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Finite temperature QCD phase transition with domain wall fermions
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The domain wall formulation of lattice fermions is expected to support accurate chiral symmetry, even at
finite lattice spacing. Here we attempt to use this new fermion formulation to simulate two-flavor, finite
temperature QCD near the chiral phase transition. In this initial study, a variety of quark masses, domain wall
heights and domain wall separations are explored using an 8334 lattice. Both the expectation value of the
Wilson line and the chiral condensate show the temperature dependence expected for the QCD phase transi-
tion. Further, the desired chiral properties are seen for the chiral condensate, suggesting that the domain wall
fermion formulation may be an effective approach for the numerical study of QCD at finite temperature.
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I. INTRODUCTION

Many of the properties of low-energy QCD are a dire
consequence of the breaking of chiral symmetry by the Q
vacuum. It is expected that this spontaneous chiral symm
breaking will disappear as the temperature is increased. B
the nature of this symmetry restoration~abrupt phase transi
tion or continuous crossover! and the character of the high
temperature quark-gluon plasma phase are active area
both theoretical@1,2# and experimental research@3,4#.

An especially promising approach to the theoretical stu
of equilibrium properties of both the QCD phase transiti
and the high-temperature plasma phase is direct nume
simulation of the Feynman path integral using the meth
of lattice gauge theory. The quantum partition function
written as a Euclidean path integral that can be studiedab
initio using the discrete, lattice formulation of Wilson@5#.
While the local color gauge symmetry of the theory rema
exact at any lattice spacing in Wilson’s formulation, much
the theory’s flavor symmetry, and especially its chiral co
ponent, is explicitly broken.

This difficulty in representing the continuum flavor sym
metries in a lattice fermion formulation is a serious proble
that has persisted for more than two decades. When the
mion action is naively discretized the low-energy fermion
degrees of freedom increase by a factor of 24. This well-
known ‘‘doubling’’ problem can only be remedied by met
ods that explicitly break the chiral flavor symmetries for
nite lattice spacing@6#. The chiral symmetries are the
recovered together with the Lorentz symmetry as the lat
spacing is sent to zero. The most popular of these meth
are staggered@7–9# and Wilson@5# fermions.

Although, in principle these methods should be able
approximate the continuum theory in a controlled way,
practice this problem has been a formidable obstacle to
tice studies of the QCD phase transition. For example,
Wilson fermion formulation explicitly breaks all of the con
tinuum chiral symmetries making phenomena driven by
spontaneous breakdown of chiral symmetry difficult
study. While staggered fermions do possess a o
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dimensional continuous chiral symmetry at finite latti
spacing, this formulation explicitly breaks the vector flav
symmetry so instead of three light Goldstone pions w
mass on the order of the critical temperatureTc

'160 MeV as found in nature, present staggered simu
tions have masses for two of the three pions in the ra
500–600 MeV, certainly too large.

In addition, the subtle effects of the continuum ax
anomaly which are closely connected with the order of
transition@10# are badly mutilated by both fermion forma
isms at finite lattice spacing. While the anomalous UA(1)
continuum chiral symmetry is explicitly broken by both fo
malisms, the fermion zero modes required by the Atiya
Singer index theorem are shifted away from zero by fin
lattice spacing effects.

In principle, each of these difficulties can be addressed
simply working at smaller lattice spacing. However, pres
numerical methods scale very poorly as the lattice spacin
decreased, with the required numerical effort growing
;1/a8210 for lattice spacinga.

Domain wall fermions~DWF! offer a new approach to the
problem of including fermions in lattice gauge theory calc
lations. In this formulation, introduced by Kaplan@11,12#,
and extended by Narayanan and Neuberger@13,14#, the fer-
mionic fields are defined on a five-dimensional hypercu
lattice using a local action. The fifth direction can be thoug
of as an extra space-time dimension or as a new inte
flavor space. The gauge fields are represented in the stan
way in four-dimensional space-time and are coupled to
extra fermion degrees of freedom in a diagonal fashion.

In this paper, we use a variant of Kaplan’s approach,
veloped by Shamir@15#, in which the two four-dimensiona
faces orthogonal to the new fifth dimension are treated
ferently, with free boundary conditions imposed on the f
mion fields. This key ingredient allows a system made up
naively massive fermions to develop chiral surface states
these boundaries~domain walls! with the positive chirality
states bound exponentially to one wall and the nega
chirality states bound to the other. Since we are impleme
ing full QCD, including the effects of quark loops, we mu
©2001 The American Physical Society03-1
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also incorporate explicit regularization from additional Pau
Villars fields @16–18#. These heavy bosonic degrees of fre
dom are required to compensate the large number of he
fermion degrees of freedom which propagate in the fifth
mension. While such heavy states would normally hav
negligible effect on low-energy physics, their number gro
in proportion toLs , requiring this added Pauli-Villars regu
larization.

The two chiralities overlap only by an amount that is e
ponentially small inLs , the number of lattice sites along th
fifth direction. The resulting mixed state forms a Dirac fou
spinor that propagates in the four-dimensional space-t
with an exponentially small mass. Therefore, the amoun
chiral symmetry breaking that is artificially induced by th
lattice formulation can be controlled by the new parame
Ls . In theLs→` limit the chiral symmetry is exact even a
finite lattice spacing. Thus, the domain wall fermion meth
has succeeded in disentangling the chiral limit (Ls→`) and
the continuum limit (a→0). Furthermore, the direct com
puting requirement grows only linearly withLs .

Here we report the first full QCD simulations using d
main wall fermions in four dimensions. The properties a
parameter space of domain wall fermions appropriate fo
study of QCD thermodynamics are explored in detail. Sm
lattices of size 8334 were used to perform numerical sim
lations of full, two-flavor QCD at finite temperature. Prelim
nary results of this work have appeared in Refs.@19–21#.
These studies have been carried out using the QCDSP s
computer at Columbia@22#. Based on the work reporte
here, results of physical interest have been obtained on la
lattices for a variety of observables. Preliminary results
these studies can be found in@19,21# and will be presented in
follow-up papers@23#.

For a detailed introduction to the subject and relevant
erences the reader is referred to Refs.@24–26#, and the re-
views in Refs.@13,27–29#. Earlier numerical work using do
main wall fermions has explored the parameter space
QCD-like, dynamical vector theory in two dimensions, t
two flavor Schwinger model@24,25#. For applications to
quenched QCD see Refs.@20,30–41# for applications to
four-Fermi models see Ref.@42# and for possible alternative
to domain wall fermion simulations see Refs.@43–49#.

In Sec. II the action of the theory and a brief descripti
of the numerical methods are presented. In Sec. III so
important analytical facts are outlined in order to help gu
the numerical investigation. In Sec. IV we study the chi
properties of the theory both below and above the ch
phase transition. Our numerical results suggest that dom
wall fermions are able to sustain the desired chiral proper
of QCD, even at finite lattice spacing. Both a low tempe
ture phase where the SU~2!3SU~2! chiral symmetry is bro-
ken spontaneously to an SU~2! vector symmetry and a high
temperature phase where the full SU~2!3SU~2! chiral
symmetry is intact can be recognized.

In Sec. IV the dependence on the two new regulator
rameters, the number of sites in the fifth directionLs , and
the domain wall ‘‘height’’m0 , are studied numerically. Fi
nally, in Sec. VI conclusions and outlook are presented. A
pendix A gives the explicit form of the gamma matrices us
01450
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in this work while Appendix B describes the molecular d
namics equations of motion. Tables summarizing the
merical results are given throughout the paper.

II. HYBRID MONTE CARLO ALGORITHM WITH
DOMAIN WALL FERMIONS

In this section the action of QCD with domain wall fe
mions, its implementation for the hybrid Monte Car
~HMC! algorithm, and the parameters used in the simulati
are described. In the following, we discuss the case of
degenerate flavors implemented using the HMCF algorithm
@50#. ~An odd number of flavors can be simulated using t
HMC R algorithm @50#.!

Domain wall fermions can be used in numerical simu
tions in a fashion similar to traditional Wilson fermions. I
fact, if the fifth direction is thought of as an internal flavo
direction then an HMC simulation with DWF is identical t
a simulation of many flavors of Wilson fermions with a s
phisticated mass matrix. We use the partition function
QCD with domain wall fermions proposed in@18# but with a
slightly different heavy flavor subtraction as in Refs.@24,
25#. In particular,

Z5E @dU#E @dC̄dC#E @dFPV
† dFPV#e2S. ~1!

Um(x) is the gauge field,C(x,s) is the fermion field and
FPV(x,s) is a bosonic, Pauli-Villars field. The variablex
specifies the coordinates in the four-dimensional space-t
box with extentL along each of the spatial directions an
extentNt along the time direction whiles50,1, . . . ,Ls21 is
the coordinate of the fifth direction, withLs assumed to be
even. The actionS is given by

S5SG~U !1SF~C̄,C,U !1SPV~FPV
† ,FPV,U !, ~2!

where

SG5b(
p

S 12
1

3
Re Tr@Up# D ~3!

is the standard plaquette action,b56/g0
2, andg0 is the lattice

gauge coupling. The fermion action for two flavors is

SF52 (
x,x8,s,s8, f

C̄f~x,s!DF~x,s;x8,s8!C f~x8,s8! ~4!

with flavor index f 51,2 and Dirac operator

DF~x,s;x8,s8!5ds,s8D
i~x,x8!1D'~s,s8!dx,x8 , ~5!

