MW
2 ), and Chern-Simons number form

5MH /MW5Mh /Mw and tanb51, for some of the same parameters as@24# and @26#. The solution with
energyEbi was reached by perturbing the ordinary sphaleron in the direction of the eigenvector with e
value2v3

2, and the solution with energyERWSwas reached by a perturbation with eigenvalue2v2
2. If we

refer to Fig. 2 of@26# we see that the bisphaleron branch itself bifurcates at the point where it no longe
two negative eigenvalues, and we note as a point of interest that the eigenvector with eigenvalue2v2

2 takes
us to the solution with lowest energy and not theS1 of @26#. ThenCS of the RWS for equalCP even Higgs
bosons, and tanb51 with all other parameters zero is 1/2, this is not the case generally. The agreemen
@24# and @26# is excellent.

m Esph 2v1
2 2v2

2 2v3
2 Ebi 2v1

2 2v2
2 nCS ERWS 2v1

2

5 4.435 5.391 ••• ••• ••• ••• ••• ••• ••• •••

6 4.531 6.217 0.279 ••• ••• ••• ••• ••• 4.528 5.171
7 4.609 7.171 1.225 ••• ••• ••• ••• ••• 4.587 4.147

10 4.778 11.22 5.962 ••• ••• ••• ••• ••• 4.668 3.090
13 4.888 17.70 13.27 0.316 4.886 11.86 6.546 0.454 4.700 2.7
15 4.942 23.49 19.49 0.926 4.930 8.447 2.349 0.428 4.711 2.6
30 5.147 101.4 98.55 3.212 5.031 5.207 ••• 0.387 4.734 2.451
50 5.243 292.7 290.1 4.734 5.052 4.874 ••• 0.380 4.738 2.403
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C. Numerical performance

The details of the implementation of the algorithm and
boundary conditions are relegated to Appendix D. W
checked the accuracy of our code by evaluating the ene
negative curvature eigenvalues and Chern-Simons num
for some of the same parameters as Yaffe@24# and Bachas,
Tinyakov, and Tomaras@26#, and found good agreemen
These can be seen in Table V.

The numerical scheme worked excellently, with typic
convergence after five to fifteen iterations of 1310213 in the
sum of absolute change in all fields at all points. The f
problems we did encounter were~1! sometimes the initial
configuration for a RW sphaleron was so close to the sph
ron that the Newton extremisation found the original spha
ron, particularly at points in parameter space near the bi
cation point, and~2! the Newton extremisation sometime
found the vacuum from the initial configuration for a RW
sphaleron . The first was solved by using a higher mass
sphaleron as initial conditions for minimization, and the s
ond problem by updating each minimization not withd f a

but with a fraction of it.
We ran simultaneously two codes. One with theC con-

serving ansatz, and the other with theC and P violating
ansatz. In the absence ofC violation the two codes were
identical. With 101 points instead of 51, the difference
energy,nCS, and eigenvalues was at most of order 0.5%
the value with 51 points.

V. RESULTS

A. No CP violation, M AÄM HÁÄ0

In order to compare with previous work, we first exami
the unrealistic limit ofMA5MH650, with no explicitCP
violation in the potential. We set the parametersl350 and
tanb56, and scanned throughMh and MH between 0 and
800 GeV.
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Figures 1–3 show contours in theMh andMH plane. The
contours are respectively of energy~Fig. 1!, most negative
eigenvalue and second most negative eigenvalue~Fig. 2!,
and nCS ~Fig. 3! of the sphaleron and relative windin
sphaleron. When we show equal contours of both soluti
the sphalerons are shown as dashes, and the RWS as
Below the black horizontal dotted line, shown on all fo
contour plots, only the sphaleron solution exists, above
black dotted line both solutions exist. The sphaleron ne
develops a third negative eigenvalue, nor the RWS a sec
negative eigenvalue. The solutions maintained exact sph
cal symmetry:V2 was zero throughout; this was expected
both uCP50, andMA5MH650. These contours are from
the same potential as used by BTT@26# and contain some o

FIG. 1. Contours inMh , MH space of the energy of the sphal
ron ~dashes!, and of the RWS~solid!, in units of MW /aW . Below
the dotted line the sphaleron is the only solution. Above the do
line, both solutions exist. The input parameters are tanb56 with all
other parameters zero.
2-9
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JACKIE GRANT AND MARK HINDMARSH PHYSICAL REVIEW D 64 016002
the parameter space they scanned. Where we overlap
agree with their results, and we confirm their observat
that the second negative eigenvalue appears when one o
Higgs boson has a somewhat large mass, (MH;5MW). For
low values of this heavier mass the lighter Higgs bos
needs to be as light as possible; i.e. for the existence
relative winding sphalerons it is preferable to have the t
Higgs boson masses,Mh andMH , well separated.

Figure 1 shows both the energy of the sphaleron and
energy of the RWS, there is almost no difference betw
their energies, and the energy depends mainly on the ma
the lighter Higgs boson. Figure 2 shows the most nega
eigenvalue of both the sphaleron and RWS, and we see
there is a large difference between the values of nega

FIG. 2. Contours inMh , MH space of the eigenvalue in units o
MW

2 . The top figure shows the most negative eigenvalue of
sphaleron~dashes!, and of the RWS~solid!. The bottom figure
shows the second most negative eigenvalue of the sphaleron. B
the dotted line the sphaleron is the only solution. Above the do
line, both solutions exist. The input parameters are tanb56 with all
other parameters zero.
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eigenvalues for the different solutions; the negative eig
value of the sphaleron can be double that for the rela
winding sphaleron for the same point in parameter spa
Figure 2 also shows the second negative eigenvalue of
sphaleron. The second most negative eigenvalue belong
the perturbation which leads to the RW sphaleron in confi
ration space.

Looking at Fig. 3 we see that the Chern-Simons num
of the RW sphaleron is generally not a half. There is a line
the contour space wherenCS51/2. This occurs, for tanb
51, along the line ofMh5MH , and shifts in the contour

e

ow
d

FIG. 3. Contours inMh , MH space of the Chern-Simons num
ber of the RWS. Below the dotted line only the sphaleron solut
exists, withnCS51/2. The input parameters are tanb56 with all
other parameters zero.

FIG. 4. Contours inMh , MH space of the energy of the sphal
ron ~dashes!, and of the RWS~solid!, in units of MW /aW . Below
the dotted line the sphaleron is the only solution, while above, b
solutions exist. For the dotted area the potential is unbounded.
input parameters are tanb56, MA5241 GeV, MH65161 GeV,
andl3520.05.
2-10
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SPHALERONS IN TWO HIGGS DOUBLET THEORIES PHYSICAL REVIEW D64 016002
plane for different values of tanb. We have only shown here
solutions withnCS<1/2. Each of these solutions withnCS

<1/2 has aP conjugate partner, with Chern-SimonsnCS
con

>1/2, such thatnCS1nCS
con51.

B. No CP violation, M AÄ3M W , M HÁÄ2M W

Figures 4–6 show contours inMh , MH space of energy
~Fig. 4!, most negative eigenvalue of the sphaleron and R
~Fig. 5 top!, second most negative eigenvalue of the spha
ron ~Fig. 5 bottom!, andnCS ~Fig. 6! of the sphaleron and th
relative winding sphaleron. Again when both solutions a
shown the sphaleron is dashes, and the RWS solid.

