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We present a lattice QCD calculation of the form factors and differential decay rates for semileptonic decays
of the heavy-light mesonB andD to the final staterl v. The results are obtained with three methodological
improvements over previous lattice calculations: a matching procedure that reduces heavy-quark lattice arti-
facts, the first study of lattice-spacing dependence, and the introduction of kinematic cuts to reduce model
dependence. We show that the main systematics are contro(latlen the quenched approximatipand
outline how the calculations could be improved to aid current experiments in the determinaf\gp|oand
|Vcd|-
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I. INTRODUCTION whereE=p_-pg/mg is the energy of the pion in the rest
Processes involving weak decaysBbandD mesons are frame of theB meson, angh= \E?— mfT is the magnitude of
of great interest, because they yield information on the morghe corresponding three-momentunp,_(and pg are four-
poorly known elements of the Cabibbo-Kobayashi-Maskawanomenta. ForD — l v, replaceV,, with V.4, mg with
(CKM) matrix. Semileptonic decays have traditionally beean, and pg with pp.) The non-perturbative form factor
used to determine the CKM matrix, for exampl®,q  f, (E) parametrizes the hadronic matrix element of the

(through nucleaB-decay, Vs (Ki3), Vep (B—=D™)Iv),  heavy-to-light transition,
andV,, (b—ulv) [1]. In the first three cases flavor sym-

metries (isospin, SW3) flavor, and heavy quark symmetry, mz—m2 |
respectively greatly simplify one’s theoretical understand-  (7(p,)|V*|B(pg))=f.(E)| ps+ P~ ———0a
ing of the hadronic transition matrix elements. In the sym- a
metry limit, and at zero recoil, current conservation ensures 2 2
X . mg—m;
that the matrix elements are exactly normalized. Even when +fo(E) ————g*, (1.2)

estimates of the deviations from the symmetry limit are dif- 2

ficult to calculate reliably, the deviations tend to be small.
Thus, the overall theoretical uncertainty on the decay procesghere V* is the chargedb—u vector current, and
is under control. Given good experimental measurements$]=Pg— P iS the momentum transferred to the leptons. For
this procedure then determines the associated element of th@asons that are made clear below, we prefer to consider
CKM matrix. the form factorsf, and f, as functions ofE. This kine-

For semileptonic decays of charmedteflavored mesons matic variable is related to the more common choice
into light mesons there are no flavor symmetries to constraig®>=m3+mZ—2mgE. The contribution off, to the decay
the hadronic matrix elements. As a result, the errorf\qg| rate is suppressed by a facton(mg)? so we shall present
are currently dominated by theoretical uncertainties and arthe rate given in Eq(l.1). In the decayB— 77v both form
not well known[1]. For the same reason the best value forfactors are important, however, so both are tabulated below,
|Ve4l, at this time, comes from neutrino production of charmin Sec. VI.
off valenced quarks(with the cross section from perturba-  The first determinations ¢¥%,| came from the rate of the
tive QCD), rather than from the semileptoniz decays. In inclusive semileptonic decag— Xl v. In general, inclusive
this paper we take a step towards reducing the theoreticaftes can be described model-independently through an op-
uncertainty by using lattice QCD to calculate the form fac-erator product expansid®PE), leading to a double series in
tors for the decay8— wlv andD— mlv. Although our re-  Agcp/my, and ag(my,) [2]. Thus, they are subject to non-
sults are in the quenched approximation, we introduce sewperturbative and perturbative uncertainties. In particular, one
eral methodological improvements that carry over to fullrequires the quantitied, X\, and\,, which are defined in
QCD. Moreover, this work is the first to StUdy the lattice- the heavy_quark effective theo}y]’he huge charm back-
spacing dependence of the form factors. ground inB— Xl » must be eliminated by imposing a cut

There is a considerable ongoing experimental effort orgjther on the charged lepton energl}, on the hadronic in-
this SUbjeCt, which will lead to measurements of the diﬁer'variant masiS]’ or on q2 [6] Such cuts narrow the kine-

ential decay rates. F@— =l v,

2 2 4 2
\V/ _
Z_F: GF| ”3b| 2Mgp |Ef+(E)| (1.1 1A new method for calculating\, X\;, and\, can be found in
p 24 Ref.[3].
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matic acceptance and may, therefore, increase sensitivity to Second, there are cutoff effects of ordejka and (ka)?
violations of quark-hadron duality, which is hard to quantify. from the light quark, wheré is the momentum of the light
The differential rates of exclusive decays offer an alternaquarks inside the mesons. For light or heavy-light hadrons at
tive route to|V,p| and|V.q. This method is limited, how- rest, the momentunk~Aqcp, so these effects are of the
ever, by uncertainties in the form factors, suchfagE) in same kind as some of those considered above. In the semi-
Eq. (1.1). In the case oD decays, theE dependence of the leptonic decay, however, one has a light daughter hadron
rate has been measured only @Kl v [7]. The FOCUS with non-zero recoil momentum, which gives rise to lattice
Collaboration[8] will improve that measurement and also SPacing errors wittk=|p,|. To study this systematic error,
should be able to measure tBalependence in the Cabibbo- we carry out the calculation at three different lattice spac-
suppressed modé — lv. First measurements of the ings, and pheck th_e dependence of our resulta.oe can
branching ratios foil8—s ml» and B— ol » have been pre- then restrict our final results to small enough recoil mo-
sented b?/ the CLEO Collaboratid8] 'Il.ihe form factorsaor menta, so that discretization effects remain under control.
all these processes are calculable With lattice QCD. Here Wou-r test of th? lattice spacing .dependence 's the first in a
P lculating the f ¢ Bor 7] ' g fattice calculation of semileptonic form factors.
cpnpentrate on calculating t € orm_ac_:tors lv (an Third, we do not use models to extend our kinematic
similar D decay$. The branching ratio is not as large as for

) > reach to high pion energgi.e., low g?), in contrast to pre-
B—plv, and there are other experimental difficultldd].  \jous work [18—20. The extrapolation would rely on the

On the other hand, with vector mesons several form factorgorst of our data: not only do discretization errors increase
enter into the decay rate. Furthermore, one might expeGkith p_a, but statistical errors do too. Therefore, we quote
greater uncertainties for the (and w and ¢) from the  the differential decay rate over the range where systematic
quenched approximation, because of their non-zero hadronigncertainties from the lattice are under control. In particular,
widths. we define

With lattice QCD a very pressing issue is to understand
the systematic uncertainties. Indeed, an important justifica-
tion for using the quenched approximation is that the savings
in computer time allow us to study the other systematic un-
certainties in detail. To control systematic errors we applyThe upper limit is chosen to rein in the discretization and
three main methodo'ogical improvements in th|S paper: Wétatistical Uncertainties. The |OW9I’ ||m|t cuts out a regiOI’l
normalize the heavy-quark action and current in a way thayvhere extrapolations ip and light quark mass are difficult.
reduces heavy-quark discretization effects, we have three difthen, assuming a massless charged lepton, one can combine
ferent lattice spacings to study any remaining discretizatiorf g With experimental measurements to determine the CKM
effects, and we introduce kinematic cuts to avoid model dematrix via
pendence. 3

First, let us consider the discretization for the heavy V| 2= 127 1 Pmax deBﬂw
quark. At the lattice spacings, currently in use, the large ub Géms Ta(PminsPmax) J pyi dp
mass of theb quark means that,a>1. To control lattice
spacing effects, we adopt the approach of R&t], which  and, similarly,
takes an improved action for Wilson fermions, but adjusts
the couplings in the action and the normalization of the cur- ) 1273 1 Pmax  dl'p_
rent so that the leading and next-to-leading terms in the Vel :sz To(Pmin s Prmax) J o dp dp 19

