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In this work, we give a detailed discussion for QCD factorization involved in the complete chirally enhanced
power corrections in the heavy quark limit fBrdecays to two light pseudoscalar mesons, and present some
detailed calculations of radiative corrections at the ordetofWe point out that the infrared finiteness of the
vertex corrections in the chirally enhanced power corrections requires twist-3 light-cone distribution ampli-
tudes(LCDAs) of the light pseudoscalar symmetric. However, even in the symmetric condition, there is also
a logarithmic divergence from the end points of the twist-3 LCDAs in the hard spectator scattering. We point
out that the decay amplitudes Bf— P P predicted by QCD factorization are really free of the renormalization
scale dependence, at least at the orderof At last, we briefly compare the QCD factorization with the
generalized factorization and PQCD method.
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I. INTRODUCTION decays, in which the hadronic matrix element of the effective
operator(in general, which is in the form of current-current
The study ofB decays plays an important role in under- four-quark operatgrcan be approximated as a product of
standing the origin o€ P violation and the physics of heavy two single current hadronic matrix elements; then it is pa-
flavor. We expect that the parameters of the Cabibborametrized into a meson decay constant and meson-meson
Kobayashi-MaskawdCKM) matrix in the standard model, transition form factor. The most popular factorization model
for instance, the three angles B, and y in the unitary is the Bauer-Stech-WirbéBSW) model[1]. In many cases,
triangle, can be well determined froB decays, especially the BSW model achieves great success, which can predict
from the charmless nonleptonic two-boBydecays. Experi- the branching ratios of many modes of nonleptdsidecays
mentally, manyB experiment projects have been runningin correct order of magnitude. This factorization assumption
(CLEO, BaBar, Belle, etg. or will run in forthcoming years does hold in the limit that the soft interactions in the initial
(BTeV, CERN LHCb, DESY HeraB, etc. With the accu- and final states can be ignored. It seems that the argument of
mulation of the data, the theorists will be urged to gain acolor transparency can give reasonable support to the above
deeper sight intd decays, and to reduce the theoretical er-limit. Because thd quark is heavy, the quarks fromquark
rors in determining the CKM parameters from the experi-decay move so fast that a pair of quarks in a small color-
mental data. singlet object decouple from the soft interactions. But the
In the theoretical frame, the standard approach to deadhortcomings of this simple model are obvious. First, the
with such decays is based on the low-energy effectivaenormalization scheme and scale dependence in the had-
Hamiltonian which is obtained by the Wilson operator prod-ronic matrix elements of the effective operators are appar-
uct expansion methotOPB). In this effective Hamiltonian, ently missed. Then the full decay amplitude predicted by the
the short-distance contributions from the scale abgve BSW model remains dependent on the renormalization
=m, have been absorbed into the Wilson coefficients withscheme and scale, which are mainly from Wilson coeffi-
the perturbative theory and renormalization group methodcients. In past years, many researchers improved the simple
The Wilson coefficients have been evaluated to next-tofactorization scheme and made many remarkable progresses,
leading order. Then the main task in studying nonleptonicsuch as scheme and scale independent effective Wilson co-
two-body B decays is to calculate the hadronic matrix ele-efficients[2,3], effective color number which is introduced
ments of the effective operators. However, we do not have & compensate the “nonfactorizable” contributions, etc. Fur-
reliable approach to evaluate them from the first principles othermore, some progresses in nonperturbative methods, such
QCD dynamics up to now. as lattice QCD, QCD sum rule, etel—6], allow us to com-
Generally, we must resort to the factorization assumptiorpute many nonperturbative parametersBiecays, such as
to calculate the hadronic matrix elements for nonleptdhic the meson decay constants and meson-meson transition form
factors. Every improvement allows us to have a closer look
at theB nonleptonic decays.

*Email address: duds@mail.ihep.ac.cn Except for the factorization approximation, another im-
TMailing address. portant approach has been applied to study niaeyclusive
*Email address: yangds@mail.inep.ac.cn hadronic decay channels, such Bs-Dw, 7w, wK, etc.
$Email address: zhugh@mail.ihep.ac.cn This is the PQCD methofi7—9]. In this method, people as-
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sume thatB exclusive hadronic decay is dominated by hard Ge

gluon exchange. It is analogous to the framework of pertur- Heffz—[ 2 Vg Ci(p) Q) +Co()QI( 1)
bative factorization for exclusive processes in QCD at large V2| o=t

momentum transfer, such as the calculation of the electro- 10

magnetic form factor of the piof.0]. The decay amplitude + 2 Crl) Qi) | —0(Cry( ) Q7 (1)
for B decay can be written as a convolution of a hard- k=3

scattering kernel with light-cone wave functions of the par-
ticipating_mesons. Furthermqre, in Ref8,9] the Sudakov +Cgo(1)Qga( )
suppression has been taken into account.

Two years ago, Beneke, Buchalla, Neubert, and Sachrajda . . .
(BBNS) gave a QCD factorization formula in the heavy Wherevq=VqpVgq(for b—d transition or v=Vg,Vgs (for
quark limit for the decay8— 7= [11]. They pointed out bﬁs transition and C;(u) are the W|IS(_)n coefficients _
that the radiative corrections from hard gluon exchange cal/hich have been evaluated to next-to-leading order approxi-
be calculated by use of the perturbative QCD method if ondnation with the perturbative theory and renormalization
neglects the power contributions &focp/my,. This factor- ~ 9rOUP method. _
ization formula can be justified in the case that the ejected " Ed: (1), the four-quark operato®; are given by
meson from thé quark decay is a light meson or an onium, = — . —
no matter whether the other recoiling meson which absorbgg:(uaba)V—A(qﬁuB)V—A' Q1= (Caba)v-a(dsCH)v-a,
the spectator quark iB meson is light or heavy. But for the =~ — — c — —
case that the ejected meson is in an extremely asymmetrf@2=(UaPplv-aldgUalv-a, Q2=(Cibg)y-a(ApCalv-a,
configuration, such a® meson, this factorization formula
does not hold. The contribution from the hard scattering W'tth,: (qaba)vaZ‘l (q[rg%)va,

q

+H.c., (1)

the spectator quark iB meson is also involved in their for-

mula. This kind of contribution cannot be contained in the

naive factorization. But it appears in the orderoQf. So they

said that the naive factorization can be recovered if one ne~*

glects the radiative corrections and powegpcp/mg, sup-

pressed contributions in the QCD factorization, and the — -,

“nonfactorizable” contributions in the naive factorization QS:(qaba)V*AZf (Agdp)v+a

can be calculated perturbatively, then we do not need a phe- a

nomenological parametéd®’’ to compensate the “nonfac- _ _

torizable” effects any mor¢12—14. Q6= (Agb)v-a> (ALAp)vn,
This QCD factorization(BBNS approach has been ap- a’

plied to study manyB meson decay modes, such Bs 3 _ .

—D®) 7 [15,16, w7, 7K [17-19 and other interesting Q7:§(qaba)V,AZ eq (Apap)v-a

channels[20—23. Some theoretical generalizations of the q’

BBNS approach have also been made, such as the chirally

enhanced power correctiof$8,19,24,2% from the twist-3 _> =

; oo . ; Qs (QBba)V—AE

light-cone distribution amplitudes of the light pseudoscalar 2 q

mesons. In this work, we will take a closer look at this issue.

This work is organized as follows: Sec. Il is devoted to a 3 — —

sketch of the low energy effective Hamiltonian; in Sec. Il Q9:§(qﬂba)V—A2, €q(Agdp)v-a.

we will give a detailed overview of QCD factorization, in a

which some elaborate calculations are shown, especially for 3 __ _

the chirally enhanced power corrections; Sec. IV is for som@lo=§(qua)v—Az eq (Aa0p)v-ns ()

detailed discussions and comparison of the BBNS approach a’

to the generalized factorization and the PQCD method; wgyq

conclude in Sec. V with a summary.