D i~x,x8!5
1

2 (
m51

4

@~12gm!Um~x!dx1m̂,x81~11gm!

3Um
† ~x8!dx2m̂,x8#1~m024!dx,x8 , ~6!
3-2
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FINITE TEMPERATURE QCD PHASE TRANSITION . . . PHYSICAL REVIEW D64 014503
D'~s,s8!5
1

2
@~12g5!ds11,s81~11g5!ds21,s822ds,s8#

2
mf

2
@~12g5!dLs21,sds8,0

1~11g5!ds,0dLs21,s8#. ~7!

Here, s and s8 lie in the range 0<s, s8<Ls21. In the
above equationsm0 is a five-dimensional mass representi
the height of the domain wall in Kaplan’s original languag
In order for the doubler species to be removed in the f
theory one must choose 0,m0,2 @11,12#. The parameter
mf explicitly mixes the two chiralities and, as a result, co
trols the bare fermion mass of the four-dimensional effect
theory.

While the DWF Dirac operator defined above is not H
mitian, it does obey the identity@18#

g5R5DFg5R55DF
† ~8!

with R5 the reflection operator along the fifth direction. As
result the single-flavor Dirac determinant is real: detDF*
5detDF

†5detg5R5DFg5R55detDF and the two-flavor deter
minant which follows from integrating out the fermions
Eq. ~1!, detDF

2, is positive. The gamma matrices used in th
work are given in Appendix A. Also notice thatDF is the
same as theDF

† of Ref. @18#.
The Pauli-Villars action is designed to cancel the con

bution of the heavy fermions in the largeLs limit. Normally,
such heavy fermions decouple from low-energy physics
can be safely ignored. However, in the present situation
number of heavy fermions grows proportional toLs and can
potentially overwhelm the effects of the fixed number
low-energy degrees of freedom of interest. Specifically t
difficulty will arise for the order of limits for which DWF are
intended: firstLs→` followed by a→0 @16,14,51,52#.

There is some flexibility in the definition of the Paul
Villars action since different actions can easily have
sameLs→` limit. However, the choice of the Pauli-Villar
action may affect the approach to theLs→` limit. A slightly
different action than that proposed by Furman and Sha
@18# is used here. This action@24,25# is easier to implemen
numerically and, even for finiteLs , it exactly cancels the
fermion action whenmf51 resulting in a pure gauge theor
For two fermion flavors, the Pauli-Villars action we use is

SPV5 (
x,x8,s,s8

FPV
† ~x,s!MF~x,s;x8,s8!umf51FPV~x8,s8!,

~9!

whereMF5DF
†DF .

The traditional HMCF algorithm was constructed di
rectly from the action of Eq.~2!. In order to improve perfor-
mance a standard even-odd preconditioning@53# of the Dirac
operatorDF was employed. The even-odd preconditioni
was done on the five dimensional space. All necessary
trix inversions were done using a standard conjugate grad
~CG! algorithm. As expected the even-odd precondition
01450
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resulted in a reduction of the required number of conjug
gradient iterations and a consequent speed-up of a facto
approximately 2.

The only new ingredient in our HMC algorithm is th
appearance of the bosonic Pauli-Villars fields. The proba
ity distribution of these fields is generated with a heat b
step at the beginning of each HMC ‘‘trajectory:’’ a field o
Gaussian random numbers is generated with distribu

e2hPV
† hPV and from it the Pauli-Villars fieldsFPV(x,s) are

obtained byFPV5@DF(mf51)#21hPV using the CG algo-
rithm.

Since the Pauli-Villars action in Eq.~9! is polynomial in
the domain wall operatorDF , its gradient with respect to the
gauge fields, needed to evolve the gauge degrees of free
can be computed without performing any Dirac inversio
This contrasts favorably with the fermion contribution to t
gauge force which requires one inversion per molecular
namics step. As a result, the relative computational cost
volved in calculating the Pauli-Villars force is negligible
Furthermore, because the Pauli-Villars fields are boso
their molecular dynamics force term enters with an oppo
sign that of the fermion force, resulting in a large, appro
mate cancellation. Because of this cancellation the HM
force term is approximately independent ofLs and it is not
necessary to decrease the HMC step size asLs is increased.

In the approach described above the presence of the P
Villars fields increases the memory requirement. Howeve
should be noted that there is an alternative approach
does not involve Pauli-Villars fields. To see this consider
result after integration over both the Pauli-Villars and fe
mion fields. It is detMF(mf)/detMF(mf51)
5det@MF(mf)/MF(mf51)#. Therefore, one could simulate th
same action without Pauli-Villars fields by simply using
the fermion matrixMF(mf)/MF(mf51). Inversion of this
matrix will involve inversion ofMF(mf) using the CG algo-
rithm as in the previous method while the final result wou
have to be multiplied by the matrixMF(mf51). If, for ex-
ample, the CG algorithm required 100 iterations to conver
this extra matrix multiplication will increase the computin
cost by only 1%. The only disadvantage of this approach
that the equations of motion become slightly more comp
cated.

Since this work is the first to implement DWF in dynam
cal QCD the approach with Pauli-Villars fields was adopt
for simplicity and because it has been proven reliable in
merical simulations of the Schwinger model@24,25#. For the
convenience of the reader the molecular dynamics equat
of motion with Pauli-Villars fields and an even-odd preco
ditioned DWF Dirac operator are given in Appendix B.

Fermionic Green’s functions were computed using
method described in Ref.@18#. Standard fermion fields in the
four-dimensional space-time are constructed from the fi
dimensional fermion fields using the projection prescripti

c~x!5PLC~x,0!1PRC~x,Ls21!,

c̄~x!5C̄~x,Ls21!PL1C̄~x,0!PR , ~10!
3-3
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wherePR/L5 1
2 (16g5). This somewhat arbitrary choice de

fines operators which should have a large overlap with
physical low energy fermion modes bound to thes50 and
s5Ls21 walls. The right- and left-handed componen
found on opposite walls are combined to assemble the
sired physical four-spinors.

Since these are the first simulations of DWF in dynami
QCD there are no previous results that would allow an in
pendent check of the methods and code. Tests using the
ral condensate from the free field analytical results of Re
@24,25# were done in order to check the Dirac operator a
inverter. The subtraction of Pauli-Villars fields was tested
performing simulations withmf51 and comparing with
equivalent results from quenched simulations. Finally, t
flavor dynamical simulations were done on 24 lattices and
the results were compared with simulations using the ove
formalism @14,16,51,52# relevant for the DWF action@18#
for the same parameters. In particular forb55.6, mf

50.1, m050.9 the overlap simulation gave^c̄c&
51.672(2)31023 and average plaquette ^plaq&
55.765(79)31021 while the DWF simulation withLs518
gave^c̄c&51.653(33)31023 and average plaquette^plaq&
55.841(47)31021.

All numerical results in this work were obtained fro
lattices of sizeL58, Nt54 with periodic spatial boundary
conditions and antiperiodic temporal boundary conditio
The fifth direction was set to various values in the ran
@8,40#, the domain wall heightm0 was varied in the range
@1.15,2.4#, the fermion mass was varied in the range@0.02,
0.18#, andb was varied in the range@4.65, 5.95#. The mo-
lecular dynamics trajectory length was set tot50.5 and the
step sizedt was set to various values in the range@0.0078,
0.02# depending on the values of the other parameters.
CG stopping condition which is defined as the ratio of t
norm of the residual vector over the norm of the source w
set to 1026. This resulted in an average number of CG ite
tions ranging between 50 and 400 depending on the value
the other parameters.

The initial configuration was generally chosen to be in
phase opposite to that expected for the input parameters
ating a very visible thermalization process in which the s
tem should be seen to evolve into the correct phase. T
cally 100–400 trajectories were needed to thermalize
lattice. The chiral condensate and Wilson line were measu
in every sweep. The chiral condensate was measured us
standard ‘‘one-hit’’ stochastic estimator of the trace ofDF

21

with spin ands coordinates restricted according to Eq.~10!.
Specifically we evaluated the quantities

^uWu&5
1

3L3 U(
xW

trF )
l PL~xW !

Ul GU, ~11!

^c̄c&5
1

12L3Nt
$tr@^s50u1/DFus5Ls21&PL#

1tr@^s5Ls21u1/DFus50&PR#%. ~12!
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HereUl identifies the SU~3! gauge matrix corresponding t
the link l and the ordered product is taken for all links in th
timelike line L(xW ) with spatial coordinatexW . The somewhat
unconventional normalization in Eq.~12! was used in our
previous work and determines a spin and color aver
which for very large massmf approaches 1/mf . @Note, here
DF is the single-flavor Dirac operator defined in Eq.~5!.#

III. ANALYTICAL CONSIDERATIONS

In this section we summarize some of the analytica
determined properties of domain wall fermions. These h
guide our numerical investigations, which are done for fin
and nonzero values for the three parameters of domain
fermions,Ls , m0 , andmf , as well as at finite bare couplin
g0 .