FIG. 5. Contours inMh , MH space of eigenvalues in units o
MW

2 . The top figure shows the most negative eigenvalue of
sphaleron~dashes!, and of the RW sphaleron~solid!. The bottom
figure shows the second most negative eigenvalue of the sphal
Below the dotted line the sphaleron is the only solution. Above
dotted line, both solutions exist. For the dotted region the poten
is unbounded. The input parameters are tanb56, MA5241 GeV,
MH65161 GeV, andl3520.05.
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For these figures we tookMA5241 GeV, MH6

5161 GeV, again with no explicitCP violation. We set the
parametersl3520.05, and tanb56, and scanned throug
Mh and MH between 0 and 800 GeV, with 20 GeV incre
ments. Again below the black dotted line, shown on all fo
contour plots, only the sphaleron solution exits, while abo
both solutions exist. We see that the RW sphaleron soluti
still persist for a large region of the parameter space. T
dotted region at lowMH was unbounded according to Eq
~39! and~40!. These solutions did not maintain exact sphe
cal symmetry corresponding toV250, but the maximum
value of energy due to theV2 term was 0.6% of the energ
due toV0.

The solutions have the same general features as tho
zero MA and MH6: the RW sphaleron appears at wide
separatedMH andMh . While the energies of the two solu
tions in Fig. 4 are almost indistinguishable, the most nega
eigenvalue~Fig. 5 top!, of the sphaleron can be double th
of the RW sphaleron. We show the value of the second m
negative eigenvalue of the sphaleron in Fig. 5~bottom!. The
sphaleron never developed a third negative eigenvalue,
the RW sphaleron a second negative eigenvalue. In Fig. 6
show the Chern-Simons number of the RW sphaleron,
again for every solution shown withnCS51/22n there is aP
conjugate solution withnCS

con51/21n.

C. CP violation, M AÄ8M W , M HÁÄ2M W

Figures 7–9 show contours inMh , MH space of energy
and second negative eigenvalue~Fig. 7!, most negative ei-
genvalue~Figs. 8! and Chern-Simons number~Fig. 9! of the
sphaleron and relative winding sphaleron. Sphaleron c
tours are shown as dashed lines and RW sphaleron con
as solid when present on the same graph.
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FIG. 6. Contours inMh , MH space of the Chern-Simons num
ber of the RW sphaleron. Below the dotted line only the sphale
solution exists, withnCS50.5. For the dotted region the potential
unbounded. The input parameters are tanb56, MA5241 GeV,
MH65161 GeV, andl3520.05.
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JACKIE GRANT AND MARK HINDMARSH PHYSICAL REVIEW D 64 016002
For these figures we tookMA5643 GeV, MH6

5161 GeV, this time withCP violation: uCP50.49p. The
remaining parameters weref50.1p, c50.0, andl353.0,
giving tanb53.1. We scanned throughMh between 0 and
400 GeV, andMH between 0 and 800 GeV, with 20 Ge
increments. The dotted region at lowMh was unbounded
according to Eqs.~39! and ~40!, and for the white out area
surrounded by the solid black line, the minimum of Eq.~10!
was not the global minimum.

FIG. 7. Top: contours inMh , MH space of energy in units o
MW /aW of the sphaleron~dashes!, and of the RW sphaleron~solid!.
Bottom: contours inMh , MH space of second negative eigenval
(MW

2 ) of the sphaleron. Above the dotted line the sphaleron is
only solution, while below both solutions exist. For the blank a
Eq. ~10! is not the global minimum. For the dotted area the poten
is unbounded. The input parameters areuCP50.49p, f50.1p, c
50.0, MA5643 GeV, MH65161 GeV, and l353.0. tanb
53.1.
01600
As with the previous contour plots, a large region of p
rameter space contained relative winding sphalerons.
these input parameters, though, due to the largeCP violating
mixing angle, the role of the large Higgs boson massMH is
taken on byMA . Since, from previous contour plots, th
relative winding sphaleron solution prefers regions of para
eter space where there is a large separation in values o
heaviest~in this case theMA) and the lightest~in this case
Mh , and MH) Higgs boson masses, the relative windin
sphaleron solutions exist for the lower part of the conto
plot, and not the upper part. Referring to Figs. 7–9: abo
the black dotted line the sphaleron is the only solution, wh

e
a
l

FIG. 8. Contours inMh , MH space of the most negative eige
value (MW

2 ) of the sphaleron~top! and of the relative winding
sphaleron~bottom!. Above the dotted line the sphaleron is the on
solution, while below both solutions exist. For the blank area E
~10! is not the global minimum. For the dotted area the potentia
unbounded. The input parameters areuCP50.49p, f50.1p, c
50.0, MA5643 GeV, MH65161 GeV, and l353.0. tanb
53.1.
2-12
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below the black dotted line both the sphaleron and the r
tive winding sphaleron exist, this is opposite to the behav
in the absence ofCP violation.

From Fig. 7 ~top! the energy of the two solutions is a
before almost the same. The second negative eigenvalu
the sphaleron is shown in the lower half of Fig. 7. T
sphaleron does not develop a third negative eigenvalue,
the RW sphaleron a second negative eigenvalue. We s
the most negative eigenvalue of the sphaleron and the
sphaleron~Fig. 8! on separate graphs, and again their resp
tive negative eigenvalues can be very different at the sa
point in the contour plane. We then show the Chern-Sim
numbers for the RW sphaleron in Fig. 9. Note that we o
show solutions withnCS<1/2: again, there are parity conju
gate partners to each of these RW sphalerons, and thenCS of
the RW sphaleron and of its parity partner add up to one

There is no breaking in the degeneracy of the relat
winding sphaleron pairs in energy, eigenvalues, or abso
difference from 1/2 of Chern-Simons number, due to
presence ofCP violation. The solutions are not exactl
spherically symmetric, and have non zero values for all th
of K1 , V1, and V2. The values ofK1 , V1, and V2 as a
percentage of the Higgs potential energy are each never m
than 0.5%.

D. MSSM parameter space

Next we scan through tree level MSSM parameter spa
Figure 10 shows the scan inMA , tanb space. Figure 11
shows the scan inMh , MH space. We plot contours of en
ergy~top! and negative eigenvalue~bottom! for each of these
scans.

For the range of parameters we show the sphaleron
not develop a second negative eigenvalue. There was no
parture from spherical symmetry, as only theaa field of the

FIG. 9. Contours inMh , MH space of the Chern-Simons num
ber of the RWS. Above the dotted line only the sphaleron solut
exists, withnCS51/2. For the blank area Eq.~10! is not the global
minimum. For the dotted area the potential is unbounded. The in
parameters areuCP50.49p, f50.1p, c50.0, MA5643 GeV,
MH65161 GeV, andl353.0. tanb53.1.
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Higgs ansatz and theb field of the gauge ansatz were ev
non-zero. From these four contours~Figs. 10 and 11! we
agree with the general result of@28# that the energy of the
sphaleron is sensitive to mainlyMh and tanb, although their
results should be more accurate as they included 1-loop
diative corrections. There were no relative winding spha
rons for the range of parameters explored.