= @;ba)vaE (EL’YQ,%)vaa
ql

eq’(az,xq[,;)v-#A:

e _
Q77:Fmbqa0ﬂuv(1+ 75)baF;LV!
Il. EFFECTIVE HAMILTONIAN—FIRST STEP 7

FACTORIZATION

— g o v a a _
B decays involve three characteristic scales which are QSG_Swz Moo (1+ v5)tepbpGy, (q=d or s)

strongly orderedm,>my>Aqcp. How to separate or fac- 3)

torize these three scales is the most essential questi@n in

hadronic decays. with Qf and Qf being the tree operatorQ;— Qg the QCD
With the operator product expansion meth@PBE), the  penguin operatorsQ,;— Q,, the electroweak penguin opera-

relevant| AB|=1 effective Hamiltonian is given bf26] tors, andQ7,, Qgs the magnetic-penguin operators.
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In this effective Hamiltonian foB decays, the contribu- dependence ofQ;) is to calculate the radiative corrections.
tions from large virtual momenta of the loop correctionsin the one-loop level, they can be written [d8,14,27
from scaleu=0O(m,) to My are attributed to the Wilson

coefficients, and the low energy contributions are fully incor- s, @~ Qemn

porated into the matrix elements of the operaf@@]. So the Q=1+ 2T g Me (Q)ree: ®)
derivation of the effective Hamiltonian can be called “the

first step factorization.” Heremg andm, represent the one loop corrections of QCD

To evaluate the Wilson coefficients, we must extract themand QED, respectively. Then one takes
at a large renormalization scdlr exampleuw=O(M) in
the standard modgby matching the amplitude of the effec- (h1h5| Qi|B)1ree=(h2|J2|0)(h4|J4|B). (7)
tive Hamiltonian @A) to that of the full theory ; /), then
evolve them by the renormalization group equations from thd herefore, the scheme and scale dependeng®gfwhich
scalep=O(my) to the scalew=O(my). It should be noted are expressed in the form ofs andm, is recovered. But in

that the extraction of the Wilson coefficierts by matching  quark level,m, andm, usually contain infrared divergences

regularize the infrareand maspsingularities properly26].  regularize the infrared divergence, the conventional treat-

All dependence on the choice of external states only appeafgient is to assume that external quarks are off-shell by

in the matrix elementsQ;), and is not contained i€ . S0 _ 2 Byt this introduction of the infrared cutoff p? results

Ci Only contains the short-distance contributions from the|n a gauge dependence of 0ne-|oop corrections. So how to

region where the perturbative theory can be applied. But fofactorize the infrared part of the matrix elements is a very

the matrix element¢Q;), the long-distance contributions ap- suptle question. But maybe this question would get an im-

pear, and are process-dependent. _ _portant simplification in the case that the final statesBof
Several years ago, the perturbative corrections to the Wilmeson decay are two light mesons.

son coefficients in SM have been evaluated to next-to- Two years ago, Beneke, Buchalla, Neubert, and Sachrajda

leading order with the renormalization group metH@®].  proposed a promising QCD factorization method ®r

As we know, the Wilson coefficients are generally renormal-_, 77 They pointed out that in the heavy quark linnit,

ization scheme and scale dependent. So, in order to canchQCD, the hadronic matrix elements f&-— 7 can be
such dependence, we must calculate the hadronic matrix €lgritten in the form

ements of the effective operators to the corresponding per-

turbative order with the same renormalization scheme and at

the same scale, then we can obtain a complete decay ampli- <7T7T|Q|B>:<7T|Jz|0><77|31|5>'[1+z Mag
tude which is free from those unphysical dependences.

+O(Agco/Mp) |- (8

Ill. QCD FACTORIZATION FOR B—PP

After “the first step factorization,” the decay amplitude Obviously, the above formula reduces to the naive factoriza-
for B—h;h, can be written as tion if we neglect the power corrections Ay, cp/m, and the
radiative corrections img. They find that the radiative cor-
rections, which are dominated by hard gluon exchange, can
A(B—>h1h2)=§i: viCi(w)(hihalQi(W)[B), 4 po calculated systematically with the perturbative theory in
the limit my—oc, in terms of the convolution of the hard
in which, as mentioned in the previous section, the contripuscattering kernel and the light-cone distribution amplitudes
tions from the |arge Scamw down tomb has been Separated Of the.mesons. Th|S IS aISO S|m||a.r to the framework Of per-
into the Wilson coefficient€;(x). The remaining task is to turbative factorization for exclusive processes in QCD at
calculate the hadronic matrix elements of the effective oplarge momentum transfer, such as the calculation of the elec-
erators. But for the complexity of QCD dynamics, it is dif- tromagnetic form factor of the piofi.0]. Then a factoriza-
ficult to calculate these matrix elements reliably from firsttion formula forB— ma can be written a$11]
principles. The most popular approximation is factorization ,
hypothesis, in which the matrix element of the current-  (T(P)m(A)[Qi[B(p))

current operator is approximated to a product of two matrix 1
elements of a single current operator: =FB*”(q2)j dx T:(X)CI)T,(X)
0
(h1h2|Qi|B)=(h3|3;[0)(h1|34|B). )

1
+ | de ax dy Texy)@a@® 000y,
Obviously, under this approximation, the original hadronic 0
matrix element Q;(u)) misses the dependence of the renor- 9)
malization scheme and scale which should be used to cancel
the corresponding dependence in the Wilson coefficient§Ve call this factorization formalism QCD factorization or
Ci(w). A plausible solution to recover this scale and schemehe BBNS approach. In the above formuldg(£) and
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}\/ ?@/ \@{ \/{ the spectator quark iB meson interacts with a hard gluon
- - - - from the ejected pion, the recoiling pion can also be de-
scribed by its light-cone distribution amplitude. This hard
(a) (b) (c) (d) spectator scattering is missed in the naive factorization, but
calculable in the perturbative QCD at leading power in
g / : / W \/{ Agcp/my . So with this factorization formula, the remaining
B 3 hard part of the hadronic matrix eleméi®;) from the scale
aboutm,, has been factorized into the hard scattering kernel,
() ®) (e) (B) and the long distance contributions are absorbed into the
FIG. 1. Order ofes corrections to hard-scattering kern@fsand ~ transition form factors and the light-cone wave functions of
T". The upward quark lines represent the ejected quark pairs frorfne participating mesons. Thus this is the “final factoriza-
b quark weak decays. tion” for the two-body nonleptonic charmlegsdecays.

An explicitly technical demonstration of the above argu-
®_(x) are the leading-twist wave functions Bfand pion ~ment has been presented in one-loop level in Réf$,16].
mesons, respectively, and tié"" denote hard-scattering ForB— D, this QCD factorization has been proved to two-
kernels which are calculable in perturbative theory. At thel0OP order[16]. In the literature, the ejected pion is repre-
order ofa, the hard kernelg"!' can be depicted by Fig. 1. sented by its Ieadlng twist light-cone dlstrlputlon amplitude
Figures 1a)—1(d) represent vertex corrections, Figgeland ~ (LCDA). However, since the mass bfquark is not asymp-

1(f) penguin corrections, and Figs(gl and Xh) hard spec- totically large, in partiqular, some power corrections might
tator scattering. be enhanced by certain factors, such as the scale of chiral

In the heavy quark limit, both pions are energetic. TheSymmetry breakings,=mz/(m,+mg)~1.5 GeV, and have
pion ejected fronb quark decay moves so fast that it can beSignificant effects in studyingd two-body nonleptonic
described as its leading-twist light-cone distribution ampli-charmless decays. So, in this manner, the chirally enhanced
tude. Theqq pair in the ejected pion is produced as a small-POWer corrections must be taken into account. Accordingly,

. : ; - escribing the ejected pion not by its leading twist LCDA is
fsrlgri ctohlgr :(;?tosllugr?: s;tqree;(}:zétf:)erdzjfc;? d p|/or?1bdec0(;uple%ot enough; the two-particle twist-3 LCDAs must be taken
QCD .

course, only the cancellation of soft gluons is not enough t nto account. Below, we will show the elaborate results of

L . — CD factorization in these two cases. For illustration, we
make the factorization hold; it is necessary that dgfiepair - . . .
takeBy— 7" 7w~ as an example, but the result is easily gen-

also decouples from the collinear gluons. Both the cancella-""" i )
tions of soft gluons and collinear gluons guarantee that thgrallzed to the cases that the final states are the other light

hard kernelT! is of infrared finiteness. Contrast to the pion pseudoscalars.
ejected fromb quark weak decay, the recoiling pion which
picks up the spectator iB meson cannot be described by its
leading-twist light-cone distribution amplitud&CDA), be-
cause the spectator is transferred to the recoiling pion as a When inserting leading-twist LCDA of the light pseudo-
soft quark. Here Beneket al. take the point of view that the scalar, in the heavy quark limit, the quark constituents of the
form factorF3~7 cannot be calculated perturbatively. If we €jected pion can be treated as a pair of collinear massless
attempt to calculate the form factor within the perturbativequark and antiquark with the momentuny andug, respec-
framework, by the naive power counting, we find that thetively (q is the momentum of the ejected pion and we tgke
leading twist LCDA of pion does not fall fast enough t0 55 3 hard light-cone momentum in calculations 1—u),
suppress the singularity at the end point where the quarkecause the contributions from the transverse momenta of

indicates that the contributions to form factor are dominated

by the soft gluon exchandd 6]. This point of view can be 1. Vertex corrections
justified also from the calculation of the form fact6F—™

by using the light-cone sum rul& CSR) [5,6], in which the
dominated contribution tdF8~™ comes from the region
where the spectator quark is transferred as a soft quark to t . _ "
pion. So the transition form factor survives in the factoriza-Ba—7 7 matrix element of the operatorQ;
tion formula as a nonperturbative parameter. However, wher (U,bg)y - a(dguy)yv-a=(dby)v-a(Uglg)y—a

A. Leading-twist distribution amplitude insertion

Now we move on to the explicit one-loop calculation of
the diagram Figs. (B)—1(d) for B— #rar. For illustration, we
rite down the one-gluon exchange contribution to the

(QY) o= — 2f_77&fldu¢(u)f o’k !
J@ SN, (2m)* K2(ug—k) 2L (p— k)~ ]

