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Chiral gauge theory on the lattice with domain wall fermions
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We investigate aU(1) lattice chiral gauge theory with domain wall fermions and compact gauge fixing. In
the reducedmodel limit, our perturbative and numerical investigations show that there exist no extra mirror
chiral modes. The longitudinal gauge degrees of freedom have no effect on the free domain wall fermion
spectrum consisting of opposite chiral modes at the domain wall and at the anti-domain wall which have an
exponentially damped overlap.
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I. INTRODUCTION

Lattice regularization of chiral gauge theories has
mained a long standing problem of nonperturbative inve
gation of quantum field theory. The lack of chiral gau
invariance in lattice chiral gauge theory (LxGT) proposals is
responsible for the longitudinal gauge degrees of freed
~DOF! coupling to fermionic DOF and eventually spoilin
the chiral nature of the theory. The well-known example
the Smit-Swift proposal of LxGT @1#. Although in a recent
development using a Dirac operator that satisfies
Ginsparg-Wilson relation, it was possible to formulate
LxGT without violating gauge-invariance or locality@2#, an
explicit model for nonperturbative numerical studies is s
not available.

In this paper, we follow the gauge fixing approach
LxGT @3#. The obvious remedy to control the longitudin
gauge DOF is to gauge fix with a target theory in mind. T
Roma proposal@4# involving gauge fixing passed perturb
tive tests but does not address the problem of gauge fixin
compact gauge fields and the associated problem of la
artifact Gribov copies. The formal problem is that f
compact gauge fixing a Becchi-Rouet-Stora-Tyute
~BRST-!invariant partition function as well as~unnormal-
ized! expectation values of BRST invariant operators van
as a consequence of lattice Gribov copies@5#. Shamir and
Golterman@3# have proposed to keep the gauge fixing part
the action BRST noninvariant and tune counterterms to
cover BRST in the continuum. In their formalism, the co
tinuum limit is to be taken from within the broken ferroma
netic ~FM! phase approaching another broken phase whic
called ferromagnetic directional~FMD! phase, with the mas
of the gauge field vanishing at the FM-FMD transition. Th
was tried out in aU(1) Smit-Swift model and so far the
results show that in the pure gauge sector QED is recov
in the continuum limit@6# and in thereducedmodel limit ~to
be defined below! free chiral fermions in the appropriate ch
ral representation are obtained@7#. Tuning with counterterms
has also not posed any practical problem, actually very li
tuning is necessary. Efforts are currently underway to ext
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this gauge fixing proposal to include non-Abelian gau
groups@8#.

Without gauge fixing the longitudinal gauge DOF, whic
are radially frozen scalar fields, are rough and nonpertur
tive even if the transverse gauge coupling may be weak~this
is because with the standard lattice measure, each poin
the gauge orbit has equal weight!. The theory in the con-
tinuum limit, taken at the transition between the broken sy
metry ferromagnetic~FM! phase and the symmetric par
magnetic ~PM! phase, displays undesired nonperturbat
effects of the scalar-fermion coupling that usually spells
saster for the chiral theory. The job of the gauge fixing is
introduce a new continuous phase transition, from the
phase to a new broken symmetry phase~FMD!, at which the
gauge symmetry is recovered and at the same time the g
fields become smooth.

The problem can be cleanly studied in the reduced mo
as explained in the following. When one gauge transform
gauge non-invariant theory, one picks up the longitudi
gauge degrees of freedom~radially frozen scalars! explicitly
in the action. The reduced model is then obtained by mak
the lattice gauge field unity for all links, i.e., by switching o
the transverse gauge coupling. The action becomes that
chiral Yukawa theory with interaction between the fermio
and the longitudinal gauge DOF. The reduced model wo
have a phase structure similar to the full theory, e.g.,
gauge fixed theory in the reduced limit will have a FM-FM
transition in addition to the FM-PM transition. Now for th
gauge fixing proposal to work, the scalars need to decou
from the fermions at the FM-FMD transition leaving the fe
mions free in the appropriate chiral representation. Pas
the reduced model test is an important first step for a
LxGT proposal that breaks gauge invariance.

In the reduced model derived from the gauge fixed the
the scalar fields become smooth and expandable in a pe
bative series as 11O(coupling constant) at the FM-FMD
transition. If continuum limit can be taken near the point
the coupling parameter space around which this perturba
expansion is defined, the scalar fields will decouple from
theory. The parametrization of the gauge fixing action tu
out to be a good one, because this continuum limit can
taken~i! very easily by approaching the FM-FMD transitio
almost perpendicularly by tuning essentially one count
term, and~ii ! at a point on this transition line which is rea
sonably far away from the expansion point. This has be
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possible in@7# and again in the present work.
A central claim of the gauge fixing proposal is that it

universal, i.e., it should work with any lattice fermion actio
that has the correct classical continuum limit. This is beca
the central idea as discussed above is independent o
particular lattice fermion regularization. In the present pa
we want to confirm the universality claim by applying th
proposal to domain wall fermions@9# with U(1) gauge
group. For this purpose we have chosen the waveguide
mulation@10# of the domain wall fermion and investigate
the reduced model. This model was investigated before w
out gauge fixing and the free domain wall spectrum was
obtained in the reduced limit@11#. Mirror chiral modes were
found at the waveguide boundaries in addition to the ch
modes at the domain wall or anti-domain wall.

In Sec. II we present the gauge-fixed domain wall ferm
action for aU(1) chiral gauge theory and then go to th
so-called reduced model by switching off the transve
gauge coupling. In Sec. III we perform a weak coupling p
turbation theory in the reduced model for the fermion pro
gators and mass matrix to 1-loop. However, in Secs. II
and III D we have used special boundary conditions~instead
of the actual Kaplan boundary conditions! to arrive at ex-
plicit expressions for the overlap of the opposite chi
modes. Our numerical results for the quenched phase
gram and chiral fermion propagators at the domain wall a
anti-domain wall and at the waveguide boundaries are
sented and compared with the perturbative results in Sec
We summarize in the concluding Sec. V. In Appendix A, w
describe the special boundary conditions used in Secs.
and III D. In Appendix B we schematically discuss how u
ing Kaplan boundary conditions one can arrive at the sa
qualitative conclusion about the 1-loop overlap of the op
site chiral modes.

II. GAUGE-FIXED DOMAIN WALL ACTION

Kaplan’s free domain wall fermion action@9# on a~411!-
dimensional lattice is given by~lattice constant is taken to b
unity throughout this paper!

