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We investigate the influence of a constant uniform external chromomagnetidfielu the formation of
color superconductivity. The consideration is made in the framework oftal(2dimensional Nambu—Jona-
Lasinio model with two different four-fermionic structures responsible(Eq) and diquarkqq) condensates.
In particular, it is shown that there exists a critical valigof the external chromomagnetic field such that at
H>H, a nonvanishing diquark condensate is dynamically creétesl so-called chromomagnetic catalysis
effect of color superconductivity Moreover, external chromomagnetic fields may in some cases enhance the
diquark condensate of color superconductivity.
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. INTRODUCTION nonperturbative featur(&?q)aéo of the QCD vacuum related
to spontaneously broken chiral symmetry was taken into ac-
During the last two decades a great deal of attention wagount. Then, the phase structure of the theory is the conse-
paid to the investigation of the QCD ground state at finitequence of a competition between two dynamical order pa-
temperature and densifgee, e.g., the recent revig] and rameters(qq) and(qq).
references therejn The main efforts were directed to the |t js well known that the gluonic degrees of freedom in-

consideration of the quark-gluon plasma—a new state ofjuence the properties of the QCD vacuum, in which there is
matter which can exist at sufficiently high temperature anthne more nonzero Condensm-epraw)E(FF)_ Hence, in
density. In addition, it was also realizg2] that at low(zerd  order to get a more adequate phase structure of the theory
temperature and high baryon density colored quarks, intefone should consider the competition of three dynamical pa-

acting via gluon exchange, can form Cooper pairs. Hemenameters{FF), <aq>' and(qq). Of course, it is very hard to
the quark system would pass to the so-called color supercoRp|ye this situation within QCD itself. So, instead of this we
ducting phase in which the color symmetry of the theory isshall incorporate the nonzero gluon conden<&Eg) into a
spontaneously broken. However, since the correspondingimpler NJL model consideration of the CSC phenomenon.
value of the diquark condensatgq) was estimated to be of The NJL model does not contain dynamical gluons, hence in
order 1 MeV, one could not get any observable effects in thishis case the gluon condensgteF) is rather an external
case. parameter(similar to chemical potential, temperature, gtc.
Quite recently it was pointed o{i8] that due to instantons than a dynamical one. In the framework of the NJL model
there is a nonperturbative mechanism of forming a condenthe condensatéFF)+0 can be realized in terms of an ex-
sate(qQ)#0. As a consequence, a rather large observabléernal (backgroungl gauge fieIdAZ(x) [9].
value of order 100 MeV for the diquark condensate was pre- The primary goal of the present paper is the investigation
dicted and the color superconductivifgSO might possibly  of the role which the gluon condensate will play in the for-
be detected in the future experiments on heavy ion collisiongnation of CSC. In the chosen NJL model approach we shall,
i.e., at moderate baryon density, or realized in the interior ofn particular, consider a chromomagnetic gluon condensate,
neutron stars. At present time, there exists a rich literaturée.,(FF)=H2>0, with H being a constant chromomagnetic
devoted to this new physical effect; the CSC phenomenombackground field. Let us first comment on the case of a van-
has been studied in the framework of an instanton mf@lel ishing diquark condensate. One can then imagine that the
in different versions of quark mode[gl] of the Nambu— vacuum has a color ferromagnet-like domain structure. In-
Jona-Lasinio(NJL) type [5], some QCD-like theories with side each domain the chromomagnetic fieldl is homoge-
nonstandard color group and quark multiplg8$ and using neous, but its direction is varying from one domain to an-
lattice and 1N approaches to four-fermion modglg. CSC  other in such a way that space averagingiéfis equal to
was also investigated in the frameworks of the renormalizazero. So color and Lorentz invariances are not broki.
tion group and variational as well as Dyson-Schwinger equa©On the other hand, when the system is in the color supercon-
tion methodq8]. In all of the above cited papef8-8] the  ducting phase, the S(B) symmetry is broken spontane-
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ously to SUY(2). Using pure symmetry arguments, it is eas- model with quarks of two flavors and three colors is inves-
ily shown that the three gluons living in the unbroken tigated at zero chemical potential and temperature. The La-
SU,(2) subgroup stay massless, whereas the remaining fivgrangian of the model contains two different four-fermionic
gluons get masses by the Higgs mechanism. By analogy witbtructures responsible for the dynamical appearande af
ordinary superconductivity, it is expected that external chroas well as(qq) condensategEarlier, similar considerations
momagnetic fields corresponding to massive gluons, i.e., eXyere done for the simplest NJL-type models in which only a
ternal chromomagnetic fields of the formH? chiral condensate could appeaf9,15-18.) The
=(0,0,0H% ... ,H®), should be expelled from the CSC (2+ 1)-dimensional model under consideration has the fol-
phase(Meissner effedt’ Moreover, sufficiently high values lowing Lagrangian®

of such fields should destroy the CSC. However, our intu-

ition tells us nothing about the action of external chromo- — | Na G, — - .
magnetic fields, which in the color space look liké? L=qgy* '(9M+9A2(X)7 q+ ?[(QQ)ZHQWSTQ)Z]
=(H',H?,H3,0,...,0), on thecolor superconducting state
of the quark-gluon system. G — b s— bs

In the present paper the influence of such external chro- +?[|q e€’y°qlligee’y qc]. )

momagpnetic fields of the forrd®=(H,H?,H3,0,...,0) on
the phase structure of the NJL model is considered. Since wg, Eq. (1) e denotes the gluon coupling constarge
are mainly interested in clarifying the role of external chro—:CaT ECZQTC are charge-conjugated spinors, anl

momagnetic fields in the creation of a color diquark conden-_ »2 is the charge conjugation matrist (denotes the trans-

sate, we put the chemical potential and temperature equal taosmon operatioh Moreover, summation over repeated in-
zero. For simplicity, all the considerations are performed i’ P ' P

(2+1)-dimensional space-tinfe dicesa=1,...,8,b=1,2,3,4=0,1,2 is implied. The quark
The paper is organized as .follows. In Sec. Il the NJl_field g=gq,, is a flavor doublet and color triplet as well as a

model under consideration is presented and its effective pdoUf-component Dirac spinor, wheré=1,2, a=123.
tential at nonzero external chromomagnetic field is obtaineél‘atln "’?”d _Gree.k mdmgs refer to flgvor and color spaces,
in the one-loop approximation. This quantity contains all therespectlvely, Spinor indices are omittedrurthermore, we
information about the quark condensates of the theory. In thd5€ the notatlon§a/2 for the generators of the cglor 20
following Secs. lll-V the phase structure of the model is9roup as well as'=(r*,7%,7%) for Pauli matrices in the fla-
investigated, first for zero background gauge field and theiOr Space, ang ande” are operators in the flavor and color
for nonvanishing vector potentials of two typ@sbelian and ~ Spaces with matrix elementse)*=g', (&°)*$=e**",
non-Abelian, corresponding to the same external chromo-Wherez'™* and e*#* are totally antisymmetric tensors. Next,
magnetic fieldH, respectively. In Sec. VI it is shown that let us at the moment suppose that in Ef). A%(x) is an
there exists a critical valukl . of the gluon condensate field arbitrary external gauge field of the color group $&).