X Uy (1= ¥5) 4ysye (U= K) v, (1= y5) (P— K+mp) y,bi BY), (10
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@ -a2 S [Faugrw [ 2 !
20=9%7 N |, due (2m)* K3 (ug—k)?[(p—k)2—m?]
X Uiy (1= ys) (Ug—K) Y85y, (1= v5) (P~ K+mp) y,bi BY), (12)
. ,f- Ce (1 d*k 1
=—gi—-—| d
<Q2>(C) gS4 N J;) u¢(u>f(2w)4 kz(uq—}—k)z(p—q—k)z
XUy (D= A= K) ¥*(1— y5) A5 va(Ufi T K) v, (1~ ¥5)b;[BY), (12)
. . Ce (1 d*k 1
=g°— — | d —
(Q2@=0:7 Nfo ud’(u)f(zw)“ k*(ug+k)*(p—a—k)?
X (U ya(D— A= K) ¥*(1— y5) (U + K) ¥, 875y, (1— ¥5)b;[BY). (13)

When we calculate the vertex corrections in the leadingviolet divergence. So the dimensiahin regularization for
power of Agcp/my,, not only ultraviolet divergence infrared divergence must be set to be greater than 4. This is
emerges but infrared divergence does also. Infrared divera subtle point, but it will not cause any ambiguity in our
gence arises from two regions where the virtuality of thecalculation because the infrared part and ultraviolet part can
loop k'is soft or collinear to the momentum of the pions. In pe safely separated. The other method to regularize the in-
Ref. [16], the authors gave an explicit cancellation of softfrared divergence is the well-known massive gludnG)
and collinear divergence in vertex correctionsBsr-D 7 in - scheme, in which the infrared divergence is handled by re-
eikonal apprOX|mat|on. Figuregd),1(b) and Xc),1(d) canc_el placing 1k? by 1/(k2—m§) in the gluon propagator. A simi-
the sqft divergence;(&),1(c) and 1b),1(d) c_ancgl the _collln- lar scheme has been applied in earlier computation of the
ear divergence. FoB— w7, the cancellation is similar ex- L , = . .
cept that the collinear divergence also arises from the regiofpdiative corrections fop.~—e " ver,, in which the mass-
wherek is collinear to the momentum of the recoiling pion. €8S photon is replaced by a massive photon. In addition, in
So Figs. 1c),1(d) cancel not only part of the soft divergence OUr latter calculation, there are also several schemes in treat-
but also part of the collinear divergence. Below, we give arind ¥s, the most popular two are the naive dimensional regu-
explicit calculation of the Feynman diagrams Fig&a)21(d) larization (NDR) scheme and the 't Hooft—Veltman renor-
to show the cancellation of the infrared divergences. In ordefnalization(HV) scheme. Both have been applied to calculate
to regularize the infrared divergence, there are two choicethe Wilson coefficientd26]. In this work, if there is no
for us. One is the dimensional regularizatiddR) scheme, specification, the NDR scheme is always applied in our cal-
in which the infrared divergence can be regularized into theculations for its simplicity:
pole terms 1/§—4). In contrast to the dimensional regular-  After a straightforward calculation in DR scheme and us-
ization of ultraviolet divergence, the infrared divergenceing the corresponding Feynman parameter integrals listed in
arises wherd<4, instead ofd=4 in the case of the ultra- Appendix C, we obtain

o CF = _
<Q5><a)=ﬁ N T dy (1= ¥5)Ua|O) 7 [ugy,(1— v5)b4lBY)

1 1 M u
xf du ¢(u)i|——ygt+tndmr+2In—+1+——Inu
0 € my —Uu
F(1-a)(m,\*3 1  2(nu-1) _ 1 2Inu
————|—| | =+ ————+InPu—-2Liy/ 1— = |—4Inu+5+ —/, (14)
(4m2 \ m/) |a? a u 1-u

Such a choice does cause a scheme dependence in the matrix elements. However, when we choose the Wilson coefficients in the same
scheme as for the matrix elements, the final full decay amplitude is free of scheme dependence.
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o CF o — —
(=7 3¢ (™ 1" (1= 75)Ua|0)(7 ™ [Ugy, (1= 75)by|BG)

1 1
xfodu ¢(u)[—4

mo 11 u —
P yetIndm+2In— +Z+__In u

my 1-u
I'(l1-a){my\%® 1 2(Inu—1) - 1 _ 2Inu]
+——|—| | =+ ————+INPu—2Li,| 1-=| -4 Inu+6+ —t, (15
(4m2 \ n/) |a? a u 1-u
u @s Ce, _— 1y B0
<Q2>(°):EW<7T |y (1= y5)u,|0) (7 |UBVM(1_75)bB|Bd>
fld 4 ndms 2+ 2]
X . ug(u)y — ~—vetindm+ nﬁ)ﬂtz—n(—u)
I'(l—a)/my\%8 2 2(In(—u)—2 2
Sz my = 2 200072 0 T g i —uy+iné—u)| | (16)
(4m2 \ m/) |a® a 3
u aS CF e T )
<Q2>(d):EW<7T da ¥ (1= ¥5)Ua| O)( 7" [Ugy, (1~ ¥5)bglBg)
1 1 )7 _
xf du qb(u)[ ——vet+tnd7r+2In—+1—-In(—u)
0 € My
I'(l1-a){my,\% 2 2(In(—u)—2) 2 _ _
—————|—| |+ ————+10—-—=—4In(—u)+In*(—u)|{. 1
am? \u) |a a 3 (—u) (—u 17

In the above, we have seét=4+2a (a>0) in regularizing the infrared divergence. Then, after summing over all four
diagrams, we find that all pole terms iraldre really canceled before we integrate over the momentum fraction vauiaBte
after modified minimal subtractiorMS), we get

As

. Cr _
<Qg>(a)+(b)+(c)+(d):EW<7T |da7M(l_’),5)ua|0><77+|uﬁ’)/,u(l_75)b,8|§g>

u

u — — —
INnu— ——=Inu+4In(—u)—In(—u)— (I u—In? u)
—u 1-u

) 1 ) 1 2Inu 2lInu 5 2 =
+2 L|2<1—G)—L|2 1—3 i ETi— +(In“(=u)=In“(—u))

Assuming that the light-cone distribution amplitugéu) is symmetric, then the above equation can be simplified as follows:

1
X fodu d(u)

_18-12In>+
my

. (18

As

- ce o
<Qg>(a)+(b)+(c)+(d):EW<7T |da7”(1—75)Ua|0><77+|upm(1—75)b,3|§3>

M 1-2u )
—18-12In—+3 Inu—3i|. (19
my 1-u

1
xfodu d(u)

It is easy to check that the above equations are consistent with the results in previous works. Actually, with the MG scheme,
we get the same results as that by using the DR scheme.

With Eqgs.(18),(19), we can compute the vertex corrections no matter whether the LGQ# is symmetric or asymmetric.
This is very important in principle. For instance, when kaon is ejected rgoark decay, we must take the contributions from

the asymmetric part of LCDA of kaon into account, although the contributions from the asymmetric part are very small
numerically[19].
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2. Penguin corrections

There are two kinds of penguin corrections. One is the four quark operators ingé&iitiod(e)|; the other is the magnetic
penguin insertioriFig. 1(f)]. The first kind is generally called BSS mechanism. In generalized factorization, BSS mechanism
plays a very important role i€ P violation because it is the unique source of strong phases. But in generalized factorization,
the virtuality of the gluon or photon is ambiguous; usually one vakiesround mé/Z. This variation does not have an
important effect on the branching ratios, but it does@d? asymmetries. In QCD factorization, this ambiguity is rendered by
taking the virtuality of the gluon al’=(p—uq)?= umﬁ. When treating penguin contractions, one should be careful that Fig.
1(e) contains two kinds of topology, which is depicted in Fig. 2. They are equivalent in 4 dimensions according to Fierz
rearrangement. However, since penguin corrections contain ultraviolet divergence, we must do calculdtidingeimsions
where these two kinds of topology are not equivalg2fl]. Below we give an explicit calculation a, or Qg penguin

insertions forggﬂ a7~ which belong to the second topology, FigbR

(Qup (o= 4779§,U«25 Nf du ¢(u){(m " U7 ysy,.(1— v5)bi| BY

ok —Tr{()—k—mg) y*(k+mg) (17 ¥5)]|

x%f

(2m)d [(1—K)2—mZ][k2— m?]12 Lp_uq
2fw4 Nfdu BT Uiyl ysy,(1— 75)b|Bd> |2 gwl
1/1 w?
X —|=—7ye+Indm|+ dtt 1-t)In 20
2 6( 7E 4= 2—t(1—t)I2—ie] ~ (20
=p—uq
After MS subtraction and using the equations of motions, we get the finite result
(Qqoiust2— ———<7T [di (1= y5)ui|O) (7 |u; (1= ¥5)b; | BY)
4 pu 1 1 _
X D —In——4f du ¢(u)f dt t(1—-t)In(s;—t(1—tu—ie)|, (21)
g |3 m 0 0

wheres,= mé/mﬁ. The first topology, Fig. @), for exampleQj penguin insertion fo§8—> a7, is similar to the results of
the second topology, Fig.(), except that there is an extra facter2/3:

