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Semileptonic decaysB\p l n and D\p l n from lattice QCD
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We present a lattice QCD calculation of the form factors and differential decay rates for semileptonic decays
of the heavy-light mesonsB andD to the final statep ln. The results are obtained with three methodological
improvements over previous lattice calculations: a matching procedure that reduces heavy-quark lattice arti-
facts, the first study of lattice-spacing dependence, and the introduction of kinematic cuts to reduce model
dependence. We show that the main systematics are controllable~within the quenched approximation! and
outline how the calculations could be improved to aid current experiments in the determination ofuVubu and
uVcdu.
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I. INTRODUCTION
Processes involving weak decays ofB andD mesons are

of great interest, because they yield information on the m
poorly known elements of the Cabibbo-Kobayashi-Maska
~CKM! matrix. Semileptonic decays have traditionally be
used to determine the CKM matrix, for example,Vud
~through nuclearb-decay!, Vus (Kl3), Vcb (B→D (* )ln),
and Vub (b→uln) @1#. In the first three cases flavor sym
metries„isospin, SU~3! flavor, and heavy quark symmetry
respectively… greatly simplify one’s theoretical understan
ing of the hadronic transition matrix elements. In the sy
metry limit, and at zero recoil, current conservation ensu
that the matrix elements are exactly normalized. Even w
estimates of the deviations from the symmetry limit are d
ficult to calculate reliably, the deviations tend to be sm
Thus, the overall theoretical uncertainty on the decay proc
is under control. Given good experimental measureme
this procedure then determines the associated element o
CKM matrix.

For semileptonic decays of charmed orb-flavored mesons
into light mesons there are no flavor symmetries to const
the hadronic matrix elements. As a result, the errors onuVubu
are currently dominated by theoretical uncertainties and
not well known@1#. For the same reason the best value
uVcdu, at this time, comes from neutrino production of cha
off valenced quarks~with the cross section from perturba
tive QCD!, rather than from the semileptonicD decays. In
this paper we take a step towards reducing the theore
uncertainty by using lattice QCD to calculate the form fa
tors for the decaysB→p ln andD→p ln. Although our re-
sults are in the quenched approximation, we introduce s
eral methodological improvements that carry over to f
QCD. Moreover, this work is the first to study the lattic
spacing dependence of the form factors.

There is a considerable ongoing experimental effort
this subject, which will lead to measurements of the diff
ential decay rates. ForB→p ln,

dG

dp
5

GF
2 uVubu2

24p3

2mBp4u f 1~E!u2

E
, ~1.1!
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whereE5pp•pB /mB is the energy of the pion in the res
frame of theB meson, andp5AE22mp

2 is the magnitude of
the corresponding three-momentum. (pp and pB are four-
momenta. ForD→p ln, replaceVub with Vcd , mB with
mD , and pB with pD .) The non-perturbative form facto
f 1(E) parametrizes the hadronic matrix element of t
heavy-to-light transition,

^p~pp!uV muB~pB!&5 f 1~E!F pB1pp2
mB

22mp
2

q2
qGm

1 f 0~E!
mB

22mp
2

q2
qm, ~1.2!

where V m is the charged b→u vector current, and
q5pB2pp is the momentum transferred to the leptons. F
reasons that are made clear below, we prefer to cons
the form factorsf 1 and f 0 as functions ofE. This kine-
matic variable is related to the more common cho
q25mB

21mp
2 22mBE. The contribution off 0 to the decay

rate is suppressed by a factor (ml /mB)2 so we shall presen
the rate given in Eq.~1.1!. In the decayB→ptn both form
factors are important, however, so both are tabulated be
in Sec. VI.

The first determinations ofuVubu came from the rate of the
inclusive semileptonic decayB→Xuln. In general, inclusive
rates can be described model-independently through an
erator product expansion~OPE!, leading to a double series i
LQCD/mb and as(mb) @2#. Thus, they are subject to non
perturbative and perturbative uncertainties. In particular,
requires the quantitiesL̄, l1, andl2, which are defined in
the heavy-quark effective theory.1 The huge charm back
ground inB→Xuln must be eliminated by imposing a cu
either on the charged lepton energy@4#, on the hadronic in-
variant mass@5#, or on q2 @6#. Such cuts narrow the kine

1A new method for calculatingL̄, l1, and l2 can be found in
Ref. @3#.
©2001 The American Physical Society02-1
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matic acceptance and may, therefore, increase sensitivi
violations of quark-hadron duality, which is hard to quanti

The differential rates of exclusive decays offer an alter
tive route touVubu and uVcdu. This method is limited, how-
ever, by uncertainties in the form factors, such asf 1(E) in
Eq. ~1.1!. In the case ofD decays, theE dependence of the
rate has been measured only forD→Kln @7#. The FOCUS
Collaboration@8# will improve that measurement and als
should be able to measure theE dependence in the Cabibbo
suppressed modeD→p ln. First measurements of th
branching ratios forB→p ln and B→r ln have been pre-
sented by the CLEO Collaboration@9#. The form factors for
all these processes are calculable with lattice QCD. Here
concentrate on calculating the form factors forB→p ln ~and
similar D decays!. The branching ratio is not as large as f
B→r ln, and there are other experimental difficulties@10#.
On the other hand, with vector mesons several form fac
enter into the decay rate. Furthermore, one might exp
greater uncertainties for ther ~and v and f) from the
quenched approximation, because of their non-zero hadr
widths.

With lattice QCD a very pressing issue is to understa
the systematic uncertainties. Indeed, an important justifi
tion for using the quenched approximation is that the savi
in computer time allow us to study the other systematic
certainties in detail. To control systematic errors we ap
three main methodological improvements in this paper:
normalize the heavy-quark action and current in a way t
reduces heavy-quark discretization effects, we have three
ferent lattice spacings to study any remaining discretiza
effects, and we introduce kinematic cuts to avoid model
pendence.

First, let us consider the discretization for the hea
quark. At the lattice spacings,a, currently in use, the large
mass of theb quark means thatmba.1. To control lattice
spacing effects, we adopt the approach of Ref.@11#, which
takes an improved action for Wilson fermions, but adju
the couplings in the action and the normalization of the c
rent so that the leading and next-to-leading terms in
heavy-quark effective theory~HQET! are correct. By apply-
ing HQET directly to lattice observables, one can show t
the heavy-light meson has small discretization effects@12#,
in our case of orderasLQCD/mQ , asLQCDa, (LQCD/mQ)2,
and (LQCDa)2. These normalization conditions allow us
perform our calculations directly at the physical massmQ
5mb . This approach has already been successfully app
in calculations ofB and D meson decay constants by fo
groups@13–16# and in calculations of the form factors fo
B→D (* )ln at zero recoil@17#. Work on B→p ln by two
other groups@18–20# with the same action~but different
lattice currents! has used normalization conditions design
for light quarks, which suffer from errors of orderasmQa
@18# or (mQa)2 @19,20#. To reduce these effects their calc
lations have been carried out with pseudoscalar me
masses 1.2 GeV,mP,2.0 GeV @19# or 1.7 GeV,mP
,2.6 GeV @20#. We have not been persuaded that HQ
can be used to guide the extrapolation from there back u
mB55.3 GeV.
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Second, there are cutoff effects of orderaska and (ka)2

from the light quark, wherek is the momentum of the ligh
quarks inside the mesons. For light or heavy-light hadron
rest, the momentumk'LQCD, so these effects are of th
same kind as some of those considered above. In the s
leptonic decay, however, one has a light daughter had
with non-zero recoil momentum, which gives rise to latti
spacing errors withk5uppu. To study this systematic error
we carry out the calculation at three different lattice sp
ings, and check the dependence of our results ona. We can
then restrict our final results to small enough recoil m
menta, so that discretization effects remain under cont
Our test of the lattice spacing dependence is the first i
lattice calculation of semileptonic form factors.

Third, we do not use models to extend our kinema
reach to high pion energy~i.e., low q2), in contrast to pre-
vious work @18–20#. The extrapolation would rely on the
worst of our data: not only do discretization errors increa
with ppa, but statistical errors do too. Therefore, we quo
the differential decay rate over the range where system
uncertainties from the lattice are under control. In particu
we define

TB~pmin ,pmax!5E
pmin

pmax
dp p4u f 1~E!u2/E. ~1.3!

