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BCS versus Overhauser pairing in dens€2+1)-dimensional QCD
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We compare the BCS and Overhauser effect as competing mechanisms for the destabilization of the quark
Fermi surface at an asymptotically large chemical potential, for the special case of 2 space and 1 time
dimensions. We use the framework of perturbative one-gluon exchange, which dominates the pairing at
wlg?s>1. With screening in matter, we show that in the weak coupling limit the Overhauser effect can compete
with the BCS effect only for a sufficiently large number of colors. Both the BCS and the Overhauser gaps are
of orderg*/ u in the Landau gauge.
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[. INTRODUCTION tions are solved in the presence of electric screening and
Landau damping in dense quark matter. We present our re-
Quantum chromodynamic€QCD) at high density was sults for the gaps in the Landau gauge. The conclusions of
first studied in the late 19704,2] and has received renewed our analysis are in Sec. V.
attention, especially in the past three yeg8s6]. At large
baryon density and small temperature, it is relevant to studies Il. SCREENING IN 2 +1 DIMENSIONS
of neutron stars and heavy ion collisions in the baryon rich
regime. Theoretical studies of dense quark matter have re-
vealed the preferred phase to be a color superconductor with
several novel features such as color-flavor locking, chiral R d2p 1 1
symmetry breaking, color Meissner effect and the formation H’”(qo,q)=ngE f 2Tr( y— Y ——
of a mass gap. nJ (2m) p pt+q
At as_ymptotic densities, the Ferm? SL_Jrface for quarks_ i%Nhereq . p andp-+q denote respectively the 4-momentum
well defined and the low energy excitations are weakly in-¢ the g1uon and the two internal quark lines. At finite tem-
teracting quasiparticles and holes. In QCD, perturbativeyerature and density, one makes the usual identificagign
1-gluon exchange can provide an a@trarlly weak attractive_ Po=(2n+1)iwT+ u for fermions andigs=qy=_2nimT
interaction in the color anti-symmetri& channel that desta- for bosons(here,n labels the Matsubara frequencyn 2+1
bilizes the Fermi surface and causes particle-particle pairinggimensions, the Pauli matric E%E(‘T&i‘;) generate a
Another mechanism of destabilization is particle-hole pairingrepresentation of the Clifford algebray,, v,}=2g,,, with
(Overhauser effegt[7], studied earlier in a variational 9,,=diag(1-1,—1). In an arbitrary covariant gauge with
method and for largeN. [8,9]. More recently, it has been gauge parameten, the inverse propagator in matter
shown that the equations driving the particle-hole instability(D ~1)#” andI1#” are related af13]
resemble those of the BCS instability, modulo phase-space
factors[10]. A novel mechanism for destabilizing the Fermi
surface through a BCS crystal was also recently suggested in
[11] and may also compete with the instabilities to be studied
below. Its consideration is outside the scope of this work. ~ Evaluating the Matsubara sum using contour integration,
Screening affects the strengths of the BCS and Overomitting the vacuum piec€l and x independent and ana-
hauser pairing. The authors [f0] have shown that in the lytically continuingigs;=w+ie, we get in the limitT—0
regime of weak coupling in-81 dimensions, the BCS effect (with q =|a|)
is dominant up to a large number of colors. Ifr 1 dimen-
sions, the drastic reduction in phase space for BCS pairing
with no comparable reduction for Overhauser pairing means
that the latter dominates whatewgg. In this work, we wish
to establish the case fort2l dimensions, taking into account )
the screening in this space-time dimension. +9
This paper is organized as follows. In Sec. I, we derive
the quark 1-loop contribution to the gluon propagator in a
covariant gauge, at finite temperature and densitg (Tfor I, =g2
cold and dense matterSection Il motivates the symmetry
of the particle-particle and particle-hole condensates-ii 2
dimensions, followed by formally differing derivations of the
gap equations for these two objects. The resulting gap equa-

We begin by evaluating the gluon polarization tensor in
atter in the imaginary time formalisii2]

1
(D—l)#V:ngl‘W—l—Hﬂv_qﬂv(l—X). (2)

q

HOOZQZH_i_{__ +i2 K

q Zgﬂam—w)
Pu) -
a5

EREC) WO

0(w—Qq) 4

27 16

0(w—Qq) (3

0(9— w)

0556-2821/2001/64)/01403%8)/$20.00 64 014035-1 ©2001 The American Physical Society



