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QCD factorization for B\PP
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In this work, we give a detailed discussion for QCD factorization involved in the complete chirally enhanced
power corrections in the heavy quark limit forB decays to two light pseudoscalar mesons, and present some
detailed calculations of radiative corrections at the order ofas . We point out that the infrared finiteness of the
vertex corrections in the chirally enhanced power corrections requires twist-3 light-cone distribution ampli-
tudes~LCDAs! of the light pseudoscalar symmetric. However, even in the symmetric condition, there is also
a logarithmic divergence from the end points of the twist-3 LCDAs in the hard spectator scattering. We point
out that the decay amplitudes ofB→PP predicted by QCD factorization are really free of the renormalization
scale dependence, at least at the order ofas . At last, we briefly compare the QCD factorization with the
generalized factorization and PQCD method.
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I. INTRODUCTION

The study ofB decays plays an important role in unde
standing the origin ofCP violation and the physics of heav
flavor. We expect that the parameters of the Cabib
Kobayashi-Maskawa~CKM! matrix in the standard mode
for instance, the three anglesa, b, and g in the unitary
triangle, can be well determined fromB decays, especially
from the charmless nonleptonic two-bodyB decays. Experi-
mentally, manyB experiment projects have been runni
~CLEO, BaBar, Belle, etc.!, or will run in forthcoming years
~BTeV, CERN LHCb, DESY HeraB, etc.!. With the accu-
mulation of the data, the theorists will be urged to gain
deeper sight intoB decays, and to reduce the theoretical
rors in determining the CKM parameters from the expe
mental data.

In the theoretical frame, the standard approach to d
with such decays is based on the low-energy effec
Hamiltonian which is obtained by the Wilson operator pro
uct expansion method~OPE!. In this effective Hamiltonian,
the short-distance contributions from the scale abovem
.mb have been absorbed into the Wilson coefficients w
the perturbative theory and renormalization group meth
The Wilson coefficients have been evaluated to next
leading order. Then the main task in studying nonlepto
two-body B decays is to calculate the hadronic matrix e
ments of the effective operators. However, we do not hav
reliable approach to evaluate them from the first principles
QCD dynamics up to now.

Generally, we must resort to the factorization assumpt
to calculate the hadronic matrix elements for nonleptonicB
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decays, in which the hadronic matrix element of the effect
operator~in general, which is in the form of current-curren
four-quark operator! can be approximated as a product
two single current hadronic matrix elements; then it is p
rametrized into a meson decay constant and meson-m
transition form factor. The most popular factorization mod
is the Bauer-Stech-Wirbel~BSW! model@1#. In many cases,
the BSW model achieves great success, which can pre
the branching ratios of many modes of nonleptonicB decays
in correct order of magnitude. This factorization assumpt
does hold in the limit that the soft interactions in the initi
and final states can be ignored. It seems that the argume
color transparency can give reasonable support to the ab
limit. Because theb quark is heavy, the quarks fromb quark
decay move so fast that a pair of quarks in a small co
singlet object decouple from the soft interactions. But t
shortcomings of this simple model are obvious. First,
renormalization scheme and scale dependence in the
ronic matrix elements of the effective operators are app
ently missed. Then the full decay amplitude predicted by
BSW model remains dependent on the renormalizat
scheme and scale, which are mainly from Wilson coe
cients. In past years, many researchers improved the sim
factorization scheme and made many remarkable progres
such as scheme and scale independent effective Wilson
efficients @2,3#, effective color number which is introduce
to compensate the ‘‘nonfactorizable’’ contributions, etc. F
thermore, some progresses in nonperturbative methods,
as lattice QCD, QCD sum rule, etc.@4–6#, allow us to com-
pute many nonperturbative parameters inB decays, such as
the meson decay constants and meson-meson transition
factors. Every improvement allows us to have a closer lo
at theB nonleptonic decays.

Except for the factorization approximation, another im
portant approach has been applied to study manyB exclusive
hadronic decay channels, such asB→Dp, pp, pK, etc.
This is the PQCD method@7–9#. In this method, people as
©2001 The American Physical Society36-1
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sume thatB exclusive hadronic decay is dominated by ha
gluon exchange. It is analogous to the framework of per
bative factorization for exclusive processes in QCD at la
momentum transfer, such as the calculation of the elec
magnetic form factor of the pion@10#. The decay amplitude
for B decay can be written as a convolution of a ha
scattering kernel with light-cone wave functions of the p
ticipating mesons. Furthermore, in Refs.@8,9# the Sudakov
suppression has been taken into account.

Two years ago, Beneke, Buchalla, Neubert, and Sachr
~BBNS! gave a QCD factorization formula in the heav
quark limit for the decaysB→pp @11#. They pointed out
that the radiative corrections from hard gluon exchange
be calculated by use of the perturbative QCD method if o
neglects the power contributions ofLQCD /mb . This factor-
ization formula can be justified in the case that the ejec
meson from theb quark decay is a light meson or an onium
no matter whether the other recoiling meson which abso
the spectator quark inB meson is light or heavy. But for the
case that the ejected meson is in an extremely asymm
configuration, such asD meson, this factorization formula
does not hold. The contribution from the hard scattering w
the spectator quark inB meson is also involved in their for
mula. This kind of contribution cannot be contained in t
naive factorization. But it appears in the order ofas . So they
said that the naive factorization can be recovered if one
glects the radiative corrections and powerLQCD /mb sup-
pressed contributions in the QCD factorization, and
‘‘nonfactorizable’’ contributions in the naive factorizatio
can be calculated perturbatively, then we do not need a p
nomenological parameterNc

e f f to compensate the ‘‘nonfac
torizable’’ effects any more@12–14#.

This QCD factorization~BBNS approach! has been ap-
plied to study manyB meson decay modes, such asB
→D (* )p2 @15,16#, pp, pK @17–19# and other interesting
channels@20–23#. Some theoretical generalizations of th
BBNS approach have also been made, such as the chi
enhanced power corrections@18,19,24,25# from the twist-3
light-cone distribution amplitudes of the light pseudosca
mesons. In this work, we will take a closer look at this iss
This work is organized as follows: Sec. II is devoted to
sketch of the low energy effective Hamiltonian; in Sec. I
we will give a detailed overview of QCD factorization, i
which some elaborate calculations are shown, especially
the chirally enhanced power corrections; Sec. IV is for so
detailed discussions and comparison of the BBNS appro
to the generalized factorization and the PQCD method;
conclude in Sec. V with a summary.

II. EFFECTIVE HAMILTONIAN—FIRST STEP
FACTORIZATION

B decays involve three characteristic scales which
strongly ordered:mW@mb@LQCD . How to separate or fac
torize these three scales is the most essential questionB
hadronic decays.

With the operator product expansion method~OPE!, the
relevantuDBu51 effective Hamiltonian is given by@26#
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q~m!1C2~m!Q2
q~m!

1 (
k53

10

Ck~m!Qk~m!D 2v t„C7g~m!Q7g~m!

1C8G~m!Q8G~m!…G1H.c., ~1!

wherevq5VqbVqd* ~for b→d transition! or vq5VqbVqs* ~for
b→s transition! and Ci(m) are the Wilson coefficients
which have been evaluated to next-to-leading order appr
mation with the perturbative theory and renormalizati
group method.

In Eq. ~1!, the four-quark operatorsQi are given by

Q1
u5~ ūaba!V2A~ q̄bub!V2A , Q1

c5~ c̄aba!V2A~ q̄bcb!V2A ,

Q2
u5~ ūabb!V2A~ q̄bua!V2A , Q2

c5~ c̄abb!V2A~ q̄bca!V2A ,

Q35~ q̄aba!V2A(
q8

~ q̄b8qb8 !V2A ,

Q45~ q̄bba!V2A(
q8

~ q̄a8qb8 !V2A ,

Q55~ q̄aba!V2A(
q8

~ q̄b8qb8 !V1A ,

Q65~ q̄bba!V2A(
q8

~ q̄a8qb8 !V1A ,

Q75
3

2
~ q̄aba!V2A(

q8
eq8~ q̄b8qb8 !V1A ,

Q85
3

2
~ q̄bba!V2A(

q8
eq8~ q̄a8qb8 !V1A ,

Q95
3

2
~ q̄aba!V2A(

q8
eq8~ q̄b8qb8 !V2A ,

Q105
3

2
~ q̄bba!V2A(

q8
eq8~ q̄a8qb8 !V2A , ~2!

and

Q7g5
e

8p2
mbq̄asmn~11g5!baFmn ,

Q8G5
g

8p2
mbq̄asmn~11g5!tab

a bbGmn
a ~q5d or s!

~3!

with Q1
q andQ2

q being the tree operators,Q32Q6 the QCD
penguin operators,Q72Q10 the electroweak penguin opera
tors, andQ7g , Q8G the magnetic-penguin operators.
6-2
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In this effective Hamiltonian forB decays, the contribu
tions from large virtual momenta of the loop correctio
from scalem5O(mb) to MW are attributed to the Wilson
coefficients, and the low energy contributions are fully inc
porated into the matrix elements of the operators@26#. So the
derivation of the effective Hamiltonian can be called ‘‘th
first step factorization.’’

To evaluate the Wilson coefficients, we must extract th
at a large renormalization scale@for examplem5O(MW) in
the standard model# by matching the amplitude of the effec
tive Hamiltonian (Ae f f) to that of the full theory (Af ull), then
evolve them by the renormalization group equations from
scalem5O(mW) to the scalem5O(mb). It should be noted
that the extraction of the Wilson coefficientsCi by matching
does not depend on the choice of the external states, if
regularize the infrared~and mass! singularities properly@26#.
All dependence on the choice of external states only app
in the matrix elementŝQi&, and is not contained inCi . So
Ci only contains the short-distance contributions from
region where the perturbative theory can be applied. But
the matrix elementŝQi&, the long-distance contributions ap
pear, and are process-dependent.