The upper limit is chosen to rein in the discretization a
statistical uncertainties. The lower limit cuts out a regi
where extrapolations inp and light quark mass are difficult
Then, assuming a massless charged lepton, one can com
TB with experimental measurements to determine the CK
matrix via

uVubu25
12p3

GF
2mB

1

TB~pmin ,pmax!
E

pmin

pmax
dp

dGB→p

dp
, ~1.4!

and, similarly,

uVcdu25
12p3

GF
2mD

1

TD~pmin ,pmax!
E

pmin

pmax
dp

dGD→p

dp
. ~1.5!

Our final result, showing the integrand of Eq.~1.3! for B and
D→p ln, is in Fig. 1. The shaded regions indicate the ran
of pion momentum over which we can control the uncerta
ties. Integrating over this region, we find

TB~0.4 GeV,1.0 GeV!50.5520.05
10.15

20.12
10.09

20.02
10.0960.06

60.09 GeV4, ~1.6!

TD~0.4 GeV,0.925 GeV!50.2320.02
10.04

20.05
10.01

20.02
10.0660.03

60.03 GeV4, ~1.7!

where the first uncertainty is statistical, and following fo
are systematic and come from chiral extrapolation, latt
spacing dependence, matching to continuum QCD, and
sum in quadrature of several other uncertainties. The
includes an estimate of the uncertainty from converting
tice units to physical units, which partly reflects uncertain
2-2
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SEMILEPTONIC DECAYSB→p ln AND D→p ln . . . PHYSICAL REVIEW D 64 014502
from the quenched approximation. In addition to these
certainties, which are quantifiable within the quenched
proximation, there may be an additional error from quen
ing as large as 10–20 percent onTB andTD .

At low momenta the experimental rates go to zero, so
information is lost by making the cut atpmin50.4 GeV. For
semileptonicD decays the high-momentum cut is already
the kinematic endpoint (mD

2 2mp
2 )/2mD50.925 GeV. A

high-momentum cut atpmax51.0 GeV is, however, an ob
stacle to determininguVubu, since semileptonicB decays usu-
ally produce harder pions. Although the cut does reduce
overlap between our lattice calculation and experimental
sults, the results presented here are model independent~apart
from quenching!. As experimental and lattice results im
prove over the next several years, the range of pion mom
tum should widen and can be selected to optimize the c
bined experimental and theoretical uncertainty.

FIG. 1. The differential decay rate~without momentum-
independent factors! as a function ofp5uppu, for ~a! B→p ln and
~b! D→p ln. The solid error bars show the statistical uncertain
and the dotted ones show the sum in quadrature of statistical
systematic uncertainties.
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This paper is organized as follows. Section II contain
discussion of the lattice action and vector current for hea
quarks. The lattice calculation of the matrix elements is
scribed in Sec. III. Section IV describes an interpolation
pion three-momentum and an extrapolation in light qua
mass, which are needed to obtain the form factors. T
former is a special feature of these decays; it interacts w
the chiral limit, and together these lead to the cuts given
Eqs.~1.6! and~1.7!. We discuss quantitatively the systema
errors onTB and TD in Sec. V. The analysis ofB and D
decays is essentially the same. Results for the form fac
are tabulated in Sec. VI. Section VII compares our meth
and results to previous~and ongoing! work @19–21#. Section
VIII concludes.

Preliminary results of this analysis have been presente
Refs. @22,23#. Phenomenological implications ofD decays,
especially for comparingD→p ln and D→Kln as in Ref.
@24#, will appear in another publication.

II. CONTINUUM AND LATTICE MATRIX ELEMENTS

The continuum matrix element of the flavor-changi
vector current,V m5ūigmb, is parametrized by two indepen
dent form factors, for example those in Eq.~1.2!. In consid-
ering the chiral and heavy-quark limits, it is more convenie
to write the matrix element as

^p~pp!uV muB~pB!&5A2mB@vm f i~E!1p'
m f'~E!#,

~2.1!

wherev5pB /mB is the four-velocity of theB, andp'5pp

2Ev is the pion momentum orthogonal tov. The traditional
form factorsf 1 and f 0 are related tof i and f' by

f 1~E!5~2mB!21/2@ f i~E!1~mB2E! f'~E!#, ~2.2!

f 0~E!5
A2mB

mB
22mp

2 @~mB2E! f i~E!

1~E22mp
2 ! f'~E!#. ~2.3!

At q250 it follows from these formulas thatf 15 f 0, which
is necessary from Eq.~1.2!.

There are several good reasons to focus the nume
analysis onf i and f' . First, consideration of chiral and
heavy-quark symmetry yields the expectation formp , E
→0

f i5
f BAmB

A2 f p

, ~2.4!

f'5
f B*AmB*

A2 f p

gBB* p

2mB

mB*
2

2q2
, ~2.5!

through order 1/mQ in the heavy-quark expansion@25#. Here
f B , f B* , and f p are decay constants, andgBB* p is the
B-B* -p coupling. Although we do not use these results
constrain the needed chiral extrapolation of our data, they

nd
2-3
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AIDA X. EL-KHADRA et al. PHYSICAL REVIEW D 64 014502
show us thatf i and f' behave differently asmp is reduced to
its physical value.~Recall q25mB

21mp
2 22mBE.! Further-

more,f i and f' have a simple description in the heavy-qua
effective theory@25#, so they are natural quantities to stud
in the lattice method of Refs.@11,12#, or when using lattice
nonrelativistic QCD~NRQCD! @21#. Finally, they emerge
directly from the lattice calculation, so it is simpler to an
lyze them separately, forming the linear combinations
Eqs.~2.2! and ~2.3! at the end.

For the light quarks we use the Sheikholeslami-Woh
~SW! action @26#, with the customary normalization cond
tions for mqa→0. The SW action has an extra couplin
cSW, sometimes called the ‘‘clover’’ coupling, which can b
adjusted to reduce the leading lattice-spacing effect of W
son fermions. In practice, we adjustcSW according to
tadpole-improved, tree-level perturbation theory@27#, so the
leading light-quark cutoff effect is of orderaska.

We also use the SW action for the heavy quark, but
two free parameters, the bare massm0 and clover coupling
cSW, are adjusted to maintain good behavior in the hea
quark limit @11#. This goes as follows: on-shell lattice matr
elements can be described by a version of HQET@12#, with
effective Lagrangian~in the rest frame!

LHQET5m1h̄h1
h̄D2h

2m2
1

h̄i S•B h

2mB
1•••, ~2.6!

where h is the heavy-quark field of HQET, andB is the
chromomagnetic field. The ‘‘masses’’m1 , m2, andmB are
short-distance coefficients; they depend onm0 andcSW ~and
the gauge coupling!. Fortunately, matrix elements are com
pletely independent ofm1 @12#, so we adjustm0 andcSW to
tunem2 andmB to theb ~or c) quark. In practice, we tune
m2 non-perturbatively, using the quarkonium spectra, a
mB with the estimate of tadpole-improved, tree-level pert
bation theory@27#.

The lattice current is constructed according to the sa
principles. We distinguish the lattice currentV from its con-
tinuum counterpartV and take

Vm5AZVuuZVbbC̄uigmCb ~2.7!

where the rotated field@11#

Cq5@11ad1g•Dlat#cq , ~2.8!

andcq is the lattice quark field (q5u,b) in the SW action.
Here Dlat is the symmetric, nearest-neighbor, covariant d
ference operator. In Eq.~2.7! the factorsZVqq, q5u,b, nor-
malize the flavor-conserving currents. In practice, they
computed non-perturbatively.

Matching the currentVm to HQET requires further short
distance coefficients:

Vm8~hV
lat1zV

lat!vmq̄h1hV
latq̄ig'

mh2
q̄igmD”'h

2m3
1•••,

~2.9!
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where the symbol8 implies equality of matrix elements
and q̄ is a relativistic ~continuum! anti-quark field. At the
tree levelhV

lat51, zV
lat50. Also, further dimension-four op

erators, whose coefficients vanish at the tree level, are o
ted from the right-hand side of Eq.~2.9!. This description is
in complete analogy with that for the continuum curre
namely,

V m8~hV1zV!vmq̄h1hVq̄ig'
mh2

B1q̄igmD”'h

2mQ
1•••.