PRASHANTH JAIKUMAR AND ISMAIL ZAHED

2 3
2l 2| A2 (A -
IT, =g q2(277)+|q3(477) 0(q— )
+o? | - E) il =) 6w (5

where I =11, P} + 11, P}, with P/=(s"-q'q//q?) and
Pl=(q'd'/g?) (i,i=11t0 3,

In deriving Egs.(3)—(5), the approximatiors w,q<u
have been made since energy transfers in the scatteriopg of
(BCY andaq (Overhauserpairs are of the order of the gap,

and momentum transfers can be taken to be small for fo
ward scattering of quarks. In Euclidean space, the screen

gluon propagator in Feynman gauge reads

d3q e_iq'(x_)’)

DE,M(X_y):J (6)

(2m)® q?+m,,’

where mé=m3 refers to the Debye mass amd, to the
magnetic scale generated by Landau damping. Their valu
(generalized td\; flavorg follow from Egs.(3) and (4) re-
spectively and are given bw2/g?u=m3/g?u=N;/27 and
mZ,/m3=3|qs//q. Note that the coupling® has mass di-
mensions. The results are similar to that it Bdimensions
for which mZ/g?u’=ma/g?u?=N¢27> and mZ/m3

= (m/4)|a4l/q.

IIl. CONDENSATES AND GAP EQUATIONS IN 2 +1
DIMENSIONS

A. Condensates

PHYSICAL REVIEW D 64 014035

The +/— indicates that there are 4 possible sign combina-
tions we can choose in the combined transformation of the u
and d quarks. Note that this new definition of parity does not
affect the way the pseudoscalar transforms. Now, we will see
that the relative sign is also determined for us by the particle-
particle condensates.

The charge conjugated spinor transforms under parity as

P

g°—det(Ap) o19°, whereA denotes the matrix correspond-
ing to the improper Lorentz transformation P. There is an
extra minus sign as compared to the parity transformation of
the quark spinor. The charge conjugation mattixis o,

which is antisymmetric. The attractive color chani@els
F ti-symmetric and the overall wave function for the BCS
Fffgiring must also be anti-symmetric, therefore, one is forced
to choosed’, for the flavor matrix. Then, the scalar BCS

condensate is

TrSolq=Td—du.

©)

E!:Sor this to be even-parity, bothandd should have the same
sign in their transformation. On the other hand, a pseudo-
scalar BCS condensate will necessarily have a relative sign
between the transformations farandd. In this paper, it is

the scalar which is studied.

These problems arise in odd space-time dimensions due to
the lack of a consistent definition for a gamma matrix that
anti-commutes with all they,’s, namely ys. We proceed
now to the gap equations for the scalar particle-particle and
particle-hole condensates.

B. BCS gap equations

Usually, diquarks are taken to condense in the parity even In order to derive the BCS gap equation, we will use the

0* channel. In 2-1 dimensions, parity is defined by inver-

standard Nambu-Gorkov formalism, which introduces

sion about 1 spatial coordinate only, as it is an impropeicharge-conjugated spinors to enable the writing of the gen-
transformation. For the sake of definiteness, we define therating functional of QCD at finite chemical potential in a

parity transformation in space ag§—X;, X,— —X,. The
parity operator in spin space is theny which implies that a
term likeqq is not invariant under this transformation. Thus,

form identical to that at zero chemical potentjia]. With
charge conjugation defined g§=Cy', the Nambu-Gorkov
spinor is¥=(y,¢") and can be expressed as a4 N;

for the particle-hole pseudoscalar condensate with 2 flavorgolumn vector. Neglecting quark mass effects, the form of

we have the action of the parity operat® as

P

gq1°1fq=uu+dd— —uu—dd, 7

wherec andf denote color and flavor respectively. A scalar

condensate may still be written down if we allow parity to
P
change isospin ag(d)— +/—o,d(u). Then we have

P

alco;qzau—adﬂ —dd+uu. (8)

the gap matrix is

AP

1 - -
i (Q)z()\z)ab(o'z)ijc[Al(Q)§(1+ oXd)

(10

1 . .
+4,(0)5(1-0x0a)

where A, =1(1+ Exa) are the particle and anti-particle
projectors respectively in21 dimensions(In the weak cou-

pling limit &/ w<1 with a=g?/4sr, the equations of motion
allow us to replace;qu by the unit matrix so that only the
gapA, remains and the anti-gal, drops out. Moreover, the

The gaps in 21 dimensions are power law suppressed, and car@nti-gap is strongly gauge dependgiitie self-energy in the

is needed in introducing this approximation in our perturbative re
sult.

