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Chiral gauge theory on the lattice with domain wall fermions
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We investigate &J(1) lattice chiral gauge theory with domain wall fermions and compact gauge fixing. In
the reducedmodel limit, our perturbative and numerical investigations show that there exist no extra mirror
chiral modes. The longitudinal gauge degrees of freedom have no effect on the free domain wall fermion
spectrum consisting of opposite chiral modes at the domain wall and at the anti-domain wall which have an
exponentially damped overlap.
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[. INTRODUCTION this gauge fixing proposal to include non-Abelian gauge
groupsi8].

Lattice regularization of chiral gauge theories has re- Without gauge fixing the longitudinal gauge DOF, which
mained a long standing problem of nonperturbative investiare radially frozen scalar fields, are rough and nonperturba-
gation of quantum field theory. The lack of chiral gaugetive even if the transverse gauge coupling may be wéak
invariance in lattice chiral gauge theory¥GT) proposals is is because with the standard lattice measure, each point on
responsible for the longitudinal gauge degrees of freedorthe gauge orbit has equal weighThe theory in the con-
(DOF) coupling to fermionic DOF and eventually spoiling tinuum limit, taken at the transition between the broken sym-
the chiral nature of the theory. The well-known example ismetry ferromagnetidFM) phase and the symmetric para-
the Smit-Swift proposal of kGT [1]. Although in a recent Magnetic (PM) phase, displays undesired nonperturbative
development using a Dirac operator that satisfies th&ffects of the scglar-fermlon cou_plmg that usually_s_pell; di-
Ginsparg-Wilson relation, it was possible to formulate a_saster for the chiral th_eory. The job of the_ gauge fixing is to
LyGT without violating gauge-invariance or localifg], an introduce a new continuous phase transition, from the FM

explicit model for nonperturbative numerical studies is still phase to a new b'roken symmetry pheshID), at Wh'Ch the
not available. gauge symmetry is recovered and at the same time the gauge

In this paper, we follow the gauge fixing approach tofields become smooth.
LxGT [3]. The obvious remedy to control the longitudinal The problem can be cleanly studied in the reduced model

as explained in the following. When one gauge transforms a

gauge DOF is to gauge fix with a target theory in mind. Theg, ,ge non-invariant theory, one picks up the longitudinal

Roma proposal4] involving gauge fixing passed perturba- o5 ge degrees of freedofradially frozen scalajsexplicitly
tive tests but does not address the problem of gauge fixing Gh the action. The reduced model is then obtained by making
compact gauge fields and the associated problem of latticge |attice gauge field unity for all links, i.e., by switching off
artifact Gribov copies. The formal problem is that for the transverse gauge coupling. The action becomes that of a
compact gauge fixing a Becchi-Rouet-Stora-Tyutenhiral Yukawa theory with interaction between the fermions
(BRSTHinvariant partition function as well atunnormal-  and the longitudinal gauge DOF. The reduced model would
ized) expectation values of BRST invariant operators vanisthave a phase structure similar to the full theory, e.g., the
as a consequence of lattice Gribov copj$ Shamir and gauge fixed theory in the reduced limit will have a FM-FMD
Golterman 3] have proposed to keep the gauge fixing part oftransition in addition to the FM-PM transition. Now for the
the action BRST noninvariant and tune counterterms to regauge fixing proposal to work, the scalars need to decouple
cover BRST in the continuum. In their formalism, the con-from the fermions at the FM-FMD transition leaving the fer-
tinuum limit is to be taken from within the broken ferromag- mions free in the appropriate chiral representation. Passing
netic (FM) phase approaching another broken phase which ithe reduced model test is an important first step for any
called ferromagnetic direction@MD) phase, with the mass L yGT proposal that breaks gauge invariance.
of the gauge field vanishing at the FM-FMD transition. This  In the reduced model derived from the gauge fixed theory
was tried out in aU(1) Smit-Swift model and so far the the scalar fields become smooth and expandable in a pertur-
results show that in the pure gauge sector QED is recoverdsative series as 4 O(coupling constant) at the FM-FMD
in the continuum limi{6] and in thereducedmodel limit (to  transition. If continuum limit can be taken near the point in
be defined belowfree chiral fermions in the appropriate chi- the coupling parameter space around which this perturbative
ral representation are obtaingd. Tuning with counterterms expansion is defined, the scalar fields will decouple from the
has also not posed any practical problem, actually very littleheory. The parametrization of the gauge fixing action turns
tuning is necessary. Efforts are currently underway to extendut to be a good one, because this continuum limit can be
taken(i) very easily by approaching the FM-FMD transition
almost perpendicularly by tuning essentially one counter-
*Permanent address: Dept. of Physics, NND College, Calcuttéerm, and(ii) at a point on this transition line which is rea-
700 092, India. sonably far away from the expansion point. This has been
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possible in[7] and again in the present work. limit in the 4 space-time dimensions only. It is convenient to
A central claim of the gauge fixing proposal is that it is look at the 5th dimension as a flavor space.

universal, i.e., it should work with any lattice fermion action ~ With periodic boundary conditions in the 5th or

that has the correct classical continuum limit. This is because-direction (5,t=Ls=s, t=0) and the domain wall madd

the central idea as discussed above is independent of thaken as

particular lattice fermion regularization. In the present paper

we want to confirm the universality claim by applying the

proposal to domain wall fermiongd] with U(1) gauge

group. For this purpose we have chosen the waveguide for-

mulation[10] of the domain wall fermion and investigate in -my, 0<s<L?2

the reduced model. This model was investigated before with- .

out gauge fixing and the free domain wall spectrum was not m(s) = 0, s=0,L42 24

obtained in the reduced limifL1]. Mirror chiral modes were my, Lg2<s<lLg

found at the waveguide boundaries in addition to the chiral

modes at the domain wall or anti-domain wall. the model possesses a left-handed) chiral mode bound to