SF5(
XY

c̄X@]” 52w51M #XYcY ~2.1!

where c̄ and c are the fermion fields, and]” 5 and w5 are
respectively the 5-dimensional Dirac operator and the W
son term,

~]” 5!XY5
1

2 (
a51

5

ga~dX1â,Y2dX2â,Y!,

~w5!XY5
r

2 (
a51

5

~dX1â,Y1dX2â,Y22dXY!. ~2.2!

The ga’s are the five Hermitian Euclidean gamma matric
r is the Wilson parameter,X5(x,s), Y5(y,t) label the sites
of theL4Ls lattice andLs is the extent of the 5th dimension
0<s, t<Ls21. We are interested in taking the continuu
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limit in the 4 space-time dimensions only. It is convenient
look at the 5th dimension as a flavor space.

With periodic boundary conditions in the 5th o
s-direction (s,t5Ls⇒s, t50) and the domain wall massM
taken as

MXY5m~s!dXY , where ~2.3!

m~s!5

2m0 , 0,s,Ls/2

0, s50,Ls/2

m0 , Ls/2,s,Ls

~2.4!

the model possesses a left-handed~LH! chiral mode bound to
the domain wall ats50 and a right-handed~RH! chiral
mode bound to the anti-domain wall ats5Ls/2. For m0Ls
@1, these modes have exponentially small overlap. The
ral modes exist for momentap below a critical momentum
pc , i.e. u p̂u,pc , where p̂252(m@12cos(pm)# and pc

254
22m0 /r . Taking the Wilson parameterr 51 the choice of
m0 is then restricted to 0,m0,2.

A 4-dimensional gauge field which is same for alls-slices
can be coupled to fermions only for a restricted number
s-slices around the anti-domain wall@11# with a view to cou-
pling only to the RH mode at the anti-domain wall. Th
gauge field is thus confined within awaveguide

WG5~s:s0,s<s1!

with

s05
Ls12

4
21, s15

3Ls12

4
21. ~2.5!

With this choice, (Ls22) has to be a multiple of 4. Fo
convenience, the boundaries at (s0 ,s011) and (s1 ,s111)
are denoted waveguide boundaryI and II respectively.

The gauge transformations on the fermion fields are
fined as follows:

cx
s→gxcx

s , c̄x
s→c̄x

sgx
† , sPWG,

cx
s→cx

s , c̄x
s→c̄x

s , sP” WG, ~2.6!

where gxPG, the gauge group. Other symmetries of t
model remain the same as in@11#.

Obviously, the hopping terms froms0 to s011 and that
from s1 to s111 would break the local gauge invariance
the action. This is taken care of by gauge transforming
action and thereby picking up the pure gauge DOF or a
dially frozen scalar fieldw ~Stückelberg field! at the wave-
guide boundary, leading to the gauge-invariant action@with
wx→gxwx and Eq.~2.6!#:
4-2
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SF5 (
sPWG

c̄s@D” ~U !2W~U !1m~s!#cs1 (
sP” WG

c̄s@]”2w1m~s!#cs1(
s

c̄scs2 (
sÞs0 ,s1

~ c̄sPLcs111c̄s11PRcs!

2y~ c̄s0w†PLcs0111c̄s011wPRcs0!2y~ c̄s1wPLcs1111c̄s111w†PRcs1! ~2.7!
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where we have taken the Wilson parameterr 51 and have
suppressed all indices other thans. The projectorPL(R) is
(17g5)/2 andy is the Yukawa coupling introduced by han
at the waveguide boundaries.D” (U) and W(U) are respec-
tively the gauge covariant Dirac operator and the Wils
term in 4 space-time dimensions.]” and w are the
4-dimensional versions of Eq.~2.2!.

The gauge-fixed pure gauge action forU(1), where the
ghosts are free and decoupled, is

SB~U !5Sg~U !1Sg f~U !1Sct~U ! ~2.8!

where, Sg is the usual Wilson plaquette action; the gau
fixing term Sg f ~as proposed by Shamir and Golterman! and
the gauge field mass countertermSct are given by~for a
discussion of relevant counterterms see@3,12#!

Sg f~U !5k̃S (
xyz

h~U !xyh~U !yz2(
x

Bx
2D , ~2.9!

Sct~U !52k(
xm

~Umx1Umx
† !, ~2.10!

whereh(U) is the covariant lattice Laplacian and

Bx5(
m

S Vmx2m̂1Vmx

2 D 2

~2.11!

with Vmx5(1/2i )(Umx2Umx
† ) and k̃51/(2jg2).

Sg f is not just a naive lattice transcription of the co
tinuum covariant gauge fixing term, it has in addition app
priate irrelevant terms. As a result,Sg f has a unique absolut
minimum atUmx51, validating weak coupling perturbatio
theory~WCPT! aroundg50 or k̃5` and in the naive con-
tinuum limit it reduces to (1/2j)*d4x(]mAm)2.

Obviously, the actionSB(U) is not gauge invariant. By
giving it a gauge transformation the resulting acti
SB(wx

†Umxwx1m̂) is gauge-invariant withUmx→gxUmxgx1m̂
†

andwx→gxwx , gxPU(1). By restricting to the trivial orbit,
we arrive at the so-calledreduced modelaction

Sreduced5SF~U51!1SB~wx
†1wx1m̂! ~2.12!

whereSF(U51) is obtained quite easily from Eq.~2.7! and

SB~wx
†1wx1m̂!52k(

x
wx

†~hw!x1k̃(
x

@wx
†~h2w!x2Bx

2#

~2.13!

now is a higher-derivative scalar field theory action.Bx in
Eq. ~2.13! is same as in Eq.~2.11! with
01450
n

-

Vmx5
1

2i
~wx

†wx1m̂2wx1m̂
†

wx!. ~2.14!

In the following, we investigate the action~2.12! at y
51 by analytical and numerical methods. Some numer
results with other values ofy have been presented in@13#.
The waveguide model strictly aty50 would give rise to
opposite chiral modes at the waveguide boundaries as ca
seen from fermion current considerations@11# ~and also from
numerical simulation! and would thereby spoil the chiral na
ture of the theory. It is an interesting question to investig
the model for 0,y,1. Analysis of the results for smal
values ofy (,1) is tricky and will be discussed in a sep
rate article@14#.