~2.10!

Indeed, the HQET operators are the same. On the other h
the radiative corrections to the short-distance coefficient
Eqs.~2.9! and Eqs.~2.10! differ, because the lattice modifie
the physics at short distances.

By studying the form factors in HQET, as in Ref.@25#,
one can deduce how to compensate for the mismatch
tween short-distance coefficientshV

(lat) and zV
(lat) for the lat-

tice andhV and zV for the continuum. HQET matrix ele
ments have form factors

^puq̄huB&5w i~E!, ~2.11!

^puq̄ig'
mhuB&5p'

mw'~E!, ~2.12!

so, leaving aside the dimension-four operatorq̄igmD”'h for
now,

f i~E!5hVw i~E!, ~2.13!

f'~E!5~hV1zV!w'~E!. ~2.14!

By the same reasoning, form factors calculated with the
tice currentV satisfy

f i
lat~E!5hV

latw i~E!, ~2.15!

f'
lat~E!5~hV

lat1zV
lat!w'~E!. ~2.16!

Up to lattice artifacts of the light degrees of freedom t
HQET form factorsw i and w' are the same in Eqs.~2.13!
and ~2.14! and in Eqs.~2.15! and ~2.16!. Thus,

f i~E!5rVi
f i

lat~E!, ~2.17!

f'~E!5rV'
f'

lat~E!, ~2.18!

where rVi
5hV /hV

lat , rV'
5(hV1zV)/(hV

lat1zV
lat). Because

these factors arise from short distances, in practice we c
pute them in perturbation theory to one loop. We find the
short-distance corrections to be very small.

Finally, the free parameterd1 in Eq. ~2.8! can be adjusted
to tune 1/m3 to B1 /mQ . In the present calculations, we ad
just d1 with the estimate of tadpole-improved, tree-level pe
turbation theory, as explained in Ref.@11#.

With these normalization conditions the leading term
the heavy-quark expansion is correctly obtained, up to
glected higher-order corrections torVi

andrV'
. The associ-
2-4
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ated error should be much smaller than our other uncert
ties, because most of the short-distance normalization
handled non-perturbatively, through the factorAZVuuZVbb.
Similarly, the 1/mQ term in the heavy-quark expansion
correctly obtained, up to neglected loop corrections tocSW
and d1, and to dimension-four operators neglected in E
~2.9!. Here the associated error depends onmQa. When
mQa.1 it is formally of order asLQCD/mQ , but when
mQa,1 it is formally of orderasLQCDa. In the work re-
ported here, such corrections are smaller than, or compar
to, other uncertainties.

In lattice QCD the required matrix elements and then
the form factors are calculated from correlation functions.
particular, the three-point correlation function for theB→p
transition is

Cm
(3)~p,k,t f ,ts ,t i !5(

x,y
e2 ip•xe2 i (k2p)•y^0uOB~x,t f !

3C̄bgmCu~y,ts!O p
† ~0,t i !u0&,

~2.19!

whereOB andOp are interpolating operators for theB andp
mesons. In the limit of large time separations, the correla
function becomes

Cm
(3)~p,k,t f ,ts ,t i !5Z B

1/2Z p
1/2^B~k!uC̄bgmCuup~p!&

A2EBA2Ep

3e2Ep(ts2t i )e2EB(t f2ts)1•••,

~2.20!

whereEB(Ep) is the energy of aB(p) meson with momen-
tum k(p). The energies and the external line factorsZp and
ZB can be calculated from two-point correlation functions

C(2)~p,t !5(
x

e2 ip•x^0uOH~x,t !O H
† ~0,0!u0&, ~2.21!

whereH is p or B, and for largeutu one has

C(2)~p,t !5Z He2EHutu1•••. ~2.22!

By time reversal ^B(k)uC̄bgmCuup(p)&
5^p(p)uC̄ugmCbuB(k)&, so in the rest of this paper we d
not distinguish the two matrix elements.

To summarize this section, let us review the steps nee
to obtain the physical form factorsf 1 and f 0. First we obtain
Ep and

F i~p!5
^B~0!uC̄bg4Cuup~p!&

A2mBA2Ep

, ~2.23!

F'~p!5
1

pja

^B~0!uC̄bg jCuup~p!&

A2mBA2Ep

, ~2.24!
01450
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for several values ofp, directly from fitting the lattice cor-
relation functions to the time dependence given in E
~2.20! and ~2.22!. The normalization factorsZVuu and ZVbb

are computed from zero-momentum, flavor-conserving c
relation functions. The radiative correction factorsrV ap-
pearing in Eqs.~2.17! and ~2.18! are computed with pertur
bation theory. These ingredients are combined to form

f i~E!5rVi
AZVuuZVbbA2EpF i~p!, ~2.25!

f'~E!5rV'
AZVuuZVbbA2EpaF'~p!, ~2.26!

with E5Ep . From the calculated values ofp we then inter-
polate to a fiducial set of momenta. The form factorsf i and
f' are extrapolated to the physical light quark mass. With
light quark corresponding to strange we check also for lat
spacing effects. Finally, the combinationsf 1 and f 0 are
formed from the extrapolatedf' and f i with Eqs.~2.2! and
~2.3! and physical meson masses.

III. LATTICE CALCULATION

This work uses three ensembles of lattice gauge field c
figurations, which have been used in previous work
heavy-light decay constants@28,14#, light-quark masses@29#,
and quarkonia@30#. The quark propagators are the same as
Ref. @14#, but we now use 200 instead of 100 configuratio
on the finest lattice~with b56.1). The input parameters fo
these fields are in Table I, together with some element
output parameters.

The quark propagators are computed from t
Sheikholeslami-Wohlert action, which includes a dimensio
five interaction with couplingcSW. For heavy and light
quarks we adjustcSW to the valueu0

23 suggested by tadpole
improved, tree-level perturbation theory, and the so-ca
mean linku0 is calculated from the plaquette. The hoppin
parameterk is related to the bare quark mass. For botto
and charmed quarks,kb andkc are adjusted so that the spin
averaged kinetic mass of the corresponding 1S quarkon
states match experimental measurements. For light qua
ks and kq are fixed from light meson spectroscopy, usi
leading-order chiral perturbation theory and the experime
kaon and pion masses. We also list the tadpole-impro
bare quark mass in GeV,

m0a5
1

u0
S 1

2k
2

1

2kcrit
D , ~3.1!

where the critical quark hopping parameterkcrit makes the
pion massless. Although this mass is just a bare mas
shows that the heavy quarks are heavy, and the light qu
light.

We calculate the three-point function in Eq.~2.20! with
degenerate spectator and daughter light quarks. At each
tice spacing we have propagators corresponding to
strange quark. We refer to this decay asBs→hsln, writing
hs for the pseudoscalars̄s state in analogy with quarkonium
2-5
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TABLE I. Input parameters to the numerical lattice calculations, together with some elementary o
parameters. Error bars on the outputs refer to the last digit~s!.

Inputs

b56/g0
2 6.1 5.9 5.7

Volume,NS
33NT 243348 163332 123324

Configurations 200 350 300
csw 1.46 1.50 1.57
kb , m0 (GeV) 0.0990, 4.31 0.0930, 3.73 0.0890, 2.87
kc , m0 (GeV) 0.1260, 1.07 0.1227, 1.05 0.1190, 0.96
ks , m0 (GeV) 0.1373, 0.092 0.1385, 0.091 0.1405, 0.093
kq , m0 (GeV) 0.1382, 0.107

0.1388, 0.075 0.1410, 0.076
0.1391, 0.059 0.1415, 0.059
0.1394, 0.043 0.1419, 0.045

Elementary outputs

kcrit 0.1384722
14 0.1402121

13 0.1432722
15

a1P-1S
21 (GeV) 2.64213

117 1.8026
17 1.1623

13

af p

21 (GeV) 2.40212
110 1.4726

16 0.8922
12

2p/NSa (GeV) 0.686 0.707 0.607
u0 0.8816 0.8734 0.8608
aV(2/a) 0.171 0.192 0.227
a
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At b55.9 and 5.7 we have additional light quark propag
tors, with hopping parameterkq , covering the range1

2 ms
&mq&ms .

