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The domain wall formulation of lattice fermions is expected to support accurate chiral symmetry, even at
finite lattice spacing. Here we attempt to use this new fermion formulation to simulate two-flavor, finite
temperature QCD near the chiral phase transition. In this initial study, a variety of quark masses, domain wall
heights and domain wall separations are explored using®ar48attice. Both the expectation value of the
Wilson line and the chiral condensate show the temperature dependence expected for the QCD phase transi-
tion. Further, the desired chiral properties are seen for the chiral condensate, suggesting that the domain wall
fermion formulation may be an effective approach for the numerical study of QCD at finite temperature.
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[. INTRODUCTION dimensional continuous chiral symmetry at finite lattice
spacing, this formulation explicitly breaks the vector flavor
Many of the properties of low-energy QCD are a directsymmetry so instead of three light Goldstone pions with
consequence of the breaking of chiral symmetry by the QCDnass on the order of the critical temperatufg,
vacuum. It is expected that this spontaneous chiral symmetrs* 160 MeV as found in nature, present staggered simula-
breaking will disappear as the temperature is increased. Bottons have masses for two of the three pions in the range
the nature of this symmetry restoratitambrupt phase transi- 500—600 MeV, certainly too large.
tion or continuous crossoveand the character of the high- In addition, the subtle effects of the continuum axial
temperature quark-gluon plasma phase are active areas afiomaly which are closely connected with the order of the
both theoretical1,2] and experimental researg8,4]. transition[10] are badly mutilated by both fermion formal-
An especially promising approach to the theoretical studyisms at finite lattice spacing. While the anomaloug(1)
of equilibrium properties of both the QCD phase transitioncontinuum chiral symmetry is explicitly broken by both for-
and the high-temperature plasma phase is direct numericatalisms, the fermion zero modes required by the Atiyah-
simulation of the Feynman path integral using the methodsSinger index theorem are shifted away from zero by finite
of lattice gauge theory. The quantum partition function islattice spacing effects.
written as a Euclidean path integral that can be studied In principle, each of these difficulties can be addressed by
initio using the discrete, lattice formulation of Wils¢g]. simply working at smaller lattice spacing. However, present
While the local color gauge symmetry of the theory remainsnumerical methods scale very poorly as the lattice spacing is
exact at any lattice spacing in Wilson’s formulation, much ofdecreased, with the required numerical effort growing as
the theory’s flavor symmetry, and especially its chiral com-~ 1/a8~1° for lattice spacing.
ponent, is explicitly broken. Domain wall fermiongDWF) offer a new approach to the
This difficulty in representing the continuum flavor sym- problem of including fermions in lattice gauge theory calcu-
metries in a lattice fermion formulation is a serious problemlations. In this formulation, introduced by Kapldt1,12,
that has persisted for more than two decades. When the feand extended by Narayanan and Neubef@8r14], the fer-
mion action is naively discretized the low-energy fermionic mionic fields are defined on a five-dimensional hypercubic
degrees of freedom increase by a factor 6f Zhis well- lattice using a local action. The fifth direction can be thought
known “doubling” problem can only be remedied by meth- of as an extra space-time dimension or as a new internal
ods that explicitly break the chiral flavor symmetries for fi- flavor space. The gauge fields are represented in the standard
nite lattice spacing[6]. The chiral symmetries are then way in four-dimensional space-time and are coupled to the
recovered together with the Lorentz symmetry as the latticextra fermion degrees of freedom in a diagonal fashion.
spacing is sent to zero. The most popular of these methods In this paper, we use a variant of Kaplan's approach, de-
are staggerefi’—9] and Wilson[5] fermions. veloped by Shamif15], in which the two four-dimensional
Although, in principle these methods should be able tofaces orthogonal to the new fifth dimension are treated dif-
approximate the continuum theory in a controlled way, inferently, with free boundary conditions imposed on the fer-
practice this problem has been a formidable obstacle to lamion fields. This key ingredient allows a system made up of
tice studies of the QCD phase transition. For example, th@aively massive fermions to develop chiral surface states on
Wilson fermion formulation explicitly breaks all of the con- these boundarieédomain wall$ with the positive chirality
tinuum chiral symmetries making phenomena driven by thestates bound exponentially to one wall and the negative
spontaneous breakdown of chiral symmetry difficult tochirality states bound to the other. Since we are implement-
study. While staggered fermions do possess a ondng full QCD, including the effects of quark loops, we must
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also incorporate explicit regularization from additional Pauli-in this work while Appendix B describes the molecular dy-
Villars fields[16—18. These heavy bosonic degrees of free-namics equations of motion. Tables summarizing the nu-
dom are required to compensate the large number of heavyerical results are given throughout the paper.

fermion degrees of freedom which propagate in the fifth di-

mension. While such heavy states would normally have a 1II. HYBRID MONTE CARLO ALGORITHM WITH
negligible effect on low-energy physics, their number grows DOMAIN WALL FERMIONS

in proportion toL, requiring this added Pauli-Villars regu-

larization. In this section the action of QCD with domain wall fer-

The two chiralities overlap only by an amount that is ex-mions, its implementation for the hybrid Monte Carlo
ponentially small in_¢, the number of lattice sites along the (HMC) algorithm, and the parameters used in the simulations
fifth direction. The resulting mixed state forms a Dirac four- are described. In the following, we discuss the case of two
spinor that propagates in the four-dimensional space-tim@egenerate flavors implemented using the H¥@lgorithm
with an exponentially small mass. Therefore, the amount of50]. (An odd number of flavors can be simulated using the
chiral symmetry breaking that is artificially induced by this HMC R algorithm[50].)
lattice formulation can be controlled by the new parameter [Domain wall fermions can be used in numerical simula-
Ls. In theLs—oo limit the chiral symmetry is exact even at tions in a fashion similar to traditional Wilson fermions. In
finite lattice spacing. Thus, the domain wall fermion methodfact, if the fifth direction is thought of as an internal flavor
has Succeeded in disentang"ng the Chira' ||r'l]J§—€>00) and dlre.CtIOI’l .then an HMC S|mu|at|0n W|th DWF IS Ide!']tlcal to
the continuum limit 6&—0). Furthermore, the direct com- & s_,lrr)ulatlon of many fl_avors of Wilson ferrmpns with a so-
puting requirement grows only linearly witky. phlstlca_ted mass matrix. We use the partition fun.ctlon of

Here we report the first full QCD simulations using do- QCD with domain wall fermions proposed i8] but with a
main wall fermions in four dimensions. The properties angslightly different heavy flavor subtraction as in Ref24,
parameter space of domain wall fermions appropriate for £2]- In particular,
study of QCD thermodynamics are explored in detail. Small
lattices of size 8x 4 were used to perform numerical simu-
lations of full, two-flavor QCD at finite temperature. Prelimi-
nary results of this work have appeared in R¢fk0-21].
These studies have been carried out using the QCDSP SUPQ"M(X) is the gauge field¥(x,s) is the fermion field and
computer at Columbid22]. Based on the work reported dp,(x,s) is a bosonic, Pauli-Villars field. The variable
here, results of physical interest have been obtained on largepecifies the coordinates in the four-dimensional space-time
lattices for a variety of observables. Preliminary results ofpox with extentL along each of the spatial directions and
these studies can be found[it®,21] and will be presented in  extentN, along the time direction while=0,1, ... Ls—1 is
follow-up paperq23]. the coordinate of the fifth direction, with, assumed to be

For a detailed introduction to the subject and relevant refeven. The actiorS is given by
erences the reader is referred to R¢&1—-26¢, and the re-
views in Refs[13,27-29. Earlier numerical work using do-
main wall fermions has explored the parameter space of a
QCD-like, dynamical vector theory in two dimensions, the
two flavor Schwinger mode[24,25. For applications to Where
guenched QCD see Ref§20,30-41 for applications to L
four-Fermi models see Rg#2] and for possible alternatives B
to domain wall fermion simulations see Ref¢3—-49. SG_ﬁZp (1_ 3Re T'[UP]) ©)

In Sec. Il the action of the theory and a brief description
of the numerical methods are presented. In Sec. Ill som ; 2 ; ;
important gnalytical f_act§ are outlined in order to help gqideZS;S ge esgirzjdprﬁr;ig?l{a_ﬂgitet?rggtrl]qgiggo];O?r:\c,iv%ofllsa\t/r;zailétlce
the numerical investigation. In Sec. IV we study the chiral
properties of the theory both below and above the chiral
phase transition. Our numerical results suggest that domain —— > W(x,5)De(x,s:x',s)V(x',s") (4
wall fermions are able to sustain the desired chiral properties xx' s f
of QCD, even at finite lattice spacing. Both a low tempera-
ture phase where the $2)XSU(2) chiral symmetry is bro-  with flavor indexf=1,2 and Dirac operator
ken spontaneously to an $2) vector symmetry and a high-
temperature phase where the full @UKSUR2) chiral  p_(x,s:x’,s')=8,D"(X,X')+D(s,5') 8y, (5)
symmetry is intact can be recognized. ' '

In Sec. IV the dependence on the two new regulator pa-
rameters, the number of sites in the fifth directiopn, and D(x,x)=
the domain wall “height’mg, are studied numerically. Fi- ’
nally, in Sec. VI conclusions and outlook are presented. Ap- +
pendix A gives the explicit form of the gamma matrices used XU (X") O puxr 1+ (Mg=4) 8y v (6)

Z:f[du]f[d@dllf]f[dcpgvdd)pv]e*s. (1)

S=Sa(U)+Se(W,W,U) + Sp (D Ly, Ppy,U),  (2)

4
21 [(1= ¥, DU, (X) Ss e+ (1+77,)

N[ =
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1 resulted in a reduction of the required number of conjugate
DL(S,S'):E[(l— ¥5)Osr1s T (1+¥5)6s-15—20ssr]  gradient iterations and a consequent speed-up of a factor of
approximately 2.

m; The only new ingredient in our HMC algorithm is the
— 5 [(1=¥8)d 150 0 appearance of the bosonic Pauli-Villars fields. The probabil-
ity distribution of these fields is generated with a heat bath

+(1+v5) 85001 —15]- (7)  step at the beginning of each HMC “trajectory:” a field of

Gaussian random numbers is generated with distribution

Here,s and s’ lie in the range s, s'<L;—1. In the  g=7v7ev and from it the Pauli-Villars fieldsbpy(x,s) are

above equationsn, is a five-dimensional mass representing pptained by®p,=[Dg(m;=1)]"17py using the CG algo-
the height of the domain wall in Kaplan’s original language. rithm.