. gMp ' D\Fmin:Fma Pmin

heavy-quark effective theofHQET) are correct. By apply-
ing HQET directly to lattice observables, one can show thaipyr final result, showing the integrand of Ed.3) for B and
the heavy-light meson has small discretization eff¢t®, p_, 7|y, is in Fig. 1. The shaded regions indicate the range

i 2 . . .
in our case of ordewsA ocp/Mq , @sAqep®, (Aqep/MQ)™s of pion momentum over which we can control the uncertain-
and (AQCDa)Z. These normalization conditions allow us 10 ties. Integrating over this region, we find

perform our calculations directly at the physical masg

=m,. This approach has already been successfully applied Tg(0.4 GeV,1.0 Gey=0.55"322 %% 339+0.06

in calculations ofB and D meson decay constants by four

group(s[)l3—1€i and in calculations of the form factors for +0.09 GeV, (1.6
B—D™)lv at zero recoil[17]. Work on B—«lv by two
other groups[18—2Q with the same actior(but different To(0-4 GeV,0.925 Gey=0.23"555" 405" 0.0+ 0.03

lattice currentshas used normalization conditions designed +0.03 GeVt, (1.7)

for light quarks, which suffer from errors of order;mpa

[18] or (mpa)? [19,20. To reduce these effects their calcu- where the first uncertainty is statistical, and following four
lations have been carried out with pseudoscalar mesoare systematic and come from chiral extrapolation, lattice
masses 1.2 Ge¥mp<2.0 GeV [19] or 1.7 Ge\<mp  spacing dependence, matching to continuum QCD, and the
<2.6 GeV[20]. We have not been persuaded that HQETsum in quadrature of several other uncertainties. The last
can be used to guide the extrapolation from there back up timcludes an estimate of the uncertainty from converting lat-
mg=5.3 GeV. tice units to physical units, which partly reflects uncertainty

Pmax
TB(pmm,pmax)=fp CdppflfuB)IFE. (13

, (1.9
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2.5 T

This paper is organized as follows. Section Il contains a
discussion of the lattice action and vector current for heavy
quarks. The lattice calculation of the matrix elements is de-
scribed in Sec. lll. Section IV describes an interpolation in
pion three-momentum and an extrapolation in light quark
mass, which are needed to obtain the form factors. The
former is a special feature of these decays; it interacts with
the chiral limit, and together these lead to the cuts given in
Egs.(1.6) and(1.7). We discuss quantitatively the systematic
errors onTg and Ty in Sec. V. The analysis oB and D
decays is essentially the same. Results for the form factors
are tabulated in Sec. VI. Section VII compares our methods
and results to previou@nd ongoingwork [19—21]. Section
VIl concludes.

Preliminary results of this analysis have been presented in
Refs.[22,23. Phenomenological implications & decays,
especially for comparindd — #lv and D—Klv as in Ref.
[24], will appear in another publication.

-———-
-———

-
(9]

p'If (E)/E (GeV)

o
n

1.4 1 II. CONTINUUM AND LATTICE MATRIX ELEMENTS

12 L i The continuum matrix element of the flavor-changing
vector current)*=ui y*b, is parametrized by two indepen-
dent form factors, for example those in E.2). In consid-

ering the chiral and heavy-quark limits, it is more convenient
to write the matrix element as

(m(p)|[V*|B(pe))= V2ms[v“f|\(E)+pi‘fl(E)],(z )
N

p'If (E)’/E (GeV)

wherev = pg/mg is the four-velocity of theB, andp, =p,,
—Ev is the pion momentum orthogonal #o The traditional
form factorsf, andf, are related td andf, by

0 0.2 0.4 0.6 0.8 1 1.2 f (BE)=02mg) Y4 £ (E)+(mg—E)f (E)], (2.2
o (GeV) (E)=(2mg) " "f(E)+(mg—E)f.(E)], (2.2
FIG. 1. The differential decay ratdwithout momentum- V2m

independent factoysas a function ofp=|p,/|, for (8 B—=lv and
(b) D—arlv. The solid error bars show the statistical uncertainty

2_
B
and the dotted ones show the sum in quadrature of statistical and +(E2—m?)f (E)]. (2.3
systematic uncertainties.

fo(E)= = [(mg—E)fy(E)
m m

m

At g?=0 it follows from these formulas thdt, = f,, which
from the quenched approximation. In addition to these unis necessary from Eq1.2).
certainties, which are quantifiable within the quenched ap- There are several good reasons to focus the numerical
proximation, there may be an additional error from quench-analysis onf; and f, . First, consideration of chiral and
ing as large as 10—20 percent ©g andTp . heavy-quark symmetry yields the expectation far,, E
At low momenta the experimental rates go to zero, so no—~0
information is lost by making the cut gt,,=0.4 GeV. For

semileptonicD decays the high-momentum cut is already at (o fgvmg 0.4
the kinematic endpoint i3 —m?2)/2mp=0.925 GeV. A 1= T (2.9

high-momentum cut ap,,,,=1.0 GeV is, however, an ob-

stacle to determininf)/,,p|, since semileptoniB decays usu- £ e e om

ally produce harder pions. Although the cut does reduce the f=— B B (2.5
overlap between our lattice calculation and experimental re- \/Efw mé* —q?

sults, the results presented here are model indepe(aiesutt

from quenching As experimental and lattice results im- through order Ih, in the heavy-quark expansi¢5]. Here
prove over the next several years, the range of pion momerfy, fg«, and f, are decay constants, arghg«, is the
tum should widen and can be selected to optimize the comB-B* -7 coupling. Although we do not use these results to
bined experimental and theoretical uncertainty. constrain the needed chiral extrapolation of our data, they do
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show us thaf andf, behave differently am . is reduced to where the symbokF= implies equality of matrix elements,
its physical value(Recall g?=m3+m?2—2mgE.) Further- andq is a relativistic (continuum anti-quark field. At the
more,f; andf, have a simple description in the heavy-quarktree level 7,'5“: 1, g'\'ﬁ‘t=0. Also, further dimension-four op-
effective theory[25], so they are natural quantities to study erators, whose coefficients vanish at the tree level, are omit-
in the lattice method of Ref$11,12, or when using lattice ted from the right-hand side of E¢R.9). This description is

nonrelativistic QCD(NRQCD) [21]. Finally, they emerge in complete analogy with that for the continuum current,
directly from the lattice calculation, so it is simpler to ana- namely,

lyze them separately, forming the linear combinations in
Egs.(2.2 and(2.3) at the end. _ _ B.qi y“D, h

For the light quarks we use the Sheikholeslami-Wohlert V*=(7y+{y)v“ah+pvaiyih——— ——+.-..
(SW) action[26], with the customary normalization condi- (2.10
tions for myja—0. The SW action has an extra coupling ’
Csw, sometimes called the “clover” coupling, which can be Indeed, the HQET operators are the same. On the other hand,
adjusted to reduce the leading lattice-spacing effect of Wilthe radiative corrections to the short-distance coefficients in
son fermions. In practice, we adjustsy, according to Eqgs.(2.9) and Eqs(2.10 differ, because the lattice modifies
tadpole-improved, tree-level perturbation thef2y], so the the physics at short distances.
leading light-quark cutoff effect is of ordergka. By studying the form factors in HQET, as in R¢R5],

We also use the SW action for the heavy quark, but itsone can deduce how to compensate for the mismatch be-
two free parameters, the bare masg and clover coupling tween short-distance coefficientg® and ¢ for the lat-