at which the color diquark condensate is spontaneously geThe following investigations do not require the explicit in-
erated(the chromomagnetic catalysis of CS@etailed in-  clusion of the kinetic gauge field part of the Lagrangjan.
vestigations of global minimum points of the effective po- Below, the detailed structure dﬁi(x) corresponding to a
tential are relegated to the Appendix. Finally, a summary andonstant chromomagnetic gluon condensate will be given.

discussion of the results are given in Sec. VII. In order to demonstrate the main ideas of our approach in
a way as simple as possibl¢ghereby obtaining relatively
Il. MODEL LAGRANGIAN AND EFFECTIVE POTENTIAL simple analytical expressions for the effective potential and

In the present paper the influence of a constant externaﬁllov‘”ng‘.In pnnmple, for other applications in p_lanz_ir phy_s-
chromomagnetic field on the phase structure of a NJL-typéCS).’ we _fmd I convem_ent to_ perform the .followmg Invest-
gations in the (2-1)-dimensional space tinfewe want to
note that in this case the moddl) studied here and QCGD
_ _ are not in the same universality class of theories, since they

The Meissner effect for an ordinary external homogeneous magdiffer in their flavor symmetry groups; in fact, for the three-
netic field acting on a color superconductor was investigated byimensional two-flavor case considered here, Q@Rs a
several authors.. It was shown [ih1] that, due to the presence of a peculiar U(2N)=U(4) flavor symmetry besides that of the
massless combination of the _phc_nton and some gluqn fields, an OFolor SU(3) symmetry(see Appendix A On the other
dinary homogeneous magnetic field can penetrate into a color su-
perconductor. The strength of the magnetic field inside the latter
depends on details of the geometry, the relative strength of external
electromagnetism, and the color forces. In some céses, for 3In the (2+1) dimension the four-component spinor representa-
CSC in spherical regionsthe applied static homogeneous magnetiction of the Lorentz group is a reducible one. The corresponding
field might also be completely expelled from C$Q2]. algebra ofy matrices is given in Appendix A.

%Recall that in(2+1)-dimensional space-time NJL-type models “At nonzero chemical potential andAZ(x):O, models includ-
are renormalizable in the framework of nonperturbativid .1éx- ing diquark channels similar to Eq1l) were considered in low
pansion techniqugd.3]. Moreover, these theories are used in orderdimensions[7] and in (3+1)-dimensional space-time as well
to describe different planar physical phenomena, including ordinary4,19]. In contrast, we consider here the case vAﬂ(x)iO and
and high temperature superconductiviifyt]. chemical potential.=0.
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hand, our Lagrangiar{l), being invariant underglobal In the one-fermion-loop approximation the color and
color symmetry, has been constructed in such a way that tthirally invariant effective action for the boson fields are
mimics just chiral invariance of real QGDunder the “chi-  expressed through the path integral over quark fields

ral” (flavor) group SU(2) X SU(2)g, which is here a sub-

group of U4). exn(i3s = AD A*D A2

By the above reasons, it is clear that the results obtained Mi3Ser( o, m A% ATEAL)
below in the framework of our (2 1)-dimensional model _ (=~ 3
(1) cannot be considered to describe the symmetry breaking :f [da][dq]ex 'f Ld°x],

scenario of the full W) symmetry, nor are they applicable
for modeling “planar” QCD;. On the other hand, the impor-
tant underlying mechanism of chromomagnetic catalysis o
dynamical symmetry breaking resulting from “dimensional
reduction” by external chromomagnetic fields has been
shown to exist both in B (3+1) and D=(2+1) [15-17.
On this basis, one might then expect that the mechanism of
chromomagnetic catalysis of chiral symmetry breaking andgyng
CSC and its influence on the interplay of quark and diquark
condensates of real two-flavor Q¢Dnight be reasonably o
mimicked by our simpler (2 1)-dimensional mode(l) (see exp(i35)= J [dq][dq]
also the discussion in the last section of the present paper

After these necessary explanations, we mention that in _ -
order to obtain realistic estimates for masses of vector/axial- X exp{ i f [aDg+agMq’+q"Mq]d®x
vector mesons and diquarks in extended NJL types of models
[19], we have to allow for independent coupling constants .
G,,G,, rather than to consider them related by a Fierz trans- :j [d\lf]ex*f (W72 ]d
formation of a current-current interaction via gluon ex-
change. Clearly, such a procedure does not spoil chiral symp £q. (4) we have used the following notations:
metry. For the general discussion of phase transitions below
(see Secs. IV=Vland also following the above arguments,
we find it therefore convenient to treat the coupling constants D=yH
in Eg. (1) as independent quantities instead of specifying
them by additional model requirements.

The linearized version of the modél) with auxiliary M= —iA*PCgePy®, (5
bosonic fields has the following form:

¥vhere

0_2+ 7;_2 AbA*b
2G, G,

Sei( o, m, AP, A*P, A%) = — f d3x

- 4

_ A .
id,+eA;(x) ?a)—a—lysﬂ'r,

M=—i APgePySC

L A _ .-
L=gv*lig, +ehd(x —a) —g(o+iyrm
9| 19, +eA(X) 5 |a—alo+iy’Tm)q and
. 3
—f(azﬂrz)—G—A*bAb—A*b[ichsebySq] _ M —-D'/2
1 2 vi=(q',q), Z= b2 | (6)
—A"igee®y®Cq]. 2

whereD" denotes the transposed Dirac operds®e, e.g.,
The Lagrangiangél) and(2) are equivalent, as can be seen byEg. (11) below]. Using the general formula
using the equations of motion for bosonic fields, from which
it follows that K L
t(_ _) =def —LL+LKL K]
_ - . . L K
AP~iqTCeePy®q, o~qq, m~iqy°mq. )
=def —LL+LKL K],
Obviously, thes and 7 fields are color singlets. Besides, the
(bosonid diquark fieldAP® is a color antitriplet and an isospin ©Ne can get from Eq4)
singlet under the chiral SU(2X SU(2); group. Note fur-

ther thato, AP are scalars, but is a pseudoscalar fielgee exp(i35)=det(2)

Appendix A). Hence, ifc#0, then chiral symmetry of the L

model is spontaneously brokeh?+ 0 indicates the dynami- = consikdet’4D)detqDT+4MD~M]. (7)

cal breaking of both the electromagnetic and the color sym-

metries of the theory. Let us assume that in the ground state of our model
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(AY=(A?=(7)=0 and (o), (A®)#0.5 Obviously, the culations refer to some given macroscopic domain. The ob-
residual symmetry group of such a vacuum is. &), tained results turn out to depend on color and Lorentz
whose generators are the first three generators of initidnvariant quantities only, and are independent of the concrete
SU,(3). Now suppose that the constant external chromodomain) Note also that it was pointed out {23] that, at

magnetic f|e|d, Simu'ating the presence of a g|uon Condenhigh temperature, Abelian-like VeCtor'pOtentials of the form
sate (FF)=H2 has the following form: H?2 (99 may serve as a reasonable approximation to the true