<Q1>?Z§St2————<77 |diy*(1— y5)u;|O)( 7" u;y,(1— v5)bj| B

X

2 4 u 1 1 -
—§+§Inm—b—4f0du qS(u)f0 dt t(1—t)In(s;—t(1—t)u—ie)|. (22

For the magnetic penguin insertion, it is the easiest calculation of the radiative corrections. The r@ggliregertion for
Bl—7m"m is

as Cr 1 1 —
(Qeo) 2= 4; Wf”mbfo dUd)(U)E<77+|Ui’ya¢]’)/5a'ﬁakﬁ(l+ 75)0i|BDk=p-uq

as Ce ld 24(u)

47 N

(| diy*(1— y5)|0)( 7 [U; ¥,,(1— 5)|BY). (23

3. Hard scattering with the spectator

Hard spectator scatterifjéigs. 1g) and Xh)] is completely missing in the naive factorization. But in QCD factorization,
it can be calculated in the perturbative QCD, and expressed by a convolution of the hardiKeanel the LCDAs of mesons.
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At the leading power ofA ocp/my,, both of the light pseudoscalars from tBemeson decay can be represented by their

leading twist LCDAs. So after a straightforward calculation, we obtain this contributioB¥er7* 7~ from the operatof}
insertion,

. —ifgf2 C 1
QR ~—po ™ 502 | d du do go(&)pw b(v)

Nz Jo
o _ _ k=ép—vqy
Tri(p+mg) sy U175 7,(1— ¥5)M2¥s Vel a¥p(1— ¥5)]
1 _
lg=ud,—k
@ k=¢p—vay
N Tri(P+mg) ¥ ¥ U175 Yo(1— ¥5)luyalla¥s¥,(1— 75)]\
212
k71, ’lu:k—iqz
Cr (1 ¢B(§)f1 <;b(u)f1 ¢(v)
=imasfaf’— | d du do—. 24
*PmN2)o ¢ & Jo uJo v 24
|
B. Chirally enhanced corrections—twist-3 LCDAs insertion Chirally enhanced corrections arise from the two particle

It has been observed that QCD factorization is demontWist-3 light-cone distribution amplitudes, generally called
strated only in the strict heavy quark limit. This means that®p(X) andé,(x). So when chirally enhanced corrections are
any generalization of QCD factorization to include or partly concerned, the final light mesons should be described by
include power corrections of\qcp/m, should redemon- leading twist and twist-3 distribution amplitudes. Then it is
strate that factorization still holds. There are a variety ofcrucial to show that factorization really holds when consid-
sources which may contribute to power corrections im,1/  ering twist-3 distribution amplitudes. The most difficult part
examples are higher twist distribution amplitudes, transversis to demonstrate the infrared finiteness of the hard scattering
momenta of quarks in the light meson, annihilation dia-kerneIsTi'. In addition, possible chirally enhanced power
grams, etc. Unfortunately, there is no known systematic wagorrections can also appear in the hard spectator scattering.
to evaluate these power corrections for exclusive decaysSo, for consistency, we must involve these corrections.
Moreover, factorization might break down when these power
corrections, for instance, transverse momenta effects, are 1. Vertex corrections
considered. This indicates that one might have to give Up \when we calculate the chirally enhanced power correc-
such an ambitious plan that all power corrections could be, &ons, contrast to the leading-twist light-cone wave function
least in principle, incorporated into QCD factorization orderinsertion, the cancellation of the infrared divergences in the
by order. One rr_ught argue that power correctionBide- _ vertex corrections to\(—A)(V+A) operator(here it isQs
cays are nume_ncally unimportant because these corrections Q,) cannot be shown simply by the eikonal approxima-
are expanded in order of a small numbegcp/my=1/15.  {ion similar to what has been done at the leading power of
But this is not true. For instance, the contributions of opera-AQCD/mb, because the Dirac structure or spin structure of

tor Qg to decay amplitudes would formally vanish in the yist-3 light-cone wave functions of the light pseudoscalar
strict heavy quark limit. However, it is numerically very im- ,5kes the “on-shell” condition for the external quarks in-

portant in penguin-dominateirare decays, such as interest-\ 5jiq. Thus, to justify the cancellation of the infrared diver-
ing channel8— 7K, etc. This is becausQg is always mul- - gance in — A)(V+A) vertex corrections, we must give the
tiplied by afogmally power suppressed but chirally enhancedypjicit calculation. As mentioned in the previous subsec-
factorr,=2mgp/my(my +mp) ~O(1), wherem; andm, are  tions, we have two choices to regularize the infrared diver-
current quark masses. So power suppression might probab§jence in one-loop calculation. One is the DR scheme; the
fail at least in this case. Therefore, phenomenological appligpther is MG scheme. Generally, these two schemes are
cability of QCD factorization inB rare decays requires at equivalent, for instance, similar to what has been done in
least a consistent inclusion of chirally enhanced correctionsg.y/ — A)(V—A) vertex corrections. However, in the DR
scheme, it is difficult to extrapolate the twist-3 wave func-

tions of the light pseudoscalar tbdimensions properly, al-
/ though they are well-defined in 4 dimensions. Therefore, we
prefer to use the MG scheme in our calculation for chirally

@ (b) enhanced corrections to avoid the above possible problems.
In addition, generally we calculate the Feynman diagrams
FIG. 2. Two kinds of topology for penguin contractions. in the momentum space, so the correct projection of the
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Vg ¢ vq element must be transformed into a partial derivative of a
7 certain momentum in the projection of momentum space.
However, it is difficult to find the derivative which makes the
, projection only depend on the structure of the light pseudo-
q u scalar itself. Generally, the momentum which the partial de-
1 Q5(0) rivative acts on is dependent on the hard kernel. Therefore,
we prefer to compute the Feynman diagrams of the twist-3
FIG. 3. An example of the vertex corrections 1Qg(0) in the  \yave functions insertion, especially, insertion in the co-
case of¢g, insertion. ordinate space. We think that such calculation can avoid the
light-cone wave functions of the light pseudoscalar in theambiguity about how to project the coordinaté into the
momentum space is necessary. From Appendix B, we findnomentum space. We recalculate the leading twist insertion
that it is easy to find the proper momentum space projectioby using the same method, and obtain the same results as
of the leading twist andb, type twist-3 wave function, but those in the previous sections. Below, we will show how to
for ¢, , the projection is not very clear. Note that the coor-perform this trick in calculation of¢, insertion. For ex-
dinate x* in the definition of ¢, by the nonlocal matrix ample, let us consider Fig. 3. In coordinate space, we have

fpup Cr , $s(U) d*k dy dY, gl (Ua—k1) xagi(k+1p=p) - xg
4 N fdu 6 jd4xld4XJ 4 4 4 2_ 212012 2
(2m)* (2m)" (27r) (k==mg) I (15— mp)

Fig. 3=

X U P (L4 ye gy 50,07 X5y, (1= ¥s) (Fo+ Mp) y,bi B

fPMP CF ZJ ¢0(U)J dk_ dlud’; i(Uq_kaxzq”XZ
(2m* (2m* (K-md)IX12-md)

X (Ui P (1+ Yl ay® ¥50 40 Yp(1— ¥5) (Hp+ Mp) y,0;| BY)

lpb=p—k
'fPMP Ce ZJ' bl U)j d*k q*
(2m)* (K*=m3)(I5—mp)
J - I;=k—uq
XT‘<W+|U.7 (1+vs) 27 “ Y50 10 Yp(1— v5) (hp+ Mp) v,b; |Bd>] (25
ur 'y I=p—k

The above trick has been applied in the calculation of the proper correlation function to extract the transition forEffaétor
within the frame of the light-cone sum rulé]. So within the same frame, we obtain

W,uw C d*k 1 - .
(Qs)() =05 Ff J 27)4(k2—m§)|§(|§—m§)[d’p(u)w Ui (14 v5) Y5y Ha¥u(1— v5) (o + My) v,bi [ BY)
b, (L) 2154 T
+i 06 ¢U(U)<7T+|U|’yp(1+ 75) ’}/50-;qu” ( yv_ | ) 7p(1 75)(*b+mb) ’}/ab |Bd>] ' (26)
d ly=p—k
2 771“‘71' CF d4k 1
(Qs)n)=9 f f (2m)* (K= md)1%(12—mp)
X3 (W Uy (1+ Ye)tgy ¥ ¥, (1= v5) (1 M) y,bi[ BY)
() _ 2124y i
+i ¢6 bo(u) (" Uiy (1+ 75)( YTz )7“Y5%VQ“7,3(1—75)(*b+mb)7abi|§3>] , (27)
u lp=p—k
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2 771“17 CF d4k +_. } “ } _ b—o
(Qs) (=9 2m K )|2|2 dp(W{(T Uiyt Y (1+ v5) Y5 Vatavu(1— v5)bil Bg)
g
) lg=ug—k
¢>,,( D (o [y (14 5) 750 A o
( iY tu 5) Y50 0 Yo ¥V —5— |2 Yp(1— 75b|Bd> ) (28
l,=pP—q+k
77:“’77' CF d4k —
(Qs)@y=93 f f 2 m)ﬁz bW Uy ¥ (1+ ¥6)tyva s v,u(1— v5)bi|BY)
uu
v, Iy=k—uq
¢g( 21ty
(7 |y ey (1+ 75)( lu; Va5 0" Y,p(1- v5)bi[ BY) (29
u l,=pP—q+k

