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Unitarized pseudoscalar meson scattering amplitudes from three flavor linear sigma models
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The three flavor linear sigma model is studied as a “toy model” for understanding the role of possible light
scalar mesons in thew, 7K and w7 scattering channels. The approach involves computing the tree level
partial wave amplitude for each channel and unitarizing by a sirkpieatrix prescription which does not
introduce any new parameters. If the renormalizable version of the model is used there is only one free
parameter. While this highly constrained version has the right general structure to explacattering, it is
“not quite” right. A reasonable fit can be made if the renormalizabilfor the effectiveLagrangianis relaxed
while chiral symmetry is maintained. The occurrence of a Ramsauer-Townsend mechanism figi98%)
region naturally emerges. The effect of unitarization is very important and leads to “physical” masses for the
scalar nonet all less than about 1 GeV. Epé1450) andK{ (1430) appear to be “outsiders” in this picture
and to require additional fields. Comparison is made with a scattering treatment using a more general nonlinear
sigma model approach. In addition some speculative remarks and a highly simplified larger toy model are
devoted to the question of the quark substructure of the light scalar mesons.
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[. INTRODUCTION sic chiral symmetric model which contains a scalar meson is
the Gell-Mann—Lgy two flavor linear sigma modgB1]. At
In the last few years there has been a revival of interesthe tree level it yields essentially the samer scattering
[1-27] in the possibility that light scalar mesons such as thdength which is the initial approximation in the chiral pertur-
sigma and kappa exist. This is a very important but highlybation scheme. However, compared to that scheme, which
controversial subject. The difficulty is that one must demon-uses a non-linear Lagrangian of pions oh82], it is less
strate their existence by comparing with experiment, believconvenient to systematically implement corrections. Never-
able theoretical amplitudes containing the light scalars. Howtheless it does contain a light scalar meson and it does pro-
ever, the energy range of interest is too low for thevide the standard intuitive picture of spontaneous chiral sym-
systematic perturbative QCD expansion and too high for thénetry breaking. Furthermore, it is likely to b83] an
systematic chiral perturbation theory expansi¢g@8].  accurate model close to the QCD chiral phase transition. Of
Clearly, chiral symmetry should hold but it seems unavoid-course there is an enormous literature on the application of
able to fall back on model dependent approaches. Qualitghe two flavor linear sigma model ta-w scattering. Re-
tively, the dominance of tree amplitudes is suggested by theently, Achasov and Shestakp4] have shown that a quali-
1/N, expansiorf29] and it has been shown by Schechter andtatively reasonable picture emerges at the lower part of our
co-workers[6,12,14,23 that this approach can be used to energy range of interegB4] by using a scheme which is
economically fit the data in the framework of a non-linearequivalent to what we may call K-matrix unitarization.”
chiral Lagrangian which includes vectors and scalars in adNamely, in the standard parametrizati@b] of a given par-
dition to the pseudoscalars. Many related approaches havi@l wave S matrix,
been discussed by other work¢®9]. To put the problem in
historical perspective, the theoretical treatment of meson- 1+iK ]
meson scattering has been a topic of great interest for about S={5g=1+2T, (1.1
forty years and has given rise, among other things, to chiral
perturbation theory and string theory. Nevertheless, the prob- . .
lem itself of explaining light meson scattering amplitudesWe identify
from threshold ta(say) about the 1.5 GeV region is still not
definitively solved. Of course, if the existence of light scalars K= Tiree- (1.2
is true, it will be a crucial step forward.
In such a situation, it is often useful to increase one’sTeciS the given partial wavé matrix computed at tree level
perspective by studying simplified “toy models.” The clas- and is purely real. Such a scheme gives exact unitarityl for
but violates the crossing symmetry whith, itself obeys.
For a more realistic application te7 scatteringi.e. in-