=(H%,H2,H30,...,0).Clearly, due to the residual S(2)  vacuum of the theory. However, at low temperature, the

invariance of the vacuum, one can consider the diquark corf@ckground gauge field may be essentially non-Abelian, hav-

densate fieldA?=(0,0A%), putting H1=H2=0 and H3®  ing the form(8). o

=H. In order to find nonvanishing condensates and(A?),
Some remarks about the structure of the external conderfVe should calculate the effective potential whose global

sate fieIdAfL(x), used in Eq(1), are needed. From this mo- minimum point provides us with these qu_antities. Suppose

ment on, we select tha2(x) in such a form that the only that[apart from the external vector-potentiaf,(x) (9] all

nonvanishing components of the corresponding field strengtROSON fields irBeq do not deapend on space-time. In this case,

tensorF?, areF3,= —F3,=H=const. It is well-known that by definition, Sefi=— Vet d°x, where

in non-Abelian gauge theories a given external chromomag-

netic field does not fix the type of corresponding vector po- o2+ a2 APA*P

tential uniquely. In other words, there can exist several Vett= 2—Gl+ G, +V,

physically (gauge nonequivalent vector potentials, which

produce the same chromomagnetic fig?d]. For example, .

in the case under consideration, i.e., in three dimensions, the \~/=I—In[de(D)de(DT+4M DM,

above homogeneous chromomagnetic field can be generated 6v

by two qualitatively different vector potentials

AL(x)=(0H/e,0), v= f d3x. (10

AZ(x)=(0,04/H/e), ® . .
Due to our assumptlons on the vacuum structure, In formulas

A2(x)=0 (a=3,...,8, (10) we should putA?=0 as well asm=0. Then, taking
into account the relations

or

YYTC=—-Cy* (£=0,1,2), \¥Te3=—€\2 (a=1,2,3),
AL(X)=H8,x! 6%, 9

The second of these vector potentials defines the well-knowlye have for the operatdd [cf. Eq. (5)] with vector poten-

Matinyan-Savvidy model of the gluon condensate in QCDtals (8),(9) the following identity:

[22]. In the following we shall denote expressidi8s and(9)

as vector-potentials | and Il, correspondingly. DTCE=[y*T(~id,+eAi(X)\3/2)—c]Ce>=Ce®D.
There exists an attractive picture of a domain structure of (12

the physical vacuum of QCD which assumes that the space is

split into an infinite number of macroscopic domains, each oNow, using this formula as well as the relations

which contain a homogeneous chromomagnetic backgroungetD =det(y°D"y°), detAB=detA detB, (e€)ij=— &y,

field generating a nonzero gluon condensd@é&)+0 [10]. (€%€%) 4p=— 8ap+ 8a3dps in expression(10), one can ob-

Averaging over all domains results in a zero backgroundain after some evident transformatiofrecall thati,j=1,2

chromomagnetic field, hence color as well as Lorentz symand«,3=1,2,3),

metries are not brokei(Strictly speaking, our following cal-

V= 6I—U|n defy°DTy°DT+4AA* e €3€’]

SClearly, (7)+0 would yield spontaneous breaking of parity. In
the theory of strong interactions parity is, however, a conserved
guantum number, justifying our assumption th&bzo. Neverthe-
less, note that at large densities a parity breaking diquark conden-
sate could apped®0].

®Having background fielda’,(x), given by Eq(8) or (9), one can 3 ]
form three matrix fieldsh,,(x) =A%(x)(\4/2), (@=1,2,3). Now it WhereAEA . N.ote that the first Ferm under the det symbol
is easy to see that for vector-potentidlll) the corresponding fields in EQ.(12) is a diagonal operator in the flavor space. One can
A,,(x) do not commutécommute between themselves. Due to this €asily see that the second term is also a diagonal operator,
reason, vector-potential (Il) is sometimes called a non-Abelian but this time in the flavor, color, spinor, as well as coordinate
(Abelian) vector potential. spaces.

i 5Ty 57 *
Zalnde[D'y Dy> +4AA” 6(S,5— 6430s3) ],

(12
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Ill. PHASE STRUCTURE AT ZERO EXTERNAL FIELD A

If the external field vanishes, we have the evident relation
Dy°Dy*=(0%+ %) 8;d,5. Taking into account this for-
mula as well as the usual one, @&t exp(tr InO), the deter-
minant in EqQ.(12) can be calculated straightforwardly lead- Phase II1 Phase I
ing to the following one-loop expression for the effective _ g, o_¢ < g450

. s <gg>=0,<gg>=0
potential of the initial mode(10) (Ve=Vo):

Vol b A%)= 4 38" B
o0 88%)=55, 776,
8i [ dk
+ = 3|ﬂ(0'2+4|A|2—k2)
3J (2m)
11 Phase IV Phase 11
4i [ dk <dg>4£0 qg># 0 =0
+— |n(0'2—k2), (13) 99 > < qq > , < qq >=
3 (2 3 <qq>#£0
where we have used the momentum space representatiol b
This expression has ultraviolet divergences. Hence, we nee
to regularize it by introducing in Eq13) Euclidean metric
(k°—ik% and cutting off the range of integrationkq FIG. 1. Phase portrait of the model at vanishing chromomag-
<A?). Next, by performing the integration and introducing netic field H=0. The boundariesl,|, are defined byl
renormalized coupling constargsandf, defined by ={(A,B): A=B}, I,={(A,B): 2A=3B}, whereA andB are re-
lated to the interaction strengti®; andG, through Eqs(14) and

1 4A 1 1 16A 1 (16).
S-S =s -5 =1 (14

single one, where the effective potential takes an absolute
we can express the effective potential in terms of ultravioletminimum value. Omitting the detailed calculations, we

finite quantities present at once the results in terms of the phase portrait
) . shown in Fig. 1.
Vo(o,A,A*)= ‘T_+AA + 1(02+4|A|2)3/2+ i|0|3_ _ This figure shows the plant_'-z of parametefsg) inided
29 f 9m 97 into four domains corresponding to the four possible phases

(15  of the model. In domain I, the poink,=0 is the abso-
lute minimum point of Vg, in I, it is at values ¢=0,
o=—A/6, in region lll, the global minimum is located
at the pointo=0, ¢=—B/4, and finally, in region IV
the global minimum lies in the pointb=(B—A)/2,¢

We shall now search for the global minimum point of the
potential (15). Before doing this, let us introduce a set of
more convenient parameters

$=2|A|, A=3mlg, B=3m/(2f), (16) =\BY/16—(B—A)%/4. N _
Recall that the coordinates of the global minimum point
in terms of which the effective potentiél5) is given by of the effective potential are the vacuum expectation values
5 ) (o), (¢) of the fieldsco, ¢. Lagrangian(2) provides us with
Bg? 4 i i i i
3mVo(0 ) = 0 + 2 (024 224 2o, the equatlons. of motpn fowr, A frgm which one cgn easily
2 2 3 3 get the following relations{a)~(qq), (¢)~{(qq), i.e., the

(17) global minimum point of the effective potential gives us in-
formation about chiral and Cooper-type diquark condensates
of the model. Hence, if the parameteis,B) belong to re-
gion |, we have the symmetric phase, because(®}
=(qq)=0,(¢)=(qq)=0 in this case. The phase with
Vo spontaneously broken chiral symmetry is situated in region
Fo 0= o{A+4o?+ p* 420}, I1, since here the chiral condensgtg) # 0. In region Il the
diquark condensat@yq) is nonzero, thus indicating the pres-
Vo ence of the color superconductivity phase. Clearly, in this
w:o: H{B+4Vo+ ¢} (18 case the electromagnetic as well as color symmetries of the
model are spontaneously broken. Finally, region IV corre-
In order to find the global minimum point of the effective SPonds to the mixed phase of the theory, where chiral, elec-
potential (17) one should search for all the solutions of the tromagnetic, and color symmetries are spontaneously broken
stationarity equationg18) and then find among them the down (here{qq), (qqg)+0).