Several years ago, the perturbative corrections to the W
son coefficients in SM have been evaluated to next
leading order with the renormalization group method@26#.
As we know, the Wilson coefficients are generally renorm
ization scheme and scale dependent. So, in order to ca
such dependence, we must calculate the hadronic matri
ements of the effective operators to the corresponding
turbative order with the same renormalization scheme an
the same scale, then we can obtain a complete decay am
tude which is free from those unphysical dependences.

III. QCD FACTORIZATION FOR B\PP

After ‘‘the first step factorization,’’ the decay amplitud
for B→h1h2 can be written as

A~B→h1h2!5(
i

v iCi~m!^h1h2uQi~m!uB&, ~4!

in which, as mentioned in the previous section, the contri
tions from the large scalemW down tomb has been separate
into the Wilson coefficientsCi(m). The remaining task is to
calculate the hadronic matrix elements of the effective
erators. But for the complexity of QCD dynamics, it is d
ficult to calculate these matrix elements reliably from fi
principles. The most popular approximation is factorizati
hypothesis, in which the matrix element of the curre
current operator is approximated to a product of two ma
elements of a single current operator:

^h1h2uQi uB&.^h2uJ2u0&^h1uJ1uB&. ~5!

Obviously, under this approximation, the original hadron
matrix element̂ Qi(m)& misses the dependence of the ren
malization scheme and scale which should be used to ca
the corresponding dependence in the Wilson coefficie
Ci(m). A plausible solution to recover this scale and sche
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dependence of̂Qi& is to calculate the radiative correction
In the one-loop level, they can be written as@13,14,27#

^Q&5F 1̂1
as

4p
m̂s1

aem

4p
m̂eG•^Q&Tree. ~6!

Herem̂s andm̂e represent the one loop corrections of QC
and QED, respectively. Then one takes

^h1h2uQi uB&Tree.^h2uJ2u0&^h1uJ1uB&. ~7!

Therefore, the scheme and scale dependence of^Qi& which
are expressed in the form ofm̂s andm̂e is recovered. But in
quark level,m̂s andm̂e usually contain infrared divergence
if we take the external quarks on-shell@28#. To remove or
regularize the infrared divergence, the conventional tre
ment is to assume that external quarks are off-shell
2p2. But this introduction of the infrared cutoff2p2 results
in a gauge dependence of one-loop corrections. So how
factorize the infrared part of the matrix elements is a ve
subtle question. But maybe this question would get an
portant simplification in the case that the final states oB
meson decay are two light mesons.

Two years ago, Beneke, Buchalla, Neubert, and Sachr
proposed a promising QCD factorization method forB
→pp. They pointed out that in the heavy quark limitmb
@LQCD , the hadronic matrix elements forB→pp can be
written in the form

^ppuQuB&5^puJ2u0&^puJ1uB&•F11( r nas
n

1O~LQCD /mb!G . ~8!

Obviously, the above formula reduces to the naive factori
tion if we neglect the power corrections inLQCD /mb and the
radiative corrections inas . They find that the radiative cor
rections, which are dominated by hard gluon exchange,
be calculated systematically with the perturbative theory
the limit mb→`, in terms of the convolution of the har
scattering kernel and the light-cone distribution amplitud
of the mesons. This is also similar to the framework of p
turbative factorization for exclusive processes in QCD
large momentum transfer, such as the calculation of the e
tromagnetic form factor of the pion@10#. Then a factoriza-
tion formula forB→pp can be written as@11#

^p~p8!p~q!uQi uB~p!&

5FB→p~q2!E
0

1

dx Ti
I~x!Fp~x!

1E
0

1

dj dx dy TII ~j,x,y!FB~j!Fp~x!Fp~y!.

~9!

We call this factorization formalism QCD factorization o
the BBNS approach. In the above formula,FB(j) and
6-3
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DONGSHENG DU, DESHAN YANG, AND GUOHUAI ZHU PHYSICAL REVIEW D64 014036
Fp(x) are the leading-twist wave functions ofB and pion
mesons, respectively, and theTi

I ,II denote hard-scatterin
kernels which are calculable in perturbative theory. At t
order ofas , the hard kernelsTI ,II can be depicted by Fig. 1
Figures 1~a!–1~d! represent vertex corrections, Figs. 1~e! and
1~f! penguin corrections, and Figs. 1~g! and 1~h! hard spec-
tator scattering.

In the heavy quark limit, both pions are energetic. T
pion ejected fromb quark decay moves so fast that it can
described as its leading-twist light-cone distribution amp
tude. Theqq̄ pair in the ejected pion is produced as a sma
size color dipole. Consequently, the ejected pion decou
from the soft gluons at leading order ofLQCD /mb . Of
course, only the cancellation of soft gluons is not enough
make the factorization hold; it is necessary that theqq̄ pair
also decouples from the collinear gluons. Both the cance
tions of soft gluons and collinear gluons guarantee that
hard kernelTi

I is of infrared finiteness. Contrast to the pio
ejected fromb quark weak decay, the recoiling pion whic
picks up the spectator inB meson cannot be described by
leading-twist light-cone distribution amplitude~LCDA!, be-
cause the spectator is transferred to the recoiling pion
soft quark. Here Benekeet al. take the point of view that the
form factorFB→p cannot be calculated perturbatively. If w
attempt to calculate the form factor within the perturbat
framework, by the naive power counting, we find that t
leading twist LCDA of pion does not fall fast enough
suppress the singularity at the end point where the qu
from b decay carries almost all momentum of the pion.
indicates that the contributions to form factor are domina
by the soft gluon exchange@16#. This point of view can be
justified also from the calculation of the form factorFB→p

by using the light-cone sum rule~LCSR! @5,6#, in which the
dominated contribution toFB→p comes from the region
where the spectator quark is transferred as a soft quark to
pion. So the transition form factor survives in the factoriz
tion formula as a nonperturbative parameter. However, w

FIG. 1. Order ofas corrections to hard-scattering kernelsTI and
TII . The upward quark lines represent the ejected quark pairs f
b quark weak decays.
01403
e

-
-
es

o

a-
e

a

rk
t
d

he
-
n

the spectator quark inB meson interacts with a hard gluo
from the ejected pion, the recoiling pion can also be d
scribed by its light-cone distribution amplitude. This ha
spectator scattering is missed in the naive factorization,
calculable in the perturbative QCD at leading power
LQCD /mb . So with this factorization formula, the remainin
hard part of the hadronic matrix element^Qi& from the scale
aboutmb has been factorized into the hard scattering kern
and the long distance contributions are absorbed into
transition form factors and the light-cone wave functions
the participating mesons. Thus this is the ‘‘final factoriz
tion’’ for the two-body nonleptonic charmlessB decays.

An explicitly technical demonstration of the above arg
ment has been presented in one-loop level in Refs.@11,16#.
For B→Dp, this QCD factorization has been proved to tw
loop order@16#. In the literature, the ejected pion is repr
sented by its leading twist light-cone distribution amplitu
~LCDA!. However, since the mass ofb quark is not asymp-
totically large, in particular, some power corrections mig
be enhanced by certain factors, such as the scale of c
symmetry breakingmp5mp

2 /(mu1md);1.5 GeV, and have
significant effects in studyingB two-body nonleptonic
charmless decays. So, in this manner, the chirally enhan
power corrections must be taken into account. According
describing the ejected pion not by its leading twist LCDA
not enough; the two-particle twist-3 LCDAs must be tak
into account. Below, we will show the elaborate results
QCD factorization in these two cases. For illustration,
takeB̄d

0→p1p2 as an example, but the result is easily ge
eralized to the cases that the final states are the other
pseudoscalars.

A. Leading-twist distribution amplitude insertion

When inserting leading-twist LCDA of the light pseudo
scalar, in the heavy quark limit, the quark constituents of
ejected pion can be treated as a pair of collinear mass
quark and antiquark with the momentumuq andūq, respec-
tively (q is the momentum of the ejected pion and we takq

as a hard light-cone momentum in calculation,ū512u),
because the contributions from the transverse moment
the quarks in ejected pion are power suppressed@16#.

1. Vertex corrections

Now we move on to the explicit one-loop calculation
the diagram Figs. 1~a!–1~d! for B→pp. For illustration, we
write down the one-gluon exchange contribution to t
B̄d

0→p1p2 matrix element of the operator Q2
u

5(ūabb)V2A(d̄bua)V2A5(d̄aba)V2A(ūbub)V2A

m

^Q2
u& (a)52gs

2 f p

4

CF

N E
0

1

du f~u!E d4k

~2p!4

1

k2~uq2k!2@~p2k!22mb
2#

3^p1uūig
m~12g5!q/ g5ga~uq/ 2k” !gm~12g5!~p”2k”1mb!gabi uB̄d

0&, ~10!
6-4
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^Q2
u& (b)5gs

2 f p

4

CF

N E
0

1

du f~u!E d4k

~2p!4

1

k2~ ūq2k!2@~p2k!22mb
2#

3^p1uūig
m~12g5!~ ūq/ 2k” !gaq/ g5gm~12g5!~p”2k”1mb!gabi uB̄d

0&, ~11!

