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BCS versus Overhauser pairing in dense„2¿1…-dimensional QCD
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Department of Physics & Astronomy, SUNY at Stony Brook, New York 11794-3800

~Received 21 March 2001; published 8 June 2001!

We compare the BCS and Overhauser effect as competing mechanisms for the destabilization of the quark
Fermi surface at an asymptotically large chemical potential, for the special case of 2 space and 1 time
dimensions. We use the framework of perturbative one-gluon exchange, which dominates the pairing at
m/g2@1. With screening in matter, we show that in the weak coupling limit the Overhauser effect can compete
with the BCS effect only for a sufficiently large number of colors. Both the BCS and the Overhauser gaps are
of orderg4/m in the Landau gauge.
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I. INTRODUCTION

Quantum chromodynamics~QCD! at high density was
first studied in the late 1970s@1,2# and has received renewe
attention, especially in the past three years@3–6#. At large
baryon density and small temperature, it is relevant to stu
of neutron stars and heavy ion collisions in the baryon r
regime. Theoretical studies of dense quark matter have
vealed the preferred phase to be a color superconductor
several novel features such as color-flavor locking, ch
symmetry breaking, color Meissner effect and the format
of a mass gap.

At asymptotic densities, the Fermi surface for quarks
well defined and the low energy excitations are weakly
teracting quasiparticles and holes. In QCD, perturba
1-gluon exchange can provide an arbitrarily weak attrac

interaction in the color anti-symmetric3̄ channel that desta
bilizes the Fermi surface and causes particle-particle pair
Another mechanism of destabilization is particle-hole pair
~Overhauser effect! @7#, studied earlier in a variationa
method and for largeNc @8,9#. More recently, it has been
shown that the equations driving the particle-hole instabi
resemble those of the BCS instability, modulo phase-sp
factors@10#. A novel mechanism for destabilizing the Ferm
surface through a BCS crystal was also recently suggeste
@11# and may also compete with the instabilities to be stud
below. Its consideration is outside the scope of this work

Screening affects the strengths of the BCS and Ov
hauser pairing. The authors of@10# have shown that in the
regime of weak coupling in 311 dimensions, the BCS effec
is dominant up to a large number of colors. In 111 dimen-
sions, the drastic reduction in phase space for BCS pai
with no comparable reduction for Overhauser pairing me
that the latter dominates whateverNc . In this work, we wish
to establish the case for 211 dimensions, taking into accoun
the screening in this space-time dimension.

This paper is organized as follows. In Sec. II, we der
the quark 1-loop contribution to the gluon propagator in
covariant gauge, at finite temperature and density (T!m for
cold and dense matter!. Section III motivates the symmetr
of the particle-particle and particle-hole condensates in 211
dimensions, followed by formally differing derivations of th
gap equations for these two objects. The resulting gap e
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tions are solved in the presence of electric screening
Landau damping in dense quark matter. We present our
sults for the gaps in the Landau gauge. The conclusion
our analysis are in Sec. IV.

II. SCREENING IN 2 ¿1 DIMENSIONS

We begin by evaluating the gluon polarization tensor
matter in the imaginary time formalism@12#

Pmn~q0 ,q¢ !5g2T(
n
E d2p

~2p!2
TrS gm

1

p”
gn

1

p”1q”
D , ~1!

whereq , p and p1q denote respectively the 4-momentu
of the gluon and the two internal quark lines. At finite tem
perature and density, one makes the usual identificationip3
5p05(2n11)ipT1m for fermions andiq35q052nipT
for bosons~here,n labels the Matsubara frequency!. In 211
dimensions, the Pauli matricesgm[sm[(s3 ,isW ) generate a
representation of the Clifford algebra$gmgn%52gmn with
gmn5diag(1,21,21). In an arbitrary covariant gauge wit
gauge parameterl, the inverse propagator in matte
(D21)mn andPmn are related as@13#

~D21!mn5q2gmn1Pmn2qmnS 12
1

l D . ~2!

Evaluating the Matsubara sum using contour integrati
omitting the vacuum piece~T andm independent!, and ana-
lytically continuing iq35v1 i e, we get in the limitT→0
~with q 5uq¢ u)

P005g2F S 2
m

2p
1

q

16D1 i
v

q S 2m

4p D Gu~q2v!

