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Chromomagnetic catalysis of color superconductivity in a„2¿1…-dimensional
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We investigate the influence of a constant uniform external chromomagnetic fieldH on the formation of
color superconductivity. The consideration is made in the framework of a (211)-dimensional Nambu–Jona-

Lasinio model with two different four-fermionic structures responsible for^q̄q& and diquark̂ qq& condensates.
In particular, it is shown that there exists a critical valueHc of the external chromomagnetic field such that at
H.Hc a nonvanishing diquark condensate is dynamically created~the so-called chromomagnetic catalysis
effect of color superconductivity!. Moreover, external chromomagnetic fields may in some cases enhance the
diquark condensate of color superconductivity.
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I. INTRODUCTION

During the last two decades a great deal of attention
paid to the investigation of the QCD ground state at fin
temperature and density~see, e.g., the recent review@1# and
references therein!. The main efforts were directed to th
consideration of the quark-gluon plasma—a new state
matter which can exist at sufficiently high temperature a
density. In addition, it was also realized@2# that at low~zero!
temperature and high baryon density colored quarks, in
acting via gluon exchange, can form Cooper pairs. Hen
the quark system would pass to the so-called color super
ducting phase in which the color symmetry of the theory
spontaneously broken. However, since the correspon
value of the diquark condensate^qq& was estimated to be o
order 1 MeV, one could not get any observable effects in
case.

Quite recently it was pointed out@3# that due to instantons
there is a nonperturbative mechanism of forming a cond
sate^qq&Þ0. As a consequence, a rather large observa
value of order 100 MeV for the diquark condensate was p
dicted and the color superconductivity~CSC! might possibly
be detected in the future experiments on heavy ion collisio
i.e., at moderate baryon density, or realized in the interio
neutron stars. At present time, there exists a rich litera
devoted to this new physical effect; the CSC phenome
has been studied in the framework of an instanton model@3#,
in different versions of quark models@4# of the Nambu–
Jona-Lasinio~NJL! type @5#, some QCD-like theories with
nonstandard color group and quark multiplets@6#, and using
lattice and 1/N approaches to four-fermion models@7#. CSC
was also investigated in the frameworks of the renormal
tion group and variational as well as Dyson-Schwinger eq
tion methods@8#. In all of the above cited papers@3–8# the
0556-2821/2001/64~1!/014038~14!/$20.00 64 0140
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nonperturbative featurêq̄q&Þ0 of the QCD vacuum related
to spontaneously broken chiral symmetry was taken into
count. Then, the phase structure of the theory is the co
quence of a competition between two dynamical order
rameterŝ q̄q& and ^qq&.

It is well known that the gluonic degrees of freedom i
fluence the properties of the QCD vacuum, in which there
one more nonzero condensate^Fmn

a Famn&[^FF&. Hence, in
order to get a more adequate phase structure of the th
one should consider the competition of three dynamical
rameterŝ FF&, ^q̄q&, and^qq&. Of course, it is very hard to
solve this situation within QCD itself. So, instead of this w
shall incorporate the nonzero gluon condensate^FF& into a
simpler NJL model consideration of the CSC phenomen
The NJL model does not contain dynamical gluons, henc
this case the gluon condensate^FF& is rather an externa
parameter~similar to chemical potential, temperature, etc!,
than a dynamical one. In the framework of the NJL mod
the condensatêFF&Þ0 can be realized in terms of an ex
ternal ~background! gauge fieldAm

a (x) @9#.
The primary goal of the present paper is the investigat

of the role which the gluon condensate will play in the fo
mation of CSC. In the chosen NJL model approach we sh
in particular, consider a chromomagnetic gluon condens
i.e., ^FF&5H2.0, with H being a constant chromomagnet
background field. Let us first comment on the case of a v
ishing diquark condensate. One can then imagine that
vacuum has a color ferromagnet-like domain structure.
side each domain the chromomagnetic fieldHa is homoge-
neous, but its direction is varying from one domain to a
other in such a way that space averaging ofHa is equal to
zero. So color and Lorentz invariances are not broken@10#.
On the other hand, when the system is in the color superc
ducting phase, the SUc(3) symmetry is broken spontane
©2001 The American Physical Society38-1
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ously to SUc(2). Using pure symmetry arguments, it is ea
ily shown that the three gluons living in the unbroke
SUc(2) subgroup stay massless, whereas the remaining
gluons get masses by the Higgs mechanism. By analogy
ordinary superconductivity, it is expected that external ch
momagnetic fields corresponding to massive gluons, i.e.,
ternal chromomagnetic fields of the formHa

5(0,0,0,H4, . . . ,H8), should be expelled from the CS
phase~Meissner effect!.1 Moreover, sufficiently high values
of such fields should destroy the CSC. However, our in
ition tells us nothing about the action of external chrom
magnetic fields, which in the color space look likeHa

5(H1,H2,H3,0, . . . ,0), on thecolor superconducting stat
of the quark-gluon system.

In the present paper the influence of such external ch
momagnetic fields of the formHa5(H1,H2,H3,0, . . . ,0) on
the phase structure of the NJL model is considered. Since
are mainly interested in clarifying the role of external chr
momagnetic fields in the creation of a color diquark cond
sate, we put the chemical potential and temperature equ
zero. For simplicity, all the considerations are performed
(211)-dimensional space-time.2

The paper is organized as follows. In Sec. II the N
model under consideration is presented and its effective
tential at nonzero external chromomagnetic field is obtai
in the one-loop approximation. This quantity contains all t
information about the quark condensates of the theory. In
following Secs. III–V the phase structure of the model
investigated, first for zero background gauge field and t
for nonvanishing vector potentials of two types~Abelian and
non-Abelian!, corresponding to the same external chrom
magnetic fieldH, respectively. In Sec. VI it is shown tha
there exists a critical valueHc of the gluon condensate fiel
at which the color diquark condensate is spontaneously g
erated~the chromomagnetic catalysis of CSC!. Detailed in-
vestigations of global minimum points of the effective p
tential are relegated to the Appendix. Finally, a summary
discussion of the results are given in Sec. VII.

II. MODEL LAGRANGIAN AND EFFECTIVE POTENTIAL

In the present paper the influence of a constant exte
chromomagnetic field on the phase structure of a NJL-t

1The Meissner effect for an ordinary external homogeneous m
netic field acting on a color superconductor was investigated
several authors. It was shown in@11# that, due to the presence of
massless combination of the photon and some gluon fields, an
dinary homogeneous magnetic field can penetrate into a color
perconductor. The strength of the magnetic field inside the la
depends on details of the geometry, the relative strength of exte
electromagnetism, and the color forces. In some cases~e.g., for
CSC in spherical regions!, the applied static homogeneous magne
field might also be completely expelled from CSC@12#.

2Recall that in~211!-dimensional space-time NJL-type mode
are renormalizable in the framework of nonperturbative 1/Nc ex-
pansion techniques@13#. Moreover, these theories are used in ord
to describe different planar physical phenomena, including ordin
and high temperature superconductivity@14#.
01403
-

ve
ith
-
x-

-
-

o-

e
-
-
to

n

o-
d

e
e

n

-

n-

d

al
e

model with quarks of two flavors and three colors is inve
tigated at zero chemical potential and temperature. The
grangian of the model contains two different four-fermion
structures responsible for the dynamical appearance of^q̄q&
as well aŝ qq& condensates.~Earlier, similar considerations
were done for the simplest NJL-type models in which only
chiral condensate could appear@9,15–18#.! The
(211)-dimensional model under consideration has the
lowing Lagrangian:3

L5q̄gmS i ]m1eAm
a ~x!

la

2 Dq1
G1

6
@~ q̄q!21~ q̄ig5tWq!2#

1
G2

3
@ i q̄C«ebg5q#@ i q̄«ebg5qC#. ~1!

