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We undertake a comprehensive investigation of the properties of the sphaleron in electroweak theories with
two Higgs doublets. We do this in as model-independent a way as possible: by exploring the physical param-
eter space described by the masses and mixing angles of the Higgs particles. If there is a large split in the
masses of the neutral Higgs particles, there can be several sphaleron solutions, distinguished by their properties
under parity and the behavior of the Higgs field at the origin. In general, these solutions appear in parity
conjugate pairs and are not spherically symmetric, although the departure from spherical symmetry is small.
Including CP violation in the Higgs potential can change the energy of the sphaleron by up to 14% for a given
set of Higgs boson masses, with significant implications for the baryogenesis bound on the mass of the lightest

Higgs boson.
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I. INTRODUCTION fermion reflection coefficients off the wall chirally asymmet-

One of the major unsolved problems in particle cosmol-ric, which results in a chiral asymmetry building up in front
ogy is to account for the baryon asymmetry of the Universeof the advancing wall in the fermion species which couple
This asymmetry is usually expressed in terms of the parammost strongly to the wall and have the larg€# violating
eter , defined as the ratio between the baryon number derfouplings. This chiral asymmetry is turned into a baryon
sity ng and the entropy densitg n=ng/s~10 10 Sa- asymmetry by the action of symmetric-phase sphalerons.
kharov[1] laid down the framework for any explanation: the _ AS the wall sweeps by, the rate of baryon number viola-
theory of baryogenesis must contain baryon numBgn{o- tion by sphalerons.drops as the sph_aleron mass increases
lation, charge conjugationQ) violation, combined charge sharply. The formation of a sphaleron is a thermal activation

' i i i i d the rate can be estimated to gol'gs
conjugation and parity@P) violation, and a departure from Process an _
thermal equilibrium. The standard model is naturaliyand =exp(~E4T)/T), whereE4(T) is the energy of the sphaleron

P violating, and violate< P through the couplings of fermi- at temperaturef. This rate must not be so large that the
onic charged currents to they* [the Cabibbo-Kobayashi- baryon asymmetry is removed behind the bubble wall by

. . sphaleron processes in thermal equilibrium, and this condi-
Maskawa(CKM) matrix]. It was also known to violate the i5n can be translated into a lower bound on the sphaleron
combination B+L (where L is lepton number non- mass[16—18
perturbatively 2], and the realization that this rate is large at
high temperature, and that the standard model could depart
from equilibrium at a first order phase transitif8], led to
considerable optimism that the origin of the baryon asymme-
try could be found in known physics. Thus it is clear that any theory of baryogenesis requires a
However, the standard model does not have a first ordegareful calculation of the sphaleron mass. For example, it
phase transition for Higgs boson masses above about 75 Geurns out that conditioril) is not satisfied for any value of
[4,5], and in any case is not thought to have eno@f  Higgs boson mass in the standard modgl
violation. Current attention is focused on the minimal super- It has been known for a long time that spherically sym-
symmetric standard modéMSSM), where there are many metric solutions exist in S(2) gauge theory with a single
sources ofCP violation over and above the CKM matrix fundamental Higgs bosdii9-21], which is the bosonic sec-
[6—8], and the phase transition can be first order for Higgdgor of the standard model at zero Weinberg angle. However,
boson masses up to 120 GeV, provided the right-handed tap was Klinkhamer and Mantof22] who realized that they
squark is very light and the left-handed top squark very maswere unstable, with a single unstable mode, and that the
sive[9-11]. formation and decay of a sphaleron results in a simultaneous
The currently accepted picture for the way these elementshange of bottB and L number byN; (the number of fer-
fit together was developed by Cohen, Kaplan, and Nelsomion familieg. They calculated numerically both the mass
[12] (see alsd13—19 for reviews. A first order transition and the Chern-Simons number, finding the mass to be 3.7
proceeds by nucleation of bubbles of the new, stable, phasé&.2) My/ay, at a Higgs boson mass of 7227) GeV,
The bubbles grow and merge until the new phase has takemhere ay,= g\z,v/47r andM,, is the mass of th&V= particle;
over. The effect ofCP violation in the theory is to make the and the Chern-Simons number to be exactly 1/2.
At M,=12My new solutions appedR3,24|, which have
different boundary conditions at the origin: the Higgs field
*Email address: jackieg@pact.cpes.susx.ac.uk does not vanish. These spontaneously violate parity and oc-
"Email address: m.b.hindmarsh@sussex.ac.uk cur in P conjugate pairs with slightly lower energy than the

Es(T.)/T.=45. @
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original sphaleron, which correspondingly develops a seconds functions of the physical parameters. From the point of
negative eigenvalue. These are terndedormed sphalerons view of the computation of the rate of baryon number viola-
or bisphalerons tion, the mass is certainly the most important quantity, fol-
Several authors have considered models with two Higg$éowed by the number and magnitude of negative eigenvalues
doublets. Kastening, Peccei, and ZhaidPZ) [25] studied of the fluctuation operator in the sphaleron background: the
models withCP violation, but did not use the most general largest contribution to the baryon number violation rate
spherically symmetric ansatz, limiting themselves to a paritycomes from the sphaleron with lowest energy and hence only
conserving form. Bachas, Tinyakov, and Tomaf8IT) one negative eigenvalue. The Chern-Simons number and the
[26], on the other hand, considered a two-doublet theory witlsymmetry properties undeZ, P, and spatial rotations, are
no explicit CP violation, used & conserving ansatz, chose also interesting as they help classify the solutions.
the masses of the pseudoscalst,) and the charged Higgs We first check our results against the existing literature,
boson M=) to be zero, and chose the mixing between theprincipally Yaffe[24] and BTT[26], and then reexamine the
two scalar Higgs bosons to be zero. They found fewio-  sphaleron in a more realistic part of parameter space, where
lating solutions, specific to multi-doublet models, it Ma andM = are above their experimental bounds. We find
=5M,y, where My is the mass of the secon@P even that in large regions of parameter space, particularly when
Higgs boson. They did not calculate the Chern-Simons numene of the neutral Higgs bosons is healabove about 6
ber, but we show that these solutions apped® itonjugate  My,), the RW sphaleron is the lowest energy sphaleron.
pairs and are in fact sphalerons, in that they have ChernA/hen there iCP violation in the Higgs sector, the would-be
Simons number near 1/2, and one unstable mode. In view giseudoscalar Higgs boson can play the role of the heavy
the difference in behavior of the two Higgs fields as theHiggs boson, and the other two Higgs bosons can remain
origin is approached, we call themelative winding (RW) relatively light. The fractional energy difference between the
sphalerons More recently, Kleihaug27] looked at the RW and the ordinary(Klinkhamer-Manton sphaleron is
bisphalerons in a restricted two-doublet Higgs model. small, about 1% in the parameter ranges we explored.
Sphalerons in the MSSM were studied by Moreno, Oak- We encounter a problem with violating sphalerons
nin, and Quiro§MOQ) [28], who included one-loop correc- when eitherM ,— M+, or the amount ofCP violation is
tions, both quantum and thermal. However, they again dichon-zero: there is a departure from spherical symmetry in the
not allow forP violating bisphalerons or RW sphalerons, andenergy density, signaling an inconsistency in the ansatz for
did not consider the effect &€ P violation either, which can the field profiles. However, the energy density in the non-
appear in the guise of complex values of the soft SUSYspherically symmetric terms is small, at most about 0.2% of
breaking terms in the potential. the dominant spherically symmetric terms, so it is a good
All of the above work was carried out at zero Weinbergapproximation to ignore them.
angle with a spherically symmetric ansatz: there have been We also looked at the sphaleron in the restricted param-
several studies of sphalerons in the standard model in the fullter space afforded by tligee level MSSM, confirming the
SU(2)xX U(1) theory[29-31], where one is forced to adopt results of{ 28] that the sphaleron energy depends mainly on
the more complicated axially symmetric ansatz: H@®] the mass of the lightest Higgs boson and orBtaand find-
used the axially symmetric ansatz in a numerical computaing no RW or bisphaleron solutions.
tion, [30] expanded in powers af’/g using a partial wave Finally, we amplify the point made if83] that introduc-
decomposition, an@i31] estimated the energy by construct- ing CP violation makes a significant difference to the
ing a non-contractible loop in field configuration spacesphaleron mass, and may significantly change bounds on the
which was sensitive t@,,. The upshot of this work is that Higgs mass from electroweak baryogenesis.
working at the physical value of the Weinberg angle changes We do not explicitly compute quantum or thermal correc-
the energy of the sphaleron by about 1%. It is interesting tdions [18,34—39 as they are model-dependent. However, if
note that the SU(2XU(1) theory also contains charged particle masses are expressed in unitd/qf, a reasonable
sphaleron solutiong32)]. approximation to the 1-loop sphaleron ma&s units of
Here we report on work on sphalerons in the two-doubletMy/ay) can be obtained by interpreting the masses and
Higgs model(2DHM) in which we study the properties of mixing angles as loop-corrected quantities evaluated at an
sphalerons in as general a set of realistic models as possiblenergy scalé,y, [39]. This approximation justifiably ignores
although we do use the zero Weinberg angle approximatiosmall corrections due to radiatively induced operators of di-
and a spherically symmetric ansatz. We try to express paranmension higher than 4, but does not take into account the
eter space in terms of physical quantities: Higgs bosortubic term in the effective potential. This means our calcu-
masses and mixing angles, which helps us avoid regions détions are less accurate near the phase transition. However,
parameter space which have already been ruled out by thes the error is in the Higgs potential, which generally con-
CERNe"e™ collider LEP, or where the vacuum is unstable. tributes less than 10% to the energy, the resulting uncertainty
It also means one can take into account ultraviolet radiativés not large.
corrections by using the 1-loop corrected values for the The plan of the paper is as follows. In Sec. Il we describe
masses and mixing angles. the bosonic sector of the two Higgs doublet (8Uelec-
We are interested in the energy, the Chern-Simons numtroweak theory. We discuss the various parametrizations of
ber, the symmetry properties, and the eigenvalues of the nothe scalar potential, and provide translation tables in Appen-
mal modes of the various sphaleron solutions in the theorydix A. We show how we use physical masses and mixing
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angles as independent parameters of the theory. Although in This Lagrangian may have discrete symmetries, including
this approach the stability of the vacuum is automatic, as onparity, charge conjugation invariance, a@d [40]. These
chooses the masses of the physical particles to be real, thetransformations are realized on the Higgs fields by
are still the problems of boundedness and global minimiza- _ j J.
tion to be overcome. We solve the boundedness problem Pr ¢ (tx)—du(t,—X)), 3
straight forwardly, but with two Higgs doublets, finding the ) N Si20, 4% (4 i
global minimum of the potential is non-trivial, and we are C: du(tX)——lioe " eg (1,X), (4)
forced to use numerical methods. ) N 20, % (4

In Sec. Il we discuss the sphaleron solutions and their CPo ¢alt,X))— —ioge $a(t, =), ®)
symmetry properties. In Sec. IV we describe the numericajyhere ¢, are phase factors that can only be determined by
method we use to find the solutions: although the Newtonteference to the complete theory. The transformations on the
method has been used bef¢2d,26] there are some difficul-  gauge fields are
ties associated with the boundary conditions that were not _ _
highlighted by previous authors. In Sec. V we present our P W, (t,x)—WH(t,—x)), (6)
results. Section VI contains discussions and conclusions. j ) j ot

Throughout this paper we usk=c=kg=1, a metric C: W (tX)=(=To) W, (t.X)(—iar)", @)
with signature ¢,—,—,—), andM\,=80.4 GeV. i . i .

g t ) w CP: W#(t,x')—>(—|02)W“*(t,—x1)(—|02)T. (8)

Il. TWO HIGGS DOUBLET ELECTROWEAK THEORY With these transformations the only place a departure from
C, P, or CP invariance can occur in Lagrangi@d) is in the

We shall be working with an S@) theory with two Higgs potential term/(dy . é,).