In order for the doubler species to be removed in the free gjnce the Pauli-Villars action in Eq9) is polynomial in
theory one must choose<Omy<<2 [11,12. The parameter the domain wall operatdd, its gradient with respect to the

m; explicitly mixes the two chiralities and, as a result, con-gayge fields, needed to evolve the gauge degrees of freedom,
trols the bare fermion mass of the four-dimensional effectivecan be computed without performing any Dirac inversions.

theory. This contrasts favorably with the fermion contribution to the
While the DWF Dirac operator defined above is not Her-gauge force which requires one inversion per molecular dy-
mitian, it does obey the identity18] namics step. As a result, the relative computational cost in-
ot volved in calculating the Pauli-Villars force is negligible.
¥sRsDeysRs=D¢ ®  Furthermore, because the Pauli-Villars fields are bosonic

: : , L their molecular dynamics force term enters with an opposite
with R the rfaflecnon opergtor along th-e fifth -dlrectlon. As asign that of the fermion force, resulting in a large, approxi-
result ,trhe single-flavor Dirac determinant is real: @ft 510 cancellation. Because of this cancellation the HMC
=detDr=detysRsDrysRs=detDg and the two-flavor deter-  force term is approximately independentlof and it is not
minant which follows from integrating out the fermions in necessary to decrease the HMC step size ds increased.
Eq. (1), detpz, is positive. The gamma matrices used in this | the approach described above the presence of the Pauli-
work are given in Appendix A. Also notice th&g is the  vjjlars fields increases the memory requirement. However, it
same as th®[ of Ref.[18]. should be noted that there is an alternative approach that
The Pauli-Villars action is designed to cancel the contri-does not involve Pauli-Villars fields. To see this consider the
bution of the heavy fermions in the largg limit. Normally,  result after integration over both the Pauli-Villars and fer-
such heavy fermions decouple from low-energy physics anghion fields. It is deMg(my)/detMe(my=1)
can be safely ignored. However, in the present situation the-def{Mg(m;)/Mg(my=1)]. Therefore, one could simulate the
number of heavy fermions grows proportionalltgand can  same action without Pauli-Villars fields by simply using as
potentially overwhelm the effects of the fixed number ofthe fermion matrixM g(m;)/Mg(my;=1). Inversion of this
low-energy degrees of freedom of interest. Specifically thismatrix will involve inversion ofMg(my) using the CG algo-
difficulty will arise for the order of limits for which DWF are  rithm as in the previous method while the final result would
intended: firstLs— < followed by a—0 [16,14,51,52 have to be multiplied by the matrid (m;=1). If, for ex-
There is some flexibility in the definition of the Pauli- ample, the CG algorithm required 100 iterations to converge,
Villars action since different actions can easily have thethis extra matrix multiplication will increase the computing
sameL s— limit. However, the choice of the Pauli-Villars cost by only 1%. The only disadvantage of this approach is
action may affect the approach to the— limit. Aslightly  that the equations of motion become slightly more compli-
different action than that proposed by Furman and Shamigated.
[18] is used here. This actidi24,25 is easier to implement Since this work is the first to implement DWF in dynami-
numerically and, even for finité, it exactly cancels the cal QCD the approach with Pauli-Villars fields was adopted
fermion action whemn;=1 resulting in a pure gauge theory. for simplicity and because it has been proven reliable in nu-
For two fermion flavors, the Pauli-Villars action we use is merical simulations of the Schwinger modiak,25. For the
convenience of the reader the molecular dynamics equations

_ T ! & - of motion with Pauli-Villars fields and an even-odd precon-
Spy XXZS ; Doy(X,S)ME(X,5X",8") [ =1 PpuX',S"), ditioned DWF Dirac operator are given in Appendix B.
S 9 Fermionic Green’s functions were computed using the
method described in Rdf18]. Standard fermion fields in the
whereM F:DEDF- four-dimensional space-time are constructed from the five-

The traditional HMC® algorithm was constructed di- dimensional fermion fields using the projection prescription
rectly from the action of Eq(2). In order to improve perfor-
mance a standard even-odd preconditionB@j of the Dirac
operatorDg was employed. The even-odd preconditioning P(x) =P W(x,0)+PrW¥(X,Ls—1),
was done on the five dimensional space. All necessary ma-
trix inversions were done using a standard conjugate gradient . _ _
(CG) algorithm. As expected the even-odd preconditioning Pp(xX)=V¥(x,Lg—1)P +P¥(x,0Pg, (10
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wherePg, =3(1+ y°). This somewnhat arbitrary choice de- Here U, identifies the S(B) gauge matrix corresponding to
fines operators which should have a large overlap with the¢he link| and the ordered product is taken for all links in the
physical low energy fermion modes bound to 80 and timelike line L(X) with spatial coordinat. The somewhat
s=Ls—1 walls. The right- and left-handed componentsunconventional normalization in E¢12) was used in our
found on opposite walls are combined to assemble the dgsrevious work and determines a spin and color average
sired physical four-spinors. which for very large mase; approaches ;. [Note, here
Since these are the first simulations of DWF in dynamicalD¢ is the single-flavor Dirac operator defined in E§).]
QCD there are no previous results that would allow an inde-
pendent check of the methods and code. Tests using the chi-
ral condensate from the free field analytical results of Refs.
[24,25 were done in order to check the Dirac operator and In this section we summarize some of the analytically
inverter. The subtraction of Pauli-Villars fields was tested bydetermined properties of domain wall fermions. These help
performing simulations withm;=1 and comparing with guide our numerical investigations, which are done for finite
equivalent results from quenched simulations. Finally, twoand nonzero values for the three parameters of domain wall
flavor dynamical simulations were done ofA Rttices and ~ fermions,Ls, mg, andmy, as well as at finite bare coupling
the results were compared with simulations using the overlafo-
formalism [14,16,51,52 relevant for the DWF actioh18]

IIl. ANALYTICAL CONSIDERATIONS

for the same parameters. In particular f@r:5.6,_mf
=0.1, my=0.9 the overlap simulation gave(¥y)
=1.672(2)x10°% and average plaquette (plag
=5.765(79)< 10" * while the DWF simulation with_ =18
gave(yy)=1.653(33)x 10”2 and average plaquet{@lag)
=5.841(47)x 10 L.

A. L dependence

For numerical simulations, the existence of the chiral
limit for domain wall fermions and the rate of approach to it
are of primary importance. The computational requirements
for domain wall fermions grow as one powerlof from the
simple increase in the number of operations. An additional

All numerical results in this work were obtained from slight increase in computational cost for largey comes
lattices of sizeL =8, N;=4 with periodic spatial boundary from the decrease in the total quark mass due to smaller
conditions and antiperiodic temporal boundary conditionsmixing between the chiral surface states, until the quark
The fifth direction was set to various values in the rangemass is dominated by the inpuor; .

[8,40|, the domain wall heighiny was varied in the range The axial Ward-Takahashi identities for domain wall fer-

[1.15,2.4, the fermion mass was varied in the rarf@02,
0.18], and 8 was varied in the ranggt.65, 5.93. The mo-
lecular dynamics trajectory length was setrte 0.5 and the
step sizedr was set to various values in the raf@0078,

mions are the same as the continuum, except for an addi-
tional term which comes from the mixing of the left- and
right-handed light surface states at the midpoint of the fifth
dimensionL¢/2. At any lattice spacing this additional term

0.02] depending on the values of the other parameters. Theanishes asL;—% for nonsinglet axial symmetries
CG stopping condition which is defined as the ratio of the[18,14,16,51,5R For the singlet axial symmetry, this extra
norm of the residual vector over the norm of the source waserm generates the axial anomaly. At strong coupling, the
set to 10 ®. This resulted in an average number of CG itera-axial currents are conserved flog— but, since the doubler
tions ranging between 50 and 400 depending on the values &rmions may enter the spectrum, these currents may not
the other parameters. have the physical significance of axial currefis].