A. L s dependence

For numerical simulations, the existence of the chi
limit for domain wall fermions and the rate of approach to
are of primary importance. The computational requireme
for domain wall fermions grow as one power ofLs from the
simple increase in the number of operations. An additio
slight increase in computational cost for largerLs comes
from the decrease in the total quark mass due to sma
mixing between the chiral surface states, until the qu
mass is dominated by the inputmf .

The axial Ward-Takahashi identities for domain wall fe
mions are the same as the continuum, except for an a
tional term which comes from the mixing of the left- an
right-handed light surface states at the midpoint of the fi
dimensionLs/2. At any lattice spacing this additional term
vanishes as Ls→` for nonsinglet axial symmetries
@18,14,16,51,52#. For the singlet axial symmetry, this extr
term generates the axial anomaly. At strong coupling,
axial currents are conserved forLs→` but, since the doubler
fermions may enter the spectrum, these currents may
have the physical significance of axial currents@18#.

For free domain wall fermions, the rate of approach to
chiral limit can be calculated. At finiteLs the mixing of the
chiral components is reflected in the fermion massmeff . For
the one flavor theory this effective mass is@25#

meff5m0~22m0!@mf1~12m0!Ls#, 0,m0,2. ~13!

meff has two pieces: one is proportional to the bare massmf
and the other expresses the residual mixing between the
ral modes bound to the domain walls. Since each bound
ral state decays exponentially with the distance from its w
the residual mixing between them vanishes exponenti
with Ls , with a decay constant of2 lnu12m0u. Notice that
whenLs→`,m0 becomes an irrelevant parameter, provid
it stays in the range~0,2!.

In the free theory, one also finds that fermion states w
nonzero four-momentum decay more slowly with the d
tance from the wall than do zero momentum states. The
cay is controlled by the four-momentum and the value
m0 . Since the lattice momentumpL

m5pma, wherea is the
lattice spacing, the slower decay for modes with nonz
3-4



no
iv
rm
fo
be

q

e
d

nt
on
e

ed

uc
a

is

v-
y
try

ill
tw
on

a
ril
th
m

t
b
b
n
e
u

e-
c

nt
,
a
lu
d

m
efs.

rs

ed.

-
y
i-
s of

ed.

-
ry,
o-
lls.
by

ese

ates
as-

ould
. As
cess,

ur-

for
nal
ing

nd
of

to

c

m
gi-
ate

e of

ym-

FINITE TEMPERATURE QCD PHASE TRANSITION . . . PHYSICAL REVIEW D64 014503
four-momentum is anO(a2) effect which should vanish in
the continuum limit. In addition, for a givenm0 , there is a
critical four-momentum above which the fermions are
longer bound to the wall, but instead behave like mass
five-dimensional fermions. Of course, because these fe
ons are massive, they necessarily preserve the theory’s
dimensional chiral symmetry since their propagation
tween the s50 and s5Ls21 walls is exponentially
suppressed.

For interacting theories, a simple expectation is for E
~13! to be replaced by

meff5Zm@mf1ce2aLs#. ~14!

The exponential dependence is seen perturbativ
@15,54,55# and proven to exist nonperturbatively, provide
the gauge fields satisfy a smoothness condition@56,57#.
These analytic results support the expectation of expone
suppression of chiral symmetry breaking effects in the n
perturbative regime. However, this behavior may be best
tablished by the sort of explicit numerical study report
here. Generallya should depend onm0 , allowing one to
choose an optimal value for simulations at finiteLs . While
in the free theorym051 givese2a50, for the interacting
theory the variable character of fermion propagation in fl
tuating background gauge fields makes decoupling the w
with a single value form0 unlikely, except at very weak
coupling.

Close to the continuum limit, it can be argued that th
form for the effective quark mass, the input massmf plus a
residual massmres, should enter all long-distance obser
ables. Such long-distance physics should be described b
effective Lagrangian in which the leading chiral symme
breaking effects produced by finiteLs will be described by a
single dimension-3 mass term with coefficientmres. The
next-leading contribition from mixing between the walls w
come from a dimension-5 clover term, suppressed by
powers of the lattice spacing. However, away from the c
tinuum limit or for quantities that cannot be obtained from
low-energy effective QCD Lagrangian this is not necessa
the case. Therefore, different observables may approach
Ls→` limit in different ways, depending on the momentu
scales which enter the observable, and the corrections to
input quark mass, particularly at stronger couplings, may
more complicated. In a numerical investigation this has to
kept in mind. In this paper only the chiral condensate a
pion susceptibility are considered. Work on larger lattic
involving measurements of many fermionic operators is c
rently in progress@23#.

Numerical simulations may well be the only way to d
termine the dependence of chiral symmetry breaking effe
on Ls for intermediate lattice spacings~;1 to 3 GeV!. While
for full QCD, perturbative and nonperturbative argume
support exponential falloff withLs , for quenched theories
where the lack of damping from a fermionic determinant c
lead to configurations with unsuppressed small eigenva
for the fermions, the largeLs behavior is even more in nee
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of determination through simulations. Some results fro
quenched QCD simulations have been discussed in R
@20,30–41#.

B. m0 dependence

For free domain wall fermions the number of light flavo
is controlled by the value ofm0 @12#. In particularm0,0
corresponds to zero light flavors, 0,m0,2 to one, 2,m0
,4 to four, and 4,m0,6 to six light flavors. The theory is
symmetric underm0→102m0 .

For the interacting theory the values ofm0 which distin-
guish between different numbers of flavors are chang
Light fermions first appear form0.0, the one to four flavor
transition occurs form0.2, etc., and the theory is still sym
metric aboutm0→102m0 . This is expected perturbativel
and seen numerically@32,20,21#. There is also some numer
cal evidence that the transition between different number
flavors is smooth and spread out over a small region ofm0
@32#. For the interacting theory, keepingm0,2 guarantees
that a theory with not more than one flavor is being studi

While m0 is an irrelevant parameter forLs→`, it is very
important for simulations, not only in controlling the ap
proach to the chiral limit and the flavor content of the theo
but also for insuring that light fermions with an average m
mentum given by the temperature are still bound to the wa
For the free theory, the range of four-momenta carried
states that are bound to the walls increases asm0 increases
from zero, as do the corresponding Dirac eigenvalues. Asm0
approaches one, the largest Dirac eigenvalues of th
‘‘bound’’ states become farther off-shell, with values'1/a.
As m0 increases above 1, the number of these off-shell st
continues to grow but rather than their eigenvalues incre
ing, instead their degeneracy increases beyond what w
be seen for the large momentum states of a free theory
m0 increases further and approaches 2, some of these ex
degenerate states become more nearly on-shell until form0
.2 one has the low-lying Dirac eigenvalues of a free, fo
flavor theory. Thus, in the free case a choice ofm0 midway
between 0 and 2 is best, giving the largest phase space
physical states bound to the walls, without adding additio
flavors. Using this behavior as a guide for the interact
case, one expects that choosingm0 midway between the
value where a single light fermion is bound to the walls a
four light fermions are bound allows the largest range
four-momentum for a single flavor of light quark bound
the walls.

C. Topology

An important property of the domain wall fermion Dira
operator is the presence of exact zero modes in theLs5`
limit, as can be seen from the overlap formalis
@14,16,51,52#. These zero modes are related to the topolo
cal charge of the gauge field and as a result an approxim
form of the index theorem is present on the lattice@58#.
Studies on semiclassical configurations show the presenc
modes which are very close to zero modes even at finiteLs
@26# and as a result make lattice studies of anomalous s
metry breaking possible@19–21#.
3-5
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During simulations, field configurations of different wind
ing number should show zero mode effects in fermionic
servables. The efficiency with which the hybrid Monte Ca
can move the system between sectors of different windin
an important question, as are the long correlations along
fifth direction which develop for gauge field configuratio
where the topology is changing. These issues have b
studied in numerical simulations of the dynamical Schwin
model @25# where the hybrid Monte Carlo algorithm pe
formed well and topology changing occurred. For this e
ploratory study of full QCD thermodynamics, the inp
quark masses are not small, so the effects of topology sh
not be particularly large.

IV. THE FINITE TEMPERATURE QCD PHASE
TRANSITION

The previous sections have described the domain wall
mion formulation and important questions about it that ne
to be investigated numerically. Here we report on simu
tions of full QCD at finite temperature with domain wa
fermions on 8334 lattices. Studying this system allows us
investigate domain wall fermions for full QCD and look fo
the presence of chirally broken and symmetric phases.
small volume makes scanning over many values forLs , m0 ,
mf , andg0 possible, laying the foundation for more realist
simulations on larger volume.

Since the finite temperature transition of QCD is co
trolled by the chiral symmetries of the theory~for light
quarks!, using domain wall fermions to preserve the full gl
bal symmetries of the continuum should remove one syst
atic lattice error that is difficult to control. However, finit
temperature simulations are generally only possible on r
tively coarse lattices~a21;700 MeV for a lattice withNt
54!, where analytic results about domain wall fermions a
lacking. The light chiral modes of domain wall fermions
weak coupling must exist ata21;700 MeV, in the full
nonperturbative gauge field backgrounds, for thermodyna
simulations to be possible. If it is found that chiral mod
exist on coarse lattices, the size of themres(Ls ,b) and its
dependence onLs and b must be investigated.~As already
mentioned,mres is only a sensible quantity for low-energ
observables and it must be demonstrated that various d
minations of it are consistent. In this section we refer tomres,
without specifying precisely how it may be determined, a
generic indicator of the mixing between the chiral modes!