In Eq. ~1! e denotes the gluon coupling constant,qC

5Cq̄T, q̄C5qTC are charge-conjugated spinors, andC
5g2 is the charge conjugation matrix (T denotes the trans
position operation!. Moreover, summation over repeated i
dicesa51, . . . ,8,b51,2,3, m50,1,2 is implied. The quark
field q[qia is a flavor doublet and color triplet as well as
four-component Dirac spinor, wherei 51,2, a51,2,3.
~Latin and Greek indices refer to flavor and color spac
respectively; spinor indices are omitted.! Furthermore, we
use the notationsla/2 for the generators of the color SUc~3!

group as well astW[(t1,t2,t3) for Pauli matrices in the fla-
vor space, and« andeb are operators in the flavor and colo
spaces with matrix elements («) ik[« ik, (eb)ab[eabb,
where« ik andeabb are totally antisymmetric tensors. Nex
let us at the moment suppose that in Eq.~1! Am

a (x) is an
arbitrary external gauge field of the color group SUc(3).
~The following investigations do not require the explicit in
clusion of the kinetic gauge field part of the Lagrangia!
Below, the detailed structure ofAm

a (x) corresponding to a
constant chromomagnetic gluon condensate will be given

In order to demonstrate the main ideas of our approac
a way as simple as possible~thereby obtaining relatively
simple analytical expressions for the effective potential a
allowing, in principle, for other applications in planar phy
ics!, we find it convenient to perform the following invest
gations in the (211)-dimensional space time.4 We want to
note that in this case the model~1! studied here and QCD3
are not in the same universality class of theories, since t
differ in their flavor symmetry groups; in fact, for the thre
dimensional two-flavor case considered here, QCD3 has a
peculiar U(2Nf)5U(4) flavor symmetry besides that of th
color SUc(3) symmetry ~see Appendix A!. On the other
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u-
r
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r
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3In the (211) dimension the four-component spinor represen
tion of the Lorentz group is a reducible one. The correspond
algebra ofg matrices is given in Appendix A.

4At nonzero chemical potentialm andAm
a (x)50, models includ-

ing diquark channels similar to Eq.~1! were considered in low
dimensions @7# and in (311)-dimensional space-time as we
@4,19#. In contrast, we consider here the case withAm

a (x)Þ0 and
chemical potentialm50.
8-2
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CHROMOMAGNETIC CATALYSIS OF COLOR . . . PHYSICAL REVIEW D 64 014038
hand, our Lagrangian~1!, being invariant under~global!
color symmetry, has been constructed in such a way th
mimics just chiral invariance of real QCD4 under the ‘‘chi-
ral’’ ~flavor! group SU(2)L3SU(2)R , which is here a sub-
group of U~4!.

By the above reasons, it is clear that the results obtai
below in the framework of our (211)-dimensional mode
~1! cannot be considered to describe the symmetry brea
scenario of the full U~4! symmetry, nor are they applicabl
for modeling ‘‘planar’’ QCD3. On the other hand, the impor
tant underlying mechanism of chromomagnetic catalysis
dynamical symmetry breaking resulting from ‘‘dimension
reduction’’ by external chromomagnetic fields has be
shown to exist both in D5(311) and D5(211) @15–17#.
On this basis, one might then expect that the mechanism
chromomagnetic catalysis of chiral symmetry breaking a
CSC and its influence on the interplay of quark and diqu
condensates of real two-flavor QCD4 might be reasonably
mimicked by our simpler (211)-dimensional model~1! ~see
also the discussion in the last section of the present pap!.

After these necessary explanations, we mention tha
order to obtain realistic estimates for masses of vector/ax
vector mesons and diquarks in extended NJL types of mo
@19#, we have to allow for independent coupling consta
G1 ,G2, rather than to consider them related by a Fierz tra
formation of a current-current interaction via gluon e
change. Clearly, such a procedure does not spoil chiral s
metry. For the general discussion of phase transitions be
~see Secs. IV–VI! and also following the above argument
we find it therefore convenient to treat the coupling consta
in Eq. ~1! as independent quantities instead of specify
them by additional model requirements.

The linearized version of the model~1! with auxiliary
bosonic fields has the following form:

L̃5q̄gmS i ]m1eAm
a ~x!

la

2 Dq2q̄~s1 ig5tWpW !q

2
3

2G1
~s21pW 2!2

3

G2
D* bDb2D* b@ iqTC«ebg5q#

2Db@ i q̄«ebg5Cq̄T#. ~2!

The Lagrangians~1! and~2! are equivalent, as can be seen
using the equations of motion for bosonic fields, from whi
it follows that

Db; iqTC«ebg5q, s;q̄q, pW ; i q̄g5tWq. ~3!

Obviously, thes andpW fields are color singlets. Besides, th
~bosonic! diquark fieldDb is a color antitriplet and an isospi
singlet under the chiral SU(2)L3SU(2)R group. Note fur-
ther thats,Db are scalars, butpW is a pseudoscalar field~see
Appendix A!. Hence, ifsÞ0, then chiral symmetry of the
model is spontaneously broken.DbÞ0 indicates the dynami
cal breaking of both the electromagnetic and the color sy
metries of the theory.
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In the one-fermion-loop approximation the color an
chirally invariant effective action for the boson fields a
expressed through the path integral over quark fields

exp„i3Seff~s,pW ,Db,D* b,Am
a !…

5E @dq̄#@dq#expS i E L̃d3xD ,

where

Seff~s,pW ,Db,D* b,Am
a !52E d3xFs21pW 2

2G1
1

DbD* b

G2
G1S̃,

and

exp~ i3S̃!5E @dq̄#@dq#

3expS i E @ q̄Dq1q̄M̄ q̄T1qTMq#d3xD
5E @dC#expS i E @CTZC#d3xD . ~4!

In Eq. ~4! we have used the following notations:

D5gmS i ]m1eAm
a ~x!

la

2 D2s2 ig5pW tW ,

M52 iD* bC«ebg5, ~5!

M̄52 iDb«ebg5C

and

CT5~qT,q̄!, Z5S M 2DT/2

D/2 M̄
D , ~6!

whereDT denotes the transposed Dirac operator@see, e.g.,
Eq. ~11! below#. Using the general formula

detS K L

L̄ K̄
D 5det@2LL̄1LK̄L21K#

5det@2L̄L1L̄KL̄21K̄#,

one can get from Eq.~4!

exp~ i3S̃!5det1/2~Z!

5const3det1/2~D !det1/2@DT14MD21M̄ #. ~7!