III. WEAK COUPLING PERTURBATION THEORY IN
THE REDUCED MODEL

At y51, we carry out a WCPT in the coupling 1/k̃ for the
fermion propagators to 1-loop. In order to develop pertur
tion theory, in reduced model, we expand

wx5exp~ ibux!511 ibux2
1

2
b2ux

21O~b3! ~3.1!

where,b51/A2k̃ andux is dimensionless, leading to

S5SF
(0)~c,c̄;y!1SB

(0)~u!1S(int)~c,c̄,u;y! ~3.2!

whereS(0)’s are free actions andS(int) is the interaction part.

A. Scalar propagator at tree level

FromSB
(0)(u) one gets the free propagator for the comp

scalaru @12#,

G~k!5
1

k̂2~ k̂21v2!
, v25

k

k̃
~3.3!

wherek̂m52 sin(km/2).

B. LL and RR fermion propagators at tree level and at 1-loop

1. Tree level

With y51, SF
(0)(c,c̄;y51) is the free domain wall ac

tion ~2.1!. Free fermion propagators aty51 are obtained in
momentum space for 4-spacetime dimensions while stay
in the coordinate space for the 5th dimension following@15#
†results in@15–17# cannot be directly used because of diffe
ence in implementation of the domain wall~2.4!‡. The free
action is written as
4-3
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SF
(0)~y51!5 (

p,s,t
c̄̃p

s@ ip”̄ ds,t1MstPL1Mst
† PR#c̃p

t

~3.4!

where, Mst5F(p)ds,t1(M0)st , (M0)st5@11m(s)#ds,t

2ds11,t , F(p)5(m@12cos(pm)#, p̄m5sin(pm) and p”̄

5gmp̄m . The free fermion propagator can formally be wr
ten as

D~p!5@ ip”̄1M PL1M†PR#21

5~2 ip”̄1M†!PLGL~p!1~2 ip”̄1M !PRGR~p!

~3.5!

where

GL~p!5
1

(
m

p̄m
2 1MM†

~3.6!

GR~p!5
1

(
m

p̄m
2 1M†M

. ~3.7!

Solution ofGL is obtained by writing Eq.~3.6! explicitly:

@ p̄2111B~s!2#~GL!s,t2B~s11!~GL!s11,t2B~s!~GL!s21,t

5ds,t ~3.8!

and similarly forGR . In Eq. ~3.8!, B(s)5F(p)111m(s).
We show only the calculations for obtainingGL and hence-
forth drop the subscriptL.

Setting the notation as follows:

G5G2, B~s!5F~p!112m05a2 for 0,s<Ls/221
~3.9!

and

G5G1, B~s!5F~p!111m05a1

for Ls/2,s<Ls21, ~3.10!

the equations forG6 are given by

~ p̄2111a2
2 !Gs,t

2 2a2Gs11,t
2 2a2Gs21,t

2 5ds,t ,
~3.11!

~ p̄2111a1
2 !Gs,t

1 2a1Gs11,t
1 2a1Gs21,t

1 5ds,t .
~3.12!

The ranges ofs in Eqs.~3.9!,~3.10! for which G2 andG1

are defined, are applicable only to the translationally inva
ant Eqs.~3.11!,~3.12!. In general for the translationally non
invariant Eq.~3.8! we also defineG2 and G1 at s50 and
Ls/2, the ones excluded by Eqs.~3.11!,~3.12!. The6 super-
script to G at s50, Ls/2 is decided by the translationall
01450
i-

invariants-sector from whichs50 or Ls/2 is approached in
Eq. ~3.8!. We have used this notation for the boundary co
ditions Eq.~3.15! below.

The solutions of Eqs.~3.11!,~3.12! are expressed as th
sum of homogeneous and inhomogeneous solutions:

Gs,t
6 ~p!5g6

(1)~ t !e2a6(p)s1g6
(2)~ t !ea6(p)s

1
cosh@a6~p!~ us2tu2 l /2!#

2a6sinh„a6~p!…sinh„a6~p!l /2…
, ~3.13!

where,l 5Ls/2 and

cosh„a6~p!…5
1

2
S a61

11 p̄2

a6
D . ~3.14!

The third term in Eq.~3.13! is the inhomogeneous solution
To avoid singularities ina6(p) when a6 is zero further
restricts the allowed range ofm0 to 0,m0,1. In this paper
we have takenm050.5.

In order to get the complete solution we need to determ
the unknown functionsg6

(1)(t) and g6
(2)(t) in Eq. ~3.13!,

which are obtained by considering boundary conditions fr
Eqs.~3.11!, ~3.12! at s50,1,Ls/221,Ls/2,Ls/211,Ls21,

a0G0,t
2 ~p!5a1GLs ,t

1 ~p!,

a0GLs/2,t
1 ~p!5a2GLs/2,t

2 ~p!,

~ p̄2111a0
2!G0,t

2 ~p!2a2G1,t
2 ~p!

5d0,t1a0GLs21,t
1 ~p!,

~ p̄2111a0
2!GLs/2,t

1 ~p!2a1GLs/211,t
1

5dLs/2,t1a0GLs/221,t
2 ~3.15!

with B(s)5F(p)115a0 at s50,Ls/2. It is to be noted that
these boundary conditions are significantly different from
ones given in@15# because of the difference in implement
tion of the domain wall.G0,t

2 andGLs/2,t
1 ~and the correspond

ing ones fromGR) are used to determine the free chir
propagators at the domain wall and anti-domain wall
comparison with numerical data in Fig. 4. We will see la
that these chiral propagators do not receive any 1-loop s
energy corrections.

Substituting p̄2111a0
25F0 and

2a6sinh„a6(p)…sinh„a6(p) l /2…5X6 and using the bound
ary conditions, Eqs.~3.15!, we arrive at an equation of th
form

A•g~ t !5X~ t !, ~3.16!

where g(t)5(g2
(1)g2

(2)g1
(1)g1

(2)) is a 4-component vector
X(t) is another 4-component vector andA is a 434 matrix
as given below:
4-4
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A5S a0 a0 2a1e2a1Ls 2a1ea1Ls

a2e2a2Ls/2 a2ea2Ls/2 2a0e2a1Ls/2 2a0ea1Ls/2

F02a2e2a2 F02a2ea2 2a0e2a1(Ls21) 2a0ea1(Ls21)

2a0e2a2(Ls/221) 2a0ea2(Ls/221) ~F02a1e2a1!e2a1Ls/2 ~F02a1ea1!ea1Ls/2

D
and

X~ t !5S a1X1cosh@a1~ uLs2tu2 l /2!#2a0X2cosh@a2~ u2tu2 l /2!#

a0X1cosh@a1~ uLs/22tu2 l /2!#2a2X2cosh@a2~ uLs/22tu2 l /2!#

d0,t1a0X1cosh@a1~ uLs212tu2 l /2!#2F0X2cosh@a2~ u2tu2 l /2!#1a2X2cosh@a2~ u12tu2 l /2!#

dLs/2,t1a1X1cosh@a1~ uLs/2112tu2 l /2!] 2F0X1cosh@a1~ uLs/22tu2 l /2!#

1a0X2cosh@a2~ uLs/2212tu2 l /2!#
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The explicit expressions forA and X(t) are obviously
different from similar expressions given in@15–17# because
of the differences in domain wall implementation as alrea
discussed earlier.