I_n Sec. Il we presem the gauge-fixed domain wall fermionthe domain wall ats=0 and a right-handedRH) chiral
action for aU(1) chiral gauge theory and then go to the mode bound to the anti-domain wall s&L /2. FormgLg

so-called re_duced model by switching off the tra_nsverse>1, these modes have exponentially small overlap. The chi-
gauge coupling. _In Sec. lll we periorm a weak couplmg PET™ al modes exist for momenta below a critical momentum
turbation theory in the reduced model for the fermion propa- }

gators and mass matrix to 1-loop. However, in Secs. Il CPe 1-€- [PI<Pc, where_p2=22u[1—cos(ou)] and p_§=4
and 11l D we have used special boundary conditiéinstead ~—2Mo/r. Taking the Wilson parameter=1 the choice of
of the actual Kaplan boundary condition® arrive at ex- Mo is then restricted to @me<2. _

plicit expressions for the overlap of the opposite chiral A 4-dimensional gauge field which is same for sblices
modes. Our numerical results for the quenched phase di&2n be coupled to fermions only for a restricted number of
gram and chiral fermion propagators at the domain wall and-slices around the anti-domain wéll1] with a view to cou-
anti-domain wall and at the waveguide boundaries are pre?ling only to the RH mode at the anti-domain wall. The
sented and compared with the perturbative results in Sec. gauge field is thus confined withinweaveguide

We summarize in the concluding Sec. V. In Appendix A, we

describe the special boundary conditions used in Secs. Il C WG=(s:5p<S<S;)

and Il D. In Appendix B we schematically discuss how us-

ing Kaplan boundary conditions one can arrive at the same

qualitative conclusion about the 1-loop overlap of the oppoW'th

site chiral modes.

Myy=m(s)bxy, Wwhere (2.3

Il. GAUGE-FIXED DOMAIN WALL ACTION So=— -1, s= 2 1 (2.5

Kaplan's free domain wall fermion actid®] on a(4+1)-
dimensional lattice is given bffattice constant is taken to be ith this choice, [—2) has to be a multiple of 4. For

unity throughout this papgr convenience, the boundaries & (s,+1) and &;,5;+1)
are denoted waveguide boundargnd!l respectively.
SF:E Il bs— Wi+ M Ty iy (2.) _ The gauge tr.ansformatlons on the fermion fields are de-
XY fined as follows:
whereE and ¢ are the fermion fields, and; and ws are s s Ts st
respectively the 5-dimensional Dirac operator and the Wil- U0t P ¥h8x SeWG,
son term,
L5 ViU, i, SEWG, (2.6
(ﬁs)xvzi 21 Yol Ox+ .y~ Ox—ay),
“ where g, e G, the gauge group. Other symmetries of the
.5 model remain the same as|ihl].
(Ws)yy= = 2 (Sxsavt Ox_ay—23xy). (2.2 Obviously, the hopping terms frorms, to so+_1 an(_d that
2 i1 from s; to s;+1 would break the local gauge invariance of

the action. This is taken care of by gauge transforming the
The v,'s are the five Hermitian Euclidean gamma matrices,action and thereby picking up the pure gauge DOF or a ra-
r is the Wilson parameteX=(x,s), Y=(y,t) label the sites dially frozen scalar fieldp (Stickelberg field at the wave-
of the L*L ¢ lattice andL is the extent of the 5th dimension: guide boundary, leading to the gauge-invariant acfisith
0=<s, t<Ls—1. We are interested in taking the continuum ¢,— g, ¢, and Eq.(2.6)]:
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SF=SZWG JS[m<U>—W<U>+m<s>]¢S+SéEWG st—w+m<s>]¢5+§ WS—S; (PPLYS 1+ > PRy

S SO'Sl
— V(@ P o TPy %) — Y (§PLeP g+ Y e TPy 2.7
|
where we have taken the Wilson parameterl and have 1, +
suppressed all indices other thanThe projectorPy g, is Viux= 57 (@xPx ™ Py 1 Px)- (2.14
(1 ys5)/2 andy is the Yukawa coupling introduced by hand
at the waveguide boundarieB(U) and W(U) are respec- In the following, we investigate the actiof2.12 aty

tively the gauge covariant Dirac operator and the Wilson=1 py analytical and numerical methods. Some numerical
term in 4 space-time dimensions! and w are the results with other values of have been presented [i3].

4-dimensional versions of E¢2.2. The waveguide model strictly at=0 would give rise to
The gauge-fixed pure gauge action fd(1), where the  opposite chiral modes at the waveguide boundaries as can be
ghosts are free and decoupled, is seen from fermion current consideratigd] (and also from

numerical simulationand would thereby spoil the chiral na-
ture of the theory. It is an interesting question to investigate

where, S, is the usual Wilson plaquette action; the gaugethe model for 0<y<1l. Analysis of the results for small

fixing term Sy (as proposed by Shamir and Goltermand \r/:tltlajzs;ti?:flé[(lj]l) is tricky and will be discussed in a sepa-
the gauge field mass countertei®y; are given by(for a '
discussion of relevant counterterms $8¢l2))

SB(U)ZSg(U)+ng(U)+Sct(U) (2.8

I1l. WEAK COUPLING PERTURBATION THEORY IN
_ 5 THE REDUCED MODEL
sgf(U>=K(§Z D(U>xyD<U>yz—§ BX), (2.9

Aty=1, we carry out a WCPT in the couplingT&for the
fermion propagators to 1-loop. In order to develop perturba-

Se(U) =~ K; (Ut UL, (2.10  tion theory, in reduced model, we expand
§7
. . . . 1
wherel1(U) is the covariant lattice Laplacian and oy=expibf,)=1+ib6,— §b20)2(+ Ob® (3.2

. 2
Vox—pTVx

BX:%( 2

(210 where,b=1/y2k and 6, is dimensionless, leading to

~ —0) . (0) (int) .1 71 p-
with V= (1/2) (U, — UL ande=1/(2ég?). S=S (¢ ry) + S5 (0)+ S (Y 01y) (3.2

~ Syt is not just a naive lattice transcription of the con- whereS(®'s are free actions an8™ is the interaction part.
tinuum covariant gauge fixing term, it has in addition appro-

priate irrelevant terms. As a resuliy; has a unique absolute A. Scalar propagator at tree level
minimum atU ,,=1, validating weak coupling perturbation
theory (WCPT) aroundg=0 or k= and in the naive con-
tinuum limit it reduces to (1/2) fd*x(d,A,,)?.