Higgs doubletsg,, with subscripta=1,2. Although we
should strictly work with the full SU(2XU(1) theory, ne-

glecting the W1) coupling is a reasonable approximation to
make when studying the sphaleron. The most general two Higgs doublets potential has 14 real

The relevant Lagrangian is parameters, assuming that the energy density at the minimum
is zero. We shall consider one with a discrete symmetry im-
a ” posed on dimension four termé; — ¢, ¢do— — ¢,, Which
4FquaM +(Du¢a)T(D#d’a)_V(¢l’¢Z)' 2) suppresses flavor changing neutral currédfd, and results

in a potential with 10 real parameters. One of these param-
Here, the covariant derivativd ,¢,=d,¢,+ g\/\/itaqba eters may be removed by a phase redefinition of the fields we
with antihermitian generatot$= ¢?/2i. detail in Appendix A, and the potential may be written

A. The Higgs potential

1
L=—7

2
v

$3do——

2
+2\3

2
v
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2 2
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N4l Bl drdr— RE(Ld) —IMA(hlho) 1+ (N s+ x1)

+ (N g —x1) M@l ba) +2x2

Re($]b) %) Im($]2). ©

This form of the potential is convenient as the vacuum conwhich sends Imé] ¢,)— —Im(¢ld,). This can be identi-
figuration, which we take as the zero of the potential is enfied as charge conjugation invariance. Thysis aC break-

tirely real: ing parameter. In the presence of fermio@sand P are not
separately conserved, and we generally refer to the field
v, |0 properties according to their behavior und®P, and toy,
¢Zac=ﬁ 1} (100 as aCP violating parameter, giving rise to a mixing between

the CP odd andCP even neutral Higgs. When one includes
) ) the other fields of the full theory one can find further sources
This form also makes clear what are the source€ Bivio- ¢ o p yjglation, such as the phases in the CKM matrices of
lation in the theory. Ignoring couplings to other fields, it can o quarks and, if neutrinos are massive, leptons.

be seen that wheg,=0 there is a discrete symmetry In Appendix A we write down how the nine parameters of
] . Eq. (9) relate to the parameters of the two more usual forms
bo— —i0o2¢,, (1) of this potential.
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It is useful to determine as many as possible of the nindhe X(i,0cp,d,My,My,M,) of Eg. (13) can be obtained
parameters in the potential from physical ones. The physicads a function of the parameters of E®), by expanding
parameters at hand are the four masses of the Higgs particleshout the vacuum state EQ.0), to give
the three mixing angles of the neutral Higgs bosons, and the
vacuum expectation valuey) of the Higgs bosorwhich is
determined fromM,y,, and the SR) gauge couplingg].

This leaves one undetermined parameter which may be cho-

1
X(1,)= 5[4(7‘1+ N3)COSB+ (N, + x1)sirPB], (17)

sen in various ways. 1 '
In the absence o€P violation, we automatically have X(1,2)=X(2,)=5(4hgH\; +x1)COSB SINB,
x2>=0, and our input parameters arg; M,, and M, (the (18)

masses of th€ P even scalays M , (the mass of th€ P odd
scalay, M= (the mass of the charged scalap (the mixing 1
angle between th€P even scalaps tan3 and\ 3, (the only X(1,3=X(3,)= 5 X2 sing, (19
parameter we choose by handhis gives non-zero values
for the other eight of our nine parameters. 1

In the presence ofCP violation our input parameters - )
again includey, My, My, Ma, M=, ¢, and\ ;. However, X(22) 2[4()\2+)\3)Sln2'g+()\++X1)CO§B]’ 20
now we also haved.p (the mixing angle between theéP
even and theC P odd neutral Higgs sector which is entirely
responsible for they, term), and the third mixing angley.
For a non-zerdqp, tan3 is determined by the masses and
mixings, and although we still denote the three neutral Higgs 1
boson masses ad,,, M, andM, we stress that they are X(3.3=5 (A= x1). (22
not respectively}CP even,CP even, andCP odd, but have
some combination of these properties depending on the Va|hverting Eqs.(17)-(22) gives
ues of fcp and ¢.

1
X(2,3)=X(3,2= 7 X2 cosp, (21

The conversion between the parameters of €.and ¥o=2X(1,32+X(2,3?2, (23)
these masses and mixings is carried out in the charged sector
through B=arctafiX(1,3/X(2,3)], (24)
2M; N =[X(1,1)cosB—X(1,2sin B
H* = ,JcosB— ,2)sin
Ng=—7(, (12 !
v
—2\3C0S 2B cos , 25
and in the neutral sector by writing ° ¥ '8]2 cosp @9
X=D "X, 0cp,$) Mp(Mpy,My,Mp) D(w.ﬁcp,da,g) No=[X(2,2)sinB—X(1,2)cosp
. 1
whereM; is a diagonal mass matrix given by +2\3 cos2,85|n,8]m, (26)
i
Mp=Diag M7, M7 ,M3], (14)

A= —2\3+X(1,2) +X(3,3, (27

andD is the orthogonal matrix which diagonalis¥sDefin- sinB cospB
ing rotation matrices in the usual way,
cosa sina 0 X1=—2>\3+X(1,2)W—X(3.3), (28)
R,(a)=| —sina cosa O],
0 0 1 where theX above are theX(¢,60cp, ¢, My, My, M,) as

given by Eq.(13). And we have choser 7<2B8<m from
which, depending on the sign of(1,2) andX(1,3), we can

set the sign ofy,. Although it is unconventional to alloyg
Ry(a)=| O 1 0 (15  to take negative values, it is a natural consequence of allow-
ing the mixing angles to vary over their full range.

[cosa 0 -—sina]

L sina 0 cosa |

we can arrange for the mixing anglesfcp,¢ to be the

usual Euler angles, through We have corrected two typographical errors frd®3]: a
swapped cos and sin in E(R5) and Eq.(26), and a sign error in
D(¢,0cp,#)=R(4)R, ()R (). (16)  Eq.(29.
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B. Boundedness and stability of the Higgs potential

Before proceeding, we re-examine the conditions on our c— Ny

PHYSICAL REVIEW B4 016002

B R N e ¢ I R % R WA

) " (4D
otherwise.

potential which derive from its boundedness and the stability

of the vacuum state. For boundedness we need consider onEy
the quartic terms of Eq9) to find the large field behavior of

the potential. We write our doublets as

ba=1VQ,|

cosp €' “a
. (29

sinp e “®

This will allow us to express the potential in terms of inde-
pendent quantities. The quartic terms of E®). can then be

written as
V=aQ+bQ5+c(n1,72)Q1Qz, (30)
where

771=C0Sp1COSp, COY ky— k1) +SiNP;SiNp, COL wr— 1),

(31
7),=C0OSp1 COSp, SIN( ko — K1) +SiNp, SiNp, SIN(wWo— wq),
(32

and
a=\;+\g, (33
b=X\y+X\3, (39

c(71,72) =2 g+ Ng+ (N =g+ x1) 75

(N =Ngm XD o+ 2x2mmz. (35)

I
guations(39) and(40) are the necessary and sufficient con-
ditions for a bounded quartic potential.[I83] we considered
only Egs.(39) and(40) for the second case of E(41).
The condition for the vacuum of E@10) to be a mini-
mum is simply

mZ>0, mi{>0, mi>0, m;.>0. (42

On substituting masses and mixings from Ed2) and(13),

and Egs.(23)—(28) into the inequalities Eqg.39) and (40)

we could derive six conditions directly on masses and mix-
ing angles. Vice versa, by substituting the expressions for the
masses in to the parameters of the potential, six conditions
could be obtained directly on the parameters of . In
practice, we picked masses and mixings, calculated the pa-
rameters of Eq(9), and then verified that Eq§39) and(40)

held.

C. Global minimization

While the constraints of Eq42) guarantee that Eq10)
is a minimum of the potential, they do not guarantee that it is
a global minimum. We are dealing with a large number of
parameters, and before we proceed we need to be aware that
for some regions of this parameter space the minimum of Eq.
(10) is not a global minimum. We were unable to find all but
the simplest analytic conditions on the parameters of our
potential that constrained E¢LO) to be a global minimum.

Our approach was perforce numerical: we ranNiaeLE

The variablesQ;, Qp, 7;, and 7, are then independent. extremization routin&xTREMA which took as input param-
FurthermoreQ, andQ, are by definition non-negative, and eters the masses and mixings mentioned above. However, we

7, and 7, are constrained to lie in the unit disk
0< 75+ n5=<1. (36)

The potential can now be viewed as a quadratic forr®{n

found this extremization routine was not fully reliable and
did not find all the extrema. We instead adapted the code
written to find sphaleron solutions to find extrema with con-
stant fields, and looked for configurations with negative en-
ergy. In Appendix B we give more details of our numerical

Qz, in which case the form must be positive for all values of method of finding global minima.

71, 12 In the unit disk. If cpin(771,72) is the minimum
value ofc(#nq,7,) for all », and »,, the condition for the

form to be positive and the potential bounded are

a+b=0, (37)
2 .
ab— 2'”20. (39)

On substituting the values af b, andc,,;, into Egs.(37) and
(38) we obtain

N+ Ap+205=0, (39
ANAN o+ AN+ N)N3— (4N + NN =0, (40

where

I1l. SPHALERON ANSATZ AND SPHERICAL SYMMETRY

A sphaleron is a static, unstable solution to the field equa-
tions representing the highest energy field configuration in a
path connecting one vacuum to another. It is easiest to look
for spherically symmetric solutions, and so we use the
spherically symmetric ansatz p£2], extended to allowr, C
[25], andCP violation [33]:

L R rie K 43

dmzﬁ(alaxwl (43
11 ..0°

WOZE aAOX E (44)
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TABLE I. P, C, andCP transformations for the fields of ansatz sphaleron, while in extending to the MSSM Moreno, Oaknin,

(43)—(45). and Quiros[28] used aC and P conserving ansatz for the
sphaleron, and so again neitH@5] nor [28] would have
P C cP noticed any departure from spherical symmetry.