The solution to Eq.~3.16! is very complicated in genera
particularly for finiteLs . However,g6(t) can be obtained
for finite Ls by solving the above equations numerically f
different t values. This way we can easily construct the fr
fermion propagators at any givens-slice, including the zero
mode propagators ats5t50,Ls/2.

The solutions for (GR)s,t and the resulting propagators a
obtained in exactly the same way. However, in this case
explicit forms for Eqs.~3.8!, ~3.13!, ~3.15! and matricesA
andX(t) in Eq. ~3.16! are obviously different.

2. 1-loop

Next we calculate the chiral fermion propagators
1-loop. Half-circle diagrams which are diagonal in flavo
space contributes toLL and RR propagator self-energies
However, the self-energies are nonzero only at the wa
guide boundariesI and II .

Retaining up to O(b2) in the interaction term
S(int)(c,c̄,u;y51) in Eq. ~3.2!, we find the vertices neces
sary to calculate the self-energies to 1-loop~see Fig. 1!.

The LL propagator on the (s011)-th slice at the wave-
guide boundaryI receives a nonzero self-energy contributi
from the half-circle diagram,

2„SLL
I ~p!…st5E

BZ

d4k

~2p!4
b2@2 igm~p2k!m

3PLGL~p2k!#s0 ,s0
G~k!ds,s011d t,s011

~3.17!

→ b2

L4 (
k

@S RR
(0)~p2k!#s0 ,s0

3
1

k̂2~ k̂21v2!
ds,s011d t,s011 ~3.18!
01450
y

e

e

e-

where the expression in the square bracket in Eq.~3.17! is
the freeRR propagator@S RR

(0)#s0 ,s0
on thes0 slice. Equation

~3.17! assumes infinite 4 space-time volume while in E
~3.18! a finite space-time volumeL4 is considered.

Using Eq. ~3.18! we numerically evaluate the analyti
1-loop propagator on a given finite lattice, using

SLL5S LL
(0)1S LL

(0)@2SLL
I ,II #S LL

(0) , ~3.19!

and in Sec. IV compare with nonperturbative numerical
sults. To avoid the infrared problem in the scalar propaga
we use anti-periodic boundary condition in one of the spa
time directions in evaluating Eq.~3.18!.

In a similar way, 1-loop correctedRR or LL propagators
are obtained at all thes-slices of the waveguide boundariesI
and II , i.e., at the slicess0 , s011, s1 ands111.

C. Fermion mass matrix at tree level and 1-loop

Another issue of interest is the spread of the wave fu
tions of the two chiral zero mode solutions along the discr
s-direction and their possible overlap. A finite overlap wou
mean an induced Dirac mass. The extra dimension, as
ready pointed out in the discussion following Eq.~2.2!, can
be interpreted as a flavor space with one LH chiral fermi
one RH chiral fermion and (Ls/221) heavy fermions on
each sector of 1<s<Ls/221 andLs/211<s<Ls21.

1. Tree level

For the spread of the zero modes at the tree level,
needs only to solveM0uL50 and M0

†uR50 @9,18# where
M05M (p50) ~keeping the momentump non-zero is un-
necessary in this discussion!. However, for radiative correc
tion on the domain wall massm(s), the heavy mode spread
are also needed. Accordingly we consider flavor diagonal
tion of M0

†M0 (M0 is not Hermitian! as in @16,17#:

~M0
†M0!st~f j

(0)! t5@l j
(0)#2~f j

(0)!s , ~3.20!

~M0M0
†!st~F j

(0)! t5@l j
(0)#2~F j

(0)!s . ~3.21!
4-5
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The index j for the eigenvalues and the eigenvectors
basically a flavor index, but unlikes andt which vary from 0
to Ls21, it is taken symmetric around the domain wallj
50. Index j varies from 2Ls/2 to Ls/2. From periodic
boundary condition,Ls/2 and2Ls/2 are the same point in
flavor space corresponding to the anti-domain wall. It is to
noted thatj appears explicitly in the heavy mode solutio
below. However, it may be pointed out that the indexj need
not be chosen this way. One could also definej in the same
way as the flavor indicess andt, only in that case the explici
solutions below would have a different appearance and
our taste less tractable.

To solve the above tree level eigenequations~later also at
1-loop!, we should ideally use the Kaplan boundary con
tions because we used in our action the Kaplan way
implementing the domain wall. However, that would ma
an explicit calculation of the heavy eigenmodes quite co
plicated and almost intractable. We have hence devise
special set of boundary conditions~look at Appendix A for
details on the boundary conditions! with the property that no
information can be passed through the wall and the antiw
This makes the calculation less cumbersome and explicit
pressions can be obtained in manageable forms. We s
that these are not the actual boundary conditions in the
ticular domain wall implementation we have taken. Ho
ever, we show in Appendix B that using the correct bound
conditions~i.e., the Kaplan boundary conditions! also would
lead to the same qualitative conclusions about the natur
1-loop corrections to the eigenvalues, stability of the z
modes, and particularly the 1-loop overlap of the oppos
chiral zero modes.

With our special boundary conditions~used only in Secs
III C and III D!, the explicit form of the eigenfunctions ar
obviously different from@16,17# and are obtained as

Zero (L-handed! mode:

~ j 50! ~f j
(0)!s5A exp~2ãs! 0<s<Ls/2

~3.22!

~ j 5Ls/2! 5A exp@2ã~Ls2s!#

Ls/2<s<Ls ~3.23!

A5S 12exp~22ã !

12exp~2ãLs!
D 1/2

with exp~2ã !512m0 . ~3.24!

Heavy mode (u j uÞ0,Ls/2):

FIG. 1. 1-loop self-energy contribution toLL propagator atWG
boundaryI.
01450
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~0, j ,Ls/2! ~f j
(0)!s5A 4

Ls
sinb j~s21! 0<s<Ls/2

~3.25!