^Q2
u& (c)52gs

2 f p

4

CF

N E
0

1

du f~u!E d4k

~2p!4

1

k2~uq1k!2~p2q2k!2

3^p1uūiga~p”2q/ 2k” !gm~12g5!q/ g5ga~uq/ 1k” !gm~12g5!bi uB̄d
0&, ~12!

^Q2
u& (d)5gs

2 f p

4

CF

N E
0

1

du f~u!E d4k

~2p!4

1

k2~ ūq1k!2~p2q2k!2

3^p1uūiga~p”2q/ 2k” !gm~12g5!~ ūq/ 1k” !gaq/ g5gm~12g5!bi uB̄d
0&. ~13!
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When we calculate the vertex corrections in the lead
power of LQCD /mb , not only ultraviolet divergence
emerges but infrared divergence does also. Infrared di
gence arises from two regions where the virtuality of t
loop k is soft or collinear to the momentum of the pions.
Ref. @16#, the authors gave an explicit cancellation of s
and collinear divergence in vertex corrections forB→Dp in
eikonal approximation. Figures 1~a!,1~b! and 1~c!,1~d! cancel
the soft divergence; 1~a!,1~c! and 1~b!,1~d! cancel the collin-
ear divergence. ForB→pp, the cancellation is similar ex
cept that the collinear divergence also arises from the reg
wherek is collinear to the momentum of the recoiling pio
So Figs. 1~c!,1~d! cancel not only part of the soft divergenc
but also part of the collinear divergence. Below, we give
explicit calculation of the Feynman diagrams Figs. 1~a!–1~d!
to show the cancellation of the infrared divergences. In or
to regularize the infrared divergence, there are two cho
for us. One is the dimensional regularization~DR! scheme,
in which the infrared divergence can be regularized into
pole terms 1/(d24). In contrast to the dimensional regula
ization of ultraviolet divergence, the infrared divergen
arises whend<4, instead ofd>4 in the case of the ultra
01403
g
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t

n

n

r
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e

violet divergence. So the dimensiond in regularization for
infrared divergence must be set to be greater than 4. Th
a subtle point, but it will not cause any ambiguity in o
calculation because the infrared part and ultraviolet part
be safely separated. The other method to regularize the
frared divergence is the well-known massive gluon~MG!
scheme, in which the infrared divergence is handled by
placing 1/k2 by 1/(k22mg

2) in the gluon propagator. A simi-
lar scheme has been applied in earlier computation of

radiative corrections form2→e2n̄enm , in which the mass-
less photon is replaced by a massive photon. In addition
our latter calculation, there are also several schemes in tr
ing g5, the most popular two are the naive dimensional re
larization ~NDR! scheme and the ’t Hooft–Veltman reno
malization~HV! scheme. Both have been applied to calcul
the Wilson coefficients@26#. In this work, if there is no
specification, the NDR scheme is always applied in our c
culations for its simplicity.1

After a straightforward calculation in DR scheme and u
ing the corresponding Feynman parameter integrals liste
Appendix C, we obtain
in the same
^Q2
u& (a)5

as

4p

CF

N
^p2ud̄agm~12g5!uau0&^p1uūbgm~12g5!bbuB̄d

0&

3E
0

1

du f~u!H F1

e
2gE1 ln 4p12 ln

m

mb
111

u

12u
ln uG

2
G~12a!

~4p!a S mb

m D 2aF 1

a2
1

2~ ln u21!

a
1 ln2 u22Li2S 12

1

uD24 lnu151
2 lnu

12u G , ~14!

1Such a choice does cause a scheme dependence in the matrix elements. However, when we choose the Wilson coefficients
scheme as for the matrix elements, the final full decay amplitude is free of scheme dependence.
6-5
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^Q2
u& (b)5

as

4p

CF

N
^p2ud̄agm~12g5!uau0&^p1uūbgm~12g5!bbuB̄d

0&

3E
0

1

du f~u!H 24F1

e
2gE1 ln 4p12 ln

m

mb
1

11

4
1

ū

12ū
ln ūG

1
G~12a!

~4p!a S mb

m D 2aF 1

a2
1

2~ ln ū21!

a
1 ln2 ū22Li2S 12

1

ū
D 24 ln ū161

2 ln ū

12ū
G J , ~15!

^Q2
u& (c)5

as

4p

CF

N
^p2ud̄agm~12g5!uau0&^p1uūbgm~12g5!bbuB̄d

0&

3E
0

1

duf~u!H 24F1

e
2gE1 ln 4p12 ln

m

mb
1

11

4
2 ln~2u!G

1
G~12a!

~4p!a S mb

m D 2aF 2

a2
1

2„ln~2u!22…

a
11102

p2

3
24 ln~2u!1 ln2~2u!G J , ~16!

^Q2
u& (d)5

as

4p

CF

N
^p2ud̄agm~12g5!uau0&^p1uūbgm~12g5!bbuB̄d

0&

3E
0

1

du f~u!H F1

e
2gE1 ln 4p12 ln

m

mb
112 ln~2ū!G

2
G~12a!

~4p!a S mb

m D 2aF 2

a2
1

2„ln~2ū!22…

a
1102

p2

3
24 ln~2ū!1 ln2~2ū!G J . ~17!

In the above, we have setd5412a (a.0) in regularizing the infrared divergence. Then, after summing over all
diagrams, we find that all pole terms in 1/a are really canceled before we integrate over the momentum fraction variableu. So
after modified minimal subtraction (MS), we get

^Q2
u& (a)1(b)1(c)1(d)5

as

4p

CF

N
^p2ud̄agm~12g5!uau0&^p1uūbgm~12g5!bbuB̄d

0&

3E
0

1

du f~u!F218212 ln
m

mb
1

u

12u
ln u2

4ū

12ū
ln ū14 ln~2u!2 ln~2ū!2~ ln2 u2 ln2 ū!

12XLi2S 12
1

uD2Li2S 12
1

ū
D C2S 2 lnu

12u
2

2 ln ū

12ū
D 1„ln2~2u!2 ln2~2ū!…G . ~18!

Assuming that the light-cone distribution amplitudef(u) is symmetric, then the above equation can be simplified as follo

^Q2
u& (a)1(b)1(c)1(d)5

as

4p

CF

N
^p2ud̄agm~12g5!uau0&^p1uūbgm~12g5!bbuB̄d

0&

3E
0

1

du f~u!F218212 ln
m

mb
13

122u

12u
ln u23ipG . ~19!

It is easy to check that the above equations are consistent with the results in previous works. Actually, with the MG
we get the same results as that by using the DR scheme.

With Eqs.~18!,~19!, we can compute the vertex corrections no matter whether the LCDAf(u) is symmetric or asymmetric
This is very important in principle. For instance, when kaon is ejected fromb quark decay, we must take the contributions fro
the asymmetric part of LCDA of kaon into account, although the contributions from the asymmetric part are very
numerically@19#.
014036-6
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2. Penguin corrections

There are two kinds of penguin corrections. One is the four quark operators insertion@Fig. 1~e!#; the other is the magnetic
penguin insertion@Fig. 1~f!#. The first kind is generally called BSS mechanism. In generalized factorization, BSS mech
plays a very important role inCP violation because it is the unique source of strong phases. But in generalized factoriz
the virtuality of the gluon or photon is ambiguous; usually one variesk2 aroundmB

2/2. This variation does not have a
important effect on the branching ratios, but it does forCP asymmetries. In QCD factorization, this ambiguity is rendered
taking the virtuality of the gluon ask25(p2uq)25ūmb

2. When treating penguin contractions, one should be careful that
1~e! contains two kinds of topology, which is depicted in Fig. 2. They are equivalent in 4 dimensions according to
rearrangement. However, since penguin corrections contain ultraviolet divergence, we must do calculations ind dimensions
where these two kinds of topology are not equivalent@29#. Below we give an explicit calculation ofQ4 or Q6 penguin
insertions forB̄d

0→p1p2 which belong to the second topology, Fig. 2~b!:

^Q4,6& (e)
twist-25

f p

4
gs

2m2e
CF

N E
0

1

du f~u!^p1uūigaq/ g5gm~12g5!bi uB̄d
0&

3(
q
E ddk

~2p!d

2Tr@~ l/2k”2mq!ga~k”1mq!gm~17g5!#

@~ l 2k!22mq
2#@k22mq

2# l 2 U
l 5p2uq

522i f p

as

4p

CF

N E
0

1

du f~u!^p1uūigaq/ g5gm~12g5!bi uB̄d
0&F l al m

l 2
2gamG

3(
q

F1

6 S 1

e
2gE1 ln 4p D1E

0

1

dt t~12t !ln
m2

mq
22t~12t !l 22 i e

GU
l 5p2uq

. ~20!

After MS subtraction and using the equations of motions, we get the finite result

^Q4,6& (e)
twist-252

as

4p

CF

N
^p2ud̄ig

m~12g5!ui u0&^p1uū jgm~12g5!bj uB̄d
0&

3(
q

F4

3
ln

m

mb
24E

0

1

du f~u!E
0

1

dt t~12t !ln„sq2t~12t !ū2 i e…G , ~21!

wheresq5mq
2/mb

2 . The first topology, Fig. 2~a!, for example,Q1
c penguin insertion forB̄d

0→p1p2, is similar to the results of
the second topology, Fig. 2~b!, except that there is an extra factor22/3:

^Q1
c& (e)

twist-252
as

4p

CF

N
^p2ud̄ig

m~12g5!ui u0&^p1uū jgm~12g5!bj uB̄d
0&

3F2
2

3
1

4

3
ln

m

mb
24E

0

1

du f~u!E
0

1

dt t~12t !ln„sc2t~12t !ū2 i e…G . ~22!