Csw, are adjusted to maintain good behavior in the heavytice and 7, and ¢y for the continuum. HQET matrix ele-
guark limit[11]. This goes as follows: on-shell lattice matrix ments have form factors

elements can be described by a version of HQEZ], with

effective Lagrangiariin the rest framp (m|gh|B)=¢(E), (2.11)
— hD*h hix-Bh qi y*h|B)=p*¢, (E), 2.1
£HQET:m1hh+ " I 2.6 <7T|q YL | )=pi e (E) (212
2m, 2mg

so, leaving aside the dimension-four operaﬁwﬂmlh for

where h is the heavy-quark field of HQET, andl is the = NOW:

chromomagnetic field. The “massesii;, m,, andmg are f _
. - E)= E 2.1

short-distance coefficients; they dependnapandcsy, (and I(B)=nve(E), 213

the gauge coupling Fortunately, matrix elements are com- fFE)=(mo+ E 21

pletely independent ah, [12], so we adjustm, andcg, to HEB)=(vtiveu(B). 219

tunem, andm; to theb (or ¢) quark. In practice, we tune By the same reasoning, form factors calculated with the lat-

m, non-perturbatively, using the quarkonium spectra, andice currentV satisfy

mp with the estimate of tadpole-improved, tree-level pertur-

bation theory[27]. f(E) = n'e|(E), (2.19
The lattice current is constructed according to the same
principles. We distinguish the lattice currévifrom its con- fE)= (734 (¢, (E). (2.16

tinuum counterpar¥ and take
Up to lattice artifacts of the light degrees of freedom the

. — . HQET form factorse| and ¢, are the same in Eq$2.13
M=/ M
v ZywZyooW iy Wy @7 and (2.14 and in Egs(2.15 and(2.16. Thus,

where the rotated fielfiL1] fH(E)szHfff“(E), (2.17)
Vo=[1+ad,y Dty (2.8 fL(E)=py, FHE), (2.18

and ¢ is the lattice quark fieldd=u,b) in the SW action.
Here D, is the symmetric, nearest-neighbor, covariant dif-
ference operator. In E@2.7) the factorsZ,,qq, q=u,b, nor-
malize the flavor-conserving currents. In practice, they ar
computed non-perturbatively.

Matching the current/* to HQET requires further short-
distance coefficients:

where py, = ny/ 7\, py, =(nv+ )/ (m'+ ). Because
these factors arise from short distances, in practice we com-
éaute them in perturbation theory to one loop. We find these
Short-distance corrections to be very small.
Finally, the free parametet; in Eq.(2.8) can be adjusted
to tune 1M to B;/mq. In the present calculations, we ad-
justd, with the estimate of tadpole-improved, tree-level per-
— turbation theory, as explained in R¢L1].
VA= ( lat g'a‘)v“_th lal ity — qiy*D h +... With these normalizat.ion .conditions the Igading term in
v ey ATy alyL 2m, ’ the heavy-quark expansion is correctly obtained, up to ne-
(2.9 glected higher-order corrections WH andpvl. The associ-
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ated error should be much smaller than our other uncertairfor several values op, directly from fitting the lattice cor-
ties, because most of the short-distance normalization igelation functions to the time dependence given in Egs.
handled non-perturbatively, through the factgZyuuZyoo.  (2.20 and (2.22. The normalization factor&,us and Zybb
Similarly, the 1fmg term in the heavy-quark expansion is are computed from zero-momentum, flavor-conserving cor-
correctly obtained, up to neglected loop correctionsd@,  relation functions. The radiative correction factgrg ap-
and d,, and to dimension-four operators neglected in Eqg.pearing in Eqs(2.17) and(2.18 are computed with pertur-
(2.9). Here the associated error depends roga. When bation theory. These ingredients are combined to form
mea>1 it is formally of order asAqcp/Mg, but when

mpa<1 it is formally of _orderasAQCDa. In the work re- f”(E):pV”\/Zvuuzvbb\/ZEﬂ.F”(p), (2.2
ported here, such corrections are smaller than, or comparable
to, other uncertainties.

In lattice QCD the required matrix elements and thence fL(E)=pv, VZyuZyooV2E-aF (P), (2.29

the form factors are calculated from correlation functions. In

particular, the three-point correlation function for tBe>#  with E=E_. From the calculated values pfwe then inter-
transition is polate to a fiducial set of momenta. The form factbrand

f, are extrapolated to the physical light quark mass. With the
light quark corresponding to strange we check also for lattice
spacing effects. Finally, the combinatioris and f, are

. formed from the extrapolatefi andf; with Egs.(2.2) and
><‘I’byﬂ‘Pu(y,ts)OL(O,tiHO% (2.3) and physical meson masses.

(2.19

whereOg and O, are interpolating operators for tieand
mesons. In the limit of large time separations, the correlatio
function becomes

CS)(p,k,tf L) =2, e P e kRY(0]O(x,ty)
Xy

lll. LATTICE CALCULATION

This work uses three ensembles of lattice gauge field con-
rfigurations, which have been used in previous work on
heavy-light decay constanit&8,14], light-quark masse9],
and quarkonig30]. The quark propagators are the same as in

COp.kt t t'):21/221/2<B(k)|‘1’b7ﬂ‘1’u|W(p)> Ref. [14], but we now use 200 instead of 100 configurations
p ARSI B~ \/Z_IEB\/Z_E, on the finest latticdwith 8=6.1). The input parameters for
these fields are in Table I, together with some elementary
Xe Enlts e Ealt=td 4. .. output parameters.
(2.20 The quark propagators are computed from the

Sheikholeslami-Wohlert action, which includes a dimension-

whereEg(E,) is the energy of 8() meson with momen- five interactiqn with couplingcs\,!.3 For heavy and light
tum k(p). The energies and the external line factgisand ~ duarks we adjustsyy to the valueu, * suggested by tadpole-

Zg can be calculated from two-point correlation functions improved, tree-level perturbation theory, and the so-called
mean linkug is calculated from the plaquette. The hopping

_ parameterx is related to the bare quark mass. For bottom

CO(pt)=2> e PX0|0u(x,)O(0,0/0), (2.2)  and charmed quarks, and, are adjusted so that the spin-

X averaged kinetic mass of the corresponding 1S quarkonium
states match experimental measurements. For light quarks,
ks and k4 are fixed from light meson spectroscopy, using

2.22 leading-order chiral perturbation theory and the experimental

' kaon and pion masses. We also list the tadpole-improved

whereH is 7 or B, and for largdt| one has

COpt)y=Z e Bultl4. ...

bare quark mass in GeV,

By _time reversal (B(k)|‘l_’b7#‘1’u|77(p)>

=(m(p)|¥,y,¥p|B(K)), so in the rest of this paper we do 1/1 1

not distinguish the two matrix elements. mea= ol 2x  Zrgn)’ (3.9
cr

To summarize this section, let us review the steps needed

'E)o;):]fém the physical form factoffs. andf. First we obtain where the critical quark hopping parameter, makes the

pion massless. Although this mass is just a bare mass, it
— shows that the heavy quarks are heavy, and the light quarks
Fi(p)= (B(O)| Wy ysW | m(p)) (223 light
1P V2mg2E,, ' ' We calculate the three-point function in E@.20 with
degenerate spectator and daughter light quarks. At each lat-
tice spacing we have propagators corresponding to the

_ 1 (BO)|¥py W 7(p) strange quark. We refer to this decayBs— 74l v, writing
Fo( = : (2.29 = , , )
Pj V2mgy2E 7, for the pseudoscalass state in analogy with quarkonium.
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TABLE I. Input parameters to the numerical lattice calculations, together with some elementary output

parameters. Error bars on the outputs refer to the last(sligit

PHYSICAL REVIEW D 64 014502

B=6lg3 6.1 5.9 5.7
Volume, N3x N¢ 243%48 16x 32 12x 24
Configurations 200 350 300
Cow 1.46 1.50 1.57
Ky, Mg (GeV) 0.0990, 4.31 0.0930, 3.73 0.0890, 2.87
ke, My (GeV) 0.1260, 1.07 0.1227, 1.05 0.1190, 0.96
ks, My (GeV) 0.1373, 0.092 0.1385, 0.091 0.1405, 0.093
Kkq, My (GeV) 0.1382, 0.107
0.1388, 0.075 0.1410, 0.076
0.1391, 0.059 0.1415, 0.059
0.1394, 0.043 0.1419, 0.045
Elementary outputs
Kerit 0.138475 0.140213 0.143273
ap s (Gev) 2.641 1.80°% 1.16'3
a; ' (Gev) 24071 1.47°8 0.89"2
2mINga (GeV) 0.686 0.707 0.607
Uo 0.8816 0.8734 0.8608
ay(2/a) 0.171 0.192 0.227