By symmetry reasons, it is sufficient to study the function
(17) in the region{oc=0,=0}, where we have the follow-
ing stationarity equations:
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IV. PHASE STRUCTURE OF THE MODEL FOR VECTOR-  \yhereA= A/ \GH, BB/ aH.
POTENTIAL | In contrast to the potentid@R1), which has three dimen-

Let us next study the influence of the external chromo-Sional parameteré,B,eH, the function(22) depends only
magnetic field with constant vector potenti@) on the phase on two parameterd\,B. So, first of all we shall study the
structure of the mode(l). By using the momentum space global minimum dependence of the potental on the pa-
representation for the operator under the det symbol in EctametersA,B. Doing this, we get the possibility of discuss-
(12), we obtain instead of the differential operator an alge-ing the phase structure of the model in the presence of the
braic (24x24) matrix which has three different eigenvalues external vector potential8). SinceV, is symmetric under
Ei(p)(i=1,2,3), transformations— — x or y— —vy, it is sufficient to look for

its global minimum only in the regior,y=0. The station-

El’ip)zaz_ P2+ o2+ 4| A2+ %i% /(eH)2+4eH32, arity equations then take the form

_ Ny
Es(p)=p2—p2+d? (19 o = XAAT2XHF(2)] - iyt =0,

each of them having an eight-fold degeneracy, phd pi oV
+p3. Taking into account this fact, one can easily obtain L= yiB+F(2)|,- @iy =0, (23)
from Egs. (10) and (12) the following expression for the ay

effective potential of the model in the presence of an external

vector potential8) (VeﬁEVHl); where
o2 AA* 4i 2 d%p F(z2)=2z+2V1+ 22— In[(1+V1+ZD)/z].  (24)
Vi, (0,4, A%)= ot —=—+ 5 f SINEi(p).
! 2 =1 ) We should find all the solutions of the equatid@8) in the

(20) regionx,y=0 and then select that one, where the function

Integrating here first ovep, and then over the space pf , V;(x,y) takes its global minimum. Omitting here calcula-

variables and employing a suitable ultraviolet cutoff, one carfiona! details, we directly quote the results in the form of the
get after adopting a renormalization proced(snilar cal- phase portrait. The detailed investigation is given in Appen-

; : : dix B.
culations were performed ifl5] for the model(1) in the
case witth=0)p (S| @ In Fig. 2 the phase portrait of the modd)) in the pres-

ence of a nonzero vector potential of type | is presented in
3V, (0 ¢):A02 N B¢? N 2|o]® N 2 terms ofA andB. Here one can see three regions. Above the

E 2 2 3 3 line | ; there is the phase Il of the model, which corresponds
to theV,(x,y) global minimum point of the fornf0,y,(B)).

X| (02+ ¢?)%%+ (0% + ¢p?+eH)%? [The properties of the functiopy(B) as well as the functions
Xo(A), x1(A,B), y1(A,B) considered below are given in
3eH Appendix B] In this casg o)=0, (¢)#0. Below the curve
_ (0,2+ ¢2+eH)l/2_— T th .. . .
2 4 , the global minimum of the effective potential has the form
(Xo(A),0). Thus, in this region phase Il is located, since for
x(02+¢2)\/ﬁlpveH+ Voot ¢ +eH such values ofA,B the model has a vacuum witho)
' Jo2+ @2 : #0, (¢)=0. Finally, inside the2-domain there is a mixed
(21) phase IV, since here the global minimum point

(x1(A,B),y1(A,B)) corresponds to the vacuum witlyq)
where we have used the notations introduced in formulaz0 and(qq)+0. It is necessary to emphasize that in the
(16). Instead of the dimensional quanti®l), let us consider presence of such types of external vector potentials phase | is
the dimensionless function Vl(x,y)E37rVHl(o,¢)/ absent at alfobviously, only Whemi(x)zo, can this phase

(eH)®2, wherex=a/+eH, y= ¢/\JeH. Evidently, we have be realized in the modgl
Vy(xy)= Ax? B_y2+ E|X|3+ 2 V. PHASE STRUCTURE OF THE MODEL FOR VECTOR-
Y= T T3 3 POTENTIAL Ii

3 Next, let us study the influence of a nonvanishing external
(X2 +y?)32+ (14 x2+y?)32— Z\/1+x2+y2 chromomagpnetic field with vector potenti@) on the phase
structure of the mode(l). In this case, after some calcula-
tions, the operator, which stands under the det symbol in Eq.
’ (220 (12, can be transformed to the following expression in the
color space:

X

1+ \/1+x7+yz

3
—Z(x2+y2)ln
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A presence of a constant external magnetic fidldSimilar

expressions were calculated in a lot of pagses, e.g.[24],

I from which it follows that the first term in Eq27) is equal

to the second orje So, we omit details of trlD.. calcula-
tions and present at once the corresponding effective poten-

Phase 111 tial of the model
© B v A A% a? +AA*+ eH focds
Hol 74 )_2G1 G, 6% 32
Q
X exp(—s(o?+4|A|?))coth eHs/2)
Phase IV
Phase 11 4if d’k 2 1.2
+ = In(o“—k*). (28
3J (2m)® (

In this formulaeH has a positive value. Both integrals in Eq.

(28) are ultraviolet divergent ones. To renormalize the first
FIG. 2. Phase portrait of the model in the presence of a nonzertntegral one can act in the same manner, as it was done in

vector-potential . The symmetric phase | is absent. The boundarigsl8] with the effective potential of the three-dimensional

T, andT, of the regionQ) are defined according t,={(A,B):A  Gross-Neveu model in the presence of an external magnetic

=B}, T,={(A,B):xo(A)=yo(B)}. Here,A andB are defined as field. The second integral in E28) was already renormal-

A=A/\eH, B=B/\eH. At B—+o (B——x) the curvel, ap-  12€d in Sec. lll. Hence, the finite expression for the effective

proaches asymptotically the IirTq (the line 23:3§). The curve potentlal of the mod_e[l) in an external chromomagnetic

T, intersects the axeA and B in the points ¢0.36) and(0.3), field of type Il looks like

respectively. For fixed\ and B and varyingH one moves along

some rayr in the (A,B) plane. AtH=H(A,B) there is a phase Vi (00 A,A%) =V(0n A, A%) +

transition from phase Il to the mixed phase 1V, if the raptersects 2

the lineT, in some poinb (see the detailed discussion in Sec).VI

eH (=ds
6773/2 0 S3/2

Xexp(—s(o?+4|A|?))