A. Locating the transition

Locating the phase transition in full QCD requires sca
ning values for four parameters~m0 , Ls , mf , andb!. With-
out any knowledge of the location of the transition, or if
even exists for domain wall fermions, choosing parame
for initial simulations is difficult. For staggered fermions, th
critical coupling for the finite temperature phase transit
for 2 flavors on anNt54 lattice isbc55.265 form50.01
and bc55.291 form50.025 @59#. Since staggered and do
main wall fermions both have their chiral limit at zero qua
mass, the light quarks have the largest effect in the loca
01450
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of bc and both theories have the same number of light
vors, we used the staggered values as a rough guide.

Our first simulations with domain wall fermions wer
done atb55.0 andb55.4, with the hope that these woul
be above and below the transition region.Ls58 and mf
50.1 were chosen to keep the computational difficulty mo
est. We worked withm051.65, since for quenched simula
tions this choice gave a reasonable falloff between the w
at b55.7 and for quenched QCD,b55.7 is close tobc for
an Nt54 lattice.

Although with this choice ofm0 , the b range being ex-
amined (5.0<b<5.4) lies below the chiral transition, w
describe this point first since it demonstrates our very fi
efforts in charting this parameter space and the difficult
we encountered. The evolution of^c̄c& for mf50.1 andb
55.0 is shown in the upper panel of Fig. 1 and the low
panel is forb55.4. The hybrid Monte Carlo algorithm wa
run with a step size ofdt50.025 and 20 steps per trajector
giving an acceptance of 66% forb55.0 and 70% forb

FIG. 2. Valence extrapolations of̂c̄c& for mf50.1, m0

51.65, andLs58. The circles are forb55.0, the squares forb
55.4.

FIG. 1. The simulation ‘‘time history’’ of̂ c̄c& for b55.0 ~up-
per graph! and b55.4 ~lower graph! for mf50.1, m051.65, and
Ls58.
3-6
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55.4. The evolution appears quite generic and the simula
presented no difficulty to the hybrid Monte Carlo algorithm
Forb55.0 the Wilson line expectation value was 0.0223~15!
and for b55.4 it was 0.0466~41!. Both these values ar
small and indicate that bothb values correspond to the con
fined phase.

The chiral condensatêc̄c& was also measured for a va
riety of valence masses. In quenched QCD at zero temp
ture, extrapolations of̂c̄c& to mf50 using quark masse
from mf50.02 tomf50.1 were used to see that chiral mod
existed for a particularm0 @32#. Recall that without sponta
neous chiral symmetry breaking, the exact chiral symme
of the domain-wall formulation for largeLs requires that

^c̄c& must vanish whenmf50. It is only the physical, dy-
namical symmetry breaking interactions of the light chi
modes that can produce a nonzero chiral condensate in
limit mf→0, providedLs is large enough that the residu
mixing is unimportant. Without light chiral modes this ca
not occur. @For the current finite temperature cas

FIG. 3. The simulation ‘‘time history’’ of̂ c̄c& for b55.0 ~up-
per graph! and b55.4 ~lower graph! for mf50.1, m051.90, and
Ls58.

FIG. 4. Valence extrapolations of^c̄c& for mf50.1, m051.90
and Ls58. The circles are results forb55.0, the squares are fo
b55.4.
01450
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^c̄c&(mf→0) can be zero either from the absence of chi
modes or because the system is in the symmetry-rest
phase.#

Figure 2 shows that̂c̄c& extrapolates to a nonzero valu
for bothb55.0 andb55.4 and this value is not very sens
tive to b. The values for the Wilson line indicate bothb

values are in the confined phase, so the^c̄c& results show
that light chiral modes are present with an unknown resid
mixing. The insensitivity tob is an interesting feature.

Next, instead of scanning larger values ofb, we decided
to changem0 from 1.65 to 1.9, keeping all other paramete
identical~see Fig. 3!. ~This reflects our initial search path i
parameter space and does not imply the absence of a tr
tion at m051.65 andLs58.! The acceptance is 59% forb
55.0 and 71% forb55.4. The Wilson line forb55.0 is
0.030~2!, while for b55.4 it is 0.202~5!, indicating thatb
55.4 is likely deconfined. The evolutions show a very d

FIG. 5. Full QCD extrapolations of̂c̄c& for m051.90 andLs

58. The circles are results forb55.0, the squares are forb55.4.
The dashed line is the fit to the quenched data given in Fig. 4 w

the solid line is a fit to the dynamical values for^c̄c&.

FIG. 6. Full QCD values for̂ c̄c& for m051.90, Ls58, and
mf50.1 for different values ofb.
3-7
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TABLE I. Data for 8334 lattice withb55.2, m051.9.

mf Ls Traj. len. No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

0.02 8
1

64
332 400–800 0.89 0.98~1! 0.456~2! 0.061~2! 0.0133~2!

10
1

64
332 200–2000 0.86 0.995~8! 0.4460~9! 0.048~2! 0.0124~1!

12
1

64
332 200–2000 0.84 1.01~1! 0.4428~6! 0.048~2! 0.01123~7!

16
1

64
332 550–2000 0.75 0.98~2! 0.4388~9! 0.049~2! 0.00987~9!

24
1

100
350 350–2000 0.73 0.95~2! 0.4359~7! 0.047~3! 0.0088~1!

32
1

100
350 300–2000 0.72 1.03~2! 0.4317~7! 0.045~2! 0.00835~7!

40
1

128
364 300–1350 0.73 1.02~3! 0.4342~6! 0.044~2! 0.00772~8!

0.06 8
1

50
325 200–950 0.83 0.98~1! 0.450~1! 0.046~3! 0.0176~2!

16
1

64
332 200–820 0.84 0.99~2! 0.4361~8! 0.045~3! 0.0135~1!

0.1 8
1

40
320 300–800 0.57 0.89~5! 0.4437~8! 0.040~3! 0.02109~7!

10
1

50
325 200–800 0.83 1.00~3! 0.4405~6! 0.036~2! 0.01927~9!

12
1

40
320 400–800 0.43 1.2~3! 0.437~1! 0.032~2! 0.01838~4!

16
1

64
332 200–800 0.80 0.98~2! 0.435~2! 0.035~2! 0.01709~9!

24
1

64
332 200–800 0.72 0.94~2! 0.433~1! 0.033~2! 0.01596~7!

32
1

100
350 200–800 0.82 0.99~2! 0.4305~5! 0.037~2! 0.01547~7!

40
1

100
350 200–800 0.78 1.00~5! 0.432~1! 0.035~2! 0.01524~5!

0.14 8
1

40
320 200–860 0.63 1.03~6! 0.4433~7! 0.033~5! 0.0241~1!

16
1

64
332 200–800 0.85 1.03~2! 0.433~1! 0.030~1! 0.02017~6!

0.18 8
1

40
320 200–1200 0.70 1.02~3! 0.4410~7! 0.030~1! 0.02686~7!

16
1

64
332 200–800 0.84 0.98~2! 0.432~1! 0.033~1! 0.02309~5!
i
h
e

ith

he
i-
all
es.
ferent behavior for the condensate evaluated at the dynam
quark mass. The value atb55.0 has increased, part of whic
likely reflects the change withm0 in the overlap between th
five-dimensional light modes and the surfaces ats50 and
Ls21. Theb55.4 values are much smaller, consistent w
01450
calthe deconfined phase.
Figure 4 shows the valence quark extrapolation. T

small value of̂ c̄c&(mf→0) suggests the restoration of ch
ral symmetry. Of course, there is a possibility that this sm
value might instead be caused by the loss of chiral mod
3-8
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TABLE II. Data for an 8334 lattice withb55.45,m051.9.

mf Ls Traj. len. No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

0.02 8
1

64
332 200–800 0.91 1.005~7! 0.5376~7! 0.226~4! 0.00415~6!

10
1

64
332 200–1000 0.91 0.992~8! 0.5328~6! 0.207~4! 0.00319~5!

12
1

64
332 200–800 0.95 1.009~9! 0.5300~4! 0.202~5! 0.00270~3!

16
1

64
332 200–800 0.90 1.02~1! 0.5266~8! 0.199~4! 0.00237~6!

24
1

64
332 400–1200 0.86 0.98~2! 0.5257~7! 0.187~3! 0.00216~6!

32
1

100
350 400–800 0.94 1.00~2! 0.524~2! 0.180~5! 0.00209~5!

0.06 8
1

50
325 200–1000 0.86 0.99~3! 0.536~1! 0.217~3! 0.0080~1!

10
1

64
332 200–1000 0.92 0.994~7! 0.5313~6! 0.203~4! 0.00704~5!

12
1

64
332 200–1000 0.89 1.013~8! 0.5286~8! 0.195~4! 0.00666~5!

16
1

64
332 400–800 0.76 1.02~4! 0.525~2! 0.192~4! 0.00637~7!

24
1

64
332 300–1000 0.84 1.00~1! 0.521~2! 0.174~6! 0.00617~9!

32
1

64
332 500–1000 0.80 1.00~2! 0.525~2! 0.189~3! 0.00592~4!

0.1 8
1

50
325 300–800 0.83 0.98~2! 0.5336~6! 0.211~4! 0.01174~4!