At B=5.9 and 5.7 we have additional light quark propaga-are propagated through later stages of the analysis.
tors, with hopping parametet,, covering the range mq The right-hand sides of Eq&2.20 and(2.22) are the first
=mg=m;. term in a series, with another term for each radial excitation.
The lattice spacing in physical units must be set through We reduce contamination from these states two ways. First,
some fiducial observable. As a rig0] we prefer the spin- We keep the three points of the three-point function well
averaged 1P-1S splitting of charmoniutim, ;. For com-  Separated inEuclidean time. The light meson creation op-
parison we give the value af ! defined through the pion eratorO; is always at;j=0 and the heavy-light meson an-
decay constant... The discrepancy means thamyp.;d/f . nihilation operator at;=N+{/2. We then vary the timg of

does not agree with experiment; this is thought to be Iargel)}he current and the rangket of time-slices kept in the fit, to

S ; ; e when the lowest-lying states dominate. The final choice
g:z Tg éli%:ig%hed approximation, because it remains ev is made by demanding thgf/d.o.f. is acceptable and, then,

The renormalized strong coupling,(2/a) at scale 24 is minimizing the statistical errors while maximizinyt. For
. . g coupiing,{c/a) & acceptable fits we havesSAt<6. The extraction of the de-
determined as in Ref27]. It is an ingredient in the calcula-

. f the short-di ffici d . sired matrix elements is shown in Fig. 2 for several light-
tion of the short-distance coefficients, and py,, IO~ ye50n momenta and typical quark mass. The best fit and
duced in Egs(2.17) and(2.18.

error envelope are indicated by the solid and dotted lines

In the three-point functions the heavy-light meson is atrespectively. The second way to isolate the lowest-lying
rest, while the momentum of the light daughter meson isstates is to choose interpolating operat@g,and O, in Eq.
varied. In a finite volume only discrete values of spatial mo-(2.19, to have a large overlap with the desired state. This is
mentum are accessible. We compute the three-point functiodone by smearing out the quark and anti-quark with 1S and
with  p,=2mwn/Nga, for integer momentum n  2S Coulomb-gauge wave functions, as in R8f]. We also
€{(0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0)0) As one can examine point-like, ors function, operators, but for light
see in Table |, one unit of momentum is about 0.7 GeV in themesons at higher momenta we find that éh&urce does not
boxes used here, so our calculations cover the rangp 0 yield good plateaud32]. The different combinations of
<1.5 GeV. sources and sinks allow us to check explicitly for excited

We obtain the energies, matrix elements, éfffactors  state contributions by comparing results from fits with dif-
by fitting Egs.(2.20 and (2.22 with a y?>-minimization al-  ferent smearing functions. Figure 3 compares results for the
gorithm. Statistical errors, including the full correlation ma- matrix eIemem(Bs|VL|775) atn=(1,1,0), obtained from 1S
trix in x?, are determined from 1000 bootstrap samples fosource and sink and from 1S source for the light meson and
each best fit. The bootstrap procedure is repeated with thg sink for theB. The 1S-1S correlation functions yield the
same sequence for all quark mass combinations and maieanest matrix elements, so we take our central values from
menta, and in this way the fully correlated statistical errorsthem.
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FIG. 2. Matrix elements-; (squaresandF, (diamond$ at 3=5.9, for a light strange quark and a heavy bottom quark. The integer
momenta aréa) n=(0,0,0), (b) n=(1,0,0), (c) n=(1,1,0), andd) n=(1,1,1).

IV. ANALYSIS OF FORM FACTORS Consequently, neither extrapolation introduces a model. We
also have checked that the order in which the momentum and
chiral extrapolations are done has no significant effect on the
final result.

From the exponential fits to three-point correlation func-
tions described in Sec. lll we have the matrix element
(m4(P)|V#|B4(0)), for quark massem,=m; and final-state
momentalp|<1.4 GeV. We must now extend these data to
lower quark mass, until the mass of tlyg pseudoscalar
reaches the pion mass. Furthermore, the more important
form factor  f,(E), which is essentially Ultlmately, we Wfint to compare res_ults at the three
<77q(p)|vj|Bq(O)>/pj, is directly calculated only for non- d_|fferent lattice spacings. Thereforg, we interpolate the lat-
zero three-momentum. In the finite volume used here, théce data to a fixed set of physical momenta. To start,
lowest non-zero momentum is already 0.7 GeV, and weve convert the lattice data to physical units usiag ;.
would like to extend to lower values, calling for another Figure 4 shows the underlying data f&,— n¢v at g8
extrapolation. =5.9 and 6.1, along with interpolated points. The vertical

The extrapolation in quark mass can be guided by chira(horizonta) error bars on the underlying data come from the
perturbation theory. To extrapolate in momentum, howeverstatistical uncertainty in FH,L(a‘l). We interpolate
there is no firm theoretical guide, so we must exercise cauogf a *? (logfia*? linearly (quadratically in p? to |p|
tion. Fortunately, this extrapolation is problematic only in €{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0;1GeV. This
the kinematic regime where phase space suppresses the ratet forms the basis of all further analysis. The statistical error

A. Momentum interpolation and extrapolation
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FIG. 3. Isolation of the lowest-lying states with different smear-
ing functions, forn=(1,1,0) and quark masses as in Fig. 2. The
solid symbols have the standard 1S source and 1S sink; the ope
symbols have a-function sink for theB;.

15
bars of the interpolated points are vertical only, because bott I I
statistical errors are propagated through the interpolation. LT + = I

We must extend the interpolation to an extrapolation to ™ 1 s
obtain an estimate of, for p<0.7 GeV. As the pion be- '© EE;¥
comes softer and lighter one expects from Ef5) that the - *z —
dependence ol (and hence) is sensitive to the Ansatz for gm I Forie
extrapolation. TheB* pole givesf, a peak at low momen- 05 |
tum, and the height of the peak rises as the quark mass de
creases. This shape is hard to capture, as is shown in Fig. !
unless the fit is constrained to it. For-0.7 GeV the pole fit
agrees perfectly with the method described above. Bptisis °5 0.4 ) 0.8 , 12 16
decreased into the region of extrapolation, the two forms p (GeV")
start to deviate. Above 0.4 GeV the agreement is still good,
so we make a cut here. For smaller momenta phase space FIG. 4. Momentum interpolatiofand extrapolationof f;a
suppresses the number of events, so this cut has no serio{f§uaresand fﬂ'?rm (diamonds for Bs— 74l v at (&) B=5.9, (b)
ramifications. FoD decays the situation is much the same,_Bzﬁ'l' The solid points are the underlying data; the asterisks are
as shown in Fig. 6. Therefore, we impose the same lowl_nterpolated.
momentum cut in this case. Other functional forms, such as

rational, do not make much difference imdIl'/dp ) . .
«p|f,|%E, once the cut ap,,,=0.4 GeV is imposed. Following the momentum interpolation, the form factors

At high momentum there are other difficulties. The f| @ndf, at3=57 and 5.9 are extrapolated to the chiral

signal-to-noise ratio of the three-point function deteriorates!Mit at fixed momentum, guided by chiral perturbation

. _ theory. From Eqgs(2.4) and(2.5) one can see that the chiral
For the highest momentunn—(2,0.0), we cannot always y.p.uior off, andf, should be very different. In particular,

extract a convincing matrix element: in some cases the pla: . .
g P afH does not contain B* pole, at least not at the leading order

tgauAt Is just 2 t|me-sl!ces, and thrge-pomt functions with in the chiral expansion. In the form factors, dependence on
different sources and sinks do not yield the same value fo

. . . lhe light pseudoscalar mass enters both thram@hand E.
the mat_rlx element. We cannt_)t include these data in the iNGith our momentum cutp>0.4 GeV, and our light meson
terpolation. For the second-highest momenturs,(1,1,1),

. . masses, 0.45 Ge¥m, <0.74 GeV, the dependence Bfon
we cannot extract the matrix elements at lightgy, so sta- q

tistical errors blow up in the chiral extrapolation. We there-P remains smaoth, so we try fits of the form

fore place a cut ah=(1,1,0), vyhi;h corresponds 0 . f|..=A+Bm+Cnm?, (4.2
=1.0 GeV. Indeed, our uncertainties would be smaller with

a lower upper cut, at the cost of reducing the overlap with thavhere m=log(1+mya). We compare quadratic fits with
experimental data further still. floating C to linear ones with fixe@=0. The difference in

+1/2

B. Chiral extrapolation
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the chiral limit of these different fits is the origin of our
greatest systematic uncertainty.
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FIG. 6. Momentum interpolationland extrapolation at 8
=5.9, forD4— 74l v and(a) the heaviest of our light quarks, with
kq=0.1382;(b) the lightest of the light quarks, witk,=0.1394.