Let us assume that in the ground state of our mo
8-3
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^D1&5^D2&5^pW &50 and ^s&, ^D3&Þ0.5 Obviously, the
residual symmetry group of such a vacuum is SUc(2),
whose generators are the first three generators of in
SUc(3). Now suppose that the constant external chrom
magnetic field, simulating the presence of a gluon cond
sate ^FF&5H2, has the following form: Ha

5(H1,H2,H3,0, . . . ,0).Clearly, due to the residual SUc(2)
invariance of the vacuum, one can consider the diquark c
densate fieldDa5(0,0,D3), putting H15H250 and H3

[H.
Some remarks about the structure of the external cond

sate fieldAm
a (x), used in Eq.~1!, are needed. From this mo

ment on, we select theAm
a (x) in such a form that the only

nonvanishing components of the corresponding field stren
tensorFmn

a areF12
3 52F21

3 5H5const. It is well-known that
in non-Abelian gauge theories a given external chromom
netic field does not fix the type of corresponding vector p
tential uniquely. In other words, there can exist seve
physically ~gauge! nonequivalent vector potentials, whic
produce the same chromomagnetic field@21#. For example,
in the case under consideration, i.e., in three dimensions
above homogeneous chromomagnetic field can be gene
by two qualitatively different vector potentials

Am
1 ~x!5~0,AH/e,0!,

Am
2 ~x!5~0,0,AH/e!, ~8!

Am
a ~x!50 ~a53, . . . ,8!,

or

Am
a ~x!5Hdm2x1da3. ~9!

The second of these vector potentials defines the well-kn
Matinyan-Savvidy model of the gluon condensate in QC
@22#. In the following we shall denote expressions~8! and~9!
as vector-potentials I and II, correspondingly.6

There exists an attractive picture of a domain structure
the physical vacuum of QCD which assumes that the spac
split into an infinite number of macroscopic domains, each
which contain a homogeneous chromomagnetic backgro
field generating a nonzero gluon condensate^FF&Þ0 @10#.
Averaging over all domains results in a zero backgrou
chromomagnetic field, hence color as well as Lorentz sy
metries are not broken.~Strictly speaking, our following cal-

5Clearly, ^pW &Þ0 would yield spontaneous breaking of parity.
the theory of strong interactions parity is, however, a conser

quantum number, justifying our assumption that^pW &50. Neverthe-
less, note that at large densities a parity breaking diquark con
sate could appear@20#.

6Having background fieldsAm
a (x), given by Eq.~8! or ~9!, one can

form three matrix fieldsAm(x)5Am
a (x)(la/2), (a51,2,3). Now it

is easy to see that for vector-potential I~II ! the corresponding fields
Am(x) do not commute~commute! between themselves. Due to th
reason, vector-potential I~II ! is sometimes called a non-Abelia
~Abelian! vector potential.
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culations refer to some given macroscopic domain. The
tained results turn out to depend on color and Lore
invariant quantities only, and are independent of the conc
domain.! Note also that it was pointed out in@23# that, at
high temperature, Abelian-like vector-potentials of the fo
~9! may serve as a reasonable approximation to the
vacuum of the theory. However, at low temperature,
background gauge field may be essentially non-Abelian, h
ing the form~8!.

In order to find nonvanishing condensates^s& and^D3&,
we should calculate the effective potential whose glo
minimum point provides us with these quantities. Suppo
that @apart from the external vector-potentialAm

a (x) ~9!# all
boson fields inSeff do not depend on space-time. In this ca
by definition,Seff52Veff*d3x, where

Veff5
s21pW 2

2G1
1

DbD* b

G2
1Ṽ,

Ṽ5
i

6v
ln@det~D !det~DT14MD21M̄ !#,

v5E d3x. ~10!

Due to our assumptions on the vacuum structure, in formu
~10! we should putD1,2[0 as well aspW 50. Then, taking
into account the relations

gmTC52Cgm ~m50,1,2!, laTe352e3la ~a51,2,3!,

we have for the operatorD @cf. Eq. ~5!# with vector poten-
tials ~8!,~9! the following identity:

DTCe3[@gmT
„2 i ]m1eAm

a ~x!la
T/2…2s#Ce35Ce3D.

~11!

Now, using this formula as well as the relation
detD5det(g5DTg5), detAB5detA detB, (««) i j 52d i j ,
(e3e3)ab52dab1da3db3 in expression~10!, one can ob-
tain after some evident transformations~recall thati , j 51,2
anda,b51,2,3),

Ṽ5
i

6v
ln det@g5DTg5DT14DD* ««e3e3#

5
i

6v
ln det@Dg5TDg5T14DD* d i j ~dab2da3db3!#,

~12!

whereD[D3. Note that the first term under the det symb
in Eq. ~12! is a diagonal operator in the flavor space. One c
easily see that the second term is also a diagonal oper
but this time in the flavor, color, spinor, as well as coordina
spaces.

d

n-
8-4
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III. PHASE STRUCTURE AT ZERO EXTERNAL FIELD

If the external field vanishes, we have the evident relat
Dg5Dg55(s21]2)d i j dab . Taking into account this for-
mula as well as the usual one, detO5exp(tr lnO), the deter-
minant in Eq.~12! can be calculated straightforwardly lea
ing to the following one-loop expression for the effecti
potential of the initial model~10! (Veff[V0):

V0~s,D,D* !5
s2

2G1
1

DD*

G2

1
8i

3 E d3k

~2p!3
ln~s214uDu22k2!

1
4i

3 E d3k

~2p!3
ln~s22k2!, ~13!

where we have used the momentum space representa
This expression has ultraviolet divergences. Hence, we n
to regularize it by introducing in Eq.~13! Euclidean metric
(k0→ ik0) and cutting off the range of integration (k2

<L2). Next, by performing the integration and introducin
renormalized coupling constantsg and f, defined by

1

G1
2

4L

p2
[

1

g
,

1

G2
2

16L

3p2
[

1

f
, ~14!

we can express the effective potential in terms of ultravio
finite quantities

V0~s,D,D* !5
s2

2g
1

DD*

f
1

4

9p
~s214uDu2!3/21

2

9p
usu3.

~15!

We shall now search for the global minimum point of t
potential ~15!. Before doing this, let us introduce a set
more convenient parameters

f52uDu, A53p/g, B53p/~2 f !, ~16!

in terms of which the effective potential~15! is given by

3pV0~s,f!5
As2

2
1

Bf2

2
1

4

3
~s21f2!3/21

2

3
usu3.

~17!

By symmetry reasons, it is sufficient to study the functi
~17! in the region$s>0,f>0%, where we have the follow-
ing stationarity equations:

]V0

]s
505s$A14As21f212s%,

]V0

]f
505f$B14As21f2%. ~18!

In order to find the global minimum point of the effectiv
potential~17! one should search for all the solutions of t
stationarity equations~18! and then find among them th
01403
n

on.
ed

t-
single one, where the effective potential takes an abso
minimum value. Omitting the detailed calculations, w
present at once the results in terms of the phase por
shown in Fig. 1.

This figure shows the plane of parameters (A,B) divided
into four domains corresponding to the four possible pha
of the model. In domain I, the points,f50 is the abso-
lute minimum point of V0, in II, it is at values f50,
s52A/6, in region III, the global minimum is located
at the point s50, f52B/4, and finally, in region IV
the global minimum lies in the points5(B2A)/2,f
5AB2/162(B2A)2/4.

Recall that the coordinates of the global minimum po
of the effective potential are the vacuum expectation val
^s&, ^f& of the fieldss,f. Lagrangian~2! provides us with
the equations of motion fors,D from which one can easily
get the following relations:̂s&;^q̄q&, ^f&;^qq&, i.e., the
global minimum point of the effective potential gives us i
formation about chiral and Cooper-type diquark condensa
of the model. Hence, if the parameters (A,B) belong to re-
gion I, we have the symmetric phase, because of^s&
5^q̄q&50, ^f&5^qq&50 in this case. The phase wit
spontaneously broken chiral symmetry is situated in reg
II, since here the chiral condensate^q̄q&Þ0. In region III the
diquark condensatêqq& is nonzero, thus indicating the pres
ence of the color superconductivity phase. Clearly, in t
case the electromagnetic as well as color symmetries of
model are spontaneously broken. Finally, region IV cor
sponds to the mixed phase of the theory, where chiral, e
tromagnetic, and color symmetries are spontaneously bro
down ~here^q̄q&, ^qq&Þ0).