E. Sphaleron energy andCP violation

We recall that aCP violating mixing angle can have a
large effect on the properties of the sphaleron. Here~Fig. 12!
we scan throughMh , uCP space and show the energy of th
sphaleron and the negative eigenvalue of the sphaleron
input parametersf50.125p, c50.0, MH5110 GeV, MA
5500 GeV, MH65500 GeV, andl350.0, these give
tanb52.4. For the dotted region at lowMh the potential was
unbounded, and for the blank region, bordered by the s
black line, the minimum of Eq.~10! was not the global mini-

FIG. 10. Contours inMA , tanb space of the sphaleron for tre
level MSSM parameters. The top figure shows energy (MW /aW) of
the sphaleron. The bottom figure shows negative curvature ei
value (MW

2 ) of the sphaleron.
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JACKIE GRANT AND MARK HINDMARSH PHYSICAL REVIEW D 64 016002
mum of the static energy functional. For this region of p
rameter space the sphaleron never developed a second
tive curvature eigenvalue.

The energy of the sphaleron~Fig. 12: top! is dependent
upon the value of theCP violating mixing angle, and
changes by about fourteen percent as the mixing angle va
between its minimum and its maximum. The energy is, in
presence ofCP violation, still sensitive to the lightest Higg
mass.

The negative eigenvalue~Fig. 12: bottom! also has this
strong dependence on theCP violating mixing angle, with
an increase of over fifty percent as the mixing angle var
Also the dependence onMh , although not as dramatic as th
effect of CP violation, is still present.

F. Field profiles

1. Sphaleron and RW sphaleron

Next we show the field profiles for the sphaleron, relat
winding sphaleron, and conjugate relative winding sphale

FIG. 11. Contours inMh , MH space of the energy (MW /aW) of
the sphaleron for tree level MSSM parameters. The top fig
shows energy (MW /aW) of the sphaleron. The bottom figure show
negative curvature eigenvalue (MW

2 ) of the sphaleron.
01600
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for a point in the contour plot of Sec. V C corresponding
a CP violating theory withMA58MW , MH652MW , Mh
51.25MW , and MH51.5MW . We recall that the mixing
angles wereuCP50.49p, f50.1p, c50.0, and the cou-
pling l353.0.

Before we proceed we check whether this point in para
eter space is phenomenologically viable at zero temperat
asMh51.25MW is ruled out if thehZZ coupling is too large.
We calculate the couplingsghZZ , gHZZ , andgAZZ according
to @43# using the values of input parameters used in Fi
13–16, and compare them with the latest particle data@44#.

Using

ghZZ5D@1,1#cosb1D@2,1#sinb ~71!

e

FIG. 12. Top: contours inMh , uCP space of the energy
(Mw /aw) of sphaleron; bottom: of the negative eigenvalue of t
sphaleron (MW

2 ). For this region of parameter space the sphale
is the only solution. For the blank region Eq.~10! is not the global
minimum. For the dotted region the potential is unbounded. T
input parameters aref50.125p, c50.0, MH5110 GeV, MA

5500 GeV,MH65500 GeV, andl350.0. tanb52.4.
2-14
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gHZZ5D@1,2#cosb1D@2,2#sinb ~72!

gAZZ5D@1,3#cosb1D@2,3#sinb ~73!

whereD is given by Eq.~16!, we obtain, for the parameter
of Figs. 13–16

ghZZ
2 50.081 ~74!

gHZZ
2 50.824 ~75!

gAZZ
2 50.095 ~76!

which for massesMh5101 GeV, MH5121 GeV, and
MA5643 GeV are within experimental bounds. Althoug
we have labeled the Higgs bosons with subscriptsh, H, and
A; because of the values of the mixingsf50.1p, uCP
50.49p, c50.0, while the particle with subscripth is CP
even, those with subscriptH, andA are a mix ofCP even
and CP odd. We then plot the energy density of the tw

FIG. 13. The sphaleron field profiles~top!, and the profiles for
b1 andb2 in more detail~bottom!. ca5da5a50. This configura-
tion has energy54.053MW /aW , nCS51/2, and two negative cur
vature eigenvalues28.696MW

2 , and21.754MW
2 . Input parameters

are uCP50.49p, f50.1p, c50.0, Mh5101 GeV, MH

5121 GeV, MA5643 GeV, MH65161 GeV, and l353.0.
These give tanb53.1, l1526.29, l2522.59, l150.91, l4

50.85, x150.42, andx250.41.
01600
types of solution, and the values ofK1 , V1, and V2 as a
function of the rescaled radial co-ordinate for the sphaler
RW sphaleron, and conjugate RW sphaleron. We recall
the departure ofK1 , V1, andV2 from zero signals the break
down of the spherically symmetric ansatz, and their size re
tive to the total energy density indicates the seriousnes
the breakdown.

It is convenient to plot the field values rescaled accord
to

f G5
f G

A2
, f H5

y

ya

f H

2
, ~77!

as then the asymptotic values are either 0 or61.
The ordinary sphaleron field profiles are plotted in Fig.

as a function of the rescaled radial points. The solution
nonzero values ofaa , ba , and b as expected for a field
configuration that preservesP but violatesC, due to the pres-
ence of aC violating parameter in the potential. The spha

FIG. 14. The RW sphaleron field profiles~top! and the profiles
for b1 , b2 , c2 , d1 , d2, anda in more detail~bottom!. This con-
figuration has energy54.047MW /aW , nCS50.478, and one nega
tive curvature eigenvalue23.637MW

2 . Input parameters areuCP

50.49p, f50.1p, c50.0, Mh5101 GeV,MH5121 GeV,MA

5643 GeV, MH65161 GeV, andl353.0. These give tanb
53.1, l1526.29,l2522.59,l150.91,l450.85,x150.42, and
x250.41.
2-15
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JACKIE GRANT AND MARK HINDMARSH PHYSICAL REVIEW D 64 016002
ron has Chern-Simons number 1/2, two negative eigenva
(28.696MW

2 , and 21.754MW
2 ), and has energy

4.053MW /aW .
The relative winding sphaleron field configuration

shown in Fig. 14, have non zero values for all fields. T
solution violatesP spontaneously andC explicitly, and vio-
lates the combinationCP. It has one negative eigenvalu
~-3.637 MW

2 ), energy less than its ordinary sphaler
(4.047MW/aW), and Chern-Simons number 0.478. Its par
conjugate partner, shown in Fig. 15, has field profiles id
tical to a P transformation of the RWS: that isca→2ca ,
da→2da , anda→2a, with all other fields remaining un
changed. The solution has identical energy, and eigenv
to its P conjugate solution, and its Chern-Simons numbe
0.522.