10
1

50
325 300–990 0.88 0.99~1! 0.5310~9! 0.200~2! 0.01075~5!

12
1

50
325 600–1200 0.74 1.01~4! 0.528~1! 0.197~4! 0.01838~4!

16
1

64
332 400–800 0.79 1.01~3! 0.523~1! 0.170~5! 0.0103~1!

24
1

64
332 400–2000 0.86 0.991~8! 0.512~1! 0.170~8! 0.0102~1!

32
1

64
332 300–1000 0.81 0.98~2! 0.519~1! 0.159~5! 0.01011~9!

0.14 8
1

50
325 200–800 0.83 1.01~1! 0.533~1! 0.210~3! 0.01531~9!

16
1

64
332 600–1200 0.76 0.98~2! 0.520~1! 0.159~9! 0.0143~1!

0.18 8
1

50
325 400–800 0.81 1.03~2! 0.5314~6! 0.202~4! 0.01884~5!

16
1

64
332 600–1200 0.78 0.94~2! 0.515~1! 0.141~8! 0.0182~2!
014503-9
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However, this is unlikely because we have seen that ch
modes do exist forb55.0 and one expects that at the weak
b55.4 coupling these chiral modes should be even m
numerous. Therefore, we have preliminary evidence for
phases of full QCD with dynamical domain wall fermions

To solidify the evidence for two different phases of QC
with domain wall fermions further simulations forLs58 and
m051.9 were done with dynamical quark masses of 0.14
0.18. These points are shown in Fig. 5. The dashed line is
fit to the quenched extrapolation shown in Fig. 4. There
not a large difference between the two extrapolations,
though both full QCD extrapolations fall below the quench
extrapolations, indicating some suppression of small eig
values through the presence of the fermion determinant
the next section, we study the dynamical mass extrapola
of ^c̄c& for larger values ofLs to see if the nonzero value fo

^c̄c&(mf→0) decreases with increasingLs .
Additional simulations with mf50.1, Ls58, and m0

51.9 were done forb55.2, 5.3, and 5.45, which produce
the data for^c̄c& and the Wilson line shown in Fig. 6
Crossover behavior is seen for both observables further

FIG. 7. The simulation ‘‘time history’’ of̂ c̄c& for b55.2 ~up-
per graph! andb55.45 ~lower graph! for mf50.02,m051.9, and
Ls516. The initial configuration was chosen in the opposite pha
i.e., ordered forb55.2 and disordered forb55.45.

FIG. 8. Full QCD values for̂ c̄c& for m051.90 andb55.2
versusmf . The circles are forLs58 and the squares for 16.
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porting the identification of both a chirally broken and
chirally restored phase. These simulations are at a sm
value ofLs , so the contribution ofmres to the effective quark
mass may be large. Sincemres(b,Ls) is likely varying across
the transition region, due to the change inb, the shape of the
curves is expected to reflect this varying effective qua
mass.

B. L s dependence in the two phases

With this evidence for two phases, we turned to explori
theLs dependence in each phase. For the confined phase
choseb55.2 to be at weaker coupling while still in thi
phase and in the deconfined phase we choseb55.45, to be
farther from the transition. Keepingm051.90, simulations
were done for many values ofLs and the dynamical quark
mass,mf . Table I gives the parameters forb55.2 and Table

e,

FIG. 9. Full QCD values for̂ c̄c& for m051.90 andb55.2
plotted versusLs for different values ofmf . The curves are fits of
the formc01c1 exp(2aLs).

FIG. 10. Full QCD values for̂ c̄c& for m051.90 and b
55.45 versusmf . The circles are forLs58, the squares for 16.
3-10
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II gives them forb55.45. A plot of the evolution of̂ c̄c&
for b55.20 and 5.45 is shown in Fig. 7 formf50.02 and
Ls516. With a step size ofdt51/64 the acceptance wa
90%. Once again there is no evidence for difficulty in t
hybrid Monte Carlo evolution of this system.

Figure 8 shows results for^c̄c& at b55.2 plotted versus
mf for Ls58 and 16. The dashed lines are linear fits to
lowest three values formf while the solid lines are quadrati
fits to all values ofmf . The fits forLs58 are

^c̄c&50.0117~2!10.095~2!mf , ~15!

^c̄c&50.0112~3!10.114~5!mf20.15~2!mf
2, ~16!

with NDF51 and 2 andx2/NDF53.7 and 0.4, respectively
The fits forLs516 are

^c̄c&50.0082~1!10.089~2!mf , ~17!

^c̄c&50.0080~2!10.0993~3!mf20.08~1!mf
2, ~18!

with NDF51 and 2 andx2/NDF50.03 and 0.5, respectively
The results shows a strongLs dependence to which we now
turn.

FIG. 11. Full QCD values for̂ c̄c& for m051.90 and b
55.45 plotted versusLs for different values ofmf . The curves are
fits of the formc01c1 exp(2aLs).
01450
e

Figure 9 showŝ c̄c& for b55.2 plotted versusLs for a
variety of values ofmf . The curves are fits to the formc0
1c1 exp(2aLs) for Ls58 to 40. The fit parameters are

^c̄c&50.01527~4!10.0188~8!exp†20.149~5!Ls‡,

mf50.1, ~19!

^c̄c&50.00779~8!10.014~1!exp†20.116~8!Ls‡,

mf50.02, ~20!

^c̄c&50.0059~1!10.014~1!exp†20.11~1!Ls‡,

mf→0.0. ~21!

All fits have NDF54 and givex2/NDF55.1, 5.6, and 6.6,
respectively. Themf→0 points are first found by extrapola
ing to mf50 at fixedLs and then fitting these values versu
Ls . Although the values forx2 are somewhat large, the da
is well fit by a function with exponential dependence onLs .
~Note these somewhat largex2 values can be caused by un
derestimates of the errors which may result if our Mon
Carlo evolutions are not sufficiently long to allow prop
control the long-time autocorrelations.!

Similar results have been obtained forb55.45. Figure 10
shows the results for̂c̄c& for b55.45 for Ls58 and 16.
(Ls524 and 32 results are tabulated below.! Again, the
dashed lines are linear fits to the lowest three values formf
while the solid lines are quadratic fits to all values ofmf .
The fits forLs58 are

^c̄c&50.00227~7!10.095~1!mf , ~22!

^c̄c&50.00219~9!10.099~2!mf20.037~9!mf
2, ~23!

with NDF51 and 2 andx2/NDF50.6 and 0.1, respectively
The fits forLs516 are

^c̄c&50.00039~8!10.100~2!mf , ~24!

~ c̄c!50.00040~6!10.100~3!mf20.01~2!mf
2, ~25!

with NDF51 and 2 andx2/NDF50.09 and 0.02, respectively
Linear fits for the larger values ofLs give
TABLE III. Data for an 8334 lattice withm051.15,Ls512, andmf50.1. HMC traj. len: 1
50325,CG

stop cond: 1026.

b Start No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

5.45 O 100–800 0.87 0.99~1! 0.470~1! 0.0168~6! 0.00276~1!

5.55 O 200–800 0.87 0.98~1! 0.4933~6! 0.023~1! 0.002916~6!

5.65 O 300–800 0.87 1.00~2! 0.5218~9! 0.054~6! 0.00305~2!

5.75 D 300–800 0.86 0.986~9! 0.5571~7! 0.196~7! 0.002875~7!

5.85 D 300–800 0.85 1.00~1! 0.5719~7! 0.234~3! 0.002881~3!

5.95 D 200–800 0.87 0.99~1! 0.5857~5! 0.262~2! 0.002898~3!
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TABLE IV. Data for an 8334 lattice withm051.4,Ls512, andmf50.1. HMC traj. len: 1
50325,CG stop

cond: 1026.

b Start No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

5.35 O 100–800 0.87 1.01~1! 0.4435~7! 0.0189~8! 0.00497~1!

5.45 O 100–800 0.86 0.99~1! 0.4630~7! 0.0215~8! 0.00522~1!

5.55 O 300–800 0.86 1.00~1! 0.487~1! 0.032~3! 0.00539~3!

5.65 D 400–800 0.86 1.00~2! 0.540~2! 0.180~6! 0.00457~4!

5.75 D 300–800 0.85 0.99~1! 0.5598~8! 0.224~3! 0.00445~1!

5.85 D 200–800 0.89 1.011~8! 0.5744~3! 0.254~3! 0.004409~5!

TABLE V. Data for an 8334 lattice with m051.65, Ls512, andmf50.1. HMC traj. len: 1
50325,CG

stop cond: 1026.

b Start No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

5.25 O 200–800 0.82 0.97~2! 0.4289~5! 0.027~2! 0.01000~2!

5.35 O 400–800 0.68 0.98~4! 0.451~3! 0.035~4! 0.01000~9!

5.45 D 400–800 0.74 1.09~5! 0.4769~8! 0.049~7! 0.00985~7!

5.55 D 600–1200 0.80 1.00~3! 0.531~1! 0.175~7! 0.00718~7!

5.65 D 400–800 0.79 0.96~2! 0.5507~9! 0.216~4! 0.00677~2!

5.75 D 200–800 0.88 0.989~7! 0.5663~4! 0.243~3! 0.00658~1!

TABLE VI. Data for an 8334 lattice withm051.8,Ls512, andmf50.1. HMC traj. len: 1
50325,CG stop

cond: 1026.

b Start No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

5.15 O 200–800 0.83 1.02~2! 0.4191~8! 0.029~1! 0.01485~5!

5.25 O 400–800 0.66 0.97~5! 0.4381~6! 0.038~2! 0.01458~5!

5.35 O 400–800 0.63 0.97~5! 0.471~2! 0.052~3! 0.0134~2!

5.45 O 400–800 0.76 1.01~3! 0.515~2! 0.161~4! 0.0097~1!

5.55 D 400–800 0.79 1.05~5! 0.540~1! 0.200~9! 0.0088~1!

5.65 D 200–800 0.89 1.01~2! 0.5570~5! 0.242~4! 0.00828~2!

TABLE VII. Data for an 8334 lattice withm051.9, Ls512, andmf50.1. CG stop cond: 1026.

b Start Traj. len. No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

5.0 O
1

40
320 200–800 0.37 0.8~1! 0.4002~8! 0.032~2! 0.01919~5!