~2Ls/2, j ,0! 5A 4

Ls
sinb2 j~Ls/22s11!

Ls/2<s<Ls . ~3.26!

The parameters involved are as follows:

~l j
(0)!2511ã~s!222ã~s!cosb j , ~3.27!

ã~s!511m~s! ~3.28!

and for nontrivial heavy mode solutions,b j52p j /Ls with
u j uÞ0,Ls/2.

Solutions to Eq.~3.21! for all j ands easily follow:

~F j
(0)!s5~f j

(0)!Ls/22s . ~3.29!

It is obvious that the eigenvectorsf j 50
(0) andF j 50

(0) corre-
spond respectively to the LH and RH chiral zero modes
the domain wall and the anti-domain wall in the region
<s<Ls/2. Similarly the eigenvectorsf j 5Ls/2

(0) and F j 5Ls/2
(0)

correspond to the same chiral zero modes at the domain
and the anti-domain wall in the regionLs/2<s<Ls . The
u j uÞ0,Ls/2 eigenvectors are for the heavy flavor modes.
solutions are real.

The overlap of the opposite chiral modes in the region
<s<Ls/2 does not depend explicitly ons and is given at the
tree level by

F j 50
(0) f j 50

(0) 5A 2exp~2ãLs/2! ~3.30!

and similarly in the regionLs/2<s<Ls . The exponentially
damped mixing of the LH and RH chiral modes does n
induce any Dirac mass at the tree level for largeLs .

It is also noted thatf (0) andF (0) diagonalizeM0 andM0
†

in the following manner:

~F j
(0)!s~M0!st~f j 8

(0)
! t5l j

(0)d j , j 85~f j
(0)!s~M0

†!st~F j 8
(0)

! t .
~3.31!

The way the formalism is set up, the absolute sign ofl j
(0) in

Eq. ~3.31! is arbitrary.

2. 1-loop

Flavor off-diagonaltadpole diagrams produce the self
energies for theLR andRL parts of the fermion propagator
Again, the self-energies are nonzero only at the wavegu
boundariesI and II ~see Fig. 2!.

For the LR propagator connectings0 and s011 at the
waveguide boundaryI, the self-energy contribution from th
tadpole diagram is given by
4-6
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2„SLR
I ~p!…st5

1

2
b2PLE

BZ

d4k

~2p!4

1

k̂2~ k̂21v2!
ds,s0

d t,s011

~3.32!

5
1

2
b2PLTds,s0

d t,s011 ~3.33!

whereT;0.04 is the tadpole loop integral.
Similarly the self-energy contribution to theLR propaga-

tor at the waveguide boundaryII connectings1 and s111
comes from a tadpole diagram and is given by

2„SLR
II ~p!…st5

1

2
b2PLTds,s1

d t,s111 . ~3.34!

The mass parameterM0 gets modified at 1-loop as

~M0!stPL→~M̃0!stPL

5~M0!stPL1@2„SLR
I ~0!…st#1@2„SLR

II ~0!…st#

[~M0!stPL1b2~SLR!stPL . ~3.35!

SLL,RR
I ,II (0)50 identically. (M0

†)stPR gets modified accord
ingly.

Because of our use of the special boundary conditi
~Appendix A! which do not allow any communicatio
through the walls, 1-loop correction to the eigenvectors a
eigenvalues involves eithers0 ~waveguide boundaryI ) or s1
~waveguide boundaryII ) depending on which sector ofj is
considered. In Appendix B we show that if the actu
~Kaplan! boundary conditions are used, one gets contribut
at the 1-loop level also from another diagram, called th
theglobal loopdiagram. However, the conclusions are qua
tatively the same.

D. Mass matrix diagonalization at 1-loop

At the 1-loop level we organize the corrections to t
eigenvectors and the eigenvalues of the fermion mass m
squared as follows:

f (0)→f5~11b2f (1)!f (0),

F (0)→F5~11b2F (1)!F (0),

~l (0)!2→l25~l (0)1b2l (1)!2. ~3.36!

l (1) is found to be

l j
(1)5~F j

(0)!s~SLR!st~f j
(0)! t . ~3.37!

FIG. 2. Tadpole contribution to 1-loopLR propagator atWG
boundaryI.
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Equation~3.31! gets modified in 1-loop as

~F j !s~M̃0!st~f j 8! t5l jd j , j 81O~b4!5~f j !s~M̃0
†!st~F j 8! t .

~3.38!

The 1-loop correction to the eigenvalues, (dl) j

5b2l j
(1) , is given by

~dl! j5
2b2

Ls
T sinb j~Ls/22s021!sinb j s01O~b4!

for 1< j <~Ls/221!, ~3.39!

5
2b2

Ls
T sinb j~s111!sinb j~Ls/22s1!1O~b4!

for 2~Ls/221!< j <21, ~3.40!

5
b2

2
A 2T exp@2ã~Ls/211!#1O~b4! →

Ls→`

0

for j 50,Ls/2. ~3.41!

We notice in Eq.~3.41! that the 1-loop correction to zer
mode eigenvalue is exponentially damped and the z
modes are hence perturbatively stable.

The 1-loop expression for the chiral zero mode at
domain wall, in the region 0<s<Ls/2, is

~f j 50!s5AFexp~2ãs!2
2b2

Ls
T exp„2ã~s011!…

3 (
j 851

Ls/221
1

l j 8
(0)sinb j 8~Ls/22s021!sinb j 8~s21!G .

~3.42!

We obtain a similar 1-loop expression for the chiral mode
the anti-domain wall.

The overlap of the opposite chiral modes in the region
<s<Ls/2 at 1-loop is given by

F j 50f j 505A 2exp~2ãLs/2!2S 2b2

Ls
DA 2T F1

3exp@2ã~s011!#

2S 2b2

Ls
DA 2T F2exp@2ã~Ls/22s0!#,

~3.43!

where

F15(
j 8,s

1

l j 8
(0) exp@2ã~Ls/22s!#sinb j 8~s21!

3sinb j 8~Ls/22s021!

F25(
j 8,s

1

l j 8
(0) exp~2ãs!sinb j 8s0sinb j 8~Ls/22s21!.
4-7
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Equation~3.43! clearly shows that 1-loop corrections to th
mixing of the LH and RH modes are also exponentia
damped. This guards against any induced Dirac mass in
domain wall model for large enoughLs and the waveguide
boundariesI and II chosen approximately equidistant fro
the domain wall and the anti-domain wall. In this context w
point out that in the Smit-Swift model a shift symmetry f
the singlet fermion ensures that no fermion mass countert
is needed.