For the magnetic penguin insertion, it is the easiest calculation of the radiative corrections. The result ofQ8G insertion for
B̄d

0→p1p2 is

^Q8G& ( f )
twist-252

as

4p

CF

N
f pmbE

0

1

duf~u!
1

k2
^p1uūig

aq/ g5sbakb~11g5!bi uB̄d
0&uk5p2uq

52
as

4p

CF

N E
0

1

du
2f~u!

ū
^p2ud̄ig

m~12g5!u0&^p1uūigm~12g5!uB̄d
0&. ~23!

3. Hard scattering with the spectator

Hard spectator scattering@Figs. 1~g! and 1~h!# is completely missing in the naive factorization. But in QCD factorizati
it can be calculated in the perturbative QCD, and expressed by a convolution of the hard kernelTII and the LCDAs of mesons
014036-7
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At the leading power ofLQCD /mb , both of the light pseudoscalars from theB meson decay can be represented by th

leading twist LCDAs. So after a straightforward calculation, we obtain this contribution forB̄d
0→p1p2 from the operatorQ2

u

insertion,

^Q2
u& (g)1(h)

twist-2 5
2 i f Bf p

2

64

CF

N2
gs

2E
0

1

dj du dv fB~j!f~u!f~v !

3H Tr @~p”1mB!g5gaq/ 1g5gr~12g5!q/ 2g5gal/dgr~12g5!#

k2l d
2 U

l d5uq22k

k5jp2 v̄q1

1
Tr @~p”1mB!g5gaq/ 1g5gr~12g5!l/ugaq/ 2g5gr~12g5!#

k2l u
2 U

l u5k2ūq2

k5jp2 v̄q1J
5 ipasf Bf p

2 CF

N2E0

1

dj
fB~j!

j E
0

1

du
f~u!

u E
0

1

dv
f~v !

v̄
. ~24!
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B. Chirally enhanced corrections—twist-3 LCDAs insertion

It has been observed that QCD factorization is dem
strated only in the strict heavy quark limit. This means th
any generalization of QCD factorization to include or par
include power corrections ofLQCD /mb should redemon-
strate that factorization still holds. There are a variety
sources which may contribute to power corrections in 1/mb ;
examples are higher twist distribution amplitudes, transve
momenta of quarks in the light meson, annihilation d
grams, etc. Unfortunately, there is no known systematic w
to evaluate these power corrections for exclusive dec
Moreover, factorization might break down when these pow
corrections, for instance, transverse momenta effects,
considered. This indicates that one might have to give
such an ambitious plan that all power corrections could be
least in principle, incorporated into QCD factorization ord
by order. One might argue that power corrections inB de-
cays are numerically unimportant because these correc
are expanded in order of a small numberLQCD /mb.1/15.
But this is not true. For instance, the contributions of ope
tor Q6 to decay amplitudes would formally vanish in th
strict heavy quark limit. However, it is numerically very im
portant in penguin-dominatedB rare decays, such as interes
ing channelsB→pK, etc. This is becauseQ6 is always mul-
tiplied by a formally power suppressed but chirally enhanc
factor r x52mP

2 /mb(m11m2);O(1), wherem1 andm2 are
current quark masses. So power suppression might prob
fail at least in this case. Therefore, phenomenological ap
cability of QCD factorization inB rare decays requires a
least a consistent inclusion of chirally enhanced correctio

FIG. 2. Two kinds of topology for penguin contractions.
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Chirally enhanced corrections arise from the two parti
twist-3 light-cone distribution amplitudes, generally calle
fp(x) andfs(x). So when chirally enhanced corrections a
concerned, the final light mesons should be described
leading twist and twist-3 distribution amplitudes. Then it
crucial to show that factorization really holds when cons
ering twist-3 distribution amplitudes. The most difficult pa
is to demonstrate the infrared finiteness of the hard scatte
kernels Ti

I . In addition, possible chirally enhanced pow
corrections can also appear in the hard spectator scatte
So, for consistency, we must involve these corrections.

1. Vertex corrections

When we calculate the chirally enhanced power corr
tions, contrast to the leading-twist light-cone wave functi
insertion, the cancellation of the infrared divergences in
vertex corrections to (V2A)(V1A) operator~here it isQ5
or Q7) cannot be shown simply by the eikonal approxim
tion similar to what has been done at the leading power
LQCD /mb , because the Dirac structure or spin structure
twist-3 light-cone wave functions of the light pseudosca
makes the ‘‘on-shell’’ condition for the external quarks i
valid. Thus, to justify the cancellation of the infrared dive
gence in (V2A)(V1A) vertex corrections, we must give th
explicit calculation. As mentioned in the previous subse
tions, we have two choices to regularize the infrared div
gence in one-loop calculation. One is the DR scheme;
other is MG scheme. Generally, these two schemes
equivalent, for instance, similar to what has been done
(V2A)(V2A) vertex corrections. However, in the DR
scheme, it is difficult to extrapolate the twist-3 wave fun
tions of the light pseudoscalar tod dimensions properly, al-
though they are well-defined in 4 dimensions. Therefore,
prefer to use the MG scheme in our calculation for chira
enhanced corrections to avoid the above possible proble

In addition, generally we calculate the Feynman diagra
in the momentum space, so the correct projection of
6-8
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light-cone wave functions of the light pseudoscalar in
momentum space is necessary. From Appendix B, we
that it is easy to find the proper momentum space projec
of the leading twist andfp type twist-3 wave function, bu
for fs , the projection is not very clear. Note that the coo
dinate xm in the definition of fs by the nonlocal matrix

FIG. 3. An example of the vertex corrections forQ5(0) in the
case offs insertion.
01403
e
d
n

-

element must be transformed into a partial derivative o
certain momentum in the projection of momentum spa
However, it is difficult to find the derivative which makes th
projection only depend on the structure of the light pseu
scalar itself. Generally, the momentum which the partial
rivative acts on is dependent on the hard kernel. Theref
we prefer to compute the Feynman diagrams of the twis
wave functions insertion, especiallyfs insertion in the co-
ordinate space. We think that such calculation can avoid
ambiguity about how to project the coordinatexm into the
momentum space. We recalculate the leading twist inser
by using the same method, and obtain the same result
those in the previous sections. Below, we will show how
perform this trick in calculation offs insertion. For ex-
ample, let us consider Fig. 3. In coordinate space, we ha
r

Fig. 35
f PmP

4

CF

N
gs

2E du
fs~u!

6 E d4x1 d4x2E d4k

~2p!4

d4l ū

~2p!4

d4l b

~2p!4

ei (ūq2k1 l ū)•x2ei (k1 l b2p)•x1

~k22mg
2!l ū

2
~ l b

22mb
2!

3^p1uūig
r~11g5!ł ūgag5smnqmx2

ngr~12g5!~ ł b1mb!gabi uB̄d
0&

5
f PmP

4

CF

N
gs

2E du
fs~u!

6 E d4k

~2p!4

d4l ūd4x2

~2p!4

ei (ūq2k1 l ū)•x2qmx2
n

~k22mg
2!l ū

2
~ l b

22mb
2!

3^p1uūig
r~11g5!ł ūgag5smngr~12g5!~ ł b1mb!gabi uB̄d

0&U
l b5p2k

5
i f PmP

4

CF

N
gs

2E du
fs~u!

6 E d4k

~2p!4

qm

~k22mg
2!~ l b

22mb
2!

3
]

] l ūn
H ^p1uūig

r~11g5!
ł ū

l ū
2 gag5smngr~12g5!~ ł b1mb!gabi uB̄d

0&J U
l b5p2k

l ū5k2ūq

. ~25!

The above trick has been applied in the calculation of the proper correlation function to extract the transition form factoFB→p

within the frame of the light-cone sum rule@6#. So within the same frame, we obtain

^Q5& (a)5gs
2 f pmp

4

CF

N E
0

1

duE d4k

~2p!4

1

~k22mg
2!l d

2~ l b
22mb

2!
H fp~u!^p1uūig

m~11g5!g5gał dgm~12g5!~ ł b1mb!gabi uB̄d
0&

1 i
fs~u!

6
fs~u!^p1uūig

r~11g5!g5smnqmgaS gn2
2l d

nł d

l d
2 D gr~12g5!~ ł b1mb!gabi uB̄d

0&J U
l b5p2k

l d5uq2k

, ~26!

^Q5& (b)5gs
2 f pmp

4

CF

N E
0

1

duE d4k

~2p!4

1

~k22mg
2!l ū

2
~ l b

22mb
2!

3H fp~u!^p1uūig
m~11g5!ł ūgag5gm~12g5!~ ł b1mb!gabi uB̄d

0&

1 i
fs~u!

6
fs~u!^p1uūig

r~11g5!S gn2
2l ū

n
ł ū

l ū
2 D gag5smnqmgr~12g5!~ ł b1mb!gabi uB̄d

0&J U
l b5p2k

l ū5k2ūq

, ~27!
6-9



h

litudes.

DONGSHENG DU, DESHAN YANG, AND GUOHUAI ZHU PHYSICAL REVIEW D64 014036
^Q5& (c)5gs
2 f pmp

4

CF

N E
0

1

duE d4k

~2p!4

1

~k22mg
2!l d

2l u
2 H fp~u!^p1uūigał ugm~11g5!g5gał dgm~12g5!bi uB̄d

0&

1 i
fs~u!

6
^p1uūig

ał ugm~11g5!g5smnqmgaS gn2
2l d

nł d

l d
2 D gr~12g5!bi uB̄d

0&J U
l u5p2q1k

l d5uq2k

, ~28!

