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New prediction for the direct CP-violating parameter £'/& and the Al =1/2 rule
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The low-energy dynamics of QCD is investigated with special attention paid to the matching between QCD
and chiral perturbation theofZhPT), and also to some useful algebraic chiral operator relations which survive
even when we include chiral loop corrections. It then allows us to evaluate the hadronic matrix elements below
the energy scald =1 GeV. Based on the new analyses, we present a consistent prediction for both the direct
CP-violating parametee’/e and theAl =1/2 rule in kaon decays. In the leading\i/approximation, the
isospin amplitude#\, and A, are found to agree well with the data, and the dit€&-violating parameter
e'le is predicted to be large, which also confirms our earlier conclusion. Its numerical vala& ds
=23.6"32* 10" *(Im A{/1.2x 10" %) which is no longer sensitive to the strange quark mass due to the match-
ing conditions. Taking into account a simultaneous consistent analysis on the isospin amplifades\,, the
ratio e’/ is in favor of the valueg'/e=(20=9)x 10" 4.
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[. INTRODUCTION from ChPT with ultraviolet cutoff. Practically, the renormal-
ization scalex dependence of the Wilson coefficient func-
To make a consistent prediction for the directtionsci(u) from perturbative QCD should cancel the one of
CP-violating parameters’/e caused by the Kobayashi- the corresponding operato®;(x) from nonperturbative
MaskawaC P-violating phasd 1] which can arise from ex- contributions. In the chiral quark model the operator evolu-
plicit CP violation in the standard modé€SM) or originate  tion leads to the results which are expected to be valid only
from spontaneou€ P violation [2] in the simple extension at a special value of the energy scaleAlternatively, in the
of the SM with two Higgs doublet§S2HDM) [3], it is  ChPT approach, its attractive advantage is that chiral loops
thought to be necessary to understand simultaneously theith an ultraviolet cutoff, denoted b, introduce a scale
longstanding puzzle of thal=1/2 rule in kaon decays as dependence for long-distance operator evolution. As a
they involve the long-distance evolution of common had-simple consideration, the ultraviolet cutd¥f might naively
ronic matrix elements. It is believed that the low-energy dy-be identified to the infrared cutoft to improve the match-
namics of QCD should play a crucial role for a consistenting. Consequently, both theAl=1/2 rule and direct
analysis. During the past few years, both theoretical and exc P-violating parameteg’/e can be enhanced to be more
perimental efforts on dired P violation in the kaon decays consistent with the present experimental data. Nevertheless,
have made important progress. As a consequence, agreem#énthe existing treatments of the approach, there remain some
between the experimental resuf$—8] and the theoretical open questions which need to be further clarified. First, the
predictions has been reached within the framework of chiramomentum cutofiM in the long-distance operator evolution
perturbation theoryChPT) [9,10] and the chiral quark model from meson loops can in general only be extended to the
[11]. On the experimental side, two improved new experi-energy scale which must be smaller than the dynamical chi-
ments[6,7] with higher precision have reported results whichral symmetry breaking scalé\;, i.e., M<A{~1 GeV,
are consistent with each other and also agree with the earligvhereas the short-distance operator evolution from perturba-
result[4]. On the theoretical side, there have been some ddive QCD (by using renormalization group equatjoequires
velopments which are mainly based on QCD of quarks andhat the energy scale should be above the confining scale,
cutoff ChPT at low energies for mesons. The renormalization.e., u>1 GeV. Thus naively identifying the ultraviolet cut-
coefficients of all the relevant four quark operators, whichoff M in ChPT to the infrared cutoff. in perturbative QCD
characterize the short-distance effects of the effective Hamilmay become inappropriate. Secondly, there appear some dis-
tonian generated from renormalization of the weak interacerepancies between Refgl9] and [20,22 for the matrix
tions, have been computed and extended from the leadinglementsQ, andQ, even if the same chiral Lagrangian has
order[13,14] to the next-to-leading ordgd5,16) QCD cor-  been used and the same loop diagrams have been considered.
rections. The results agree with each other. The long-distandgis noticed that the discrepancies only occur in the coeffi-
effects have been evaluated from the ChPT inspired frontients of the quadratic terms of the cutoff energy séalend
1/N. expansion[17,18 up to the chiral one-loop level in the constant terms. Such discrepancies mainly arise from
[19,9,10 as well as from chiral quark modgl1]. Recently  different calculating schemes. In Ref49,9,1(4, all the chi-
they have been recalculated within the same framework ofal one-loop contributions were considered to be summed up
ChPT but with a different calculating scherf@0—-23. The  with the cutoff regularization, and the coupling constants are
important issue concerned in all the calculations is thereplaced by the renormalized ones. Such a treatment is the
matching problem to QCD. In ChPT, it requires the matchingstandard one as adopted in the quantum field theory. In the
between the short-distance operator evolution from QCDecent calculation§21-23, the chiral one-loop diagrams
with infrared cutoff and long-distance operator evolutionhave been separated into two classes, i.e., so-called factor-
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ized and nonfactorized diagrams. For the nonfactorized diamarkably consistent with the data. Our conclusions and re-
grams, a virtual momentum flow has been artificially addedmarks are made in the last section.

to the propagators. As a consequence, such an alternative

treatment is equivalent to the change of the cutoff energy

scale. When taking the cutoff energy scale to be infinity as Il. BASIC MOTIVATION

the case for a renormalized field theory such as QCD and , , . )

QED, the treatment has no effects. However, for a finite _ Our_ considerations are mainly based on the following ba-
cutoff integral, the change of the variables of the integrand®'C POINtS. o _ o

will result in different results. This is the main reason why !N the largeNc limit but with the combinationasN.