The functionsK,, Vg, andV, for the C conserving an-

a,—+a, a,—+a, a,—+a, . . .
b —+b b——b b ——b satz, and the conditions on parameters and solutions which
C“_HC“ C“_)JFC“ C“_HC“ conserve exact spherical symmetry are given in Appendix C.
d“_}_d“ d“_)_d“ d"_)+d“ If we allow an ansatz which does not conseRseC, or CP
:_ « "_}+ “ e F,=a,t+ib,andG,=c,+id,, andK, V{, andV, can all
“« +a “« +a “« +a be nonzeroK,, K, Vo, V4, andV, for this case are also
f_; _BA Aﬂ:+§ Aﬁz_ﬁ given in Appendix C.
AO AO AO +AO AO AO Our strategy is to assumig=fA(r) and integrate over
! ! ! ! ! ! X3=cos6 of Egs.(46)—(48) to give
My 1
1 1[(V2+pB) . «a o n -~ |o? E[fA]z—f drr? K0+VO+—V2}. (49)
W‘:EE 7 faiXt 7 (Fai ™ XaXi) + ArXaXi | 5 aw 3

(45 If solutions, corresponding to extrema of E49), have field
profiles for whichK;=0, V=0, andV,=0, then the solu-
) : : tions are exactly spherically symmetric, and the ansatz has
Ao, andA, are functions of the radial coordinate succeeded. Otherwise, the solutions are not exactly spheri-
We work in the radial gauge wher®, is zero, and as we .1 symmetric, withK,, V,, andV, measuring the depar-
are looking for static solgtlons we s to zero. We have ture from spherical symmetry. We can then regard @§)
scaled separately the Higgs boson and gauge parts of thig e first term in an expansion in spherical harmonics, and
ansatz so that the kinetic contribution to the energy is of the, . procedure finds a good approximation to tked modes
form 3f,% where f, generically denotes the fields provided thatk;, V;, andV, are all small in comparison to
aa,ba,ca,da,a,ﬁ. . KO andvo.

Under theP, C, andCP transformations of Eq¥3)—(8), In our previous papei33] we assumed spherical symme-

where we have sefl,=0, the fieldsf,, Ao, andA; trans-  y at the level of the static energy functional by imposing
form as shown in Table I.

On substituting ansatz Eqgl3)—(45) into the Lagrangian F,.=\()G,, (50)
(2) we find the static energy functional

whereF ,=a,+ib, andG,=c, +id,, andF,, G,, «, 8,

which is too restrictive when it comes to findirg and P
E[f4]= g;/vf drdode r2sing[K +V,] (46) violating solutions inC violating theories.
A. Properties of solutions

. ; -1
wherer is in units ofMy,, and We can classify solutions according to which of the sym-

metries C, P, and CP they preserve. The ordinary
(Klinkhamer-Manton[22]) SU(2) sphaleron preserves both
- N C, and P, and its extension to & conserving two Higgs
V=Vt ViXz+ VoXsXs. (48)  doublet theory therefore has=0, b,=0, c,=0, andd,
. =0. Kunz and Brihayg?23] and Yaffe[24] showed that,
Ko, K1, Vo, V3, andV, are given in Appendix C, ang;  with one Higgs doublet, there exigt violating solutions at
=2¢4T0?¢p5x% vy v, is the third component of a unit radial large Higgs boson mass with lower energy than the ordinary
vector. Hence this ansatz is potentially inconsisterk jf, sphaleron, this solution is named the bisphaleron as it occurs
V;, andV, are non-zero. in P conjugate pairs. The appearance of a bisphaleron solu-
If the field configuration conserveS: F,=a, and G, tion is signaled by the ordinary sphaleron developing an ex-
=c,, and we have the usual ansatz[4P]. This givesK;  tra negative eigenvalue as the Higgs boson mass increases. In
=0 and V;=0, althoughV, may be non-zero ifM,  a C conserving theory these solutions &einvariant and
#My=, and the field configuration has,#0. If the field haveb,=0 andd,=0, and are distinguished from the ordi-
configuration conserveR: G,=0, and again all three of the nary sphaleron by non-zero, and «. To date they have
dangerous termk;, V;, andV, vanish. In the presence of been investigated with onli,, M, and taB8 non zero,
two Higgs doublets Bachas, Tinyakov, and Tomaf26]  which corresponds tdMy+=M,=0 in a C conserving
(for RWS) and Kleihaus[27] (for bisphaleronsused aC  theory, where they maintain spherical symmetry. However
conserving ansatz and worked with parameters for whiclwith My+# M, or a non-zerddcp; V,, or K4, V4, andV,
M,=My+=0 and thereby conserved spherical symmetryrespectively can all be non-zero. Hence, departure from
On introducing C violating terms Kastening, Peccei, and spherical symmetry is generic, even in the pureg(ZUwo
Zhang[25] used aP conserving ansatz to find the ordinary doublet model.

K:Ko+ K1;(3, (47)
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Bachas, Tinyakov, and Tomard&6] investigated two My
Higgs doublets models and found md?eviolating solutions E[fal= a—f dr&(fa), (53
at lower Higgs boson masses than the bisphaleron. Although w
again occurring irP conjugate pairs, they are distinguished
from the bisphaleron in that their boundary conditions re-where
quire more than one Higgs doublet: the two Higgs fields
have a relative winding around the 3-sphere of gauge- 1 1
inequivalent field values of constat;| and|#,|. Thus we &fa)= §f£32+ §r2f|'42+ P(fa). (54)
refer to them as relative winding or RW sphalerons or RWS.
If we refer just to a sphaleron, we shall henceforth generally . o ) .
mean the ordinar and C conserving sphaleron. Note that "1€"®,P(fa) is a polynomial in the 10 field$,, which we
RW sphalerons are spherically symmetricGnconserving divide into gauge fieldsfe=«,8 and Higgs fieldsf,
theories only whetM =M ,-. =8,,0,,C,.d,. _ o
The defining characteristic of a sphaleron is that it repre- W€ use a Newton method, followin@4], which is an
sents the highest point of a minimum energy path startingfficient way of finding extremaand not just minima The
and ending in the vacuum, along which the Chern-Simongnethod can be briefly characterized as updating the figlds
number changes by 1. The Chern-Simons number is de- by @an amounif,, given by the solution of
fined as

) 5%€ 68 59
1 5 o B=— 5
Ncs= %g”k f dx| W9, Wi + 5 g WEWP W 6fgofa fa
(51) which we can abbreviate as
z gref=—¢. 56
= 32 zf d3XK0, (52) ( )
ar

Provided £"” has no zero eigenvalues, the equation has a
p A Tau ) unique solution, subject to boundary conditions which we
whered, K#=F, F3". Under a gauge transformationgs  getail below. We sometimes added a fractionsbfwhich,
changes by an integer: 'hence, field configurations with '”tealthough slower, occasionally produced a more stable con-
ger nes are gauge equivalent to the vaculNf=0. One  yergence. The procedure is started from an initial guess for
should also note thatcg is odd undeiCP. f,, and then repeated with each improved configuration, un-
Ordinary sphalerons have half-integer Chern-Simonsj| ¢’ is small enough so thatf=0.

numberncs, which by choice of a suitable gauge can be A particular advantage to using this method is that be-
taken to be precisely 1/2. However, Yaffe found that thecayse we are calculatingf’, it is straight forward to get the
bisphalerons pairs hatics=1/2+ v, wherev was typically  negative curvature eigenvalues?, from the diagonalization

fairly small, and depended on the parameters in the Higggf £” at each solution. To achieve this we use
potential. Bachas, Tinyakov, and Tomaras did not calculate

the Chern-Simons number of their relative winding sphale-

rons pairs, but we also find them to come in pairs with Eg// e — 2 e (57)
=1/2+ v. That solutions which spontaneously viol&@® in 27 |réfy rofyl’
this way should come in such pairs is clear, as field configu-
rations with ncs=1/2—» can be obtained from one with
Ncs= 1/2+ v by a combination of &P and a gauge trans-
formation. M 171 st
2 _ w G " G
OElTal awfdr coty| 25 |rot, OO

IV. FINDING SOLUTIONS

A. Method where it is understood that th&' of Egs.(57) and (58) has

We will be finding solutions to a static energy functional been differentiated with respect tg andrf,,, and not as in
of the form the Newton method of Eq55) with respect tof g and fy .

TABLE Il. Boundary conditions for the ordinarg€, andP conserving sphaleron.

r—0 a—0 B—2 a,—0 b,—0 c,—0 d,—0
r—oo a—0 B——\2 a;—2 cosB b;—0 c,—0 d;—0
a2~>2 SlnB bz*’O CZHO dz*’O
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TABLE Ill. Boundary conditions at the origin for the?(violating) bisphaleron. The boundary conditions

at infinity are the same as for the sphaleron, Table II.

PHYSICAL REVIEW D 64 016002

r—0 a— 2 sin 0 a;— 2K, cosBcos® a,— 2K, sinBcos®
B— —+2cos B b,— 2L, cosBcos® b,— 2L, sinBcos®
c,— 2K, cosBsin® Cc,—2K,sinBsin®
d;—2L,cosBsin® d,—2L,sinBsin®
B. Boundary conditions (IC%-FE%)RQGXF(—“P-Fi2®1)]—>/C§+£%

Next we turn our attention to boundary conditions. Before(x-2 ¢ 1 2)Rd exp(—iW +i20,)]— K 2+ £ 2 as r—0.
we look at specific conditions for different solutions, we con- (65)
sider the terms of Eq.C8) of Appendix C(up to numerical
factorg To satisfy Eq.(65) we require

1 K3+ L£3-0 0,—-V/2+n;m
Ko —(a?+ B2—2)%+(a%+b%+c2+d?)(a?+ B2+2 i
0 rz(a B —2) +(aj+bi+c +d;)(a"+B+2) eltherlC§+£§—>0 or 0, WI2+nym as r—o,
(66)
+2\2B(a2+b2—c2—d?)—4\2a(a,c,+b,d,).
(59 wheren;,n, e Z. Equation(66) can be rewritten as
: 2, p2
We introduce new fieldy, K,, £,, ¥, and®,, defined by either K+ L,—0 as 10, (67)
or 0,-0,—(n;—ny)m ’
—B+ia=2yexpiv), (60)
Equations(64) and(67) are then our boundary conditions as
L Vg ) r—0. The boundary conditions as—« can be obtained
aa+|ca—27lCanp('®a)- 6D from finiteness oK, [Eq. (C1)] and of V, [Eq. (C4)].
The ordinary sphaleron satisfies E§7) by having
Vg .
b, +id,=2—"L,.expi®,), (62 (K2+L2%)|,—o=0. (68)

The full set of boundary conditions for the sphaleron are
given in Table II.