^Q5& (d)5gs
2 f pmp

4

CF

N E
0

1

duE d4k

~2p!4

1

~k22mg
2!l ū

2
l u
2 H fp~u!^p1uūig

ał ugm~11g5!ł ūgag5gm~12g5!bi uB̄d
0&

1 i
fs~u!

6
^p1uūig

ał ugr~11g5!S gn2
2l ū

n
ł ū

l ū
2 D gag5smnqmgr~12g5!bi uB̄d

0&J U
l u5p2q1k

l ū5k2ūq

. ~29!

Perform the one-loop integrations:

^Q5& (a)52
as

4p

CF

N
^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&E
0

1

duH fp~u!F2S 1

e
2gE1 ln 4p12 ln

m

mb
D1

1

4
ln2 l

1 ln~2u!ln l22 lnu ln l1
1

2
ln2 u2Li2S 12

1

uD1
1

2
1

5

4
p2G1

fs~u!

6u F1

2
ln2 l12 ln~2u!ln l24 lnu ln l

1 ln l14 ln2 u2 ln2~2u!22 lnu ln~12u!12Li2S 1

uD1
7

6
p22 ln u2

ln u

12uG J , ~30!

^Q5& (b)522
as

4p

CF

N
^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&E
0

1

duH fp~u!F2S 1

e
2gE1 ln 4p12 ln

m

mb
D1

1

4
ln2 l

1 ln~2ū!ln l22 ln ū ln l1
1

2
ln2 ū2Li2S 12

1

ū
D 2

5

2
1

5

4
p2G1

fs~u!

6ū
F1

2
ln2 l12 ln~2ū!ln l24 ln ū ln l

1 ln l14 ln2ū2 ln2~2ū!22 ln ū ln~12ū!12Li2S 1

ū
D 1

7

6
p22 ln ū2

ln ū

12ū
G J , ~31!

^Q5& (c)522
as

4p

CF

N
^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&E
0

1

duH fp~u!F2S 1

e
2gE1 ln 4p12 ln

m

mb
D

1
1

2
ln2 l2@ ln~2u!22# ln l1

1

2
ln2~2u!2 ln~2u!2

3

2
1

p2

3 G1
fs~u!

6u F ln2 l2@2 ln~2u!23# ln l

12 ln~2u!ln u2 ln2 u23 ln~2u!132
p2

3 G J , ~32!

^Q5& (d)52
as

4p

CF

N
^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&E
0

1

duH fp~u!F2S 1

e
2gE1 ln 4p12 ln

m

mb
D

1
1

2
ln2 l2@ ln~2ū!22# ln l1

1

2
ln2~2ū!2 ln~2ū!1

3

2
1

p2

3 G
1

fs~u!

6ū
F ln2 l2@2 ln~2ū!23# ln l12 ln~2ū!ln ū2 ln2 ū23 ln~2ū!132

p2

3 G J . ~33!

Here l5mg
2/mb

2 . From the above equations, it is observed that, in the case offs distribution amplitudes, the terms wit

infrared divergence in vertex correction diagrams cannot cancel unlessfs(u) is a symmetric function:fs(u)5fs(ū). This
is an unexpected result, which means QCD factorization is violated for asymmetric twist-3 light-cone distribution amp
014036-10
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This indicates that chirally enhanced corrections can be included consistently in the framework of QCD factorizatio
when twist-3 light-cone distribution amplitudes are symmetric. Therefore, in the following, we will implicitly assu
symmetric twist-3 light-cone distribution amplitude for light pseudoscalar mesons. It is then straightforward to sho
vertex corrections of (V2A)(V1A) operator are completely cancelled after summing over four diagrams in the casefs

distribution amplitude. The final result of (V2A)(V1A) vertex corrections, in the condition that the twist-3 LCDA
symmetric, is

^Q5& (a)1(b)1(c)1(d)512
as

4p

CF

N
^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&. ~34!

2. Penguin corrections

In quark level, usually one decomposes the basic QCD vertex2 igsg
mTi j

a in penguin insertion into the two chiral curren

couplings2 i 1
2 gsg

mTi j
a (11g5) and 2 i 1

2 gsg
mTi j

a (12g5); then the penguin insertions contribute the same magnitude to
(V2A)(V2A) and (V2A)(V1A) vertex. But in hadron level, this point of view must be examined in elaborate calcula

For illustration, we give the results ofQ4 or Q6 penguin corrections toB̄d
0→p1p2, which belong to the second pengu

topology Fig. 2~b!, whenfp(u) is inserted:

^Q4,6& (e)
fp52

f pmp

4
gs

2m2e
CF

N E
0

1

du fp~u!^p1uūigag5gm~12g5!bi uB̄d
0&

3(
q
E ddk

~2p!d

2Tr@~p”2uq/ 2k”2mq!ga~k”1mq!gm~17g5!#

@~p2uq2k!22mq
2#@k22mq

2#~p2uq!2

52i f pmp

as

4p

CF

N E
0

1

du fp~u!^p1uūigag5gm~12g5!bi uB̄d
0&F l al m

l 2
2gamG

3(
q

F1

6 S 1

e
2gE1 ln 4p D1E

0

1

dt t~12t !ln
m2

mq
22t~12t !l 22 i e

G
l 5p2uq

. ~35!

After MS subtraction, we obtain

^Q4,6& (e)
fp52

as

4p

CF

N
^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&

3(
q

F ln
m

mb
23E

0

1

du fp~u!E
0

1

dt t~12t !ln@sq2t~12t !ū2 i e#G . ~36!

For the first penguin insertion topology, Fig. 2~a!, the result is

^Q1
c& (e)

fp52
as

4p

CF

N
^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&

3F ln
m

mb
2

1

2
23E

0

1

du fp~u!E
0

1

dt t~12t !ln@sc2t~12t !ū2 i e#G . ~37!

Similarly, whenfs(u) is inserted, by using the method in the previous subsection, we have

^Q4,6& (e)
fs5

i f pmp

4
gs

2m2e
CF

N E
0

1

du
fs~u!

6
^p1uūi~12g5!gasmnqmgrbi uB̄d

0&

3(
q

F ]

]kn
E ddl q

~2p!d

Tr @~ ł q2k”1mq!ga~ ł q1mq!gr~17g5!#

@~ l q2k!22mq
2#@ l q

22mq
2#k2 GU

k5p2uq

. ~38!

After integration and subtraction,
014036-11
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^Q4,6& (e)
fs52

as

4p

CF

N
^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&

3(
q
E

0

1

du
fs

6ū
F2

3
ln

m

mb
2E

0

1

dtS 2t~12t !ln@sq2t~12t !ū2 i e#1
t2~12t !2ū

sq2t~12t !ū2 i e
D G . ~39!

The magnetic penguin insertion is easier; we write the result ofQ8G insertion as follows:

^Q8G& ( f )
twist-35

as

4p

CF

N
f pmpmbE

0

1

duH fp~u!
1

k2
^p1uūig

ag5sbakb~11g5!bi uB̄d
0&

1 i
fs~u!

6

1

4k2 F ^p1uūig
ag5@q/ ,gs#@gs,ga#~11g5!bi uB̄d

0&

2
2

k2
^p1uūig

ag5@q/ ,k” #@k” ,ga#~11g5!bi uB̄d
0&G J U

k5p2uq

52
as

4p

CF

N S 3

2
1E

0

1

du
fs~u!

6ū
D ^p2ud̄i~11g5!ui u0&^p1uū j~12g5!bj uB̄d

0&. ~40!
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3. Hard scattering with the spectator

The chirally enhanced power corrections in hard spect
scattering not only occurs in the case of (V2A)(V1A) ver-
tex insertion, but also in the case of (V2A)(V2A) inser-
tion. But in the case of (V2A)(V1A) insertion, after a
straightforward calculation, we find that there will be serio
linear divergence at the end points of the LCDAs if t
twist-3 LCDAs are not symmetric. Because infrared fini
ness of the vertex corrections requires that the twis
LCDAs, especiallyfs(u), must be symmetric, we shall im
plicitly assume this symmetric condition for the LCDAs
latter computation. So, in this symmetric condition, the ha
scattering with the spectator vanishes when (V2A)(V1A)
vertex is inserted. However, even in this strict symme
condition, there is still a logarithmic divergence from the e
point of the recoiling pion in hard spectator scattering wh
(V2A)(V2A) vertex is inserted. For example,

^Q2
u& (g)1(h)5 ipasf Bf p

2 CF

N2E0

1

dj
fB~j!

j E
0

1

du
f~u!

u E
0

1

dv

3Ff~v !

v̄
1

2mp

mB

fs~v !

6v̄2 G . ~41!

This means that QCD factorization is broken down. B
we can still give a phenomenological treatment for this h
spectator scattering. By using the asymptotic form offs(u),
we find that there is a divergent integral overv: *0

1dv(1/v̄).
In Refs. @19,25#, the authors prefer to introduce a pheno
enological parametrization for this logarithmic divergenc
01403
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They take*0
1dv(1/v̄)5 ln(mB /LB)1reiu, where r is taken

from 3 ~realistic! to 6 ~conservative!, and the phaseu from
2p to p. We shall take similar phenomenological treatme
in the numerical computation below.