two calculations led to different results in the quadratic terms= ®o being held fixed. The QCD loop corrections which are
of cutoff scale and in the constant terms. In fact, one cafroportional toas are then corresponding to a larbk ex-
simply rescale the cutoff scald. in Ref. [22] via A2  Pansionas~1Nc [17]. ,
=2M?/3 to obtain the results in RefL9] for Q; andQ,. For Chiral symlmetry is sgpposeq to be broken dyn§m|cally
a similar reason, foQs there also exist discrepancies be- due to attractive gauge interactions, namely, the chiral con-

tween Refs[9,10] and[23] for the quadratic and constant densategqq) exist and lead to the Goldstone-like pseudo-
terms, however, two results cannot be simply related by thécalar mesonsr,K,7. The chiral symmetry breaking scale
same rescaling factor as the one @randQ,. The reasonis A is characterized by the condensatg~=4+ —2(qq)/r
that the results in Ref23] were thalngd only by evgluatmg ~1 GeV withr = miO/ﬁﬂ, [Mm=(m,+my)/2].
part of the so-called nonfactorized diagrams. Notice that it . L . .
. The chiral Lagrangian is considered to describe the low-
may not be so clear to separate the factorized and nonfactor- . . - . .
. . . . energy dynamics of QCD in larg€. limit and is going to be
ized diagrams for the loop corrections of the left-right struc- L
.. treated as a cutoff effective field theory. The cutoff momen-
ture four quark operators generated from the penguin dia- . . .
: . . . um M is expected to be below the chiral symmetry breaking
grams in which the intermediate quarks form a closed loop
, . . scaleA;.
with the gauge bosons. In fact, for the densigensity op- . I .
. . . . The chiral meson loop contributions are characterized by
erators, the so-called factorized diagrams do provide contri- g 2 ) -
butions to the anomalous dimension of the operators in QCI® Powers ofp”/A¢ with Ay=4af. Here f*=—2(qq)/r
evolution. Thex dependence of such factorized contribu- ~Nc is at the leading\. order and fixed by ther decay
tions is exactly cancelled by the one of explicit quark massroupling constant~F .. Thus the chiral meson loop con-
factor appearing in the corresponding chiral operators, butibutions are also corresponding to a lafgg expansion of
not by the one of the corresponding factorized chiral loopQCD, pZ/A§~ 1/N.~ag. Therefore both chiral loop and
since the quark mass factor does not arise from the chiraQCD loop contributions must be matched to each other, at
loop contributions. Therefore, for the densttylensity op- least in the sense of largé, limit. Thus the final physical
erators, or more general for the operators with left-rightresults should be independent of the cutoff schemes.
structure, it is not necessary to have one to one correspond- The cutoff momentunM of loop integrals should not be
ings between QCD loop and chiral loop due to fhelepen-  najvely identified to the renormalization scaleappearing in
dence of the low-energy coupling constants in the chiral Lathe perturbative QCD in largh, limit. It is in general taken
grangian. Nevertheless, physics observables should RBg pe a function ofu, i.e., M=M(u), which may be re-

|nd1gﬁende|nt .of_thetﬁalcublatmgt schemes. " ¢ arded as a functional cutoff momentum, its form is deter-
us, clarifying the above two open questions comes ined by the matching between the Wilson coefficients of

one of the main purposes of this paper. Our paper 1S O.rgaQCD and hadronic matrix elements evaluated via ChPT. It is
nized as follows. In Sec. I, we describe the basic motiva-

. i . Lo seen that the matching relates the chiral cutoff momentum to
tions for evaluating the long-distance contributions of theh i hat th s b
hadronic matrix elements within the framework of ChPT.t € strorjg coupling constant so that the results become
Especially, a functional cutoff momentum is introduced forscheme mdependent. i , i

the purpose of matching, namely, the cutoff momenMris From these pomt; of view, the ChPT with fu_nctlonal cut-
in general considered as the function of the QCD runnin%Off momentum Is going to be treated, in C‘?”a'” sense, as a
scaleu, i.e., M=M(x). In Sec. lll we explicitly write down ~low-energy effective field theory of QCD in the lardé,

the chiral representation of four quark operators and emphdimit. With such a treatment, it is in general not necessary to
size some useful a|gebraic chiral operator relations. In Se@_istinguish the so-called factorized and nonfactorized contri-
IV we investigate the matching between QCD and ChPTbutions since the renormalization of field theory should well
where the chiral operators are explicitly evaluated in thecover both of their contributions automatically. In this paper,
functional cutoff momentum scheme, two useful matchingwe will give up the calculating scheme of separating the
conditions will be obtained. Of interest, the strange quarkfactorized and nonfactorized contributions, and adopt the
mass is found to be fixed from the matching condition andcalculating scheme first proposed by Bardeen, Buras, and
algebraic chiral operator relation. The long-distance chiralGerard[19] in the ChPT inspired by the M/, expansion, but
operator evolution is carried out in Sec. V. In Sec. VI wewith a functional cutoff momenturivl () instead of naively
present our numerical predictions for the dir€d®-violating  identifying the cutoff momentum to the QCD running scale
parameters’/e and Al =1/2 rule, they are found to be re- u.
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Ill. CHIRAL REPRESENTATION AND ALGEBRAIC
RELATIONS

In the standard model, thAS=1 low-energy fx<m.)
effective Hamiltonian for calculating{— == decay ampli-
tudes can be written as