The lattice spacinga in physical units must be set throug
some fiducial observable. As a rule@30# we prefer the spin-
averaged 1P-1S splitting of charmonium,Dm1P-1S. For com-
parison we give the value ofa21 defined through the pion
decay constantf p . The discrepancy means thatDm1P-1S/ f p

does not agree with experiment; this is thought to be larg
due to the quenched approximation, because it remains
asa is decreased.

The renormalized strong couplingaV(2/a) at scale 2/a is
determined as in Ref.@27#. It is an ingredient in the calcula
tion of the short-distance coefficientsrVi

and rV'
, intro-

duced in Eqs.~2.17! and ~2.18!.
In the three-point functions the heavy-light meson is

rest, while the momentum of the light daughter meson
varied. In a finite volume only discrete values of spatial m
mentum are accessible. We compute the three-point func
with pp52pn/NSa, for integer momentum n
P$(0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0)%. As one can
see in Table I, one unit of momentum is about 0.7 GeV in
boxes used here, so our calculations cover the range 0<p
,1.5 GeV.

We obtain the energies, matrix elements, andZH factors
by fitting Eqs.~2.20! and ~2.22! with a x2-minimization al-
gorithm. Statistical errors, including the full correlation m
trix in x2, are determined from 1000 bootstrap samples
each best fit. The bootstrap procedure is repeated with
same sequence for all quark mass combinations and
menta, and in this way the fully correlated statistical err
01450
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en
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on
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he
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s

are propagated through later stages of the analysis.
The right-hand sides of Eqs.~2.20! and~2.22! are the first

term in a series, with another term for each radial excitati
We reduce contamination from these states two ways. F
we keep the three points of the three-point function w
separated in~Euclidean! time. The light meson creation op
eratorOp is always att i50 and the heavy-light meson an
nihilation operator att f5NT/2. We then vary the timets of
the current and the rangeDt of time-slices kept in the fit, to
see when the lowest-lying states dominate. The final cho
is made by demanding thatx2/d.o.f. is acceptable and, then
minimizing the statistical errors while maximizingDt. For
acceptable fits we have 3<Dt<6. The extraction of the de
sired matrix elements is shown in Fig. 2 for several ligh
meson momenta and typical quark mass. The best fit
error envelope are indicated by the solid and dotted li
respectively. The second way to isolate the lowest-ly
states is to choose interpolating operators,OB andOp in Eq.
~2.19!, to have a large overlap with the desired state. This
done by smearing out the quark and anti-quark with 1S
2S Coulomb-gauge wave functions, as in Ref.@31#. We also
examine point-like, ord function, operators, but for ligh
mesons at higher momenta we find that thed source does no
yield good plateaus@32#. The different combinations o
sources and sinks allow us to check explicitly for excit
state contributions by comparing results from fits with d
ferent smearing functions. Figure 3 compares results for
matrix element̂ BsuVm

† uhs& at n5(1,1,0), obtained from 1S
source and sink and from 1S source for the light meson
d sink for theBs . The 1S-1S correlation functions yield th
cleanest matrix elements, so we take our central values f
them.
2-6
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FIG. 2. Matrix elementsF i ~squares! and F' ~diamonds! at b55.9, for a light strange quark and a heavy bottom quark. The inte
momenta are~a! n5(0,0,0), ~b! n5(1,0,0), ~c! n5(1,1,0), and~d! n5(1,1,1).
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IV. ANALYSIS OF FORM FACTORS

From the exponential fits to three-point correlation fun
tions described in Sec. III we have the matrix eleme
^hq(p)uVmuBq(0)&, for quark massesmq&ms and final-state
momentaupu,1.4 GeV. We must now extend these data
lower quark mass, until the mass of theq̄q pseudoscalar
reaches the pion mass. Furthermore, the more impor
form factor f'(E), which is essentially
^hq(p)uVj uBq(0)&/pj , is directly calculated only for non
zero three-momentum. In the finite volume used here,
lowest non-zero momentum is already 0.7 GeV, and
would like to extend to lower values, calling for anoth
extrapolation.

The extrapolation in quark mass can be guided by ch
perturbation theory. To extrapolate in momentum, howev
there is no firm theoretical guide, so we must exercise c
tion. Fortunately, this extrapolation is problematic only
the kinematic regime where phase space suppresses the
01450
-
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nt

e
e

l
r,
u-

ate.

Consequently, neither extrapolation introduces a model.
also have checked that the order in which the momentum
chiral extrapolations are done has no significant effect on
final result.

A. Momentum interpolation and extrapolation

Ultimately, we want to compare results at the thr
different lattice spacings. Therefore, we interpolate the
tice data to a fixed set of physical momenta. To sta
we convert the lattice data to physical units usinga1P-1S

21 .
Figure 4 shows the underlying data forBs→hsln at b
55.9 and 6.1, along with interpolated points. The vertic
~horizontal! error bars on the underlying data come from t
statistical uncertainty in F i ,'(a21). We interpolate
log f'a21/2 (log fia

11/2) linearly ~quadratically! in p2 to upu
P$0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1% GeV. This
set forms the basis of all further analysis. The statistical e
2-7
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bars of the interpolated points are vertical only, because b
statistical errors are propagated through the interpolation

We must extend the interpolation to an extrapolation
obtain an estimate off' for p,0.7 GeV. As the pion be-
comes softer and lighter one expects from Eq.~2.5! that the
dependence onE ~and hencep) is sensitive to the Ansatz fo
extrapolation. TheB* pole givesf' a peak at low momen
tum, and the height of the peak rises as the quark mass
creases. This shape is hard to capture, as is shown in Fi
unless the fit is constrained to it. Forp.0.7 GeV the pole fit
agrees perfectly with the method described above. But asp is
decreased into the region of extrapolation, the two for
start to deviate. Above 0.4 GeV the agreement is still go
so we make a cut here. For smaller momenta phase s
suppresses the number of events, so this cut has no se
ramifications. ForD decays the situation is much the sam
as shown in Fig. 6. Therefore, we impose the same lo
momentum cut in this case. Other functional forms, such
rational, do not make much difference indG/dp
}p4u f 1u2/E, once the cut atpmin50.4 GeV is imposed.

At high momentum there are other difficulties. Th
signal-to-noise ratio of the three-point function deteriorat
For the highest momentum,n5(2,0,0), we cannot always
extract a convincing matrix element: in some cases the
teauDt is just 2 time-slices, and three-point functions wi
different sources and sinks do not yield the same value
the matrix element. We cannot include these data in the
terpolation. For the second-highest momentum,n5(1,1,1),
we cannot extract the matrix elements at lightermq , so sta-
tistical errors blow up in the chiral extrapolation. We ther
fore place a cut atn5(1,1,0), which corresponds topmax

51.0 GeV. Indeed, our uncertainties would be smaller w
a lower upper cut, at the cost of reducing the overlap with
experimental data further still.

FIG. 3. Isolation of the lowest-lying states with different sme
ing functions, forn5(1,1,0) and quark masses as in Fig. 2. T
solid symbols have the standard 1S source and 1S sink; the
symbols have ad-function sink for theBs .
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B. Chiral extrapolation

Following the momentum interpolation, the form facto
f i and f' at b55.7 and 5.9 are extrapolated to the chir
limit at fixed momentum, guided by chiral perturbatio
theory. From Eqs.~2.4! and~2.5! one can see that the chira
behavior off i and f' should be very different. In particular
f i does not contain aB* pole, at least not at the leading ord
in the chiral expansion. In the form factors, dependence
the light pseudoscalar mass enters both throughmp

2 and E.
With our momentum cut,p.0.4 GeV, and our light meson
masses, 0.45 GeV,mhq

,0.74 GeV, the dependence ofE on
p remains smooth, so we try fits of the form

f i ,'5A1Bm1Cm2, ~4.1!

where m5 log(11m0a). We compare quadratic fits with
floating C to linear ones with fixedC50. The difference in

-

en

FIG. 4. Momentum interpolation~and extrapolation! of f ia
11/2

~squares! and f'a21/2 ~diamonds! for Bs→hsln at ~a! b55.9, ~b!
b56.1. The solid points are the underlying data; the asterisks
interpolated.
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the chiral limit of these different fits is the origin of ou
greatest systematic uncertainty.