The initial configuration was generally chosen to be in the For free domain wall fermions, the rate of approach to the
phase opposite to that expected for the input parameters crehiral limit can be calculated. At finites the mixing of the
ating a very visible thermalization process in which the sys-chiral components is reflected in the fermion mags. For
tem should be seen to evolve into the correct phase. Typithe one flavor theory this effective masq 25|
cally 100—-400 trajectories were needed to thermalize the
lattice. The chiral condensate and Wilson line were measured
in every sweep. The chiral condensate was measured using a

Mei=Mo(2—Mg)[Ms+ (1L—mg)ts], 0<my<2. (13)

standard “one-hit” stochastic estimator of the traceDyf*
with spin ands coordinates restricted according to Ef0).
Specifically we evaluated the quantities

1
(IWh=33|2 t{ I U.} : (11)
X leL(x)

— 1
(09) = g (UT(s=0lUDe|s=L=1)P]

+tr(s=Ls—1|1/Dg|s=0)PR]}. (12

Mg has two pieces: one is proportional to the bare nmss
and the other expresses the residual mixing between the chi-
ral modes bound to the domain walls. Since each bound chi-
ral state decays exponentially with the distance from its wall,
the residual mixing between them vanishes exponentially
with L, with a decay constant of In|J1—m|. Notice that
whenL —o,my becomes an irrelevant parameter, provided
it stays in the rang€0,2).

In the free theory, one also finds that fermion states with
nonzero four-momentum decay more slowly with the dis-
tance from the wall than do zero momentum states. The de-
cay is controlled by the four-momentum and the value for
mgy. Since the lattice momentup‘=p*a, wherea is the
lattice spacing, the slower decay for modes with nonzero
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four-momentum is arD(a?) effect which should vanish in of determination through simulations. Some results from
the continuum limit. In addition, for a givemy, there is a quenched QCD simulations have been discussed in Refs.
critical four-momentum above which the fermions are no[20,30-41.

longer bound to the wall, but instead behave like massive,

five-dimensional fermions. Of course, because these fermi- B. m, dependence

ons aré massive, they necessar[ly preserve the theo'ry s four- For free domain wall fermions the number of light flavors
dimensional chiral symmetry since their propagation be-

wween the s=0 and s=L.—1 walls is exponentiall is controlled by the value ofn, [12]. In particularmy<0

suppressed N TS P Y corresponds to zero light flavors<iny<2 to one, 2<m,
ppres o . . L <4 to four, and & my<<6 to six light flavors. The theory is
For interacting theories, a simple expectation is for Eq

‘symmetric undemgy— 10—my.
(13) to be replaced by For the interacting theory the values f, which distin-

guish between different numbers of flavors are changed.
Light fermions first appear famy>0, the one to four flavor
transition occurs fomy>2, etc., and the theory is still sym-
metric aboutmy— 10— my. This is expected perturbatively
and seen numericalfy82,20,2]1. There is also some numeri-
¥al evidence that the transition between different numbers of
flavors is smooth and spread out over a small regiomgf

2]. For the interacting theory, keepingy<2 guarantees

Mef=Zy Ms+ce™ s, (14

The exponential dependence is seen perturbativel
[15,54,59 and proven to exist nonperturbatively, provided
the gauge fields satisfy a smoothness conditi66,57.
These an.alyt|c res_ults support the expectation of éxponentl at a theory with not more than one flavor is being studied.
suppression of chiral symmetry breaking effects in the non- : . : o

. : X . While mg is an irrelevant parameter far,— oo, it is very
perturbative regime. However, this behavior may be best es-

tablished by the sort of explicit numerical study reported'mportelnt for S'T““"”.‘“‘?”S’ not only in controlling the ap-
here. Generallye should depend om,, allowing one to proach to the chiral limit and the flavor content of the theory,

choose an ootimal value for simulations at finite. While but also for insuring that light fermions with an average mo-
. P . o i . mentum given by the temperature are still bound to the walls.
in the free theorymy=1 givese™ “=0, for the interacting

theory the variable character of fermion propagation in quc—FOr the free theory, the range of four-momenta carried by

tuating backaround gaude fields makes decounling the Wa”states that are bound to the walls increasemgéncreases
ating backg gaug : ping from zero, as do the corresponding Dirac eigenvaluesnj\s
with a single value formg unlikely, except at very weak

counlin approaches one, the largest Dirac eigenvalues of these
piing. . L . “bound” states become farther off-shell, with valuesl/a.
Close to the continuum limit, it can be argued that this .

. . As mg increases above 1, the number of these off-shell states
form for the effective quark mass, the input massplus a , b her than their ei I ;
residual massn,.s, should enter all long-distance observ- continues ;0 %rqwd ut rather than their elkg)genvadueilncreask-j
ables. Such long-distance physics should be described by N9, Instead their degeneracy increases beyond what wou

: o ; . . seen for the large momentum states of a free theory. As
effective Lagrangian in which the leading chiral symmetrym increases further and approaches 2, some of these excess
breaking effects produced by finite, will be described by a 0 P ' '

single dimension-3 mass term with coefficiemi,,. The degenerate states become more nearly on-shell untinfor

, o - . >2 one has the low-lying Dirac eigenvalues of a free, four-
next-leading contribition from mixing between the walls will . ; :
. . flavor theory. Thus, in the free case a choicargf midway
come from a dimension-5 clover term, suppressed by tw

powers of the lattice spacing. However, away from the Con(_%)etween 0 and 2 is best, giving the largest phase space for

. . ”» ) physical states bound to the walls, without adding additional
tinuum limit or for quantities that cannot be obtained from a ; : . X ; i

. . o . flavors. Using this behavior as a guide for the interacting
low-energy effective QCD Lagrangian this is not necessarily

the case. Therefore, different observables may approach theipocr One expects that choosing midway between the

Lo limit in different ways, depending on the momentum value where a single light fermion is bound to the walls and

. . four light fermions are bound allows the largest range of
scales which enter the observable, and the corrections to tl}e . .

. . . our-momentum for a single flavor of light quark bound to
input quark mass, particularly at stronger couplings, may b%he walls

more complicated. In a numerical investigation this has to be '

kept in mind. In this paper only the chiral condensate and

pion susceptibility are considered. Work on larger lattices C. Topology
involving measurements of many fermionic operators is cur- An important property of the domain wall fermion Dirac
rently in progres$23]. operator is the presence of exact zero modes inLtjex

Numerical simulations may well be the only way to de-limit, as can be seen from the overlap formalism
termine the dependence of chiral symmetry breaking effectf14,16,51,52 These zero modes are related to the topologi-
on L for intermediate lattice spacings-1 to 3 Ge\j. While  cal charge of the gauge field and as a result an approximate
for full QCD, perturbative and nonperturbative argumentsform of the index theorem is present on the latt[&S].
support exponential falloff withLg, for quenched theories, Studies on semiclassical configurations show the presence of
where the lack of damping from a fermionic determinant carmodes which are very close to zero modes even at finjte
lead to configurations with unsuppressed small eigenvalug26] and as a result make lattice studies of anomalous sym-
for the fermions, the largke behavior is even more in need metry breaking possiblgl9-21].
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During simulations, field configurations of different wind- v v
ing number should show zero mode effects in fermionic ob-  0.014 - ( “ \ ,} .) &I
servables. The efficiency with which the hybrid Monte Carlo il N | eﬂ g* ;b M li f
can move the system between sectors of different winding is‘% 0.012 u\“ﬁ"wmwWMM WWMM J“H\‘M‘*f wiﬂw‘w
an important question, as are the long correlations along the &‘
fifth direction which develop for gauge field configurations 0.01 U : : :
where the topology is changing. These issues have bee ‘ ‘ '
studied in numerical simulations of the dynamical Schwinger ©-014
model [25] where the hybrid Monte Carlo algorithm per-

hoididd ol | ‘ !
formed well and topology changing occurred. For this ex- ‘% 0.012 | {VHM”WM‘J‘WMu‘l‘”‘WMMHWWW} “M](lL]MWW‘M"\»PFHNWH"WW\H‘\’W

ploratory study of full QCD thermodynamics, the input
quark masses are not small, so the effects of topology shoult 001 ;

100 200 300 400

not be particularly large. T
IV. THE FINITE TEMPERATURE QCD PHASE FIG. 1. The simulation “time history” of(%//) for =5.0(up-
TRANSITION per graph and 8=5.4 (lower graph for m;=0.1, my=1.65, and

The previous sections have described the domain wall fer-°
mion formulation and important questions about it that need . .
to be investigated numerically. Here we report on simula-Of Bc and bo(tjhtltqheotrles ha\(/je thle same numb(re]r Of.é'ght fla-
tions of full QCD at finite temperature with domain wall vorcs), Wef". u?e' ??aggerih vda Ues as aliofug guide.
fermions on §x 4 lattices. Studying this system allows us to d ur i 'ri Ss(l)mu 3 |o_n§ ‘\1’\” ith ?rr]nalr? Wath ?rtr;:lons We:g
investigate domain wall fermions for full QCD and look for one atf=>5.0 andf=>5.4, wi € hope that these wou

the presence of chirally broken and symmetric phases. ThQe above and below the transition reg_|drg= 8. r_:md M
small volume makes scanning over many valued farmg, =0.1 were chosen to keep the computational difficulty mod-

m;, andgg possible, laying the foundation for more realistic ?St' V;/ﬁ wc;rk'ed withm, = 1.65, S'Efeffonr ?fubentched silr:nula—”
simulations on larger volume. ions this choice gave a reasonable falloff between the walls

Since the finite temperature transition of QCD is con-&tB=5.7 and for quenched QCIB=5.7 is close t95, for