Dy°Dy°+4AA* 5j(Sap— 0a3dpa) I_(eHs 2
X|coth ——|— ——|, 29
=diaq5ijD+,5ijD,,5ij(o'2+(92)], (25) 2 eHs ( )
where whereVy(o,A,A*) denotes the effective potential kt=0
ie [see Eq.(15)]. Integrating in this formula with the help of
D+:02+4|A|2_HiHiM1_,yM7VE ), integral table§25], one can get the following more compact
- K 4 a expression for the effective potential:
I, =id,*eA,(x)/2, (26) o2 AA* 2 eHVo2 T 4[A
Vy.(o,AA* )= —+ + —|oP+ ———
— 2 29 f 9 3m
A,u.: H 5#2)(1.
_ _ _ 2(eH)®* [ 1 o?+4|A?
Note that in Eqs(25), (26) D are operators in the coordi- 5. YTy | (30)

nate and spinor spaces only. The same is true for the expres-
sion (04 ¢2), which is the unit operator in the spinor space.

Taking into account Eq(25), one can easily find for the where{(v,x) is the generalized Riemann zeta funct|a).

As in the previous section, let us further introduce the dimen-

potentialV (12) the expression sionless function/,(x,y)=3m(eH) ¥4/ (o,A,4%):
- i i i
V=—trinD, + =—trinD_+ =—trin(c?+ %) (27 A2 By2 2
3v 3v 3v Va(xy) =5+ ;’ +§|x|3+ 21y

[the trace prescription in Eq27) is taken over coordinate as

well as spinor spacgsThe last term in this formula was —20(—112x%+y?), (31
calculated in Sec. Il of the present paper. Concerning the

firs~t two~terms in Eq.(g?), we should @int out thab . wherex= o/ +\/eH, y=2|A|/\/ﬁ andA,B are the same pa-
=D.y°D.9°, where D.=iy*d,*ey*A,(x)/2+M are rameters as in the relatiq2). Clearly, this expression dif-
formally the Dirac operators for Fermi particles with electric fers from the corresponding quanti¢g2) for a non-Abelian
charges*e/2 and effective mas!=/o?+4[A[? in the  background field.
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TABLE I. The A-dependence dfl(A,B) for some fixed values of the rati®/A.

B/A 100 10 2 15 11 1.05

eH.(A,B)/A? 112925.63 967.55 15.804 5.1038 0.6593 0.3508

The reader, who is not interested in following the detailsalong a rayr (see Fig. 2 If H—0, , we are at the infinite
of our investigation of a global minimum point f&f,(x,y), end of this ray, i.e., in phase Il of the modglee Fig. 2
can at once look at the phase portrait of the model in terms dflence, in the poinH.=0, the chromomagnetic field in-
A,B. Qualitatively it is the same as the phase portrait for theduces a dynamical chiral symmetry breaking phase transition
function V,(x,y) (see Fig. 2, i.e., it contains only three dif- (& second order phase transitipbut a diquark condensate is

ferent phases II, Ill, and IV. Details of calculations arenot produced. These properties of the vacuum are not
guoted in Appendix C. changed for sufficiently small values ¢f such thatH
<H((A,B). The valueH=H_(A,B) corresponds to poird
VI. CHROMOMAGNETIC CATALYSIS OF COLOR (see Fig. 2in which rayr crosses the Iin?zz and passes to
SUPERCONDUCTIVITY the Q) region where chiral and diquark condensates are both

. . . nonvanishing. So, with growing values bff in some point
Let us now analyze in more detail the phase portrait of the4 (A, B) one has a second order phase transition from phase

model (1), this time in terms ofA,B,eH. In particular, we || to the mixed phase IV. In Table | the results of a numerical
shall describe phase transitions which occur for arbitrarynvestigation oH(A,B) as a function ofA are presented for
fixed A,B and with varying values oH. In general, our some fixed values d8/A in the case of a vector potential of
discussions concern both cases with vector potentials afpe I. One can see from this table that if the raBitA is
types | and Il simultaneously. However, where it is necesfixed, thenH (A,B) increases withA asA?. It is also clear
sary, we indicate to what type of vector-potential the infor-that for each fixed value oA the quantityH.(A,B) is a
mation is related. First of all a general remarkAfB are  growing function ofB.
fixed andH is varied from 0 tox, then in the plane4,B) The behavior of condensates in the cdseB and for a
one moves along some rdwhich depends o\,B) from  vector-potential Il are the following:
infinity to the origin (this fact simply follows from the defi-

nition of A,B). (qa)~geH at H—0,
The case AB>0. (In this case we have a weak coupling (B—A)
for both bare constant§1]2<Gc~7-rz/A.) At H=0 this TN N at H(A.B)<H
choice of parameters corresponds to the unbroken phase | (qa)~ (o) 2 (AB) '
(see Fig. L If A,B are fixed in such a way, tha&>B (in (33

terms of bare coupling constants this means,%#1/2G,
+4A/37?), then atH+#0 we have in the 4,B) plane of
Fig. 2 a ray which is located above the lifhg, i.e., is in ~JeH at H—o 34
phase lll. Hence, in this case the external chromomagnetic (9a) ' 34

field induces(catalyzes the dynamical generation of a non-  So, atH#0 phase | of the model is completely absent in

zero diquark condensate. Here in the péigt=0, one has a  the phase structure of the model for both types of external
second order phase transition from phase | to the phase wighromomagnetic fields.

(q@)=0 at H<H(A,B),

color superconductivity. At varying values bf the diquark The case A 0,2A<3B. In this case aH=0 one has a
condensate .behavei, e.g., in the case with vector-potential Whase Il of the theorysee Fig. 1 with spontaneously broken
in the following way’ chiral symmetry. If the external chromomagnetic fieldvar-

ies in the intervaH e (0), then in the &, B) plane there is
a ray which crosses the life in some definite point. IH

—0, , we are in the infinite end of this ray, i.e., in the phase

(Tr:;e XTSI ;ﬁg?r?gs:;?elrggrfh?gri%:z;dﬁg::ga;ilﬁ\?;zés Il of the model. However, in contrast to the previous case
9 with A,B>0 and A<B, in the present case the vall

in the intervalH e (0,), then points in the4,B) plane vary  —q_ s no more the point of a phase transitigAt A<O,

when the bare coupling constaf; takes a supercritical

valueG,>G,, the origin of chiral symmetry breaking is the

7In order to find(qg)~(A) and(qq)~ (), one should multiply ~ "ather strong supercritical quark-antiquark attraction, but not

the coordinates of the global minimum point of the functions the chromomagnetic field. In this case the external chromo-
Vl(xyy) or V2(X|y) (See Appendixes A and B' Correspondir‘)w magnetic f|e|d Only Stabi”zes the vacuum W|th Chiral Sym'
the quantityeH. For example, in the case under considerationmetry breakind15,18].) If H increases, we move along this
(qq)~(A)=yo(B)JeH/2, where the functiory,(B) and some of ray to the origin of the &,B) plane. Hence, starting from
its properties are presented in form4) of Appendix B. some valueH (A,B), we are in regiol) (see Fig. 2, where

(qq)~feH at H—0, (qq)~\eH at H—%. (32)
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besides(qq)# 0 the diquark condensate is nonzero as well.the chiral condensatgq)#0). Apart from this, in the pres-
So, at sufficiently high values dfi>H_.(A,B) phase Il of ence of a chromomagnetic field, the phase portrait of the
the theory is transformed into a mixed phase V. model does not contain the symmetric phase.