1g2F q2

v2 S m

4p D1 i
q2

v2 S 2v

16 D Gu~v2q! ~3!

P'5g2F X q

16
2

v2

q2 S m

2p D C1 i
v

q S 3m

8p D Gu~q2v!

1g2F S 2
m

4p D2 i S v

8 D Gu~v2q! ~4!
©2001 The American Physical Society35-1
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PL5g2Fv2

q2 S m

2p D1 i
v3

q3 S m

4p D Gu~q2v!

1g2F S 2
m

4p D1 i S v

16D Gu~v2q!, ~5!

where P i j 5P'P'
i j 1PLPL

i j , with P'
i j 5(d i j 2qiqj /q2) and

PL
i j 5(qiqj /q2) ( i , j 51 to 3!.

In deriving Eqs. ~3!–~5!, the approximations1 v,q!m
have been made since energy transfers in the scattering oqq

~BCS! andq̄q ~Overhauser! pairs are of the order of the gap
and momentum transfers can be taken to be small for
ward scattering of quarks. In Euclidean space, the scree
gluon propagator in Feynman gauge reads

DE,M~x2y!5E d3q

~2p!3

e2 iq•(x2y)

q21mE,M
2

, ~6!

where mE
25mD

2 refers to the Debye mass andmM
2 to the

magnetic scale generated by Landau damping. Their va
~generalized toNf flavors! follow from Eqs. ~3! and ~4! re-
spectively and are given bymE

2/g2m5mD
2 /g2m5Nf /2p and

mM
2 /mD

2 5 3
4 uq3u/q. Note that the couplingg2 has mass di-

mensions. The results are similar to that in 311 dimensions
for which mE

2/g2m25mD
2 /g2m25Nf /2p2 and mM

2 /mD
2

5(p/4)uq4u/q.

III. CONDENSATES AND GAP EQUATIONS IN 2 ¿1
DIMENSIONS

A. Condensates

Usually, diquarks are taken to condense in the parity e
01 channel. In 211 dimensions, parity is defined by inve
sion about 1 spatial coordinate only, as it is an impro
transformation. For the sake of definiteness, we define
parity transformation in space asx1→x1 , x2→2x2. The
parity operator in spin space is thens1 which implies that a
term like q̄q is not invariant under this transformation. Thu
for the particle-hole pseudoscalar condensate with 2 flav
we have the action of the parity operator~P! as

q̄1c1fq5ūu1d̄d→
P

2ūu2d̄d, ~7!

wherec and f denote color and flavor respectively. A scal
condensate may still be written down if we allow parity

change isospin asu(d)→
P

1/2s1d(u). Then we have

q̄1cs3
f q5ūu2d̄d→

P

2d̄d1ūu. ~8!

1The gaps in 211 dimensions are power law suppressed, and c
is needed in introducing this approximation in our perturbative
sult.
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The 1/2 indicates that there are 4 possible sign combi
tions we can choose in the combined transformation of th
and d quarks. Note that this new definition of parity does
affect the way the pseudoscalar transforms. Now, we will
that the relative sign is also determined for us by the partic
particle condensates.

The charge conjugated spinor transforms under parity

qc→
P

det(LP)s1qc, whereLP denotes the matrix correspond
ing to the improper Lorentz transformation P. There is
extra minus sign as compared to the parity transformation
the quark spinor. The charge conjugation matrixC is s2,
which is antisymmetric. The attractive color channel3̄ is
anti-symmetric and the overall wave function for the BC
pairing must also be anti-symmetric, therefore, one is for
to chooses2

f for the flavor matrix. Then, the scalar BC
condensate is

q̄cl2
cs2

f q5ūcd2d̄cu. ~9!

For this to be even-parity, bothu andd should have the sam
sign in their transformation. On the other hand, a pseu
scalar BCS condensate will necessarily have a relative
between the transformations foru andd. In this paper, it is
the scalar which is studied.