-Nambu-Gorkov formalism obeys the Schwinger-Dy$8D)
equation
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d%q ing order in the weak coupling so that the diagonal part of
S(k)= —ing 2 )SFZS(q)DZE(q—k)F?,. (11 the self-energy has only the free quark propagators. There-
™ fore,

Here,> (k)=S (k) — Sal(k) is the proper self-energy with

S(k) as defined irf15]. F/‘i is the quark-gluon vertex which S Lq)= 4+ 4 A 13
we take to be the leading order result in perturbation theory, (@)= A (4-p)7)’ (13
A ¥ N2 0 o
Iu= 0 _(,y#)\a/Z)T ' (12 whereA= YoATy,. DeterminingS,, from Eq.(13), inserting

the ansatz Eq(10) for the gap, and projecting out the posi-
We also neglect the wave-function renormalization to leadtive energy part, we obtain the integral equation

|
Aq(Q) I
a2 — (gl - )%= Ax(a)?l
A,(Qq) f
a3 (gl + )%= Ax()?l

+

No+1. Zj d3q

2N, '9 (2m)3 k'q)DL(k_CI)

N| =
N

1 1. .
Ay(k)=— §+§k'q>DL(k—q)+

- 1.
(1=k-q)D (k=) +|5 5k )DL(k—q)

N| =

+(K°2(1+R.c}))%] +

+(K°2<1—R'a>—|R|2(1+R~a>)%] (14

whereK=q—k, D, =1/(K?— mfﬂ), D, =1/(K?>— m%) andD, =\/K* from the gluon propagator in the covariant gauge. We
note that only the term for the gabp, [henceforth referred to a5(q)] is relevant at the Fermi surface and that it's gauge

dependence multiplies the factsP’/K?2 which is essentially the amount by which the quarks are off mass shell. This is not
sufficient to tame the infrared divergence from th&2.bf the gauge-fixing part of the propagator if-2 dimensions, in
contrast to 3-1 dimensiongsee below. An estimate of the relative contributions of the electric, magnetic and gauge-fixing
terms can now be made.

1. Gauge fixing contribution(D,)

It is the momenta on the Fermi surface that make the most contribution to the integral, théﬁpfd?EEZMz(l
—cod). Setting|a|—,uqu , the integration measure becontgdgd6, and the continuation to Euclidean space gives

)\Kf dCI3qu|G(CI3)(Q3—k3)2f dé(1+cos) (15

G(kg)= - ,
2 g3+ +G(ds)° (93— k3)*+24%(1~ co))?
where k= ((N.+1)/2N.)(g%/(2)%). Performing the angular integration exactly, we find

1

laz—Kka|V(az—kg)*+4u

ddsudq)G(as)

G(kg)=Nkm
g5+af+G(gs)?

: (16)

Integrating over , the pole from the quasi-particle propagator gives

1

|a3— k3| V(a3—kz)*+4u

The region of interest ig3,k;<u, since the quarks are almost on mass shell. In that case, we have

G(03)
Va3+G(gs)?

. (17)

G(k3)=7\KM7Tzf dags

(18

xmzj G(q3) 1

Gky)=——— .
()=o) 4% g gt oK
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2. The electric contribution(D, )

The angular integration yields

km [ doedqG(qy) (J((%—k3>2+m%)2+4ﬂz<<%—k3>2+”‘5)_1 (19)

G(ky)=—
=24 q5+af+G(gs)? ((a3—ks)?+m3)

As before, the integration ovey picks up the pole in the diquark propagator, and the form factor is the physical regulator for
the energy integral. Note that the integrand shuts offgfge «, but this is an unphysical regulation since we are far from the
Fermi surface physics. For the physical regiorgef< i, we obtain

dgsG(gs) 1
Va3 +G(ds)? V(dz—ka)?+mj
The value of the Debye mass suggests that it is much larger than the gap, so that we may appr\sf(>_q'ma@)2vL sz

=mp, with g3 andk; on mass-shell being of the order of the géj¥e have checked the consistency of this approximation
with the explicit solution for the gapThe electric term is expected to be of orddmy .