Bisphaleron pairs have different boundary conditions. To
satisfy Eq.(67), whereé is a small positive angle, they have

and rewrite Eq(59) as

1
Koocr—2<x2—1>2+(2x2+2>[cos’-/3<165+£%>

2 —0=2 —0=V|,20=20=—7*4.

+SirPB(K 3+ L2)]—4x co2B(K 2+ L2) O1lr—0=282l;—0="¥|;-g=260="m (69
The boundary conditions on thi, of these solutions are
given in Table III.

(63) Relative winding sphalerons pairs satisfy Egj7) through

XRexp —iV+i20,)]— 4y siPB(K3+L3)
XRexp—iV+i20,)].
We have a boundary condition from the finiteness of the 2(0,=m)|1-0=202);-o=¥|-o=—7*4s. (70
energy density, due to the first term in E§3) which can be

expressed as From Eq.(67) we see that sinc&;=n, for bisphalerons

while n;=n,+1 for RWS, RWS unlike bisphalerons can
only occur in multi-doublet theories. The integersandn,
represent the winding numbers of the Higgs fields around the
From the finiteness of the gauge current denpithich is  3-spheres of constaft,| and|¢,|, with only their differ-
proportional to the second, third, and fourth terms in Eg.ence having any gauge-invariant meaning. The RWS bound-
(63)] and using Eq(64), we also have ary conditions are given in Table IV.

x’—1 as r—0. (64)

TABLE IV. Boundary conditions at the origin for theP(violating) RWS. The boundary conditions at
infinity are the same as for the sphaleron, Table II.

r—0 a—+2 sin¥ a,— 2/, cospcosO, a,— 2/, sinBcosO,
B— —\2cos¥ b,—2£, cosBcos®, b,—2L, sinBcosO,

Cc1— 2K, cosBsin®, C,— 2K, sinBsin®,

d;—2L, cosBsin®, d,—2L,sinBsin®,

016002-8



SPHALERONS IN TWO HIGGS DOUBLET THEORIES PHYSICAL REVIEW B4 016002

TABLE V. Energy My/ay), negative eigenvaluesM3), and Chern-Simons number fam
=Myz/My=M/M,, and taB=1, for some of the same parameters[24] and[26]. The solution with
energyE,; was reached by perturbing the ordinary sphaleron in the direction of the eigenvector with eigen-
value—wg, and the solution with energgyswas reached by a perturbation with eigenvameg. If we
refer to Fig. 2 off 26] we see that the bisphaleron branch itself bifurcates at the point where it no longer has
two negative eigenvalues, and we note as a point of interest that the eigenvector with eigerwéltakes
us to the solution with lowest energy and not Seof [26]. Theng of the RWS for equaCP even Higgs

bosons, and tg®~ 1 with all other parameters zero is 1/2, this is not the case generally. The agreement with
[24] and[26] is excellent.

m Espn - o} ~w} — w3 Ebi — o} — o} Ncs Erws —of
5 4435 5391 ... . .
6 4,531 6.217 0.279 4.528 5.171
7 4.609 7.171 1.225 4,587 4.147
10 4,778 11.22 5.962 4.668 3.090

13 4.888 17.70 13.27 0.316 4.886 11.86 6.546 0.454

4.700 2.773
15 4.942 23.49 19.49 0.926 4.930 8.447 2.349 0.428 4711 2.670
30 5.147 101.4 98.55 3.212 5.031 5.207 --- 0.387 4.734 2451
50 5.243 292.7 290.1 4.734 5.052 4874 .- 0.380 4.738 2.403

C. Numerical performance Figures 1-3 show contours in tihé, andMy plane. The

The details of the implementation of the algorithm and thecOntours are respectively of enerdig. 1), most negative
boundary conditions are relegated to Appendix D Weelgenvalue.and second most negative e|gen\_/aﬁjg._2),.
) ' and ncg (Fig. 3 of the sphaleron and relative winding
checked the accuracy of our code by evaluating the ENer9%yhaleron. When we show equal contours of both solutions
negative curvature eigenvalues and Chern-Simons numb

e sphalerons are shown as dashes, and the RWS as solid.
for some of the same parameters as Y##4] and Bachas,

’ Below the black horizontal dotted line, shown on all four
Tinyakov, and Tomara$26], and found good agreement. contour plots, only the sphaleron solution exists, above the

These can be seen in Table V.

. . ~ black dotted line both solutions exist. The sphaleron never
The numerical scheme worked excellently, with typical develops a third negative eigenvalue, nor the RWS a second

convergence after five to fifteen iterations 0k 10" **inthe  negative eigenvalue. The solutions maintained exact spheri-
sum of absolute change in all fields at all points. The fewcal symmetryV, was zero throughout; this was expected as
problems we did encounter wefé) sometimes the initial both .p=0, andM,=M==0. These contours are from

configuration for a RW sphaleron was so close to the sphalehe same potential as used by Bl26] and contain some of
ron that the Newton extremisation found the original sphale-

ron, particularly at points in parameter space near the bifur-
cation point, and(2) the Newton extremisation sometimes

found the vacuum from the initial configuration for a RW  7oof
sphaleron . The first was solved by using a higher mass RW
sphaleron as initial conditions for minimization, and the sec- 6%f

ond problem by updating each minimization not wiflh,
. N . 500
but with a fraction of it.

Energy of sphaleron and RWS
800 r r T

Bl R L]
We ran simultaneously two codes. One with Beon- 3 400l T
serving ansatz, and the other with tReand P violating st

ansatz. In the absence @f violation the two codes were 300F+,

] 1
i 1 1
P i i i
(SO i i !
Tl Ioa ' '
identical. With 101 points instead of 51, the difference in :g: 3 =S £ IS ~
. e =R - B w > o2}
energy,ncs, and eigenvalues was at most of order 0.5% of 200p1< 1% LT 8 3 3 P
the value with 51 points. ole ! @ ! i \ \
100k & | @ : ! ! !
S0 1 O 1 1 1 1
iR [ i i i
V. RESULTS bt . ! N T g L
0 100 200 300 _ 400 500 600 700 800

A. No CP violation, My=My==0

In order to compare with previous work, we first examine £ 1. Contours itM,,, M, space of the energy of the sphale-
the unrealistic limit ofM =My==0, with no explicitCP  ron (dashe} and of the RWSsolid), in units of My /ayy . Below
violation in the potential. We set the parametegs=0 and

the dotted line the sphaleron is the only solution. Above the dotted
tan3=6, and scanned througil,, and My between 0 and line, both solutions exist. The input parameters argtas with all
800 GeV. other parameters zero.
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Most negative eigenvalue of sphaleron and RWS

,

. 1 1 1
R AR YRR PI PRSP Joveinn [ (e
e m— TR
2 I R Lo
= R 1 1 | 1 : ! ! !
300F 1 1 1 1 1 | : : :
| | ! \ | i [
poo® A A b e L b b3
200F R 3 2 8 & o ¥ 2L
Q IN ® @ N = o o A N
® > © @ @ ® K P PR
100b ) ; f : S B B
1 1 1 1 1 y i 1 !
1 1 1 1 1 y i 7 !
G L L L L L L L L L L 1. L !
0 100 200 300 400 500 600 700 800
M, (Gev)
FIG. 3. Contours irM,,, My space of the Chern-Simons num-
Second most negative eigenvalue of sphaleron be.r of thg RWS. Below thg dotted line only the sphalerqn solution
800 r . ——— exists, withncg=1/2. The input parameters are @6 with all
k 8589 —— e other parameters zero.
-4.1072 T
700 S —3.7338 -
—9.960% 2.987

eigenvalues for the different solutions; the negative eigen-

value of the sphaleron can be double that for the relative

winding sphaleron for the same point in parameter space.

Figure 2 also shows the second negative eigenvalue of the
sphaleron. The second most negative eigenvalue belongs to
the perturbation which leads to the RW sphaleron in configu-

ration space.

Looking at Fig. 3 we see that the Chern-Simons number
200} . of the RW sphaleron is generally not a half. There is a line in
the contour space whene-s=1/2. This occurs, for tgh
=1, along the line ofM,=My, and shifts in the contour

0 100 200 300 400 . 500 600 700 800 Energy of sphaleron and RWS
M, (Gev) 800 . I l ———
....... gt

Ms\,. The top figure shows the most negative eigenvalue of the
sphaleron(dashey and of the RWS(solid). The bottom figure 600
shows the second most negative eigenvalue of the sphaleron. Belo DL
the dotted line the sphaleron is the only solution. Above the dotted_500;
line, both solutions exist. The input parameters ar@taf with all
other parameters zero.

(Gev)

400:-

My,

the parameter space they scanned. Where we overlap w 3003
agree with their results, and we confirm their observation +
that the second negative eigenvalue appears when one of tr 200 £
Higgs boson has a somewhat large mabk, -5M,). For : §
low values of this heavier mass the lighter Higgs boson 1005'
needs to be as light as possible; i.e. for the existence O i . o o o
relative winding sphalerons it is preferable to have the two 0 100 200 300 400 . 500 600 700 800
Higgs boson massebd), andM, well separated. h

Figure 1 shows both the energy of the sphaleron and the FiG. 4. Contours iM,,, M, space of the energy of the sphale-
energy of the RWS, there is almost no difference betweemon (dashes and of the RWSsolid), in units of My, /ay, . Below
their energies, and the energy depends mainly on the mass @k dotted line the sphaleron is the only solution, while above, both
the lighter Higgs boson. Figure 2 shows the most negativeolutions exist. For the dotted area the potential is unbounded. The
eigenvalue of both the sphaleron and RWS, and we see thaiput parameters are t8=6, M,=241 GeV,M_ =161 GeV,
there is a large difference between the values of negativand;=—0.05.

FIG. 2. Contours irtM,, My, space of the eigenvalue in units of ~ 700: ‘
[}
ll
1
1
1
1
1
1
1
]
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Most negative eigenvalue of sphaleron and RWS
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FIG. 5. Contours inMy,, My space of eigenvalues in units of
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FIG. 6. Contours irM,,, M, space of the Chern-Simons num-
ber of the RW sphaleron. Below the dotted line only the sphaleron
solution exists, witm-g=0.5. For the dotted region the potential is
unbounded. The input parameters areB&®, M =241 GeV,
My+=161 GeV, and\;=—0.05.

For these figures we tookM,=241 GeV, My=
=161 GeV, again with no explici€ P violation. We set the
parameters\;=—0.05, and tag=6, and scanned through
My and M between 0 and 800 GeV, with 20 GeV incre-
ments. Again below the black dotted line, shown on all four
contour plots, only the sphaleron solution exits, while above
both solutions exist. We see that the RW sphaleron solutions
still persist for a large region of the parameter space. The
dotted region at lowM,; was unbounded according to Egs.
(39) and(40). These solutions did not maintain exact spheri-
cal symmetry corresponding td,=0, but the maximum
value of energy due to th€, term was 0.6% of the energy
due toV,,.