Obviously, the actiorSz(U) is not gauge invariant. By

FromS{)(6) one gets the free propagator for the compact
scalaré [12],

. - . . ? 1
giving it a gauge transformation the resulting Tact|on (k)= TN w2:§ (3.3
Sa(xU xs 1) IS gauge-invariant Wit ,,—g,U 9, . - k“(k*+ %) K
and p,—0y@y, 9xe U(1). By restricting to the trivial orbit, A
we arrive at the so-calleceduced modehction wherek, =2 sink,/2).
Sreduced S(U= 1)+SB(<P:£1<P><+ ~) (2.12 B. LL and RR fermion propagators at tree level and at 1-loop
o .

. . . . 1. Tree level
whereS:(U=1) is obtained quite easily from E.7) and

With y=1, SO(y,4;y=1) is the free domain wall ac-
+ N + ~ t 2 2 tion (2.2). Free fermion propagators gt=1 are obtained in
Se(@xlexip)=— Kg ex(Le)xt K; [ex(D%0)=Bd  omentum space for 4-spacetime dimensions while staying
(2.13 in the coordinate space for the 5th dimension followja§]
[results in[15—17 cannot be directly used because of differ-
now is a higher-derivative scalar field theory acti@. in ence in implementation of the domain wéH.4)]. The free
Eqg. (2.13 is same as in Eq2.11) with action is written as
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SPy=1)= 2 ViliB 0o+ MoPLt MiPRIY,
(3.4
where, Mg=F(p)déstt(Mo)st, (Mo)s=[1+m(s)]ds¢

— 5S+_1,t, F(p)=Z,[1—-cosfp,)], p,=sin(p,) and p
=1v,Pp,- The free fermion propagator can formally be writ-
ten as

A(p)=[ip+MP_+MTPg] 1
=(—ip+ MNP G (p)+(—ip+M)PrGr(p)

(3.5
where
1
G.(p)= - (3.6
%p;ﬁMMT
Gr(p)= - : 3.7
%pﬂ—i—MTM

Solution of G, is obtained by writing Eq(3.6) explicitly:

[p?+1+4B(5)21(G)s 1~ B(s+1)(G)s: 1.~ B(S)(G)s_ 1y
(3.8

— Ust
and similarly forGg. In Eq. (3.8), B(s)=F(p) +1+m(s).
We show only the calculations for obtainigy and hence-
forth drop the subscript.

Setting the notation as follows:

G=G, B(s)=F(p)+t1-mpy=a_ for 0<ssL/ 2-1
(3.9

and

G=G", B(s)=F(p)+1+my=a,

for LJ2<s<Ls—1, (3.10

the equations foG* are given by

(p?+1+a)G,—a_Gg, ;—a_Gg 1= sy,
(3.11)

(p?+ 1+ai)G;t_a+Gs++1,t_a+G;1,t= Ost -
(312

The ranges o$in Egs.(3.9),(3.10 for whichG™ andG*

are defined, are applicable only to the translationally invari-

ant Eqgs.(3.11),(3.12. In general for the translationally non-
invariant Eq.(3.8) we also defineG~ andG* ats=0 and
L/2, the ones excluded by Eq8.11),(3.12. The = super-
script to G at s=0, L¢/2 is decided by the translationally
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invariants-sector from whichs=0 or L¢/2 is approached in
Eqg. (3.8). We have used this notation for the boundary con-
ditions EQq.(3.15 below.

The solutions of Eqs(3.11),(3.12 are expressed as the
sum of homogeneous and inhomogeneous solutions:

Goi(p)=gW(t)e = Ps g@(t)e(P)s

cosli . (p)(|s—t|—1/2)]
2a. sinha (p)sin(a. (p)12)’ =19

where,| =L4/2 and

a.+

(3.19

1 l+pj
costa.(p))=3 a. |’
The third term in Eq(3.13 is the inhomogeneous solution.
To avoid singularities ina-(p) when a. is zero further
restricts the allowed range afy to 0<my<<1. In this paper
we have takemmy=0.5.

In order to get the complete solution we need to determine
the unknown functiongg)(t) and g®(t) in Eq. (3.13,
which are obtained by considering boundary conditions from
Egs.(3.11), (3.12 ats=0,1L/2—-1LJ2 L J2+1 L1,

aOG(;,t(p) = a+G‘|j—s Al p),
aOGESIZ,t(p) = afeljSIZ,t( p),

(p2+1+a)Ggy(p)—a_Gy(p)

= 6opt+ aOGES— 11(P),

(Hz-i— 1+ aﬁ)Gfs/z,t( p)— a+G|Ts/2+ 1t

=0Lg2it @G 21y (3.19
with B(s)=F(p)+1=a, ats=0,L /2. It is to be noted that
these boundary conditions are significantly different from the
ones given i 15] because of the difference in implementa-
tion of the domain wallG,, andes,Zt (and the correspond-

ing ones fromGg) are used to determine the free chiral
propagators at the domain wall and anti-domain wall for
comparison with numerical data in Fig. 4. We will see later
that these chiral propagators do not receive any 1-loop self-
energy corrections.

Substituting p?+1+a3=F, and
2a. sinh(a (p))sinh(a . (p)!1/2)=X.. and using the bound-
ary conditions, Eqs(3.15, we arrive at an equation of the
form
A-g(t)=X(1), (3.16
where g(t)=(gMg®@gMg?) is a 4-component vector,
X(t) is another 4-component vector aAdis a 4xX4 matrix
as given below:
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ao =h) —a, e “bs —a,ets

a_efa,LSIZ a._ea,Ls/Z _aoefaJrLs/Z _aoea+Ls/2

A= ) ¢ i
Fo_a,e - Fo—afea— —ape a;(Ls—1) _aoea+(L5 1)

—age (427D g er-(Ld2D)  (F—a e % )e ®ld2 (Fy—a,ev)er+Ls?2
and
a, X, cosha, (|Ls—t|—1/2)]—apX_cosha_(|—t|—1/2)]
apX cosha, (|Lg/2—t|—1/2)]—a_X_cosha_(|LJ/2—t|—1/2)]
X(t)=| SortagXicoshia,(|Ls—1—t[—1/2)]-FoX_coslia_(|—t|=1/2)]+a_X_cosha_(|1-t|-1/2)]
8ot asXicosha, (|Lg/2+1—-t[—1/2)] - FoX, coslia, (|Ls2—t[—1/2)]
+agX_cosha_(|LJ2—1—t|—1/2)]

The explicit expressions foA and X(t) are obviously where the expression in the square bracket in (Bdl?) is
different from similar expressions given [t5—17 because the freeRR propagator[S(ROF’e]SO,so on thes, slice. Equation
discussed earlier. _ _ _ (3.18 a finite space-time volume* is considered.