. . : N;=4 lattice.
trolled by the chiral symmetries of the theoffor light 31Nt € . .
quarks, using domain wall fermions to preserve the full glo- Although with this choice ofny, the 5 range being ex-

bal symmetries of the continuum should remove one systenfMin€d (5.8<3<5.4) lies below the chiral transition, we
atic lattice error that is difficult to control. However, finite d€Scribe this point first since it demonstrates our very first

temperature simulations are generally only possible on relc€fforts in charting this parameter space and the difficulties

tively coarse latticega"1~700 MeV for a lattice withN, ~ we encountered. The evolution ¢f¢) for m=0.1 andg
=4), where analytic results about domain wall fermions are=5.0 is shown in the upper panel of Fig. 1 and the lower
lacking. The light chiral modes of domain wall fermions at panel is for3=5.4. The hybrid Monte Carlo algorithm was
weak coupling must exist aa~1~700 MeV, in the full run with a step size of7=0.025 and 20 steps per trajectory,
nonperturbative gauge field backgrounds, for thermodynamigiving an acceptance of 66% fg8=5.0 and 70% forg
simulations to be possible. If it is found that chiral modes

exist on coarse lattices, the size of thg.{L,8) and its 0.025 :
dependence oh and 8 must be investigatedAs already
mentioned,m,¢ is only a sensible quantity for low-energy
observables and it must be demonstrated that various dete 0.02 - ]
minations of it are consistent. In this section we refemtg,, '
without specifying precisely how it may be determined, as a
generic indicator of the mixing between the chiral moyles. 0.015

A. Locating the transition

Locating the phase transition in full QCD requires scan-
ning values for four paramete(sy, Lg, m;, andB). With- 0.005 - 8
out any knowledge of the location of the transition, or if it
even exists for domain wall fermions, choosing parameters
for initial simulations is difficult. For staggered fermions, the 0
critical coupling for the finite temperature phase transition
for 2 flavors on arN;=4 lattice is8.,=5.265 form=0.01
and 8,=5.291 form=0.025[59]. Since staggered and do-  FIG. 2. Valence extrapolations ofyy) for m;=0.1, m,
main wall fermions both have their chiral limit at zero quark =1.65, andL,=8. The circles are fo3=5.0, the squares fo8
mass, the light quarks have the largest effect in the locatior-5.4.

0 0.05 0.1 0.15 0.2 0.25
m; (valence)
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0.03 : : :
0.02 |
§o iy
/
0.01 1 1 1
0-03 T T T A
S
v
é 0.02 |
\%
WMW’MWMMWWW«WM
00t 200 400 600
T
FIG. 3. The simulation “time history” of(%ﬁ) for 5=5.0 (up- s 0 0.05 0.1 0.15 02 0.25
per graph and 8=5.4 (lower graph for m;=0.1, my=1.90, and m
Ls=8. FIG. 5. Full QCD extrapolations dfi/) for my=1.90 andL

=8. The circles are results f@=5.0, the squares are f@="5.4.
=5.4. The evolution appears quite generic and the simulatiomhe dashed line is the fit to the quenched data given in Fig. 4 while
For 8=5.0 the Wilson line expectation value was 0.02Z3
and for 8=5.4 it was 0.046@}1). Both these values are __
small and indicate that botd values correspond to the con- {(##)(m;—0) can be zero either from the absence of chiral
fined phase. modes or because the system is in the symmetry-restored

The chiral condensat@jy) was also measured for a va- Phasel _

riety of valence masses. In quenched QCD at zero tempera- Figure 2 shows thaty ) extrapolates to a nonzero value

ture, extrapo'ations O{¢¢> to mf:0 using quark masses for both ﬁ=50 andB:54 and this value is not very sensi-

from m;=0.02 tom;=0.1 were used to see that chiral modestive to 5. The values for the Wilson line indicate bofh

existed for a particulam, [32]. Recall that without sponta- values are in the confined phase, so {he/) results show

neous chiral symmetry breaking, the exact chiral symmetryhat light chiral modes are present with an unknown residual

of the domain-wall formulation for largé requires that mixing. The insensitivity tg3 is an interesting feature.

(Y must vanish whem;=0. It is only the physical, dy- Next, instead of scanning larger values@®fwe decided

namical symmetry breaking interactions of the light chiralto changem, from 1.65 to 1.9, keeping all other parameters

modes that can produce a nonzero chiral condensate in thdentical (see Fig. 3. (This reflects our initial search path in

limit m;— 0, providedL, is large enough that the residual parameter space and does not imply the absence of a transi-

mixing is unimportant. Without light chiral modes this can tion atmy=1.65 andL,=8.) The acceptance is 59% f@

not occur. [For the current finite temperature case,=5.0 and 71% for3=5.4. The Wilson line for3=5.0 is
0.03Q02), while for B=5.4 it is 0.2025), indicating thatB

0.035 | : : : =5.4 is likely deconfined. The evolutions show a very dif-
0.025 , , . . , : , 0.25
i
0.02 {02
0.015 | {015
A
g =
\5— v
0.01 1 0.1
0.005 O<pys {005
0 | | | L O<|W|>
0 0.05 0.1 0.15 0.2 0.25
0 L 1 1 1 1 1 L 0
m, (valence) 48 49 5 51 52 53 54 55 56

FIG. 4. Valence extrapolations ¢fy) for m;=0.1, my=1.90

and L,=8. The circles are results fg8=5.0, the squares are for

B=5.4.

B

m;= 0.1 for different values of3.
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TABLE |. Data for 8x 4 lattice with 3=5.2, my=1.9.

PHYSICAL REVIEW D 64 014503

m L Traj. len. No. traj. Acc. (e 4H) (Plaq) (W (o)

0.02 8 6_14 X 32 400-800 0.89 0.98) 0.4562) 0.0612) 0.01332)
10 % X 32 200-2000 0.86 0.998) 0.446@9) 0.0482) 0.01241)
12 é X 32 200-2000 0.84 1.41) 0.44286) 0.0482) 0.011237)
16 6i4 X 32 550-2000 0.75 0.98) 0.43889) 0.0492) 0.009879)

24 1i00>< 50 350-2000 0.73 0.93) 0.43597) 0.0473) 0.00881)
32 %)x 50 300-2000 0.72 1.43) 0.43177) 0.0452) 0.00835%7)
40 1i28>< 64 300-1350 0.73 1.43) 0.43426) 0.0442) 0.007728)

0.06 8 % X 25 200-950 0.83 0.98) 0.45Q1) 0.0463) 0.01762)
16 é X 32 200-820 0.84 0.992) 0.43618) 0.0453) 0.0135%1)
0.1 8 4i0 X 20 300-800 0.57 0.99) 0.44378) 0.04Q3) 0.021097)
10 % w25  200-800  0.83  1.08) 0.440%6) 0.0362)  0.019279)

12 %O X 20 400-800 0.43 1@) 0.43711) 0.0322) 0.018384)

16 é‘ X 32 200-800 0.80 0.92) 0.4352) 0.0352) 0.017099)

24 % X 32 200-800 0.72 0.92) 0.4331) 0.0332) 0.015967)

32 %)x 50 200-800 0.82 0.992) 0.430%5) 0.03712) 0.015477)

40 %}x 50 200-800 0.78 1.06) 0.4321) 0.0352) 0.015245)

0.14 8 4i0 X 20 200-860 0.63 1.08) 0.44337) 0.0335) 0.02411)
16 6i4 X 32 200-800 0.85 1.02) 0.4331) 0.0301) 0.020176)

0.18 8 %O X 20 200-1200 0.70 1.43) 0.441Q7) 0.03Q1) 0.026867)
16 % X 32 200-800 0.84 0.92) 0.4321) 0.0331) 0.023095)

ferent behavior for the condensate evaluated at the dynamictiie deconfined phase.
guark mass. The value g8t=5.0 has increased, part of which no
likely reflects the change witin, in the overlap between the small value of y/)(m;— 0) suggests the restoration of chi-

five-dimensional light modes and the surfacesat0 and

Figure 4 shows the valence quark extrapolation. The

014503-8

ral symmetry. Of course, there is a possibility that this small
Ls—1. The3=5.4 values are much smaller, consistent withvalue might instead be caused by the loss of chiral modes.
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TABLE Il. Data for an &x 4 lattice with 3=5.45,my=1.9.

m L Trajlen.  No.trgj  Acc. (e) (Pl (W) (v)

0.02 8 6_14X 32 200-800 0.91 1.043) 0.53767) 0.2264) 0.00415%6)

10 é{x 32 200-1000 0.91 0.998) 0.53286) 0.2074) 0.003195)

12 é, X 32 200-800 0.95 1.0q9) 0.530@4) 0.2025) 0.002703)

16 éﬁ“z 200-800 090  102) 052668) 0.1994)  0.002376)

24 6i4><32 400-1200 0.86 098  0.52577) 0.1873)  0.002166)

32 %xso 400-800 0.94 1.0@) 0.5242) 0.1805)  0.002095)

0.06 8 5i0 X 25 200-1000 0.86 0.99) 0.5341) 0.2113) 0.008Q1)

10 6£4>< 32 200-1000 0.92 0.99%) 0.53136) 0.2034) 0.007045)

2 6i4><32 200-1000 089  1018)  0.52848)  0.1954)  0.006665)

16 6i4><32 400-800  0.76  1.02) 05252  0.1924)  0.006377)

24 é{x 32 300-1000 0.84 1.q0) 0.5212) 0.1746) 0.006179)

32 6£4 X 32 500-1000 0.80 1.09) 0.5252) 0.1893) 0.005924)

oL 8 %“5 300-800 083  0.9@)  0533G6) 0.21X4)  0.011744)

10 %“5 300-990 088  0.99) 053169 0.2002)  0.0107%5)

12 %X% 600-1200 074 108  05281) 01974  0.018384)

16 éﬁ“z 400-800 079 108  05231) 01705  0.01031)

24 6£4X 32 400-2000 0.86 0.998) 0.5121) 0.1708) 0.01021)

32 élx 32 300-1000 0.81 0.98) 0.5191) 0.1595) 0.010119)

0.14 8 % X 25 200-800 0.83 1.01) 0.5331) 0.2103) 0.015319)

16 %xgz 600-1200  0.76  0.98) 0.52q1)  0.1599)  0.01431)

018 8 %X% 400-800  0.81  1.02)  053146)  0.2024)  0.018845)

16 %xsz 600-1200 078 0492 05181  0.1418)  0.01822)
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FIG. 7. The simulation “time history” of y-) for B=5.2 (up-

per graph and 8=5.45 (lower graph for m;=0.02, my=1.9, and
L,=16. The initial configuration was chosen in the opposite phase,

i.e., ordered foi3=5.2 and disordered fg8=5.45.