Perform the one-loop integrations:

s Cr, . o, [* 1 Lt 1>
<Q5>(a)_2EW<7T |di(1+ y5)ui|O) (7" |uj(1—y5)bj|By) OdU Pp(U)| — ;‘75+|n477+2|nm—b + 7"\
| |2||1|2|_'1115 ¢"()| 21 IN\—41Inul
+In(—u)iInA—2Inu n)\+§n u—Li, 3 +§+Z7r U N2 x+2In(—u)in\ nulnX\
1\ 7 Inu
+INA+41n? u—In*(—u)—2 InuIn(1—u)+2Li,| — +67T_|“U_1T (30)
+17,. 1 2
_ _ 1 .- 1} 5 5 $o(u) |1
+In(—u)|n)\—2InuIn)\+§In2 u—Li, 1—:—54——772 — In A+2In(—u)inA—4Inuln)
u 6u
1 7 — Inu
+INN+41Ifu—In¥(—u)—2 Inuln(1— u)+2L|2 + —m?—lnu— ——] ¢, (3D
u/ 6 1-u
72
(Qs))=— <7T [di(1+ ¥5)ui| 0)( 7 [uj(1— ¥5)b| d>f du( —<——75+|n477+2|n—
1 3 7] $(u)
In A=[In(—u)— 2]In)\+ In?(— u)—In(—u)—§+?+ U N> X\—[2In(—u)—3]InX
71_2
+2In(—u)|nu—|n2u—3|n(—u)+3—?”, (32)

L tindmt2in
Z’)/E nam nﬂ

s C — — 1
<Q5>(d):2:/_ﬂ_WF<7T_|di(1+75)Ui|O><7T |Uj(1_')’5)bj|§g>fodu{ $p(U)

2

T = 21 A S =0 —In(— 04 o T
In [In(—u)—2]In E”( u)—In(—u) >t 3

2

I \—[2 In(—u)— 3]In)\+2In(—U)InU—InZU—3In(—U)+3—%

i)

6u

] . (33

Here)\zmélmﬁ. From the above equations, it is observed that, in the casg,distribution amplitudes, the terms with

infrared divergence in vertex correction diagrams cannot cancel uglgsg is a symmetric function(u) = qSU(U). This
is an unexpected result, which means QCD factorization is violated for asymmetric twist-3 light-cone distribution amplitudes.
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This indicates that chirally enhanced corrections can be included consistently in the framework of QCD factorization only
when twist-3 light-cone distribution amplitudes are symmetric. Therefore, in the following, we will implicitly assume a
symmetric twist-3 light-cone distribution amplitude for light pseudoscalar mesons. It is then straightforward to show that
vertex corrections of \(—A)(V+A) operator are completely cancelled after summing over four diagrams in the cédse of
distribution amplitude. The final result oV A)(V+A) vertex corrections, in the condition that the twist-3 LCDA is
symmetric, is

o CF = —
<Q5>(a)+(b)+(c)+(d):12ﬁ W<7T |di(1+ ys)ui| O)( 7" uj(1— ys)b;|BY). (34)

2. Penguin corrections

In quark level, usually one decomposes the basic QCD vefti@gy“Tf"‘- in penguin insertion into the two chiral current
couplings—i%gsy“Tf’}(lJr vs) and —i%gsy“Ta(l vs); then the penguin insertions contribute the same magnitude to the
(V=A)(V—A) and V—A)(V+A) vertex. But in hadron level, this point of view must be examined in elaborate calculation.

For illustration, we give the results €, or Qg penguin corrections tggﬂqﬁ 7, which belong to the second penguin
topology Fig. Zb), when ¢,(u) is inserted:

f7Tlu’77 CF 1 —
(Que@d=—4 giMZEﬁfodu bW Uiy ysY,u(1— 76)bi| BY)

f d% —Tr(p—ufi—Kk—mg) y*(K+mg) (15 ys)]
(2m9  [(p—ug—k)Z—mZ][k*~mZ](p—ug)?

ag Cg
:Zlfﬂ'lu’ﬂ'4 N j du ¢p(u)<ﬂ- |UIYQ75’}//.L(1 75)b| d) gau
2
X —|——vye+Ind j dt t(1—t)In . 35
2 ( yet+indm )in é—t(l—t)lz—ieLpuq (35

After MS subtraction, we obtain

- a. C — _
(Qua (=2 {7 [di(1+ y9)u|0)(m* [uj(1~ y5)b;|BY)

1 1 —
X D |ni—3f du qsp(u)f dt t(1—t)In[sy—t(1—t)u—ie]|. (36)
q My 0 0
For the first penguin insertion topology, Fig.ag the result is
Tedy_ % CF 4 T b.[B?
QD=2 7 (7 [di(1+y5)ui|0)(m[uj(1—¥s)bj[By)
M 1 1 1 .
X In————3f du ¢p(u)f dt t(1—t)In[s;—t(1-t)u—ie]|. (37)
m, 2 0 0
Similarly, wheng,(u) is inserted, by using the method in the previous subsection, we have
fattn Cr bq(U)
<Q46>Ef:5_ ggﬂvz N de <7T+|U(1 75)’}/01 ,uvq ’}/pb|Bd>
5 { J f ddly Tri(tg—K+mg) y*(tg+mg) ¥ (15 y5)] -
ak,J (2m)d [(1q—k)2=mZ][15—m;1k?

k=p—uq

After integration and subtraction,
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(Qualy=2> <w [di(1+ y5)uil0) (7 [u; (1~ y5)bBY)

201 _+\2,,
nﬁ—f:dt(2t(1—t)|n[sq—t(1—t)U—ie]+ o H (39)

M sq—t(1—tu—ie

xZJdu

The magnetic penguin insertion is easier; we write the resuQ«f insertion as follows:

. Cr . 1
(Qaa) ™ 3—4 N fmuwmbfo du[ ¢p(u)P<7T+|ui’ya750-Bakﬁ(l+ ¥5)b;|BY)

¢>U(U) 1
6

S| uy sl d, vl v val (14 y5) by | BY)

J

S c 3 1 (r(u) e o
=ZZ—7TWF(§+LC‘U¢6U )(77 |di(1+ ys)ui|0) (7 |Uj(1_7’5)bj|§3>- (40)

2 _
—E<w+|uiy“y5[q,k][k,ya](1+y5>bi|§3>
k=p—uq

8. Hard scattering with the spectator They take fdv(1/v)=In(mg/Ag)+re, wherer is taken

The chirally enhanced power corrections in hard spectatofrom 3 (realistig to 6 (conservativg and the phas@ from

scattering not only occurs in the case d~A)(V+A) ver-  — 7 to . We shall take similar phenomenological treatment
tex insertion, but also in the case of { A)(V—A) inser- in the numerical computation below.
tion. But in the case of (—A)(V+A) insertion, after a We notice that the above approach of evaluating hard

straightforward calculation, we find that there will be seriousspectator contribution is naive. For instance, the scale of hard
linear divergence at the end points of the LCDAs if thespectator contribution should be different from the vertex
twist-3 LCDAs are not symmetric. Because infrared finite-correction contribution. While it seems reasonable to take the
ness of the vertex corrections requires that the twist-ZJcaleu~ O(m,) for the vertex correction diagrams to avoid
LCDAs, especially®(u), must be symmetric, we shall im- large logarithma, log(u/my), a natural choice of the scale of
plicitly assume this symmetric condition for the LCDAs in hard spectator contribution may be arou®dl GeV) be-
latter computation. So, in this symmetric condition, the hardcause the average momentum squared of the exchanged
scattering with the spectator vanishes wh&i-QA) (V+A) gluon is about 1 Ge¥ Another disturbing feature of hard
vertex is inserted. However, even in this strict symmetricspectator contribution is that, as pointed out in REES,25,
condition, there is still a logarithmic divergence from the endwhen including the contribution a,, there would appear a
point of the recoiling pion in hard spectator scattering whengjyergent integral 3dv (1/v) even if the symmetric distribu-
(V=A)(V—A) vertex is inserted. For example, tion amplitude is applied. This divergent integral implies that
the dominant contribution comes from the end-point region,
or, in other words, it is dominated by soft gluon exchange.
d§¢B(§)f d)(u)f However, the transverse momentum may not be omitted in

(Q2)(g)+ ()= maszf the end-point regiofi30]; if so, the corresponding divergent

integral would then be changed to

X{dxv) L 287 bo0)| m

v Mg 6y?2

f dulﬂf dv d? kTM (42)