Next we show~Fig. 16: top! the energy density of the
sphaleron, and the RW sphaleron, and in detail~Fig. 16:
bottom! the values ofK1 , V1, andV2 for the RWS in units
of energy density.K1 andV1 are equal in value, but opposit

FIG. 15. The conjugate RW sphaleron field profiles~top!, and
the profiles forb1 , b2 , c2 , d1 , d2, anda in more detail~bottom!.
This configuration has energy54.047 MW /aW , nCS50.522, and
one negative curvature eigenvalue23.637MW

2 . Input parameters
are uCP50.49p, f50.1p, c50.0, Mh5101 GeV, MH

5121 GeV, MA5643 GeV, MH65161 GeV, and l353.0.
These give tanb53.1, l1526.29, l2522.59, l150.91, l4

50.85, x150.42, andx250.41.
01600
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,
e

-
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in sign for the conjugate pair,V2 is equal in value and equa
in sign. These deviations from spherical symmetry are
order one part in 103 for these values of parameters.

2. Bisphaleron

For completeness we detail the bisphaleron fields profi
for non zeroMA and MH6, and show their departure from
spherical symmetry. Figures 17 and 18 concern this bisph
ron. We have chosen masses which are perhaps unrea
cally large, in order to reach the part of parameter sp
where the bisphaleron exists: tanb56.0, Mh515.0MW ,
MH517.0MW , MA52.0MW , MH653.0MW and l3
520.1, with noCP violation. For these input paramete
l15567.6, l2512.4, l150.627, l451.923, x15
20.227, andx250.0.

FIG. 16. The top of the figure shows the total and the Hig
potential contribution to energy density in units ofMW

4 /aW for the
sphaleron~solid! and the RWS~dashes!. The bottom figure shows
K1 , V1, andV2 for the RWS~solid! and its conjugate~dashes! in
the same units. BothK1 andV1 are equal to their values for conju
gate solutions, but have opposite sign.V2 is equal to its value for
the conjugate solution. Input parameters areuCP50.49p, f
50.1p, c50.0, Mh5101 GeV, MH5121 GeV, MA

5643 GeV, MH65161 GeV, andl353.0. These give tanb
53.1, l1526.29,l2522.59,l150.91,l450.85,x150.42, and
x250.41.
2-16
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SPHALERONS IN TWO HIGGS DOUBLET THEORIES PHYSICAL REVIEW D64 016002
The energy density and departure from spherical sym
try are shown in Fig. 17. TheCP invariance means thatba
5da50, and henceK1 andV1 vanish. The departure from
spherical symmetry is entirely in theV2 term shown in units
of energy density (MW

4 /aW) in the lower half of Fig. 17. The
departure from spherical symmetry is of order 1 part in 14.

The configuration in Fig. 18 has energy54.932MW/aW ,
nCS50.569, it has two negative curvature eigenvalu
211.915MW

2 , and -6.788MW
2 . Its associated sphaleron ha

energy54.943 MW /aW with nCS51/2, and three negative
curvature eigenvalues223.823MW

2 , 213.249MW
2 , and

20.933MW
2 . Its conjugate bisphaleron has identical ener

and negative curvature eigenvalues, butnCS50.431; so
again thenCS of the bisphaleron and its conjugate add to o

VI. CONCLUSIONS

In this paper we have made a thorough study of the pr
erties of sphalerons in two Higgs doublet SU~2! gauge theo-
ries. Using a spherically symmetric approximation, we ha

FIG. 17. The top figure shows total and Higgs potential con
bution to energy density (MW

4 /aW) for the sphaleron~solid! and the
bisphaleron~dashes!. The bottom figure showsV2 for the bisphale-
ron solution and its conjugate.V2 for both the bisphaleron and
conjugate solution are equal. Input parameters are tanb56.0, uCP

50.0, f50.0, c50.0, Mh515.0MW , MH517.0MW , MA

52.0MW , MH653.0MW , andl3520.1.
01600
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s
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e

performed scans in the physical parameter space define
the masses and mixing angles of the Higgs particles, rec
ing the energy, lowest eigenvalues, and the Chern-Sim
number, with results recorded in Figs. 1–12. We have a
shown the profiles of the fields of our ansatz for selec
solutions in Figs. 13–18.

We can draw a number of broad conclusions from th
results. First, for a wide range of parameters, the minim
energy sphaleron is not the natural generalizations of
Klinkhamer-Manton sphaleron@22# with vanishing Higgs
fields at the origin, but a parity violating pair of relativ
winding ~RW! sphalerons, first identified by Bachas, Tiny
kov, and Tomaras@26#. These are related to the bisphalero
or deformed sphalerons found in one doublet models
Yaffe @24# and Kunz and Brihaye@23#, but are specific to
two Higgs doublet models. This pair was always degene
in energy, as is to be expected from a parity conserv
Lagarangian. This degeneracy is lifted when standard mo
fermions are included@45#.

The favored regions of parameter space for RW sph
rons to exist are those where there is a large difference in
masses of the neutral Higgs bosons. The mass of the he
Higgs boson can be as low as 5MW . Bisphalerons appear a
yet higher heavy Higgs boson masses, but were always m
massive than the RW sphalerons in the parameter spac
explored.

The appearance of extra sphaleron solutions is signale
the ordinary sphaleron developing another negative eig
value: thus where the RW sphaleron exists the ordin
sphaleron has two negative eigenvalues, and three wher
bisphaleron exists also. The lowest energy sphaleron m
have exactly one negative eigenvalue. The numerically
culated eigenvalues of a solution not only aid its identific
tion, but are important for accurate calculation of the bary

-

FIG. 18. The bisphaleron field profiles for tanb56.0, Mh

515.0MW , MH517.0MW , MA52.0MW , MH653.0MW and l3

520.1. It has energy54.932MW/aW , nCS50.569, two negative
curvature eigenvalues211.915MW

2 , and26.788MW
2 . Its conjugate

partner is the identical solution underP conjugation (a→2a), and
hasnCS50.431.
2-17
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JACKIE GRANT AND MARK HINDMARSH PHYSICAL REVIEW D 64 016002
number violation rate: if the negative eigenvalue of the lo
est energy sphaleron solution isv2

2 , then the rate is propor
tional to uv2u @34#. The difference between the most neg
tive eigenvalue of the sphaleron and the negative eigenv
of the RW sphaleron could be well over a factor of two.

The most important quantity for the calculation of theB
violation rate is normally the sphaleron energy. There
however very little difference in the energies of the ordina
and RW sphaleron: typically less than 1% in the range
parameters we surveyed. Thus the main contribution to
error in the rate from using the ordinary sphaleron com
from the negative eigenvalue. One must not only use
correct eigenvalue but also include a factor of two in the R
sphaleron rate, one for each of the two degenerate pa
conjugate solutions. However, this leads only to logarithm
corrections to the sphaleron energy bound~1!.

The most important parameter for the sphaleron ene
was found to be the mass of the lightest Higgs boson
accordance with previous studies. However, we were abl
extend our work on the dependence of the energy on theCP
violating mixing angleuCP @33# to show that there was
strong dependence on this quantity as well, with the sph
ron energy varying by;15% asuCP was adjusted through
its allowed range. We note as well that we were unable
find a region of parameter space for which RW sphaler
existed over a wide range ofuCP , for which the potential
was bounded, and for which Eq.~10! was the global mini-
mum.

Although we used a spherically symmetric ansatz,
found that two Higgs doublet sphalerons are generically
spherically symmetric. This means that our results are
proximate: however, the departure from spherical symme
as measured by the relative size of the symmetry viola
terms in the static energy functional, was less than 0.2%,
so this is not a serious problem for the accuracy of our
sults. A larger correction is to be expected when one con
ers the full SU(2)3U(1) theory at non-zerouW , for which
one also has to abandon the spherically symmetric ansatz
resort to an axially symmetric one instead@46#.