The solution to Eq(3.16) is very complicated in general, Using Eq.(3.18 we numerically evaluate the analytic

particularly for finiteL. However,g..(t) can be obtained 1.Joop propagator on a given finite lattice, using
for finite L¢ by solving the above equations numerically for

differentt values. This way we can easily construct the free S =89+8O[-3!11s©® (3.19
fermion propagators at any givesrslice, including the zero
mode propagators at=t=0L42. and in Sec. IV compare with nonperturbative numerical re-

The solutions for Gg)s, and the resulting propagators are g jts. To avoid the infrared problem in the scalar propagator,
obtained in exactly the same way. However, in this case thge yse anti-periodic boundary condition in one of the space-
explicit forms for Eqs.(3.8), (3.13, (3.19 and matricesA  time directions in evaluating E¢3.18.

andX(t) in Eq. (3.16 are obviously different. In a similar way, 1-loop correcteRR or LL propagators
| are obtained at all the-slices of the waveguide boundaries
2. 1-loop andll, i.e., at the slicesy, sp+1, s, ands;+1.

Next we calculate the chiral fermion propagators to
1-loop. Half-circle diagrams which are diagonal in flavor C. Fermion mass matrix at tree level and 1-loop
space contributes tbL and RR propagator self-energies.

However, the self-energies are nonzero only at the wave- Another issue of interest is the spread of the wave func-
guide boundaries and|! . tions of the two chiral zero mode solutions along the discrete

Retaining up to O(b%) in the interaction term s-direction and their possible overlap. A finite overlap would
Sy g gy=1) in Eq. (3.2, we find the vertices neces- mean an induced Dirac mass. The extra dimension, as al-
sar to, cz’alclallate the sgl.f-eﬁe’r ies to 1-laspe Fig. 1 rea_dy pointed out in the discussior_1 following Eq.Z), can.

1¥he LL propagator on thengrl) h slics at tgé wave be interpreted as a flavor space with one LH chiral fermion,

. ; ) o =" _one RH chiral fermion andl(/2—1) heavy fermions on
?rzgetﬁgl‘;]gc:fg'r&e;ed'é (;S;;mnonzero self-energy contribution each sector of £s<Ly/2—1 andL¢/2+1<s<L —1.

dk 1. Tree level
_(ELL(p))St:f b —iy.(p—K), For the spread of the zero modes at the tree level, one
82(2m) needs only to solvéMou, =0 and MJug=0 [9,18] where
><pLGL(p_k)]so'sog(k)5550“5&5&1 Mo=M(p=0) (keeping the momenturp non-zero is un-

necessary in this discussjorHowever, for radiative correc-
(8.17  tion on the domain wall mass(s), the heavy mode spreads
) are also needed. Accordingly we consider flavor diagonaliza-
b tion of M{Mg (M, is not Hermitian as in[16,17:
= S ISP Ws oMo (Mo ?asin[16.,17
(MiMo)s 6 =INTT(6{7)s,  (3:20
1
Xeo—a—5 0. ) 3.1
s o) ottt (318 (MM)(@P) =@, (320
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-
4
k (0<j<Lg2) ({*)s= \Esinﬁj(s—l) O<s<Ly2
L 'R Ry L ) (3.25
pso+l  p—k so P So+l
FIG. 1. 1-loop self-energy contribution td_ propagator atW G (—LgJ2<j<0) = \/Esinﬁ_j(LSIZ— s+1)
boundaryl. Ls
The indexj for the eigenvalues and the eigenvectors is LJ/2<s<L,. (3.2

basically a flavor index, but unlikeandt which vary from 0

to Ls—1, it is taken symmetric around the domain wall The parameters involved are as follows:

=0. Index|j varies from —Lg 2 to L¢J/2. From periodic

boundary condition].¢/2 'and —Lg/2 are the same point in ()\](0))2=1+5(s)2—25(s)cos,8j , (3.27
flavor space corresponding to the anti-domain wall. It is to be

noted thatj appears explicitly in the heavy mode solutions ~

below. However, it may be pointed out that the indexeed a(s)=1+m(s) (3.28
not be chosen this way. One could also defie the same

way as the flavor indicesandt, only in that case the explicit and for nontrivial heavy mode solutiong;=2j/L with
solutions below would have a different appearance and ti|#0,L¢/2.

our taste less tractable. Solutions to Eq(3.2)) for all j ands easily follow:
To solve the above tree level eigenequatidater also at
1-loop), we should ideally use the Kaplan boundary condi- (@)= ()2 (3.29

tions because we used in our action the Kaplan way of
implementing the domain wall. However, that would make | is obvious that the eigenvectoaﬁo)o andCID(O)O corre-
= j=

an explicit calculation of the heavy eigenmodes quite COMynond respectively to the LH and RH chiral zero modes at

plicated and almost intractable. We have hence devised @ jomain wall and the anti-domain wall in the region 0
special set of boundary conditioiiok at Appendix A for <s=<L/2. Similarly the eigenvectoraﬁfo) and ®©

details on the boundary conditionsith the property that no s : j=Lg2 I=Lg2
information can be passed through the wall and the antiwallcorrespond to the same chiral zero modes at the domain wall
This makes the calculation less cumbersome and explicit eﬁnd the anti-domain wall in the regidny/2<s<Ls. The
pressions can be obtained in manageable forms. We stredd” OL#/2 €igenvectors are for the heavy flavor modes. All

that these are not the actual boundary conditions in the pagelutions are real. _ _ _ _
ticular domain wall implementation we have taken. How- 1he overlap of the opposite chiral modes in the region 0

ever, we show in Appendix B that using the correct boundary=S=<Ls/2 does not depend explicitly anand is given at the
conditions(i.e., the Kaplan boundary conditionalso would ~ tree level by
lead to the same qualitative conclusions about the nature of

1-loop corrections to the eigenvalues, stability of the zero (VD)= A%exp - aL42) (3.30
modes, and particularly the 1-loop overlap of the opposite
chiral zero modes. and similarly in the regiorL/2<s<L,. The exponentially