5.2 O
1

40
320 400–800 0.43 1.2~3! 0.437~1! 0.032~2! 0.01838~4!

5.25 O
1

50
325 400–800 0.65 1.10~9! 0.452~1! 0.049~6! 0.0174~2!

5.35 D
1

50
325 600–1200 0.69 0.95~5! 0.493~2! 0.107~9! 0.0135~4!

5.45 D
1

50
325 600–1200 0.74 1.01~4! 0.528~1! 0.197~4! 0.01039~7!

5.55 D
1

50
325 400–830 0.82 1.00~1! 0.5463~5! 0.227~6! 0.00974~4!

5.65 D
1

50
325 400–800 0.88 1.03~1! 0.5613~8! 0.248~5! 0.00943~4!
014503-12
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TABLE VIII. Data for an 8334 lattice withm052.0, Ls512, andmf50.1. HMC traj. len: 1
50325,CG

stop cond: 1026.

b Start No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

5.05 O 200–800 0.77 0.99~3! 0.4192~8! 0.035~1! 0.02324~8!

5.15 O 200–800 0.75 0.98~3! 0.442~1! 0.042~3! 0.0215~2!

5.25 O 200–1200 0.79 1.03~1! 0.474~1! 0.080~7! 0.0181~3!

5.35 D 200–800 0.83 1.00~2! 0.5130~7! 0.173~6! 0.0130~2!

5.45 D 200–800 0.87 1.02~2! 0.5349~5! 0.203~3! 0.01157~4!

5.55 D 200–800 0.85 1.01~1! 0.5503~4! 0.235~3! 0.01099~2!
-
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^c̄c&50.00016~8!10.100~2!mf Ls524, ~26!

^c̄c&50.00006~6!10.099~1!mf Ls532, ~27!

with NDF51 for bothLs andx2/NDF50.01 and 7.1, respec
tively. We see that with increasingLs , the extrapolated
value for the condensate atmf50 decreases steadily.

Figure 11 showŝc̄c& for b55.45 plotted versusLs for a
variety of values ofmf . The curves are fits to the formc0
1c1 exp(2aLs) for Ls58 to 32. The fit parameters are

^c̄c&50.0102~1!10.08~3!exp@20.48~6!Ls#, mf50.1,
~28!

^c̄c&50.00599~4!10.015~3!exp@20.26~2!Ls#,

mf50.06, ~29!

^c̄c&50.00213~4!10.025~4!exp@20.31~2!Ls#,

mf50.02, ~30!

^c̄c&50.00010~5!10.019~3!exp@20.27~2!Ls#,

mf→0.0. ~31!

All fits haveNDF53 and givex2/NDF50.4, 4.8, 1.1 and 0.8
respectively. Here again the data strongly support expon
tial suppression of mixing between the walls for^c̄c&.

For both the confined and deconfined cases, we see^c̄c&
exponentially approaching a limiting value for largeLs
~which is zero in the deconfined case!. At the stronger cou-
01450
n-

pling of the confined phase, the decay constant is; 1
10, while

in the deconfined phase it is;1
4. One expects faster decay

weak coupling, but at present we do not know whether
different phases also play a role in the decay constant.

C. Studying the m0 dependence of the transition

The parameterm0 is relevant at finite lattice spacing
since it controls not only when there is a single light fermi
bound to the domain walls but also the maximum moment
this fermion can have while still being bound. It is expect
that this parameter will not have to be fine-tuned for dom
wall fermions to work correctly, but care in choosing a val
is necessary to get the correct number of light species and
maximum allowable phase space for light fermions in t
thermal ensemble.

We have studied the characteristics of the transition
gion by choosingmf50.1,Ls512 and simulating for values
of b near the phase transition form051.15, 1.4, 1.65, 1.8,
1.9, 2.0, 2.15, and 2.4. Tables III–X contain simulation p
rameters and results. For parameters where a decon
thermal state was expected, the initial lattice was disorde
while an initial ordered lattice was used where a confin
state was expected.

Figure 12 shows the expectation value of the magnitu
of the Wilson line^uWu& for these runs. A rapid crossover
seen for all values ofm0 . The lines are the result of fitting
the four points nearest the transition~five points where we
have a point close to the transition! to the function

f ~x!5c0$c11tanh@c2~x2bc!#%. ~32!

This is a phenomenologically useful form for determinin
the point of maximum slope for the Wilson line. The poin
TABLE IX. Data for an 8334 lattice withm052.15,Ls512, andmf50.1. HMC traj. len: 1
50325,CG

stop cond: 1026.

b Start No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

4.85 O 200–800 0.69 0.95~3! 0.4004~8! 0.034~2! 0.0323~2!

4.95 O 200–800 0.72 0.97~3! 0.419~2! 0.040~2! 0.0302~3!

5.05 O 200–800 0.48 0.92~4! 0.443~2! 0.052~3! 0.0272~5!

5.15 O 200–1200 0.62 1.01~3! 0.480~3! 0.12~1! 0.0203~7!

5.25 O 400–800 0.70 0.97~5! 0.5105~4! 0.185~2! 0.01559~8!

5.35 D 400–800 0.69 1.01~4! 0.529~1! 0.216~6! 0.0141~1!

5.45 D 400–800 0.71 1.00~3! 0.5453~7! 0.230~4! 0.01330~5!
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TABLE X. Data for an 8334 lattice withm052.4,Ls512, andmf50.1. HMC traj. len: 1
50325,CG stop

cond: 1026.

b Start No. traj. Acc. ^e2DH& ^Plaq.& ^uWu& ^c̄c&

4.65 O 100–800 0.63 1.02~5! 0.3953~6! 0.046~3! 0.0484~3!

4.75 O 200–800 0.68 0.99~5! 0.4156~9! 0.054~3! 0.0442~3!

4.85 O 300–800 0.70 0.94~4! 0.439~2! 0.069~5! 0.0380~6!

4.95 O 200–800 0.77 1.02~4! 0.4779~6! 0.155~4! 0.0257~2!

5.05 D 200–800 0.80 1.01~2! 0.4987~9! 0.190~2! 0.0220~2!

5.15 D 200–800 0.84 1.01~3! 0.5170~5! 0.221~3! 0.01962~7!
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far from the transition are not included in these fits, since t
phenomenological function poorly represents the data th

Figure 13 shows similar results for^c̄c& with the lines
being a fit to Eq.~32!. For m051.15 and 1.4 thêc̄c& data
do not allow even a rough determination ofbc . For small
enoughm0 , the light chiral modes should not exist and w
have evidence for that atm051.15. The value for̂ c̄c& is
very small and shows little change even when the Wils
line shows evidence for the transition. In addition, the W
son lines indicate the transition is very close to the value
5.6925 for quenched QCD on a 24334 lattice @60# support-
ing the conclusion that light fermion modes are not pres
in the simulations. The effects of the heavy modes are
parently quite well canceled by the Pauli-Villars fields.

Figure 14 gives estimates forbc determined from the
Wilson line and^c̄c&. These are in quite reasonable agre
ment, particularly given the phenomenological character
their determination. Form0;1.2, bc is close to the
quenched value and moves smoothly to smaller values am0
is increased. For these larger values form0 , the light quark
states appear and the maximum momentum for a state b
to the walls should increase. These light states make^c̄c&
show crossover behavior and are required for our simulat
to be proper studies of two-flavor QCD. At our largest val
of m0 , ~2.4!, we may be approaching the transition from
two flavor theory to an eight flavor one~recall that the do-
main wall determinant is squared in our simulations, do
bling the number of fermion flavors!.

V. DETERMINING THE RESIDUAL MASS

As mentioned in Sec. III, it can be expected that for lon
distance physical quantities, the effects of mixing betwe
the chiral wall states will result in a residual mass contrib
tion to the total quark mass. This is just the statement that
dominant effect of the mixing, from the perspective of
low-energy effective Lagrangian, is to introduce anoth
source for chiral symmetry breaking~beyond the inputmf!,
which takes the form of the operatormresc̄c at low energies.
For a quantity such asmp

2 , whose dependence on chiral sym
metry breaking can be expressed as a physical param
times the total quark mass, the quark mass which en
should bemf1mres.

However, for quantities whose sensitivity to chiral sym
metry breaking effects extends up to the cutoff scale, suc
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argument does not go through. The chiral condensate,^c̄c&
is such a quantity. For domain wall fermions withLs→` ~or
staggered fermions!, expanding in the input quark mass
the chirally broken phase gives

^c̄c&5c01c1mf1O~mf
2!. ~33!