We notice that the above approach of evaluating h
spectator contribution is naive. For instance, the scale of h
spectator contribution should be different from the vert
correction contribution. While it seems reasonable to take
scalem;O(mb) for the vertex correction diagrams to avo
large logarithmas log(m/mb), a natural choice of the scale o
hard spectator contribution may be aroundO(1 GeV! be-
cause the average momentum squared of the excha
gluon is about 1 GeV2. Another disturbing feature of hard
spectator contribution is that, as pointed out in Refs.@19,25#,
when including the contribution offs , there would appear a
divergent integral*0

1dv(1/v̄) even if the symmetric distribu-
tion amplitude is applied. This divergent integral implies th
the dominant contribution comes from the end-point regi
or, in other words, it is dominated by soft gluon exchang
However, the transverse momentum may not be omitted
the end-point region@30#; if so, the corresponding divergen
integral would then be changed to

E dv
1

v̄
→E dv d2kT

C~v,kT!

v̄jmb
21kT

2
. ~42!

As an illustration, we do not consider thekT dependence of
wave functions~though it is certainly not a good approxima
tion!; then the above integral is proportional
6-12
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E dv dkT
2

v̄jmb
21kT

2
}E dx dy

x1y
. ~43!

The above integration converges now; furthermore it is
dominated by end-point contribution. This illustrates that
treatment of hard spectator diagrams may need further
cussion.

There exists ‘‘annihilation topology’’ contributions whic
may belong to chirally enhanced corrections. In Ref.@25#,
the authors have discussed this topic and find that a diver
integral @*(dx/x)#2 will appear. We suspect that this dive
gence may disappear, similar to the hard spectator term
the effect of transverse momenta can be included. It is a
possible that ‘‘annihilation topology’’ contributions ar
really dominated by soft interactions and thus violate fact
ization. Due to its complexity, we do not include ‘‘annihila
tion topology’’ contributions in this work.
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C. Final formulas

With these effective operators,B→P1P2 decay ampli-
tudes in QCD factorization can be written as

A~B→P1P2!5
GF

A2
(

p5u,c
(

i 51,10
vpai

p^P1P2uQi uB&F ,

~44!

wherevp is the CKM factor,̂ P1P2uQi uB&F is the factorized
matrix element and is the same as the definition of the B
Largrangian@1#. Then as an illustration, the explicit expre
sions of ai

p ( i 51 to 10) for B→pp ~using symmetric
LCDAs of the pion! are obtained. But it is easy to generaliz
these formulas to the case that the final states are other
pseudoscalars. Furthermore, we take only part of QED c
rections into account in our final formula, in particular th
QED penguin insertions. Nowai

p for B→pp in NDR g5
scheme is listed as follows:2
R scheme

ture

d
her
a1
u5C11

C2

N
1

as

4p

CF

N
C2F, ~45!

a2
u5C21

C1

N
1

as

4p

CF

N
C1F, ~46!

a35C31
C4

N
1

as

4p

CF

N
C4F, ~47!

a4
p5C41

C3

N
1

as

4p

CF

N
C3F2

as

4p

CF

N H C1S 4

3
log

m

mb
1G~sp!2

2

3D1S C32
C9

2 D S 8

3
log

m

mb
1G~0!1G~1!2

4

3D
1 (

q5u,d,s,c,b
S C41C61

3

2
eqC81

3

2
eqC10D S 4

3
log

m

mb
1G~sq! D1G8C8GJ , ~48!

a55C51
C6

N
1

as

4p

CF

N
C6~2F212!, ~49!

a6
p5C61

C5

N
2

as

4p

CF

N
6C52

as

4p

CF

N H C1F S 11
2

3
AsD log

m

mb
2

1

2
2

1

3
As1G8~sp!1Gs~sp!G

1 (
q5d,b

S C32
C9

2 D F S 11
2

3
AsD log

m

mb
2

1

2
2

1

3
As1G8~sq!1Gs~sq!G

1 (
q5u,d,s,c,b

S C41C61
3

2
eqC81

3

2
eqC10D F S 11

2

3
AsD log

m

mb
1G8~sq!1Gs~sq!G1S 3

2
1AsDC8GJ , ~50!

a75C71
C8

N
1

as

4p

CF

N
C8~2F212!, ~51!

2Because of the tedium, we do not calculate the radiative corrections in the HV scheme. However, generally, the results in the ND

and HV scheme can be related by a constant matrixD r̂ s5 r̂ s,HV2 r̂ s,NDR @29# which is free from the gauge dependence and infrared struc

of the theory. Thus, in principle, we can obtain the results in the HV scheme just by usingD r̂ s . In @23#, the constant matrix has been applie
to obtain the results in the NDR and HV scheme for the coefficientsai which only contain the current-current vertex corrections. But whet
we can obtain the expression ofa6 or a8 in HV scheme in a similar way needs further discussion.
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a8
p5C81

C7

N
2

as

4p

CF

N
6C72

aem

9p H S C21
C1

N D F S 11
2

3
AsD log

m

mb
2

1

2
2

1

3
As1G8~sp!1Gs~sp!G

1S C41
C3

N D (
q5d,b

3

2
eqF S 11

2

3
AsD log

m

mb
2

1

2
2

1

3
As1G8~sq!1Gs~sq!G

1S C31
C4

N
1C51

C6

N D (
q5u,d,s,c,b

3

2
eqF S 11

2

3
AsD log

m

mb
1G8~sq!1Gs~sq!G1S 3

4
1

1

2
AsDC7gJ , ~52!

a95C91
C10

N
1

as

4p

CF

N
C10F, ~53!

a10
p 5C101

C9

N
1

as

4p

CF

N
C9F2

aem

9p H S C21
C1

N D S 4

3
log

m

mb
1G~sp!2

2

3D1S C41
C3

N D (
q5d,b

3

2
eqS 4

3
log

m

mb
1G~sq!2

2

3D
1S C31

C4

N
1C51

C6

N D (
q5u,d,s,c,b

3

2
eqS 4

3
log

m

mb
1G~sq! D1

1

2
G8C7gJ . ~54!
ls

is

o-
her

CD
, a

en-
he
HereN53 is the number of color,CF5(N221)/2N is the
factor of color,sq5mq

2/mb
2 and we define the other symbo

in the above expressions as

F5212 ln
m

mb
2181 f I1 f II , ~55!

f I5E
0

1

dx g~x!f~x!, G85E
0

1

dx G8~x!f~x!, ~56!

G~s!5E
0

1

dx G~s,x!f~x!, ~57!

G8~s!5E
0

1

dx G8~s,x!fp~x!, ~58!

Gs~s!5E
0

1

dx Gs~s,x!
fs~x!

6~12x!
, As5E

0

1

dx
fs~x!

6~12x!
,

~59!

wheref(x)@fp(x),fs(x)# is leading twist~twist-3! LCDA
of the ejected pion, and the hard-scattering functions are

g~x!53
122x

12x
ln x23ip, G8~x!5

2

12x
, ~60!

G~s,x!524E
0

1

du u~12u!ln@s2u~12u!~12x!2 i e#,

~61!

G8~s,x!523E
0

1

du u~12u!ln@s2u~12u!~12x!2 i e#,

~62!
01403
Gs~s,x!522E
0

1

du u~12u!ln@s2u~12u!~12x!2 i e#

1E
0

1

du
u2~12u!2~12x!

s2u~12u!~12x!2 i e
. ~63!

The contributions from the hard spectator scattering@Figs.
1~g!,1~h!# are reduced to the factorf II :

f II 5
4p2

N

f p f B

F1
B→p~0!mB

2E0

1

dj
FB~j!

j E
0

1

dx
f~x!

x

3E
0

1

dyFf~y!

12y
1

2mp

MB

fs~y!

6~12y!2G . ~64!

There contains a divergent integral inf II . Here we simply
assume that*(dy/y); ln(mb /LQCD) ~similar to what has
been done in Refs.@19,25#, though our assumption here
certainly an oversimplification!. We thus illustrate numeri-
cally the scale dependence ofai

p(pp) in Table I. Here we
use the asymptotic form of the LCDAs of the light pseud
scalar meson which are listed in Appendix A, and the ot
input parameters are taken as follows@13#: FBp(0)50.33,
f B50.2 GeV,f p5133 MeV, the pole massesmb54.8 GeV,
mc51.4 GeV, theMS massesm̄t(m̄t)5170 GeV,m̄b(m̄b)
54.4 GeV, m̄u(2 GeV!54.2 MeV, m̄d(2 GeV!57.6 MeV
andLQCD

(5) 5225 MeV.

IV. DISCUSSIONS AND GENERAL REMARKS

A. Color transparency and factorization

Color transparency gives a clear physics picture of Q
factorization. In the argument of the color transparency
fast-moving small color singlet formed by a pair ofqq̄ de-
couples from the surrounding soft gluons. Of course, as m
tioned in the previous section, only the decoupling with t
6-14
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QCD FACTORIZATION FORB→PP PHYSICAL REVIEW D 64 014036
soft gluons is not enough for a factorization formula, t
decoupling from the collinear divergence is also necess
We really find that both of the requirements can be satis
in the one-loop calculations. So the QCD factorization
guaranteed. Therefore, the calculations in the above sec
seem to be a one-loop technical manifestation~or demonstra-
tion! of the color transparency. On the other hand, at
leading power ofLQCD /mb , the soft or collinear gluons
only ‘‘see’’ the direction of the light meson, but are ‘‘blind’
to the spins of the quark constituents. So the soft or collin
gluon cannot distinguish whether the ejected meson fromb
quark decay is a light pseudoscalar or a light longitudina
polarized vector meson. As a consequence, the cancella
of the infrared divergence is universal forB decays to two
light mesons, no matter whether the meson is a pseudos
meson or a vector meson. Therefore, the QCD factoriza
formula for B→PP at the leading power ofLQCD /mb is
easily generalized toB→PV andVV.