0.4 Ge\=p<1.0 GeV, (5.1

It would be desirable to have quark propagators at lighter

quark masses to achieve better control on the chiral extrapQynere p=

lation. The computer time would increase substantially,
ever, and the obstacle of exceptional configurations woul
have to be overcome, for example as in R&8|.

We note that whemp=0 (or p<m,,) it would be better
[34] to carry out the chiral extrapolation at fix&gjlinstead of
fixed p. With p>0.4 GeV, however, the fixelt extrapola-

tion is probably not essential, although it may reduce the

uncertainty from the chiral extrapolation. We shall investi-
gate this issue elsewhere.

V. SYSTEMATIC ERRORS

|p.| is the pion’'s three-momentum in the rest

hoWame of theB or D. Matrix elements with higher momentum
%re not estimated reliably, and at lower momentum the chiral

extrapolation used is no longer good. In this section we ana-
lyze the systematic uncertainties quantitatively, focusing on
the partially integrated rate¥5(0.4 GeV,1.0 GeV) and
T5(0.4 GeV,0.925 GeV), defined in Eq1.3), and the
CKM matrix obtained from Eq91.4) and(1.5. A summary

of this analysis is given in Table II.

The statistical error is estimated with the bootstrap
method, drawing 1000 samples for each fit. The bootstrap
propagates the statistical uncertainty, including correlations,
through the interpolation in light meson momentum and ex-

As discussed in the previous section, we do not have usdrapolation in light-quark mass, so in the end statistics re-

ful results outside the range

main a quantitatively important source of uncertainty.
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TABLE Il Budget of statistical and  systematic  uncertainties in  this work for the  quantities
Tg(0.4 GeV,1.0 GeV),Tp(0.4 GeV,0.93 GeV), andg(0.4 GeV,0.9 GeV)T5(0.4 GeV,0.9 GeV). All entries in percent.

Uncertainty T [Vl To [Ved Tg/Tp [Vup/Ved
statistical i e iy s 0 3
excited states 6 3 6 3 6 3
p extrapolation 10 5 9 5 9 5
m, extrapolation 18 8 3 *2 +13 +7
adjustingmg 6 3 2 1 8 4
HQET matching 10 5 10 5 10 5
6 8 23
a dependence 3 3 T 3 5 3
definition ofa 11 6 4 2 8 4
total systematic 30 15 a8 P % T
total (stat® sys) 9 a0 i i % i
A. Excited states The error bars on the extrapolated points in Fig. 7 show

As explained in Sec. Ill, we take care to isolate the de-how the statistical uncertainties are inflated by the chiral ex-

sired lowest-lyingr andB states from their radial excitations trapolatiqn._ T_his part of th_e uncerte_linty_is statistical in na-
when computing the three-point function of E8.19. The ture, S0 |t. is mcorpqrated into the first _Ilne of Table I.I. In-_
associated uncertainty on the matrix elemeatsd, thus, the deed, it is the main reason the statlsuqal uncertainty in
form factors is computed by comparing fits with different 18 (Tp) grows from 6 percent7 percent with mg=ms to
smeared and unsmeared interpolating operators. After chood8 Percent13 percentwith mg=mj.

ing the optimal fit range for each combination of smearing

functions, we find deviations if, andF of 1-3 %, where C. Heavy quark mass dependence
the high end of the range is for momenta near the upper cut. To examine the dependence on the heavy quark mass we
We assign an uncertainty of 6 percentltg and Tp, . use form factors with a light strange quark, because then

Although we calculate similar matrix elements for eqch  statistical errors do not mask the effect. Figure 8 compares
and forB andD decays, the rangat of time slices kept in  the form factorsB, and Dy decays. There is a significant
the fit was chosen independently for each case. Thereforglifference. The quarkonium spectrum tunes (bare heavy
the excited state contamination Ty /Tp is partly, but not  quark mass within a precision of 1-2Pa4], which clearly
fully, correlated. A conservative error estimate is again 6%.would have no significant effect on the form factors. But

because of lattice artifacts in the quarkonium binding energy
B. Momentum and chiral extrapolations [35] and because of quenching, the heavy-light spectrum
) ) , . yields a different adjustment of bare quark masses. The shift

The forr_n_ factorf, that enters m_to the partial W_l(_jth IS s to lower 1Mpsin Fig. 8. From Eq(2.2) one sees thatt,
more sensitive td | than_tofH. Thl_Js, it pould be sensitive at  yominates inf, for B decay. Thusf. is smaller with the
smallp to the extrapolation described in Sec. IV A. Tiae,  peayy-light adjustment of the bottom quark mass, @gds
however, is much less sensitive, because phase space s@gs smaller. On the other hanfi, andf; make a comparable
presses it at smalp. For Tg the variation between linear, contributions tof , for D decay. It turns out thaft, is larger

rational, and pole forms is=10%. ~ with the heavy-light adjustment of the charmed quark mass,
The chiral extrapolation is a major source of uncertainty.and T, is 2% larger. The ratidgz/Tp is 8% smaller.

Figure 7 shows the chiral extrapolation &t 5.9 for f; and

f, qtnf(l,0,0). We_compare three different fi_(s.') a qua- D. Matching
dratic fit to the four lightest quark masség) a linear fit to ) )
the four lightest quark masses; a(8) a quadratic fit to all As explained in Sec. II, our treatment of the heavy quark

five light quark masses. The first has the lowgdDOF, but mgtches Igttice gauge.theory with Wilson.fermions to HQET.
the other two are perfectly acceptable. For other momentahis requires calculations of the short-distance coefficients:
the behavior is the same. Because the extrapolated resdifmz and 1 in the effective actionyZyuuZyos in the defi-
from the first(and bestfit lies between the other two, we use nition of the current; angy,, py , and 1ms in the descrip-

it to give our central value, and use the other two as estition of the currents. As discussed in the previous subsection,
mates of the systematic error. The ambiguity of the fits, andn, is adjusted non-perturbatively, by tuning the quarkonium
hence the systematic error, could be reduced with explicispectrum to agree with experiment. The normalization fac-
calculation at smallem,, but a suitable point is not feasible torsZ,u andZy»b are also computed non-perturbatively, by
with our computer resources. We are left with an uncertaintyrequiring that flavor-conserving matrix elements- = and

of £3%% in Tg and *3% in Tp. B—B, computed by analogy with Eq2.20, give unit
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FIG. 7. Chiral extrapolations ofy and f, for n=(1,0,0) and FIG. 8. The heavy quark mass dependence at several momenta,
B=52.9. at 8=5.9 for the temporal matrix element. The light quarks are

. o o strange quarks. The dotted lines are to guide the eye.
charge. The uncertainty from it is purely statistical and much

smaller than all other statistical uncertainties. . . .
The significant systematic effects in the matching proce—[36’27]' In the scheme in which the Fourier transform of the

: — 2
dure come from computingy, andpy , and from the mis- heavy-quark potential read¥(k)=—Crdmay(k)/k’, the

BLM scaleqg* is given through
match between Egq92.9 and Egs.(2.10 at the level of
dimension-four and higher currents. In the present work we
do this part of the matching with perturbative QCD, leading .
to errors of order, as/mg, 1§, respectively. Let us log(q*a)= o (5.3
now consider these effects in turn. Py
Because they are short-distance quantities, the matching
factors py, and py, should be calculable in perturbation where *plH is obtained fromplH by replacing the gluon

theory. (Note that all effects that make lattice perturbationPropagatoD (k) with D(k)log k’a?. The details of these cal-
theory less reliable than continuum perturbation theory ar&ulations are similar to those described in R&f7], and the

absorbed intoyZ,uZysb.) We have calculated them to one results are listed in Table 1(38]. .
loop, SO we write The effects are small fd8 decays and tiny foD decays.