These problems arise in odd space-time dimensions du
the lack of a consistent definition for a gamma matrix th
anti-commutes with all thegm’s, namely g5. We proceed
now to the gap equations for the scalar particle-particle
particle-hole condensates.

B. BCS gap equations

In order to derive the BCS gap equation, we will use t
standard Nambu-Gorkov formalism, which introduc
charge-conjugated spinors to enable the writing of the g
erating functional of QCD at finite chemical potential in
form identical to that at zero chemical potential@14#. With
charge conjugation defined ascc5Cc̄T, the Nambu-Gorkov
spinor is C5(c,c̄T) and can be expressed as a 4•Nc•Nf
column vector. Neglecting quark mass effects, the form
the gap matrix is

D i j
ab~q!5~l2!ab~s2! i j CH D1~q!

1

2
~11sW 3q̂!

1D2~q!
1

2
~12sW 3q̂!J , ~10!

where L65 1
2 (16sW 3q̂) are the particle and anti-particl

projectors respectively in 211 dimensions.~In the weak cou-
pling limit a/m!1 with a5g2/4p, the equations of motion
allow us to replacesW 3q̂ by the unit matrix so that only the
gapD1 remains and the anti-gapD2 drops out. Moreover, the
anti-gap is strongly gauge dependent.! The self-energy in the
Nambu-Gorkov formalism obeys the Schwinger-Dyson~SD!
equation

re
-
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S~k!52 ig2E d3q

~2p!3
Gm

a S~q!Dmn
ab~q2k!Gn

b. ~11!

Here,S(k)5S21(k)2S0
21(k) is the proper self-energy with

S(k) as defined in@15#. Gm
a is the quark-gluon vertex which

we take to be the leading order result in perturbation the

Gm
a 5S gmla/2 0

0 2~gmla/2!TD . ~12!

We also neglect the wave-function renormalization to le
01403
y,

-

ing order in the weak coupling so that the diagonal part
the self-energy has only the free quark propagators. Th
fore,

S21~q!5S q”1m” D̄

D ~q”2m” !TD , ~13!

whereD̄5g0D†g0. DeterminingS21 from Eq.~13!, inserting
the ansatz Eq.~10! for the gap, and projecting out the pos
tive energy part, we obtain the integral equation
e
ge
s not

xing

s

D1~k!52
Nc11

2Nc
ig2E d3q

~2p!3 F D1~q!

q0
2 2~ uq¢ u2m!22D1~q!2H S 1

2
1

1

2
k̂•q̂DD'~k2q!1S 1

2
1

1

2
k̂•q̂DDL~k2q!

1„K02
~11 k̂•q̂!…

Dl

2 J 1
D2~q!

q0
22~ uq¢ u1m!22D2~q!2H ~12 k̂•q̂!D'~k2q!1S 1

2
2

1

2
k̂•q̂DDL~k2q!

1„K02
~12 k̂•q̂!2uK¢ u2~11 k̂•q̂!…

Dl

2 J G , ~14!

whereK5q2k, D'51/(K22mM
2 ), DL51/(K22mD

2 ) andDl5l/K4 from the gluon propagator in the covariant gauge. W
note that only the term for the gapD1 @henceforth referred to asG(q)# is relevant at the Fermi surface and that it’s gau
dependence multiplies the factorK02

/K2 which is essentially the amount by which the quarks are off mass shell. This i
sufficient to tame the infrared divergence from the 1/K2 of the gauge-fixing part of the propagator in 211 dimensions, in
contrast to 311 dimensions~see below!. An estimate of the relative contributions of the electric, magnetic and gauge-fi
terms can now be made.

1. Gauge fixing contribution„Dl…

It is the momenta on the Fermi surface that make the most contribution to the integral, thereforeuq¢2k¢ u2>2m2(1
2cosu). Settinguq¢ u2m>quu , the integration measure becomesdq3mdquudu, and the continuation to Euclidean space give

G~k3!5
lk

2 E dq3mdquuG~q3!~q32k3!2

q3
21quu

21G~q3!2 E du~11cosu!

„~q32k3!212m2~12cosu!…2
, ~15!

wherek5„(Nc11)/2Nc…„g
2/(2p)3

…. Performing the angular integration exactly, we find

G~k3!5lkpE dq3mdquuG~q3!

q3
21quu

21G~q3!2 F 1

uq32k3uA~q32k3!214m2G . ~16!