The coefficientc1 is ultraviolet divergent in the continuum
and therefore, on the lattice, gets large contributions fr
modes at the cutoff scale. For such an operator, theLs de-
pendence is not reliably represented by just making the
placementmf→mf1mres.

From this discussion, it is clear that although Fig. 9 sho
that the largeLs limit for ^c̄c& at mf50.02 has likely been
reached byLs;40, one cannot conclude that the value f
mres has vanished. To measuremres, it is natural to look for
effects in the pion mass, which is in turn governed by t
axial Ward-Takahashi identity. This has been done
quenched simulations Refs.@31–33,36–38,40,41,20# at zero
temperature, but here we are interested in determiningmres in
the confined phase at finite temperature for small volum
for Nf52 QCD.

Our small volumes preclude taking large separations
two-point functions to completely isolate the pion from oth
states. Thus a direct measurement of the pion mass or

FIG. 12. Full QCD results for the Wilson line formf50.1 and
Ls512 for different values ofm0 andb near the transition region
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overlap of the pion with any particular source is not possi
here. Instead, we use the integrated form for the flavor n
singlet axial Ward-Takahashi identity and try to see the c
tributions of the pion. In the zero quark mass limit on infin
volumes, the pion contributions become poles. Thus we
look for the effects of these precursors of the pion pol
even when they do not completely dominate the Wa
Takahashi identity.

Starting from the flavor nonsinglet axial Ward-Takaha
identity in Ref. @18# and summing over all lattice point
gives

^c̄c&5mfxp1DJ5 . ~34!

Herec is the four-dimensional fermion field defined by E
~10! and the pseudoscalar susceptibility is~no sum ona!

xp[
2

4Nc
(

x
K c̄~x!g5

la

2
c~x!c̄~0!g5

la

2
c~0!L .

~35!

~The factor of1
4 Nc is needed to match our normalization f

^c̄c&.! The additional contribution from chiral mixing due t
finite Ls is

DJ5[
2

4Nc
(

x
K j 5

a~x,Lx/2!c̄~0!g5

la

2
c~0!L , ~36!

where

FIG. 13. Full QCD results for̂c̄c& for mf50.1 andLs512 for
different values ofm0 andb near the transition region. Note that th
vertical scale decreases by a factor of five asm0 decreases from 2.4
to 1.15. This is needed to follow the large decrease in the sca

^c̄c& which results from a combination of the decreasing latt
spacing that follows from increasingb and the diminishing overlap
of the light fermion states with the walls.
01450
e
n-
-

n
,
-

i

j 5
a~x,Ls/2!52

1

4
C̄~x,Ls/221!~12g5!laC~x,Ls/2!

1
1

4
C̄~x,Ls/2!~11g5!laC~x,Ls/221!

~37!

is a pseudoscalar density at the midpoint of the fifth dim
sion which couples left- and right-handed degrees of fr
dom.

We have done extensive simulations for many values
Ls with b55.2, m051.9, andmf50.02 to study the conse
quences of the Ward-Takahashi identity. At the time of the
simulations, we were not measuringDJ5 explicitly. How-
ever, the other two terms in the Ward-Takahashi iden
were measured, allowing a determination of theDJ5 term.

of

FIG. 14. The critical value ofb as a function ofm0 . The line is
the value for a 24334 lattice.

FIG. 15. The chiral condensatêc̄c&, the pion susceptibility
xp , andDJ5 versusLs for b55.2, m051.9, andmf50.02.
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Figure 15 showŝc̄c&, xp andDJ5 for a variety of values of
Ls . Fitting DJ5 to an exponential form forLs516 to 40
gives the solid line in the figure and the result

DJ550.0096~2!exp@20.0191~9!Ls#x
2/NDF56.4/2.

~38!

We see that our data are consistent withDJ5 vanishing as
Ls→`, although the decay constant is quite small,'1/50.

Pion poles should dominate the Ward-Takahashi iden
when the pions are light and the pions should become m
less whenmf1mres50. ~This is only strictly true in the in-
finite volume limit.! Thus we look for the pseudoscalar su
ceptibility in large volumes for small total quark mass
behave as

xp5a21 /~mf1mres!1a01O~mf1mres!, ~39!

where theai are independent ofLs andmf . This gives a pion
pole ~for large volumes! at mf52mres, while a0 gives the
contribution to the susceptibility of modes whose mass
nonzero when the quark mass vanishes. Like^c̄c&, a0 re-
ceives contributions diverging as 1/a2 and hence may be
sensitive to unphysical five-dimensional modes. For this
pression to be useful, we do not require the pole term
dominate the remaining terms, but it must make a la
enough contribution to be visible.

The DJ5 term in Eq. ~34! also has a pole contributio
coming from the propagation of the conventional light pse
doscalar along thes50 andLs21 boundaries from 0 tox.
This light state has nonzero overlap with the midpoint ps
doscalar density for finiteLs , but this overlap should be
exponentially suppressed. Therefore we expectDJ5 to also
have a pole atmf52mres, giving DJ5 the same form asxp :
namely,

DJ55b218 /~mf1mes!1b081O~mf1mres!. ~40!

Considering the case where the pole terms dominate g

^c̄c&5
a21mf1b218

mf1mres
. ~41!

For ^c̄c& to be finite in this case requires

a21mf1b218 5a21~mf1mres! ~42!

so the most general form forDJ5 is

DJ55mresxp1b01O~mf1mres!, ~43!

whereb05b082mresa0 . Using this then gives

^c̄c&5~mf1mres!xp1b0 ~44!

up to terms linear in the quark mass.
Our procedure for extractingmres from these small vol-

umes involves measuring values forxp and ^c̄c& for a va-
riety of valence quark masses for a simulation with a fix
dynamical quark mass. Since the Ward-Takahashi identit
a consequence of the form of the domain wall fermion o
erator, independent of the weight used to generate the g
field ensemble in which the fermionic observables are m
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sured, it is satisfied by observables measured with vale
masses. Of course, extrapolations in valence quark mass
lead to problems due to the gauge field ensemble includ
configurations with small fermion eigenvalues that are
present when a dynamical extrapolation is done. Here
have a small dynamical quark mass present in the genera
of the gauge fields, so such effects are expected to be u
portant.

For a givenLs , we simultaneously fitxp and^c̄c& to the
forms in Eqs.~39! and~44!. These are four parameter fits fo
a0 , a21 , b0 , and mres and the resulting value formres we
refer to asmres

~GMOR! . ~All measurements of the residual ma
from low-energy physics should agree. We use this nota
to detail the explicit technique we have used for this det
mination.! We have used quark masses of 0.02, 0.06, 0
and 0.14 in our fits. These fits do not include possible co
lations between the quantities computed for different val
of mf because the correlation matrix itself is poorly dete
mined.

The results are given in Table XI, where the errors a
all from application of the jack knife method. Notice th
b0 is negative for all values ofLs , meaning that the non
pole contributions toDJ5 are smaller thanmresa0 . We
have then fit these values ofmres

~GMOR! and 2b0 to the form
c01c1 exp(2aLs) and found

2b050.0104~4!exp@20.016~2!Ls#x
2/NDF50.34~19!,

~45!

mres
~GMOR!50.185~6!exp@20.0280~15!Ls#x

2/NDF

50.28~25!. ~46!

~47!

Figure 16 shows these values and the fits.
We can see that bothmres

(GMOR) and b0 are falling expo-
nentially, but with a very small decay constant' 1

50. This is
in sharp contrast to the decay constant for^c̄c& which is
' 1

10. This is further evidence for the distinction between t
residual mass that enters in low-energy observables and
residual mixing which effects observables dependent on
grees of freedom at the cutoff scale.

Since our determination of the residual mass has b
done for small volumes, one can worry about the finite v
ume effects. We have done a similar extraction of the
sidual mass and compared it with determinations of the

TABLE XI. Values for mres
~GMOR! and2b0 versusLs from fits to

valence quark data with the dynamical quark mass fixed atmf

50.02.

Ls mres 2b0 x2/NDF

10 0.149~5! 0.0094~5! 0.8~4!

12 0.129~2! 0.0080~2! 1.6~4!

16 0.113~3! 0.0080~4! 1.1~5!

24 0.095~2! 0.0075~3! 1.5~7!

32 0.078~2! 0.0068~5! 0.7~4!

40 0.059~3! 0.0048~3! 1.7~9!
3-16
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sidual mass from extrapolations ofmp
2 for much larger

volumes and find reasonable agreement@36#. We have deter-
minedmres for m051.9 and the lower limit on ourb range,
b55.2. However, we expect this residual chiral symme
breaking effect will be smaller for larger values ofb. At
weaker coupling the gauge fields are more uniform and
small dislocations that are expected to increase the mix
between the walls are increasingly suppressed. This decr
in residual chiral symmetry breaking should be even m
pronounced asb increases abovebc since in the plasma
phase the gauge field becomes even more uniform. We
continuing to study various determinations of the resid
mass.