Another source of error is the neglect of radiative a
thermal corrections. Ideally one should work out the det
minants of fluctuation matrices@35–38#. One can also find
solutions using the 1-loop finite temperature effective pot
tial @28#. This is an implicit gradient expansion, neglectin
finite temperature corrections to gradient terms, which t
out to be small @39#. Such computations are mode
dependent: one first computes radiatively corrected c
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plings in the static energy functional, and then the sphale
energy. Our approach decouples the computation of the
diative corrections, for we can take masses and angles t
their 1-loop corrected values. Although this neglects cu
terms and terms of dimension higher than 4 in the poten
it is an easy way of improving on the tree-level calculatio
without sacrificing too much accuracy, as the contribution
the energy from the Higgs potential can be seen from F
16 and 17 to be small.

Despite these sources of error, we can conclude the
culations of the sphaleron energy inCP conserving models
cannot safely be applied toCP violating electroweak theo-
ries, and that the sphaleron bound on the mass of the ligh
Higgs boson inCP violating theories requires further inves
tigation.

ACKNOWLEDGMENTS

We wish to thank Mikko Laine and Neil McNair for help
ful discussions. This work was conducted on the SGI Ori
platform using COSMOS Consortium facilities, funded b
HEFCE, PPARC and SGI. We acknowledge computing s
port from the Sussex High Performance Computing Init
tive.

APPENDIX A: PARAMETRIZATION OF
TWO-DOUBLET POTENTIALS

In Sec. II A we wrote the two Higgs doublet potential a
Eq. ~9!. Here we write two common forms of the most ge
eral two Higgs doublet potential. First we write

V~f1 ,f2!5m1
2f1

†f11m2
2f2

†f21m12
2 f1

†f21m12
2* f2

†f1

1 l 1~f1
†f1!21 l 2~f2

†f2!21 l 3f1
†f1f2

†f2

1 l 4f1
†f2f2

†f11 l 5f1
†f2f1

†f21 l 5* f2
†f1f2

†f1

1 l 6f1
†f1f1

†f21 l 6* f1
†f1f2

†f11 l 7f2
†f2f1

†f2

1 l 7* f2
†f2f2

†f1 , ~A1!

where the only complex parameters are them12
2 , l 5 , l 6, and

l 7. This potential has 14 independent parameters. Impo
the discrete symmetryf1→f1 , f2→2f2 on dimension
four terms will forcel 65 l 750, and we have a potential with
ten independent parameters.

Writing the same potential as
V~f1 ,f2!5~l11l3!S f1
†f12

y1
2

2 D 2

1~l21l3!S f2
†f22

y2
2

2 D 2

12l3S f1
†f12

y1
2

2 D S f2
†f22

y2
2

2 D
1l4@f1

†f1f2
†f22Re2~f1

†f2!2Im2~f1
†f2!#1l5S Re~f1

†f2!2
y1y2

2
cosj D 2

1l6S Im~f1
†f2!2

y1y2

2
sinj D 2

1l7S Re~f1
†f2!2

y1y2

2
cosj D S Im~f1

†f2!2
y1y2

2
sinj D1m1S f1

†f12
y1

2

2 D S Re~f1
†f2!2

y1y2

2
cosj D
2-18
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1m2S f1
†f12

y1
2

2 D S Im~f1
†f2!2

y1y2

2
sinj D1m3S f2

†f22
y2

2

2 D S Re~f1
†f2!2

y1y2

2
cosj D

1m4S f2
†f22

y2
2

2 D S Im~f1
†f2!2

y1y2

2
sinj D , ~A2!

where all the parameters are real, we again have a potential with 14 independent parameters. Imposingf1→f1 , f2→
2f2 on dimension four terms we force four of these parametersm15m25m35m450, and we have a ten parameter potent

The advantage of writing the potential as Eq.~A2! is that the three of the parameters of the potential arej, y1, andy2, and
that the zero of the potential is

fa5
ya

A2
F 0

eiwa
G , ~A3!

wherew150, andw25j.
The relations between the parameters of Eq.~A1! and those of Eq.~A2! are

m1
252~l11l3!y1

22l3y2
22

m1

2
y1y2 cosj2

m2

2
y1y2 sinj, ~A4!

m2
252~l21l3!y2

22l3y1
22

m3

2
y1y2 cosj2

m4

2
y1y2 sinj, ~A5!

Re~m12
2 !52

l5

2
y1y2 cosj2

l7

4
y1y2 sinj2

m1

2
y1

22
m3

2
y2

2 , ~A6!

Im~m12
2 !52

l5

2
y1y2 sinj2

l7

4
y1y2 cosj2

m2

2
y1

22
m4

2
y2

2 , ~A7!

l 15l11l3 , ~A8!

l 25l21l3 , ~A9!

l 352l31l4 , ~A10!

l 45
l51l6

2
2l4 , ~A11!

l 55
1

4
~l52l62 il7!, ~A12!

l 65
1

2
~m12 im2!, ~A13!

l 75
1

2
~m32 im4!. ~A14!

We are free to redefine the fieldsfa of Eqs.~A1! and ~A2!. Rewriting Eq.~A2! with fa→faeiwa gives

V~f1 ,f2!5~l11l3!S f1
†f12

y1
2

2 D 2

1~l21l3!S f2
†f22

y2
2

2 D 2

12l3S f1
†f12

y1
2

2 D S f2
†f22

y2
2

2 D
1l4@f1

†f1f2
†f22Re2~f1

†f2!2Im2~f1
†f2!#1~l11x1!S Re~f1

†f2!2
y1y2

2 D 2

1~l12x1!Im~f1
†f2!2

1x2S Re~f1
†f2!2

y1y2

2 D Im~f1
†f2!1m 1̃ S f1

†f12
y1

2

2 D S Re~f1
†f2!2

y1y2

2 D1m 2̃ S f1
†f12

y1
2

2 D Im~f1
†f2!

1m 3̃ S f2
†f22

y2
2

2 D S Re~f1
†f2!2

y1y2

2 D1m 4̃ S f2
†f22

y2
2

2 D Im~f1
†f2!, ~A15!
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and we now have a potential which is a function of 13 p
rameters, one less than both Eqs.~A1! and~A2!. Where these
new parameters are in terms of those of Eq.~A2!

l15
1

2
~l51l6!, ~A16!

l25
1

2
~l52l6!, ~A17!

x15
l7

2
sin 2j1l2cos 2j, ~A18!

x25
l7

2
cos 2j2l2sin 2j, ~A19!

m 1̃5m1cosj1m2sinj, ~A20!

m 2̃52m1sinj1m2cosj, ~A21!

m 3̃5m3cosj1m4sinj, ~A22!

m 4̃52m3sinj1m4cosj. ~A23!

On imposing the discrete symmetryf1→f1 , f2→2f2

on dimension four termsm 1̃5m 1̃5m 1̃5m 1̃50, and we have
a potential which is a function of nine parameters, again
less than the potentials of Eqs.~A1! and~A2! with the same
symmetry imposed. This nine parameter potential is Eq.~9!
of Sec. II A and is the potential we use throughout.