G(ky)=km? (20)

3. The magnetic contribution(D )
The magnetic scale is generated by Landau damping through

3 L, do—ko
2 2
My=-Mp ==, 21
M 4 D|q_k| ( )
and the gap equation reads
Gks) = Kf dgsudqG(gs) do(1+cos) 22
¥ 2) g2+ 2+ G(gs)? 3 —ks’
Gt i+ G(%) (qg—k3)2+|&—|?|2+zm% q»s =
[q—K]|
As g,k are on the Fermi surface, we may write
k ( dgsdqgG(gs) ndé(1+cos)
G(kg)zif . 3 . I 3 g ’ (23
dsz+4aj+G(ds) 3 03— ks

(G5~ kg)*+2u(1—cosh) + 7mj

V2u?(1— cosh)

The physics of Landau damping guides us in evaluating the The remaining 2 terms give us a bound on the angular
angular piece. For forward scattering,is small, in which  region in which magnetic binding of the BCS pairs is dis-

case the angular piece reads as follows: turbed by Landau damping. Setting the terms comparable,
we find
2pd6 3 13
, (24 (_mz K )
j (q3—kg)2+ 262+ 3m3 (qs—ks)/4u o PRUGICER Sl
Omin= “ . (25

where we have set-1cos#=6¢%/2 in the denominator and
1+cosf=2 in the numerator. The denominator contains 3
pieces, which are, respectively, the gluon energy squared, t
gluon momentum squared and the damping term. Since the
scattering of BCS pairs costs little ener@ypically of the
order of the gap the first piece may be dropped. This is
equivalent to saying that the quarks are nearly on mass shell.
The validity of this approximation rests on the smallness ofThis also implies that ignoringgs— k3)? in the denominator
the gap which will be checked explicitly. is valid when

f <6, the Landau damping is active, and is ineffective
once 6> 6,,;,. Energy transfer of the order of the gap im-
ies thatf,;, is small if

m23G3< . (26)
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G mp G(k
—<—. 27 3k§G”(k3)+4k3G’(k3)+K*%:O, (33

mD M %/3
It is magnetic gluon interaction between the quasiparticles,i-h has the solution
that builds up the gap, as in+3 dimensiong16], so we
work in the regimed> 6,,,;,. If we keep only the momentum 1
exchange term in the denominator, we obtain for the angular G(k3)=—=

K
— clJ_l( —6\ /?*kgl’ﬁ)
integration k3
K —
E Omax d @ 4 (28) +C2Y1( — 61\ [?*ks 1/6) )

2 R13_23 173’
K J 0min 0 6 mD|q3_k3|

(34

Lo Since the Neumann function is complex valued for positive
where w0, (]d—Kk|)max @and we have picked the contri- ks, c,=0 (we are solving for a real gapUsing G(Kks
bution from the lower limit. The contribution from the upper =Gg)= G, and the boundary conditioB’ (k;=Gg) =0, we
limit is subleading. Thelq) integration yields obtain

27K dgsG(ga) 1 ( [k,
G( k3) = . (29) J 6 k* 1/6
61/3m%/3 /q32+ G(q3)2 |q3_k3|l/3 G7/6 1 3 3

0

Gi(kg)= —, (39
Collecting Egs.(18),(20),(29), the contributions of the Ke 156 k3
electric, magnetic and gauge-fixing terms are respectively Ji{ 67\ £ Go

k)= dasG(qs) w with Go= («, /3)3(6/x0)®, wherex,=2.405 is the minimum
(kg) = rcmr \/q§+ G(gs)? \/(q3—k3)2+m% finite solution toJ,(x) = —xJ;(X). Gg is therefore the maxi-

mum BCS gap. Note that the conditi@®,<mp is satisfied

2 N 30 since
+ + . 0
64%m3 a5 — ksl 2|ds—ks Gy [a)%?
m—D~ ) (36

The gauge-fixing contribution in covariant gauges is large
suggesting that the ladder plus screening expansion of thehe conditions imposed by Eq&6) and (27) are also met
SD equation ina/u may receive additional contributions pacgyse

due to the enhanced infrared sensitivity it 2 dimensions.

A reorganization of the expansion may be needed, with per- ( Gy

Wg_ (37)

haps an emphasis on a physical observable from the outset. P 1 P

Below, we will carry estimates of the gap in Landau gauge
A=0. The electric contribution gives an exponentially smallTherefore, the approximations made in evaluating the mag-
gap if G<mp. The electric screening impliesG  netic and electric pieces are justified. It is easy to check that
~Ae*mD””72, which is exponentially suppressed due to thethe electric piece is down compared to the magnetic piece by
large value ofmp/g2. (A is the UV cutoff)

(mD) oo mPele

M

Mp

. . . ) m23G L3 112
The magnetic term drives the formation of the gap since D20 [« (39)
m2°G<mp . The gap equation becomes mp m
dgsG(as) 1 As we work in the Landau gauge, we can repeat the preced-
G(ks)=« (3D ing analysis using a simplified propagator