It would be desirable to have quark propagators at ligh
quark masses to achieve better control on the chiral extra
lation. The computer time would increase substantially, ho
ever, and the obstacle of exceptional configurations wo
have to be overcome, for example as in Ref.@33#.

We note that whenp50 ~or p!mp) it would be better
@34# to carry out the chiral extrapolation at fixedE, instead of
fixed p. With p.0.4 GeV, however, the fixedE extrapola-
tion is probably not essential, although it may reduce
uncertainty from the chiral extrapolation. We shall inves
gate this issue elsewhere.

V. SYSTEMATIC ERRORS

As discussed in the previous section, we do not have u
ful results outside the range

FIG. 5. Momentum interpolation~and extrapolation! at b
55.9, for Bq→hqln and ~a! the heaviest of our light quarks, with
kq50.1382; ~b! the lightest of the light quarks, withkq50.1394.
01450
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0.4 GeV<p<1.0 GeV, ~5.1!

where p5uppu is the pion’s three-momentum in the re
frame of theB or D. Matrix elements with higher momentum
are not estimated reliably, and at lower momentum the ch
extrapolation used is no longer good. In this section we a
lyze the systematic uncertainties quantitatively, focusing
the partially integrated ratesTB(0.4 GeV,1.0 GeV) and
TD(0.4 GeV,0.925 GeV), defined in Eq.~1.3!, and the
CKM matrix obtained from Eqs.~1.4! and~1.5!. A summary
of this analysis is given in Table II.

The statistical error is estimated with the bootstr
method, drawing 1000 samples for each fit. The bootst
propagates the statistical uncertainty, including correlatio
through the interpolation in light meson momentum and
trapolation in light-quark mass, so in the end statistics
main a quantitatively important source of uncertainty.

FIG. 6. Momentum interpolation~and extrapolation! at b
55.9, for Dq→hqln and ~a! the heaviest of our light quarks, with
kq50.1382; ~b! the lightest of the light quarks, withkq50.1394.
2-9
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TABLE II. Budget of statistical and systematic uncertainties in this work for the quant
TB(0.4 GeV,1.0 GeV),TD(0.4 GeV,0.93 GeV), andTB(0.4 GeV,0.9 GeV)/TD(0.4 GeV,0.9 GeV). All entries in percent.

Uncertainty TB uVubu TD uVcdu TB /TD uVub /Vcdu

statistical 29
127

25
114

28
117

24
19

24
110

22
15

excited states 6 3 6 3 6 3
p extrapolation 10 5 9 5 9 5
mq extrapolation 222

116
211
18

218
13

29
12

24
113

22
17

adjustingmQ 6 3 2 1 8 4
HQET matching 10 5 10 5 10 5
a dependence 23

116
22
18

26
123

23
111 5 3

definition of a 11 6 4 2 8 4

total systematic 30 15 224
128

212
114

220
123

210
112

total ~stat % syst! 231
140

216
120

226
132

213
116

220
125

210
113
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A. Excited states

As explained in Sec. III, we take care to isolate the d
sired lowest-lyingp andB states from their radial excitation
when computing the three-point function of Eq.~2.19!. The
associated uncertainty on the matrix elements~and, thus, the
form factors! is computed by comparing fits with differen
smeared and unsmeared interpolating operators. After ch
ing the optimal fit range for each combination of smear
functions, we find deviations inF' andF i of 1–3 %, where
the high end of the range is for momenta near the upper
We assign an uncertainty of 6 percent toTB andTD .

Although we calculate similar matrix elements for eachp
and forB andD decays, the rangeDt of time slices kept in
the fit was chosen independently for each case. There
the excited state contamination inTB /TD is partly, but not
fully, correlated. A conservative error estimate is again 6

B. Momentum and chiral extrapolations

The form factor f 1 that enters into the partial width i
more sensitive tof' than tof i . Thus, it could be sensitive a
smallp to the extrapolation described in Sec. IV A. Therate,
however, is much less sensitive, because phase space
presses it at smallp. For TB the variation between linear
rational, and pole forms is610%.

The chiral extrapolation is a major source of uncertain
Figure 7 shows the chiral extrapolation atb55.9 for f i and
f' at n5(1,0,0). We compare three different fits:~1! a qua-
dratic fit to the four lightest quark masses;~2! a linear fit to
the four lightest quark masses; and~3! a quadratic fit to all
five light quark masses. The first has the lowestx2/DOF, but
the other two are perfectly acceptable. For other mome
the behavior is the same. Because the extrapolated r
from the first~and best! fit lies between the other two, we us
it to give our central value, and use the other two as e
mates of the systematic error. The ambiguity of the fits, a
hence the systematic error, could be reduced with exp
calculation at smallermq , but a suitable point is not feasibl
with our computer resources. We are left with an uncertai
of 222

116% in TB and 218
13 % in TD .
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The error bars on the extrapolated points in Fig. 7 sh
how the statistical uncertainties are inflated by the chiral
trapolation. This part of the uncertainty is statistical in n
ture, so it is incorporated into the first line of Table II. In
deed, it is the main reason the statistical uncertainty
TB (TD) grows from 6 percent~7 percent! with mq5ms to
18 percent~13 percent! with mq5md .

C. Heavy quark mass dependence

To examine the dependence on the heavy quark mas
use form factors with a light strange quark, because t
statistical errors do not mask the effect. Figure 8 compa
the form factorsBs and Ds decays. There is a significan
difference. The quarkonium spectrum tunes the~bare! heavy
quark mass within a precision of 1–2 %@14#, which clearly
would have no significant effect on the form factors. B
because of lattice artifacts in the quarkonium binding ene
@35# and because of quenching, the heavy-light spectr
yields a different adjustment of bare quark masses. The s
is to lower 1/mPS in Fig. 8. From Eq.~2.2! one sees thatf'

dominates inf 1 for B decay. Thus,f 1 is smaller with the
heavy-light adjustment of the bottom quark mass, andTB is
6% smaller. On the other hand,f' and f i make a comparable
contributions tof 1 for D decay. It turns out thatf 1 is larger
with the heavy-light adjustment of the charmed quark ma
andTD is 2% larger. The ratioTB /TD is 8% smaller.

D. Matching

As explained in Sec. II, our treatment of the heavy qua
matches lattice gauge theory with Wilson fermions to HQE
This requires calculations of the short-distance coefficie
1/m2 and 1/mB in the effective action;AZVuuZVbb in the defi-
nition of the current; andrVi

, rV'
, and 1/m3 in the descrip-

tion of the currents. As discussed in the previous subsect
m2 is adjusted non-perturbatively, by tuning the quarkoniu
spectrum to agree with experiment. The normalization f
tors ZVuu andZVbb are also computed non-perturbatively, b
requiring that flavor-conserving matrix elementsp→p and
B→B, computed by analogy with Eq.~2.20!, give unit
2-10
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charge. The uncertainty from it is purely statistical and mu
smaller than all other statistical uncertainties.