PHYSICAL REVIEW D 64 014503
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However, this is unlikely because we have seen that chiral

modes do exist foB=5.0 and one expects that at the weaker

phases of full QCD with dynamical domain wall fermions.

FIG. 9. Full QCD values fov(%p} for my=1.90 andB=5.2
B=5.4 coupling these chiral modes should be even morglotted versus ¢ for different values ofm;. The curves are fits of
numerous. Therefore, we have preliminary evidence for twdhe formco+c; exp(—aly).

To solidify the evidence for two different phases of QCD porting the identification of both a chirally broken and a

with domain wall fermions further simulations fog=8 and

chirally restored phase. These simulations are at a small

moy= 1.9 were done with dynamical quark masses of 0.14 anatalue ofL, so the contribution ofm.sto the effective quark
0.18. These points are shown in Fig. 5. The dashed line is themass may be large. Sinog.{ 3,L;) is likely varying across

fit to the quenched extrapolation shown in Fig. 4. There ighe transition region, due to the changesinthe shape of the
not a large difference between the two extrapolations, aleurves is expected to reflect this varying effective quark
though both full QCD extrapolations fall below the quenchedmass.
extrapolations, indicating some suppression of small eigen-
values through the presence of the fermion determinant. In

the next section, we study the dynamical mass extrapolation
of () for larger values oL ¢ to see if the nonzero value for 4,

(¢p)(ms—0) decreases with increasihg.

Additional simulations withm;=0.1, Lg=8, and mg
=1.9 were done fo3=5.2, 5.3, and 5.45, which produced farther from the transition. Keepingy=1.90, simulations
the data for{(yy) and the Wilson line shown in Fig. 6. were done for many values &f; and the dynamical quark
Crossover behavior is seen for both observables further suprassm; . Table | gives the parameters f8=5.2 and Table

0.03 ; ; —
0.025 | //;//X
/6’////@// ~
0.02 L .
//@:/ /g/
S 0015 - s |
7 -4 i
_
0.01 | ﬁ/
-
0.005
0 1 L 1
0 0.05 0.1 0.15 0.2
mf

FIG. 8. Full QCD values foK ) for my=1.90 andB=5.2

versusm; . The circles are fot. ;=8 and the squares for 16.

0.03
0.025
0.02

A
0.015

[

v
0.01

0.005

B. L5 dependence in the two phases

With this evidence for two phases, we turned to exploring
el dependence in each phase. For the confined phase, we
chose3=5.2 to be at weaker coupling while still in this
phase and in the deconfined phase we ch®sé.45, to be

0.05

0.1 0.15

m;

FIG. 10. Full QCD values for(E«p} for my=1.90 and 8
=5.45 versusn; . The circles are foL =8, the squares for 16.
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0.018 ' ' ' ‘ Figure 9 shows i) for B=5.2 plotted versus for a
\ ©m=0.1 variety of values ofm;. The curves are fits to the foricy
) 4 m=0.06 +c, exp(—aly) for Ls=8 to 40. The fit parameters are
voiz | A am=0.02 | |
' \ ‘%‘\%g v m—>0 (Yip)=0.015274)+0.01888)exd — 0.1495)L ],
\\ \*-lﬂiffffﬁffffﬁ 77777
\ \\ m;=0.1, (19
é 0008 | | = 1
v \\ T P (Y)=0.007798)+0.014 1)exy — 0.1168)L],
\
0004 | = 1 m;=0.02, (20
\\ -
= B e it (gp)=0.00591) +0.014 1)exp[ — 0.11(1)L ],
\¥\*?=‘— =
0 0 8 16 24 32 40 m;—0.0. (21

o All fits have Npg=4 and givexy?/Npe=5.1, 5.6, and 6.6,
FIG. 11. Full QCD values for(¢r¢) for my=1.90 and 8  respectively. Then;— 0 points are first found by extrapolat-
=5.45 plotted versuk for different values ofn; . The curves are ing to m;=0 at fixedL and then fitting these values versus
fits of the formeo+ ¢, exp(—aly. L. Although the values fog? are somewhat large, the data
_ is well fit by a function with exponential dependencelan
Il gives them for3=5.45. A plot of the evolution of /)  (Note these somewhat largé values can be caused by un-

for 8=5.20 and 5.45 is shown in Fig. 7 fon;=0.02 and

derestimates of the errors which may result if our Monte

Ls=16. With a step size obr=1/64 the acceptance was Carlo evolutions are not sufficiently long to allow proper
90%. Once again there is no evidence for difficulty in thecontrol the long-time autocorrelations.

hybrid Monte Carlo evolution of this system.

Similar results have been obtained 8+ 5.45. Figure 10

Figure 8 shows results fqusy) at 3=5.2 plotted versus shows the results foi¢) for =5.45 forL,=8 and 16.
m; for L,=8 and 16. The dashed lines are linear fits to the(L ;=24 and 32 results are tabulated belpwhgain, the
lowest three values fan; while the solid lines are quadratic dashed lines are linear fits to the lowest three valuesnfor
fits to all values ofm;. The fits forL,=8 are while the solid lines are quadratic fits to all valuesrof.
_ The fits forL;=8 are

(¢)=0.01172)+0.0952)m, (15
- (¥)=0.002277)+0.0951)m;, (22
(Yihy=0.01123)+0.1145)m;—0.152)m?, (16)
(1py=0.002199)+0.0992)m;—0.0379)m?, (23
with Npe=1 and 2 andy?/Npe=3.7 and 0.4, respectively.
The fits forL,=16 are with Npe=1 and 2 andy?/Npe=0.6 and 0.1, respectively.
o The fits forLs=16 are
(¥py=0.00821)+0.0892)m;, () .
(¥rp)=0.000398) +0.10Q 2) m; , (24
(hy=0.008G2) +0.09933)m;—0.081)m?, (18 -
(414)=0.000406)+0.10Q3)m;—0.042)m?,  (25)
with Npg=1 and 2 andy?/Npe=0.03 and 0.5, respectively.
The results shows a strorg dependence to which we now with Npe=1 and 2 ang¢?/Npe=0.09 and 0.02, respectively.
turn. Linear fits for the larger values afg give

TABLE Ill. Data for an x4 lattice withmy=1.15,L=12, andm;=0.1. HMC traj. Ien:%xZ&CG
stop cond: 10°.

B Start No. traj. Acc. (e AH) (Plaq) (Wl (g
5.45 O 100-800 0.87 0.99) 0.47Q1) 0.01686) 0.002761)
5.55 O 200-800 0.87 0.98) 0.49336) 0.0231) 0.0029166)
5.65 O 300-800 0.87 1.00) 0.52189) 0.0546) 0.0030%2)
5.75 D 300-800 0.86 0.986) 0.55717) 0.1967) 0.00287%7)
5.85 D 300-800  0.85 1.00) 0.57197) 0.2343) 0.0028813)
5.95 D 200-800 0.87 0.99) 0.5857%5) 0.2622) 0.0028983)
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TABLE IV. Data for an &x 4 lattice withmy=1.4,L,=12, andm;=0.1. HMC traj. Ien:51—0>< 25,CG stop

cond: 10°8.

B Start No. traj. Acc. (e™4H) (Plag) (W) (v
5.35 O 100-800 0.87 1.01) 0.443%7) 0.01898) 0.004971)
5.45 O 100-800 0.86 0.99) 0.463Q7) 0.02158) 0.0052721)
5.55 (@] 300-800 0.86 1.00) 0.4871) 0.0323) 0.005393)
5.65 D 400-800 0.86 1.0@) 0.5402) 0.1806) 0.004574)
5.75 D 300-800 0.85 0.99) 0.55988) 0.2243) 0.00445%1)
5.85 D 200-800 0.89 1.018) 0.57443) 0.2543) 0.0044095)

TABLE V. Data for an §x 4 lattice withmy=1.65, Ls=12, andm;=0.1. HMC traj. len:=x 25,CG
stop cond: 10°.

B Start No. traj. Acc. G (Plag) (W (o)
5.25 (0] 200-800 0.82 0.92) 0.42895) 0.02712) 0.0100@2)
5.35 O 400-800 0.68 0.98) 0.4513) 0.0354) 0.0100Q9)
5.45 D 400-800 0.74 1.09) 0.47698) 0.0497) 0.0098%7)
5.55 D 600-1200 0.80 1.048) 0.531(1) 0.1757) 0.007187)
5.65 D 400-800 0.79 0.9@) 0.550719) 0.2144) 0.006772)
5.75 D 200-800 0.88 0.989) 0.56634) 0.2433) 0.006581)

TABLE VI. Data for an &x 4 lattice withmy=1.8,L,=12, andm;=0.1. HMC traj. Ien:sl—ox 25,CG stop

cond: 10°8.