AS=1
HS_

G 8
Tgxugl G(WQi(m) (u<mg), (1)

with Q; the four quark operators

Qi=4s y*d u y,u ., Qy=4s y*uu y,d.,

Q3:4% gl_’Y”dLa_’YMQLv Q4:4§ EL'YMQLE_')’,U,dLa

Q5=4§q: gl_y'udLaRV,uqR, Qs= _82(;4 ELQRaRdLa
2

3 _ _
Q7:4§q: EeqSLVMdLQRYMQR,

3 -
Q8:_8§ EeqSLqRquLa

with qR,L=%(1i v5)q. Where the sum goes over the light
flavors (@=u,d,s) ande, is the charge of the corresponding
light quarks.Qs, ...,Qg arise from strong penguin dia-
grams. They transform as (8g) underSU(3), X SU(3)r
and solely contribute ta\|1 =1/2 transitions. Note that only
seven operators are independent as the linear rel&ipn
=Q,— Q1+ Q3. Q7 andQg originate from electroweak pen-
guin diagramsc;(«) are Wilson coefficient functions

3

wherer=— N/, with \q=VgVqq. The Wilson coefficient
functions z;(n«) andy;(x) have been evaluated up to the
next-to-leading order QCD corrections. THe— w7 decay
amplitudesA, with isospinl are given by

Ci(m)=z(m)+ 7yi(u),

| G <
Ale'5I:<7TqT|HéﬁS=1|K>E\/_g)\UiZ:l Ci(l’«)(Qi(/‘l‘)>l ’
4)

where §, are the final state strong interaction phases. It is
hard task for calculating the hadronic matrix element
(Qi(m)), for u<A,=1 GeV which is at the order of chiral

symmetry breaking scale. This is because perturbative QC
becomes unreliable in such a low-energy scale. In this paper
we adopt the ChPT with functional cutoff momentum to a“_yuqu_z

evaluate(Q;(u)), whenu<A, . To do that, the procedure
is as follows: one first represents the curtentirrent or den-
sityx density four quark operator®; by bosonized chiral

fields from the chiral Lagarangian, then calculate loop con-
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ChPT with functional cutoff momentum by requiring scale
independence of the physical results.

The general form of the chiral Lagrangian can be ex-
pressed in terms of the expansions of the momerwnd
quark mass to the energy scalg, . Here we only use the
chiral Lagrangian which is relevant to thé— 77 decays
(for the most general one, see REf2]),

2

f2

tr(lnUT—InU)?

L’eﬁ=z|tr(D#UTD"U)+ N
C

P MUTHUM Y47 %tr[DMU*D“U(M Y
X

+UTM)]+r2%tr(M TUMTU+MUTMUT

X
] ®

D,U=4,U—ir U+iul,,

K
+r2A—22tr<MTM)

X

with

and
M=diag m,,my,mg).

|, andr, are left- and right-handed gauge fields, respec-
tively. The unitary matrixJ is a nonlinear representation of
the pseudoscalar meson nonet givenUas e’ with TI
=7\, and trQ\;\p)=26,,. Here we keep the leading
terms at the largé\. limit except the anomaly term which
arises from the order of Ml,. Note that in order to make
clear for two independent expansions, namely léxpan-
sion characterized b;az/A}2 in the largeN, limit, and the
momentum expansion described b§//A)2(, we have intro-
duced a scaling factoA =1 GeV and redefined the low-
energy coupling constants introduced in Ref[12] via L;
=Xif2/4A)2( and H]-:Kjf2/4A)2(, so that the coupling con-
stantsy; (i=3,5,8) andA, are constants in the largs,
limit and the whole Lagrangian is multiplied By and is of
order N, except the (1) anomalous term. This is because
when applying the largd&l; counting rules to all terms in
Lagrangian, it shows thatlL;j=0O(N) (i#7) and H;
=0O(N.). Herel, is at order ofNﬁ. Numerically, one sees

hat x;=0(1) for A, =1 GeV.
S As the first step, we represent the quark currents and den-

I%ities by the chiral fields

oL F utoru
Y e -r
3l ,(X))ji 2 2A2

X5

(Ut M

—MMoru+oruTUMTU—-UTMUTI#U) |,

tributions by using the functional cutoff momentum scheme. ij

Finally, one matches the two results obtained from QCD and

(6)
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— oL f2 X5 X8 K2
- = __ |yt t t A8yt Top 2 gt
QjrdiL= oM, = r4 U +A2ﬁ#U *uu +2rA2U MU +rA2M . 7
X b X ij
Similarly one can obtain the right-handed currents and densities. With these definitions, all thexcouregrit and density
X density four quark operators can be reexpressed in terms of the chiral fields, we may call such chiral representations of four
quark operator; as chiral operators denoted B} correspondingly. Ap? order,Q¥ can be written as the following form:

Q¥+H.c=—f*tr(AgU"a,U)tr(A(DUTo#U) + O(1/A2),
Y+H.c=—f4tr(A\gUTg,UNPUTo#U) + O(1/A2),
QY +H.c=—f4tr(\gU"a,U)tr(UT9#U) + O(1/A%)
Q) +H.c= —f4tr(Agd, UT9*U) + O(1/A2),
QX+H.c=—f4tr(\gU"9,U)tr(Us*UT) + O(1/A%), ®

r’xs
A2

Q¥+H.c=+ f“(
X

) tr(\gd, UT3*U)+O(1/A%),
1 3
Qi+H.c=—5Qk~ Ef“tr()\GUTa#U)tr()\(l)U J*UT) +O(1/A%),

1 3 3
Q}+H.c=— §Q§+f4rZZtr()\6UT>\(1)U)+f4rZZ %tms(u*x(”uaﬂuwﬂu +49,UToruu\ (M)
X

3
142 %m trA(UI@UM U+ UTMUNNDU) +O(1/A%),
X

with the matrix \V)=diag(1,0,0). Thus loop contributions 12y 12y
of the chiral operator€¥ can be systematically calculated Qf=-— —25 (Q§—Q’l‘)=(—z5) f4tr()\60"#UTo’*“U).
by using ChPT with functional cutoff momentum. Ay Ay

For K— a7 decay amplitudes and dire@ P-violating (11
parametee’/e, the most important chiral operators #pé,
QX, Q¥, andQj. In fact, the chiral operator®¥ and QX Notice that the mass parameteis at the same order of the
decouples from the loop evaluations at fiteorder[9], i.e.,  energy scale\,, andys is at order of unit, thus the leading

nonzero contribution off is at the same order @@} and
Qs=Q5=0 9 Qf.