APPENDIX B: EXTREMA OF THE POTENTIAL

Extrema of the potential given in Eq.~9! occur at solu-
tions to the four independent equations

dV~Xi !

dXi
50, ~B1!

wherei 51,2,3,4, andXi are thex1 , x2 , y2, andz2 of

f15
y1

A2
F 0

x1
G , f25

y2

A2
F z2

x21 iy2
G . ~B2!

A general bounded function of four variables with quar
and quadratic terms only can have up to 24 minima.

The trivially found solutions to Eq.~B1! are x1561,
x2561, y25z250 @i.e. Eq. ~10!#, and x15x25y25z2
50. The only other solution we were able to find analy
cally was
01600
-

e

x150,

x2
21y2

21z2
2215

l3

~l21l3!tan2b
,

x25
2x2

~l11x1!
y2 , ~B3!

these describe a circle with one zero eigenvalue, and po
tial energy

V5
y1

2y2
2

4 Fl1l21~l11l2!l3

~l21l3!tan2b
1l11x1G , ~B4!

which may be less than zero for a potential obeying E
~39!, ~40!, and ~42!, and is a zero of the other terms of th
static energy functional~46!.

To find numerically the global minimum, we imple
mented two methods. First, using theMAPLE extremization
routineEXTREMA, we looked for an extremum ofV(Xi) with
negative energy somewhere in the chosen region of par
eter space. As the vacuum in our parametrization has z
energy, this meant it was not the global minimum. We us
this solution as an initial configuration for a simple rela
ation algorithm, which is equivalent to settingE 9 of the
Newton method@Eq. ~55!# to unity. We then scanned thoug
parameter space relaxing to the global minimum at ev
point.

Our second method was to use an initial configuration
Xi50, find the eigenvalues of the configuration, and ad
perturbation in the direction of the eigenfunction with th
most negative eigenvalue. We then used the relaxation
tine on this configuration. We did this for each point in p
rameter space, reinitializing toXi50 at each point.

APPENDIX C: STATIC ENERGY FUNCTIONAL

On substituting the ansatz of Eqs.~43!–~45! into the La-
grangian~2! we obtain the static energy functional of E
~46!. Here we give the form ofK0 , K1 , V0 , V1, andV2 for
theC conserving ansatz and for theC andP violating ansatz.

In the absence ofC violation Fa5aa and Ga5ca , and
we have the usual ansatz of Ratra and Yaffee@42# where
K15V150 andK0 , V0, andV2 are

K05K0
D1K0

G , ~C1!

K0
D5

1

2r 2
@aa8

2r 21ca8
2r 21a821b82#, ~C2!
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K0
G5

1

2r 2 F 1

4r 2
~a21b222!21

1

4
~aa

21ca
2 !~a21b212!1

A2b

2
~aa

22ca
2 !2A2aaacaG , ~C3!

V05
y2

16MW
2 @~l11l3!~a1

21c1
224 cos2b!21~l21l3!~a2

21c2
224 sin2b!212l3~a1

21c1
224 cos2b!~a2

21c2
224 sin2b!

1l4~a1c22a2c1!21~l11x1!~a1a21c1c224 cosb sinb!2#, ~C4!

V25
y2

16MW
2 @~2l41l12x1!~a1c22a2c1!2#. ~C5!

This ansatz will maintain spherical symmetry ifV250. The conditionV250 is met if l45l12x1, or equivalently if
MH65MA . In cases whereMH6ÞMA , the spherical symmetry of a field configuration will still be maintained ifa1c2
5a2c1, as theV2 terms vanish from the energy density. The ordinary sphaleron comes into this class of configuration
c15c250. However, it is still important to include this term as it affects the form ofE 9 used in Eq.~56! to calculate the
curvature eigenvalues.

In the presence ofC violation ba andda are no longer zero andK0 , K1 , V0 , V1, andV2 are

K05K0
D1K0

G , ~C6!

K0
D5

1

2r 2
@aa8

2r 21ba8
2r 21ca8

2r 21da8
2r 21a821b82 #, ~C7!

K0
G5

1

2r 2 F 1

4r 2
~a21b222!21

1

4
~aa

21ba
21ca

21da
2 !~a21b212!1

A2b

2
~aa

21ba
22ca

22da
2 !2A2a~aaca1bada!G , ~C8!

K15
1

2r 2 F ~aa8da82ba8ca8 !r 21
1

4
~aada1baca!~a21b222!G , ~C9!

V05
y2

16MW
2 @~l11l3!~a1

21b1
21c1

21d1
224 cos2b!21~l21l3!~a2

21b2
21c2

21d2
224 sin2b!2

12l3~a1
21b1

21c1
21d1

224 cos2b!~a2
21b2

21c2
21d2

224 sin2b!1l4„~a1c22a2c11b1d22b2d1!2

1~a1d21a2d12b1c22b2c1!224~a1d12b1c1!~a2d22b2c2!…1~l11x1!~a1a21b1b21c1c21d1d224 cosb sinb!2

1~l12x1!~a1b22a2b11c1d22c2d1!212x2~a1a21b1b21c1c21d1d224 cosb sinb!~a1b22a2b11c1d22c2d1!#,

~C10!

V15
y2

16MW
2
†4~l11l3!~a1

21b1
21c1

21d1
224 cos2b!~a1d12b1c1!14~l21l3!~a2

21b2
21c2

21d2
224 sin2b!~a2d22b2c2!

14l3„~a1
21b1

21c1
21d1

224 cos2b!~a2d22b2c2!1~a2
21b2

21c2
21d2

224 sin2b!~a1d12b1c1!…12~l11x1!

3~a1a21b1b21c1c21d1d224 cosb sinb!~a1d21a2d12b1c22b2c1!22~l12x1!~a1b22a2b11c1d22c2d1!

3~a1c22a2c11b1d22b2d1!12x2@~a1a21b1b21c1c21d1d224 cosb sinb!~a1c22a2c11b1d22b2d1!

2~a1b22a2b11c1d22c2d1!~a1d21a2d12b1c22b2c1!#‡, ~C11!

V25
y2

16MW
2 @4~l11l3!~a1d12b1c1!214~l21l3!~a2d22b2c2!218l3~a1d12b1c1!~a2d22b2c2!

2l4„~a1c22a2c11b1d22b2d1!21~a1d21a2d12b1c22b2c1!224~a1d12b1c1!~a2d22b2c2!…1~l11x1!
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3~a1d21a2d12b1c22b2c1!21~l12x1!~a1c22a2c11b1d22b2d1!2

22x2~a1d21a2d12b1c22b2c1!~a1c22a2c11b1d22b2d1!]. ~C12!
e

-
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APPENDIX D: NUMERICAL SCHEME

To implement the scheme numerically, we discretize thn
fields intoN valuesf Ai in the range 0<r<R. The values at
the boundariesf A0 and f A(N21) are determined by the bound
ary conditions in a way which we specify below. HenceE 9 is
a n(N22)3n(N22) matrix, andd f and E 8 are n(N22)
column vectors.