The significant systematic effects in the matching pro
dure come from computingrVi

andrV'
, and from the mis-

match between Eqs.~2.9! and Eqs.~2.10! at the level of
dimension-four and higher currents. In the present work
do this part of the matching with perturbative QCD, leadi
to errors of orderas

2 , as /mQ , 1/mQ
2 , respectively. Let us

now consider these effects in turn.
Because they are short-distance quantities, the matc

factors rVi
and rV'

should be calculable in perturbatio
theory. ~Note that all effects that make lattice perturbati
theory less reliable than continuum perturbation theory
absorbed intoAZVuuZVbb.! We have calculated them to on
loop, so we write

rV511as~q* !4prV
[1] ~5.2!

for rVi
and rV'

. We use the Brodsky-Lepage-Mackenz

~BLM ! procedure to choose the expansion parameteras(q* )

FIG. 7. Chiral extrapolations off i and f' for n5(1,0,0) and
b55.9.
01450
h

-

e
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e

@36,27#. In the scheme in which the Fourier transform of t
heavy-quark potential readsV(k)52CF4pas(k)/k2, the
BLM scaleq* is given through

log~q* a!5
* rV

[1]

2rV
[1]

~5.3!

where * rV
[1] is obtained fromrV

[1] by replacing the gluon
propagatorD(k) with D(k)logk2a2. The details of these cal
culations are similar to those described in Ref.@37#, and the
results are listed in Table III@38#.

The effects are small forB decays and tiny forD decays.
This can be understood because therVs are ratios of very
similar quantities, so there is good cancellation. It is the
fore plausible that the two-loop contribution is numerica
smaller by another factor ofas'0.2, and thus completely
negligible.

FIG. 8. The heavy quark mass dependence at several mom
at b55.9 for the temporal matrix element. The light quarks a
strange quarks. The dotted lines are to guide the eye.
2-11
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TABLE III. Perturbation theory for matching factorsrVi
andrV'

. The one-loop termsrV
[1] and * rV

[1] are in units of 1025.

b56.1 b55.9 b55.7
rV

[1] * rV
[1] as(q* ) rV rV

[1] * rV
[1] as(q* ) rV rV

[1] * rV
[1] as(q* ) rV

b
f i 536 980 0.159 1.011 817 1591 0.173 1.018 1065 2199 0.196 1.
f' 21987 23312 0.163 0.959 22096 23534 0.181 0.952 22146 23621 0.212 0.943

c
f i 259 13 0.233 0.998 228 40 0.402 0.999 163 152 0.184 1.001
f' 2947 21368 0.169 0.980 21223 21821 0.188 0.971 21508 22339 0.218 0.959
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Next, we must estimate the uncertainty from the m
match of the 1/mQ term in the heavy-quark expansion. Th
contributes an error on either form factorf

d1/mQ
f ;asb1/mQ

~mQa!mQ
21LQCDf ~5.4!

from 1/m3 and 1/mB contributions, andb1/mQ
gives the de-

viation of the short-distance coefficients for the lattice a
continuum theories.~See Refs.@11,12# for further details.!
The factorb(mQa) is at most of order unity; for our calcu
lations of D-meson matrix elements it is of ordermca,1.
Taking as'0.2 andLQCD'500 MeV one finds that thes
errors, in either case, are at most a few percent onf or the
CKM matrix.

Finally, we must estimate the uncertainty from the m
match of the 1/mQ

2 terms:

d1/m
Q
2 f ;b1/m

Q
2 ~mQa!mQ

22LQCD
2 f . ~5.5!

There are many contributions at order 1/mQ
2 in the heavy-

quark expansion, most of which come from iteration of t
1/mQ terms. Only genuine 1/mQ

2 terms in the effective action
and currents can be as inaccurate as Eq.~5.5! suggests. Since
LQCD/mQ'LQCDa&as for our lattice data, the errord1/m

Q
2 f

is similar in magnitude to that ofd1/mQ
f .

The estimates in Table II derived from Eqs.~5.4! and
~5.5! are very conservative. It is plausible that the denom
nator of heavy-quark expansion is 2mQ , and it is possible
that the unknown coefficients are fractions instead of 1–2
used above. Thus, the matching uncertainties may alread
negligible.

The masses of theb andc quarks differ by about a facto
of three. The short-distance coefficients are functions ofmQa
@11,12#, so the matching uncertainties do not cancel co
pletely in the ratioTB /TD . In particular, on our lattices the
mismatch coefficientsb1/m

Q
n are of order 1 forb quarks, but

b1/mQ
;mca andb1/m

Q
2 ;(mca)2, asmca for c quarks. Never-

theless, the effects often have the same sign, so we tak
uncertainty in the ratio to be the same as in numerato
denominator.

E. Lattice spacing dependence

For the artificial decaysBs ,Ds→hsln we have results a
three lattice spacings, so we can examine how severely
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form factors are affected. These decays are good for stud
thea dependence, because their form factors have small
tistical errors. After chiral extrapolation, on the other han
the larger statistical error bars would mask lattice spac
effects. Previous experience with decay constants@14# leads
us to believe this will not change very much after chir
extrapolation. With the action used in this work the latti
spacing dependence is a combination ofO(asa) andO(a2)
effects from the light quarks and gluons, and thea depen-
dence of the heavy-quark short-distance coefficients,
cussed in the previous subsection. In particular, when thehs
has non-zero recoil momentump, the light-quark lattice ef-
fects areO(aspa) andO(p2a2).

The a dependence of the form factors is shown in Fig.
The variation witha is several percent, which is comparab
to the statistical uncertainty and also to the errors from
mismatch of the heavy quark. The observeda dependence is
therefore a combination of~uncorrelated! statistical fluctua-
tions, lattice artifacts from the light degrees of freedom, a
from the lattice artifacts@described in Eqs.~5.4! and~5.5!# of
the heavy quark. They cannot be disentangled with the c
rent set of calculations, so it does not make sense to extr
late a→0.

Instead we choose the results fromb55.9, where we
have the widest range of light quark masses, for our cen
value and use the other two lattices to estimate the un
tainty. Figure 10 shows the combinationp4u f 1u2/E, which is
proportional todG/dp, at all three lattice spacings forBs
→hsln andDs→hsln. As in Fig. 9 one sees that the depe
dence ona is several percent, and increases with increas
p. By integrating overp we find a variation of23

116% in TB

and 26
123% in TD .

F. Definition of a and quenching

Changes in the final results from changing the definit
of a can be thought of as a crude way to estimate effects
the quenched approximation. In lattice units we obtainf ia

1/2

and f'a21/2, so converting to physical units introduces
mild explicit dependence on the value chosen fora. There is
also an implicit dependence that enters through functio
dependence onE ~or p). These two effects are illustrated i
Fig. 9. The solid~open! points are obtained by defininga so
that the 1P-1S splitting of charmonium~pion decay constant!
takes its physical value. The central values in the paper
computed with the 1P-1S definition. Atb55.9 we repeat the
2-12
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full analysis with thef p definition. We find thatTB (TD)
increases by 11%~4%!, and the ratioTB /TD increases by
8%.

A more serious estimate of the effect of the quench
approximation is impossible without generating gauge fie
with dynamical quark loops. This would require more co
puter resources than we have at our disposal, and no o
group has yet studied these semileptonic decays with
namical quarks. There are results with two light, dynami
flavors for the leptonic decay constantsf B and f D , using
either lattice NRQCD@39# or our method@16,40# for the
heavy quark. In that case one finds an increase of betw
10–11 % over the quenched result.

The exercise of changing the definition ofa easily could
underestimate the effects of quenching. At the same time
do not expect form factors to be more sensitive thanf B .
Thus, a provisional estimate of a uncertainty inTB,D of 10–
20 % seems reasonable.

FIG. 9. Lattice spacing dependence ofBs→hsln form factors
~a! f i and ~b! f' , for p50.5 GeV ~squares! and 0.7 GeV~dia-
monds!. The solid~open! symbols correspond to defining the lattic
spacing withDm1P-1S ( f p).
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VI. RESULTS

The main results of this paper, given in Eqs.~1.6!
and ~1.7!, are the quantitiesTB~0.4 GeV,1.0 GeV! and
TD(0.4 GeV,0.925 GeV), which are proportional to th
partially integrated rates. It may also be of interest to pres
the results in other ways. In this section we give results
the ratioTB /TD , as well as results forTB , TD , andTB /TD
with a lower upper cut. We also give results for the for
factors themselves.

Many uncertainties cancel in the ratio ofB and D rates:
the statistical error is correlated, and the systematic errors
similar in nature. Because of heavy-quark symmetry it
most sensible to form a ratio with the same cuts for both.
find

TB~0.4 GeV,0.9 GeV!