*Electronic address: black@physics.syr.edu clusion of thefy(980)] as well as tarK, 7 scatterings etc.
"Electronic address: fariboa@sunyit.edu it is highly desirable to extend this calculation to the three
*Electronic address: sherif@suhep.phy.syr.edu flavor case. That is the purpose of this paper. We will see
8Electronic address: snasri@suhep.phy.syr.edu that it provides a very predictive and reasonably successful
IElectronic address: schechte@suhep.phy.syr.edu model which gives interesting new insights.
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The three flavor linear sigma modg36] is constructed
from the 3x 3 matrix field
M=S+i¢ (1.3

whereS=S' represents a scalar nonet afe ¢ a pseudo-
scalar nonet. Under a chiral transformatign—U,q,, dg

— URgR of the fundamental left and right handed light quark

fields, M is defined to transform as

M—U MUL. 1.9
To start with, one may consider a general non-
renormalizablg37] Lagrangian of the form
1 1
EZ—ETI’(&Md)ﬁMq‘))—ETI’(&MSL?MS)—VO—VSB,
(1.5

where V, is an arbitrary function of the independent
SU(3) X SU(3)rXU(1)y invariants

Li=Tr(MM"), 1,=Tr(MMTMMT),

I,=Tr(MM"3), 1,=6(detM+detM™).

(1.6

Of these, onlyl 4 is not invariant undeld (1), . The symme-
try breakerVgg has the minimal form

Vsg= —2(A;S1+A,S5+AsS)), (1.7)

where theA, are real numbers which turn out to be propor-

tional to the three light“current” type) quark masses.
The Lagrangian Eq(1.5 contains the most general “po-
tential” term V, but still has the minimal “kinetic” term. It

is possiblé to also include non-renormalizable kinetic-type

terms like Trg,Ma,MMM"), Tr(9,MM'9,MMT)

+H.c., etc. We shall disregard such terms in the present

paper. It is interesting to nof&7] that the results of “current
algebra” can be derived from Ed1.5 without knowing

detalls ofVy, just from chiral symmetry and the assumption

that the minimum ofV=V,+ Vgg is non-zero; specifically
the “vacuum values” satisfy
(Sh)=a . (1.8

The “one-point” vertices(pseudoscalar decay constants
are related to these parameters by

F77= a1+ as, FK=a1+ ag3. (19)
In the isotopic spin invariant limit one has
Ai=A,, a;=a, (isospin limit). (1.10

Many, though not all, of the “two-point” verticegpar-
ticle squared massesmay be calculated b}37] single dif-

Isee, for example, Sec. IV §88].
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ferentiation of two “generating equations” which express
the chiral symmetry oV, and also using

N 0 (1.11
oL/ '
For example, one finds
A+ A, A+ Az
20— 201+ —
me(m") 2a1+a2’ ( 2a1+a3' (1.12

The formula for the mass of the’ (and of the particlesy

and 7° with which it may miX also involves the quantity
N

V,=(—2). (1.13
al,

Many of the three point and four point vertices may be
obtained by respectively two times and three times differen-
tiating the above mentioned generating equations. The spe-
cific terms needed for our subsequent discussion are given in
the Appendix.

The present model requires (s the limit of isospin
invariance to specify the five parameterf,, As, a1, a3
andV,. These may be obtained by using the five experimen-
tal input values:

m,=0.137 GeV, my=0.495 GeV,
m,=0.457 GeV, m, =0.958 GeV,

F_=0.131 GeV (inputs. (1.14

This is a reasonable, but clearly not unique choice for the
inputs. (For example,Fx might be used instead ah,.)
With these input parameters there are two immediate predic-
tions for pseudoscalar properties:

Fk

6p=2.05",

1.39, (1.15

m

where the pseudoscalar mixing angg, is here defined by

SOR Py
7' cosby |\ no)
n and ' are the “physical” states while the “unmixed”
states are ng=(¢1+ dp5—2¢3)/\6 and ny=(¢i+ ¢3
+¢3)/\/3. The predictions in Eq(1.15 are qualitatively
reasonable but not very accurate; the usually accepted value
for 6, while small, is[39] around— 18° and the experimen-
tal value forF /F . is about 1.22(lt is likely that the inclu-
sion of non-renormalizable kinetic terms mentioned above
will improve this aspec}.