To increase the accuracy of the solution while minimizi
the number of pointsN we use a rescaled coordinates, where

s5
1

lnuCu
lnF11mr

11r G , m5
Mmax

Mw
, C5

11mR

11R
.

~D1!

Here,Mmax is the maximum of@Mh , MH , MA , MH6#, and
for Mmax5Mw we used Mmax51.013Mw . We took R
520Mw

21 and usedN551 points throughout. It is also con
venient to define two new functionsX(s), Y(s) through

X~s![
ds

dr
5

1

lnuCu
1

~m21!

~Cs2m!2

Cs
, ~D2!

Y~s![
dX

ds
5

1

m21

~Cs2m!~Cs1m!

Cs
. ~D3!

The first derivative of the energyE 8 may be split into Higgs
boson and gauge parts

E 8H52~Yr212r !
d fH

ds
2Xr2

d2f H

ds2

1
1

X

d

d fH
FK0

G1V01
1

3
V2G , ~D4!
01600
E 8G52Y
d fG

ds
2X

d2f G

ds2
1

1

X

d

d fG
FK0

G1V01
1

3
V2G .

~D5!

We use symmetric second-order accurate differencing for
derivatives, and so

EHi8 52~Yir i
212r i !

~ f Hi 112 f Hi 21!

2hs

2Xir i
2 ~ f Hi 1122 f Hi1 f Hi 21!

hs
2

,

1
1

Xi

d

d fHi
FK0i

G 1V0i1
1

3
V2i G ~D6!

EGi8 52Yi

~ f Gi112 f Gi21!

hs
2Xi

~ f Gi1122 f Gi211 f Gi21!

hs
2

1
1

Xi

d

d fGi
FK0i

G 1V0i1
1

3
V2i G , ~D7!

where the indexi 51, . . . ,(N22), runs over the rescaled co
ordinates, excluding the first and last points, andhs5(N
21)21, is the separation between each adjacent rescaled
ordinate. We did not use (f Hi 1222 f Hi1 f Hi 22)/(2hs)

2 for
the second order derivative, as this would have produced
systems independent in derivative terms, one seeing the
points and one seeing the odd points.

The matrix E 9 is a block tridiagonaln(N22)3n(N
22) matrix of the form
2-22
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where each of these boxes aren3n matrices, and there ar
(N22)3(N22) such boxes. The only nonzero terms a
theDi ,i 21

2 , Di ,i
0 , andDi ,i 11

1 . Note thatDi ,i 21
2 andDi ,i 11

1 are
themselves diagonal, with entries

Di ,i 21
2 5

1

2hs
Yi2

1

hs
2

Xi , ~D8!

Di ,i 11
1 52

1

2hs
Yi2

1

hs
2

Xi , ~D9!

for the two gauge fields, and

Di ,i 21
2 5

1

2hs
~2r i1r i

2Yi !2
1

hs
2

r i
2Xi , ~D10!

Di ,i 11
1 52

1

2hs
~2r i1r i

2Yi !2
1

hs
2

r i
2Xi ,

~D11!

for the remaining Higgs fields. If we write
th

in

01600
DAi,Bi
0 [DAi,Bi

0der 1DAi,Bi
0mat , ~D12!

thenDi ,i
0der are diagonal inA, B with

Di ,i
0der5

2

hs
2

Xi ~gauge fields!, ~D13!

Di ,i
0der5

2

hs
2

r i
2Xi ~Higgs fields!.

~D14!

The non-diagonal elements are symmetric inA, B with

DAi,Bi
0mat5

d2

d fAid fBi
FK0i

G 1V0i1
1

3
V2i G . ~D15!

We have to be careful about the form ofE 9 at the top left
corner of the matrix, corresponding to thei 51 point, affect-
ing theD1,1

0 , and theD1,2
1 terms. Also the bottom right cor

ner, corresponding to thei 5(N22) point, affecting the
DN22,N23

2 , and theDN22,N22
0 since these must implemen

the boundary conditions
re
m-
Because for the sphaleron the boundary conditions at
origin are never updated,D1,1

0 , andD1,2
1 for the sphaleron are

as Eq.~D12!. For the RWS, and bisphalerons at the orig
we use for the gauge fields

f G8 ur 5050→ f Gu i 505 f Gu i 51 , ~D16!

and from this we are able to calculate

Cu i 505arctan~2a/b!u i 50 . ~D17!

For the Higgs fields we use Tables III and IV to give
e cau i 505aau i 50tanQau i 50 , ~D18!

dau i 505bau i 50tanQau i 50 , ~D19!

where theQau i 50 are calculated fromCu i 50 of Eq. ~D17!,
and using Tables III and IV according to whether we a
looking for the bisphalerons or RW sphalerons. Further i
posing smoothness offa

†fb at the origin gives boundary
conditions

aau i 505aau i 51cos2Qau i 501cau i 51 sinQau i 50cosQau i 50 ,

~D20!
2-23
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bau i 505bau i 51cos2Qau i 501dau i 51 sinQau i 50cosQau i 50 ,
~D21!

cau i 505cau i 51 sin2Qau i 501aau i 51cosQau i 50 sinQau i 50 ,
~D22!

dau i 505dau i 51 sin2Qau i 501bau i 51cosQau i 50 sinQau i 50 .
~D23!

To update the origin after each Newton Raphson itera
we use Eqs.~D16!, ~D20!–~D23!. We also use these to giv
us the form ofD1,1

0 andD1,2
1 when looking for the bisphale

rons or RW sphalerons. We did this by first writing, foraa ,

2~Yr212r !
daa

ds U
1

2Xr2
d2aa

ds2 U
1

52~Y1r 1
212r 1!

1

2hs
~aau22aau1cos2Qau1

2cau1cosQau1 sinQau1!2X1r 1
2 1

hs2
~aau222aau1

1aau1cos2Qau11cau1cosQau1sinQau1!, ~D24!

with the equivalent expression for the other Higgs fields; a
using Eq.~D16!, for the gauge fields, we write

2Y
d fG

ds U
1

2Xr2
d2f G

ds2 U
1

52Y1

1

2hs
~ f Gu22 f Gu1!

2X1

1

hs2
~ f Gu22 f Gu1!.

~D25!

We then, after functional differentiation of Eqs.~D24! and
~D25!, get a form ofD1,1

0 and D1,2
1 that sees the boundar

conditions.
TheQa throughout are zero if we are looking for sphal

ron solutions, and are determined from either Tables III
IV with Eq. ~D17! according to whether we are looking fo
bisphalerons or RWS.

We now turn to the boundary conditions at infinity. Th
last point is never updated since this boundary does
s.

ni-

ni-

01600
n

d

r

ot

evolve, andDN22,N22
0 is as Eqs.~D12!–~D15!. We did not

usef G8 ur→`5( f GuN212 f GuN22)/hs50 as the boundary con
dition since rescaling the radial coordinate to allow grea
accuracy at the origin reduces the number of points at la
distances. This meant that the form of the first and sec
derivative were not very accurate at the last few points.