TD~0.4 GeV,0.9 GeV!
52.0420.09

10.20
20.08

10.2660.1060.20

60.29, ~6.1!

FIG. 10. Comparison ofp4u f 1u2/E at three lattice spacings fo
~a! Bs→hsln and ~b! Ds→hsln.
2-13
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TABLE IV. Budget of statistical and systematic uncertainties in this work for the quant
TB(0.4 GeV,0.8 GeV),TD(0.4 GeV,0.8 GeV), andTB(0.4 GeV,0.8 GeV)/TD(0.4 GeV,0.8 GeV). All entries in percent.

Uncertainty TB uVubu TD uVcdu TB /TD uVub /Vcdu

statistical 210
121

25
111

29
118

25
19

25
110

23
15

excited states 4 2 4 2 4 2
p extrapolation 8 4 10 5 6 3
mq extrapolation 222

114
211
17

211
111

26
16

28
113

24
17

adjustingmQ 3 1 4 2 6 3
HQET matching 10 5 10 5 10 5
a dependence 22

114
21
17

28
117

24
19 5 3

definition of a 9 5 3 2 8 4

total systematic 228
126

214
113

221
126

210
113

219
121

29
111

total ~stat % syst! 229
133

215
117

223
131

211
116

220
123

29
112
ol
lla
in

-

to
in
nt

V

n
tis-
s in

rs
ate
ice

ote

r

where the uncertainties are from statistics, chiral extrap
tion, a dependence, HQET matching, and other misce
neous sources. A more detailed budget of the last uncerta
is given in Table II.

As mentioned above, raising the upper cutpmax increases
the uncertainty. Conversely, loweringpmax decreases the un
certainty. Repeating the full analysis atpmax50.8 GeV, we
find

TB~0.4 GeV,0.8 GeV!50.29420.031
10.063

20.064
10.041

20.006
10.04160.029

60.038 GeV4, ~6.2!

TD~0.4 GeV,0.8 GeV!50.14520.013
10.02660.01620.012

10.02460.014

60.017 GeV4, ~6.3!

and the ratio

TB~0.4 GeV,0.8 GeV!

TD~0.4 GeV,0.8 GeV!
52.0320.10

10.19
20.16

10.2560.1060.20

60.24. ~6.4!
01450
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Table IV shows a budget of systematic errors, similar
Table II. As one can see from comparing the last two lines
Tables II and IV, the total uncertainty is several perce
lower with pmax50.8 GeV.

Finally, we give our results for the form factors. Table
gives the results for form factors in the decayB→p ln.
Listed aref i and f' , which emerge directly from our lattice
calculations, andf 1 and f 0, which appear in the expressio
for the differential rate. In every case the first error is sta
tical and the second adds the systematic uncertaintie
quadrature. Table VI lists the same information forD
→pln. Our final results forf i and f' are obtained atb
55.9, after chiral extrapolation, with the systematic erro
estimated as described in Sec. V. In particular, the estim
of lattice spacing effects uses results from all three latt
spacings. Forp,0.4 GeV our extrapolation off' in the
pion momentum is no longer reliable, so we do not qu
results for it.

The physical form factorsf 1(E) and f 0(E) are obtained
from Eqs. ~2.2! and ~2.3! using the tabulated results fo
f'(E) and f i(E), physical meson masses, and energyE
TABLE V. Form factors with statistical and total systematic errors for the decayB→p ln.

p E q2 f i f' f 1 f 0 p4u f 1u2/E

GeV GeV GeV2 GeV1/2 GeV21/2 GeV3

0.0 0.140 26.41 1.9323
129

228
128 1.1726

118
218
118 0.0

0.1 0.172 26.07 1.8823
128

228
128

0.2 0.244 25.31 1.8523
127

228
128

0.3 0.331 24.39 1.8024
125

227
127

0.4 0.424 23.41 1.7324
123

226
126 1.05218

116
216
116 2.10225

129
232
132 1.0023

113
215
115 0.2726

18

0.5 0.519 22.41 1.6526
121

225
125 0.99214

113
215
115 1.96220

124
229
129 0.9523

112
214
114 0.4629

112

0.6 0.616 21.38 1.5627
120

223
123 0.9529

110
214
114 1.84214

120
227
127 0.8924

110
213
113 0.71210

116

0.7 0.714 20.35 1.4527
118

222
122 0.9125

19
214
114 1.7228

118
226
126 0.8324

110
212
112 1.0029

122

0.8 0.812 19.31 1.3428
117

220
120 0.8624

112
213
113 1.5927

121
224
124 0.7624

110
211
111 1.27211

136

0.9 0.911 18.27 1.2327
117

218
118 0.7326

115
211
111 1.3629

123
220
120 0.7024

19
211
111 1.34217

151

1.0 1.01 17.23 1.1526
116

217
117 0.5926

115
29
19 1.1329

124
217
117 0.6423

19
210
110 1.30235

160
2-14



SEMILEPTONIC DECAYSB→p ln AND D→p ln . . . PHYSICAL REVIEW D 64 014502
TABLE VI. Form factors with statistical and total systematic errors for the decayD→p ln.

p E q2 f i f' f 1 f 0 p4u f 1u2/E

GeV GeV GeV2 GeV1/2 GeV21/2 GeV3

0.0 0.140 2.99 1.3423
119

215
117 1.2922

120
214
117 0.0

0.1 0.172 2.87 1.3322
119

215
117

0.2 0.244 2.60 1.3222
118

214
117

0.3 0.331 2.28 1.3123
117

214
117

0.4 0.424 1.93 1.2824
116

214
116 1.19215

116
213
115 1.56210

117
217
120 1.1424

113
212
115 0.1522

13

0.5 0.519 1.57 1.2125
115

213
116 1.17212

112
213
115 1.4528

114
216
119 1.0824

112
212
114 0.2523

15

0.6 0.616 1.21 1.1226
114

212
115 1.1328

110
212
115 1.3226

112
214
117 1.0125

111
211
113 0.3623

17

0.7 0.714 0.85 1.0426
113

211
114 1.0826

17
212
114 1.1826

110
213
115 0.9625

19
210
112 0.4724

18

0.8 0.812 0.478 0.9926
111

211
113 1.0226

18
211
113 1.0726

19
211
114 0.9525

19
210
112 0.5826

111

0.9 0.911 0.109 0.9525
110

210
112 0.9827

18
211
113 0.9826

19
211
113 0.9425

19
210
112 0.6928

113

0.925 0.935 0 0.9324
113

210
112 0.9527

19
210
112 0.9425

110
210
112 0.9426

110
210
112 0.7129
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2 1p2, for each p5uppu in our set of pion three-

momenta. They are shown in Fig. 11. Tables V and VI a
include the combinationp4u f 1u2/E; for massless final-stat
leptons the differential rates are given by

dGB→p

dp
5uVubu2~2.9328 ps21GeV24!

p4u f 1u2

E
, ~6.5!

dGD→p

dp
5uVcdu2~1.0358 ps21GeV24!

p4u f 1u2

E
. ~6.6!

Other differential distributions can be obtained from the l
ter by changing variables withdp/dE5E/p and dp/dq2

5E/2mBp or E/2mDp. From Eqs.~6.5! and ~6.6! one sees
that the phase-space factorp4 suppresses the rate in the low
momentum region where we cannot quotef 1 .

VII. COMPARISON WITH OTHER RESULTS

In this section we compare our results to recent publis
@19,20# and preliminary@21# work from lattice QCD. The
comparison is apt, because three different methods for tr
ing the heavy quark on the lattice have been employed.
use Wilson fermions with the SW action, normalized to ha
a consistent heavy-quark limit. References@19,20# use Wil-
son fermions~with the SW action and light-quark normaliza
tion conditions! at mQ near and below the charmed qua
mass, and extrapolate up tomb . Reference@21# uses lattice
NRQCD @41# ~with the power-counting of HQET@42#! and,
as we do, calculates the form factors directly at the bott
quark mass.