¥ \/qg"‘ G(ds)? [g3— k3|1/3’

Guv
where «, =2« m/(6Y3mZ3). The integral may be split into D)= ZM [D.(@)+Dy(a)], (39)
two regions, B<q;<k; andk;<qz<A, where in the first,
1/gs—ks|¥®~1/k3® and in the second [Hz—ks/®  and arrive at the same equation for the gap, which in Euclid-

~1/g33. Then, Eq.(31) may be recast as ean space is
1 (ks G(qs) [, G(gs) Ne+1 d*q G(q)
Gk = | s | a2+ | day= 22, B L
k3°J 6o Us 3 Js3 c (27) C|3+(|Q|—,LL) +G(q)
(32 (40
with the scaleG(ks=Go)=G,. Differentiating Eq.(32)  As expected, the integral overis dominated by the mo-
twice with respect tk;, we obtain menta|q|=u andqz<u.
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C. Overhauser gap equations WY
While it is possible in 3-1 dimensions to follow the same 2(xy)= 2CO% P“( 2 ) o(x=y)
formalism for the Overhauser pairing as in the BCS case, the
method is involved in 2 1 dimensions due to the absence of _ Xy tYy d’q ~ig-(x=y)
ys, Which is crucial in invertingS™%. Chiral projectors are =2C08P,| — (277)36 F(a),

required to pair particles and holes but since chirality cannot

be consistently defined in42L dimensions, the arguments (45)

are more subtle. However, there is a straightforward way and

that is to use the effective action formalism developed inwhereP,=(P¢,0) and|P¢|=2u. Pg points in the original

[10]. dlrectlon of one of the quark characterizes a standing

The induced action in Euclidean space is wave of total momentum 2. (The pairing is between a par-

ticle and a hole at the opposite edges of the Fermi sujface.
Introducing fermion fieldsy(+ P/2+q) as independent in-

Sy= 2 f d3xd3yJa(x)DW(x y)J (y)+f d?’Xz,baM'y’uz// tegration variables as i8], and performing the functional

(42 integration over fermions, we obtain

2 2 3
whered, = (dy,d,,d3+ ) andJ is the usual colored cur- 3%(1— —) f d3x |U(X)| -2 Zf d q3
rentgyry,(Na/2). We may now Fierz thdJ term into the (2m)
relevant particle-hole channel. The simplified propagator —0-Q,
[Eqg. (39)] is used as we are working in the Landau gauge. XIn de{ H
The Fierzing factors are F —o Q-
(46)
1 1 L
Color: 3 1—N— , where Q. =[(£P/2+q),(£P3/2+qs;—iw)]. The determi-
€ nant is over an (4N¢-N¢)X(4-N¢-N¢) matrix. The gap
equation follows by variation and the result is
1
Flavor 7 (42
F(k)= (k=)
. = F
Spin: 3. y |q|2 EQ) . @
| _ N [% i +F(a)?
Following [10], we introduce a Hermitian bilocal field 2ip

3.(x,Y) to linearize the Fierzed form of thk] term by using - .
a Hubbard-Stratanovich transformation, as The measure isl°q=dqdq, dgs, whereq;=q-P andq,
=d—qP. The form factor(q) decreases rapidly as we go
further from the Fermi surface, therefore, dominant contribu-
1__) f d3xd3y[¢// H(y)]ID(x—y) tions to the integral oveq; come from the region where
q;~F(qy). The gap is approximately constant in the di-
. rection. Theq, integration extends ta\ | = 2uF,, where
X[(y) 1/1(X)]) Fo is the maximum Overhauser gap. Thus, it picks up con-
tributions from a larger region thay), does. As the particles
_ will be placed on mass shelig andq), are of the same order.
=J dE(x,y)ex% _SZ_J d*xdPy ()X (X,Y)¥(Y) |, The contour integration ovegs is performed with the con-

straint|ql|2s2,ueq52,u\/q2”+ F(q))?. With these observa-

39
16

(43 tions, the gap equation becomes
with F(k,ki):3(Nc—1)ng daa F(ay) JALd
. 2(2m)® W 0
>3 ( ) jds & (EE: ys)/l) -9 XDk =ack=qy). (48)