With our special boundary conditiortased only in Secs. damped mixing of the LH and RH chiral modes does not
I C and Ill D), the explicit form of the eigenfunctions are jnduce any Dirac mass at the tree level for latge

obviously different fron{16,17] and are obtained as Itis also noted that® and®(© diagonalizeM , andM
Zero (L-handed mode: in the following manner:
- (0)y — _
(1=0) (¢{”)s=Aexp—as) 0=s<Ly2 (@)s(Mo)si( 41 =A{"8) = (") M) @)y
(3.22 (3.31)
(j=LJ2) =Aexg —a(Ls—9)] The way the formalism is set up, the absolute sign 8t in

Eq. (3.3)) is arbitrary.
LJ/2<s<L, (3.23
2. 1-loop

1—exp —2a) 12 Flavor off-diagonaltadpole diagrams produce the self-
m energies for th& R andRL parts of the fermion propagator.
s Again, the self-energies are nonzero only at the waveguide
_ boundaried andll (see Fig. 2
with exp(—a)=1—mg. (3.29 For the LR propagator connecting, and s,+1 at the
waveguide boundarl; the self-energy contribution from the
Heavy mode |j|#0,L¢/2): tadpole diagram is given by
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P, so:rl D So

FIG. 2. Tadpole contribution to 1-loobR propagator atWG
boundaryl.

CLr(P) —1b2p J d'k ! 5
LRIP))st= 5 07FL s2(2m)® Ke(Ke+ w?) % t,sp+1
(3.32
1,
:Eb PLTés,SO(St,SO+l (3-339

where7~0.04 is the tadpole loop integral.

Similarly the self-energy contribution to theR propaga-
tor at the waveguide boundaty connectings; ands;+1
comes from a tadpole diagram and is given by

1
_(EII_IR(p))stZEbZPLT‘Ss,sl5t,sl+l- (334}

The mass paramet® , gets modified at 1-loop as
(Mg)stPL— (Mg)sPL

=(Mo)siPL+[— CLr(0)sd+[— EL'R(0))sd]
=(Mg)sPL+ b3 R)siPL - (3.39
I I
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Equation(3.31) gets modified in 1-loop as

() o(Mo)s( b )i=N\; 8} jr + OB = () o(MY) s D)), -
(3.39

The 1-loop correction to the eigenvaluesoA{;
=b?\ M, is given by
b2
(5)\)J-=L—STsin,Bj(LSIZ—So—l)sinﬂjso+(9(b4)

for 1sj<(LJ/2—-1), (3.39

2
= TsinBj(s;+ 1)sinBj(Lg2—s;) + O(b%
S

for —(LJ2—1)<j<-1, (3.40

2 Ls—mc

b -
=7A27exp[—a(LS/2+1)]+(9(b4) -0

for j=0L42. (3.4

We notice in Eq.(3.41) that the 1-loop correction to zero
mode eigenvalue is exponentially damped and the zero
modes are hence perturbatively stable.

The 1-loop expression for the chiral zero mode at the
domain wall, in the region &s<L//2, is

2

(Pj=0)s=A| exp(— as) —gTexp( a(sp+1))

2L rr(0)=0 identically. (l\/IO)StPR gets modified accord-
mgly

Because of our use of the special boundary conditions
(Appendix A which do not allow any communication
through the walls, 1-loop correction to the eigenvectors an
eigenvalues involves eithep (waveguide boundarl) or s;
(waveguide boundaril) depending on which sector ¢fis ; ; : -
considered. In Appendix B we show that if the actuaI\ST\hE 7;2;'?_%3;5}2 Sir\)/pe%sg)e/ chiral modes in the region 0
(Kaplan boundary conditions are used, one gets contribution
at the 1-loop level also from another diagram, called there
theglobal loopdiagram. However, the conclusions are quali-
tatively the same.

J2-
2 (O)S|n/3] (Lg2—s9—1)singBj,(s—1)|.

(3.42

%e obtain a similar 1-loop expression for the chiral mode at
the anti-domain wall.

2 - 2b2 2
q)j:0¢j:0:A qu_CZLS/Z)_ L_ A Tfl
S

xexf — a(sy+1)]

D. Mass matrix diagonalization at 1-loop 2ph?
—( C )AZT}"Zexr[ (Ld2—50)],
S

(3.43

At the 1-loop level we organize the corrections to the
eigenvectors and the eigenvalues of the fermion mass matrix
squared as follows:

©)_, = 24(1)) $(0) where
¢ — p=(1+b"¢"") ™,

1
Fi=2 NORL a(Lg/2—s)]sinB; (s—1)

JS '/

OO P =(1+b2dM)DO),

(A2 n2= (A O+ p2A D)2, (3.3 Xsinp;i(Lg/2—so—1)
A1) is found to be .
Fo=2 —oexp(—Hs)sinﬂj,sosinﬂj,(LSIZ—s— 1).
)\J(l):(q)j(O))S(ELR)st(d’](O))t- (3.37) i's )\](/)
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AM is the broken anti-ferromagnetic phase. The numerical
e details involved in reconstruction of the phase diagram and
the fermionic measurements that follow will be available in
[14].

EMD For calculating the fermion propagators, a§ihwe have
chosen the poink=0.05, x=0.2 (gray blob in Fig. 3. Al-

though this point is far away from=cc, around which we
did our perturbation theory in the previous section, the im-
portant issue here is to choose a point near the FM-FMD
N transition and away from the FM-PM transition. The results
K below show that for the fermion propagators there is excel-
lent agreement between numerical results obtainedc at

=0.05, k=0.2 and perturbation theory.