The solutions have the same general features as those at

MZ,. The top figure shows the most negative eigenvalue of thezerg M, and My=: the RW sphaleron appears at widely

sphaleron(dashey and of the RW sphalerofsolid). The bottom

separatedM and M. While the energies of the two solu-

figure shows the second most negative eigenvalue of the sphalerolriwOns in Fig. 4 are almost indistinguishable, the most negative

Below the dotted line the sphaleron is the only solution. Above the

dotted line, both solutions exist. For the dotted region the potenti
is unbounded. The input parameters areBtai®, M,=241 GeV,
My+=161 GeV, and\z=—0.05.

plane for different values of tgh We have only shown here
solutions withncs<1/2. Each of these solutions witl.g
<1/2 has aP conjugate partner, with Chern-Simong§%'
=1/2, such thahcstngd'=1.

B. No CP violation, Mp=3My,, Myz=2M,
Figures 4—6 show contours M, M space of energy

a?igenvalue(Fig. 5 top, of the sphaleron can be double that
of the RW sphaleron. We show the value of the second most
negative eigenvalue of the sphaleron in Fighbttom). The
sphaleron never developed a third negative eigenvalue, nor
the RW sphaleron a second negative eigenvalue. In Fig. 6 we
show the Chern-Simons number of the RW sphaleron, and
again for every solution shown with-g= 1/2— v there is &P
conjugate solution witmg%'=1/2+ v.

C. CP violation, M,=8M, My==2My
Figures 7—9 show contours M, My space of energy

(Fig. 4), most negative eigenvalue of the sphaleron and RWSnd second negative eigenval(ldg. 7), most negative ei-
(Fig. 5 top, second most negative eigenvalue of the sphalegenvalue(Figs. 8 and Chern-Simons numbéFig. 9) of the

ron (Fig. 5 bottom, andncs (Fig. 6) of the sphaleron and the

sphaleron and relative winding sphaleron. Sphaleron con-

relative winding sphaleron. Again when both solutions aretours are shown as dashed lines and RW sphaleron contours

shown the sphaleron is dashes, and the RWS solid.

01600

as solid when present on the same graph.
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Energy of sphaleron and RWS Most negative eigenvalue of sphaleron

600:

800 . ; — 800r
D 1 A $
. 1 1 .

700: b i’ ! $ 700: S
& [¢2] © 7o) S
: L8 :
o ﬁ,. 1 5 P

R ! 600 ~6,5631——

1 e,

350 400

% 50 100 150 . 200 250 300 350 400 % 50 100 150 200 250 300
M, (Gev) M, (Gev)
Second most negative eigenvalue of sphaleron
800r . r . . . T T
700:
600:
0 . . i i 0 . . ; . i i
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
M, _(Gev) M, (Gev)

) ) ) FIG. 8. Contours irMy,, M space of the most negative eigen-
FIG. 7. Top: contours iMy,, My space of energy in units of \aye (M2) of the sphaleron(top) and of the relative winding

My /ey of the sphaleroitdashes and of the RW sphalerasolid).  gppaleron(bottom. Above the dotted line the sphaleron is the only
B°t2t°m: contours irMy, My space of second negative eigenvalue go|ytion, while below both solutions exist. For the blank area Eq.
(Miy) of the sphaleron. Above the dotted line the sphaleron is thg1) is not the global minimum. For the dotted area the potential is
only solution, while below both solutions exist. For the blank area npounded. The input parameters atgo=0.497, ¢=0.1m,
Eq. (10) is not the global minimum. For the dotted area the potentiaI:o.O’ M,=643 GeV, My-=161 GeV, and\;=3.0. tamB
is unbounded. The input parameters 8gg=0.497, ¢=0.1m, ¢ =31
=0.0, Mp=643 GeV, My+=161 GeV, andA;=3.0. taB

31 As with the previous contour plots, a large region of pa-
rameter space contained relative winding sphalerons. For
] these input parameters, though, due to the l&&eviolating
For these figures we tookM,=643 GeV, My=  mixing angle, the role of the large Higgs boson mis is

=161 GeV, this time withCP violation: 6cp=0.497. The
remaining parameters wegk=0.17, ¥=0.0, and\3=3.0,
giving tan3=3.1. We scanned throughl, between 0 and

taken on byM,. Since, from previous contour plots, the
relative winding sphaleron solution prefers regions of param-
eter space where there is a large separation in values of the
heaviest(in this case théM 4) and the lightestin this case

400 GeV, andM between 0 and 800 GeV, with 20 GeV
increments. The dotted region at loM was unbounded
according to Eqs(39) and (40), and for the white out area,
surrounded by the solid black line, the minimum of EtQ)
was not the global minimum.

My, and M) Higgs boson masses, the relative winding
sphaleron solutions exist for the lower part of the contour
plot, and not the upper part. Referring to Figs. 7—9: above
the black dotted line the sphaleron is the only solution, while
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Chern-Simons number of RWS Energy of sphaleron for tree level MSSM parameters

800r

700:

600:

3.68

300 40

0 500 800
M R (Gev)

0 50 100 150 . 200 . 250 300 350 400
M, (Gev)

FIG. 9. Contours irMy,, My space of the Chern-Simons num-  Curvature eigenvalue of sphaleron for tree level MSSM parameters
ber of the RWS. Above the dotted line only the sphaleron solution T v T T v T T

exists, withncs=1/2. For the blank area ELO) is not the global 14F
minimum. For the dotted area the potential is unbounded. The input
parameters aréc-p=0.497, ¢=0.1mw, 4=0.0, M,=643 GeV, 12
My==161 GeV, and\;=3.0. tarB=3.1.

below the black dotted line both the sphaleron and the rela- |

tive winding sphaleron exist, this is opposite to the behavior <

in the absence of P violation. 58
From Fig. 7(top) the energy of the two solutions is as

before almost the same. The second negative eigenvalue ¢

the sphaleron is shown in the lower half of Fig. 7. The

sphaleron does not develop a third negative eigenvalue, no ek

the RW sphaleron a second negative eigenvalue. We shoy 53 -235—

the most negative eigenvalue of the sphaleron and the RW 2%

sphaleror(Fig. 8 on separate graphs, and again their respec- ~ © 1 200 %0, 9, 500 600 700 800

tive negative eigenvalues can be very different at the same

point in the contour plane. We then show the Chern-Simons ks 10. contours iM ,, tanB space of the sphaleron for tree

numbers for the RW sphaleron in Fig. 9. Note that we onlyjeye| MSSM parameters. The top figure shows eneidy;,( @) of

show solutions witmcs<1/2: again, there are parity conju- the sphaleron. The bottom figure shows negative curvature eigen-
gate partners to each of these RW sphalerons, anddhef  value (M3) of the sphaleron.

the RW sphaleron and of its parity partner add up to one.

There is no breaking in the degeneracy of the relativeHiggs ansatz and thg field of the gauge ansatz were ever
winding sphaleron pairs in energy, eigenvalues, or absolutaon-zero. From these four contou(Bigs. 10 and 11 we
difference from 1/2 of Chern-Simons number, due to theagree with the general result 28] that the energy of the
presence ofCP violation. The solutions are not exactly sphaleron is sensitive to maini, and ta8, although their
spherically symmetric, and have non zero values for all threeesults should be more accurate as they included 1-loop ra-
of Ky, V4, andV,. The values ofK,, V;, andV, as a diative corrections. There were no relative winding sphale-
percentage of the Higgs potential energy are each never morens for the range of parameters explored.
than 0.5%.

N

o AL
ZHD

E. Sphaleron energy andCP violation

D. MSSM parameter space We recall that aCP violating mixing angle can have a

Next we scan through tree level MSSM parameter spacdarge effect on the properties of the sphaleron. HErg. 12
Figure 10 shows the scan M, tan8 space. Figure 11 we scan througM,, 6cp space and show the energy of the
shows the scan iM,,, M space. We plot contours of en- sphaleron and the negative eigenvalue of the sphaleron for
ergy (top) and negative eigenvaliybottom for each of these input parametergb=0.1257, =0.0, My=110 GeV,M,
scans. =500 GeV, My+=500 GeV, andA;=0.0, these give

For the range of parameters we show the sphaleron dithn3=2.4. For the dotted region at lod , the potential was
not develop a second negative eigenvalue. There was no denbounded, and for the blank region, bordered by the solid
parture from spherical symmetry, as only hgfield of the  black line, the minimum of Eq.10) was not the global mini-

016002-13



JACKIE GRANT AND MARK HINDMARSH PHYSICAL REVIEW D 64 016002

Energy of sphaleron for tree level MSSM parameters Energy of sphaleron
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FIG. 11. Contours iM,,, My space of the energWM/ay) of 0 00 200 300 500 600 700 800
the sphaleron for tree level MSSM parameters. The top figure
shows energyNl,/ ayy) of the sphaleron. The bottom figure shows

negative curvature eigenvalut@) of the sphaleron. FIG. 12. Top: contours inM, 6cp space of the energy
(M, /a,,) of sphaleron; bottom: of the negative eigenvalue of the

mum of the static energy functional. For this region of pa-sphaleron §12). For this region of parameter space the sphaleron
rameter space the sphaleron never developed a second neggthe only solution. For the blank region EG.0) is not the global
tive curvature eigenvalue. minimum. For the dotted region the potential is unbounded. The
The energy of the sphalerdifrig. 12: top is dependent input parameters areb=0.125r, =0.0, M,;=110 GeV, M,
upon the value of theCP violating mixing angle, and =500 GeV,M,-=500 GeV, anch;=0.0. tapB=2.4.
changes by about fourteen percent as the mixing angle varies
between its minimum and its maximum. The energy is, in thefor a point in the contour plot of Sec. V C corresponding to
presence o€ P violation, still sensitive to the lightest Higgs & CP violating theory withM,=8My,, My==2My, My
mass. =1.2M, and My=1.5M,. We recall that the mixing
The negative eigenvalu@ig. 12: bottom also has this angles werefcp=0.497, ¢=0.1w, =0.0, and the cou-
strong dependence on ti@P violating mixing angle, with  pling A\3=3.0.
an increase of over fifty percent as the mixing angle varies. Before we proceed we check whether this point in param-
Also the dependence dvi;,, although not as dramatic as the eter space is phenomenologically viable at zero temperature,
effect of CP violation, is still present. asM,,=1.25M,y is ruled out if thehZZ coupling is too large.
We calculate the coupling$,z7, 9nzz, andgazz according
F. Field profiles to [43] using the values of input parameters used in Figs.
1. Sphaleron and RW sphaleron 13—15, and compare them with the latest particle §4da.