B Start No. traj. Acc. (e™4H) (Plag) (W (o)
5.15 O 200-800 0.83 1.02) 0.41918) 0.0291) 0.0148%5)
5.25 (@] 400-800 0.66 0.9%) 0.43816) 0.0382) 0.014585)
5.35 (@] 400-800 0.63 0.9%) 0.4712) 0.0523) 0.01342)
5.45 (@] 400-800 0.76 1.038) 0.5152) 0.1614) 0.009711)
5.55 D 400-800 0.79 1.05) 0.54Q1) 0.20Q9) 0.00881)
5.65 D 200-800 0.89 1.02) 0.557@5) 0.2424) 0.008282)

TABLE VII. Data for an x4 lattice withmy=1.9,L=12, andm;=0.1. CG stop cond: 1C.

B Start  Traj. len. No. traj. Acc. (e M) (Plaq) (W) (i)
5.0 O 4_10>< 20 200-800 0.37 0@) 0.40028) 0.0322) 0.019195)
5.2 O 4_10>< 20 400-800 0.43 1@) 0.43711) 0.0322) 0.018384)
5.25 (@) 5—10>< 25 400-800 0.65 1.1@) 0.4521) 0.0496) 0.01742)
5.35 D 5_10>< 25 600-1200 0.69 0.95) 0.4932) 0.1079) 0.01354)
5.45 D %x 25 600-1200 0.74 1.04) 0.5281) 0.1974) 0.010397)
5.55 D %x 25 400-830 0.82 1.00) 0.54635) 0.2276) 0.009744)
5.65 D 5_10>< 25 400-800 0.88 1.03) 0.56138) 0.2485) 0.009434)
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TABLE VIII. Data for an 8x4 lattice withmy=2.0,L,=12, andm;=0.1. HMC traj. Ien:%XZS,CG

stop cond: 10°,

B Start No. traj. Acc. (e AH) (Plag) (W) (o)

5.05 O 200-800 0.77 0.99) 0.41928) 0.035%1) 0.023248)
5.15 O 200-800 0.75 0.98) 0.4421) 0.0423) 0.02152)
5.25 (@] 200-1200 0.79 1.43) 0.4741) 0.08Q7) 0.01813)
5.35 D 200-800 0.83 1.0@) 0.513@7) 0.1736) 0.013@2)
5.45 D 200-800 0.87 1.02) 0.53495) 0.2033) 0.011574)
5.55 D 200-800 0.85 1.01) 0.55034) 0.2353) 0.010992)

(yy)=0.000168)+0.1002)m; L =24, (26

(yp)=0.000066)+0.0991)m; L=32, (27

with Npge=1 for bothL¢ and y?/Npe=0.01 and 7.1, respec-
tively. We see that with increasingg, the extrapolated
value for the condensate at;=0 decreases steadily.
Figure 11 shows ) for 3=5.45 plotted versuk for a
variety of values ofm;. The curves are fits to the foriy,
+cq exp(—aly) for Lg=8 to 32. The fit parameters are

(yp)=0.01021) +0.08 3)exy —0.486)L ], m;=0.1,

(28)
(h)=0.005994) +0.0153)exy —0.262)L ],
m;=0.06, (29)
(yp)=0.002134)+0.0254)exd —0.31(2)L ],
m;=0.02, (30
(4/)=0.0001Q5) +0.0193)exd —0.272)L],
m;—0.0. (31)

All fits have Npe=3 and givex?/Npe=0.4, 4.8, 1.1 and 0.8,

pling of the confined phase, the decay constant {5 while

in the deconfined phase it is3. One expects faster decay at
weak coupling, but at present we do not know whether the
different phases also play a role in the decay constant.

C. Studying the m, dependence of the transition

The parametem, is relevant at finite lattice spacing,
since it controls not only when there is a single light fermion
bound to the domain walls but also the maximum momentum
this fermion can have while still being bound. It is expected
that this parameter will not have to be fine-tuned for domain
wall fermions to work correctly, but care in choosing a value
is necessary to get the correct number of light species and the
maximum allowable phase space for light fermions in the
thermal ensemble.

We have studied the characteristics of the transition re-
gion by choosingn;=0.1,Ls=12 and simulating for values
of B near the phase transition fony=1.15, 1.4, 1.65, 1.8,
1.9, 2.0, 2.15, and 2.4. Tables IlI-X contain simulation pa-
rameters and results. For parameters where a deconfined
thermal state was expected, the initial lattice was disordered,
while an initial ordered lattice was used where a confined
state was expected.

Figure 12 shows the expectation value of the magnitude
of the Wilson line(/W) for these runs. A rapid crossover is
seen for all values ofmg. The lines are the result of fitting
the four points nearest the transitigiive points where we

respectively. Here again the data strongly support exponerirave a point close to the transitjoto the function

tial suppression of mixing between the walls faFy).

For both the confined and deconfined cases, we g&e
exponentially approaching a limiting value for larde
(which is zero in the deconfined casét the stronger cou-

f(x)=co{ci+tanf c(x—B) 1} (32

This is a phenomenologically useful form for determining
the point of maximum slope for the Wilson line. The points

TABLE IX. Data for an §x4 lattice withmy=2.15,Ls=12, andm;=0.1. HMC traj. Ien:%xZS,CG

stop cond: 10°.

B Start No. traj. Acc. (e AH) (Plag) (W (o)

4.85 (e} 200-800 0.69 0.98) 0.40048) 0.0342) 0.03232)
4.95 O 200-800 0.72 0.93) 0.4192) 0.0402) 0.03023)
5.05 (@] 200-800 0.48 0.92) 0.4432) 0.0523) 0.02725)
5.15 (@] 200-1200 0.62 1.43) 0.4803) 0.121) 0.02037)
5.25 (@] 400-800 0.70 0.9%) 0.510%4) 0.1852) 0.015598)
5.35 D 400-800 0.69 1.08) 0.5291) 0.2166) 0.01411)
5.45 D 400-800 0.71 1.08) 0.54537) 0.2304) 0.013305)
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TABLE X. Data for an §x 4 lattice withmy=2.4,L =12, andm;=0.1. HMC traj. Ien:5—10>< 25,CG stop

cond: 10°®.

B Start No. traj. Acc. (e™4H) (Plag) (W (o)

4.65 o 100-800 0.63 1.0%) 0.39536) 0.0463) 0.04843)

4.75 o 200-800 0.68 0.99) 0.41589) 0.0543) 0.04423)

4.85 O 300-800 0.70 0.94) 0.4392) 0.0695) 0.038@6)

4.95 O 200-800 0.77 1.02) 0.47796) 0.1554) 0.02572)

5.05 D 200-800 0.80 1.02) 0.49879) 0.1902) 0.022@2)

5.15 D 200-800 0.84 1.08) 0.517@5) 0.2213) 0.019627)

far from the transition are not included in these fits, since thissrgument does not go through. The chiral condenia@
phenomenological function poorly represents the data thergs such a quantity. For domain wall fermions witg—c (or
Figure 13 shows similar results fdes) with the lines  staggered fermionsexpanding in the input quark mass in

being a fit to Eq{(32). Formy=1.15 and 1.4 théy) data  the chirally broken phase gives
do not allow even a rough determination 8f. For small
enoughmyg, the light chiral modes should not exist and we

have evidence for that afy=1.15. The value fofyy)) is The coefficientc, is ultraviolet divergent in the continuum

very small and shows little change even when the Wllsonand therefore, on the lattice, gets large contributions from

“nﬁ Isi,:]lowisng;nd?ni:ﬁ f(t)rr tnh(?titrﬁr}sn\llo?. Ir; addtltlcm, tcel Wil- odes at the cutoff scale. For such an operator Lthde-
S0 es cate the fransition 1S very close to the value 0gendence is not reliably represented by just making the re-

. . . : lacementm; — m; + Miq.
ing the conclusion that light fermion modes are not presenP b res

: . . From this discussion, it is clear that although Fig. 9 shows
in the simulations. The effects of the heavy modes are ap- . — N )
parently quite well canceled by the Pauli-Villars fields. that the large. limit for () atm;=0.02 has likely been

Figure 14 gives estimates fg8, determined from the reached byL4~40, one cannot conclude that the value for

. . — . . M,es has vanished. To meas , it is natural to look for
Wilson Ime_ and<¢/n//}. These are in quite reasonable agree- f;‘eescts in the pion mass, wmgﬁsis in turn governed by the
ment, parUcu_IarIy given the phenomenploglcal character o ial Ward-Takahashi identity. This has been done in
their determination. Formy~1.2, B. is close to the quenched simulations Refi81-33,36—38,40,41,2@t zero
qu_enched value and moves smoothly to smallgr values,as temperature, but here we are interested in determimggn
is increased. For these Iarger values ity the light quark the confined phase at finite temperature for small volumes
states appear and the maximum momentum for a state bou%ir N;=2 QCD
to the walls should increase. These light states makg) Our small volumes preclude taking large separations in
show crossover behavior and are required for our S|mulat|on§,v0_p0im functions to completely isolate the pion from other

to be proper studies of two-flavor QCD. At our largest valuestates. Thus a direct measurement of the pion mass or the
of mg, (2.4), we may be approaching the transition from a

two flavor theory to an eight flavor oneecall that the do- 03 . : : ;
main wall determinant is squared in our simulations, dou-

() =Co+cymg+O(m?). (33)

5.6925 for quenched QCD on a®44 lattice[60] support-

om,=1.4 . Ee
i i Amy=1.8 ¥
bling the number of fermion flavors 02| vm-20 * |
;A *my=2.4
V. DETERMINING THE RESIDUAL MASS v 04 | |
As mentioned in Sec. lll, it can be expected that for long- * -
distance physical quantities, the effects of mixing between i ‘ : & s

the chiral wall states will result in a residual mass contribu- ¢4
tion to the total quark mass. This is just the statement that the
dominant effect of the mixing, from the perspective of a

om, =165 = =+ == “
low-energy effective Lagrangian, is to introduce another , 021 szgz;j% j |
source for chiral symmetry breakingeyond the inputny), %
which takes the form of the operator, /¢ at low energies. 01 r P ]
For a quantity such ami, whose dependence on chiral sym- . _ﬁ?ﬁ% =
‘ 52 54 56 58

metry breaking can be expressed as a physical paramete
times the total quark mass, the quark mass which enter:
should bem;+ m;gs.