This means that QCD factorization is broken down. But vém b+k2
we can still give a phenomenological treatment for this hard

spectator scattering. By using the asymptotic form)bg(u)

we find that there is a divergent integral over /3 dv(l/v) As an illustration, we do not consider tle dependence of
In Refs.[19,25, the authors prefer to introduce a phenom-wave functiongthough it is certainly not a good approxima-
enological parametrization for this logarithmic divergence.tion); then the above integral is proportional to
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C. Final formulas

dv dk2 dx dy
J =% J Xy (43 With these effective operator§— PP, decay ampli-
vEmy+ky tudes in QCD factorization can be written as

The above integration converges now; furthermore it is not Ge
dominated by end-point contribution. This illustrates that the ~ A(B—P,P,)= — >, vpaf(P1P,|Qi[B)k,
treatment of hard spectator diagrams may need further dis- 2 p=uci=110
cussion. (44)
There exists “annihilation topology” contributions which \yherey , is the CKM factor,( P, P,|Q;|B) is the factorized
may belong to chirally enhanced corrections. In R@5],  matrix element and is the same as the definition of the BSW
the authors have discussed this topic and find that a divergentrgrangian[1]. Then as an illustration, the explicit expres-
integral[ f (dx/x)]* will appear. We suspect that this diver- sions of a? (i=1 to 10) for B—aa (using symmetric
gence may disappear, similar to the hard spectator term, [fCDAs of the pion are obtained. But it is easy to generalize
the effect of transverse momenta can be included. It is alsghese formulas to the case that the final states are other light
possible that “annihilation topology” contributions are pseudoscalars. Furthermore, we take only part of QED cor-
really dominated by soft interactions and thus violate factor+ections into account in our final formula, in particular the
ization. Due to its complexity, we do not include “annihila- QED penguin insertions. Now! for B— 77 in NDR s

Ci=

tion topology” contributions in this work. scheme is listed as followfs:
C2 dg CF
a;=C, N +EWCZF, (45
Cl agq CF
a2—02 N +ETWC1F’ (46)
C4 ag CF
a3—C3+W+EWC4F, (47)
C as C 4 2 Co\/8 4
I B B o =St Rl [P PO _z _ 29200 _Z
ay=C4+ N +471- N C2 P {Cl<3logm—b+G(sp) 3 +|Cs 2)(,slogm—b—i—G(O)%—G(l) 3
S (CutCot seCot ceuCuollHiog™ + Gy | +GeC 48
i Tson | CatCot 58aCat 58Cao]| Flog - (Sq) | +GeCaq (48)
Lo Sy MG s 49
as=Cst [+ 7.~ v sl ), (49)
C5 Ag C|: ag CF 2 M 1 1
P— 2 > T - _-_ - ’ o
ag=Cgt+ N 27 N°C5 T 1 N C, 1+3AU Iogm—b 5 3AU+G (Sp) +G(sp)
Cg 2 M 1 1 , p
+q:Zd’b (03—7 (1+§AU log =5~ 3Ar T G/ (59) + G%(sy)
© S [cprCet caCat 2eCull[ 1+ 2A og™ G/ ()G (s |+ |+ A, | 50
s e 288 F%10 3 Ogm—b (Sq) (Sq) 5 TAs|Cea (50)
SIS PP 51
ar=Crt yt+ 1, v Ce(~F~12, (51)

2Because of the tedium, we do not calculate the radiative corrections in the HV scheme. However, generally, the results in the NDR scheme
and HV scheme can be related by a constant mAtfi_,x: FS,HV—FS,NDR [29] which is free from the gauge dependence and infrared structure

of the theory. Thus, in principle, we can obtain the results in the HV scheme just byAfs_j,ngn [23], the constant matrix has been applied
to obtain the results in the NDR and HV scheme for the coefficiamighich only contain the current-current vertex corrections. But whether
we can obtain the expression &f or ag in HV scheme in a similar way needs further discussion.
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C; ag Cg ®em 2 p 101
pP_— =T _ S ! o
ag=Cgt+ N 27 N 6C, 7 Co+ N 1+3A Iogmb 5 3AU+G (Sp) +G(sp)
fe+ &8 > 3 (1+2A )I ! 1A +G'(sq)+ G
4 N a<do 2eq 3" Og m 2 3 (Sq) (Sq)
Cot Ao 8 > 3/ (1 2A | G’ G 3 1A C 52
H|Cat T FCst q:u,d,s,c,bze“ *3 09 + (Sq)+ G (sg) | T| 7+ 5 Ty(s (52
C 0 o C
a9=C9+W1+ﬁWFC10F, (53)
C a, C o C, C 2
aly=Co+ Nng4S NFC F— gem C,+ )( Iog—+G(sp) +{ Cyt 3) 2 2eq( Iog—+G(sq)——>
Cs 3
+|Ca+ +c5+— > 2% 3 Iog—+G(sq) += GSCH (54)
N q= udscb2 2

HereN=3 is the number of colorCg=(N?—1)/2N is the
factor of color,s,=
in the above expressions as

F=—12In 18+ +f", (55)
m

b

N 1
fl:fo dx g(x)p(x), Gg= fo dx Gg(x)¢(x), (56)

1
G(S)=fodx G(s,x) ¢(x), (57)
1
G’(s)=f0 dx G'(s,X) ¢p(X), (59
o[t (X) NE RS
G (s)—j0 dx G (S’X)G(l—x)’ A,= jo dXG(l—x)’
(59

where ¢(X)[ ¢,(X), ¢,(X)] is leading twist(twist-3) LCDA
of the ejected pion, and the hard-scattering functions are

1—2xI 3i G B 2
1x nx—3i, S(X)‘ﬁ*

g(x)=3 (60)

G(s,x)= —4foldu ul—wlin[s—u(l—u)(1—x)—ie],
(62)

G’(s,x)=—3fldu ul—uwin[s—u(l—u)(1—-x)—ie],
0
(62)

1
mz/mZ and we define the other symbols G”(S:X)= _Zfo du u(1-wln[s—u(1-u)(1-x)—ie]

u?(1-u)?(1—x)
s—u(l—-u)(1—x)—ie’

(63

1
+fdu
0

The contributions from the hard spectator scattefifms.
1(g),1(h)] are reduced to the factdt':

0 4m?  f fg dg(€) ¢>(X)
R Al
1o oy) 2u, ¢,y)
XJody 1-y Mg g(1-y)? (64

There contains a divergent integralfih. Here we simply
assume thaf (dy/y)~In(m,/Aqcp) (similar to what has
been done in Refd.19,25, though our assumption here is
certainly an oversimplification We thus illustrate numeri-
cally the scale dependence af(7) in Table I. Here we
use the asymptotic form of the LCDAs of the light pseudo-
scalar meson which are listed in Appendix A, and the other
input parameters are taken as follojds]: FE7(0)=0.33,
fg=0.2 GeV,f =133 MeV, the poIe masses,=4.8 GeV,
m.=1.4 GeV, theMS massesnt(mt) 170 GeV,my(my)

=4.4 GeV,my(2 GeV)=4.2 MeV, my(2 GeV)=7.6 MeV
andAggD— 225 MeV.

IV. DISCUSSIONS AND GENERAL REMARKS

A. Color transparency and factorization

Color transparency gives a clear physics picture of QCD
factorization. In the argument of the color transparency, a
fast-moving small color singlet formed by a pair @f] de-
couples from the surrounding soft gluons. Of course, as men-
tioned in the previous section, only the decoupling with the
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TABLE I. The QCD coefficientsaP(w7) at NLO and LO for  with the soft gluons. Otherwise, if its size is too large, it is
the renormalization scales at=5 GeV andu=2.5 GeV, where  difficult to decouple from the soft gluons. For example, the

Iy =2m2/mp(my+mg). spectator quark i meson is very soft, and runs around
quark like a soft quark cloud, which has a large overlap with
QCD n=5.0 GeV u=2.5 GeV the B meson spectator systefi6]. As a consequence, the
Coefficients NLO LO NLO LO process in whictD meson is ejected frorb decay is domi-
al 1024-0012 1017 10340024 1037 nated by the soft gluon exchange.
ay 0.144-0.076 0.188 0.123-0.100  0.109 5 Th e d q
. € scale dependence
as 0.003+0.002 0.002 0.004-0.004 0.004 . - .
i -ooroow oo —oozo-0otr —ooao  SE e S A aion scale
C _ _ _ _ 7
a4 0.033-0.00# —0.029 —0.036-0.007 —0.040 dependence of the hadronic matrix elements of the effective
as . —0.003-0.003 —0.005 —0.002- 0'005 —0.010 operators is recovered. Apparently, we expect this recovered
@ —0.036-0.012 —0.033 —0.037-0.011 —0.040  yepaendence can cancel the scale dependence of the Wilson
r s ~0.039-0.005 —0.033 —0.040-0.004 —0.040  ¢oefficientsC,; .
a,x 1P 11.9+2.8 13.8 0.0-5.4 76 W!th the renormalizati_on group equqtions for thg Wil_son
r alx10° 36.8-109 36.8 45 0-5.2% 398 c;)efflmentsCi(,u) at leading order logarithm approximation
rXagx 10° 35.0-6.2 36.8 44.2-3.1i 39.8 [26],
agx 10 —-936.1-13.4 —928.4 —953.9-24.5 —957.3 d Clu)= 5507c 5
, —C(p)=7— 5
alx10F  —81.8+588 —1414 —583+86.1 —74.0 P CW= 477 CW) (69
aox 10° —85.2+63.5 —141.4 -60.3+888 -740 e do find

d
P— i=1—
soft gluons is not enough for a factorization formula, the 'U“d,u aj=0 (for i=1-5and7,9,1pD (66)

decoupling from the collinear divergence is also necessary.