Usin
Next we show the field profiles for the sphaleron, relative g
winding sphaleron, and conjugate relative winding sphaleron Onhzz=DJ[1,1]cosB+D[2,1]sinB (71

400
Mh (Gev)
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Sphaleron field profiles
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FIG. 13. The sphaleron field profilésp), and the profiles for
b, andb, in more detail(bottom). c,=d,=a=0. This configura-

tion has energy4.053My/ay, ncs=1/2, and two negative cur-

vature eigenvalues 8.696\/I\2N, and— 1.754\/I\2N. Input parameters
are 0cp=0.49r, ¢=0.17, ¢=0.0, M,=101 GeV, My
=121 GeV, M, =643 GeV, My-=161 GeV, and \3=3.0.
These give taB=3.1, \{=26.29, A\,=—2.59, A, =0.91, A\,
=0.85, y1=0.42, andy,=0.41.

Onzz=D[1,2]cosB+D[2,2]sinB (72

whereD is given by Eq.(16), we obtain, for the parameters

of Figs. 13-16

g2,,=0.081 (74)
9%,,=0.824 (75)
gz,,=0.095 (76)

which for massesM,=101 GeV, My=121 GeV, and

PHYSICAL REVIEW B4 016002

RWS field profiles
15 . .

0.5F
[0}
=
[}
>
o 0
0
'S
-0.5}F X
‘.
B
S,
=1 S d
15 L L N L
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Rescaled radial co—ordinate

Field value x 107"

Rescaled radial co—ordinate

FIG. 14. The RW sphaleron field profilé®p) and the profiles
for by, b,, ¢y, dy, d,, anda in more detail(bottom). This con-
figuration has energy4.047M,/ay, ncs=0.478, and one nega-
tive curvature eigenvalue- 3.63]\/|\2N. Input parameters arécp
=0.49r, $=0.1w, ¢¥=0.0,M,=101 GeV,My=121 GeV,M,
=643 GeV, My==161 GeV, and\3;=3.0. These give tah
=3.1,A1=26.29,\,=—2.59,A, =0.91,7\,=0.85, x,=0.42, and
Xx>=0.41.

types of solution, and the values &f;, V;, andV, as a
function of the rescaled radial co-ordinate for the sphaleron,
RW sphaleron, and conjugate RW sphaleron. We recall that
the departure oK, V4, andV, from zero signals the break-
down of the spherically symmetric ansatz, and their size rela-
tive to the total energy density indicates the seriousness of
the breakdown.

It is convenient to plot the field values rescaled according
to

fG v fH

fG:\E’ fH:_7: (77)

M =643 GeV are within experimental bounds. Although as then the asymptotic values are either Q-dr.

we have labeled the Higgs bosons with subscriipts, and
A; because of the values of the mixings=0.1m, 6cp
=0.497, =0.0, while the particle with subscrifitis CP
even, those with subscripi, and A are a mix ofCP even

The ordinary sphaleron field profiles are plotted in Fig. 13
as a function of the rescaled radial points. The solution has
nonzero values o#,, b,, and B8 as expected for a field

configuration that preservésbut violatesC, due to the pres-

and CP odd. We then plot the energy density of the two ence of aC violating parameter in the potential. The sphale-
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Conjugate RWS fields profiles Total and Higgs energy density for sphaleron and RWS
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FIG. 15. The conjugate RW sphaleron field profilésp), and
the profiles forb,, b,, c,, d;, d,, anda in more detail(bottom).
This configuration has energy.047 My, /ayw, Nncs=0.522, and
one negative curvature eigenvalue3.63ﬂ\/l\2,\,. Input parameters
are 0cp=0.497, ¢=0.17, ¢=0.0, M,=101 GeV, My
=121 GeV, M, =643 GeV, My-=161 GeV, and \3=3.0.
These give taB=3.1, \{=26.29, A\,=—2.59, A, =0.91, A\,
=0.85, y1=0.42, andy,=0.41.

FIG. 16. The top of the figure shows the total and the Higgs
potential contribution to energy density in units Mﬁ}\,/aw for the
sphaleron(solid) and the RWSdashes The bottom figure shows
K, V4, andV, for the RWS(solid) and its conjugatédashepin
the same units. BotK; andV, are equal to their values for conju-
gate solutions, but have opposite si§fy. is equal to its value for
the conjugate solution. Input parameters agp=0.497, ¢
=0.1mw, =00, M,=101 GeV, M, =121 GeV, M,
=643 GeV, My==161 GeV, and\3;=3.0. These give tah
ron has Chern-Simons number 1/2, two negative eigenvalues3.1,\;=26.29,\,= —2.59,\ , =0.91,\,=0.85, xy;=0.42, and
(—8.698M3,, and —1.754M3), and has energy x.=0.41.

The relative winding sphaleron field configurations, i, sign for the conjugate paik/, is equal in value and equal

shown in Fig. 14, have non zero values for all fields. Thej, gign. These deviations from spherical symmetry are of
solution violatesP spontaneously an@ explicitly, and vio-  5.4er one part in 10for these values of parameters.
lates the combinatiolCP. It has one negative eigenvalue

(-3.637 M\ZN), energy less than its ordinary sphaleron

(4.04M/ay), and Chern-Simons number 0.478. Its parity 2. Bisphaleron
conjugate partner, shown in Fig. 15, has field profiles iden- For completeness we detail the bisphaleron fields profiles
tical to aP transformation of the RWS: that i5,——c,, for non zeroM , and M+, and show their departure from

d,——d,, anda— — «, with all other fields remaining un- spherical symmetry. Figures 17 and 18 concern this bisphale-
changed. The solution has identical energy, and eigenvalu®n. We have chosen masses which are perhaps unrealisti-
to its P conjugate solution, and its Chern-Simons number iscally large, in order to reach the part of parameter space

0.522. where the bisphaleron exists: @#®6.0, M,=15.0M,
Next we show(Fig. 16: top the energy density of the Myu=17.0My, Mp=2.0My, My==3.0M,, and \;
sphaleron, and the RW sphaleron, and in detgig. 16: =—0.1, with noCP violation. For these input parameters

bottom the values oK, V,, andV, for the RWS in units \;=567.6, \,=12.4, \,=0.627, A,=1.923, x;=
of energy densityK; andV; are equal in value, but opposite —0.227, andy,=0.0.
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Total and Higgs energy density for sphaleron and bisphaleron

Bisphaleron field profiles
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FIG. 18. The bisphaleron field profiles for {&®6.0, M,
e —15.0Myy, My=17.0My,, Ma=2.0My,, My==3.0My, and A5
?04 =—0.1. It has energy4.932M/ ay, Ncs=0.569, two negative

curvature eigenvalues 11.91EM\2N, and— 6.788\/I\2N. Its conjugate
partner is the identical solution underconjugation ¢— — «), and

[
[¥)

V2 for bisphaleron pair

(=]

performed scans in the physical parameter space defined by
the masses and mixing angles of the Higgs particles, record-
\ \ , \ ing the energy, lowest eigenvalues, and the Chern-Simons
B oo gl i %0 number, with results recorded in Figs. 1-12. We have also
shown the profiles of the fields of our ansatz for selected

FIG. 17. The top figure shows total and Higgs potential contri-SOlutions in Figs. 13—18. _
bution to energy densityM i/ avy) for the sphaleroisolid) and the We can draw a number of broad conclusions from these
bisphaleror(dashes The bottom figure showd, for the bisphale-  results. First, for a.W|de range of parameters, th? minimum
ron solution and its conjugaté/, for both the bisphaleron and €Nnergy sphaleron is not the natural generalizations of the
conjugate solution are equal. Input parameters arg+eh0, Ocp Klinkhamer-Manton sphalerof22] with vanishing Higgs
=0.0, ¢=0.0, ¥=0.0, M,=15.0My,, My=17.0M,,, M, fields at the origin, but a parity violating pair of relative
=2.0My, My==3.0M,, and\3=—0.1. winding (RW) sphalerons, first identified by Bachas, Tinya-

kov, and Tomarap26]. These are related to the bisphalerons

The energy density and departure from spherical symmeRr deformed sphalerons found in one doublet models by
try are shown in Fig. 17. ThEP invariance means that, ' 2ffe [24] and Kunz and Brihay¢23], but are specific to
=d,=0, and henc&, andV, vanish. The departure from two Higgs doublet models. This pair was alwa_ys degener_ate
spherical symmetry is entirely in thé, term shown in units 1" €Nergy, as is to be expected from a parity conserving
of energy densityh(/lﬁ\,/aw) in the lower half of Fig. 17. The Laga}ranglan..Tms degeneracy is lifted when standard model
departure from spherical symmetry is of order 1 part ifh. 10 fermions are |nclud§@45].

The configuration in Fig. 18 has energ$.932M/ ayy, The fa\(ored regions of paramet_er space fo_r RW sp_hale-
Ncs=0.569, it has two negative curvature eigenvalues©"S to exist are those where there is a large difference in the
~11.915M2,, and -6.788M2,. Its associated sphaleron has masses of the neutral Higgs bosons.. The mass of the heavier
ener- 4 9\2,/3 Moo/ ' withwﬁ —1/2 and three neqative Higgs boson can be as low a$/§,. Bisphalerons appear at

gy=a.9%3 Mw/ aw cs o 5 9 yet higher heavy Higgs boson masses, but were always more
curvature2 elgenval.ues— 23',823‘/|W' B 13'2_49‘/IYV’ and massive than the RW sphalerons in the parameter space we
—0.933My. Its conjugate bisphaleron has identical energy,

; : explored.
and negative curvature eigenvalues, mgs=0.431; so The appearance of extra sphaleron solutions is signaled by

again thencg of the bisphaleron and its conjugate add to one e ordinary sphaleron developing another negative eigen-
value: thus where the RW sphaleron exists the ordinary
VI. CONCLUSIONS sphaleron has two negative eigenvalues, and three where the
bisphaleron exists also. The lowest energy sphaleron must
In this paper we have made a thorough study of the prophave exactly one negative eigenvalue. The numerically cal-
erties of sphalerons in two Higgs doublet @Ugauge theo- culated eigenvalues of a solution not only aid its identifica-
ries. Using a spherically symmetric approximation, we haveion, but are important for accurate calculation of the baryon

I
1
~

Energy density x 107"
)
N

]
e
()

o
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number violation rate: if the negative eigenvalue of the low-plings in the static energy functional, and then the sphaleron
est energy sphaleron solutiondg , then the rate is propor- energy. Our approach decouples the computation of the ra-
tional to |w_| [34]. The difference between the most nega-diative corrections, for we can take masses and angles to be
tive eigenvalue of the sphaleron and the negative eigenvalu&eir 1-loop corrected values. Although this neglects cubic
of the RW sphaleron could be well over a factor of two.  terms and terms of dimension higher than 4 in the potential,

The most important quantity for the calculation of tBe it is an easy way of improving on the tree-level calculation,
violation rate is normally the sphaleron energy. There iswithout sacrificing too much accuracy, as the contribution to
however very little difference in the energies of the ordinarythe energy from the Higgs potential can be seen from Figs.
and RW sphaleron: typically less than 1% in the range ofL6 and 17 to be small.
parameters we surveyed. Thus the main contribution to the Despite these sources of error, we can conclude the cal-
error in the rate from using the ordinary sphaleron comesulations of the sphaleron energy @P conserving models
from the negative eigenvalue. One must not only use theannot safely be applied tGP violating electroweak theo-
correct eigenvalue but also include a factor of two in the Rwries, and that the sphaleron bound on the mass of the lightest
sphaleron rate, one for each of the two degenerate paritiliggs boson inCP violating theories requires further inves-
conjugate solutions. However, this leads only to logarithmictigation.
corrections to the sphaleron energy bouhyd

The most important parameter for the sphaleron energy ACKNOWLEDGMENTS
was found to be the mass of the lightest Higgs boson, in
accordance with previous studies. However, we were able to We wish to thank Mikko Laine and Neil McNair for help-
extend our work on the dependence of the energy oiCtRe ful discussions. This work was conducted on the SGI Origin
violating mixing angleécp [33] to show that there was a Platform using COSMOS Consortium facilities, funded by
strong dependence on this quantity as well, with the sphaléddEFCE, PPARC and SGI. We acknowledge computing sup-
ron energy varying by-15% asfcp was adjusted through POt from the Sussex High Performance Computing Initia-
its allowed range. We note as well that we were unable tdIVe.
find a region of parameter space for which RW sphalerons

existed over a wide range df.p, for which the potential APPENDIX A: PARAMETRIZATION OF
was bounded, and for which E¢LO) was the global mini- TWO-DOUBLET POTENTIALS
mum.