Similarly, the color transparency argument cannot only
applied to the strong interactions, but also generalized to
electromagnetic interactions. When the ejected meso
electric neutral, the soft photons also decouple from the
moving small electric dipole. So QED vertex corrections a
also of infrared finiteness. But for the case that the ejec
meson is charged, QED corrections are infrared diverg
and the infrared divergence must be cancelled by the
photon emission mechanism, which is common in the ca
lation of the radiative corrections form2→e2nmn̄e . About
this, it is easily covered in the calculation in the previo
section, just replacing the QCD vertex by a QED vert
This can be called a one-loop demonstration for ‘‘charg
transparency.

It should be noted that the above arguments must be b
on the condition that the ejected meson is in a very comp
configuration, then it, as a small color dipole, is disentang

TABLE I. The QCD coefficientsai
p(pp) at NLO and LO for

the renormalization scales atm55 GeV andm52.5 GeV, where
r x52mp

2 /mb(mu1md).

QCD m55.0 GeV m52.5 GeV
Coefficients NLO LO NLO LO

a1
u 1.02410.012i 1.017 1.03410.024i 1.037

a2
u 0.14420.076i 0.188 0.12320.100i 0.109

a3 0.00310.002i 0.002 0.00410.004i 0.004
a4

u 20.02720.014i 20.029 20.02920.017i 20.040
a4

c 20.03320.007i 20.029 20.03620.007i 20.040
a5 20.00320.003i 20.005 20.00220.005i 20.010
r xa6

u 20.03620.012i 20.033 20.03720.011i 20.040
r xa6

c 20.03920.005i 20.033 20.04020.004i 20.040

a73105 11.912.8i 13.8 0.015.4i 7.6
r xa8

u3105 36.8210.9i 36.8 45.025.2i 39.8
r xa8

c3105 35.026.2i 36.8 44.213.1i 39.8
a93105 2936.1213.4i 2928.4 2953.9224.5i 2957.3
a10

u 3105 281.8158.8i 2141.4 258.3186.1i 274.0
a10

c 3105 285.2163.5i 2141.4 260.3188.8i 274.0
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with the soft gluons. Otherwise, if its size is too large, it
difficult to decouple from the soft gluons. For example, t
spectator quark inD meson is very soft, and runs aroundc
quark like a soft quark cloud, which has a large overlap w
the B meson spectator system@16#. As a consequence, th
process in whichD meson is ejected fromb decay is domi-
nated by the soft gluon exchange.

B. The scale dependence

From the expressions of the QCD coefficientsai
p obtained

in previous sections, it is found that the renormalization sc
dependence of the hadronic matrix elements of the effec
operators is recovered. Apparently, we expect this recove
dependence can cancel the scale dependence of the W
coefficientsCi .

With the renormalization group equations for the Wils
coefficientsCi(m) at leading order logarithm approximatio
@26#,

m
d

dm
C~m!5

as

4p
ĝ (0)TC~m! ~65!

we do find

m
d

dm
ai

p50 ~ for i 51 – 5 and 7, 9, 10! ~66!

when we neglect the contributions from higher order ofas .
But for a6 or a8, some scale dependence at the order ofas
still remains. Note that other QCD coefficien
(ai 51,2,3,4,5,7,9,10) are multiplied by the product of the matri
elements of the conserved currents which are independe
the renormalization scale; whereas the coefficienta6 or a8 is
multiplied by a product of the two matrix elements of sca
and pseudoscalar current

22^P1ud̄~11g5!qu0&^P2uq̄~12g5!buB&,

which is still of scale dependence. This scale dependenc
generally represented by the factor

r x~m!5
2mP1

2

m̄b~m!@m̄1~m!1m̄2~m!#

after we apply the equations of motion to transform theS
1P)(S2P) matrix elements into the type of (V2A)(V
2A). Herem1 andm2 are the current masses of the valen
quarks in mesonP1. With the renormalization group equa
tions for the running mass of the current quark

m
d

dm
m̄~m!526

as

4p
CFm̄~m!, ~67!

we have

m
d

dm
r x~m!512

as

4p
CFr x~m!. ~68!

Consequently, we find
6-15
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m
d

dm
~a6,8

p r x!50 ~69!

with the asymptotic form offs(u)56u(12u). Then, as we
expect, the decay amplitude forB decays to two light pseu
doscalars predicted by QCD factorization is really indep
dent of the renormalization scale within the constraintAs

51/2. This also can be obviously seen from the numer
results ofai

p(pp) listed in Table I. In particular, if we think
that the results of QCD factorization are reliable and rea
independent of the renormalization scale, maybeAs51/2 is
a strict constraint for the form offs(u).

It should be noted that the imaginary part of QCD co
ficientsai only arises at the order ofas , and depends on th
renormalization scale. This dependence would bring so
uncertainties in determining theCP asymmetries inB de-
cays. Maybe this scale dependence of the imaginary
could be canceled by the results on higher order ofas .

C. Comparison to the generalized factorization
and PQCD method

Comparing the QCD factorization approach with the ge
eralized factorization@13,14# and PQCD method@31#, some
interesting comments are in order.

~i! At the zeroth order ofas , both QCD factorization
~BBNS approach! and generalized factorization can repr
duce the results of ‘‘naive factorization;’’ at the higher ord
of as , the renormalization scheme and scale dependenc
the hadronic matrix elements can be recovered from
hard-scattering kernelsTi

I in BBNS approach andm̂s in gen-
eralized factorization. However, in generalized factorizati
m̂s is from the one-loop calculations of quark-level matr
elements. According to Buraset al., quark-level matrix ele-
ments are accompanied with infrared divergences. To av
these divergences, one may assume that external quark
off-shell. Unfortunately, it will introduce gauge dependen
which is also unphysical. But in the BBNS approach, it
different because the external states are all physical and
be approximated as on-shell quarks in the leading orde
LQCD /mb . As a consequence, the unphysical gauge dep
dence does not appear. In the PQCD method, Liet al. claim
that their method is based on a six-quark system in which
external quarks are on-shell, so the gauge invariance
PQCD predictions is guaranteed. The scale dependenc
PQCD prediction is removed by evolving the Wilson coef
cients down to the proper hard scale. So no explicit sc
dependence is left.

~ii ! In generalized factorization and BBNS approach,
hadronic transition form factors are not calculable, and th
are dominated by soft gluon exchange and determined
by experiments or some nonperturbative approaches suc
sum rule, lattice QCD, etc. In particular, the above assum
tion can be also justified in the BBNS approach by na
power counting@11,16#. However, in the PQCD method, thi
naive power counting rule may be invalid when the tra
verse momenta of the quark constituents and Sudakov
pression are taken into account. So, Liet al. thought that the
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hadronic transition form factors can be calculated in
PQCD method becauseb quark is heavy enough and the so
gluon exchange is suppressed by Sudakov form factors.
is the essential difference between the BBNS approach
the PQCD method.

~iii ! The generalized factorization considers ‘‘nonfactor
able’’ contributions as intractable. Therefore, one may int
duce one or more effective color numbersNc

e f f to phenom-
enologically represent ‘‘nonfactorizable’’ contributions@12–
14#. Furthermore, Nc

e f f is assumed to be universal t
maintain predictive power. However, ‘‘nonfactorizable
contribution is really process-dependent. In the BBNS
proach and the PQCD method, such ‘‘nonfactorizable’’ co
tributions are indeed calculable in perturbative theory.
consequence,Nc

e f f need not be introduced.
~iv! As mentioned in the above sections, the strong pha

predicted by generalized factorization are only from the B
mechanism which is represented by the penguin insert
However, the virtuality of the gluon or photonk2 in the
penguin insertion is ambiguous in generalized factorizati
and usually it is approximated aroundmB

2/2. This brings sig-
nificant uncertainties for predicting theCP asymmetries for
B decays. A particularly interesting result of the BBNS a
proach is that strong phases are not only from the B
mechanism but also from the hard scattering, and there
no uncertainties in determiningk2 of penguin insertion.
However, compared with the real part of the decay am
tude, the imaginary part isO(as) or powerLQCD /mb sup-
pressed and cannot lead to largeCP asymmetries, since the
come solely from hard scattering processes which are o
calculable in the heavy quark limit. In the PQCD metho
there is no suchas suppression in the imaginary part of th
decay amplitude. ThusCP asymmetries predicted by th
PQCD method are usually greater than the prediction
BBNS approach and generalized factorization. So ma
these differences of prediction forCP asymmetries can be a
experimental test for the BBNS and PQCD approaches.

~v! Hard spectator contributions@Figs. 1~g! and 1~h!#,
which are leading power effects in QCD factorization, m
out in ‘‘naive factorization’’ and ‘‘generalized factoriza
tion.’’ They are, however,O(as) suppressed compared wit
the leading factorized contributions~the hadronic transition
form factors!. But, in the PQCD method, they are of th
same order as the form factors.

~vi! In the PQCD method, penguin contributions receive
dynamical enhancement called ‘‘Fat Penguin’’@8#. But in
generalized and QCD factorization, they are missed. T
enhancement in the PQCD method arises from the str
scale dependence of the penguin Wilson coefficientsC4,6,
etc.