FIG. 1. Phase portrait of the model at vanishing chromom
netic field H50. The boundariesl 1 ,l 2 are defined by l 1

5$(A,B): A5B%, l 25$(A,B): 2A53B%, whereA andB are re-
lated to the interaction strengthsG1 andG2 through Eqs.~14! and
~16!.
8-5
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IV. PHASE STRUCTURE OF THE MODEL FOR VECTOR-
POTENTIAL I

Let us next study the influence of the external chrom
magnetic field with constant vector potential~8! on the phase
structure of the model~1!. By using the momentum spac
representation for the operator under the det symbol in
~12!, we obtain instead of the differential operator an alg
braic (24324) matrix which has three different eigenvalu
Ei(p)( i 51,2,3),

E1,2~p!5 p̄22p0
21s214uDu21

eH

2
6

1

2
A~eH!214eHp̄2,

E3~p!5 p̄22p0
21s2, ~19!

each of them having an eight-fold degeneracy, andp̄25p1
2

1p2
2. Taking into account this fact, one can easily obta

from Eqs. ~10! and ~12! the following expression for the
effective potential of the model in the presence of an exte
vector potential~8! (Veff[VH1

):

VH1
~s,D,D* !5

s2

2G1
1

DD*

G2
1

4i

3 (
i 51

3 E d3p

~2p!3
ln Ei~p!.

~20!

Integrating here first overp0 and then over the space ofp1,2
variables and employing a suitable ultraviolet cutoff, one c
get after adopting a renormalization procedure~similar cal-
culations were performed in@15# for the model~1! in the
case withG250),

3pVH1
~s,f!5

As2

2
1

Bf2

2
1

2usu3

3
1

2

3

3F ~s21f2!3/21~s21f21eH!3/2

2
3eH

4
~s21f21eH!1/22

3

4

3~s21f2!AeHln
AeH1As21f21eH

As21f2 G ,

~21!

where we have used the notations introduced in form
~16!. Instead of the dimensional quantity~21!, let us consider
the dimensionless function V1(x,y)[3pVH1

(s,f)/

(eH)3/2, wherex5s/AeH, y5f/AeH. Evidently, we have

V1~x,y!5
Ãx2

2
1

B̃y2

2
1

2

3
uxu31

2

3

3F ~x21y2!3/21~11x21y2!3/22
3

4
A11x21y2

2
3

4
~x21y2!lnS 11A11x21y2

Ax21y2 D G , ~22!
01403
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whereÃ5A/AeH, B̃5B/AeH.
In contrast to the potential~21!, which has three dimen

sional parametersA,B,eH, the function~22! depends only
on two parametersÃ,B̃. So, first of all we shall study the
global minimum dependence of the potentialV1 on the pa-
rametersÃ,B̃. Doing this, we get the possibility of discuss
ing the phase structure of the model in the presence of
external vector potential~8!. SinceV1 is symmetric under
transformationsx→2x or y→2y, it is sufficient to look for
its global minimum only in the regionx,y>0. The station-
arity equations then take the form

]V1

]x
[x$Ã12x1F~z!uz5Ax21y2%50,

]V1

]y
[y$B̃1F~z!uz5Ax21y2%50, ~23!

where

F~z!52z12A11z22 ln@~11A11z2!/z#. ~24!

We should find all the solutions of the equations~23! in the
region x,y>0 and then select that one, where the functi
V1(x,y) takes its global minimum. Omitting here calcula
tional details, we directly quote the results in the form of t
phase portrait. The detailed investigation is given in Appe
dix B.

In Fig. 2 the phase portrait of the model~1! in the pres-
ence of a nonzero vector potential of type I is presented
terms ofÃ andB̃. Here one can see three regions. Above
line l̃ 1 there is the phase III of the model, which correspon
to theV1(x,y) global minimum point of the form„0,y0(B̃)….
@The properties of the functiony0(B̃) as well as the functions
x0(Ã), x1(Ã,B̃), y1(Ã,B̃) considered below are given i
Appendix B.# In this casê s&50, ^f&Þ0. Below the curve
l̃ 2 the global minimum of the effective potential has the for
„x0(Ã),0…. Thus, in this region phase II is located, since f
such values ofÃ,B̃ the model has a vacuum witĥs&
Þ0, ^f&50. Finally, inside theV-domain there is a mixed
phase IV, since here the global minimum poi
„x1(Ã,B̃),y1(Ã,B̃)… corresponds to the vacuum witĥq̄q&
Þ0 and ^qq&Þ0. It is necessary to emphasize that in t
presence of such types of external vector potentials phase
absent at all@obviously, only whenAm

a (x)50, can this phase
be realized in the model#.

V. PHASE STRUCTURE OF THE MODEL FOR VECTOR-
POTENTIAL II

Next, let us study the influence of a nonvanishing exter
chromomagnetic field with vector potential~9! on the phase
structure of the model~1!. In this case, after some calcula
tions, the operator, which stands under the det symbol in
~12!, can be transformed to the following expression in t
color space:
8-6
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Dg5Dg514DD* d i j ~dab2da3db3!

5diag@d i j D1 ,d i j D2 ,d i j ~s21]2!#, ~25!

where

D65s214uDu22Pm
6P6m7

ie

4
gmgnF̄mn ,

Pm
65 i ]m6eĀm~x!/2, ~26!

Ām5Hdm2x1 .

Note that in Eqs.~25!, ~26! D6 are operators in the coord
nate and spinor spaces only. The same is true for the exp
sion (s21]2), which is the unit operator in the spinor spac
Taking into account Eq.~25!, one can easily find for the
potentialṼ ~12! the expression

Ṽ5
i

3v
tr ln D11

i

3v
tr ln D21

i

3v
tr ln~s21]2! ~27!

@the trace prescription in Eq.~27! is taken over coordinate a
well as spinor spaces#. The last term in this formula wa
calculated in Sec. III of the present paper. Concerning
first two terms in Eq.~27!, we should point out thatD6

5D̃6g5D̃6g5, where D̃65 igm]m6egmĀm(x)/21M are
formally the Dirac operators for Fermi particles with elect
charges6e/2 and effective massM5As214uDu2 in the

FIG. 2. Phase portrait of the model in the presence of a non
vector-potential I. The symmetric phase I is absent. The bounda

l̃ 1 and l̃ 2 of the regionV are defined according tol̃ 15$(Ã,B̃):Ã

5B̃%, l̃ 25$(Ã,B̃):x0(Ã)5y0(B̃)%. Here, Ã and B̃ are defined as

Ã5A/AeH, B̃5B/AeH. At B̃→1` (B̃→2`) the curve l̃ 2 ap-

proaches asymptotically the linel̃ 1 ~the line 2Ã53B̃). The curve

l̃ 2 intersects the axesÃ and B̃ in the points (20.36) and~0.3!,
respectively. For fixedA and B and varyingH one moves along

some rayr in the (Ã,B̃) plane. At H5Hc(A,B) there is a phase
transition from phase II to the mixed phase IV, if the rayr intersects

the line l̃ 2 in some pointo ~see the detailed discussion in Sec. V!.
01403
es-
.

e

presence of a constant external magnetic fieldH. Similar
expressions were calculated in a lot of papers@see, e.g.,@24#,
from which it follows that the first term in Eq.~27! is equal
to the second one#. So, we omit details of tr lnD6 calcula-
tions and present at once the corresponding effective po
tial of the model

VH2
~s,D,D* !5

s2

2G1
1

DD*

G2
1

eH

6p3/2E0

` ds

s3/2

3exp„2s~s214uDu2!…coth~eHs/2!