The above algebraic chiral relations were first derived in
which can explicitly be seen from the above chiral represenRef. [9], they have also been checked from an explicit cal-
tations due to the traceless factotdg*U") =0 when ignor-  culation up to the chiral one-loop level by using the usual
ing the singletU(1) nonet term which is irrelevant to the cutoff regularization[19]. If naively identifying the cutoff
kaon decays. Herd a”UT:Ai)\a may be regarded as a pure momentumM to the QCD running scal@, the above alge-
gauge. This feature may also be understood as the fact thataic chiral Wu relations, as commented by Buras, Jamin,
Q3 and Qs operators are generated from strong penguin diaand Lautenbachd®4], seem to hold only at one point when
grams and suppressed byNl/factor in comparison with the matching to QCD. Thus two questions have arised: From
operatorsQ, and Qg, thus in the largeN, limit, they de-  which energy scales and up to which order of chiral loop
couple automatically. As a consequence, it implies that at theorrections do the algebraic chiral Wu relations hold? How
lowest order ofp?, we arrive at two additional algebraic can the algebraic chiral Wu-relations survive when matching
chiral relations the ultraviolet cutoff momentum of ChPT to the infrared

cut-off momentum of perturbative QCD? Let us briefly ad-
Qf=Q%—0Q¥= —f4tr()\6&MUT(9”U)+O(1/A)2() (100  dress the first question and leave the second question to the
next section. The answer to the first question is manifest, the
and algebraic chiral Wu-relations hold starting from the energy
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scale where the low-energy dynamics of QCD is consideretbased on this observation, we came to our early conclusion
to be described by the ChPT with functional cutoff momen-that the directCP-violating parameters’/e can be large
tum. They even survive when we include chiral-loop correc-enough to be measured and its favorable numerical value is
tions generated from the Iowesr,t2 order terms as Wu- likely to be arounds’/e~ (10— 30)% 104 [9,10]. As the
relations are the algebraic chiral operator relations, theYnatchmg to QCD was not completely considered, our previ-

should not be modified by the chiral loops of the strongoys result§9,10] strongly depend on the strange quark mass.
interactions. Note that the coupling constants must also be

replaced by the renormalized ones at the same ordeMyf 1/
or 1/A2. The reason is simple as the nontrivial structures of
QY and Q¥—QY) at the order op? and p?/N, (or p?/A2)

are unique. The order of* terms are suppressed by the Let us begin with the short-distance operator evolution
factors mK/A)Z( and m>/AZ. Therefore, in the chiral limit, from perturbative QCD. When the energy scaleis high,
namely, mg ,m><A?, the above algebraic chiral operator my>u>my, there are eleven independent operafQryi
relations should hold up to the order pf/N, andp*. This =1,...,11). When thenergy scalg. runs down to below
may be understood in an analogous way to QCD, wheréhe bottom quark mass,, and above the charm quark mass
relations of the quark operators survive from all order ofmg, i.e., my>u>m., the operatoQ,; decouples and op-
QCD corrections. The reason is simply due to that QCD is @rator Qg is given by the linear combinatio®,o= —2Q;
renormalizable theory. For the ChPT, though it is an effec-+2Q,+ Q3— Q4. Once the energy scale goes down to
tive theory and not a renormalizable one in the usual senséelow m, but above the confining scale or the energy scale
but it can be constructed to be a consistent theory order by, , i.e.,m:>u>A, , two operatorQg andQ, become no
order in the expansion of momentum and quark mass as wdlbnger independent and are given by the linear combination
as 1N.. Thus, to a given order of expansion, ChPT may beQg=Q,+Q; and Q;=Q3+Q,— Q. Thus there are only
regarded as a renormalizable one in the more general senseven independent operators belaw and aboveA . In
[25]. Therefore, the algebraic chiral operator relations musbrder to match to the long-distance evolution of the opera-
survive, at least, up to the one-loop corrections, which hasors, let us present one-loop QCD corrections of the quark
actually been checked from our explicit calculations. It wasoperators at the energy scale just above the energy Agale

IV. MATCHING BETWEEN QCD AND CHPT

s Mé
Qu(1q)=Qu(r) =37 In| =3 | Qa( ) +O(IN,), (12)
)73
a MZ 2 2
Qa(Q) = Qal ) =3 In| =5 | Qu(p) - ——In —Q Qulp)— 21 Qe( )+ O(1INy), (13)
M u?
s (4 o g
Qulq)=Qa(1) =35I =3 | Qs(m) = 7 Q4(M) —ln 2] Q)+ O(1Ny), (14)
M u?
Ag (2) ag :U“Q
Qe(110)=Qe(1) ~ 71| 5 | Qul) +[3(Ne= N~ L1z In| =3 | Qs(41) +O(IN,), (15)
,u
2
Qs(14Q) = Qa( ) +[3(Ne—1Ng) — 1]—In —Q Qs( 1), (16)
and
ag as 2
Qs(pq)= st———ln Q4(M 3" 2] Q)+ O(1Ny), (17)
o g
Qs(1q)=Qs(1) +3In| =3 | Q( ) +O(IN,), (18)
,u
2
Q:(pq)= Q7<m+3—ln M—Q Qs( )+ O(1N,). (19