This can be understood because thes are ratios of very
pv=1+ayg*)4mpl} (5.2  similar quantities, so there is good cancellation. It is there-
fore plausible that the two-loop contribution is numerically
for py, and py . We use the Brodsky-Lepage-Mackenzie smaller by another factor afis~0.2, and thus completely
(BLM) procedure to choose the expansion parameféy* ) negligible.

* [1]

014502-11



AIDA X. EL-KHADRA et al.

PHYSICAL REVIEW D 64 014502

TABLE |Il. Perturbation theory for matching factoys, andpy, . The one-loop termplH and * p{M are in units of 10°.

B=6.1 B=5.9 B=5.7
A A O N A AR A . N VR & A A G B
f 536 980 0.159 1.011 817 1591 0.173 1.018 1065 2199 0.196 1.026
f, —1987 —3312 0.163 0.959 -—-2096 —3534 0.181 0.952 —-2146 —3621 0.212 0.943
C
f —59 13 0.233 0.998 —28 40 0.402 0.999 +63 152 0.184 1.001
f, —947  —1368 0.169 0.980 —1223 —-1821 0.188 0.971 —-1508 —2339 0.218 0.959

Next, we must estimate the uncertainty from the mis-form factors are affected. These decays are good for studying
match of the Irhy term in the heavy-quark expansion. This the a dependence, because their form factors have small sta-

contributes an error on either form factor
S1imyf ~ @sbym,(Mqa)mq YA geof (5.9

from 1/mz and 1mg contributions, and)l/mQ gives the de-

tistical errors. After chiral extrapolation, on the other hand,
the larger statistical error bars would mask lattice spacing
effects. Previous experience with decay consthhd$ leads

us to believe this will not change very much after chiral

extrapolation. With the action used in this work the lattice

viation of the short-distance coefficients for the lattice andspacing dependence is a combinatiorOgix.a) andO(a?)

continuum theories(See Refs[11,12 for further details).

effects from the light quarks and gluons, and thelepen-

The factorb(mga) is at most of order unity; for our calcu- dence of the heavy-quark short-distance coefficients, dis-

lations of D-meson matrix elements it is of order.a<1.

cussed in the previous subsection. In particular, whenjthe

Taking as~0.2 andA ocp~500 MeV one finds that these has non-zero recoil momentum the light-quark lattice ef-

errors, in either case, are at most a few percent onthe
CKM matrix.

fects areO(aspa) andO(p?a?).
The a dependence of the form factors is shown in Fig. 9.

Finally, we must estimate the uncertainty from the mis-The variation witha is several percent, which is comparable

match of the 3 terms:
51/m2Qf ~ bl/mé(mQa) Mg Adcof - (5.9

There are many contributions at ordemg/ in the heavy-

to the statistical uncertainty and also to the errors from the
mismatch of the heavy quark. The obsengedependence is
therefore a combination dfuncorrelated statistical fluctua-
tions, lattice artifacts from the light degrees of freedom, and
from the lattice artifactdescribed in Eqg5.4) and(5.5)] of

quark expansion, most of which come from iteration of thethe heavy quark. They cannot be disentangled with the cur-

1/mg terms. Only genuine mé terms in the effective action rent set of calculations, so it does not make sense to extrapo-

and currents can be as inaccurate as(&®) suggests. Since latea—0.

Aqcp/Mo=~ A gcp@= a; for our lattice data, the erro?l,sz f Instead we choose the_ results frof+=5.9, where we

s similar in magnitude {0 that lyp Valle and se the. iher two latices to estmate the uncer
The estimates in Table Il derived from Eq®%.4) and

: ; ) . tainty. Figure 10 shows the combinatipf|f , |%/E, which is
(5.5 are very conservative. It is plausible that the denoml-proportional todT'/dp, at all three lattice spacings fd,

nator of heavy-quark gxpansion IS ' and_ it is possible — n4lv andDs— 74l v. As in Fig. 9 one sees that the depen-
that the unknown coefficients are fractions instead of 1-2 a3ence ora is several percent, and increases with increasing

ﬁzgﬁg?azve. Thus, the matching uncertainties may already %g By integrating overp we find a variation of 1% in Tg
The masses of thie andc quarks differ by about a factor and iés% nTp.

of three. The short-distance coefficients are functionsgé

[11,12, so the matching uncertainties do not cancel com-

pletely in the ratioTg/Tp . In particular, on our lattices the  Changes in the final results from changing the definition

mismatch coefficient®,, are of order 1 foib quarks, but  of a can be thought of as a crude way to estimate effects of

bl/mQN m.a and bl/méw(mca){ asma for ¢ quarks. Never- the quenched approximation. In lattice units we oberJrEri”2

—-1/2 ; ; ite i
theless, the effects often have the same sign, so we take tﬁlé]d fLa ™% so converting to physical units introduces a

uncertainty in the ratio to be the same as in numerator om'ld expl_|C|t quendence on the value chosendorhere IS
denominator. also an implicit dependence that enters through functional

dependence ok (or p). These two effects are illustrated in
Fig. 9. The solidlopen points are obtained by definiregso
that the 1P-1S splitting of charmoniugpion decay constaht

For the artificial decay8,,D— 7 v we have results at takes its physical value. The central values in the paper are
three lattice spacings, so we can examine how severely th@mputed with the 1P-1S definition. #t=5.9 we repeat the

F. Definition of a and quenching

E. Lattice spacing dependence
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FIG. 9. Lattice spacing dependence Bf— 7 v form factors (@) Be— 7 v and (b) Dy— 74 v
S S S S .

(@ fy and (b) f,, for p=0.5 GeV (squarep and 0.7 GeV(dia-
monds. The solid(opern symbols correspond to defining the lattice
spacing withAmyp._;s (f,). VI. RESULTS

The main results of this paper, given in Egd.6)

full analySiS with thef,n. definition. We find thatTB (TD) and (17), are the quantitiesTB(OA_ GeV,1.0 Ge\y and
increases by 11%4%), and the ratioTg/Tp increases by T,(0.4 GeV,0.925 GeV), which are proportional to the
8%. artially integrated rates. It may also be of interest to present

A more serious estimate of the effect of the quencheghe results in other ways. In this section we give results for
approximation is impossible without generating gauge fieldghe ratioTg/Tp, as well as results fofg, Tp, andTg/Tp
with dynamical quark loops. This would require more com-yjith a lower upper cut. We also give results for the form
puter resources than we have at our disposal, and no othgjctors themselves.
group has yet studied these semileptonic decays with dy- Many uncertainties cancel in the ratio Bfand D rates:
namical quarks. There are results with two light, dynamicakne statistical error is correlated, and the systematic errors are
flavors for the leptonic decay constarfis and fp, using  similar in nature. Because of heavy-quark symmetry it is

either lattice NRQCD{39] or our method[16,4(] for the  most sensible to form a ratio with the same cuts for both. We
heavy quark. In that case one finds an increase of betwegfhg

10-11 % over the quenched result.
The exercise of changing the definition @easily could
underestimate the effects of quenching. At the same time, we Ty(0.4 GeV,0.9 GeY

do not expect form factors to be more sensitive ttign T-(04 Gev.0.9 Gev=2.04ﬁ8j88+_%%%i 0.10+0.20
Thus, a provisional estimate of a uncertaintyTig, of 10— oL "
20 % seems reasonable. +0.29, (6.1
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TABLE IV. Budget of statistical and  systematic  uncertainties in this work for the quantities
Tg(0.4 GeV,0.8 GeV),Tp(0.4 GeV,0.8 GeV), andz(0.4 GeV,0.8 GeV)T(0.4 GeV,0.8 GeV). All entries in percent.