Integrating overquu , the pole from the quasi-particle propagator gives

G~k3!5lkmp2E dq3

G~q3!

Aq3
21G~q3!2 F 1

uq32k3uA~q32k3!214m2G . ~17!

The region of interest isq3 ,k3!m, since the quarks are almost on mass shell. In that case, we have

G~k3!>
lkp2

2 E dq3

G~q3!

Aq3
21G~q3!2

1

uq32k3u
. ~18!
5-3
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2. The electric contribution„DL…

The angular integration yields

G~k3!5
kp

2mE dq3dquuG~q3!

q3
21quu

21G~q3!2 S A„~q32k3!21mD
2
…

214m2
„~q32k3!21mD

2
…

„~q32k3!21mD
2
…

21D . ~19!

As before, the integration overquu picks up the pole in the diquark propagator, and the form factor is the physical regulat
the energy integral. Note that the integrand shuts off forq3@m, but this is an unphysical regulation since we are far from
Fermi surface physics. For the physical region ofq3!m, we obtain

G~k3!>kp2E dq3G~q3!

Aq3
21G~q3!2

1

A~q32k3!21mD
2

. ~20!

The value of the Debye mass suggests that it is much larger than the gap, so that we may approximateA(q32k3)21mD
2

>mD , with q3 andk3 on mass-shell being of the order of the gap.~We have checked the consistency of this approximat
with the explicit solution for the gap.! The electric term is expected to be of orderk/mD .

3. The magnetic contribution„D�…

The magnetic scale is generated by Landau damping through

mM
2 5

3

4
mD

2 q02k0

uq¢2k¢ u
, ~21!

and the gap equation reads

G~k3!5
k

2E dq3mdquuG~q3!

q3
21quu

21G~q3!2E du~11cosu!

~q32k3!21uq¢2k¢ u21
3

4
mD

2 q32k3

uq¢2k¢ u

. ~22!

As q¢ ,k¢ are on the Fermi surface, we may write

G~k3!5
k

2E dq3dquuG~q3!

q3
21quu

21G~q3!2E mdu~11cosu!

~q32k3!212m2~12cosu!1
3

4
mD

2 q32k3

A2m2~12cosu!

, ~23!
th
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The physics of Landau damping guides us in evaluating
angular piece. For forward scattering,u is small, in which
case the angular piece reads as follows:

E 2mdu

~q32k3!21m2u213mD
2 ~q32k3!/4mu

, ~24!

where we have set 12cosu>u2/2 in the denominator and
11cosu>2 in the numerator. The denominator contains
pieces, which are, respectively, the gluon energy squared
gluon momentum squared and the damping term. Since
scattering of BCS pairs costs little energy~typically of the
order of the gap!, the first piece may be dropped. This
equivalent to saying that the quarks are nearly on mass s
The validity of this approximation rests on the smallness
the gap which will be checked explicitly.
01403
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The remaining 2 terms give us a bound on the angu
region in which magnetic binding of the BCS pairs is d
turbed by Landau damping. Setting the terms compara
we find

umin5

S 3

4
mD

2 uq32k3u D 1/3

m
. ~25!

If u,umin , the Landau damping is active, and is ineffecti
onceu.umin . Energy transfer of the order of the gap im
plies thatumin is small if

mD
2/3G1/3,m. ~26!

This also implies that ignoring (q32k3)2 in the denominator
is valid when
5-4
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G

mD
,

mD

m
. ~27!

It is magnetic gluon interaction between the quasipartic
that builds up the gap, as in 311 dimensions@16#, so we
work in the regimeu.umin . If we keep only the momentum
exchange term in the denominator, we obtain for the ang
integration

2

mEumin

umax du

u2
5

4

61/3mD
2/3uq32k3u1/3

, ~28!

wheremumax>(uq¢2k¢ u)max and we have picked the contr
bution from the lower limit. The contribution from the uppe
limit is subleading. Thedquu integration yields

G~k3!>
2pk

61/3mD
2/3E dq3G~q3!