1
4i

3 E d3k

~2p!3
ln~s22k2!. ~28!

In this formulaeH has a positive value. Both integrals in E
~28! are ultraviolet divergent ones. To renormalize the fi
integral one can act in the same manner, as it was don
@18# with the effective potential of the three-dimension
Gross-Neveu model in the presence of an external magn
field. The second integral in Eq.~28! was already renormal
ized in Sec. III. Hence, the finite expression for the effect
potential of the model~1! in an external chromomagneti
field of type II looks like

VH2
~s,D,D* !5V0~s,D,D* !1

eH

6p3/2E0

` ds

s3/2

3exp„2s~s214uDu2!…

3FcothS eHs

2 D2
2

eHsG , ~29!

whereV0(s,D,D* ) denotes the effective potential atH50
@see Eq.~15!#. Integrating in this formula with the help o
integral tables@25#, one can get the following more compa
expression for the effective potential:

VH2
~s,D,D* !5

s2

2g
1

DD*

f
1

2

9p
usu31

eHAs214uDu2

3p

2
2~eH!3/2

3p
zS 2

1

2
,
s214uDu2

eH D , ~30!

wherez(n,x) is the generalized Riemann zeta function@26#.
As in the previous section, let us further introduce the dim
sionless functionV2(x,y)53p(eH)23/2VH2

(s,D,D* ):

V2~x,y!5
Ãx2

2
1

B̃y2

2
1

2

3
uxu31Ax21y2

22z~21/2,x21y2!, ~31!

wherex5s/AeH, y52uDu/AeH and Ã,B̃ are the same pa
rameters as in the relation~22!. Clearly, this expression dif-
fers from the corresponding quantity~22! for a non-Abelian
background field.

ro
es
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TABLE I. The A-dependence ofHc(A,B) for some fixed values of the ratioB/A.

B/A 100 10 2 1.5 1.1 1.05

eHc(A,B)/A2 112925.63 967.55 15.804 5.1038 0.6593 0.350
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The reader, who is not interested in following the deta
of our investigation of a global minimum point forV2(x,y),
can at once look at the phase portrait of the model in term
Ã,B̃. Qualitatively it is the same as the phase portrait for
functionV1(x,y) ~see Fig. 2!, i.e., it contains only three dif-
ferent phases II, III, and IV. Details of calculations a
quoted in Appendix C.

VI. CHROMOMAGNETIC CATALYSIS OF COLOR
SUPERCONDUCTIVITY

Let us now analyze in more detail the phase portrait of
model ~1!, this time in terms ofA,B,eH. In particular, we
shall describe phase transitions which occur for arbitr
fixed A,B and with varying values ofH. In general, our
discussions concern both cases with vector potentials
types I and II simultaneously. However, where it is nec
sary, we indicate to what type of vector-potential the info
mation is related. First of all a general remark: ifA,B are
fixed andH is varied from 0 tò , then in the plane (Ã,B̃)
one moves along some ray~which depends onA,B) from
infinity to the origin ~this fact simply follows from the defi-
nition of Ã,B̃).

The case A,B.0. ~In this case we have a weak couplin
for both bare constantsG1,2,Gc;p2/L.! At H50 this
choice of parameters corresponds to the unbroken pha
~see Fig. 1!. If A,B are fixed in such a way, thatA.B ~in
terms of bare coupling constants this means 1/G1.1/2G2

14L/3p2), then atHÞ0 we have in the (Ã,B̃) plane of
Fig. 2 a ray which is located above the linel̃ 1, i.e., is in
phase III. Hence, in this case the external chromomagn
field induces~catalyzes! the dynamical generation of a non
zero diquark condensate. Here in the pointHc501 one has a
second order phase transition from phase I to the phase
color superconductivity. At varying values ofH the diquark
condensate behaves, e.g., in the case with vector-potenti
in the following way:7

^qq&; f eH at H→0, ^qq&;AeH at H→`. ~32!

~The chiral condensate in this case is identically zero.!
If A,B and the external chromomagnetic fieldH varies

in the intervalHP(0,̀ ), then points in the (Ã,B̃) plane vary

7In order to find^qq&;^D& and^q̄q&;^s&, one should multiply
the coordinates of the global minimum point of the functio
V1(x,y) or V2(x,y) ~see Appendixes A and B, correspondingly! by
the quantityAeH. For example, in the case under considerat

^qq&;^D&5y0(B̃)AeH/2, where the functiony0(B̃) and some of
its properties are presented in formula~B4! of Appendix B.
01403
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along a rayr ~see Fig. 2!. If H→01 , we are at the infinite
end of this ray, i.e., in phase II of the model~see Fig. 2!.
Hence, in the pointHc501 the chromomagnetic field in
duces a dynamical chiral symmetry breaking phase transi
~a second order phase transition!, but a diquark condensate i
not produced. These properties of the vacuum are
changed for sufficiently small values ofH such thatH
,Hc(A,B). The valueH5Hc(A,B) corresponds to pointo
~see Fig. 2! in which ray r crosses the linel̃ 2 and passes to
the V region where chiral and diquark condensates are b
nonvanishing. So, with growing values ofH in some point
Hc(A,B) one has a second order phase transition from ph
II to the mixed phase IV. In Table I the results of a numeric
investigation ofHc(A,B) as a function ofA are presented for
some fixed values ofB/A in the case of a vector potential o
type I. One can see from this table that if the ratioB/A is
fixed, thenHc(A,B) increases withA asA2. It is also clear
that for each fixed value ofA the quantityHc(A,B) is a
growing function ofB.

The behavior of condensates in the caseA,B and for a
vector-potential II are the following:

^q̄q&;geH at H→0,

^q̄q&;^s&[
~B2A!

2
at Hc~A,B!<H,

~33!

^qq&[0 at H<Hc~A,B!,

^qq&;AeH at H→`. ~34!

So, atHÞ0 phase I of the model is completely absent
the phase structure of the model for both types of exter
chromomagnetic fields.

The case A,0,2A,3B. In this case atH50 one has a
phase II of the theory~see Fig. 1! with spontaneously broken
chiral symmetry. If the external chromomagnetic fieldH var-
ies in the intervalHP(0,̀ ), then in the (Ã,B̃) plane there is
a ray which crosses the linel̃ 2 in some definite point. IfH
→01 , we are in the infinite end of this ray, i.e., in the pha
II of the model. However, in contrast to the previous ca
with A,B.0 and A,B, in the present case the valueH
501 is no more the point of a phase transition.~At A,0,
when the bare coupling constantG1 takes a supercritica
valueG1.Gc , the origin of chiral symmetry breaking is th
rather strong supercritical quark-antiquark attraction, but
the chromomagnetic field. In this case the external chrom
magnetic field only stabilizes the vacuum with chiral sym
metry breaking@15,18#.! If H increases, we move along th
ray to the origin of the (Ã,B̃) plane. Hence, starting from
some valueHc(A,B), we are in regionV ~see Fig. 2!, where
8-8
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CHROMOMAGNETIC CATALYSIS OF COLOR . . . PHYSICAL REVIEW D 64 014038
besideŝ q̄q&Þ0 the diquark condensate is nonzero as w
So, at sufficiently high values ofH.Hc(A,B) phase II of
the theory is transformed into a mixed phase IV.