The electric and magnetic terms can be dealt with separately,
The action in the quark fields is now linear and the functionalas in the BCS case. The gap is approximately constant in the
integration may be performed. Before doing so, however, wé, direction, so we study the dependencekpralone.
make a simplifying ansatz for the bilocal field With electric screening in matter, the gap equation reads
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F 1-1MNg)\?
F(k V= d F(qH) 1 _OE ( C( c)) , (54)
I U= > 2 > Go (1+1/N,)
\/qH+F(qH) \/mo+(k||—q\\)
, Ay which shows that in 21 dimensions, the Overhauser gap is
Xtan | (49 larger than the BCS gap for sufficiently larbe . Finally, an
vmp + (k= qp) assessment of the energy budget for the two competing

mechanisms yields
wherex=3(N.— 1)g?/4(2m)3.
In case of Landau damping of the magnetic mode, the gap

equation is cov _(ALFo)Fo_(Fo 2 Fo 2 55
escs (1Go)Go \Go/ | m/
F ko) fd F(ap) c
=K | aq T
Vafj+F(q))? (Emélk—qnl> IV. CONCLUSIONS
4 (50) In considering BCS and Overhauser pairing it 12 di-

mensions, we have argued for the form of the condensates
wherec=(6 In2+2\/§7-r)/18. In writing Eq.(50), we have that we have choseq to study. The gap equ.ations are written
. 2 13 . down and treated with the effects of electric screening and
expanded in im.leH.—q.HI) /A, and retained only the | 5nqay damping in matter. For the case sf2dimensions,
leading term. This ratio i\ dependent and the expansion gnq to leading order in perturbation theory, we have derived
turns out to be valid only at sufficiently largé. [see Ed. modifications to the gluon propagator from screening by
(53)]. Noting thatmp, is typically much larger than the gap, quarks, using the imaginary time formalism. The standard
the magnetic binding will drive the formation of the gap. Nambu-Gorkov formalism is more subtle for the Overhauser
Proceeding as in the BCS case, we convert the integral equgase due to the absenceyfand the effective action method
tion into a differential one, is applied instead. A comparison of the BCS and Overhauser
gap in Landau gauge, shows that the latter is preferred with
" . increasingN.. The energy budgeting shows that BCS pair-
3kﬁF (kyp) + 4k 7 (k) + x, I =0, (52) ing is negatively affected by the reduction of available phase
l space for pairing in the lower dimension. The gaps them-
B 3. 213 ) , selves are small, being of ordea{/u), although the en-
where «, = (cm«)/(3mp) . Equation(51) is analogous 0 panced infrared sensitivity in-21 dimensions prevents us
Eq. (33) obtained for the BCS gap. The solution follows:  from g definitive conclusion on their gauge independence.
Also, the coupling does not run int2l dimensions, so it is
[Ks e not possible to set a perturbative scale, and consequently to
p7/6 Ji| 6 ?kn say whena/p is small. Our perturbative analysis assumes
0 (52) that we can takex/u small. It is interesting to note that

( Ky kﬁ’G ' unlike the case of 31 dimensions or 1 dimensions, the
3, 6\ —Fo 1

F(kp

F k)=

BCS and Overhauser gaps show power law dependence
(g* ) in Landau gauge. Therefore, they are more sensitive
. . to higher order corrections from perturbation theory than
with Fo=(x,/3)%(6/x0)°, the maximum Overhauser gap. their corresponding forms in-8L dimensions. A numerical
Note that the conditiorFo<mp is satisfied since=o/mp  analysis of the gap equations in+2 dimensions would
~(alu)®. As in the BCS casero/u~(al/u)® These ob-  complement our theoretical approach, and would also serve
servations justify the neglect of electric screening effectstg test the validity of some of the approximations. Finally, it
The validity of the approximation in E¢50) implies thatthe  would be interesting to consider the effects of the crystalline

ratio superconducting phase discussed recently by offidrd 7]
) as a competing instability in this space-time dimension.
§ 2 s Note addedWhile writing our paper, we were informed
4 MpFo 27TX(2) 12 7.24 \12 that a related analysis for the BCS case was being performed
= - =| T (53 by V. A. Miransky, G. W. Semenoff, I. A. Shovkovy and L.
Ay 6¢(N.—1) (N.—1)

C. R. Wijewardhana.

should be small. So long ds, is sufficiently large, the ap-
proximation and the resulting estimate of the Overhauser gap
can be trusted. IN. does not meet this condition, the bind-
ing is disturbed throughout the pairing region by Landau We are grateful to Thomas Sdkafor useful discussions.
damping. With this caveat, we can make a comparison of th&his work was supported by the US-DOE grant DE-FG-
maximum BCS and Overhauser gapg (@ndGg). We find ~ 88ER40388.
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