016001-5



YUE-LIANG WU PHYSICAL REVIEW D 64 016001

From the above results, we come to the following observaquark mass and behaviors such E[STT&(M)+ﬁ1(M)]2- No-
tions: (i) In the largeN, limit, Q;, Qz, Q4, andQg form a tice that the independent operators are reduced once more in
complete set of operators under QCD correctiofiiy; the  the long-distance operator evolution wher< A, due to the
evolution of Qg is independent of other operators and only glgebraic chiral operator relations. Let us now compare and
caused by loop corrections of the densityi;) the operator match the loop results evaluated from QCD with the ones
Qg is given by the linear combinatio@3=0Q,—(Q>—-Q1).  from the ChPT with functional cutoff momentum at the en-
The operatoiQs is driven by the operatoQq, and the op-  ergy scale\ . Substituting Eqs(20) and(22) into Eq.(12),
eratorQy is driven by the operatoQsg. keeping the leading IV, terms, we obtain, from the require-
When the energy scalg approaches to the confining ment of u-independence in the largdN, limit, i.e.,

scale, oru<A,~Ag~1 GeV, as we have discussed in the (919p)Q1(rg) =0, the first matching condition
above sections, long-distance effects have to be considered.

The evolution of the operatoi®;(x) when u<A  is sup-

posed to be carried out by the one of the chiral operators 7
QX[M(w)] in the framework of the functional cutoff ChPT ’“o’!,u
truncated to the pseudoscalars. To be treated at the same

approximations made in the short-distance operator evolu- . . . . .
tion of QCD, we should only keep the leading terfis., which can in general be obtained by requiring the matching

quadratic terms of functional cutoff momentuand take the betweep tgeD angr?halous dir?i?sions of qggrk ﬁ_pelrators
chiral limit, i.e., m4,m2<AZ. In such a leading N, ap- Qi(x) in QCD and the ones of the corresponding chiral op-

proximation and chiral limit, we find that the evolution of the eratorsQ{[M(u)] in ChPT in the largeN. limit, i.e.,
operatorsQy and Q3 can be simply given by the following

2M?(p)
A%

_ 3as

T 2w’

(25

forms when the functional cutoff momentum runs from d d
M (1) down toM (') W g QUM () )= A" g Qi) (26
Q1(n)—Qi[M(u)]
! ' Analogously, substituting Eqg20)—(23) into Eg. (13),
, 2[M2(u)—M?(u')] ) keeping the leading W, terms and adopting the above first
=Q{[M(un")]- 22 Q3[M(u")], matching condition, we arrive at the second matching condi-
F tion
(20)
Qo 1) — QY M ()] X M i
2(p)— QAM Ky M()]= = 5 (= QDIM(w)], <A,
L 2[MP(u)—MZ(u')] ) (27)
=Q3[M(un")]- A2 QiM(un")]
F

Note that such a matching condition holds for the whole

M2(uw)—M2(u') energy scalu<A, . At the special poinM(u)=0, it cov-

+ 5 (Q3—QN[M(n")],  (21)  ers the condition first presented in R¢R0]. In fact, the
Ag above two matching conditions may simply be seen by com-

paring Egs.(20) and (21) with Egs. (12) and (13). On the
other hand, from the chiral representation of operators and

their chiral loop corrections, we have the following chiral
relation in the leading N, approximation and chiral limit:

whereAr=47F=1.16 GeV withF the renormalized one of
f. Notice that the operator®¥ and Q¥ decouple from the
evolution, namelyQ3=0 and Q¥=0. The results for the
operatorsQ¥ (i=4,6,8) can be written as follows:

Qu()— QY M(1)]=(Q¥—QDIM ()], (22 R\
R QUL M()]=| — Xf"’ (Q¥-QDIM(w)], u<A,.
N _ AN ‘ 28)
Qol 1)~ QU M (12)]=| 1+3(Ne— INo) 5 In| £
X
X QgL aty sM(p)], (23) R,=R(p=p,)=m2/m(u,)
e |2 =2mg/(Mg+ M) (), (29
Qst10)— Qi1 M()]=| 1+3(Ne= TN 21|
X

where we have simply replaced the coupling constapts
XQY my M()], (24)  andr by the corresponding renormalized ongsand R(u)
as their loop corrections are at the subleading order. When
where the explicit » dependence of the operators combining the second matching condition, it allows us to fix
S M(u)] and Q[ w,M(w)] arise from the running the strange quark mass
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Rng 11 V. EVOLUTION OF LONG-DISTANCE

/’{2 =5 mg(p,) =196 MeV. (30) CHIRAL OPERATORS
X

From the above analyses, theS=1 low-energy

Here we have used the resut,=1.03 /Xt GeV which is <A,) effective Hamiltonian for calculating{ — 7 decay
fixed from the ratio of the kaon and pion decay constants. @mplitudes may be written as
The first matching condition can be rewritten as follows
after integration: . Gf
’ NS, G UQITM] (<A,

) i=1,2,4,6,
[l (36)

2
Mo

2M%(u) 2M3 3as
2 :_2+477

: (31)

We may now adopt the matching conditions and algebraic
wherep, andM =M (= u) are two integral constants. It chiral operator relations to investigate the evolution of the
is seen that the. dependence of the functional cutoff mo- chiral operatorsQ{[M(A,)]. The first matching condition
mentumM () is now logarithmic. Noticing the approxima- enables us to sum over all the leading terms via renormaliza-
tion IN(u¥ud)=uu2—1 when u?~ u2, namely, the func- tion group equation down to the energy scalg, and the
tional cutoff momentum M(w) is approximately Seécond matching condition together with the algebraic chiral
proportional tox when x runs down and approaches to the OPerator relations allows us to evaluate the penguin operators
low-energy scalgu, which is expected to be slightly above Qi(M) andQg(M) from the operatorQ1(M) andQ3(M).