The influence of vector-potential II on the chiral phase
of the model is realized in the following behavior of conde
sates:

^q̄q&;^s&52
A

6
at H→0,

^q̄q&;^s&[
~B2A!

2
at Hc~A,B!<H, ~35!

^qq&[0 at H<Hc~A,B!,

^qq&;AeH at H→`. ~36!

The case B,0,A.B. In this case atH50 there is a per-
fect ~not mixed! color superconducting phase III of th
theory ~see Fig. 1!. One can easily show that now for a
values ofH only the diquark condensatêqq& is nonzero.
This vacuum is chirally invariant, but the Uem(1) as well as
color SUc(3) symmetries are broken down. It is possible
show that in this case

^qq&;^D&52B/4 at H→0, ^qq&;AeH, at H→`,
~37!

i.e., the external chromomagnetic field even enhances
color superconductivity.

The case A,B, 2A.3B. Analyzing here the behavior o
the quark condensates in a similar way as in the previ
cases, one can easily establish that the vacuum propertie
not changed with growing values ofH. Hence, atH50 as
well as atHÞ0 there is a mixed phase IV with nonze
quark and diquark condensates. Remark that the action o
external chromomagnetic field on the mixed phase does
change the value of the chiral condensate; it is the same
H50, where^q̄q&;^s&[(B2A)/2. However, the diquark
condensate depends on the value ofH,

^qq&;^D&5AB2/162~B2A!2/4 at H→0,

^qq&;AeH, at H→`. ~38!

In conclusion, let us remark that for arbitrary fixed para
etersA,B and in the presence of sufficiently large values
external chromomagnetic fields of both types there arise
nonzero diquark condensate^qq&Þ0, i.e., the color super
conducting phase of the model is realized. IfA.3B/2, B
,0 ~i.e., for sufficiently high values ofG2.Gc), then
^qq&Þ0 even atH50 ~in this case the external chromoma
netic field enhances the CSC!. However, for other regions o
the (A,B) plane the nonzero external chromomagnetic fie
catalyze the generation of^qq&Þ0. The critical value ofH,
at which color superconductivity is induced, may be 01 ~if
A,B.0, A.B), or some finite valueHc(A,B)Þ0 ~in the
last case we have not a perfect, but mixed color superc
ducting phase in which the diquark condensate coexists
01403
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the chiral condensatêq̄q&Þ0). Apart from this, in the pres-
ence of a chromomagnetic field, the phase portrait of
model does not contain the symmetric phase.

VII. SUMMARY AND CONCLUSIONS

In the present paper the phase structure of
(211)-dimensional four-fermionic NJL-type of model~1!
with two coupling constants was investigated admitting no
zero background vector potentials of two nonequival
types I and II@see Eqs.~8!, ~9!#. In the framework of such a
model the external vector potential might be thought to sim
late such a nonperturbative feature of the real QCD vacu
like a nonzero gluon condensate^FF&5H2. The structure of
the Lagrangian~1! permits us, in particular, to consider the
the competition between chiral^q̄q& and diquark̂ qq& con-
densates and to get some insight into the role of the gl
condensate as a possible catalyst of color superconducti

It is well-known that color-superconducting quark matt
with two quark flavors arises by the condensation of co
antitriplet diquark Cooper pairs. The condensate breaks
SUc(3) symmetry down to SUc(2). Hence, the three gluon
fields corresponding to the generators of unbroken SUc(2)
stay massless and the remaining five gluon fields receiv
mass by the Higgs mechanism~Meissner effect!. We have
studied the influence of the external chromomagnetic fie
living in an unbroken SUc(2) subgroup of SUc(3), i.e., hav-
ing a form Ha5(H1,H2,H3,0, . . . ,0), on theformation of
the color diquark condensate. Using global SUc(2) color ro-
tations one can bring this field to the formHa

5(0,0,H,0, . . . ,0) which corresponds to the above
mentioned vector-potentials Eqs.~8!, ~9!.

The main conclusion from our investigations is that
zero chemical potential the external chromomagnetic fie
of these type are good catalysts of color superconductiv
Earlier, it was shown that external~chromo! magnetic fields
catalyze dynamically the spontaneous breaking of ch
symmetry in some (211)-dimensional four-fermionic mod
els @24,27,15,18#. It turns out that this is a particular man
festation of the so-called magnetic catalysis effect~see, e.g.,
@28,17,29#!, which has a rather universal model independ
character.

Indeed, we have shown that for sufficiently small ba
coupling constantsG1,2,Gc;p2/L, i.e., for such values of
G1,2 at which forH50 one has a symmetric phase I of th
theory ~see Fig. 1!, the pure CSC phase (^q̄q&50, ^qq&
Þ0) is realized in the model at infinitesimally small valu
of the external chromomagnetic fieldH if G2.G1 ~in terms
of A,B that meansA.B). If G2,G1 (A,B), then, first, a
chiral breaking phase transition induced atH501 ~chromo-
magnetic catalysis of chiral symmetry breaking at whi

^q̄q&Þ0, ^qq&50) occurs. After that, with growing value
of H, at some pointH5Hc there is a second phase transitio
to the mixed phase of the theory, where both condens

^q̄q& and ^qq& are nonzero~both phase transitions are con
tinuous second order ones!.

The action of an external chromomagnetic field on t
chiral phase II of the theory~see Fig. 1! is to induce^qq&
8-9
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Þ0 at some critical pointH5HcÞ0, thus drastically chang
ing the vacuum properties and transposing the system in
mixed phase IV.

Finally, we should mention that the ground states
phases III and IV are not changed under the influence of
above-mentioned external chromomagnetic field. So, the
ternal chromomagnetic fields living in an unbroken SUc(2)
subgroup of SUc(3) only enhances the CSC phenomeno
Notice that all the above-mentioned effects are observe
the presence of both types of vector-potentials I and II.

Let us recall that the chromomagnetic catalysis effect
dynamical chiral symmetry breaking occurs in (211)- as
well as (311)-dimensional NJL models@15,17#. So, the
very existence of this effect is not sensitive to the dimensi
ality of space-time. Moreover, there are many physical p
nomena in QCD, in particular in low energy meson physi
that can be reasonably described both in the framewor
(311)- and (211)-dimensional NJL type models@30,13#.
On these grounds one might thus expect that chromom
netic catalysis of color superconductivity is inherent to t
four-dimensional version of model~1!, and hence to the rea
two-flavor QCD4, too. The proof of this fact is the subject o
our nearest future considerations.

In our opinion there exists a deep connection between
chromomagnetic catalysis of color superconductivity a
chiral symmetry breaking, induced by external chromom
netic fields@15–18#. This assumption is based on the ex
tence of the Pauli-Gu¨rsey ~PG! transformation@31#, mixing
quarks and antiquarks, due to which some phenomena in
q̄q channel can have its analogy in theqq channel. In par-
ticular, this suggests that diquark condensation might pa
be understood as the properly PG-transformed chiral con
sation. However, the detailed consideration of this ques
is not the subject of the present paper and will be inve
gated elsewhere.