Aq3
21G~q3!2

1

uq32k3u1/3
. ~29!

Collecting Eqs.~18!,~20!,~29!, the contributions of the
electric, magnetic and gauge-fixing terms are respective

G~k3!>kpS E dq3G~q3!

Aq3
21G~q3!2 H p

A~q32k3!21mD
2

1
2

61/3mD
2/3uq32k3u1/3

1
lp

2uq32k3uJ D . ~30!

The gauge-fixing contribution in covariant gauges is la
suggesting that the ladder plus screening expansion of
SD equation ina/m may receive additional contribution
due to the enhanced infrared sensitivity in 211 dimensions.
A reorganization of the expansion may be needed, with p
haps an emphasis on a physical observable from the ou
Below, we will carry estimates of the gap in Landau gau
l50. The electric contribution gives an exponentially sm
gap if G,mD . The electric screening impliesG
;Le2mD /kp2

, which is exponentially suppressed due to t
large value ofmD /g2. (L is the UV cutoff.!

The magnetic term drives the formation of the gap sin
mD

2/3G1/3,mD . The gap equation becomes

G~k3!5k* E dq3G~q3!

Aq3
21G~q3!2

1

uq32k3u1/3
, ~31!

wherek* 52kp/(61/3mD
2/3). The integral may be split into

two regions, 0,q3,k3 and k3,q3,L, where in the first,
1/uq32k3u1/3'1/k3

1/3, and in the second 1/uq32k3u1/3

'1/q3
1/3. Then, Eq.~31! may be recast as

G~k3!5k* F 1

k3
1/3EG0

k3
dq3

G~q3!

q3
1E

k3

L

dq3

G~q3!

q3
4/3 G ,

~32!

with the scaleG(k35G0)5G0. Differentiating Eq. ~32!
twice with respect tok3, we obtain
01403
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3k3
2G9~k3!14k3G8~k3!1k*

G~k3!

k3
1/3

50, ~33!

which has the solution

G~k3!5
1

k3
1/6Fc1J21S 26Ak*

3
k3

21/6D
1c2Y21S 26Ak*

3
k3

21/6D G . ~34!

Since the Neumann function is complex valued for posit
k3 , c250 ~we are solving for a real gap!. Using G(k3
5G0)5G0 and the boundary conditionG8(k35G0)50, we
obtain

G~k3!5
G0

7/6

J1S 6Ak*
3

G0
21/6D

J1S 6Ak*
3

k3
21/6D

k3
1/6

, ~35!

with G05(k* /3)3(6/x0)6, wherex052.405 is the minimum
finite solution toJ1(x)52xJ18(x). G0 is therefore the maxi-
mum BCS gap. Note that the conditionG0,mD is satisfied
since

G0

mD
;S a

m D 3/2

. ~36!

The conditions imposed by Eqs.~26! and ~27! are also met
because

S G0

mD
D S mD

m D 21

;
a

m
,

mD
2/3G0

1/3

m
;

a

m
. ~37!

Therefore, the approximations made in evaluating the m
netic and electric pieces are justified. It is easy to check
the electric piece is down compared to the magnetic piece

mD
2/3G0

1/3

mD
;S a

m D 1/2

. ~38!

As we work in the Landau gauge, we can repeat the prec
ing analysis using a simplified propagator

Dmn~q!5
2gmn

2
@D'~q!1DL~q!#, ~39!

and arrive at the same equation for the gap, which in Euc
ean space is

G~k!5
Nc11

2Nc
g2E d3q

~2p!3
D~k2q!

G~q!

q3
21~ uq¢ u2m!21G~q!2

.

~40!

As expected, the integral overq is dominated by the mo-
mentauq¢ u.m andq3!m.
5-5
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C. Overhauser gap equations

While it is possible in 311 dimensions to follow the sam
formalism for the Overhauser pairing as in the BCS case,
method is involved in 211 dimensions due to the absence
g5, which is crucial in invertingS21. Chiral projectors are
required to pair particles and holes but since chirality can
be consistently defined in 211 dimensions, the argumen
are more subtle. However, there is a straightforward way
that is to use the effective action formalism developed
@10#.