Uncertainty T [Vl To [Ved Tg/Tp [Vup/Ved
it 21 11 18 9 10 5
statistical AT T i = s i
excited states 4 2 4 2 4 2
p extrapolation 8 4 10 5 6 3
m, extrapolation s L T e s h
adjustingmg 3 1 4 2 6 3
HQET matching 10 5 10 5 10 5
14 7 17 9
a dependence 3 1 i i 5 3
definition ofa 9 5 3 2 8 4
total systematic o s r T i ot
total (stat® sys) 3 T 3 T i e

where the uncertainties are from statistics, chiral extrapola¥able IV shows a budget of systematic errors, similar to
tion, a dependence, HQET matching, and other miscellaTable Il. As one can see from comparing the last two lines in
neous sources. A more detailed budget of the last uncertaintjables 1l and 1V, the total uncertainty is several percent
is given in Table II. lower with ppa,=0.8 GeV.

As mentioned above, raising the upper py, increases Finally, we give our results for the form factors. Table V
the uncertainty. Conversely, lowerig,,, decreases the un- gives the results for form factors in the decBy—lwv.
certainty. Repeating the full analysis @a=0.8 GeV, we | jsted aref| andf, , which emerge directly from our lattice
find calculations, and . andf,, which appear in the expression
for the differential rate. In every case the first error is statis-

_ 0.063+0.041+0.041
Te(0-4 GeV.08 GeY=0.294.5531" 04-0.006" 0-029 tical and the second adds the systematic uncertainties in

+0.038 GeV, (6.2 quadrature. Table VI lists the same information fDr
—mlv. Our final results forf; and f, are obtained a3
Tp(0.4 GeV,0.8 GeY=0.1453375+0.016 5 533-0.014  =5.9, after chiral extrapolation, with the systematic errors

estimated as described in Sec. V. In particular, the estimate

of lattice spacing effects uses results from all three lattice

spacings. Foip<0.4 GeV our extrapolation of, in the

pion momentum is no longer reliable, so we do not quote

T.(0.4 GeV,0.8 Ge results for it.

TEEOA Gev.0.8 Geg,=2.03*8;}8*%i%¢0.10t 0.20 The physical form factor$ ., (E) andf,(E) are obtained

from Egs. (2.2 and (2.3 using the tabulated results for

+0.24. (6.4  f,(E) and f)(E), physical meson masses, and enefy

+0.017 GeV, (6.3

and the ratio

TABLE V. Form factors with statistical and total systematic errors for the d&ayml v.

p E T f fy fe fo p*|f|?1E

GeV GeV GeV GeV? Gev 12 Ge\®

0.0 0.140 26.41 1.93°29+28 1.17" 38138 0.0

0.1 0.172 26.07 1.88"3%"38

0.2 0.244 25.31 1.85°%7+2%8

0.3 0.331 24.39 1.80°5°127

0.4 0.424 23.41 1.73° 83428 1.05° 15718 2.10733%3 1.00° 33712 0.27°8

0.5 0.519 22.41 1.65'21122 0.99' 13712 1.96°25%33 0.95" 3214 0.46' 37

0.6 0.616 21.38 1.56"2°723 0.95'3°+1% 1.84 %121 0.89°3°* 13 0.71°15

0.7 0.714 20.35 1.45738+22 0.91°271% 1723872 0.83 %" 13 1.00" 2

0.8 0.812 19.31 1.34° 37120 0.86" 12713 15972124 0.76"1°* 11 1.27°%

0.9 0.911 18.27 1.23°3718 073511 1.36°3339 0.70°3 11 1.34°3

1.0 1.01 17.23 1.1573%+17 0.59"2°*9 113734417 0.643%10 1.30'%2
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TABLE VI. Form factors with statistical and total systematic errors for the dé&zaylv.

p E o f) f fy fo p*|f L |°1E
GeV GeV GeV GeVH? Gev 12 Ge\®
0.0 0.140 2.99 1.347 3971 1.29°3%%17 0.0
0.1 0.172 2.87 1.333%7%

0.2 0.244 2.60 1.32°28+17

0.3 0.331 2.28 1.31°377 18

0.4 0.424 1.93 1.28"3°71% 1191873 156" 157% 1143135 0.15"3
0.5 0.519 1.57 1.21°2°418 11773513 1.4534 2 1.08°;%%13 0.2573
0.6 0.616 1.21 11278433 1.13°3°°13 1.32° 8217 1.0 313 0.36'}
0.7 0.714 0.85 1.04 53411 1.08'57 13 1.183°433 0.962+13 0.47°8
0.8 0.812 0.478 0.99" 33 1.02°8+ 3 1.07°34 11 0.95'2712 0.58"§*
0.9 0.911 0.109 0.95"20+12 0.98'3713 0.98 213 0.942°12 0.69" 3
0.925 0.935 0 0.93 %12 0.953+32 0.94710712 0.94720"12 0.7173°

=\m2+p?, for eachp=|p,| in our set of pion three- These are the lattice spacings at which the calculations are
momenta. They are shown in Fig. 11. Tables V and VI alsgione, the procedure for chiral extrapolation, and the treat-
include the combinatiop?|f *|2/E; for massless final-state Ment of the heavy quark.

leptons the differential rates are given by Our results are based on lattice gauge fields at three lattice
spacings, given in Table I. We find that the lattice-spacing
B 5 . . p*|f ., |? dependence of the form factors is milaith our treatment of
dp =|Vupl*(2.9328 ps'GeV *)—=—, (6.5  the heavy quark even on a relatively coarse lattice At
=5.7. The results of Ref§19,20 are both based on only
- . » . p?|f. |2 one set _of lattice gauge fieldat 3=6.2), whose spacing is
dp =|Vcq4/*(1.0358 ps GeV~ )—g - (6.6  slightly finer than any of ours. We believe, therefore, that the

lattice spacing effects of the gluons and light quarks are not

Other differential distributions can be obtained from the lat-& Serious source of error, at the present overall level of ac-
ter by changing variables witdp/dE=E/p and dp/dg?  curacy, in any of the three works.

=E/2mgp or E/2mpp. From Egs.(6.5 and (6.6) one sees In our work, the largest uncertainty comes from the chiral
that the phase-space facgt suppresses the rate in the low- €xtrapolation at fixed pion momentum As explained in
momentum region where we cannot quéte. Sec. V B, this uncertainty arises because the linear and qua-

dratic fits give moderately different results. References
[19,2Q do not have enough values of the light quark mass to
be able to check whether a term quadratienipis needed to

In this section we compare our results to recent publishedescribe their data. Because those works extrapolate at fixed
[19,20 and preliminary[21] work from lattice QCD. The g2, however, it is plausible that the curvature seen in Fig. 7
comparison is apt, because three different methods for treatvould go away, and that a linear chiral extrapolation would
ing the heavy quark on the lattice have been employed. When be adequate.
use Wilson fermions with the SW action, normalized to have The interpolation in pion momentum, or energy, is an-
a consistent heavy-quark limit. Referen¢&9,2q use Wil-  other difference. It leads to the apparent difference in the
son fermiongwith the SW action and light-quark normaliza- shape of the spectrum in Fig. 12. If we choose the pole form
tion conditiong at my near and below the charmed quark suggestedfor smallE) by Egs.(2.4) and(2.5), the shape of
mass, and extrapolate up ma,. Referencd21] uses lattice the spectrum is less humped, though not as flat as the spectra
NRQCD[41] (with the power-counting of HQET42]) and, from Refs.[19,2(. In those works a pole Ansatz different
as we do, calculates the form factors directly at the bottonfrom Egs.(2.4) and (2.5 was used.
quark mass. The most significant difference in the three calculations is