Moreover, in the near future we are going to include in
our consideration of the simple NJL model~1! a nonzero
chemical potentialm in addition to the external chromomag
netic fields. Recently, in the framework of NJL models@32#
the influence ofm and an external magnetic field on th
chiral properties of the vacuum were considered. Apart fr
discovering different kinds of magnetic oscillations~relativ-
istic van Alphen-de Haas effect! in the strongly interacting
quark systems, it was also found that in the NJL mode
nonzero baryon density the chiral symmetry must be resto
at sufficiently large values of the magnetic field. By analo
with @32#, we expect that the diquark condensate^qq& should
disappear in the case of nonzero baryon density for a s
ciently strong external chromomagnetic field, i.e., at la
values of the gluon condensate.
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APPENDIX A: ALGEBRA OF THE g MATRICES AND
FLAVOR SYMMETRY FOR D Ä„2¿1…

The two-dimensional irreducible representation of t
three-dimensional Lorentz group SO~2,1! is realized by the
following 232 g̃ matrices:

g̃05s35S 1 0

0 21D , g̃15 is15S 0 i

i 0D ,

g̃25 is25S 0 1

21 0D , ~A1!

acting on two-component Dirac spinors.
They have the properties

Tr~ g̃mg̃n!52gmn, @ g̃m,g̃n#522i«mnag̃a ,

g̃mg̃n52 i«mnag̃a1gmn, ~A2!

where gmn5gmn5diag(1,21,21), g̃a5gabg̃b, «01251.
There is also the relation

Tr~ g̃mg̃ng̃a!522i«mna. ~A3!

Note that the definition of chiral symmetry is a bit unusual
three dimensions@here spin is a pseudoscalar rather than
~axial! vector#. The reason is simply that there exists no oth
232 matrix anticommuting with the Dirac matricesg̃n

which would allow the introduction of ag5 matrix in the
irreducible representation. The important concept of ‘‘c
ral’’ symmetries and their breakdown by mass terms c
nevertheless be realized also in the framework
(211)-dimensional quantum field theories by considering
four-component reducible representation for Dirac fields.
this case the Dirac spinorsq have the following form:

q~x!5S c1~x!

c2~x!
D , ~A4!

with c1 ,c2 being two-component spinors. In the reducib
four-dimensional spinor representation one deals with
34) g matricesgm5diag(g̃m,2g̃m), whereg̃m are given in
Eq. ~A1!. One can easily show that (m,n50,1,2),

Tr~gmgn!54gmn, gmgn5smn1gmn,

smn5 1
2 @gm,gn#

5diag~2 i«mnag̃a ,2 i«mnag̃a!. ~A5!

In addition to the Dirac matricesgm (m50,1,2) there exist
two other matricesg3, g5 which anticommute with all
gm (m50,1,2) and with themselves,
8-10
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g35S 0 I

I 0D , g55g0g1g2g35 i S 0 2I

I 0 D , ~A6!

with I being the unit 232 matrix. In the space of four
component spinors~A4! it is now possible to consider ‘‘chi-
ral’’ transformations

q→exp~ iug3!q, q→exp~ ivg5!q,

as well as the discrete parity transformation P,

P: q~ t,x,y!→2 ig5g1q~ t,2x,y!. ~A7!

In the present work the charge conjugation matrixC for four-
component spinors was chosen to beg2. With this choice of
C it is possible to show that quark bilinears in Eq.~1! obey
the relations

P@ q̄q#P21~ t,x,y!5@ q̄q#~ t,2x,y!,

P@ q̄tWg5q#P21~ t,x,y!52@ q̄tWg5q#~ t,2x,y!,
~A8!

P@ i q̄C«ebg5q#P21~ t,x,y!5@ i q̄C«ebg5q#~ t,2x,y!.

It follows from Eqs.~3! and ~A8! that s andDb are indeed
scalar fields, whereaspW fields are pseudoscalars.

Let us for a moment consider the case of one flavor,f
51. The 434-matrices$1,g5,g3,g3,55 ig5g3% are the unit
matrix and Pauli matrices in block form and as such th
generate the U(2).SU(2)3U(1) group of transformations
of the four-dimensional spinor~A4!. Notice that with respec
to SU~2! the set of quark bilinears$q̄q, q̄ig3q, q̄ig5q%
transforms as a triplet, whereasq̄ig5g3q is a SU~2! singlet.
Analogously, diquarks form a triplet,$q̄cq, q̄cig5q,
q̄cig5g3q% ~since Cig3 is a symmetric matrix, the produc
with Grassman spinors vanishes, and a singlet is exclud!.
Obviously, for Nf flavors any of the Nf flavor components of
q is a Dirac 4 spinor, and the total flavor group is U(2Nf). Its
respective Lie algebra is given by~direct! products of gen-
erators of U(Nf) and U~2!. In particular, for the case of two
flavors Nf52 considered in the text, the symmetry group
the kinetic part of the Lagrangian is U~4!. Finally, let us
mention that in D5(211) there might arise two possibl
mass terms,mq̄q andm̃q̄ig5g3q. The first~standard! one is
P invariant, but breaks the total U~4! flavor symmetry down
according to U(4)→SU(2)3SU(2)3U(1)3U(1), with
generators of the residual group given
1
2 ta1, 1

2 taig5g3 (a50,1,2,3). Note that this symmetr
breaking scenario includes the breaking of the ‘‘usual c
ral’’ g5 invariance, as considered in corresponding D5(3
11) models. Contrary to this, the other possible mass t
leaves the flavor symmetry unbroken, but instead viola
parity and will thus not be considered here.
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APPENDIX B: INVESTIGATION OF THE GLOBAL
MINIMUM POINT OF V1„x,y…

It follows from Eq. ~24! in the text that the functionF(z)
monotonically increases on the intervalzP(0,̀ ) and
F(01)52`, F(1`)51`. Hence, for arbitrary fixed val-
ues of Ã,B̃ there exist only two real numbersx0(Ã)
.0, y0(B̃).0, such that the two pairs (x0,0), (0,y0) as well
as the trivial one (0,0) are solutions for the system of s
tionarity equations~23!. @The x0(Ã) andy0(B̃) are zeros of
the functions which are located inside the first~at y50) and
second~at x50) pair of braces in Eq.~23!, respectively.#
Furthermore, one can easily see that]V1 /]x,0 if y50 and
xP„0,x0(Ã)… as well as ]V1 /]y,0 if x50 and y

P„0,y0(B̃)…. This means that the quantitiesV1(x0,0) and
V1(0,y0) are smaller thanV1(0,0). So, for arbitrary finite
real valuesÃ,B̃ the global minimum point of the function
V1(x,y) cannot lie in (0,0). Due to this reason the symm
ric phase is absent in the phase structure of the model.

In the next formulas some properties ofx0(Ã) andy0(B̃)
are presented:

x0~Ã!>2e2Ã22 at Ã→1`,

x0~0!50.147 . . . , ~B1!

x0~Ã!>2Ã/6 at Ã→2`,

y0~B̃!>2e2B̃22 at B̃→1`,

y0~0!50.183 . . . , ~B2!

y0~B̃!>2B̃/4 at B̃→2`.