The influence of vector-potential Il on the chiral phase I
of the model is realized in the following behavior of conden-
sates:

VIl. SUMMARY AND CONCLUSIONS

In the present paper the phase structure of a
(2+1)-dimensional four-fermionic NJL-type of modé€l)
with two coupling constants was investigated admitting non-
zero background vector potentials of two nonequivalent

_ A
(qa)~(o)=—5 at H=0,

— (B—A) types | and ll[see Eqgs(8), (9)]. In the framework of such a
(agq)~(o)= 5 at H(AB)<H, (35 model the external vector potential might be thought to simu-
late such a nonperturbative feature of the real QCD vacuum
(qg)=0 at H<H((A,B), like a nonzero gluon condensdteF ) =H2. The structure of
the Lagrangian{l) permits us, in particular, to consider then
(qq)~eH at H—o. (36)  the competition between chirétiq) and diquark(qq) con-

densates and to get some insight into the role of the gluon
The case B:0,A>B. In this case aH =0 there is a per- condensate as a possible catalyst of color superconductivity.
fect (not mixed color superconducting phase Il of the |t is well-known that color-superconducting quark matter
theory (see Fig. 1 One can easily show that now for all with two quark flavors arises by the condensation of color
values ofH only the diquark condensat@q) is nonzero. antitriplet diquark Cooper pairs. The condensate breaks the
This vacuum is chirally invariant, but the,j{1) as well as  SU,(3) symmetry down to SK{2). Hence, the three gluon
color SU(3) symmetries are broken down. It is possible tofields corresponding to the generators of unbroken(3Y

show that in this case stay massless and the remaining five gluon fields receive a
mass by the Higgs mechanistieissner effegt We have
(qu)~(A)=—B/4 at H—0, (qg)~eH, at H—, studied the influence of the external chromomagnetic fields

living in an unbroken SK[(2) subgroup of SL(3), i.e., hav-
ing a formH®=(H,H?,H3,0,...,0), on theformation of

i.e., the external ch(omomagnetlc field even enhances tht%e color diquark condensate. Using global &) color ro-
color superconductivity.

i ) L a
The case A.B, 2A>3B. Analyzing here the behavior of tfmons one  can br'mg this field to the formH
: ) - . =(0,0H,0,...,0) which corresponds to the above-
the quark condensates in a similar way as in the previous * ' :
. ) . mentioned vector-potentials Eq®), (9).
cases, one can easily establish that the vacuum properties are . ) . S .
The main conclusion from our investigations is that at

not changed with growing values &f. Hence, atH=0 as . . S
well as atH=0 there is a mixed phase IV with nonzero 28© chemical potential the external chromomagnetic fields
. P . of these type are good catalysts of color superconductivity.
quark and diquark condensates. Remark that the action of L o
C ) arlier, it was shown that extern@dhromg magnetic fields
external chromomagnetic field on the mixed phase does ng . . .
. Do catalyze dynamically the spontaneous breaking of chiral
change the value of the chiral condensate; it is the same as & . . X e
symmetry in some (2 1)-dimensional four-fermionic mod-

H=0, where(qq)~(o)=(B—A)/2. However, the diquark ¢|s[24,27,15,18 It turns out that this is a particular mani-

condensate depends on the valueHof festation of the so-called magnetic catalysis effsee, e.g.,
[28,17,29), which has a rather universal model independent
(qay~(A)=B?16—(B-A)*/4 at H—0, character. P
\ e, at H 39 Indeed, we have shown that for sufficiently small bare
~+eH, at H—oo. i ~2f A i
1 c , 1.C.,
(qq , coupling constant&, ,<G.~ w“/A, i.e., for such values of

G, at which forH=0 one has a symmetric phase | of the
theory (see Fig. 1, the pure CSC phase(dq)=0, (qq)

% 0) is realized in the model at infinitesimally small values
of the external chromomagnetic fieldlif G,>G; (in terms

of A,B that mean®A>B). If G,<G; (A<B), then, first, a
<0 (i.e., for sufficiently high values ofG,>G,), then chiral breaking phase transition inducedHst 0, (chromo-

(qq)+0 even aH =0 (in this case the external chromomag- rrﬁignetic catalysis of chiral symmetry breaking at which
netic field enhances the CEGHowever, for other regions of (qd)#0, (qq)=0) occurs. After that, with growing values
the (A,B) plane the nonzero external chromomagnetic fieldf H, at some poinH =H, there is a second phase transition
catalyze the generation ¢§q)+0. The critical value oH, 0 the mixed phase of the theory, where both condensates
at which color superconductivity is induced, may be (Of (gqq) and{qq) are nonzerdboth phase transitions are con-
A,B>0, A>B), or some finite valueH.(A,B)#0 (in the tinuous second order ones

last case we have not a perfect, but mixed color supercon- The action of an external chromomagnetic field on the
ducting phase in which the diquark condensate coexists witbhiral phase Il of the theorysee Fig. 1 is to induce(qq)

In conclusion, let us remark that for arbitrary fixed param-
etersA,B and in the presence of sufficiently large values of
external chromomagnetic fields of both types there arises
nonzero diquark condensatgq)+0, i.e., the color super-
conducting phase of the model is realized Alf>3B/2, B

014038-9



D. EBERT, K. G. KLIMENKO, AND H. TOKI PHYSICAL REVIEW D 64 014038

#0 at some critical poind=H_# 0, thus drastically chang- searchegproject 98-02-16690as well as by DFG-Project
ing the vacuum properties and transposing the system into 436 RUS 113/477/4.
mixed phase IV.

Finally, we should mention that the ground states of APPENDIX A: ALGEBRA OF THE y MATRICES AND

phases Il and IV are not changed under the influence of the FLAVOR SYMMETRY FOR D =(2+1)
above-mentioned external chromomagnetic field. So, the ex- _ . _ _ _
ternal chromomagpnetic fields living in an unbroken 82) The two-dimensional irreducible representation of the

subgroup of S(3) only enhances the CSC phenomenon three-dimensional Lorentz group 801) is realized by the
Notice that all the above-mentioned effects are observed ifollowing 2X2 y matrices:
the presence of both types of vector-potentials | and 1.