the QCD scaleAqcp, We then haveM2=[3ag(uo)/ SO that the operator@{(M) and Q3(M) form a complete

8m]A2. Thus theu dependence of the functional cutoff mo- Set for the operator evolution below the energy scale
mentumM (x) can be written as =A,=1 GeV, or correspondingly, below the functional
cutoff momentumM(u=A,)=0.71'313GeV for Aqcp
=325+80 MeV. It is convenient to choose a new operator
: (32)  basis Q¥[M(x)]=Q}M(u)]+QI[M(n)]. The anoma-

lous dimension matrix for the basiQ{ ,QX) is found to be

2
Lol

2
Mo

2M2(u) 3as 3ag
A2 T 4Am  Am

which shows that after imposing the matching condition for 92 0
the anomalous dimensions between quark oper&@gig) in as |
QCD and the corresponding chiral operat@¥ M (u)] in Y=o 1 —32 3 37

the ChPT with functional cutoff momentum, the dimension-

less ratioM Z//E'Z: is only relr(]';\ted t(.) t:e strc(;ng Courglir;]g'cor}- Following the standard procedure of the renormalization
stantas and becomes scheme independent, which Implieg,, .5 eyolution with the initial conditions for the Wilson
that the long-distance operator evolution in ChPT with func'coefficient functions ¢ (A ,)=c,(A,)—ci(A,) and

- X X X

tional cutoff momentum can be carried out by using any _ " SN . s
approach. For instance, with and without separating faCtor(':nﬁ((:/;)é)pr;;i(rr/w\z;t)ionctlrsé\\t)(), we find in the leading logarith
ized and nonfactorized contributions, we should obtain the
same results after appropriately considering the matching be- ~x M(A )= 7~ 120X 38
tween QCD and ChPT with functional cutoff momentum. QEIMIA =7, "R (ko). (38)

In general, we havgu,>Aqcp. To fix the value ofu,,

we useM o= uq. Thusug [or ag(ug)] is determined via QX[M(A,)]= 7])1(/3 X (o) + %(,7;1/2_ U)l(/s)Q)i(,U«o)’
wo=Ap\3as(uo)/8. (33 (39

Using the definition ag() =6/[(33—2n)IN(u¥Adcp)]  With 7,=as(A )/ as(uo), and
with n;=3, the initial low-energy scale., is found, for

a
wo=435+70 MeV or ag(uo)/l2m=0.193%%. (34
3 3
With such an initial value ofuq, the functional cutoff mo- Q{(Mo)zQ{(o)—%’u&Q{(oH %’LO)Q{(O).
mentumM (u) at u=A , yields the following corresponding ™ ™ 41
value: (4D
M =M(u=A ~1 GeV)=0.71 21 Gev,  (35) In the above analyses, we have taken the chiral limit

mZ ,m><AZ2. From the chiral one loop results, the finite
which provides the possible allowed range of the energyne€son mass contributions can be approximately included by
scale where the ChPT with functional cutoff momentum canmodifying the above results into the following form:

be used to describe the low energy behavior of QCD at large 1
N, limit. QYX[M(A )I=n, " 1n-(M,)Q¥ (o), (42)
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QYIM(A )]=7y%11(M ) QX (o)

1
+& (1, = 1) 712(M) QX (o),

(43
with
3 9
O 2 Y 2
o AZ m? )
2 2
—Mmg+3m
M,)=1+ - WI 1+M2(’u)
3
2 2
mg——=m
Mo=14 2 il 14 M) 44
7]2( X)_ M)z( n F-'nz ( )

Numerically, we usem=300 MeV, m,=0.495 GeV, and

PHYSICAL REVIEW D 64 016001

A, cosé = (mm|H55 Y K)

G

2 ui=112’4’6'80i(Ax)Re<QiX[M(AX)]>| .

(49

The CP-conserving amplitudes are given by
ReA, COS4, =%Re>\ > z(A)REQIM(A ]
0 ° 2 YieiTaes X ' X170

1
EZ—(AX)RdQ{[M(AX):DO

G
~—LRe),

N
1

+§Z+(Ax)RdQ{[M(A/\/)]>O

+2,(A JREQIM(A ) o

+Ze(AX)R6(Qé‘[M(AX)]>o}- (50

m,=0.137 GeV. When the QCD scale takes the value G
Aqcp=325+80 MeV with the corresponding low energy ReA, cos&zz—FRe)\u

cutoff momentumu,=435+70 MeV, we have
Q¥[M(A,)]=(3.17°339Q* (0)=Q}[M(A )], (45)

QX[M(A,)]=(0.55,539Q% (0)+(0.8" 539 Q¥ (0),

(46)
11
Qe ry M(A]=— 5 QY[M(A,)]
=—(17.4435)QX(0), 47
o M= A2 o0
Qal my ,M( X)]—gm((?wLQ_)()
=19.18 QX +QX)(0), (48

which shows that the isospih=2 amplitude A, is sup-

pressed by a factor of about 2 as it only receives contribu-

tions from the operatoQX[M(A )], while the isospinl

V2 i=1,2,8 Zi(AYREQIIM(A ) ]2

G
=~ —LRe\,

2

1
+524 (A )REQLIM(A ]2, (51)

1
Ez,(AX)Re(Q)i[M(AX)Dz

and the CP-violating amplitudes are dominated by
(QEIM(A ) 1o and(QF[M(A,)])2

=0 amplitudeA, is enhanced by a large factor as it mainly |m A, cosé,

gets contributions from the operat@*[M(A)]. On the

other hand, the direcC P-violating parameter’/s is ex-

. T G
pected to be large since the significant enhancement of —_— |y A
8Ly ,M(A )] relative toQg[ i, ,M(A,)] is seen to result 2 i

from the algebraic chiral operator relation and matching con-

dition. We are going to present our numerical predictions for
the isospin amplitudes and the dir€zP-violating parameter

e'le in the next section.