We really find that both of the requirements can be satisfiedvhen we neglect the contributions from higher ordegf

in the one-loop calculations. So the QCD factorization isBut for ag or ag, some scale dependence at the ordew of
guaranteed. Therefore, the calculations in the above sectiossill remains. Note that other QCD coefficients
seem to be a one-loop technical manifestatmmdemonstra-  (a;_; 34579 1) are multiplied by the product of the matrix
tion) of the color transparency. On the other hand, at theslements of the conserved currents which are independent of
leading power ofAqcp/my, the soft or collinear gluons the renormalization scale; whereas the coefficanor ag is

only “see” the direction of the light meson, but are “blind” multiplied by a product of the two matrix elements of scalar
to the spins of the quark constituents. So the soft or collineaand pseudoscalar current

gluon cannot distinguish whether the ejected meson foom

quark decay is a light pseudoscalar or a light longitudinally _2<p1|E(1+ 75)Q|0><P2|a(1— vs)b|B),

polarized vector meson. As a consequence, the cancellation

of the infrared divergence is universal fBrdecays to two  which is still of scale dependence. This scale dependence is
light mesons, no matter whether the meson is a pseudoscalgénerally represented by the factor

meson or a vector meson. Therefore, the QCD factorization

formula for B—PP at the leading power of\qcp/m, is 2m,2:,
easily generalized t8— PV andV V. r(p)== 0t
Similarly, the color transparency argument cannot only be Mp ()M () +my( )]

applied to the strong interactions, but also generalized to the

electromagnetic interactions. When the ejected meson igfter we apply the equations of motion to transform t&e (
electric neutral, the soft photons also decouple from the fast P)(S—P) matrix elements into the type ofV(-A)(V
moving small electric dipole. So QED vertex corrections are—A). Herem; andm, are the current masses of the valence
also of infrared finiteness. But for the case that the ejecteduarks in mesorP;. With the renormalization group equa-
meson is charged, QED corrections are infrared divergentjons for the running mass of the current quark

and the infrared divergence must be cancelled by the soft

photon emission mechanism, which is common in the calcu- d—

(423 —_
lation of the radiative corrections fqt™ —e~v,v.. About 'U“d,um(’u) 647-rCFm(’U“)’ (67)
this, it is easily covered in the calculation in the previous
section, just replacing the QCD vertex by a QED vertex.we have
This can be called a one-loop demonstration for “charge”
transparency. 50

It should be noted that the above arguments must be based ’“ﬁu(’u)_ 12ECFr)((’u)' 68
on the condition that the ejected meson is in a very compact

configuration, then it, as a small color dipole, is disentangledConsequently, we find
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d hadronic transition form factors can be calculated in the
M@(ag,srx)zo (69  PQCD method becaugequark is heavy enough and the soft
gluon exchange is suppressed by Sudakov form factors. This

with the asymptotic form ofs, (u) = 6u(1—u). Then, as we is the essential difference between the BBNS approach and

expect, the decay amplitude f8rdecays to two light pseu- the.l_:fQChD methodl: ; L . “nonf .
doscalars predicted by QCD factorization is really indepen- (",',) T € genera 'Zed. actorization considers “non act.orlz-
dent of the renormalization scale within the constradt able” contributions as mt_ractable. Thereforfef, one may intro-
—1/2. This also can be obviously seen from the numericaflUc& One or more effe‘c‘:tWe color numt?’eds to phenom-
results ofaP(w) listed in Table I. In particular, if we think €nologically represent nonfactorizable™ contributiofs2—
that the results of QCD factorization are reliable and reallyl4l- Furthermore,N¢™" is assumed to be universal to
independent of the renormalization scale, mape=1/2 is maintain predictive power. However, ‘“nonfactorizable”
a strict constraint for the form o, (u). contribution is really process-dependent. In the BBNS ap-
It should be noted that the imaginary part of QCD coef-proach and the PQCD method, such “nonfactorizable™ con-
ficientsa; only arises at the order af,, and depends on the tributions are indeed calculable in perturbative theory. In

renormalization scale. This dependence would bring someonsequenceé)S'" need not be introduced.

uncertainties in determining the P asymmetries irB de- (iv) As mentioned in the above sections, the strong phases
cays. Maybe this scale dependence of the imaginary pagredicted by generalized factorization are only from the BSS
could be canceled by the results on higher ordewof mechanism which is represented by the penguin insertion.
However, the virtuality of the gluon or photok? in the
C. Comparison to the generalized factorization penguin insertion is ambiguous in generalized factorization,
and PQCD method and usually it is approximated arountf/2. This brings sig-

. o . nificant uncertainties for predicting th@P asymmetries for
Comparing the QCD factorization approach with the geng decays. A particularly interesting result of the BBNS ap-

ﬁ,ﬂ%ﬁgg;g%g%ﬁigﬂtﬁ; i,rlezl]ir? gde?CD methog31], some proach is that strong phases are not only from the BSS

(i) At the zeroth order ofa., both QCD factorization mechanism but also from the hard scattering, and there are
S .. . .. 2 . . .

(BBNS approachand generalized factorization can repro- "© uncertainties in dgtermmm@ of penguin insertion. .

duce the results of “naive factorization;” at the higher order However, compared with the real part of the decay ampli-

of ag, the renormalization scheme and scale dependence fé#de, the imaginary part i©(as) or powerAqgcp/my Sup-

the hadronic matrix elements can be recovered from th@ressed and cannot lead to la@® asymmetries, since they

hard-scattering kerneIEi' in BBNS approach an(ﬁs in gen- come solely from hard scattering processes which are only

eralized factorization. However, in generalized factorizationc@lculable in the heavy quark limit. In the PQCD method,

-~ . ._there is no suchg suppression in the imaginary part of the
m, is from the one-loop calculations of quark-level matrix decav amplitude. ThUEP asvmmetries predicted by the
elements. According to Burast al, quark-level matrix ele- y P ' y P y

ments are accompanied with infrared divergences. To avoig QCD method are usually gfeatef than_ thg prediction of
these divergences, one may assume that external quarks 48\ approach and generalized factorization. So maybe
off-shell. Unfortunately, it will introduce gauge dependencethese differences of prediction f@P asymmetries can be an
which is also unphysical. But in the BBNS approach, it is€xperimental test for the BBNS and PQCD approaches.
different because the external states are all physical and can (V) Hard spectator contributionfFigs. Xg) and Ih)],
be approximated as on-shell quarks in the leading order ohich are leading power effects in QCD factorization, miss
Agcp/my. As a consequence, the unphysical gauge deperfut in “naive factorization” and “generalized factoriza-
dence does not appear. In the PQCD methodktlal. claim  tion.” They are, howeverQ(as) suppressed compared with
that their method is based on a six-quark system in which théhe leading factorized contributiorithe hadronic transition
external quarks are on-shell, so the gauge invariance dbrm factorg. But, in the PQCD method, they are of the
PQCD predictions is guaranteed. The scale dependence game order as the form factors.
PQCD prediction is removed by evolving the Wilson coeffi-  (vi) In the PQCD method, penguin contributions receive a
cients down to the proper hard scale. So no explicit scalelynamical enhancement called “Fat Penguif8]. But in
dependence is left. generalized and QCD factorization, they are missed. This
(i) In generalized factorization and BBNS approach, theenhancement in the PQCD method arises from the strong
hadronic transition form factors are not calculable, and theycale dependence of the penguin Wilson coeffici€us,
are dominated by soft gluon exchange and determined onlgtc.
by experiments or some nonperturbative approaches such as (vii) Final state interaction$FSI) do not appear in the
sum rule, lattice QCD, etc. In particular, the above assumpthree methods. In QCD factorization, Benedteal. point out
tion can be also justified in the BBNS approach by naivethat the cancellation of the infrared divergences implies that
power counting11,1€. However, in the PQCD method, this the long distance FSI is power suppressed due to the quark-
naive power counting rule may be invalid when the trans-hadron duality. However, this point of view is controversial
verse momenta of the quark constituents and Sudakov sup32], but can be examined by the experimental measurements
pression are taken into account. Sogtial. thought that the  of B—KK [33].
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D. Limitation of QCD factorization tion, there is also infrared divergence from the end point of
QCD factorization formula only holds in the heavy quark the LCDAs in the hard spectator scattering and annihilation
topology. So the transverse momenta and Sudakov suppres-

limit my—oe. In the real worldmy, is only about 4.8 GeV, the . ; .
validity of the power suppression may be questionable. sion should be taken into account. We also point out that the

articular, for several cases, the power suppressed corredgacay amplitude oB— PP predicted by QCD factorization
P ' . ! P PP orrels really independent of the renormalization scale, at least at
tions can be numerically lardd 6], because the perturbative

ion is in order ok. which i Il at th listi the order ofag. At last, we briefly compare the QCD fac-
expansion Is in order as which is not small at the realistic 47 ation to the generalized factorization and PQCD method
scaleO(m,) compared to\ gcp/my, .