Let us recall that the chromomagnetic catalysis effect of ~0 1 O ~ 0 i
dynamical chiral symmetry breaking occurs in€2)- as Y=03% g —1)0 7 =lo = i 0/
well as (3+1)-dimensional NJL model$15,17. So, the
very existence of this effect is not sensitive to the dimension- 0o 1
ality of space-time. Moreover, there are many physical phe- Tyzziozz( ) (A1)
nomena in QCD, in particular in low energy meson physics, -1 0
that can be reasonably described both in the framework of ) )
(3+1)- and (2+ 1)-dimensional NJL type mode[80,13.  acting on two-component Dirac spinors.
On these grounds one might thus expect that chromomag- They have the properties
netic catalysis of color superconductivity is inherent to the o - ~
four-dimensional version of modél), and hence to the real Tr(y y¥)=2g4", [y, y"]=—2ie"""y,,
two-flavor QCDLy, too. The proof of this fact is the subject of
our nearest future considerations. VY= —ighrYy +gh, (A2)

In our opinion there exists a deep connection between the
chromomagnetic catalysis of color superconductivity and,nere g“v=g,,=diag(1—1,—1), 7,=g.,s7" £%2=1.
chiral symmetry breaking, induced by external chromomagThere is also the relation o Sab
netic fields[15—18. This assumption is based on the exis-
tence of the Pauli-Gsey (PG transformation 31], mixing ~ T -
. . ’ . Tr(y#y"y%) = —2igh"e. A3
guarks and antiquarks, due to which some phenomena in the 7y e (A3)

qq channel can have its analogy in the channel. In par-  Note that the definition of chiral symmetry is a bit unusual in
ticular, this suggests that diquark condensation might partiyhree dimensionghere spin is a pseudoscalar rather than a
be understood as the properly PG-transformed chiral condenaxial) vector]. The reason is simply that there exists no other
sation. However, the detailed consideration of this question, s, 5 o4 anticommuting with the Dirac matriceg”
is not the subject of the present paper and will be investi-WhiCh would allow the introduction of 3° matrix in the

gated elsewhere. irreducible representation. The important concept of “chi-

Moreo_\:jer, '? the ??ﬁr fuj[urel weN?[e go(ljng to include INtO o symmetries and their breakdown by mass terms can
our consideration of the simple model) a nonzero o ertheless be realized also in the framework of

chemical potentials in addition to the external chromomag- (2+1)-dimensi : . c
L . -dimensional quantum field theories by considering a
netic fields. Recently, in the framework of NJL modgig] four-component reducible representation for Dirac fields. In

thg |anuence' ofu and an external magnetic field on the this case the Dirac spinotshave the following form:
chiral properties of the vacuum were considered. Apart from

discovering different kinds of magnetic oscillatiorslativ- r(X)
istic van Alphen-de Haas effecin the strongly interacting q(x :( ! ) (A4)
quark systems, it was also found that in the NJL model at Po(X)

nonzero baryon density the chiral symmetry must be restored . ) )
at sufficiently large values of the magnetic field. By analogyWith 1,1, being two-component spinors. In the reducible
with [32], we expect that the diquark condens@ate) should ~ four-dimensional spinor Tepresentation one deals with (4
disappear in the case of nonzero baryon density for a suffix4) y matricesy*=diag(y*,— y*), wherey* are given in
ciently strong external chromomagnetic field, i.e., at largeEq. (Al). One can easily show thau(r=0,1,2),
values of the gluon condensate.
Tr(y*y")=4g*", y*y'=o*"+g"",
ACKNOWLEDGMENTS N
_ _ o=zl y*7"]

We wish to thank V. A. Miransky and Y. Nambu for 5 5
fruitful discussions and A. K. Klimenko for numerical calcu- =diag —ie""y,,—ie*""y,). (AD)
lations. One of ugD.E.) acknowledges the support provided
to him by the Ministry of Education of JapaiMonbush9  In addition to the Dirac matrices* (u=0,1,2) there exist
for his work at RCNP of Osaka University. This work is two other matricesy®, y° which anticommute with all
supported in part by the Russian Foundation of Basic Rey* (x=0,1,2) and with themselves,

014038-10



CHROMOMAGNETIC CATALYSIS OF COL@R ... PHYSICAL REVIEW D 64 014038

APPENDIX B: INVESTIGATION OF THE GLOBAL

0 |
) . (A86) MINIMUM POINT OF V(X,y)

I 0

=1
I O

3

. Y=y

It follows from Eq. (24) in the text that the functiofr(2)

with | being the unit 22 matrix. In the space of four- Monotonically increases on the intervale (Ox) and
component spinoréA4) it is now possible to consider “chi- F(0+)=—%, F(+0%)=+c. Hence, for arbitrary fixed val-

ral” transformations ues of A,B there exist only two real numberg,(A)
>0, yo(B)>0, such that the two pairx§,0), (Oy,) as well
q—expify®)q, g—expiny®)q, as the trivial one (0,0) are solutions for the system of sta-
tionarity equationg23). [The xo(A) andyy(B) are zeros of
as well as the discrete parity transformation P, the functions which are located inside the fisty=0) and
second(at x=0) pair of braces in Eq(23), respectivelyl
P: q(t,x,y)— —iy*yia(t, —x,y). (A7)  Furthermore, one can easily see thisth /9x<0 if y=0 and

xe(0xo(A)) as well as dV;/dy<0 if x=0 and y

In the present work the charge conjugation ma@ifor four- € (0yo(B)). This means that the quantities; (xo,0) and
component spinors was chosen tojfe With this choice of ~ V1(0y,) are smaller thavy(0,0). So, for arbitrary finite
C it is possible to show that quark bilinears in Ef) obey real valuesA,B the global minimum point of the function

the relations V,(x,y) cannot lie in (0,0). Due to this reason the symmet-
ric phase is absent in the phase structure of the model.
PlaqlP~(t,x,y)=[qq](t,—x,y), In the next formulas some propertiesxg{A) andy,(B)
are presented:
. 541D 1 N _ ~ ~ ~
Plary’qlP ~(t,x,y) = —[a7yal(t, = x,y), 8 xo(R)=26 A2 at A+ oo,
Xo(0)=0.147 . . ., (B1)

Plig%s e®y°qlP~(t,x,y) =[iq e €*y°q](t, — xy).
_ Xo(A)=—Al6 at A— —x,
It follows from Egs.(3) and (A8) that s andA® are indeed
scalar fields, whereas fields are pseudoscalars.

Let us for a moment consider the case of one flavagr, N
=1. The 4x4-matrices{1,y°, 73 y>°=iy°y% are the unit
matrix and Pauli matrices in block form and as such they
generate the U(2¥SU(2)X U(1) group of transformations _ _ _
of the four-dimensional spin@A4). Notice that with respect yo(B)=—B/4 at B— —,

to SU2) the set of quark bilineargqq, qiy*q, qiy°q}
transforms as a triplet, wheregsy®y%q is a SU2) singlet.

; ; P
Analogously, ~ diquarks  form a triplet,{q"d, g% y’d, the stationarity equations, wherg>0,y;>0. [For this so-

qi y°y%q} (since C_Ws is a symmetric matrix, the product | tion the functions which are inside both braces in E28)
with Grassman spinors vanishes, and a singlet is excluded;gie sero value$ Evidently, we have

Obviously, for N flavors any of the Nflavor components of
gis a Dirac 4 spinor, and the total flavor group is U{2Nts

respective Lie algebra is given kgirect products of gen-
erators of U(N) and U2). In particular, for the case of two-

flavors N=2 considered in the text, the symmetry group of . . .
the kinetic part of the Lagrangian is(4). Finally, let us From Eq.(B3) one can easily see that this type of solution

mention that in B=(2+1) there might arise two possible for EGs.(23) exists inside the regiof) of the (A.B) plane

mass termsmnaq andmgi y°y3q. The first(standardl one is (see also Fig. R
P invariant, but breaks the total(4) flavor symmetry down .= = o o~ o~
according to U(4)>SU(2)x SU(2)xXU(1)x U(1), with Q={(A,B):B—2y,(B)<A<B}. (B4)

generators of the residual group given by find the followi | f th
371, 37%9°y% (a=0,1,2,3). Note that this symmetry Uc?tlggtigl?gé()zi? i?snstacti)nnalrn E)ir?tS'o owing values of the
breaking scenario includes the breaking of the “usual chi’ yp '

ral” y° invariance, as considered in corresponding (3

yo(B)=2e 872 at B— +,

Yo(0)=0.183 . . ., (B2)