Using the actual Kaplan boundary conditions would ma
the relatively nice explicit expressions in Eqs.~3.39!–~3.43!
much less manageable, to say the least. Diagonalizatio
the fermion mass matrix upto 1-loop using the Kapl
boundary condition is discussed in Appendix B.

IV. NUMERICAL RESULTS

In the quenched approximation, we have first numerica
confirmed the phase diagram in@19# of the reduced model in
(k,k̃) plane. The phase diagram shown schematically in F
3 has the interesting feature that for large enoughk̃, there is
a continuous phase transition between the broken phase
and FMD. FMD phase is characterized by loss of rotatio
invariance and the continuum limit is to be taken from t
FM side of the transition. In the full theory with gauge field
the gauge symmetry reappears at this transition and
gauge boson mass vanishes, but the longitudinal gauge
remain decoupled. In Fig. 3 PM is the symmetric phase

FIG. 3. Schematic quenched phase diagram.
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AM is the broken anti-ferromagnetic phase. The numeri
details involved in reconstruction of the phase diagram a
the fermionic measurements that follow will be available
@14#.

For calculating the fermion propagators, as in@7# we have

chosen the pointk50.05, k̃50.2 ~gray blob in Fig. 3!. Al-

though this point is far away fromk̃5`, around which we
did our perturbation theory in the previous section, the i
portant issue here is to choose a point near the FM-F
transition and away from the FM-PM transition. The resu
below show that for the fermion propagators there is exc
lent agreement between numerical results obtained ak

50.05, k̃50.2 and perturbation theory.
Numerically on 4316 and 6316 lattices withLs522 and

m050.5 we look for chiral modes at the domain wall (s
50), the anti-domain wall (s511), and at the waveguide
boundaries (s55,6 ands516,17). Error bars in all the fig-
ures are smaller than the symbols.

Figure 4 shows theRR propagatoruSRRu and theLL
propagatoruSLLu at the domain and anti-domain wall as
function of a component of momentump4 for both pW
5(0,0,0) ~physical mode! and (0,0,p) ~first doubler mode!
at y51. From the figures, it is clear that the doubler does
exist, only the physicalRR (LL) propagator seems to have
pole atp5(0,0,0,0) at the anti-domain~domain! wall. In all
the figures, NS, PT and FF respectively indicate data fr
numerical simulation, from perturbation theory and from fr
fermion propagator by direct inversion of the free fermi
matrix.

For Fig. 4, PT also means zeroth order perturbat
theory, i.e., numerical solution of propagator following E
~3.16! ~as noted before in Sec. III B 2 the self-energy cont
butions to theLL and RR propagators are nonzero only
the waveguide boundaries, the propagators in Fig. 4 do
get any 1-loop correction!. We have PT results also fo
63316 lattice but have chosen not to show them beca
they fall right on top of the numerical data. Instead PT
sults are shown for 83320 lattice for which thep4 points are
distinct. The dotted line in all figures refer to the propaga
from PT using a 256331024 lattice.The curves stay the
same irrespective of methods or lattice size. Based on the
FIG. 4. Chiral propagators at domain walls50 and at anti-domain walls511 (Ls522; a.p.b.c. inL4 , y51.0).
4-8
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FIG. 5. RR propagator at waveguide boundarys55 and LL propagator at waveguide boundarys56 (Ls522; a.p.b.c. inL4 , y
51.0).
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above, we can conclude that there areonly free RH fermions
at the anti-domain wall, and at the domain wall there areonly
free LH fermions.

Figure 5 shows no evidence of a chiral mode at the wa
guide boundariess55 and 6 and excellent agreement wi
1-loop perturbation theory. Here too doublers do not ex
Actually the agreement with the FF method~direct inversion
of the free domain wall fermion matrix on a given fini
lattice! is also excellent, because the 1-loop corrections
almost insignificant. For clarity, in Fig. 5 we have not show
the LL propagator ons55 and theRR propagator ats56,
but conclusions are the same.

Similar investigation at the other waveguide boundarys
516,17 also does not show any chiral modes. Previous
vestigations of the domain wall waveguide model witho
gauge fixing@11# have shown that the waveguide boundar
are the most likely places to have the unwanted mir
modes. This is why we have mostly concentrated on show
that there are no mirror chiral modes at these bounda
although we have looked for chiral modes everywhere al
the flavor dimension. In fact, we do not see any evidence
a chiral mode anywhere other than at the domain wall
the anti-domain wall.

V. DISCUSSION

We have followed the gauge fixing proposal of Sham
and Golterman and applied it to domain wall fermions fo
U(1) LxGT. By switching off the transverse gauge DO
we arrive at the so-called reduced model. We have de
mined the quenched phase diagram of the model and
firmed that there is a continuous phase transition from a b
ken symmetry ferromagnetic~FM! phase to a broken
symmetry rotationally noninvariant ferromagnetic direction
~FMD! phase with the properties that at this transition
longitudinal gauge DOF, i.e., thew fields get decoupled. We
have come to this conclusion by performing a WCPT for
fermion propagators and comparing them to nonperturba
numerical simulations.

Let us now contrast this with the previous attempt@11# of
lattice regularizing a chiral gauge theory with domain w
01450
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fermions. No gauge fixing was done and in the reduc
model, a combination of analytic and numerical metho
showed that mirror chiral modes were dynamically genera
in the theory.

As in the Smit-Swift model@1#, the mirror chiral modes
are a reflection of the undesired presence of the longitud
gauge DOF in the continuum limit. Without gauge fixin
these radially frozen group-valued scalarw fields are gener-
ally nonperturbative or rough for any value of the transve
gauge coupling, even in the reduced model limit. If the co
tinuum limit is taken at the FM to a symmetric paramagne
~PM! phase transition, thew fields survive with radial modes
and physical effects of them coupling with the rest of t
theory become manifest in the form of mirror chiral mod
etc.