~vii ! Final state interactions~FSI! do not appear in the
three methods. In QCD factorization, Benekeet al. point out
that the cancellation of the infrared divergences implies t
the long distance FSI is power suppressed due to the qu
hadron duality. However, this point of view is controvers
@32#, but can be examined by the experimental measurem
of B→KK @33#.
6-16
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D. Limitation of QCD factorization

QCD factorization formula only holds in the heavy qua
limit mb→`. In the real worldmb is only about 4.8 GeV, the
validity of the power suppression may be questionable
particular, for several cases, the power suppressed co
tions can be numerically large@16#, because the perturbativ
expansion is in order ofas which is not small at the realistic
scaleO(mb) compared toLQCD /mb .

~i! The hard ‘‘nonfactorizable’’ contributions compute
by QCD factorization are generally small compared to
leading ‘‘factorizable’’ contribution. But when the leadin
‘‘factorizable’’ contributions are color suppressed, the ‘‘no
factorizable’’ contribution may be larger than the leadi
results. At the same time, the potentially soft contributio
which is formally power suppressed, may be important.

example, inB̄d
0→p0p0, any perturbative and soft power su

pressed contributions can have a significant effect on pred
ing the branching ratio andCP asymmetry. Furthermore
this problem also arises when the entire leading power c
tribution is suppressed by small Wilson coefficients, for e
ample, inB→KK; or when the leading power contribution
suppressed by the small CKM elements.

~ii ! An important power suppressed contribution is fro
the higher twist light-cone wave functions of the light m
sons. The chirally enhanced power correction from the tw
particle twist-3 wave functions is the most important, a
has been partly involved in this work except for the anni
lation topologies. Other contribution from multiparticle no
valence Fock state has been proved to be also power
pressed @16#. However, there is no systematic way
evaluate it. The author of Ref.@34# proposed a way to evalu
ate the soft gluon exchange contribution from higher tw
qq̄g wave functions within the frame of the light-cone su
rule ~LCSR!. But the accuracy of LCSR is limited due to th
quark-hadron duality approximation. On the other ha
power correction from transverse momenta needs a su
treatment in the future. In Ref.@16#, the authors point ou
that the contribution from the transverse momenta might
considered when we evaluate the hadronic matrix elem
to two-loop order. In this case, it is possible that Sudak
suppression might be taken into account as well.

In summary, up to now, we do not have a systematic w
to evaluate many kinds of power suppressed corrections
exclusive processes. How to evaluate such corrections
consistent way within the frame of QCD factorization is
potentially interesting work.

V. SUMMARY

In this work, we give a detailed discussion for QCD fa
torization involving the complete chirally enhanced pow
corrections in the heavy quark limit forB decays to two light
pseudoscalar mesons, and present some elaborate ca
tions of radiative corrections at the order ofas . We point out
that the infrared finiteness of the vertex corrections in
chirally enhanced power corrections requires twist-3 lig
cone distribution amplitudes~LCDAs! of the light pseudo-
scalar symmetric. However, even in the symmetric con
01403
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tion, there is also infrared divergence from the end point
the LCDAs in the hard spectator scattering and annihilat
topology. So the transverse momenta and Sudakov supp
sion should be taken into account. We also point out that
decay amplitude ofB→PP predicted by QCD factorization
is really independent of the renormalization scale, at leas
the order ofas . At last, we briefly compare the QCD fac
torization to the generalized factorization and PQCD meth
which are generally used in studyingB exclusive hadronic
decays.
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APPENDIX A: TWIST-2 AND -3 LCDAS OF LIGHT
PSEUDOSCALAR MESON

Two particle twist-2 and twist-3 light-cone distributio
amplitudes of light pseudoscalar mesons are defined by
following nonlocal matrix elements@35#:

^P~p8!uq̄~y!gmg5q~x!u0&

52 i f Ppm8 E
0

1

du eiup8•y1ūp8•xf~u!, ~A1!

^P~p8!uq̄~y!g5q~x!u0&

52 i f PmPE
0

1

du eiup8•y1ūp8•xfp~u!, ~A2!

^P~p8!uq̄~y!smng5q~x!u0&

5 i f PmP~pm8 zn2pn8zm!E
0

1

du eiup8•y1ūp8•x
fs~u!

6
,

~A3!

with f P being the decay constant of the light pseudosca
mP5M P

2 /(m11m2) (m1 andm2 are the masses of the con
stituent quarks in the pseudoscalar!, andz5y2x. Heref(u)
is the twist-2 light-cone distribution amplitude;fp(u) and
fs(u) are two-particle twist-3 distribution amplitudes. Th
above definitions can be combined into the below nonlo
matrix element:

^P~p8!uq̄a~y!qb~x!u0&

5
i f P

4 E
0

1

eiup8•y1ūp8•xH p” 8g5f~u!2mPg5

3S fp~u!2smnp8mzn
fs~u!

6 D J
ba

. ~A4!
6-17
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Neglecting the three-particle twist-3 light-cone wa
function, the asymptotic forms of the above distribution a
plitudes are given as

f~u!56u~12u!, ~A5!

fp~u!51, ~A6!

fs~u!56u~12u!. ~A7!

APPENDIX B: THE EVOLUTION OF Ci„µ…

The renormalization group equation for the Wilson co
ficientsCi(m) is written as follows@26#:
01403
-

-

m
d

dm
C~m!5ĝTC~m!. ~B1!

Here g is the anomalous dimension matrix, which can
calculated by the perturbative theory and expanded in o
of the coupling constantsas andaem:

ĝ5
as

4p
ĝs

(0)1S as

4p D 2

ĝs
(1)1

aem

4p
ĝe

(0)1
asaem

~4p!2
ĝse

(1)1••• .

~B2!

The LO anomalous dimension matrixgs
(0) of the above equa-

tions has the explicit form
pe

ls which
dimen-
eful
ĝs
(0)5

¨

26

N
6

22

3N

2

3

22

3N

2

3
0 0 0 0

6
26

N
0 0 0 0 0 0 0 0

0 0
222

3N

22

3

24

3N

4

3
0 0 0 0

0 0 62
2 f

3N

26

N
1

2 f

3

22 f

3N

2 f

3
0 0 0 0

0 0 0 0
6

N
26 0 0 0 0

0 0
22 f

3N

2 f

3

22 f

3N

26~N221!

N
1

2 f

3
0 0 0 0

0 0 0 0 0 0
6

N
26 0 0

0 0
22~u2d/2!

3N

2~u2d/2!

3

22~u2d/2!

3N

2~u2d/2!

3
0

26~N221!

N
0 0

0 0
2

3N
2

2

3

2

3N
2

2

3
0 0

26

N
6

0 0
22~u2d/2!

3N

2~u2d/2!

3

22~u2d/2!

3N

2~u2d/2!

3
0 0 6

26

N

©
, ~B3!

whereN is the color number,f is the active flavor number, andu andd denote the number of the active up- and down-ty
flavors, respectively.

APPENDIX C: SOME USEFUL FEYNMAN PARAMETER INTEGRALS

In calculation of the perturbative diagrams shown in Fig. 1, one might encounter some Feynman parameter integra
involve nontrivial infrared divergence. To deal with the infrared divergence, as mentioned in preceding sections, the
sional regularization~DR! and massive gluon~MG! scheme are applied. Below, we give the explicit calculation of some us
Feynman parameter integrals in the above two regularization schemes.

First, we deal with the integrals in the DR scheme. In the DR scheme~here we taked5412a anda.0), the integrals
involving the infrared divergence are written as follows:

E
0

1

dt1E
0

12t1
dt2

1

@ t1~ t11t2u!#12a
5

1

u F 1

2a2
1

2 lnu

a
1

1

2
ln2 u2Li2S 12

1

uD G , ~C1!

E
0

1

dt1E
0

12t1
dt2

t2

@ t1~ t11t2u!#12a
5

1

u F1

a
221 ln u1

ln u

12uG , ~C2!
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E
0

1

dt1E
0

12t1
dt2

~12t1!~12t2!

~2t1t2u!12a
52

1

u F 1

a2
1

ln~2u!22

a
1

272p2

6
22 ln~2u!1

1

2
ln2~2u!G . ~C3!

Here Li2(x) is the dilogarithm function. It is defined by

Li2~x!52E
0

xln~12t !

t
dt. ~C4!

The Feynman parameter integrals in the MG scheme are listed as follows:

E
0

1

dt1E
0

12t1
dt2

1

@ t1~ t11t2u!1~12t12t2!l#
5

1

u F1

4
ln2 l1 ln~2u!ln l22 lnu ln l1

1

2
ln2 u2Li2S 12

1

uD1
5

4
p2G ,

~C5!

E
0

1

dt1E
0

12t1
dt2

t2

@ t1~ t11t2v!1~12t12t2!l#
5

1

u F2 ln l211 ln u1
ln u

12uG , ~C6!

E
0

1

dt1E
0

12t1
dt2

~12t1!~12t2!

2t1t2u1~12t12t2!l
52

1

u F1

2
ln2 l2@ ln~2u!22# ln l22 ln~2u!1

1

2
ln2~2u!1

5

2
1

p2

3 G .
~C7!

When we calculate the above integrals in the MG scheme, the following equations about dilogarithm function m
useful:

Li 2~2x!1Li2S 2
1

xD52
p2

6
2

1

2
ln2 x ~x.0!, ~C8!

Li2~x!1Li2S 1

xD5
p2

3
2

1

2
ln2 x2 ip ln x ~x.1!, ~C9!

Li2~ ix !1Li2S 2
i

xD52
p2

24
2

1

2
ln2 x1

i

2
p ln x ~x.0!, ~C10!

Li2~2 ix !1Li2S i

xD52
p2

24
2

1

2
ln2 x2

i

2
p ln x ~x.0!, ~C11!

Li2~x!1Li2~12x!5
p2

6
2 ln x ln~12x!. ~C12!
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