The induced action in Euclidean space is

Sc5
g2

2 E d3xd3yJm
a ~x!Dmn~x2y!Jn

a~y!1E d3xc̄ ]̃mgmc,

~41!

where ]̃m5(]1 ,]2 ,]31m) and Jm
a is the usual colored cur

rent gc̄gm(la/2)c. We may now Fierz theJJ term into the
relevant particle-hole channel. The simplified propaga
@Eq. ~39!# is used as we are working in the Landau gau
The Fierzing factors are

Color: 2
1

2 S 12
1

Nc
D ,

Flavor:
1

2
, ~42!

Spin:
3

2
.

Following @10#, we introduce a Hermitian bilocal field
S(x,y) to linearize the Fierzed form of theJJ term by using
a Hubbard-Stratanovich transformation, as

expX3g2

16 S 12
1

Nc
D E d3xd3y@c̄~x!c~y!#D~x2y!

3@c̄~y!c~x!#C
5E dS~x,y!expS 2SS2E d3xd3yc̄~x!S~x,y!c~y! D ,

~43!

with

SS5
4

3g2 S 12
1

Nc
D 21E d3xd3y

~ uS~x,y!u!2

D~x2y!
. ~44!

The action in the quark fields is now linear and the functio
integration may be performed. Before doing so, however,
make a simplifying ansatz for the bilocal field
01403
e
f

t

d
n

r
.

l
e

S~x,y!52cosFPmS xm1ym

2 D Gs~x2y!

52cosFPmS xm1ym

2 D G E d3q

~2p!3
e2 iq•(x2y)F~q!,

~45!

wherePm5(P¢ F,0) anduP¢ Fu52m. P¢ F points in the original
direction of one of the quarks.S characterizes a standin
wave of total momentum 2m. ~The pairing is between a par
ticle and a hole at the opposite edges of the Fermi surfa!
Introducing fermion fieldsc(6P/21q) as independent in-
tegration variables as in@8#, and performing the functiona
integration over fermions, we obtain

3g2

8 S 12
1

Nc
D SS

V3
5E d3x

us~x!u2

D~x!
22g2E d3q

~2p!3

3 ln detI2s•Q1 F

F 2s•Q2
I ,

~46!

where Q65@(6P¢ /21q¢),(6P3/21q32 im)#. The determi-
nant is over an (4•Nc•Nf)3(4•Nc•Nf) matrix. The gap
equation follows by variation and the result is

F~k!5
3

2
~Nc21!g2E d3q

~2p!3
D~k2q!

3
F~q!

H q31
uq¢ u2

2imJ 2

1quu
21F~q!2

. ~47!

The measure isd3q5dquudq'dq3, wherequu5q¢•P̂ and q'

5q¢2quuP̂. The form factorF(q) decreases rapidly as we g
further from the Fermi surface, therefore, dominant contrib
tions to the integral overquu come from the region where
quu;F(quu). The gap is approximately constant in theq' di-
rection. Theq' integration extends toL'5A2mF0, where
F0 is the maximum Overhauser gap. Thus, it picks up c
tributions from a larger region thanquu does. As the particles
will be placed on mass shell,q3 andquu are of the same order
The contour integration overq3 is performed with the con-
straint uq'u2<2meq[2mAquu

21F(quu)
2. With these observa-

tions, the gap equation becomes

F~kuu ,k'!5
3~Nc21!g2

2~2p!3
E dquu

F~quu!

Aquu
21F~quu!

2
E

0

L'

dq'

3D~k'2q' ,kuu2quu!. ~48!

The electric and magnetic terms can be dealt with separa
as in the BCS case. The gap is approximately constant in
k' direction, so we study the dependence onkuu alone.

With electric screening in matter, the gap equation rea
5-6
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F~kuu!5kpE dquu

F~quu!

Aquu
21F~quu!

2

1

AmD
2 1~kuu2quu!

2

3tan21S L'

AmD
2 1~kuu2quu!

2D , ~49!

wherek53(Nc21)g2/4(2p)3.
In case of Landau damping of the magnetic mode, the

equation is

F~kuu!>kpE dquu

F~quu!

Aquu
21F~quu!