The form ofE 8 of Eqs.~D6! and~D7! was not affected by
the boundary conditions. BecauseE 8 is only defined fori
51, . . . ,(N22) and first and second derivatives ati 51, and
i 5N22 are obtained from the already updated fieldsf Au0

and f AuN21.
Also recalling thatE 9 of Eqs. ~56! and ~57! used in the

evaluation of the curvature eigenvalues is functionally diff
entiated with respect tof G andr f H , and notf G and f H . The
form of D1,1

0 andD1,2
1 for evaluating the curvature eigenva

ues is for the Higgs fields components as Eqs.~D12! and
~D15! sinced(r f H)u050. We again use Eq.~D16! for the
gauge fields.

To find solutions other than the original sphaleron we fi
find the sphaleron and determine the curvature eigenva
and eigenfunctions of the configuration. If there is more th
one negative curvature eigenvalue, we successively ad
fraction of the eigenfunction of the second~or third! negative
eigenvalue to the sphaleron field configuration, measur
the energy at each step. If we chose this fraction sm
enough~typically between 0.01 and 0.1) the energy at ea
step will decreases until it reaches a minimum. When
energy after a step is larger than the energy measured
the previous step, we multiply the fraction by20.1 and con-
tinue until the fraction is21029 times its original value.

This configuration is then used as the initial configurati
for the Newton Raphson minimization routine to find th
RW sphalerons~or bisphalerons!.

Sliding down the most negative eigenfunction of a spha
ron configuration reaches the vacuum. Sliding down the s
ond most negative eigenfunction reaches the lowest en
branch of sphaleron like solutions, a third negative eig
function will reach the second lowest energy branch and
on. In this way we were able to find bisphalerons and R
sphalerons of the theory.

We use BLASFORTRAN subroutinesDGBCO andDGBSL to
solve ford f a of Eq. ~56! and subroutineDGEEV to evaluate
the curvature eigenvalues and eigenfunctions.
r,

y

B

@1# A. D. Sakharov, Zh. E´ksp. Teor. Fiz., Pis’ma Red.5, 32 ~1967!
@JETP Lett.5, 24 ~1967!#.

@2# G. ’t Hooft, Phys. Rev. Lett.37, 8 ~1976!.
@3# V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phy

Lett. 155B, 36 ~1985!.
@4# K. Kajantie, M. Laine, K. Rummukainen, and M. Shaposh

kov, Nucl. Phys.B466, 189 ~1996!.
@5# K. Kajantie, M. Laine, K. Rummukainen, and M. Shaposh

kov, Nucl. Phys.B493, 413 ~1997!.
@6# P. Huet and A. E. Nelson, Phys. Rev. D53, 4578~1996!.
@7# M. Carena, M. Quiros, A. Riotto, I. Vilja, and C. E. Wagne
Nucl. Phys.B503, 387 ~1997!.

@8# J. M. Cline, M. Joyce, and K. Kainulainen, J. High Energ
Phys.07, 018 ~2000!.

@9# B. de Carlos and J. R. Espinosa, Nucl. Phys.B503, 24 ~1997!.
@10# M. Laine and K. Rummukainen, Nucl. Phys.B535, 423

~1998!.
@11# J. M. Cline and G. D. Moore, Phys. Rev. Lett.81, 3315~1998!.
@12# A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Lett.

263, 86 ~1991!.
2-24



v,

s.

K.

y

he
s

ys.

k

SPHALERONS IN TWO HIGGS DOUBLET THEORIES PHYSICAL REVIEW D64 016002
@13# V. A. Rubakov and M. E. Shaposhnikov,Prepared for La
Plata Meeting on Trends in Theoretical Physics, La Plata, Ar-
gentina, 1997, Phys. Usp.39, 461 ~1996!.

@14# A. Riotto and M. Trodden, Annu. Rev. Nucl. Part. Sci.49, 35
~1999!.

@15# M. Trodden, Rev. Mod. Phys.71, 1463~1999!.
@16# M. E. Shaposhnikov, Pis’ma Zh. E´ksp. Teor. Fiz.44, 364

~1986! @JETP Lett.44, 465 ~1986!#.
@17# M. E. Shaposhnikov, Nucl. Phys.B287, 757 ~1987!.
@18# A. I. Bochkarev, S. V. Kuzmin, and M. E. Shaposhniko

Phys. Lett. B244, 275 ~1990!.
@19# R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D12,

2443 ~1975!.
@20# V. Soni, Phys. Lett.93B, 101 ~1980!.
@21# J. Burzlaff, Nucl. Phys.B233, 262 ~1984!.
@22# F. R. Klinkhamer and N. S. Manton, Phys. Rev. D30, 2212

~1984!.
@23# J. Kunz and Y. Brihaye, Phys. Lett. B216, 353 ~1989!.
@24# L. G. Yaffe, Phys. Rev. D40, 3463~1989!.
@25# B. Kastening, R. D. Peccei, and X. Zhang, Phys. Lett. B266,

413 ~1991!.
@26# C. Bachas, P. Tinyakov, and T. N. Tomaras, Phys. Lett. B385,

237 ~1996!.
@27# B. Kleihaus, Mod. Phys. Lett. A14, 1431~1999!.
@28# J. M. Moreno, D. H. Oaknin, and M. Quiros, Nucl. Phy

B483, 267 ~1997!.
01600
@29# B. Kleihaus, J. Kunz, and Y. Brihaye, Phys. Lett. B273, 100
~1991!.

@30# M. E. James, Z. Phys. C55, 515 ~1992!.
@31# F. R. Klinkhamer and R. Laterveer, Z. Phys. C53, 247~1992!.
@32# P. M. Saffin and E. J. Copeland, Phys. Rev. D57, 5064~1998!.
@33# J. Grant and M. Hindmarsh, Phys. Rev. D59, 116014~1999!.
@34# P. Arnold and L. McLerran, Phys. Rev. D36, 581 ~1987!.
@35# L. Carson and L. McLerran, Phys. Rev. D41, 647 ~1990!.
@36# L. Carson, X. Li, L. McLerran, and R. Wang, Phys. Rev. D42,

2127 ~1990!.
@37# J. Baacke and S. Junker, Phys. Rev. D49, 2055 ~1994!; 50,

4227 ~1994!.
@38# D. Diakonov, M. Polyakov, P. Sieber, J. Schaldach, and

Goeke, Phys. Rev. D53, 3366~1996!.
@39# G. D. Moore, Phys. Rev. D53, 5906~1996!.
@40# C. Jarlskog,Advanced Series on Directions in High Energ

Physics, Vol. 3 ~World Scientific, Singapore, 1989!, p. 723.
@41# J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, ‘‘T

Higgs Hunter’s Guide,’’ SCIPP-89/13; ‘‘Errata for the Higg
Hunter’s guide,’’ hep-ph/9302272.

@42# B. Ratra and L. G. Yaffe, Phys. Lett. B205, 57 ~1988!.
@43# M. Carena, J. Ellis, A. Pilaftsis, and C. E. Wagner, Nucl. Ph

B586, 92 ~2000!.
@44# ALEPH, DELPHI, L3, and OPAL Collaborations, P. Boc

et al., CERN-EP-2000-055.
@45# G. Nolte and J. Kunz, Phys. Rev. D51, 3061~1995!.
@46# Y. Brihaye and J. Kunz, Phys. Rev. D50, 4175~1994!.
2-25