Now, the scalar meson masses are of the most present
interest. Analogously to the pseudoscalats K, 7g, 7s)
we denote the scalars bya{, «, og, og). The predicted
squared masses from the “toy” Lagrangian in Eg.5 are

( cos6,
(1.1

s:|n¢9p

(az— al)méARE(aS) =2(A;—Ay),
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5 L 2(A3—Ay) which translates tay~ 6;+54.7°. With the Lagrangian Eq.
Mgare( k)= "o’ (1.5 the amplitude Eq(1.18 depends on the three unknown
8 T parametersngare(o), Meare(co’) and .
We can increase the predictivity of the model by restrict-
méARE( K%)= 2(A3—Ar) _ (1.17) ing the potentiaV, in Eqg. (1.5 to contain only renormaliz-

az—ap able terms. The resulting model is the one usually considered
since it allows for a consistent perturbation treatméait
In this case, the masses @f, og and their mixing angl#,  though the coupling constants are very larde any event,
[defined analogously to E@1.16)] are not predicted. In the we will be working at tree level and “simulating” higher
isotopic spin invariant limit, which we shall adopt here, theorder corrections by th&-matrix unitarization procedure.
ap mass is not predicte@lthough it may be reasonably es- Note that all the formulas gotten above with genéfglcon-
timated[40] by taking isospin violation into accountNote  tinue to hold in the renormalizable model; there will just be
that we have, in contrast to the pseudoscalar case, put a suidditional restrictions. The renormalizable potential may be
script “BARE” on each scalar mass. This is because thewritten [41] as
pole positions in the pseudoscalar-pseudoscalar scattering
amplitudes corresponding to scalar mesons may be non-
trivially shifted by the unitarization procedure of Ed4.1)
and(1.2). We consider the unitarization to be an approxima-
tion to including all higher order corrections. Then, in the T Vala+Vyly, (1.2
usual field theoretic way of thinking, the pole position deter- ]
mines the physical mass, while the tree lengyre has no ~ Where we have used the notation
clear physical meaning. )
The tree levelr 7 scattering amplitude is easily computed — <”7_V0> E< IVo > (1.22
[37] from Eq. (1.5 in the present scheme. It involves a four T\ aly [t T alaly) '
point “contact” amplitude ando and ¢’ exchange dia-
grams. The resulting forfnturns out to be remarkably As discussetiin [41], we may determin®, andV, from the
simple: extremum equation Eq1.11) while V,; may be expressed in
terms ofmgare(o). Thus specifyingmgare(o) determines
(M g ) — M2)2 t_he model parameters (_:ompletely. A_ctuaImBARE(a_O) is_,_
BARE ™ fixed to be 0.913 GeV just by requiring renormalizability,
Mare(0) —S independent of the choice afgare(o). Using Eq.(1.17) we
) ) 2.0 find thatmgare(x) =0.909 GeV, independent of whether we
(Mgage(o’) —m7) make the renormalizability restriction or not. Finally, the de-
méARE(U’)—S pendepces ahBARE(g’) and 6, on'the choice oanARE(a)
are displayed in Fig. 1. Choosing the convention where
] Mgare(0) <mMgare(o’), the model does not allow for

1
Vo(renormalizablg=[V;— V(S 4a2) ]l 1+ > Va(l )2

A(s,t,u)=

2
[m721_+ cosy

2
™

+sirty

2
—Mgare(0)

2
—Mgpre(0”)

(118  mgpre(o) greater than about 0.813 GeV. Furthermore
Mgare(o’) must be greater than about 0.949 GeV in the

_ renormalizable model.
wheres, t and u are the usual Mandelstam variables. The |n sec. Il we study the simpler two flavor model both for

angley is defined by the transformation the purpose of review and for introducing our notation and
the method we will use in the three flavor case. We will also
) Si+S§ illustrate just how well the amplitude can be approximated
AN cosy —siny 2 by a pole in the complex s-plane plus a constant. A number
') \sing cosy 2 ’ (119 of new remarks are made. Section Ill contains a detailed
§ discussion of the s-wave 7, wK and» scattering ampli-

tudes in the unitarized three flavor model. Both plots of the
wheré€ y is related to the anglé, [defined analogously to Ppredicted amplitudes compared with experiment and numeri-
Eq. (1.16] by cal calculation of the pole parameters will be seen to be
useful for understanding the dynamics. A summary and dis-
cussion of the calculations of the scalar meson parameters
1 ) . , :
cosyr= — (cosfs— \/2sinby), (1.20  are presented in Sec. IV. Section V contains a more specu-