Equation(3.43 clearly shows that 1-loop corrections to the ~ Numerically on £16 and 616 lattices withL ;=22 and
mixing of the LH and RH modes are also exponentiallym,=0.5 we look for chiral modes at the domain wa#l (
damped. This guards against any induced Dirac mass in the 0), the anti-domain wall{=11), and at the waveguide
domain wall model for large enoudhs and the waveguide boundaries §=5,6 ands=16,17). Error bars in all the fig-
boundaried and!l chosen approximately equidistant from ures are smaller than the symbols.
the domain wall and the anti-domain wall. In this context we  Figure 4 shows theRR propagator|Sgg and thelLL
point out that in the Smit-Swift model a shift symmetry for propagator|S,,| at the domain and anti-domain wall as a
the singlet fermion ensures that no fermion mass counterterfynction of a component of momenturp, for both p
is needed. . =(0,0,0) (physical modgand (0,077) (first doubler modg

Using the actual Kaplan boundary conditions would makeyty =1, From the figures, it is clear that the doubler does not
the relatively nice explicit expressions in E¢8.39—-(3.43 exist, only the physicaRR (LL) propagator seems to have a
much Ies_s manageable,_to say the least. Diagonalization ?)fole atp=(0,0,0,0) at the anti-domaifdomain wall. In all
the fermion mass matrix upto 1-loop using the Kaplanie figures, NS, PT and FF respectively indicate data from

0.2 0.3

FIG. 3. Schematic quenched phase diagram.

boundary condition is discussed in Appendix B. numerical simulation, from perturbation theory and from free
fermion propagator by direct inversion of the free fermion
IV. NUMERICAL RESULTS matrix.

L ) ) For Fig. 4, PT also means zeroth order perturbation
In the quenched approximation, we have first numerlcallytheory, i.e., numerical solution of propagator following Eq.

confirmed the phase diagram(it9] of the reduced model in (3 14 (a5 noted before in Sec. il B 2 the self-energy contri-

(x,x) plane. The phase diagram shown schematically in Figputions to theLL and RR propagators are nonzero only at

3 has the interesting feature that for large enokglthere is  the waveguide boundaries, the propagators in Fig. 4 do not
a continuous phase transition between the broken phases Fyét any 1-loop correction We have PT results also for
and FMD. FMD phase is characterized by loss of rotationab3x 16 lattice but have chosen not to show them because
invariance and the continuum limit is to be taken from thethey fall right on top of the numerical data. Instead PT re-
FM side of the transition. In the full theory with gauge fields, sults are shown for3x 20 lattice for which thep, points are

the gauge symmetry reappears at this transition and theistinct. The dotted line in all figures refer to the propagator
gauge boson mass vanishes, but the longitudinal gauge DGFom PT using a 256x< 1024 lattice. The curves stay the
remain decoupled. In Fig. 3 PM is the symmetric phase andame irrespective of methods or lattice siBased on the

30— : ‘ ‘ 30 : ‘
domain wall (s = 0) antidomain wall (s = 11)
257 4 A 6% x16,(F=0,0,0) FF 1 257 o A 6% x16,(F=0,0,0) FF 1
: O 8 x20,(F=0,0,0) PT O 8 x20,(F=0,0,0) PT
20t - o 68x16,(7=0,0,0) NS | 20f o 63 x16,(5=0,0,0)NS -
[SgrE| * 6% x16,(F=0,0,7) NS |SgR| x 6% % 16,(F=0,0,7) NS
157 (k, &) = (0.05, 0.2) 1 15 (8, &) = (0.05, 0.2) 1
[SrLl 1Sz2] | 1SR B
1.0t 1.0
&
.
el
0.5t 05t 1Scel G
@ @ F .......
e @ e B,
: _______ Ko s Ko &
0.0 0.0 0.4 0.8 1.2 1.6 2.0
P4

FIG. 4. Chiral propagators at domain wak-0 and at anti-domain wa=11 (Ls=22; a.p.b.c. inL,, y=1.0).
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3.0 : : : 3.0 : : :
waveguide boundary (s = 5) waveguide boundary (s = 6)
25 A 63 x16,(F=0,0,0) FF | 2.5t A 63 x16,(5=0,0,0) FF |
O 6% x16,(7=0,0,0) PT 0 6%x16,(5=0,0,0) PT
20 O 8 x20,(7=0,0,0) PT | 2.0} O 8¥x20,(7=0,0,0) PT |
1SRl e 63 x16,(7=0,0,0) NS 1522 e 6%x16,(F7=0,0,0) NS
15 x 6%x16,(F=0,0,7) NS | 151 *x 6% x16,(F=0,0,7) NS |
(k, &) = (0.05, 0.2) (,, &) = (005, 0.2)
1.0 1.0t
1577l ..oz 1l g oo.g
0.5 B O 0.57 b
(" @R ... | & .
** ....... K * .. &, *.*.*,*.*
00 04 08 12 16 20 00 04 038 12 16 20
P4 P4

FIG. 5. RR propagator at waveguide boundasy-5 and LL propagator at waveguide boundasy-6 (L;=22; a.p.b.c. inL,, y

=1.0).

above, we can conclude that there andy free RH fermions

at the anti-domain wall, and at the domain wall therecarly

free LH fermions

guide boundaries=5 and 6 and excellent agreement with

fermions. No gauge fixing was done and in the reduced
model, a combination of analytic and numerical methods
showed that mirror chiral modes were dynamically generated
Figure 5 shows no evidence of a chiral mode at the wavein the theory.

As in the Smit-Swift mode[1], the mirror chiral modes

1-loop perturbation theory. Here too doublers do not eXistgre a reflection of the undesired presence of the longitudinal
4 | ! ! N gauge DOF in the continuum limit. Without gauge fixing,
of Fhe free domain wall fermion matrix on a given finite these radially frozen group-valued scalafields are gener-
lattice) is also excellent, because the 1-loop corrections arg|ly nonperturbative or rough for any value of the transverse

Actually the agreement with the FF meth@irect inversion

almost insignificant. For clarity, in Fig. 5 we have not shown

the LL propagator ors=5 and theRR propagator as=6,

but conclusions are the

Similar investigation at the other waveguide boundary

gauge fixing[11] have shown that the waveguide boundaries®'®:
are the most likely places to have the unwanted mirror

same.

gauge coupling, even in the reduced model limit. If the con-

tinuum limit is taken at the FM to a symmetric paramagnetic
(PM) phase transition, the fields survive with radial modes

. . . . and physical effects of them coupling with the rest of the
=16,17 also does not show any chiral modes. Previous In'fheor become manifest in the form of mirror chiral modes
vestigations of the domain wall waveguide model without y