VI. CONCLUSIONS

In this work the properties of domain wall fermions re
evant to numerical simulations of fullNf52 QCD at finite
temperature were investigated on relatively small lattices
size 8334. Conventional numerical algorithms~the hybrid
Monte Carlo and the conjugate gradient algorithms! worked
without any difficulty beyond the additional computation
load of the fifth dimension. Evidence for both confined a
deconfined phases was found and theLs andm0 dependence
of each phase was investigated.

The domain wall fermion action is expected to prese
the full chiral symmetries of QCD for largeLs . For the
stronger couplings used for the confined phase simulati
the chiral condensate approached its asymptotic value
Ls'32240. However, our determination of the residu
mass effects present in low energy observables show a
sidual mass of'0.06 for Ls540. For the weaker coupling
needed to study the deconfined, chirally restored phase
residual mass effects are expected to be much smaller fo
sameLs , although we have not yet measured the resid
mass in this region.

FIG. 16. mres
~GMOR! and2b0 versusLs . The curves are fits to the

form c01c1 exp(2aLs).
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For the two flavor theory it was found that there is a pha
where the SU~2!3SU~2! chiral symmetry is broken sponta
neously to a full SU~2! flavor symmetry and a phase whe
the full SU~2!3SU~2! chiral symmetry is intact. For the val
ues of Ls we used, the dependence of observables on
coupling in the transition region is likely quite influenced b
the change in the residual mass with the coupling. In parti
lar, increasingb throughbc has two effects. The first is the
intended increase in temperature while the second, discu
above, is a decrease in the total quark massmeff5mf1mres.
Since bc decreases with decreasing quark mass, b
changes tend to push the system into the chirally symme
phase suggesting that this added dependence of quark
on b will make the resultingb dependence of the transitio
sharper than it would appear if our simulations were carr
out at fixed total quark mass. To suppress this effect w
require larger values forLs , thermodynamics studies a
largerNt ~and hence weaker coupling! or improved variants
of domain wall fermions.

Our simulations show that domain wall fermions ha
passed one vital test for numerical work, light chiral mod
exist at quite strong coupling. A second important res
which was expected from work with dynamical fermions
the Schwinger model@25#, is that domain wall fermions do
not present any problems to conventional dynamical ferm
numerical algorithms. Given these results, we are pursu
simulations of the phase transition on larger lattices
achieve more physically meaningful results. The slow fall
of the residual mass withLs can be overcome with more
computing power or, hopefully, improvements to the form
lation. At present, this is all that stands in the way of sim
lating theNf52 QCD phase transition with three degenera
light pions at finite lattice spacing.
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APPENDIX A: GAMMA MATRICES

The Dirac gamma matrices used in this work are

g15S 0 0 0 i

0 0 i 0

0 2 i 0 0

2 i 0 0 0

D , g25S 0 0 0 21

0 0 1 0

0 1 0 0

21 0 0 0

D ,

~A1!

g35S 0 0 i 0

0 0 0 2 i

2 i 0 0 0

0 i 0 0

D , g45S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D ,
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g55S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D .

APPENDIX B: EVOLUTION ALGORITHM

As described in Sec. II, we use the hybrid Monte CarloF
algorithm of Gottlieb et al. @50# extended to include the
Pauli-Villars regulator fields. Further, we use a precon
tioned variant of the Dirac operator specified in Eq.~5! @53#.
In this appendix we describe the resulting algorithm we
to evolve the gauge fields including the effects of the t
flavors of domain wall quarks and the Pauli-Villars regula
fields.

Following this approach, we generate a Markov chain
gauge fieldsUm(x), pseudofermion fieldsFF , Pauli-Villars
fields FPV, and conjugate momentaHm(x) according to the
distribution

Z5E @dU#@dH#@dFF
† #@dFF#@dFPV

† #@dFPV#e2H,

~B1!

where

H5SC1
1

2 (
x,m

Hm~x!21FF
†@D̃F

†D̃F#21FF

1FPV
† @D̃F

†D̃F#mf51FPV. ~B2!

Here, the fieldsFF and FPV as well as the preconditione
operatorD̃F are defined only on odd sites with

D̃F5~52m0!22~DF!oe~DF!eo , ~B3!

where (DF)oe and (DF)eo represent the DWF operator of Eq
~5! evaluated between odd and even or even and odd s
respectively. Note, even and odd are defined in a fi
dimensional sense, e.g., for an even site the sum of all
coordinates is an even number. Equation~B3! employs the
usual preconditioning scheme for Wilson fermions@53#
implemented in 5 dimensions. Similar considerations jus
the form used for the Pauli-Villars action. Since detD̃F
5det$(52m0)DF%, we have rescaled both the fieldsFF and
FPV to introduce the extra factor of (52m0) into Eq.~B3! in
order to simplify the subsequent algebra.

To begin a new HMC trajectory, we start with the valu
of the gauge fieldsUm(x) produced by the previous trajec
tory. We then choose Gaussian distributed fieldsh(x,s)F ,
h(x,s)PV , and Hm(x) from which we construct the field
FF5D̃FhF andFPV5(D̃F

21umf 51
)hPV. Here we have intro-

duced new field variablesHm(x), conjugate to the link ma-
trices, which are elements of the algebra of SU~3!, and hence
traceless and Hermitian.

Next, we carry out the molecular dynamics time evoluti
of the fieldsHm(x) and Um(x) according to equations o
01450
-
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es,
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y

motion which are phase space volume preserving and c
serve the fictitious six-dimensional ‘‘energy’’H of Eq. ~B2!.
The first of these Hamilton-like equations determines the
lation betweenUm(x) and the conjugate variableHm(x):

dUm~x!

dt
5 iH m~x!Um~x!. ~B4!

The second equation can be derived from the requirem
that H is t independent. First, following Gottliebet al. @50#
one writes

dH
dt

5(
x,m

trF iH m~x!Fm~x!1
dHm~x!

dt
Hm~x!G . ~B5!

Then the constancy ofH is insured if for the second equatio
of motion we impose

i
dHm~x!

dt
5@Fm~x!#TA . ~B6!

The subscriptTA indicates the traceless anti-Hermitian pa
of the matrix, a restriction required by the traceless, Herm
ian character of the variablesHm(x). @The definition of
Fm(x) implied by Eq.~B5! makesF anti-Hermitian and it is
only the traceless part ofF that enters that equation.#

Finally we will determine the specific form for the forc
term Fm(x). This can be done by using the general formu

d

dt
^c8uDF

~†!uc&5
i

2 (
x,s

$c8~x,s!†Hm~x!Um~x!~17gm!

3c~x1m,s!2c8~x1m,s!†Um~x!†

3Hm~x!~16gm!c~x,s!%, ~B7!

which follows immediately from Eqs.~6! and~B5! where the
lower choice of signs corresponds to the case ofDF

† . Now
we reexpress the derivative:

d

dt
FF

†@D̃F
†D̃F#21FF52xF

†F d

dt
D̃F

†D̃FGxF , ~B8!

where we constructF5D̃FhF from the Gaussian sourcehF

and then obtainxF by solvingD̃F
†D̃FxF5FF . Now we must

evaluate

xF
†F d

dt
D̃F

†D̃FGxF5
d

dt
^xFu@~52m0!22~DF

† !oe~DF
† !eo#

3@~52m0!22~DF!oe~DF!eo#uxF&.

~B9!

We will obtain eight terms by letting the derivative act o
each of the fourDF operators. Four of those terms will in
volve Um(x) and fourUm(x)†, with the final four terms be-
ing the hermitian conjugates of the first four. Combinin
Eqs.~B5!, ~B7!, ~B8!, and~B9!, we find
3-18



lds
r to the

the field

FINITE TEMPERATURE QCD PHASE TRANSITION . . . PHYSICAL REVIEW D64 014503
tr$Hm~x!Fm~x!%5
1

2 (
s

$xF~x,s!Hm~x!Um~x!~11gm!^~x1m,s!u~DF
† !eoD̃FuxF&

1^xFu~DF
† !oeux,s&Hm~x!Um~x!~11gm!^x1m,suD̃FuxF&1^xFuD̃F

† ux,s&Hm~x!Um~x!~12gm!

3^x1m,su~DF!eouxF&1^xFuD̃F
†~DF!oeux,s&Hm~x!Um~x!~12gm!x~x1m,s!1H.c.%. ~B10!

This expression can be written in a very simple form if we define two new spinor quantities:

w~x,s!5H 2x^x,su~DF
† !eoD̃FuxF&, ~x,s! even,

2^x,suD̃FuxF&, ~x,s! odd,
~B11!

v~x,s!5H ^x,su~DF!eouxF&, ~x,s! even,

xF~x,s!, ~x,s! odd.
~B12!

Using these quantities in Eq.~B10! and factoring out the generatorHm(x) gives

F @F#m~x!52
1

2
Um~x!(

s
trspin@~12gm!v~x1m̂,s!w†~x,s!1~11gm!w~x1m̂,s!v†~x,s!#2H.c., ~B13!

where we have added now the subscript@F# to distinguish this fermion force from that produced by the Pauli-Villars fie
described below. Since there are no gauge fields in the extra direction, it is not surprising that this looks very simila
Wilson fermion force with an additional sum over thes direction.

The force term produced by the Pauli-Villars fields is closely related to that derived above. We need only replace
xF with FPV, setmf51 and change the sign of the resulting force

F @PV#m~x!52F @F#m~x!umf51, xF5FPV
. ~B14!
A
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