Figure 12 shows results from Refd.9,2( together with  the treatment of the heavy quark. Although the same action
ours. (We do not include results from the JLQCD Collabo- and similar currents are used, the bare quark mass and the
ration[21], because they are still preliminary. We anticipatenormalization of the current are adjusted differently. The
that their systematic uncertainties will be similar to ours. Atnormalization conditions chosen in Refgl9,20] are de-
this stage their statistical uncertainties seem surprisinglgigned for themga—0 limit, and at finitempa they leave
large) Within the quoted uncertainties there is broad agreesystematic uncertainties of ordennéa)z. To reduce these,
ment among the three calculations. There are, however, thrdefs.[19,20 calculate with the heavy-light meson mass near
noteworthy differences in the analysis of the form factors.and below 2 GeV and extrapolate uprg . This procedure

VII. COMPARISON WITH OTHER RESULTS
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FIG. 12. Comparison of the differential decay réa fixed lat-
tice spacing vs E: open diamond$19], open triangleg20], and
2 ' ' ' ' ' ' solid squaregthis work).
eliminate lattice artifacts that grow wittga [11]. This is
made possible by using HQET to match the lattice action and
current to continuum QCIP12], as reviewed in Sec. Il. The
H - advantage is that, as with lattice NRQC®L,21], the calcu-
—_ g T lations can be done directly aty=m,, without an extrapo-
S JL (g A I lation in 1fng. Of course, we must assume that HQET is
1k ’J] <!> (5

valid for mp~1-2 GeV.

A feature of our approach is that it leads to a somewhat
complicated pattern of heavy-quark discretization errors.
There is, however, a corresponding pattern of systematic un-
certainties in the results of Refsl9,20. In particular, there
are corrections to the normalization of ordaagr(mQa)2 and
of order (mQa)ZAQCD/mQ= MoaA gcpa in the 1mg term of
0 oio 012 014 016 018 110 the heavy-quark expansion. Estimates of the magnitude of
p (GeV) these errors—before or aftemis extr_apolatlon—_are absent

from Refs.[19,20. (The corresponding errors in our work,

FIG. 11. Momentum dependence of the form factors with allwhich we address quantitatively in Sec. V D, are of ordér
systematic uncertainties includeda) f, and (b) fo. Squares in the normalization and of ordez A qcp/my, in the 1ing
(circles denoteB(D) decays. Solid symbols are independent of theterm)
momentum interpolation. The calculation of semileptonic form factors fds

leads to their largest quoted uncertainty. The statistical error 7l v, and related decays, has also been carried out with
uark models and QCD sum rules. At present the uncertain-

increases, as it must in any extrapolation. There are alsd

systematic effects, which are estimated by trying linear an({i'eﬁt from lattice (I?CES Zre _?_ﬂm?at;ablﬁ to ttuose dbasted on
quadratic fits in Ithg . For at least two reasons, this test may ight-cone sum rule$43,44. The latter have the advantage

underestimate the systematic uncertainty of the extrapolé—h"’lt they are most appllcabl_e for energetic pionsfso B .

tion. First, the compatibility of the fits shows only that the decay th_ey overlap better with the_d|str|but|o_n .Of events in

dependen,ce on y, is smooth in the employed range of the an experiment. On the other hand, it seems difficult to reduce
Q

quark masses. It does not show that the heavy-quark expame uncertainties from sum rules down to the level of a few
sion is reliable below 2 GeV. This problem is especiallypercem' which will be needed to match the precision ofBhe

severe for Ref[19], which has heavy-light meson masses aSfactorles. As discussed in the following section, however, all

low as 1.2 GeV. Second. the lattice artifacts of ordab(i)z uncertainties of the form factors are reducible with lattice
may well be amplified by the extrapolation. This problem QCD.
mgﬂlisb% e7zspeC|aIIy severe for R¢R0], which hasmga as VIIl. CONCLUSIONS

Our normalization conditions coincide with those above In this paper we have presented results for the form fac-
as mga—0. At finite mga, however, they are chosen to tors and differential decay rates for the semileptonic decays

[ —

* ] valid for theb quark, but that is safer than assuming that it is
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TABLE VII. Strategies for reducing statistical and systematic uncertainties of semileptonic form factors.

Uncertainty Strategy

statistical more lattice gauge fields; bettey extrapolation
excited states longer time extent; better operators

p extrapolation larger finite volume; better statistics

m, extrapolation better statistics; more valueswf; fixed-E extrapolation
adjustingmg unquench

HQET matching match up tasAoep/ Mo, (Agen/Mo)?

a dependence more lattices

definition ofa ungquench

quenching unquench

B— wlv andD— «lv. The total uncertainties are 30—35% asp and w more study is needed. The vector mesons decay
(for the rate and, hence, would yield a theoretical uncer-hadronically, and in the quenched approximation these de-
tainty to the CKM matrix of 15-18 %. We have attempted acays are absent. Even in unquenched calculations, however,
complete analysis of the systematic uncertainties, at leashere are still issues that may need explicit analysis. In par-
within the quenched approximation. A rough estimate of theticular, if the calculations are done at largish light quark
additional error from quenching is 10—-20@n the rate masses, the decay may be kinematically forbidden. Because
A more important, though less specific, result of this pa-there is not yet much experience with unquenched calcula-
per is a demonstration that, within the quenched approximations, it is not yet clear whether one can smoothly extrapolate
tion, all uncertainties are controllable. Table VII gives avector meson properties from this region to the physical me-
sketch of what is needed to reduce all sources of uncertaintgon masses. It is, thus, hard to anticipate how well lattice
In almost every case, the remedy is simply more computeQCD will do here. This is unfortunate, because the experi-
time. That, in fact, is promising, since the computer used irmental errors for semileptonic decays into vector mesons are
this work is already ten years old. Given the experience otxpected to be somewhat smaller.
the CP-PACY 16,39 and MILC [40] Collaborations with In any case, semileptonic decaysB®inesons ultimately
heavy-light decay constants, it should be feasible to repeatill provide one of the most accurate constraints on the uni-
our analysis on a modern supercomputer with unquenchegrity triangle, through a determination 0¥ ,,|. Indeed, if

gauge fields. In summary, there do not appear to be anjew physics lurks behin@®®-B° mixing, it is essential to

technical roadblocks to reducing the uncertainties in latticeyaqye constraints on the CKM matrix through charged-current
calculations to a few percent or better, over the course of thgteractions likeb—c andb—u.

present round of experiments.

In the case of the uncertainty labeled “HQET matching”
better calculations of the various short-distance coefficients
introduced in Sec. Il will be needed to be sure that the total High-performance computing was carried out on
uncertainty is only a few percent. This is not a computationaACPMAPS; we thank past and present members of Fermi-
problem but a theoretical one, which arises also in calculalab’s Computing Division for designing, building, operating,
tions with lattice NRQCD. The alternative would be to re- and maintaining this supercomputer, thus making this work
duce the lattice spacing dramatically, so tlrapa and  possible. Fermilab is operated by Universities Research As-
Aqcp/Mg can be simultaneously small. But, since computersociation Inc., under contract with the U.S. Department of
requirements scale as ! to a high power, that would seem Energy. A.X.K. is supported in part by the DOE OJI pro-
to be a long way off. One would also have to sacrifice some@ram under contract DE-FG02-91ER40677 and through the
other improvements, such as removing the quenched aplfred P. Sloan Foundation. S.M.R. would like to thank Fer-
proximation. milab’s Theoretical Physics Department for hospitality while

For semileptonic decays & or D to vector mesons such part of this work was being carried out.
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