Although we used a spherically symmetric ansatz, we In Sec. Il A we wrote the two Higgs doublet potential as
found that two Higgs doublet sphalerons are generically noEd-: (9). Here we write two common forms of the most gen-
spherically symmetric. This means that our results are aperal two Higgs doublet potential. First we write
proximate: however, the departure from spherical symmetry,
as measured by the relative size of the symmetry violatingV(®1,®2)=Mi$1d1+Midld,+mipld,+mis i,
terms in the static energy functional, was less than 0.2%, and

N2 IRY. too ot
so this is not a serious problem for the accuracy of our re- Flil@160)"H o bob2)" +lshrdadobe
sults. A larger correction is to be expected when one consid- +1,00 T+l thot1* ol i
ers the full SU(2X U(1) theory at non-zerd,,, for which 101020201+ |sP1b2d102% s 2016201
one also has to abandon the spherically symmetric ansatz and bl prdpldrt1E pldrdpldi+17d5hrd1,
resort to an axially symmetric one insteftb]. . 1 N

Another source of error is the neglect of radiative and +17 dadpabrdb1, (A1)

thermal corrections. Ideally one should work out the deter-

minants of fluctuation matrice85—38. One can also find Wwhere the only complex parameters are mhﬁg Is, I, and
solutions using the 1-loop finite temperature effective potent;. This potential has 14 independent parameters. Imposing
tial [28]. This is an implicit gradient expansion, neglecting the discrete symmetryp;— ¢4, ¢,— — ¢, on dimension
finite temperature corrections to gradient terms, which turrfour terms will forcelg=1,=0, and we have a potential with
out to be small[39]. Such computations are model- ten independent parameters.

dependent: one first computes radiatively corrected cou- Writing the same potential as

2

U1
S~

2
+ (Aot N3)

2
v

bybs— >

2

V(¢1,P2)=(N1+N3) +2\;3

Vi v5
bl — 5) ( brda— 3)

2 2
N[ Plb1dhr— RE(PIby) —IM2(plh,) 1+ N5 + g IM(plbp)— %sing)

Re( 1) — %0055

2
1

Xy Bl %) ( Re( 4] ,) - %cosg)

Re(¢]2) - %cosg) ( Im($]2) - %sinf) +
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+ua +u3

2
o~ 52) ( Re( ] ho) — 5 cosé

2
¢1¢1 )(lm(¢1¢2)_ —Smf

+ g (A2)

brbor— ('m(¢1¢2) —Sinf

where all the parameters are real, we again have a potential with 14 independent parameters. l#posing ¢,—

— ¢, on dimension four terms we force four of these parameiges u,= u3=u,=0, and we have a ten parameter potential.
The advantage of writing the potential as E42) is that the three of the parameters of the potentiakarg, andv,, and

that the zero of the potential is

Va | O A3
¢a_ﬁ ei‘P“ ) ( )
whereg,=0, andp,=¢.
The relations between the parameters of &d.) and those of Eq(A2) are
m2=—(\1+ \g)vP— \gva— %vlvz cosé— %vlvz sing, (A4)
m§= _()\2+ )\3)U§_)\3Ui_ %Ulvz COS§— %Ulvz Sing, (AS)
A5 A7 . M1 “3
Re(mf2)= 5 Ui Ccosé— 7 Viv2 siné— 711%— 7v§, (AB)
5 . 7 M2 Mg
Im(m3,) =— - vz Siné— v, coSE— 71&— 71%, (A7)
l1=N1+ N3, (A8)
|2:)\2+)\3, (Ag)
|3:2)\3+)\4, (AlO)
A+ A
la=—5— X4, (A1)
2
1 .
ls= 7 (As=Xe—ik7), (A12)
1 .
le= E(,U«l_',uz), (AL13)
1 .
l7= 5(#3"#4)- (A14)

We are free to redefine the fields, of Egs. (A1) and(A2). Rewriting Eq.(A2) with ¢,— ¢ e'¢« gives

2

$id1—

2
+(Na+N3)

2
+2N\3

U2

V(¢1,h2)=(N1+\3) ¢;¢2—?

2 2
s o105

2

+ N[ plp1 s br— RE(Plpr) —IM2(plep) 1+ (N + x1) + (N — x)Im( Bl )2

2

b1~ >

Re(pldo)~ =~

U1U2

2
blbr— ) Im($]eb)

+ Xxo| Re(plepo) — )'m(¢1¢2)+#~1 (Re( Pld)— + o

¢2¢2 )lm(¢1¢2) (A15)

+M3 ¢2¢2_ _> ( Re( d’ld’z) +M4
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and we now have a potential which is a function of 13 pa- X;=0,

rameters, one less than both EGsl) and(A2). Where these

new parameters are in terms of those of E&R)

1

A= §(>\5+ Ne)s
1

A= 5(7\5_)\6),
N7

X1= 5 sin2¢é+\ _cos %,

A7 .
X2= 7cos 2%—N\_sin 2¢,

M1= H1COSE+ pmosing,
Moo= — 1SN+ uoCOSE,
H3= 13COSE+ ugSing,

Ma= — 13SINE+ yCOSE.

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

On imposing the discrete symmet$,— ¢, ¢r— — >

on dimension four termg; = ;= ;= u, =0, and we have

A
2.2, 52 3
X5+ys+z5— 1= —————,
272 % (Ap+\a)tarfB
—X2
Xo= ——V>, B3
2 ()\++X1)y2 B3)

these describe a circle with one zero eigenvalue, and poten-
tial energy

o U kot AN
4 | (Nt Ag)tarfs

Aot x|, (BY

which may be less than zero for a potential obeying Egs.
(39), (40), and(42), and is a zero of the other terms of the
static energy functional46).

To find numerically the global minimum, we imple-
mented two methods. First, using tRRPLE extremization
routineEXTREMA, we looked for an extremum &f(X;) with
negative energy somewhere in the chosen region of param-
eter space. As the vacuum in our parametrization has zero
energy, this meant it was not the global minimum. We used
this solution as an initial configuration for a simple relax-
ation algorithm, which is equivalent to settingy’ of the

a potential which is a function of nine parameters, again on§jewton methodEg. (55)] to unity. We then scanned though

less than the potentials of Eq#\1) and(A2) with the same
symmetry imposed. This nine parameter potential is (B).

of Sec. Il A and is the potential we use throughout.

APPENDIX B: EXTREMA OF THE POTENTIAL

Extrema of the potential given in E49) occur at solu-

tions to the four independent equations

oV(Xj)
8,

(B1)

wherei=1,2,3,4, andX; are thex,, X,, Y, andz, of

0

X1

Z

Xo+iY5

U1

¢1—E

U2

, d)Z_E

A general bounded function of four variables with quartic

and quadratic terms only can have up tbrinima.

(B2)

The trivially found solutions to Eq(B1) are x,==*1,
X,=*+1, y,=2,=0 [i.e. Eq. (10)], and x;=X,=Yy,=2,

=0. The only other solution we were able to find analyti-

cally was

parameter space relaxing to the global minimum at every
point.

Our second method was to use an initial configuration of
X;=0, find the eigenvalues of the configuration, and add a
perturbation in the direction of the eigenfunction with the
most negative eigenvalue. We then used the relaxation rou-
tine on this configuration. We did this for each point in pa-
rameter space, reinitializing ;=0 at each point.

APPENDIX C: STATIC ENERGY FUNCTIONAL

On substituting the ansatz of Eq4.3)—(45) into the La-
grangian(2) we obtain the static energy functional of Eq.
(46). Here we give the form oKy, K;, Vo, V4, andV, for
the C conserving ansatz and for tizandP violating ansatz.

In the absence of violation F,=a, andG,=c,, and
we have the usual ansatz of Ratra and Yalffé2] where
K,=V;=0 andKg,, V,, andV, are

Ko=KJ+K§, (C1)

@

1
K(?:;[afrz-i-c’zrz-ka'2+,8’2], (CZ)
r
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111
K(?:Z p» — (a®+ %~ 2)2+ (a +c2)(aP+ B2+2)+ —— \/_'8 —c2)—\2aa,c,|, (C3)
r?
2
Vo= o 2[(>\ +Ag)(a2+c2—4 cogB)?+ (Np+ Ng)(a5+ci—4 sirB)%+ 2\ 5(a3+ ci— 4 codp)(a5+c5— 4 sirf B)
+ A 4(@1C5—a5C1)%+ (N4 + x1)(a18,+ C1C,— 4 cosB sinB)?], (C4)
2
Vo= Tom?2 S L(=Ngt Ny = x1) (216~ a,C1)?]. (CH
W

This ansatz will maintain spherical symmetry\\b=0. The conditionV,=0 is met if \,=\,.— x4, Or equivalently if
My+=M,. In cases wherdMy+#M,, the spherical symmetry of a field configuration will still be maintaine@uit,
=a,C4, as theV, terms vanish from the energy density. The ordinary sphaleron comes into this class of configurations since

c1=C,=0. However, it is still important to include this term as it affects the forn€bfused in Eq.(56) to calculate the
curvature eigenvalues.

In the presence of violation b, andd, are no longer zero and,, K, Vg, V4, andV, are

Ko=Kg+K§g, (Ce)
D 1 12,2 12,2 12,2 12,2 2 2
Kozp[aar +b retere+d S reta’ B4 ], (C7)
r
G 2 2 2 \/_,3 2 2
Ko= 2|2 —( +B2-2)%+ = (a +b2+c2+d2)(a?+ B2+2)+ ——(a2+b3— da)—\/ia(aaca+bada) , (C8
r
1
Ki=——| (@,d,—biei)r’+ 7(a,d+be,) (e’ +B7=2) |, (9

2
v
v0=16'v|2 [(A+Ng)(@5+b2+c2+d2—4 codB)2+ (N p+\g)(as+bs+co+d5—4 sirfB)?
W

+2Ng(a2+ b2+ c3+d?—4 cogB)(a3+b3+ci+d3—4 sirfB) + 4 (2,0, — a,C1 + byd,— bydy)?