However, for quantities whose sensitivity to chiral sym-  FIG. 12. Full QCD results for the Wilson line fan;=0.1 and
metry breaking effects extends up to the cutoff scale, such an =12 for different values ofn, and 8 near the transition region.

4.6 4.8 5 6

B
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0.004 | & o e s o o]
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B

FIG. 14. The critical value 0B as a function ofm,. The line is
the value for a 2%x 4 lattice.

<yy>

1
-a __ = . _ a
FIG. 13. Full QCD results fofy) for m;=0.1 andL =12 for Js(X,Ls/2) 4 VX L2 D)1= ys)N W (X, Lo/2)

different values ofmy and B near the transition region. Note that the
vertical scale decreases by a factor of fivergsdecreases from 2.4

to 1.15. This is needed to follow the large decrease in the scale of
() which results from a combination of the decreasing lattice
spacing that follows from increasingand the diminishing overlap

of the light fermion states with the walls.

+ %E(X,Ls/z)(pr ys)NAW (x,Lg/2—1)
37

is a pseudoscalar density at the midpoint of the fifth dimen-
overlap of the pion with any particular source is not possiblesion which couples left- and right-handed degrees of free-
here. Instead, we use the integrated form for the flavor nondom.
singlet axial Ward-Takahashi identity and try to see the con- We have done extensive simulations for many values of
tributions of the pion. In the zero quark mass limit on infinite Ls with 8=5.2, my=1.9, andm;=0.02 to study the conse-
volumes, the pion contributions become poles. Thus we caguences of the Ward-Takahashi identity. At the time of these
look for the effects of these precursors of the pion polessimulations, we were not measuringls explicitly. How-
even when they do not completely dominate the Wardever, the other two terms in the Ward-Takahashi identity
Takahashi identity. were measured, allowing a determination of thés term.

Starting from the flavor nonsinglet axial Ward-Takahashi

identity in Ref.[18] and summing over all lattice points 0.015
gives
o é 0.010 | %\&\
(Yh)=mex,+AJs. 34 7 I —
Here ¢ is the four-dimensional fermion field defined by Eq. 0'0(;)‘:
(10) and the pseudoscalar susceptibility(m® sum ona) |
2 — % — a & 015 | - © m
=_ - - &=
X 4Nc = lﬂ(X)Ys 2 lﬂ(x) zﬂ(O) Ys 2 ¢(O) . 28
(35) 0.1
0.010 ==
(The factor of; N, is needed to match our normalization for s
(¢y).) The additional contribution from chiral mixing due to 3" 0.005 | e SR
finite L is
2 . ! s 10 20 30 40 50
Ads= 7= { 13X,LJ2$(0) ys—4(0) ), (36) .
AN, 5 2 _
FIG. 15. The chiral condensate/is), the pion susceptibility
where X., andAJs versusL for §=5.2, my=1.9, andm;=0.02.
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Figure 15 show$@/f>, X andAJs for a variety of values of
L. Fitting AJs to an exponential form foL=16 to 40

PHYSICAL REVIEW D 64 014503

TABLE XI. Values form{SM°P and — b, versusL , from fits to
valence quark data with the dynamical quark mass fixednat

gives the solid line in the figure and the result =0.02.

AJs=0.00962)exd —0.01919)L ] x*/Npg=6.4/2. L Myes —by X%/ Npe
38

_ o 9 10 0.1495) 0.00945) 0.8(4)
We see that our data are consistent withs vanishing as 1, 0.1292) 0.008G2) 1.6(4)
L,—o0, although the decay constant is quite small,/50. 6 0.1133) 0.008G4) 1.1(5)
Pion poles should dominate the Ward-Takahashi identity, , 0.0952) 0.00753) 1.57)
when the pions are light and the pions should become mass, 0.0782) 0.00685) 0.74)
less whenm;+m,.s=0. (This is only strictly true in the in- 0'0593) 0.00483) 1'7(9)

finite volume limit) Thus we look for the pseudoscalar sus-
ceptibility in large volumes for small total quark mass to
behave as

sured, it is satisfied by observables measured with valence
masses. Of course, extrapolations in valence quark mass can
. o ) lead to problems due to the gauge field ensemble including
where thes; are independent dfs andm; . This gives a pion  configurations with small fermion eigenvalues that are not
pole (for large volumesat m;= —myes, While a, gives the  present when a dynamical extrapolation is done. Here we
contribution to the susceptibility of modes whose mass ishave a small dynamical quark mass present in the generation
nonzero when the quark mass vanishes. Liles), a, re-  of the gauge fields, so such effects are expected to be unim-
ceives contributions diverging asaf/ and hence may be portant.

sensitive to unphysical five-dimensional modes. For this ex- For a givenL, we simultaneously fif . and(%p) to the
pression to be useful, we do not require the pole term torms in Egs(39) and(44). These are four parameter fits for
dominate thg remaining terms, but it must make a largey; a_,, b,, andm,. and the resulting value fom,.s we
enough contribution to be visible. _ refer to asm{SMOR  (All measurements of the residual mass
The AJs term in Eq.(34) also has a pole contribution rom |ow-energy physics should agree. We use this notation
coming from the propagation of the conventional light pseu+q getail the explicit technique we have used for this deter-
doscalar along the=0 andLs—1 boundaries from O t&.  mination) We have used quark masses of 0.02, 0.06, 0.10,
This light state has nonzero overlap with the midpoint pseuzng 0.14 in our fits. These fits do not include possible corre-
doscalar density for finitds, but this overlap should be |ations between the quantities computed for different values
exponentially suppressed. Therefore we expdd 10 alsO  of m, because the correlation matrix itself is poorly deter-
have a pole atn;= — M, giving AJs the same formag,:  mined.
namely, The results are given in Table XI, where the errors are
(40) all from application of the jack knife method. Notice that
by is negative for all values of g, meaning that the non-
Considering the case where the pole terms dominate givq§o|e contributions toAJs are smaller thanm,.a,. We

Xz=2a_1/(Mi+ M) +ag+O(Me+ My, (39

AJs=b’ j/(mi+meg +bi+O(mi+ M.

_amitbl, have then fit these values ofc"°® and — b, to the form
()= T (4)  co+cyexp(—aly and found
res
JE— — f— —_— 2 =
For () to be finite in this case requires by=0.01044)ex ~0.0182)Ls]x*/Nor 0'3419)(;15)
a_ m¢+b’=a_j(mg+m 42
1Myt Doy = 8- 2(MrH MMhed 42 miga’°%'=0.1856)exd —0.028Q15)L ] x*/Npr
so the most general form faxJs is ~0.2825). (46)
AJs= Moy, + Do+ O(Mi+Myed), (43 (47)
whereby=b}—m.d,. Using this then gives Figure 16 shows these values and the fits.
0= D0~ Mrefo We can see that botm{SM°R) and b, are falling expo-
<E¢>:(mf+mres)xw+ bo (44) nentially, but with a very small decay consl&ﬁ%. This is

in sharp contrast to the decay constant ¢gr/) which is

up to terms linear in the quark mass.
Our procedure for extracting,.s from these small vol-

umes involves measuring values fpr. and(%ﬂ) for a va-

~Z. This is further evidence for the distinction between the
residual mass that enters in low-energy observables and the
residual mixing which effects observables dependent on de-

riety of valence quark masses for a simulation with a fixedgrees of freedom at the cutoff scale.

dynamical quark mass. Since the Ward-Takahashi identity is Since our determination of the residual mass has been
a consequence of the form of the domain wall fermion op-done for small volumes, one can worry about the finite vol-

erator, independent of the weight used to generate the gaugene effects. We have done a similar extraction of the re-
field ensemble in which the fermionic observables are measidual mass and compared it with determinations of the re-
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02 ' ' - For the two flavor theory it was found that there is a phase
where the S(R2)XSU(2) chiral symmetry is broken sponta-
neously to a full SW2) flavor symmetry and a phase where
the full SU(2)XSU(2) chiral symmetry is intact. For the val-
ues ofLg we used, the dependence of observables on the
coupling in the transition region is likely quite influenced by
the change in the residual mass with the coupling. In particu-
o . . ‘ , lar, increasingB through 8. has two effects. The first is the
intended increase in temperature while the second, discussed
above, is a decrease in the total quark masg=nmy+ M.
Since B, decreases with decreasing quark mass, both
changes tend to push the system into the chirally symmetric
phase suggesting that this added dependence of quark mass
on B will make the resulting3 dependence of the transition
sharper than it would appear if our simulations were carried
out at fixed total quark mass. To suppress this effect will
, , , ‘ require larger values fotLg, thermodynamics studies at
0 10 20 30 40 50 largerN, (and hence weaker couplingr improved variants

L of domain wall fermions.