It follows from Eq. ~23! that there may exist~but not for
all values ofÃ,B̃) one more solution„x1(Ã,B̃),y1(Ã,B̃)… of
the stationarity equations, wherex1.0,y1.0. @For this so-
lution the functions which are inside both braces in Eq.~23!
take zero values.# Evidently, we have

x1~Ã,B̃!5~B̃2Ã!/2, y1~Ã,B̃!5Ay0
2~B̃!2~B̃2Ã!2/4.

~B3!

From Eq.~B3! one can easily see that this type of soluti
for Eqs. ~23! exists inside the regionV of the (Ã,B̃) plane
~see also Fig. 2!,

V5$~Ã,B̃!:B̃22y0~B̃!,Ã,B̃%. ~B4!

Using Eqs.~23! one can find the following values of th
potential~22! in its stationary points:

V1„x0~Ã!,0…5
A11x0

2~Ã!

6
@122x0

2~Ã!#2
2

3
x0

3~Ã!,

~B5!
8-11
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V1„0,y0~B̃!…5
A11y0

2~B̃!

6
@122y0

2~B̃!#2
1

3
y0

3~B̃!,

~B6!

V1„x1~Ã,B̃!,y1~Ã,B̃!…

5
A11y0

2~B̃!

6
@122y0

2~B̃!#

2
1

3
y0

3~B̃!2
~B̃2Ã!3

24
. ~B7!

On the linel̃ 15$(Ã,B̃):Ã5B̃%, which is a part of the bound
ary for the regionV, we have (x1 ,y1)[(0,y0). Hence, on
this line V1(0,y0)[V1(x1 ,y1). Comparing Eqs.~B6! and
~B7!, we see that inside theV-region V1(0,y0)
.V1(x1 ,y1).

The other part of the boundary for the regionV is the line
l̃ 25$(Ã,B̃):Ã5B̃22y0(B̃)%. With the help of the stationar
ity equations it is possible to show that on this line the f
lowing relations are also fulfilled:B̃5Ã12x0(Ã), x0(Ã)
5y0(B̃). As a consequence, we have (x1 ,y1)[(x0,0) as
well asV1(x0,0)[V1(x1 ,y1) on the line l̃ 2.

Numerical investigations show that inside the regionV
there is a line on whichV1(x0,0)5V1(0,y0). Further, it is
important to remark that the derivative of the functio
V1„0,y0(B̃)… with respect toB̃ as well as the correspondin
partial derivative of the functionV1„x1(Ã,B̃),y1(Ã,B̃)… are
positively defined quantities in their regions of definitio
Now, taking into account all the above mentioned facts, i
possible to assert that in Fig. 2 the phase portrait of
model~1! in the presence of a nonzero vector potential~8! is
presented in terms ofÃ and B̃. This means that above th
line l̃ 1 there is phase III of the model, which corresponds
the V1(x,y) global minimum point of the form (0,y0). ~In
this casê s&50, ^f&Þ0.! Below the curvel̃ 2 the effective
potential global minimum has the form (x0,0). So in this
region phase II is located, since for such values ofÃ,B̃ the
model has a vacuum witĥs&Þ0, ^f&50. Finally, inside
the V domain there is a mixed phase IV, since here
global minimum point (x1 ,y1) corresponds to the vacuum
with both nonzero condensates^q̄q& and ^qq&.

APPENDIX C: INVESTIGATION OF THE GLOBAL
MINIMUM POINT OF V2„x,y…

In this appendix we present the search of the global m
mum point for the potentialV2(x,y) as well as its depen
dence on the parametersÃ,B̃. Since this function is symmet
ric under two discrete transformationsx→2x and y→2y,
it is sufficient to study it only in the regionx,y>0. The
stationarity equations forV2(x,y) take the form

]V2~x,y!/]x[x$Ã12x1~x21y2!21/2

22z~1/2,x21y2!%50, ~C1!
01403
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]V2~x,y!/]y[y$B̃1~x21y2!21/2

22z~1/2,x21y2!%50. ~C2!

One can see from Eqs.~C1! and~C2! that the first derivatives
of V2 do not exist in the point (0,0).@This means that if the
point (x,y) tends to the origin along different ways, the r
sulting expressions for the partial derivatives at the po
(0,0) do not coincide.# In contrast, the functionV1(x,y) is
differentiable in the point (0,0). So, we need a special inv
tigation of this point. Let us puty50 in the equation~C1!.
Then, using properties of thez(n,x) function @26#, it is eas-
ily seen that aty50 and x→01 the partial derivative
]V2 /]x tends to (21). Analogously, atx50 andy→01 the
derivative ]V2 /]y ~C2! tends to (21) as well. This fact
means that for arbitrary values ofÃ,B̃ the point (0,0) cannot
be a global minimum for the potentialV2(x,y). So, in con-
trast to the case withH50, the ground state with intac
initial symmetry is no more possible in the model~1! at H
Þ0. Such a property of the effective potential is a char
teristic feature for a phenomenon which is called~chromo!
magnetic catalysis of dynamical symmetry breaking. A
cording to this effect the external~chromo!magnetic field
promotes to a great extent the spontaneous breaking of in
symmetry of the theory~for more details, see the last sectio
of the present paper!.

Similar to the case with non-Abelian vector-potential
type I, in the present consideration it is possible to show t
for arbitrary values of Ã,B̃ the stationarity equations
~C1!,~C2! have two solutions of the form„x0(Ã),0… and
„0,y0(B̃)…, where

x0~Ã!>1/Ã at Ã→1`, x0~Ã!>2Ã/6 at Ã→2`,
~C3!

y0~B̃!>1/B̃ at B̃→1`, y0~B̃!>2B̃/4 at B̃→2`.
~C4!

@Here and in the following discussions of the present app
dix we use the same notationsx0(Ã) and y0(B̃) for the so-
lutions of stationarity equations as in the previous Appen
B. But one should remember that these functions have q
different numerical values than similar functions had in A
pendix B.#

From Eqs.~C1!,~C2! it follows that only for (Ã,B̃)PV,
whereV is defined formally in Eq.~B4!, there is a solution
of the form„x1(Ã,B̃),y1(Ã,B̃)…, wherex1.0, y1.0. These
functions are given in Eq.~B3!. There are no other solution
of the stationarity equations.

Using numerical and analytical methods, it is now po
sible to compare the values of the effective potential in
stationary points and thus to find the global minimum po
of V2 as well as its dependence on the parametersÃ,B̃ of the
theory. We omit the details of this investigation and pres
only the results, which can be formulated in the form of
phase portrait of the model in terms ofÃ,B̃.
8-12
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It turns out that Fig. 2, which is the phase portrait of t
model for nonzero vector-potential I, formally may serve a
phase portrait of the model for nonzero external gauge fie
of type II as well. In both cases the linel̃ 1 separates the colo
superconducting phase III from the mixed phase IV. Furth
in both cases, phase IV is separated from the chiral pha
by the linel̃ 2, which has the same analytic definition throu
x0(Ã) and y0(B̃) ~see the figure caption to Fig. 2!. More-
over, the leading asymptotic behaviors of thel̃ 2 curves are in
ys

ys

s.
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both cases identical~at Ã→` we have instead the linel̃ 1, at
Ã→2` it is the line 2Ã53B̃). Of course, since for type
and type II vector potentials the functionsx0(Ã) andy0(B̃)
obey different stationarity equations, linel̃ 2 of case I does
not coincide with linel̃ 2 of case II. Finally, we should stres
again that for both types of nonzero vector-potentials I a
II, the symmetric phase I of the theory, which is present
the phase structure of the model atH50 ~see Fig. 1!, is
absent at all.
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