+(aydp+ayd; —b1C—b,yC)?—4(a1d; —b1¢1) (a0, —b2C5)) + (N4 + x1) (218, + byby+C1Cp+dyd— 4 cosB sin B)?

+(N ;. —x1)(agby—apby+ ¢y —cpdy)*+ 2xo(asa,+ biby+ €1Cp+did,— 4 cosB sinB) (agh, —apb; +¢1dr — pdy) ],
(C10

2

Vi=——[4(\1+Ng)(af+bi+ci+di—4 codp)(ady—bicy) +4(N,+\g)(a5+b5+c5+d5—4 sirPB) (a,d,—b,cy)

1 w
+aNg((af+ b2+ ci+di—4 cogB)(ad,—b,yc,) + (a5+ b3+ co+d5— 4 sirtB)(aydy—biCy))+2(N 4 + x1)
X(aja,tbb,+cic,+ddy,—4 cosBsing)(adr,+a,d;—bCr—bscy) —2(N 4 — x1)(ab,—asb, +c,dy,—cody)
X (a1Co—aycqy+byd,—bydy) +2x5[ (aa,+bibs+cCo+didy—4 cosB sinB)(a;c,—a,cqy+byd,—body)

—(asb,—azb;+c¢,d,—c,d;)(a,d,+ayd; —byc,—byeq) 1], (C1y

2
V2:

5 [4(N1+N3) (2101~ b1C1)*+4(N o+ N3) (a0, —byCy)? + 8N g(a1d; —bscy) (apd, — bycy)
w

—N4((a3C2—a,C1 +bydy—bydy) 2+ (a1dy+ ayd; — byCo—bycy)?—4(a1d; — b1Cq) (a0 —baC2)) + (N4 + x1)
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X (a;d;+a,d; —b3C,—0,C1) %+ (N4 — x1)(a3C2—ayCy +bydy—b,dy)?

—2x2(a;dy+a,d; — b1, —bycy)(ac,—a,cq +bydy,—body)]. (C12

APPENDIX D: NUMERICAL SCHEME df d2f 1d
;L G G

To implement the scheme numerically, we discretizerthe €e==Ygs ~ ds? X dfe
fields intoN valuesf ,; in the range &r=<R. The values at
the boundarie$,, andf oy 1) are determined by the bound-
ary conditions in a way which we specify below. Hereis
an(N—2)xn(N—2) matrix, andsf and&’ aren(N—2) We use symmetric second-order accurate differencing for the
column vectors. derivatives, and so

To increase the accuracy of the solution while minimizing

the number of pointsl we use a rescaled coordinaevhere

. 1
K§+Vot+ 5Va|.

(D5)

faivi—fri-
ghi:_(Yir?+2ri)w
. M max Cc= 1+uR s
R T M, T 1+R
(D1) g petMHieam 2 it i)
il h2
S

_ 1
“in[c] "

1+ pur
1+r

S

Here,M .« is the maximum of My, My, M4, My=+], and
for Mpax=M,, we usedM.=1.01XM,,. We took R

1d 1
=20M,,* and usedN=51 points throughout. It is also con- AT K&+ Voi+ §V2i} (D6)
venient to define two new function$(s), Y(s) through P
ds 1 1 (C—p)? , (feivi—fai-1) (feivi—2fgi-1tfgi-1)
X a e ey o 0 PP ST Y 2
dX 1 (C—u)(C+u) - L d KE+V +1v } (D7)
—p 2 = —— | K&+ Vg +=Val,
Y(8)= 5= = o : (D3) X dfgi| @ "% 37

The first derivative of the energ§’ may be split into Higgs Where the index=1,...,(N—2), runs over the rescaled co-

boson and gauge parts ordinates, excluding the first and last points, amd= (N
—1)"1, is the separation between each adjacent rescaled co-

dfy d2f,, ordinate. We did not usef (. ,— 2+ fi_»)/(2hg)? for
E'y=—(Yr?+2r) ds —Xr? 92 the second order derivative, as this would have produced two

systems independent in derivative terms, one seeing the even
L points and one seeing the odd points.
KS+Vo+ _sz (D4) The matrix £” is a block tridiagonaln(N—2)Xn(N

1
X 3 —2) matrix of the form

d
dfy

- 0 +
0 Di-—l,i—2 Di—l,i—l Di—l,i 0
- 0 +
0 D7 Di; Diint 0
- 0 +
0 Di+1,i ‘Di+1,i+1 Di+1,i+2
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where each of these boxes ar& n matrices, and there are
(N—=2)X(N—2) such boxes. The only nonzero terms are
theD;;_,, D?;, andD;’;, ;. Note thatD;;_, andD;’,,, are  thenDP{*" are diagonal im, B with
themselves diagonal, with entries

DY si=Dal i+ DATa!, (D12)

1 1 DYder= %Xi (gauge fields (D13
Dfi—lzz—in—h—gXi, (D8) h2
1 1 D?,?‘”=32ri2xi (Higgs fields.
Phies™ " an, Y h 9 " (D14)
for the two gauge fields, and The non-diagonal elements are symmetriAirB with
2
D 1= i (2r;+r2Y,)— hl§ r2X;, (D10) DAl = dfadfs Kgi+Voi+ %Vz : (D15)

We have to be careful about the form &f at the top left
corner of the matrix, corresponding to the 1 point, affect-
ing the D(l)‘l, and theD; , terms. Also the bottom right cor-
(D11) ner, corresponding to thé=(N—2) point, affecting the
Dn-2n-3, and theDﬁ,,rZ’N,2 since these must implement

+ 1 1
Diis1= ~ 2h, o (2ri+r] Y)_h X,

S

for the remaining Higgs fields. If we write the boundary conditions
DY, Df, 0 0
D3, D3, D, 0
0 Dy_sn-a|| DX-sn=s|| DN-an—2
0 0 D;’-—Z,N—-S D?V—Z,N—-2
|
Because for the sphaleron the boundary conditions at the Colico=2a4li—otam® .|i—o, (D18)

origin are never updateﬂzl 1, andD7 , for the sphaleron are
as Eq.(D12). For the RWS, and b|sphalerons at the origin

we use for the gauge fields dali=0=Dali=otam® ol -0, (b19)

where the® ,|;_, are calculated fromP'|;_, of Eq. (D17),
and using Tables Il and IV according to whether we are
looking for the bisphalerons or RW sphalerons. Further im-
posing smoothness ablqsﬁ at the origin gives boundary
conditions

felr—0=0—fgli—o="fali-1. (D16

and from this we are able to calculate
V|i—o=arctari— a/B)|i-o- (D17)
aalizozaa|iilcosz®a|i:0+Ca|iZISin®a|i:OCOS®a|i:O!

For the Higgs fields we use Tables IIl and IV to give (D20)
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Boli—o=bg,li=1€00 |;_o+d,|i—1SINO|i_oc0sO ,|i—o, evolve, andDy_,,_, is as Eqs(D12)—(D15). We did not
(D21  usefg|;-.=(fg|n_1—fa|n_2)/hs=0 as the boundary con-
dition since rescaling the radial coordinate to allow greater

Cali=0=Cali=1SIPO oio+ a,]i=1C080 |1 - SINO ] o, accuracy at the origin reduces the number of points at large

(D22) distances. This meant that the form of the first and second
li—o=0d_|i_1 SIPO |, _o+bg|i—1c080 |0 SiNO /o derivative were not very accurate at the last few points.
o o o o o a('|523) The form of&’ of Egs.(D6) and(D7) was not affected by

the boundary conditions. Becaug&é is only defined fori
To update the origin after each Newton Raphson iteration=1 ... (N—2) and first and second derivativesiat1, and

we use Eqs(D16) (D20)—(D23). We also use these to give j=N—2 are obtained from the already updated fiefglk,
us the form ofD? ; andD; , when looking for the bisphale- andfa|n_1.

rons or RW sphalerons We did this by first writing, foy, Also recalling that” of Egs. (56) and (57) used in the

evaluation of the curvature eigenvalues is functionally differ-
entiated with respect th; andrfy, and notf; andfy . The
form of D(l)’1 and D, for evaluating the curvature eigenval-
ues is for the Higgs fields components as E@x12) and
(D15) since 5(rf)|o=0. We again use EqD16) for the
gauge fields.
To find solutions other than the original sphaleron we first
(aa|2 2a,/, find the sphaleron and determine the curvature eigenvalues
hs? and eigenfunctions of the configuration. If there is more than
. one negative curvature eigenvalue, we successively add a
+8,]10080 4|1 +€,[1080 ,[18INO,[1), (D24 fraction of the eigenfunction of the secofat third) negative
with the equivalent expression for the other Higgs fields: anfi9envalue to the sphaleron field configuration, measuring

using Eq.(D16), for the gauge fields, we write the energy at each step. If we chose this fraction small
enough(typically between 0.01 and 0.1) the energy at each

d?a,

42 |,

da
(Y2 al g2
(Yre+2r) ds .

) 1
== (Y1r1+ 2r1)ﬁs(aa|2_ aa|lcosz®a|l

—C,|1c080 |1 SINO 4| 1) — X,r?

dfg 2d2fG step will decreases until it reaches a minimum. When the
ds |~ 4 = —Ylﬁs(fdz—feh) energy after a step is larger than the energy measured after
1 1 the previous step, we multiply the fraction by0.1 and con-

tinue until the fraction is— 10~ ° times its original value.
This configuration is then used as the initial configuration
for the Newton Raphson minimization routine to find the
(D25) RW sphalerongor bisphalerons
Sliding down the most negative eigenfunction of a sphale-
We then, after functional differentiation of Eq€24) and  ron configuration reaches the vacuum. Sliding down the sec-
(D25), get a form ofD‘f]1 and Df,z that sees the boundary ond most negative eigenfunction reaches the lowest energy
conditions. branch of sphaleron like solutions, a third negative eigen-
The 0, throughout are zero if we are looking for sphale- function will reach the second lowest energy branch and so

1
Xi—(fgla—fglo)-
1h52( cla—fgla)

ron solutions, and are determined from either Tables Il oron. In this way we were able to find bisphalerons and RW
IV with Eq. (D17) according to whether we are looking for sphalerons of the theory.
bisphalerons or RWS. We use BLASFORTRAN subroutine®GBCO andDGBSL to

We now turn to the boundary conditions at infinity. The solve for 6f, of Eq. (56) and subroutin®GEEV to evaluate
last point is never updated since this boundary does ndhe curvature eigenvalues and eigenfunctions.
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