V3

“4Please notice the relevant typographical errofii: (1) In the
2The sign ofA(s,t,u) is the negative of the one in the convention first of Eqs.(2.2), A;/w—1 should be replaced b§;/w—A;. (2)

of [37] but in agreement with those [12,13,23. In the second line of Eq(2.5¢0 4awV,; should be replaced by
3Note that neithery nor 6, are defined in the same way @ésin 40®wVy;. (3) In the numerator of Eq(2.8) the factor (4v) 2
Eq. (3.6) of [15]. should be replaced by ¢ 2.
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2.5

FIG. 1. Dependencéleft) of
401 mgare(o’) in GeV and(right) of
msp? | s the octet-singlet mixing angl@s
in degrees omMgare(0), in the
renormalizable  linear  sigma
model.

0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

ms ms

lative discussion on the question of the “quark substructure” 2 méARE( o) —m?
of the light scalars. It is pointed out that there is a difference  A(s,t,u)= —[Miare(0) —M2]| —5——— — 11_
in describing this at the “current” and “constituent” quark Fa Mgare(0) =S

levels. Also, while the linear sigma model is set up on the 21
“current” quark basis, it does not uniquely describe the i

quark substructure. In the present model, the initial “current-1he pole term in the second bracket representsothex-
quark” meson field leads to constituent type states which aréhange Feynman diagram. Naively one would expect this
modified both by details of symmetry breaking and by uni-term by itself to describer dominance of the low energy
tarization. The possible richness of the scalar meson syste@nPlitude. However, the<1) piece, which comes from the
for further study is illustrated by the introduction of a larger four point contact interaction, is needed in this model to

toy model which includes two differed matrices. satisfy chiral symmetry. It is easy to see that there is a dra-
matic partial cancellation of the two terms near threshold.

For example, if we take the single unknown parameter in the
1. TWO FLAVOR LINEAR SIGMA MODEL model,mgare(o) to be 1 GeV, then the pole term at thresh-
old [sth=4m,27] is about 1.06. This gets reduced to just 6%
It seems useful to first review the two flavor case and toof its value after adding the constant piece. Near threshold

make some additional comments. We start by exploring th§e can approximaten2 ,qe(o)>[m? ,s] to get the famous
difficulty with a conventional extension of the tree level am-«cyrent algebra”[42] formula
plitude beyond the threshold region. This also provides the

usual motivation for the introduction of the nonlinear sigma 2(s— mz)
model. A(st,u)~ PRt (2.2
F’ﬂ
A. Standard unitarization procedure and its problems We have just seen that this is a small quantity which has

arisen from a partial cancellation of two relatively large

It is easy to get the two flavar 7 scattering amplitude b . .
yg 7 g P y terms. Now if we wish to use E@2.1) away from threshold

taking a suitable limit of the three flavor amplitude given in ; M -
Eq. (1.18. We simply decouple ther’ by setting theo we 2run into the problem qf an |_nf|n|ty arising whes _

— o' mixing angley to zero, as is evident in Eq1.19. =mgare(0). A standard unitarization procedure to avoid
Then o becomes $i+$§)/\/§ while a’=S§ does not be- this problem would correspond to making the replacement

long to the SW2) theory and decouples; we are left with the
tree amplitude: 1 1 2.3

N
2 2 . '
Maare(0) =S Mgare(0) —S—iI'Mgage(0)