In the gauge fixing approach of Shamir and Golterman,

modes. This is why we have mostly concentrated on showing@'€ nas been exercised so that the gauge fixing term is not
that there are no mirror chiral modes at these boundariedUSt @ naive lattice transcription of the continuum gauge fix-
although we have looked for chiral modes everywhere alond'd condition. There are appropriate additions of irrelevant

the flavor dimension. In fact, we do not see any evidence ofe"MS in the covariant gauge fixing term so that a unique

a chiral mode anywhere other than at the domain wall andperturbative vacuum exists. With this gauge fixing in the
the anti-domain wall. reduced model limit the fields become smooth and can be

perturbatively expanded as+](9(1/\/~;)+-.- around

=00, We have found in our investigation that as longeais
V. DISCUSSION taken sufficiently large so that a continuum limit exists from

We have followed the gauge fixing proposal of Shamirthe FM phase to the FMD phaseot the PM phase the
and Golterman and applied it to domain wall fermions for amodel is as good as at the perturbative limit=o. This
U(1) LyGT. By switching off the transverse gauge DOF, seems to hold true in our particular implementation, tlee,
we arrive at the so-called reduced model. We have detedomain wall fermion casein a strong sensebecause the
mined the quenched phase diagram of the model and comperturbative 1-loop correction§.e., the leading nontrivial
firmed that there is a continuous phase transition from a broeorrection$ to the fermion propagators are found to be neg-
ken symmetry ferromagneti¢dFM) phase to a broken ligible (Figs. 4 and & In gauge fixing the Smit-Swift model,
symmetry rotationally noninvariant ferromagnetic directionalhowever, 1-loop corrections to the fermion propagators were
(FMD) phase with the properties that at this transition thesmall but not negligibl¢7]. In the present investigation with
longitudinal gauge DOF, i.e., the fields get decoupled. We domain wall fermions, to the accuracy of our calculations,
have come to this conclusion by performing a WCPT for thethe reduced model spectrum is that of a free domain wall
fermion propagators and comparing them to nonperturbativenodel with absolutely no trace of the fields.
numerical simulations. In our investigation of the reduced model, only a counter-

Let us now contrast this with the previous atterfiit] of ~ term with coefficientk was sufficient to reach the FM-FMD
lattice regularizing a chiral gauge theory with domain wall phase transition by decreasing from the FM side. A
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dimension-three fermion mass counterterm was not neededulate the heavy mode solutions and overlap of the chiral
because domain wall fermions have the robust property thanodes explicitly. In Appendix B we have schematically de-
mixing between the opposite chiral modes at the domain walscribed how the calculations would go in case of the actual
and the anti-domain wall is exponentially damped and iKaplan boundary conditions, but to obtain explicit expres-
negligible for largeL ;. sions would be a horrendous task.

We have carried out and presented the perturbative results We consider Eq(3.20 in the region G<s, t<L/ /2. Ob-
for fermion propagators and mass matrix in reasonable deriously the index is also in the same region. Writing Eq.
tail, because, although the technique employed is not new3.20 at s=L¢/2 gives(by force using the general expres-
the explicit results are available mostly for only the QCD sjon forl\/lgl\/l0 away from the boundaries of the regjon
(wall) implementation rather than the wall-antiwall imple-
mentation suitable for a chiral gauge theory. With transverse [1+5(|-s/2)2—()\,(0))2](¢J(0))L /2—5(Ls/2)(¢,(0))L i1
gauge fields back ofand fermions in an anomaly-free rep- s s
resenta}tloh the full gauge-ﬁxc_ed domain wall_ model of ~a(Ld2— 1)(4,1(0))%/271:0_ (A1)
LxGT is ready for a perturbative treatment with the same

techniques as used in this paper if the transverse gauge co/g@ain writing Eq.(3.20 ats=L J2 gives(this time using the
(3. s

pling is perturbative. The model is also ready for a nonper- . + .
turbative treatment by numerical simulation for strong trans EXPression forMoM, at the boundary of the region and

verse gauge coupling. dropping terms that take the solutions across the anti-domain
Our numerical computations have been done in thé’va”)'

guenched approximation and they agree for the fermion - 5 (ON21, 4(0) - ©)

propagators very well with zeroth order perturbation theory [1+a(Ls/2)"=(Nj")1(¢;) L2~ alLy/2=1) (b)) y2-1

with the 1-loop corrections almost negligible in our case.

Effects of fermion loops would enter these calculations at =0. (A2)

least at the 2-loop level. Inclusion of dynamical fermions in i

our nonperturbative numerical investigation should not affecf0" Poth Eqs(A1) and(A2) to be true, the following must

our results about the spectrum of the model at all if theP® rue:

relevant part of the phase diagram remains qualitatively the

same. P P ’ q g () j241=0, (A3)
So far the gauge fixing method is applicable only to the

Abelian theory. Extension to a non-Abelian gauge group igvhich is a boundary condition.

nontrivial and is being pursued at the current tifBé Two equations corresponding to E¢a1),(A2), this time
As commented at the end of Sec. Il, the reduced gaugats=0, are

fixed domain wall model with 82y<<1 is interesting because

aty=0 the model is known to have mirror modes at the ~ [1+a(0)2— (A {?)2](¢{?)o—a(0)(¢{?);—a(-1)

waveguide boundaries. This will be taken up in a separate )

publication[14]. X(¢;7)-1=0, (A4)
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For the same eigenequatidB.20 in the other region
LJ/2<s, t<Lg, we similarly get two more boundary condi-
APPENDIX A tions as follows:

In this appendix, we describe the boundary conditions 0) ~ 0) B
used to flavor-diagonalize Eqé3.20 and (3.21) to obtain (@] DLge—alld2=1)(¢7)y2-1=0, (A7)
the results presented in Secs. Il C and Il D. The boundary
conditions make sure that no information passes through the (¢J(°))1:o_
domain wall and the anti-domain wall. This means that the (A8)
eigensolutions corresponding to a given source flavor irsdex
belonging to a particular segment<@=<L /2 or LJ/2<s These boundary conditions are similar to those given by
<L, will be restricted to that particular segment. As alreadyShamir[20], except that we get two sets of them, i.e., Egs.
stated before, these are not the actual boundary conditiori\3), (A6), (A7) and(A8), corresponding to two sectors &f
under which the numerical simulations or the analytic calcu-Another couple of sets of boundary conditions are obtained
lation for the LL/RR chiral propagators have been per- for the eigenequatio3.21) in the two regions in the same
formed, for the flavor diagonalization this enables us to calway.
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APPENDIX B R e

Here we schematically show that using the correct bound- / N
ary conditions(in this case the Kaplan boundary conditions, ' )
) ; - ; X L 'R L R
instead of the special boundary conditions explained in Ap- : TS
pendix A does not qualitatively change our conclusions p.sotl S0 p—k s+l P51
about fermion mass counterterms. I

. . . FIG. 6. Global | tribution to 1-I R t -

The use of special boundary boundary conditions in Sec, _ .. obal loop contribution to 1-loopR propagator con

. . . hectingWG boundaried andll .
[l C meant that the 5th or flavor dimension was basically

divided by the domain and the antidomain wall into two

segments which did not communicate to each other. As a P-A=0
result a wave incident on a wall got fully reflected. In gen- _
eral, there will be transmission to the other side of the wall. Q-6=0 (B12)

The chiral zero modes are the same as befexeept for
a tiny change in the normalizatipexcept that they are now
allowed to decay all the way around tkespace.