Our simulations show that domain wall fermions have
passed one vital test for numerical work, light chiral modes
exist at quite strong coupling. A second important result,
. . 2 which was expected from work with dynamical fermions in
sidual mass from extrapolations oh? for much larger he Schwinger moddl25, is that domain wall fermions do
volumes and find reasonable agreen{@6i. We have deter- 4t present any problems to conventional dynamical fermion
mined mye for me=1.9 and the lower limit on ouB range,  pymerical algorithms. Given these results, we are pursuing
B=5.2. However, we expect this residual chiral symmetrygimylations of the phase transition on larger lattices to
breaking effect will be smaller for larger values Bf At achieve more physically meaningful results. The slow falloff
weaker coupling the gauge fields are more uniform and thef the residual mass with ; can be overcome with more
small dislocations that are expected to increase the mixmaomputing power or, hopefully, improvements to the formu-
between the walls are increasingly suppressed. This decreaggion. At present, this is all that stands in the way of simu-

in residual chiral symmetry breaking should be even morgyiing theN;=2 QCD phase transition with three degenerate
pronounced ag3 increases abovég8. since in the plasma light pions at finite lattice spacing.
phase the gauge field becomes even more uniform. We are

continuing to study various determinations of the residual
mass. ACKNOWLEDGMENTS

0.15

E“-’ 0.1

0.05

0.01

o

2 0.005 |

FIG. 16. m{SM°R and — by, versusL ;. The curves are fits to the
form cg+c, exp(—aly).

The numerical calculations were done on the 46QopP
VI. CONCLUSIONS QCDSP computef22] at Columbia University. This re-
search was supported in part by the U.S. DOE under Grant
In this work the properties of domain wall fermions rel- No. DE-FG02-92ER40699 and for P. Vranas in part by NSF
evant to numerical simulations of fuN;=2 QCD at finite  under Grant No. NSF-PHY96-05199.
temperature were investigated on relatively small lattices of
size &x 4. Conventional numerical algorithrghe hybrid
Monte Carlo and the conjugate gradient algorithnvsrked

without any difficulty beyond the additional computational  The Dirac gamma matrices used in this work are
load of the fifth dimension. Evidence for both confined and

APPENDIX A: GAMMA MATRICES

deconfined phases was found and ltheandm, dependence : _

. ; 0O 0 O i 0 0 0 -1
of each phase was investigated. )

The domain wall fermion action is expected to preserve [ 0 0 1 0 |0 01
the full chiral symmetries of QCD for larges. For the o —iool]" |l o 10 ol
stronger couplings used for the confined phase simulations, _ 0 0 0 100 0
the chiral condensate approached its asymptotic value for :
Ls~32—40. However, our determination of the residual (A1)
mass effects present in low energy observables show a re-
sidual mass 0f=0.06 for Ls=40. For the weaker couplings 0 0i O 0 010
needed to study the deconfined, chirally restored phase, the 0 0 0 —i 00 0 1
residual mass effects are expected to be much smaller for the y;= . . Ya= ,
- 3 i 00 112 000

samelg, although we have not yet measured the residual
mass in this region. 0O i 0 O 0 1 0 O
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1 0 O 0 motion which are phase space volume preserving and con-
01 o0 serve the fictitious six-dimensional “energy# of Eq. (B2).
ys= The first of these Hamilton-like equations determines the re-
00 -1 O lation betweerlJ ,(x) and the conjugate variablg ,(x):
0 0 O 1 dU,(x)
e =iH ,(x)U ,(x). (B4)

APPENDIX B: EVOLUTION ALGORITHM

As described in Sec. Il, we use the hybrid Monte Cablo The second equation can be derived from the requirement
algorithm of Gottliebet al. [50] extended to include the that7{ is rindependent. First, following Gottlieét al. [50]
Pauli-Villars regulator fields. Further, we use a precondi-One writes
tioned variant of the Dirac operator specified in Eg).[53].

In this appendix we describe the resulting algorithm we use d_H:z tiH, (X)F ,(x)+ dH,(x) H.(x) (B5)

to evolve the gauge fields including the effects of the two dr  xu ® m dr m

flavors of domain wall quarks and the Pauli-Villars regulator

fields. Then the constancy 6f is insured if for the second equation

Following this approach, we generate a Markov chain ofof motion we impose
gauge fielddJ ,(x), pseudofermion fielddr, Pauli-Villars
fields ®py, and conjugate momenta,,(x) according to the i dH,(x)

distribution dr =[F.(X)]7a- (B6)
Z=| [dU][dH][d®L[dD[dD L | [dDpyle ", The subscripfTA indicates the traceless anti-Hermitian part
f [dUNdHI[d®eldPe]ldPpy]ldPey] of the matrix, a restriction required by the traceless, Hermit-

(B1)  ian character of the variabled ,(x). [The definition of
F.(x) implied by Eq.(B5) makesF anti-Hermitian and it is

where only the traceless part ¢f that enters that equatidn.
1 Finally we will determine the specific form for the force
H=Sc+ 5% H,u(x)2+ OI[DIDF] tdr termF ,(x). This can be done by using the general formula
T IR d "R I ’ T —
+®p\[DEDe]m —1Ppy. (B2 d_T<l/f D |l/f>:§xzs {¢/(%,8)™H (0 U ,(x)(1F ¥*)
Here, the fieldsb: and ®p, as well as the preconditioned X (X + w,S) — :,b’(x+,u,s)TUﬂ(x)T

operatorD¢ are defined only on odd sites with
XH,(X) (1= y")(x,5)}, (B7)

N — 2
De=(5=Mmo)"~(DF)oe(DF)eo, (B3) which follows immediately from Eqg6) and(B5) where the
where Or) .. and D)., represent the DWF operator of Eq. '0Wer choice of signs corresponds to the cas®pf Now
(5) evaluated between odd and even or even and odd site¥€ reexpress the derivative:
respectively. Note, even and odd are defined in a five-
dimensional sense, e.g., for an even site the sum of all five iq)'r[’f)‘r’f’) 1 1hp=— t
coordinates is an even number. Equati®&3) employs the dr FLOFCF FT T XF
usual preconditioning scheme for Wilson fermiofs3]
implemented in 5 dimensions. Similar considerations jUStifywhere we Constru@:b':m: from the Gaussian sourog-
the form used for the Pauli-Villars action. _Since mt and then Obtaier by SOIVingBEBFXF:q)F- Now we must
=def(5—my)Dg}, we have rescaled both the fields: and  eyaluate
dpy, to introduce the extra factor of (6mg) into Eq.(B3) in
order to simplify the subsequent algebra.
To begin a new HMC trajectory, we start with the values XE
of the gauge fieldsJ ,(x) produced by the previous trajec-
tory. We then choose Gaussian distributed fiel{,s)g, X[(5—mMg)2—(Dg)oe(DE)eol| XE)-
7(X,8)py, andH ,(x) from which we construct the fields (BY)
®r=D¢,r and®py=(Dr *m,_) 7pyv. Here we have intro-
duced new field variabled ,(x), conjugate to the link ma- We will obtain eight terms by letting the derivative act on
trices, which are elements of the algebra of($Jand hence each of the fouDg operators. Four of those terms will in-
traceless and Hermitian. volve U ,(x) and fourUM(x)T, with the final four terms be-
Next, we carry out the molecular dynamics time evolutioning the hermitian conjugates of the first four. Combining
of the fieldsH ,(x) and U ,(x) according to equations of Egs.(B5), (B7), (B8), and(B9), we find

d .~
50D xe, (B9

d.. .~ d
E_DEDF}XFZEKXFHG_mo)z_(DE)oe(DDeo]
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1 ~
t{H,00F,00}= 5 2 (e HL,00U,00(1F 70+ 1,8) (D Dl xe)

+(Xel (DD oel X, SYH L () U, () (1+ y#)(x+ 1, S| Dl ) + (xe | DEIX, S)H L (X)U ,(x) (1 — y*)

X<X+Mvsl(DF)eo|XF>+<XF|5;(DF)oe|X!S>H,u(X)UM(X)(1_ Y*)x(X+ u,8)+H.c}. (B10)
This expression can be written in a very simple form if we define two new spinor quantities:
—x(x,8/(D1)eDrlxe), (X,S) even,
W(X,S)= < N F/eo~F F> (Bll)
—(X,S|Dg|xe), (x,s) odd,
(X,8[(Dp)edxr), (x,5) even,
v(X,8)= (B12
Xr(X,S), (x,s) odd.
Using these quantities in E¢B10) and factoring out the generatbr, (x) gives
1
Firu()=-3 UM(X)ES tropirl (1= 7,0 (X+ i, 5)W'(X,8) + (1+ v, )W(x+ &,8)v (x,5)] - H.c., (B13)

where we have added now the subscfip} to distinguish this fermion force from that produced by the Pauli-Villars fields
described below. Since there are no gauge fields in the extra direction, it is not surprising that this looks very similar to the
Wilson fermion force with an additional sum over ta@irection.

The force term produced by the Pauli-Villars fields is closely related to that derived above. We need only replace the field
Xk With ®p,,, setm;=1 and change the sign of the resulting force

Frevin() == Fe1u(0]m=1, xe=apy

(B14)
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