) > o which are generally used in studyirig) exclusive hadronic
(i) The hard “nonfactorizable” contributions computed decays.

by QCD factorization are generally small compared to the
leading “factorizable” contribution. But when the leading
“factorizable” contributions are color suppressed, the “non-
factorizable” contribution may be larger than the leading We thank Professor Hai-Yang Cheng and Kwei-Chou
results. At the same time, the potentially soft contribution,Yang for pointing out errors in the coefficients Gk and
which is formally power suppressed, may be important. FoC;, in Egs. (50) and (52). And we also thank Professor
example, ir§8—> 7970, any perturbative and soft power sup- Maozhi Yang for helpful discussions ab_out QCD fact'oriza-
pressed contributions can have a significant effect on predic%On an_d the P_QCD method._Th|s wor_k is supported in part
ing the branching ratio an€P asymmetry. Furthermore, _yNa“O”f%' Science Foundation of Ch|r_1a and State Commis-
this problem also arises when the entire leading power con2'On of Science and Technology of China.
tribution is suppressed by small Wilson coefficients, for ex-
ample, inB— KK; or when the leading power contribution is APPENDIX A: TWIST-2 AND -3 LCDAS OF LIGHT
suppressed by the small CKM elements. PSEUDOSCALAR MESON

(i) An important power suppressed contribution is from
the higher twist light-cone wave functions .Of the light me- amplitudes of light pseudoscalar mesons are defined by the
sons. The chirally enhanced power correction from the tWO’foIIowing nonlocal matrix elementg3s):
particle twist-3 wave functions is the most important, and '
has been partly involved in this work except for the annihi-<p(
lation topologies. Other contribution from multiparticle non-
valence Fock state has been proved to be also power sup- , , [t v
pressed[16]. However, there is no systematic way to  ~ _'prufo du e YT g(u), (A1)
evaluate it. The author of R€i34] proposed a way to evalu-
ate the soft gluon exchange contribution from higher tWiSt(P(p’)|a(y)75q(x)|O)

gqg wave functions within the frame of the light-cone sum
rule (LCSR). But the accuracy of LCSR is limited due to the
quark-hadron duality approximation. On the other hand,
power correction from transverse momenta needs a subtle
treatment in the future. In Refl6], the authors point out <P(p')|a(Y)UMV75Q(X)|0>
that the contribution from the transverse momenta might be
considered when we evaluate the hadronic matrix elements _if - ld dup’y+up’-x
to two-loop order. In this case, it is possible that Sudakov =ifpup(p,z,~ P2 0 u
suppression might be taken into account as well.

In summary, up to now, we do not have a systematic way (A3)
to evaluate many kinds of power suppressed corrections Qi ¢, heing the decay constant of the light pseudoscalar,
exclusive processes. How to evaluate such corrections in a

. o T =M2/(m;+m,) (m; andm, are the masses of the con-
consistent way within the frame of QCD factorization is agtiiuentquja;ks inz)th(e plseudoszcadamdz=y—x Hered(u)
potentially interesting work. ]

is the twist-2 light-cone distribution amplitude},(u) and

¢,(u) are two-particle twist-3 distribution amplitudes. The

above definitions can be combined into the below nonlocal
In this work, we give a detailed discussion for QCD fac- Matrix element:

torization involving the complete chirally enhanced power

ACKNOWLEDGMENTS

Two particle twist-2 and twist-3 light-cone distribution

p")|a(y)y,ysa(x)|0)

1 f ’ T
=—ifpupf0du guptyrupTx g (u), (A2)

o,(u)
%

V. SUMMARY

corrections in the heavy quark limit f& decays to two light (P(p")|da(y)as(x)[0)

pseudoscalar mesons, and present some elaborate calcula- ifp (1, —,

tions of radiative corrections at the orderaf. We point out =7 glup ytup 'X[ P’ vsd(U)— wpys
that the infrared finiteness of the vertex corrections in the 0

chirally enhanced power corrections requires twist-3 light-
cone distribution amplituded.CDAs) of the light pseudo- X
scalar symmetric. However, even in the symmetric condi-

¢p<u>—awp'”zv¢"T(‘”)] A
B

a
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Neglecting the three-particle twist-3 light-cone wave d -
function, the asymptotic forms of the above distribution am- MEC(MF ¥ C(w). (BY)
plitudes are given as
_ Here v is the anomalous dimension matrix, which can be
$(u)=6u(l-u), (AS) calculated by the perturbative theory and expanded in order
Bp(u)=1, (A6)  of the coupling constantas and aep,:
¢,(U)=6uU(l—u). (A7) ~  Osa~ig As | ~1y Xem~(g) , ¥s¥em~ (1
el b 7§ "+ YO+ W'y(se)"_
APPENDIX B: THE EVOLUTION OF C;(1) (B2)
The renormalization group equation for the Wilson coef-The LO anomalous dimension matrjogo) of the above equa-
ficientsC;(u) is written as follows26]: tions has the explicit form
|
-6 -2 2 -2 2
6 — — — 0 0 0 0
N 3N 3 3N
6 _° 0 0 0 0 0 0 0 0
N
—-22 22 -4 4
0 0 — — — - 0 0 0 0
3N 3 3N 3
2f -6 2f —2f 2f
0 0 6— — —+ = —_— — 0 0 0 0
3N N 3 3N 3
6
0 0 0 0 — —6 0 0 0 0
yO= " (B3)
Vs —2f 2f —2f —6(N2—1) 2f :
0 o0 _— - +— 0 0 0 O
3N 3 3N N 3
6
0 0 0 0 0 0 N —6 0 0
—2(u-d/2) 2(u—d/2) —2(u—d/2 2(u—dr2 —6(N?—1
0 0 (u=d/i2) 2(u—d/2) (u—d/2) (u—d/2) 0 ( ) 0 0
3N 3 3N 3 N
2 2 2 2 -6
0 o0 — - — - 0 0 — 6
3N 3 3N 3 N
o o —2(u—df2) 2(u—di2) —2(u—d/2) 2(u—d/2) 0 0 s O
3N 3 3N 3 N

whereN is the color numberf is the active flavor number, andandd denote the number of the active up- and down-type
flavors, respectively.

APPENDIX C: SOME USEFUL FEYNMAN PARAMETER INTEGRALS

In calculation of the perturbative diagrams shown in Fig. 1, one might encounter some Feynman parameter integrals which
involve nontrivial infrared divergence. To deal with the infrared divergence, as mentioned in preceding sections, the dimen-
sional regularizatiofDR) and massive gluotMG) scheme are applied. Below, we give the explicit calculation of some useful
Feynman parameter integrals in the above two regularization schemes.

First, we deal with the integrals in the DR scheme. In the DR schigmae we taked=4+2a anda>0), the integrals
involving the infrared divergence are written as follows:

fdtjl u 1 1] 1 L2 1 L_<1 1) -
———=—| — sIn“u—Liy| 1——/| |,
' it +tut e ul2a2 a2 27 v
1- tl t, 1[1 Inu
f J — T T _24Inut+— (C2
ty(ty+tu)]t 72 ula 1-u
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f fl tl (-t 1 1+In(—u)—2+27—772 " +1| ) o3
W— mps: a 3 n(—w+5In“(-u)|. (C3
Here Li(x) is the dilogarithm function. It is defined by
. xIn(1—t)
le(x)z—f —— dt. (C4
0 t
The Feynman parameter integrals in the MG scheme are listed as follows:
fdtfltldt ! e LN =2 InUIn A+ 2% u—Li,| 1= |+ > 2
940 9L (Aot tpn] u an Min(-win AUiNAT I U=t 22 7™ )
(CH
J’dt Jl tldt _1' A — 140U Inu 6
L 2t t1+t2w)+(1 ti—t)N] ul Tl (Co)
1 1-t (1—-ty)(1—ty) 11, 1, 5 72
fodtlfo dtz—t1t2u+(1—t1—t2))\__ﬁ Eln )\—[In(—u)—2]ln)\—2In(—u)+§In (—U)+§+?.
(C7)

When we calculate the above integrals in the MG scheme, the following equations about dilogarithm function may be
useful:

. , 1 L

Lio(—Xx)+Liy ™ =—F—§In X (x>0), (C8
_ AT
Lio(x)+Liy X =?—§In x—iwmlnx (x>1), (C9
o } i w1 i

Li,(ix)+Li, 3 :_ﬂ_iln x+27-rlnx (x>0), (C10
) ) i a1 i

Lio(—ix)+Liy " =—2—4—§In x—zq-rlnx (x>0), (C1y

772
Liz(x)+Li2(l—x)=F—Inxln(l—x). (C12
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