Let us assume then the following trial eigenfunctieis
and®* for the heavy modes:

where P and Q are 4Xx4 matrices and A
=(A_,B_,A, ,B;) and®=(C_,D_,C,,D.). For non-
trivial solutions, deP=0 and deQ=0 leading to(reviving
the subscripf)

+(0) 27

(¢ )s=A.jexp—iB+jS)+B.jexyiB.;s) (Bl) B:j:L_J- (B13)

MONEIS Ca i
(P )s=CujeXp(—152S) + D jexplif)s). (B2) Solutions to Eqs(B12) are of the following general form

The subscripts= go with the regions irs-space with corre- (dropping the subscripgsagain:

sponding signs ofm(s) in Eq.(2.4). The wave vector@ are
obtained by trying these trial solutions in the eigenvalue Egs.
(3.20, (3.21) and are given as

B.=fMA_, A, =fPA_, B,=f®A_ (B19

D =f¥c_, c,=f@c_, D,=f%c_
2a(s)cosp.j=1+a(s)’~\%. (B3) (B1Y

We proceed essentially the same way as in the case withthere ("3 are complex numbers with finite magnitude
the free propagators except for the fact that here we do nderder 3. A_ andC_ are determined from normalizations of
have the inhomogeneous part of the solutions. The boundaitfpe respective eigenfunctions and would lead t@@/L)
conditions used to determirk.;,B.;,C.;,D.; are[omit-  factor. . N _
ting the subscripf and also the tree level indicating super- At 1-loop with the Kaplan boundary conditions, there is

script (0) for conveniencg also a contribution to the fermion self-energy for thie and
RL parts coming from a flavor off-diagonal half-circle dia-
50¢f —5—¢6 =0 (B4) gram(we shall call it aglobal-loopdiagram where the sca-
s lar field goes around the flavor space connecting fermions at
b —E. b =0 (B5) the waveguide boundariésandll. The global-loop diagram
Q0P o As P o= originates from the fact that the field that couples the fer-
~ _ 5 mions at the waveguide boundarys the samep field cou-
(1+a3—2\?) ¢l —agps —as ¢ =0 (B6)  pling the fermions at the waveguide boundérysee Fig. 6.
Self-energy contribution from the global-loop diagram for
(1+a5—\?) ¢[s/2_50¢f5/2+1_a— ¢Lg2-1=0 (B7) theLR propagator is
~ o~ o 5 d*k
ayPy —a, P =0 (B8) — CLR(P)s=b"PL 2
S BZ(2)
ad, ,—a_ 0 ,=0 (B9) X[MT(p=K)GL(P—K)]s +1s,
~ ~ ~ XG(k)bs g O B16
(1+a§—>\2)q>5—a0q>fs,l—a,c1>;=o (B10) G(K) 955, G2 (B16)
~ ~ ~ =Db?P R, 6 B1
(1+ag_)\2)¢’fs/z_ agPL o 1—a P ;p1=0 (B11 SRt (517
- - - whereR is the loop integral in Eq(B16).
wherea.=1xmy andaps=a, j,=1 from Eq.(3.28. Now the calculations for the 1-loop corrected eigenvalue
This leads to two sets of linear homogeneous equationgroceeds exactly as in Sec. Il D, except that it now includes
for the amplitudes: also the contribution from the global-loop diagram:
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N =N+ D23 R) (B18)

where, for|j|#0,L4/2,
(SiR)j=( @7 N ER)s b (B19
=@, %T(as,soat,so+1+55,51&,31“)+Ras,slat,so+1 (67" (B20)
=%T((cb;(°))so<¢;(°’>so+l+(cb,—*“”)sl( ¢ V) D+ R@T g (b7 i1, (B21)

and similarly for the chiral zero modes.
Using the expressions for the eigenfunctions at the specific vages,;, s,+1 ands;+1, we arrive at the 1-loop
correction to the eigenvalues:

b? _ L
(8N~ T (T QY50 f{V 1) + T QP51 12 119 112 1) + RO (50,50, 1 12 1)), |j|¢0,?s (B22)
S
2 -~ 2 ~ -~ ; Ls
~b?Texd ~ a(Lg2+1)]+b*Rex] —a(so+ 1)~ a(L/2-s)], =05 (B23)

The details of the functionQJ(”) , h=1,2,3 are not illuminating. Correction to the zero mode eigenvalue clearly shows the
exponential damping and for larde it is negligible.
The 1-loop chiral zero mode wave function at the domain wall is

(0)s= (D) s+ b2 () ()5 (B24)

~ b1 1
me-a9 - 1 ST (86)50+ 1 O[5 (A7) s+ 5T (6675, 2P () s+ RISE) 12 ([ ()5
(B25)
~ b? ~ b2 ~ ~
~exp—as)— 7Tex;:[ —a(spt+1)]é1(s)— 7Texp[— a(s;+1)]éx(s) —b?*R exf] — a(so+1)1é3(s), (B26)

where the well behaved functiorgs, i =1,2,3 contain the information of the heavy mode wave functions and need not be
written down explicitly[it is to be notedj #0 in Eq. (B25)]. The 1-loop correction to the zero-mode wave function is also
explicitly damped and for large negligible.

The 1-loop correction to zero-mode wave function at the antidomain wall is similarly found to be damped. As a result the
overlap of the opposite chiral zero modes at the 1-loop level is also exponentially damped.
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