5Since this formula was gotten as a limit of the @Umodel with ~ Wherel" is a width factor. The trouble is that the delicate
an arbitrary(not neccessarily a fourth order polynomigbtential, ~ partial cancellation with the contact term is now spoiled near
we see that the tree result E@.1) is independent of whether the threshold and consequently there will be a very poor agree-
SU(2) linear sigma model potential has only renormalizable termsment with experiment in the threshold region.
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The most popular alternative treatment introduces a non- 1
linearly transforming pion field and ne at all. (Formally it
may be gotten by “integrating out” the of the linear model
but this is not the most general formulatipihen the cur-
rent algebra formula Eq2.2) is obtained directly from a
derivative type four point contact teritas opposed to the
non-derivative type in the linear modelThis approach
forms the basis of the chiral perturbation schefokpions S
only). The next order correction will involve more powers of *
derivatives and hence will not drastically modify the already
reasonable current algebra result.

A sigma-type particle can be introduced in a general way  -05 ¢ ‘\\\ N
(independent of the linear sigma modah the non-linear RNY
framework by using a standard technig8]. In this ap- o
proach theo s couplings are inevitably of derivative type f\\\\
so theo-pole contribution is small near threshold and does “bas 045 0.65
not drastically alter the current algebra result. This is clearly Vs
convenient since a regularization of the type Ez3) will FIG. 2. Predicted real part af7 1=0 s-wave amplitude using

not now alter the threshold behavior drastically. However eqyarization with different constant widths according to 3.
this does not neccessarily guarantee good experimentghe widths are 50 MeV(solid), 100 MeV (dot9, 200 MeV

agreement away from threshold. (dashes 300 MeV (long-dashes 500 MeV (dot-dashes Here,
It seems worthwhile to emphasize that general modelgng (o) =560 MeV.

made using either linearly or non-linearly transforming chiral
fields represent the same physics—spontaneous breakdown
of chiral symmetry. The choice of which to use is hence O (s)=a(s)+ B(s) 2.9
primarily a question of convenience in extending the descrip- otree M2 age(0) —S '
tion away from threshold. Usually the non-linear approach is
a lot more convenient. In this paper we focus on studying the
linear model, regarding it as a “toy model” useful for in- where
creasing our understanding.

To go further, we need the partial wave projection of the

amplitude Eq.(2.1). Here we specialize to the=0 projec- EARE(U)_quT

TIZ TIZ m
(U) T 1
BARE 10

fion: (9= e
The angular momenturpartial wave elastic scattering am- méARE( o) ’
plitude for isospinl is
| 1 ! | GP(S) 2 242
Ti(s)= Ep(s)f d cosé P,(cosh)A'(s,t,u), (2.5 B(s)= ?(mBARE(U)_ ma)“. 2.9
-1

an

whereA'(s,t,u) is the isospin | invariant amplitude, is the

center of mass scattering angle and Note thata(s) in Eq. (2.9) doesnot blow up wheng?=(s

—4m?2)/4—0.
q(s) Using the partial wave amplitude Eq2.8) and(2.9) it is

, (2.6)  straightforward to give a more detailed discussion of the dif-
16mys ficulty of regulating the infinity as= méARE(o) while still

p(s)=

maintaining the good agreement near threshold. Consider re-

with q(s) the center of mass momgntum for, in general, ay|5cing the denominator in Eq2.8) according to the pre-
channel containing particles, anda,: scription Eq.(2.3). The effect of different constant widtts

2 2 2 2
s*+(mg, —mg )%= 2s(mg +m; )
4= 4s '

in Eq. (2.3 is illustrated in Fig. 2 for an arbitrary choice of
Mgare(o) =560 MeV. It is seen that the effect of increasing

27 the width is to change the slope of the real partT@(s),

Rg(s) near threshold from positive to negative, which con-

T,' is related to the partial wave S-matrd,by Eqg.(1.2). For  tradicts experimenf44]. Note that the unitarity bound
understanding the properties of themeson, theTg ampli- |R8(s)|s% is violated not too far away from threshold.
tude is clearly the most relevant. Using E&.1) and Eqgs. Theoretically, it is most natural to use instead of an arbitrary