In the gauge fixing approach of Shamir and Golterm
care has been exercised so that the gauge fixing term is
just a naive lattice transcription of the continuum gauge fi
ing condition. There are appropriate additions of irreleva
terms in the covariant gauge fixing term so that a uniq
perturbative vacuum exists. With this gauge fixing in t
reduced model limit thew fields become smooth and can b

perturbatively expanded as 11O(1/Ak̃)1••• around k̃

5`. We have found in our investigation that as long ask̃ is
taken sufficiently large so that a continuum limit exists fro
the FM phase to the FMD phase~not the PM phase!, the
model is as good as at the perturbative limitk̃5`. This
seems to hold true in our particular implementation, i.e.,the
domain wall fermion case, in a strong sense, because the
perturbative 1-loop corrections~i.e., the leading nontrivial
corrections! to the fermion propagators are found to be ne
ligible ~Figs. 4 and 5!. In gauge fixing the Smit-Swift model
however, 1-loop corrections to the fermion propagators w
small but not negligible@7#. In the present investigation with
domain wall fermions, to the accuracy of our calculation
the reduced model spectrum is that of a free domain w
model with absolutely no trace of thew fields.

In our investigation of the reduced model, only a count
term with coefficientk was sufficient to reach the FM-FMD
phase transition by decreasingk from the FM side. A
4-9



de
th
a
i

su
d
e
D

e-
rs
-
f
m
c
e
ns

th
io

or
e
a
in
ec
th
th

he
i

ug
e
he
ra

Pa
n

he

n

ar
t

th
ex

d
io
cu
r-
a

iral
e-
ual
s-

.
s-

d
ain

i-

by
s.

ed
e
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dimension-three fermion mass counterterm was not nee
because domain wall fermions have the robust property
mixing between the opposite chiral modes at the domain w
and the anti-domain wall is exponentially damped and
negligible for largeLs .

We have carried out and presented the perturbative re
for fermion propagators and mass matrix in reasonable
tail, because, although the technique employed is not n
the explicit results are available mostly for only the QC
~wall! implementation rather than the wall-antiwall impl
mentation suitable for a chiral gauge theory. With transve
gauge fields back on~and fermions in an anomaly-free rep
resentation!, the full gauge-fixed domain wall model o
LxGT is ready for a perturbative treatment with the sa
techniques as used in this paper if the transverse gauge
pling is perturbative. The model is also ready for a nonp
turbative treatment by numerical simulation for strong tra
verse gauge coupling.

Our numerical computations have been done in
quenched approximation and they agree for the ferm
propagators very well with zeroth order perturbation the
with the 1-loop corrections almost negligible in our cas
Effects of fermion loops would enter these calculations
least at the 2-loop level. Inclusion of dynamical fermions
our nonperturbative numerical investigation should not aff
our results about the spectrum of the model at all if
relevant part of the phase diagram remains qualitatively
same.

So far the gauge fixing method is applicable only to t
Abelian theory. Extension to a non-Abelian gauge group
nontrivial and is being pursued at the current time@8#.

As commented at the end of Sec. II, the reduced ga
fixed domain wall model with 0,y,1 is interesting becaus
at y50 the model is known to have mirror modes at t
waveguide boundaries. This will be taken up in a sepa
publication@14#.
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APPENDIX A

In this appendix, we describe the boundary conditio
used to flavor-diagonalize Eqs.~3.20! and ~3.21! to obtain
the results presented in Secs. III C and III D. The bound
conditions make sure that no information passes through
domain wall and the anti-domain wall. This means that
eigensolutions corresponding to a given source flavor inds
belonging to a particular segment 0<s<Ls/2 or Ls/2<s
<Ls will be restricted to that particular segment. As alrea
stated before, these are not the actual boundary condit
under which the numerical simulations or the analytic cal
lation for the LL/RR chiral propagators have been pe
formed, for the flavor diagonalization this enables us to c
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culate the heavy mode solutions and overlap of the ch
modes explicitly. In Appendix B we have schematically d
scribed how the calculations would go in case of the act
Kaplan boundary conditions, but to obtain explicit expre
sions would be a horrendous task.

We consider Eq.~3.20! in the region 0<s, t<Ls/2. Ob-
viously the indexj is also in the same region. Writing Eq
~3.20! at s5Ls/2 gives ~by force using the general expre
sion for M0

†M0 away from the boundaries of the region!,

@11ã~Ls/2!22~l j
(0)!2#~f j

(0)!Ls/2
2ã~Ls/2!~f j

(0)!Ls/211

2ã~Ls/221!~f j
(0)!Ls/22150. ~A1!

Again writing Eq.~3.20! at s5Ls/2 gives~this time using the
expression forM0

†M0 at the boundary of the region an
dropping terms that take the solutions across the anti-dom
wall!,

@11ã~Ls/2!22~l j
(0)!2#~f j

(0)!Ls/2
2ã~Ls/221!~f j

(0)!Ls/221

50. ~A2!

For both Eqs.~A1! and ~A2! to be true, the following must
be true:

~f j
(0)!Ls/21150, ~A3!

which is a boundary condition.
Two equations corresponding to Eqs.~A1!,~A2!, this time

at s50, are

@11ã~0!22~l j
(0)!2#~f j

(0)!02ã~0!~f j
(0)!12ã~21!

3~f j
(0)!2150, ~A4!

@ ã~0!22~l j
(0)!2#~f j

(0)!02ã~0!~f j
(0)!150. ~A5!

Hence we get the boundary condition ats50 to be

~f j
(0)!02ã~Ls21!~f j

(0)!Ls2150. ~A6!

For the same eigenequation~3.20! in the other region
Ls/2<s, t<Ls , we similarly get two more boundary cond
tions as follows:

~f j
(0)!Ls/2

2ã~Ls/221!~f j
(0)!Ls/22150, ~A7!

~f j
(0)!150.

~A8!

These boundary conditions are similar to those given
Shamir@20#, except that we get two sets of them, i.e., Eq
~A3!, ~A6!, ~A7! and~A8!, corresponding to two sectors ofs.
Another couple of sets of boundary conditions are obtain
for the eigenequation~3.21! in the two regions in the sam
way.
4-10
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APPENDIX B

Here we schematically show that using the correct bou
ary conditions~in this case the Kaplan boundary condition
instead of the special boundary conditions explained in A
pendix A! does not qualitatively change our conclusio
about fermion mass counterterms.

The use of special boundary boundary conditions in S
III C meant that the 5th or flavor dimension was basica
divided by the domain and the antidomain wall into tw
segments which did not communicate to each other. A
result a wave incident on a wall got fully reflected. In ge
eral, there will be transmission to the other side of the w

The chiral zero modes are the same as before~except for
a tiny change in the normalization! except that they are now
allowed to decay all the way around thes-space.