VI. PREDICTIONS FOR €'/¢ AND THE Al=1/2 RULE

We are now in the position to calculate the- 77 decay

amplitudesA, with isospinl

Im Ag cosdy
— % m (A REQITM(A,)])
J2 ti=1,2,4,6,8yI X ' e
Ge i
:—EIm)\t[yG(AX)Re(Qe[M(AX)Do]y (52
I:1'2‘8yi(/\,()Re(Qf([l\/|(AX)]>2
:T;Im)\t[ys(AX)Re(Qé‘[M(AX)Dz]- (53)

From the definition of direc€ P-violating parametee’/e

g’ ® (ImA2 54

e 2

Im Ag
ReA, ReAy)’
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with w=ReA,/ReA,=1/22.2, we arrive at the following ReAy=(2.56" 319 x 107%(coss,) " MeV
general expression: '
=(3.10°02H x 107* MeV, (59)
8, GF w
::7|8|R—6A\0|m A(ho—hz/w). (55 ReA,=(0.1270.02 X 10~ %(coss,) ~* MeV
=(0.12+0.02 X 10 * MeV, (60)

Here hg and h, are given by the isospih=0 and|=2
hadronic matrix elements of relevant operators which agree well with the experimental data: Re
=3.33x10 4 MeV and ReA,=0.15x 10 * MeV. Here we
_ - have used the final state interaction phaség=(34.2
ho=(cosdp) li=1§4ﬁ,8yi(AX)Re<Qi)([M(AX)DO(l_Q'B) +2.2)° andé,=(—6.9+0.2)° [30]. Consistently, the direct
CP-violating parametee’/¢ is found, in the leading N,
=(c0s8p) "Ye(A ) R(QIM(A)])o(1-Qig),  (56)  approximation withA ocp=325+80 MeV, to be

!

® (23612 —4
hy=(c0s8,) "t 2, Vi(A )REQIM(A,)]), —=(2s. 124 %10 (61)
i=1,2,8
=(c0s8,) " 'yg(A )REQIM(A ) ]),, (57)  for the central value of Im,=1.2x 104 resulted from fit-

ting the indirectCP-violating parametet, |V, B°-B°,
where we have taken into account the possible isospin brealnd Bg-ﬁg mixings. It is of interest to note that this central
ing effect 5, its previously estimated value wadg  value also agrees with the one predicted from ten useful re-
=0.25+0.1[26]. The most recent refined calculation in Ref. lations among the quark masses and mixing angles obtained
[27] gives a smaller valu€g=0.16+0.03 but with a large in the supersymmetri¢€SUSY) grand unified theoryGUT)
error [28]. In our present numerical calculations, we usemodel[31]. When considering the possible allowed range for
Q,3=0.16. The Cabibbo-Kobayashi-Maskaw@KM) fac-  the CKM matrix elements extracted from fitting the present
tors Rex, and Im\, are given in the Wolfenstein parametri- experimental data, we have
zation[29] as follows:

7. 48 _ 12. —4
Reh,=Re&V* Vo) =\, ImA=Im(VEV,)=A%\57. (13.8',2x10 $;—(23.6f7_84)><10 (

(58)

Im A
1.2x10°4

<(33.6'119x10* (62)

To evaluate the numerical results, we are going to take the
following reliable values for all relevant parameters. For thefor the possible allowed range 70 “<ImX,
involved energy scales, we have,cp=325+80 MeV, uo  <1.7X 10" “. It is noticed that the present new predictions
=435+70 MeV, A,=1.0 GeV, andAg=1.16 GeV. For for the isospin amplitudes and dire€P-violating parameter
the Wilson coefficient functions, we only use the leadinge’/e further confirm our early conclusion9,10]. Our new
order results at one-loop level for a consistent analysis sincpredictions are consistent with the world averg8g
the chiral operators have only been evaluated up to the lead-
ing order at the chiral one-loop level, namely, at order Rgg'/e)=(19.2+2.4)x10°* (world average 2000
1/NC~M2/A§~aS in the largeN. approach. Their values 63)
can be read following Ref§13,14. The numerical values
at u=A, are regarded as the “initial conditions” for which was obtained by taking into account the results from

the chlral operator evolution and read foAocp four collaboration groups. They contain two published re-
=325+ 80 MeV: Z—(Ax):(22_21)(AX):2-18f8i77' sults reported earlier by the NA31 Collaboration and E731
2,(A)=(2,+2)(A,)=0.68570.029, z,(A,)=—(0.012 Collaboration:

+0.003), and zg(A,)=—(0.013-0.003), as well as

’ — " — 4
Yo(A )= —(0.1133%2) and yg(A )/a=0.158-0% The Rele’/e)=(23£7)x 107" (1993 NA3] [4],
hadronic matrix elements of chlral operators at cutoff mo- Re(e'/e)=(7.4+5.9 10" * (1993 E73} [5]
mentumM =0 take their values at the tree-levé)¥ (0)), (64)
=36.9x10° MeV?, (QX(0))p=12.3x10° MeV?3,

(QX(0)),=34.8<10° MeV?, and (QX(A,,0)),=328.8 and the recent new results reported by the KTeV Collabora-
% 10f MeV3. For the CKM matrix eIemen)t(s: there remain tion at Fermilab and the NA48 Collaboration at CERN:

big uncertainties arising from the singleP-violating phase, Re(s'/s)=(28.0-3.0-2.8)X 10 % (1999 KTeV) [6]
two matrix elementsV,, and V.,, or the corresponding ’

Wolfenstein parameters, p, andA. For a numerical esti- Rgg’/¢)=(18.5+4.5-5.8)x10 4 (1999 NA4§ [7],
mate, we take Re,=0.22 and Im\,=1.2x 10 * as the cen-

tral values. With these input values, we obtain, in the leadingRe(e'/¢)=(14.4+-4.3) X 10 4 (2000 NA4§ [8].