(2.4—(2.7) we get the tree approximation

constant, the “running” perturbative width,
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FIG. 4. Effect of different values afngagre(o) on the general-
- . . ized “running width” prescription, outlined around E¢R.11), on
‘rleal pa;t ?fﬂg I”—O s-:/tvaEve Zar;pltl';]ude. l-,rdhe dashed cuErvz és thethe SU2) linear sigma model prediction for real part of ther |=0
current algebra” result Eq(2.9), the solid curve uses Eq2.3) s-wave scattering amplitude. We show the curves (forMeV)

with the perturbative width calculated from E@.10 and the dot- _ :
ted curve uses the regularization prescription outlined around Edgqr?gRgégngi%ggzg' 400(solid), 500(dashek 600 (long dashes

(2.11). Here,mgare(0) =560 GeV.

FIG. 3. Variations on S(2) linear sigma model prediction for

so thatTJ(s) starts out asTQy.ds), which is a reasonable

3 am? approximation. A presumably better approximation is ob-
I'(s)=———=\1- —Amipre(c) —mZ]? - includi - -
167F2 s s LBARE w1 tained by including more terms in an expansion of the de-

(2.10 nominator:

TO
as was tried also ifd]. A plot of the real part of the resulting ~ T9(s)= IOtree

:Tgtree{l"_iTgtree+(iT8treQ2+ o ]
amplitude Rg(s) is shown in Fig. 3 and is seen to badly I otree
disagree with experiment. This is due to the large value of (2.13

the perturbative widtH'[s= mé_ARE_(”)J' It is amusing that  Aq gpserved irf4] this has the structure of a bubble sum in
the somewhat arbitrary modification in the last factor of Eq.fig|g theory. However, in the present case one is working
(2.10: with the partial wave, rather than the invariant amplitude so
there is no integration over intermediate state momenta. Of
[M3are(0) —M2]2—[s—m3]? (2.11)  course, in either case, crossing symmetry is lost. WRjlg.
is gotten from a crossing symmetric invariant amplitude, it is
greatly improves the agreement near threshold, as is al unlikely that the specially iterated amplitude H@.13 can

shown in Fig. 3. However somewhat beyond threshold tha e gotten in this way. The advantage of the method is that it

amplitude also starts to deviate greatly from experiment.guarantees unitarity. If, as is commalyeds) starts getting

O . . .
Thus the prescription Eq2.11) does not completely solve tooo large, T, will be chopped down to size. For example if
the problem, but may help fitting to experiment if the effects | oree JELS Very large:
of other possible particles are also taken into account. The 0 -0 .
effect of different values ofmgare(co) in Eq. (2.9) is illus- So— 1 To—i. (2.14

trated in Fig. 4 for this scheme. The real parth of T8 vanishes in such a case while the

imaginary partl 8H1. In particular this occurs, as we see
B. K-matrix unitarization from Eq. (2.8), at the pole ergt,ee, wheres= méARE. .
We can force unitarity at ab for the scalar partial wave  With the tree level amplitude of Eq2.8), the unitarized
amplitude T9(s) by taking the tree amplitud&d,{s) given ~ S-matrix takes the form
in Egs.(2.8) and(2.9) to coincide withK(s) in Eq.(1.1). To ) ) ]
see what is happening first considéf,.{s) to be small(for s)= [1+ia(s)][mpare(a) —s]+iB(s) (2.19
example near therm scattering threshojd Then, in this [1-ia(s)[Mare(a) —S]—iB(S)
single channel case,

) . wherea(s) andB(s) are given in Eq(2.9). Equation(2.195
So=1+2iTg=1+2iTgeds)+ - - -, (212 s sufficient for comparing the predictions of the model
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[which contains the single unknown parametasare(o)]

with the experiment. However it is also of interest to rewrite

the amplitude so that it looks more like a conventional reso-
nance in the presence of a background. Manipulating Eg.