It follows from Eg. (23) that there may existout not for
all values ofA,B) one more solutior(x,(A,B),y;(A,B)) of

x(AB)=(B-A)2, y,(AB)=y4B)—-(B-A)%4.
(B3)

>~
+1) models. Contrary to this, the other possible mass term o 1+X5(A) o2 RN E 3%
leaves the flavor symmetry unbroken, but instead violates Vi(Xo(A).00= 6 [1=2x(A)] 3 XA,
parity and will thus not be considered here. (B5)
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- V1+Yy4B) 5 1 .. NV (x,y)dy=y{B+ (x*+y?) 17
V1 (0yo(B)=~——25"2[1-2y3(B)]- Zy3(B), ?
6 3 6 —20(12X2+y?)1=0. (C2

One can see from Eq&C1) and(C2) that the first derivatives

V1i(a(A,B),y1(AB)) of V, do not exist in the point (0,0).This means that if the

\/ﬁ point (x,y) tends to the origin along different ways, the re-
_ 1+y0(B)[1_2y2(§)] sulting expressions for the partial derivatives at the point
6 0 (0,0) do not coincidd.In contrast, the functiofv,(x,y) is

< =3 differentiable in the point (0,0). So, we need a special inves-
1 35 (B—A) (g7)  ligation of this point. Let us puy=0 in the equatior(C1).
yo 24 Then, using properties of thg v,x) function[26], it is eas-
ily seen that aty=0 and x—0, the partial derivative
On the linel ;={(A,B):A=B}, which is a part of the bound- 4V,/dx tends to  1). Analogously, ak=0 andy— 0, the
ary for the region(), we have &;,y;)=(0y,). Hence, on derivative V,/dy (C2) tends to (1) as well. This fact

this line V4(0,y0) =Vi(xy,y1). Comparing Eqs(B6) and  means that for arbitrary values AfB the point (0,0) cannot
(B7), we see that inside the(d-region Vi(0yo)  pe a global minimum for the potentidl,(x,y). So, in con-
>Vi(X1,Y1)- N . trast to the case withtH=0, the ground state with intact
_ The other part of the boundary for the reginis the line  jnjtial symmetry is no more possible in the modg) at H
[,={(A,B):A=B—2y,(B)}. With the help of the stationar- #0. Such a property of the effective potential is a charac-
ity equations it is possible to show that on this line the fol-teristic feature for a phenomenon which is cali@tiromg
lowing relations are also fulfiledB=A+2x,(A), xo(A) ~ magnetic catalysis of dynamical symmetry breaking. Ac-
=yo(~B)- As a consequence, we have, (y;)=(x,,0) as cording to this effect the extern&bhromc}magnet!c f|elc_j N
. L promotes to a great extent the spontaneous breaking of initial
well asV(Xq,0)=V(X1,Y1) on the linel,.

: X AL 2, symmetry of the theoryfor more details, see the last section
Numerical investigations show that inside the region y y f

. . . - o of the present papgr
fchere is a line on Wh'Ch/l(XO’O)_V_l(O’YO)' Further, it IS Similar to the case with non-Abelian vector-potential of
important to remark that the derivative of the function

type 1, in the present consideration it is possible to show that
V1(0o(B)) with respect tdB as well as the corresponding for arbitrary values of A,B the stationarity equations
partial derivative of the functio,(x,(A,B),y;(A,B)) are (C1),(C2) have two solutions of the fornixe(A),0) and
positively defined quantities in their regions of definition. "o oA

Now, taking into account all the above mentioned facts, it is(0Yo(B)), where
possible to assert that in Fig. 2 the phase portrait of the

model(1) in the presence of a nonzero vector poten(@lis Xo(A)=1/A at A— -+, xo(A)=—A/6 at A— —o,
presented in terms ok andB. This means that above the (C3)
line T, there is phase IIl of the model, which corresponds to B ~ 5 5 ~ ~

the V1(x,y) global minimum point of the form (§,). (In Yo(B)=1B at B—+x, y,(B)=—-B/4 at B— —ox.
this casg o) =0, (¢)#0.) Below the curvd , the effective (CH

potential global minimum has the formx{,0). So in this

region phase Il is located, since for such valued\dd the  [Here and in the following discussions of the present appen-
model has a vacuum withio) #0, (¢)=0. Finally, inside dix we use the same notatiomg(A) andy,(B) for the so-

the ) domain there is a mixed phase IV, since here thdutions of stationarity equations as in the previous Appendix
global minimum point X;,y;) corresponds to the vacuum B. But one should remember that these functions have quite

with both nonzero condensaterq;q) and(qq). different numerical values than similar functions had in Ap-
pendix B]
APPENDIX C: INVESTIGATION OF THE GLOBAL From Egs.(C1),(C2) it follows that only for (A,B) € 2,
MINIMUM POINT OF  V,(X,y) where() is defined formally in Eq(B4), there is a solution

.of the form(x,(A,B),y,(A,B)), wherex;>0, y;>0. These

In this appendix we present the search of the global m'n'functlons are given in EqB3). There are no other solutions
mum point for the potential/,(x,y) as well as its depen- of the stationarity equations.

dence on the paramete@isB. Since this function is Symmet' Using numerical and ana'ytica| methodS, it is now pos_
ric under two discrete transformations- —x andy——y,  sjble to compare the values of the effective potential in its
it is sufficient to study it only in the region,y=0. The  stationary points and thus to find the global minimum point
stationarity equations fov,(x,y) take the form of V, as well as its dependence on the parameieBsof the

theory. We omit the details of this investigation and present
only the results, which can be formulated in the form of a

—2£(12x2+y?)}=0, (C1)  phase portrait of the model in terms AfB.

N (XY IX=X{A+2x+ (x> +y?) 12
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CHROMOMAGNETIC CATALYSIS OF COL@R ...

It turns out that Fig. 2, which is the phase portrait of the
model for nonzero vector-potential |, formally may serve as
phase portrait of the model for nonzero external gauge field

of type Il as well. In both cases the lifi¢ separates the color
superconducting phase Il from the mixed phase IV. Further
in both cases, phase IV is separated from the chiral phase

by the linel ,, which has the same analytic definition through
Xo(A) andyy(B) (see the figure caption to Fig).2More-
over, the leading asymptotic behaviors of thecurves are in

PHYSICAL REVIEW D 64 014038

both cases identicdat A— o we have instead the linlg, at

8A— — o it is the line 2ZA=3B). Of course, since for type |

and type Il vector potentials the functiong(A) andy,(B)

obey different stationarity equations, lie of case | does
’rnot coincide with linel , of case Il. Finally, we should stress
again that for both types of nonzero vector-potentials | and
I, the symmetric phase | of the theory, which is present in
the phase structure of the model ld&=0 (see Fig. ], is

absent at all.
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