Let us assume then the following trial eigenfunctionsf6

andF6 for the heavy modes:

~f j
6(0)

!s5A6 jexp~2 ib6 j s!1B6 jexp~ ib6 j s! ~B1!

~F j
6(0)

!s5C6 jexp~2 ib6 j s!1D6 jexp~ ib6 j s!. ~B2!

The subscripts6 go with the regions ins-space with corre-
sponding signs ofm(s) in Eq. ~2.4!. The wave vectorsb are
obtained by trying these trial solutions in the eigenvalue E
~3.20!, ~3.21! and are given as

2ã~s!cosb6 j511ã~s!22l j
2 . ~B3!

We proceed essentially the same way as in the case
the free propagators except for the fact that here we do
have the inhomogeneous part of the solutions. The boun
conditions used to determineA6 j ,B6 j ,C6 j ,D6 j are @omit-
ting the subscriptj and also the tree level indicating supe
script ~0! for convenience#

ã0fLs

1 2ã2f0
250 ~B4!

ã0fLs/2
2 2ã1fLs/2

1 50 ~B5!

~11ã0
22l2!fLs

1 2ã0f1
22ã1fLs21

1 50 ~B6!

~11ã0
22l2!fLs/2

2 2ã0fLs/211
1 2ã2fLs/221

2 50 ~B7!

ã0F0
22ã1FLs

1 50 ~B8!

ã0FLs/2
1 2ã2FLs/2

2 50 ~B9!

~11ã0
22l2!F0

22ã0FLs21
1 2ã2F1

250 ~B10!

~11ã0
22l2!FLs/2

1 2ã0FLs/221
2 2ã1FLs/211

1 50 ~B11!

whereã6516m0 and ã05ãLs/2
51 from Eq.~3.28!.

This leads to two sets of linear homogeneous equat
for the amplitudes:
01450
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P•L50

Q•Q50 ~B12!

where P and Q are 434 matrices and L
5(A2 ,B2 ,A1 ,B1) andQ5(C2 ,D2 ,C1 ,D1). For non-
trivial solutions, detP50 and detQ50 leading to~reviving
the subscriptj )

b6 j5
2p

Ls
j . ~B13!

Solutions to Eqs.~B12! are of the following general form
~dropping the subscriptsj again!:

B25 f L
(1)A2 , A15 f L

(2)A2 , B15 f L
(3)A2 ~B14!

D25 f R
(1)C2 , C15 f R

(2)C2 , D15 f R
(3)C2

~B15!

where f L,R
(1,2,3) are complex numbers with finite magnitud

~order 1!. A2 andC2 are determined from normalizations o
the respective eigenfunctions and would lead to aO(1/Ls)
factor.

At 1-loop with the Kaplan boundary conditions, there
also a contribution to the fermion self-energy for theLR and
RL parts coming from a flavor off-diagonal half-circle dia
gram~we shall call it aglobal-loopdiagram! where the sca-
lar field goes around the flavor space connecting fermion
the waveguide boundariesI andII . The global-loop diagram
originates from the fact that thew field that couples the fer-
mions at the waveguide boundaryI is the samew field cou-
pling the fermions at the waveguide boundaryII ~see Fig. 6!.

Self-energy contribution from the global-loop diagram f
the LR propagator is

2„SLR
gl ~p!…st5b2PLE

BZ

d4k

~2p!4

3@M†~p2k!GL~p2k!#s111,s0

3G~k!ds,s1
d t,s011 ~B16!

5b2PLRds,s1
d t,s011 ~B17!

whereR is the loop integral in Eq.~B16!.
Now the calculations for the 1-loop corrected eigenva

proceeds exactly as in Sec. III D, except that it now includ
also the contribution from the global-loop diagram:

FIG. 6. Global loop contribution to 1-loopLR propagator con-
nectingWG boundariesI and II .
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l j5l j
(0)1b2~S̄LR! j j ~B18!

where, foru j uÞ0,Ls/2,

~S̄LR! j j 5~F j
6(0)

!s~SLR!st~f j
6(0)

! t ~B19!

5~F j
6(0)

!sS 1

2
T ~ds,s0

d t,s0111ds,s1
d t,s111!1Rds,s1

d t,s011D ~f j
6(0)

! t ~B20!

5
1

2
T „~F j

2(0)
!s0

~f j
2(0)

!s0111~F j
1(0)

!s1
~f j

1(0)
!s111…1R~F j

1(0)
!s1

~f j
2(0)

!s011 , ~B21!

and similarly for the chiral zero modes.
Using the expressions for the eigenfunctions at the specific valuess0 , s1 , s011 and s111, we arrive at the 1-loop

correction to the eigenvalues:

~dl! j;
b2

Ls
„T Vj

(1)~s0 , f L
(1) , f R

(1)!1T Vj
(2)~s1 , f L

(2) , f L
(3) , f R

(2) , f R
(3)!1RVj

(3)~s0 ,s1 , f L
(1) , f L

(2) , f R
(3)!…, u j uÞ0,

Ls

2
~B22!

;b2T exp@2ã~Ls/211!#1b2R exp@2ã~s011!2ã~Ls/22s1!#, j 50,
Ls

2
. ~B23!

The details of the functionsVj
(n) , n51,2,3 are not illuminating. Correction to the zero mode eigenvalue clearly show

exponential damping and for largeLs it is negligible.
The 1-loop chiral zero mode wave function at the domain wall is

~f0!s5~f0
(0)!s1b2~f0

(1)! j~f j
(0)!s ~B24!

;exp~2ãs!2
b2

l j
(0) F1

2
T ~f0

(0)!s011~F j
(0)!s0

~f j
(0)!s1

1

2
T ~f0

(0)!s111~F j
(0)!s1

~f j
(0)!s1R~f0

(0)!s011~F j
(0)!s1

~f j
(0)!sG

~B25!

;exp~2ãs!2
b2

2
T exp@2ã~s011!#j1~s!2

b2

2
T exp@2ã~s111!#j2~s!2b2R exp@2ã~s011!#j3~s!, ~B26!

where the well behaved functionsj i , i 51,2,3 contain the information of the heavy mode wave functions and need n
written down explicitly@it is to be notedj Þ0 in Eq. ~B25!#. The 1-loop correction to the zero-mode wave function is a
explicitly damped and for largeLs negligible.

The 1-loop correction to zero-mode wave function at the antidomain wall is similarly found to be damped. As a re
overlap of the opposite chiral zero modes at the 1-loop level is also exponentially damped.
a,

ir,

tt.

r,
.
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