Figure 12 shows results from Refs.@19,20# together with
ours. ~We do not include results from the JLQCD Collab
ration @21#, because they are still preliminary. We anticipa
that their systematic uncertainties will be similar to ours.
this stage their statistical uncertainties seem surprisin
large.! Within the quoted uncertainties there is broad agr
ment among the three calculations. There are, however, t
noteworthy differences in the analysis of the form facto
01450
o

-

d

at-
e

e

t
ly
-
ee
.

These are the lattice spacings at which the calculations
done, the procedure for chiral extrapolation, and the tre
ment of the heavy quark.

Our results are based on lattice gauge fields at three la
spacings, given in Table I. We find that the lattice-spac
dependence of the form factors is mild~with our treatment of
the heavy quark!, even on a relatively coarse lattice atb
55.7. The results of Refs.@19,20# are both based on only
one set of lattice gauge fields~at b56.2), whose spacing is
slightly finer than any of ours. We believe, therefore, that
lattice spacing effects of the gluons and light quarks are
a serious source of error, at the present overall level of
curacy, in any of the three works.

In our work, the largest uncertainty comes from the chi
extrapolation at fixed pion momentump. As explained in
Sec. V B, this uncertainty arises because the linear and
dratic fits give moderately different results. Referenc
@19,20# do not have enough values of the light quark mass
be able to check whether a term quadratic inmq is needed to
describe their data. Because those works extrapolate at fi
q2, however, it is plausible that the curvature seen in Fig
would go away, and that a linear chiral extrapolation wou
then be adequate.

The interpolation in pion momentum, or energy, is a
other difference. It leads to the apparent difference in
shape of the spectrum in Fig. 12. If we choose the pole fo
suggested~for smallE) by Eqs.~2.4! and~2.5!, the shape of
the spectrum is less humped, though not as flat as the sp
from Refs.@19,20#. In those works a pole Ansatz differen
from Eqs.~2.4! and ~2.5! was used.

The most significant difference in the three calculations
the treatment of the heavy quark. Although the same ac
and similar currents are used, the bare quark mass and
normalization of the current are adjusted differently. T
normalization conditions chosen in Refs.@19,20# are de-
signed for themQa→0 limit, and at finitemQa they leave
systematic uncertainties of order (mQa)2. To reduce these
Refs.@19,20# calculate with the heavy-light meson mass ne
and below 2 GeV and extrapolate up tomB . This procedure
2-15
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leads to their largest quoted uncertainty. The statistical e
increases, as it must in any extrapolation. There are
systematic effects, which are estimated by trying linear a
quadratic fits in 1/mQ . For at least two reasons, this test m
underestimate the systematic uncertainty of the extrap
tion. First, the compatibility of the fits shows only that th
dependence on 1/mQ is smooth in the employed range of th
quark masses. It does not show that the heavy-quark ex
sion is reliable below 2 GeV. This problem is especia
severe for Ref.@19#, which has heavy-light meson masses
low as 1.2 GeV. Second, the lattice artifacts of order (mQa)2

may well be amplified by the extrapolation. This proble
would be especially severe for Ref.@20#, which hasmQa as
high as 0.7.

Our normalization conditions coincide with those abo
as mQa→0. At finite mQa, however, they are chosen t

FIG. 11. Momentum dependence of the form factors with
systematic uncertainties included.~a! f 1 and ~b! f 0. Squares
~circles! denoteB(D) decays. Solid symbols are independent of t
momentum interpolation.
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eliminate lattice artifacts that grow withmQa @11#. This is
made possible by using HQET to match the lattice action
current to continuum QCD@12#, as reviewed in Sec. II. The
advantage is that, as with lattice NRQCD@41,21#, the calcu-
lations can be done directly atmQ5mb , without an extrapo-
lation in 1/mQ . Of course, we must assume that HQET
valid for theb quark, but that is safer than assuming that it
valid for mQ;1–2 GeV.

A feature of our approach is that it leads to a somew
complicated pattern of heavy-quark discretization erro
There is, however, a corresponding pattern of systematic
certainties in the results of Refs.@19,20#. In particular, there
are corrections to the normalization of orderas(mQa)2 and
of order (mQa)2LQCD/mQ5mQaLQCDa in the 1/mQ term of
the heavy-quark expansion. Estimates of the magnitude
these errors—before or after 1/mQ extrapolation—are absen
from Refs.@19,20#. ~The corresponding errors in our work
which we address quantitatively in Sec. V D, are of orderas

2

in the normalization and of orderasLQCD/mb in the 1/mQ
term.!

The calculation of semileptonic form factors forB
→p ln, and relatedD decays, has also been carried out w
quark models and QCD sum rules. At present the uncert
ties from lattice QCD are comparable to those based
light-cone sum rules@43,44#. The latter have the advantag
that they are most applicable for energetic pions, so~for B
decay! they overlap better with the distribution of events
an experiment. On the other hand, it seems difficult to red
the uncertainties from sum rules down to the level of a f
percent, which will be needed to match the precision of thB
factories. As discussed in the following section, however,
uncertainties of the form factors are reducible with latti
QCD.

VIII. CONCLUSIONS

In this paper we have presented results for the form f
tors and differential decay rates for the semileptonic dec

l

FIG. 12. Comparison of the differential decay rate~at fixed lat-
tice spacing! vs E: open diamonds@19#, open triangles@20#, and
solid squares~this work!.
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TABLE VII. Strategies for reducing statistical and systematic uncertainties of semileptonic form fac

Uncertainty Strategy

statistical more lattice gauge fields; bettermq extrapolation
excited states longer time extent; better operators
p extrapolation larger finite volume; better statistics
mq extrapolation better statistics; more values ofmq ; fixed-E extrapolation
adjustingmQ unquench
HQET matching match up toasLQCD/mQ ,(LQCD/mQ)2

a dependence more lattices
definition of a unquench
quenching unquench
%
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B→p ln and D→p ln. The total uncertainties are 30–35
~for the rate! and, hence, would yield a theoretical unce
tainty to the CKM matrix of 15–18 %. We have attempted
complete analysis of the systematic uncertainties, at l
within the quenched approximation. A rough estimate of
additional error from quenching is 10–20 %~on the rate!.

A more important, though less specific, result of this p
per is a demonstration that, within the quenched approxi
tion, all uncertainties are controllable. Table VII gives
sketch of what is needed to reduce all sources of uncerta

In almost every case, the remedy is simply more compu
time. That, in fact, is promising, since the computer used
this work is already ten years old. Given the experience
the CP-PACS@16,39# and MILC @40# Collaborations with
heavy-light decay constants, it should be feasible to rep
our analysis on a modern supercomputer with unquenc
gauge fields. In summary, there do not appear to be
technical roadblocks to reducing the uncertainties in lat
calculations to a few percent or better, over the course of
present round of experiments.

In the case of the uncertainty labeled ‘‘HQET matching
better calculations of the various short-distance coefficie
introduced in Sec. II will be needed to be sure that the to
uncertainty is only a few percent. This is not a computatio
problem but a theoretical one, which arises also in calcu
tions with lattice NRQCD. The alternative would be to r
duce the lattice spacing dramatically, so thatmQa and
LQCD/mQ can be simultaneously small. But, since compu
requirements scale asa21 to a high power, that would seem
to be a long way off. One would also have to sacrifice so
other improvements, such as removing the quenched
proximation.

For semileptonic decays ofB or D to vector mesons suc
ys
.
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asr andv more study is needed. The vector mesons de
hadronically, and in the quenched approximation these
cays are absent. Even in unquenched calculations, howe
there are still issues that may need explicit analysis. In p
ticular, if the calculations are done at largish light qua
masses, the decay may be kinematically forbidden. Beca
there is not yet much experience with unquenched calc
tions, it is not yet clear whether one can smoothly extrapo
vector meson properties from this region to the physical m
son masses. It is, thus, hard to anticipate how well latt
QCD will do here. This is unfortunate, because the exp
mental errors for semileptonic decays into vector mesons
expected to be somewhat smaller.

In any case, semileptonic decays ofB mesons ultimately
will provide one of the most accurate constraints on the u
tarity triangle, through a determination ofuVubu. Indeed, if
new physics lurks behindB0-B̄0 mixing, it is essential to
have constraints on the CKM matrix through charged-curr
interactions likeb→c andb→u.
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