2

c

S 3

4
mD

2 ukuu2quuu D 1/3,

~50!

wherec5(6 ln212A3p)/18. In writing Eq. ~50!, we have

expanded in (34 mD
2 ukuu2quuu)1/3/L' and retained only the

leading term. This ratio isNc dependent and the expansio
turns out to be valid only at sufficiently largeNc @see Eq.
~53!#. Noting thatmD is typically much larger than the gap
the magnetic binding will drive the formation of the ga
Proceeding as in the BCS case, we convert the integral e
tion into a differential one,

3kuu
2F9~kuu!14kuuF8~kuu!1k*

F~kuu!

kuu
1/3

50, ~51!

wherek* 5(cpk)/( 3
4 mD

2 )1/3. Equation~51! is analogous to
Eq. ~33! obtained for the BCS gap. The solution follows:

F~kuu!5
F0

7/6

J1S 6Ak*
3

F0
21/6D

J1S 6Ak*
3

kuu
21/6D

kuu
1/6

, ~52!

with F05(k* /3)3(6/x0)6, the maximum Overhauser ga
Note that the conditionF0,mD is satisfied sinceF0 /mD
;(a/m)3/2. As in the BCS case,F0 /m;(a/m)2. These ob-
servations justify the neglect of electric screening effec
The validity of the approximation in Eq.~50! implies that the
ratio

S 3

4
mD

2 F0D 1/3

L'

5S 2px0
2

6c~Nc21!
D 1/2

>S 7.24

~Nc21! D
1/2

~53!

should be small. So long asNc is sufficiently large, the ap-
proximation and the resulting estimate of the Overhauser
can be trusted. IfNc does not meet this condition, the bind
ing is disturbed throughout the pairing region by Land
damping. With this caveat, we can make a comparison of
maximum BCS and Overhauser gaps (F0 andG0). We find
01403
p

a-

.

p

e

F0

G0
>2S Nc

~121/Nc!

~111/Nc!
D 3

, ~54!

which shows that in 211 dimensions, the Overhauser gap
larger than the BCS gap for sufficiently largeNc . Finally, an
assessment of the energy budget for the two compe
mechanisms yields

eOV

eBCS
5

~L'F0!F0

~mG0!G0
>S F0

G0
D 2S F0

m D 1/2

. ~55!

IV. CONCLUSIONS

In considering BCS and Overhauser pairing in 211 di-
mensions, we have argued for the form of the condens
that we have chosen to study. The gap equations are wr
down and treated with the effects of electric screening a
Landau damping in matter. For the case of 211 dimensions,
and to leading order in perturbation theory, we have deriv
modifications to the gluon propagator from screening
quarks, using the imaginary time formalism. The stand
Nambu-Gorkov formalism is more subtle for the Overhau
case due to the absence ofg5 and the effective action metho
is applied instead. A comparison of the BCS and Overhau
gap in Landau gauge, shows that the latter is preferred w
increasingNc . The energy budgeting shows that BCS pa
ing is negatively affected by the reduction of available pha
space for pairing in the lower dimension. The gaps the
selves are small, being of order (a2/m), although the en-
hanced infrared sensitivity in 211 dimensions prevents u
from a definitive conclusion on their gauge independen
Also, the coupling does not run in 211 dimensions, so it is
not possible to set a perturbative scale, and consequent
say whena/m is small. Our perturbative analysis assum
that we can takea/m small. It is interesting to note tha
unlike the case of 311 dimensions or 111 dimensions, the
BCS and Overhauser gaps show power law depende
(g4/m) in Landau gauge. Therefore, they are more sensi
to higher order corrections from perturbation theory th
their corresponding forms in 311 dimensions. A numerica
analysis of the gap equations in 211 dimensions would
complement our theoretical approach, and would also se
to test the validity of some of the approximations. Finally,
would be interesting to consider the effects of the crystall
superconducting phase discussed recently by others@11,17#
as a competing instability in this space-time dimension.

Note added.While writing our paper, we were informed
that a related analysis for the BCS case was being perfor
by V. A. Miransky, G. W. Semenoff, I. A. Shovkovy and L
C. R. Wijewardhana.
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