1/N. approximation, the isospin amplitudes (65

016001-9
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Before drawing our conclusions, we would like to address VII. CONCLUSIONS
the following points.

(1) The main uncertainties for the predictions arise from
the QCD scale\ ocp (or the low-energy scalg,) and the
combined CKM factor Im\;. Nevertheless, the uncertainties
from the energy scale may be reduced from comparing th
predicted isospin amplitude&, and A, with the well mea-
sured ones. As a consequence, it is seen from G&§s.and
(60) that the results corresponding to the large values o
Aqcp>325 MeV appear not so favorable.

(2) From the above point of view, it is seen that from the
isospin amplitudeA,, the ratioe'/e favors the low values

We have simultaneously analyzed the direct CP-violating
parametek’/e andAl=1/2 rule in kaon decays by consid-
ering a consistent matching scheme between QCD and
ChPT. Our main points may be summarized as follo@s.
%tarting from the chiral Lagrangian obtained in terms of the
momentum and quark mass expansion with low-energy cou-
Pling constants given by the leading terms of thil 1£x-
pansion. Thé\. behavior in the concerned chiral Lagrangian
has explicitly been characterized by the scale fao'tcfr
~Nq,. (i) The four quark operators for weak kaon decays at
low energies have been assumed to be represented by the
chiral operators in the largd, limit. It has also been shown
that there is simplification in ChPT which leads to useful
algebraic chiral operator relations. Those relations survive
even when including loop correction@i ) We have adopted
_ . ) _ ) . the usual cutoff regularization scher®9] for all the dia-
while from the isospin amplitudd, it favors the high val- grams with a single cutoff momentum for a systematical
ues analysis, and given up the scheme of separating factorized

and nonfactorized parts with two cutoff scalés) The cut-
e! off momentumM has been considered to be the function of
- ~(24£10)X 1074 (67)  the QCD running scalg, i.e., M=M(u), instead of naively
identifying it to the perturbative QCD running scale The
form of the functional cutoff momentunM (u) has been
From the ratio of the two amplitudes Rg/ReA,, i.e., the  determined via the matching requirement, so that the chiral
Al=1/2 rule, the ratice’/e favors the middle values loop results become scheme independent. As a consequence,
two useful matching conditions have been obtained, which
, has allowed us to evaluate the long-distance chiral operators
8—=(20i 9)x 1074 (68)  and sum over the leading nonperturbative contributions. In
2 particular, theAl =1/2 rule can consistently be understood
and the resulting direct P-violating parametet '/ become

which is consistent with the most recent results reported byA"9€ enough to be measured, which also confirms our early
the NA48 Collaboration at CERIB,7] and the KTeV Col- conc!u3|ons[9,10]: Taking '|nto 'accoun'F the simultaneous
laboration at Fermilaj6]. In fact, it is very close to the Consistent analysis for the isospin amplitudgsandA,, the
average value from NA48 and KTeV. While the central Va|_numerical result for the ratie’/¢ is in favor of the values
ues from two experimental groups differ from each other at N
3.5 level. —=(20=9)x10 % (69)

(3) The above results are renormalization scheme inde- €

pend_ent as 'ghe consistent matchmg between QC.D and Chl:)v;}-hich may be regarded as the favorable prediction in our
considered in the present paper is at the leading one-loo

Bresent analyses. The prediction is also consistent, within the
Ord‘?r O.f INe~ a5~ 1/AE around the S_C""Ié‘X' The renor- theoretical and experimental uncertainties, with the present
malization scheme dependence arises from the next-lqgaarg 47, Finally, we would like to remark that we have
leading order of perturbative QCD, which could become subyoqjected in our present analyses the subleading contribu-
stantial for some of the Wilson coefficient functions Whentions, their effects are in general small and will be investi-
the renormalization scalg runs down to around the scale gated elsewhere in detail.
A,=1 GeV. In our present approach, the scheme for the
long-distance evolution is fixed by the ChPT with functional
cutoff momentum. For matching to this scheme, it is useful
to introduce a scheme independent basis for the perturbative The author would like to express gratitude to E.A. Pas-
QCD calculation of short-distance physics. Then applyingchos for his enlightening discussions about the matching
our above procedure to find out the matching conditions aproblem and for the hospitality at Dortmund University. He
the next-to-leading order E~ a2~ 1/A} . To work out the ~ would also like to thank W. Bardeen and L. Wolfenstein for
scheme independent basis, it may be helpful to adopt ththeir useful discussions. This work was supported in part by
method discussed in R¢B2] and use the cutoff momentum the NSF of China under Grant No. 19625514 and Chinese
basis. The study of scheme independent basis in perturbativecademy of Sciences. The partial support from the
QCD is beyond the purposes of the present paper. SomBundesministerium “fu Bildung, Wissenschaft, Forschung
effort is being madd33] though it is not yet fully under- und TechnologigBMBF), 057D093F7), Bonn, FRG, and
stood. DFG Antrag PA-10-1 is also acknowledged.
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