PHYSICAL REVIEW b4 014031

0.8

0.4 -

(2.15 gives the factorized expression

m'2(s)—s+iB'(s)

_ A2i8p4(9)
So(s) = e %g e s 15 (o) (2.16
where
tar{ Spg(s)]=a(s),
(s)B(s)
mlz(s):méARE(U)‘F;Tz(s),
.o B
B'(s)= Trals)’ (2.17)

This has the desired form although it should be notedriiat
andp’ are boths-dependent. Th& amplitude which follows
from Eq. (2.16 and Eq.(1.1) is the sum of a background
term and a modified resonance term

B'(s)
m'2—s—iB'(s)

(2.18

To(s) =€ %a[ sin §,4(s) ] + €% %bel®)

02+ I3

& 5.5511x107 F

8 . . . . .
0.26 0.46 0.66 0.86 1.06 1.26

FIG. 5. Comparison with experiment of real part of thelJ=0
mar scattering amplitude in the P) linear sigma model, for
Mgare(0) =0.5 GeV (dotg, mgare(o)=0.8 GeV (dashep and
mgare(0) =1 GeV (solid). Experimental datd44] are extracted
from Alekseeveet al. (squaresand Grayeret al. (triangles.

tion of the threshold region, as opposed to the conventional
unitarization scheme of Eg2.3).

Figure 6 shows how th& matrix unitarization works in
detail by comparingRy(s) with R3(S)ee. It is seen that
Rgt,ee already violates the unitarity bound ds=0.43 GeV.

Since we are regarding thi€-matrix unitarization as a
method of approximating all the higher order corrections to
the r7r scattering amplitude, it is clear that the quantities of

It is important to observe that the resonance mass anghysical significance should not be the bare mass and width

width (corresponding to a pole in the complex s plaaee

of o but rather the pole mass, and widthI" ; defined(with

shifted from their bare values. These new values should bg ysual conventionby Egs.(2.19 and(2.20. These quanti-

obtained from the complex solutirg,, of
m'%(z)—z—iB'(z)=0. (2.19

We may choose to identify thehysicalmass and width of
the o from’

(2.20

2_ —
m;—im,I',=2,.

One should keep in mind that the resonance term is no

longer precisely of Breit-Wigner form.
A plot of the real pang(s) of Eq. (2.18 is presented in
Fig. 5 for the choices ofthe single parameter in the mogel

Mgare(0)=0.5 GeV, 0.8 GeV and 1 GeV. It is seen, as
already noted if4], that there is reasonable agreement with 0.4

experiment up to aboufs=0.8 GeV ifmgare(o) lies in the
0.8 to 1 GeV range. Beyongs=0.8 GeV, the effects of the

f,(980), which does not appear in the two flavor model, are

clearly important. Also, the unitarized curves fogare(o)

in the 0.8 to 1 GeV range give a reasonable looking descrip-

SFor complex arguments the In functiondr{z) is chosen to have
an imaginary piece lying betweeni# andi .

ties were obtained numerically and are given in Table | for
the three choices ahgare(o) used above. Evidently there

0.6

0.2

0 o3 0.4 0.5 0.6 0.7
E

FIG. 6. Comparison of real part &f-matrix regularized #J=0

’A different definition of the resonance mass and width was usedrs scattering amplitude with the diverging real part of the tree

in [4] but the numerical results are close to each other.

approximation, formgagre(o) =0.8 GeV.
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TABLE I. Physicalo parameters in

PHYSICAL REVIEW B4 014031

the two flavor linear sigma model.

Mgare(0) (GeV) 0.5 0.8 1
[eare(0) (GeV) 0.311 1.58 3.22

m, (GeV) 0.421 0.458 0.449

I, (Gev) 0.202 0.476 0.624

z, (GeV®) 0.177-0.085 i 0.216-0.218 i 0.202-0.281 i
a, (GeV?) —0.015+0.078 i 0.088-0.169 i 0.158-0.188 i
b —0.420+0.443 i —0.324+0.704 i —0.274+0.753 i

o

are very substantial shifts of the bare mass and the banghich contain the scalars of the modelay( «, o, ') - in
width. The physical sigma pole mass is around 0.45 Ge\the direct channel.

while the pole width is around 0.5-0.6 GeV fogare(o) in
the 0.8 to 1 GeV range.

Exactly the same-matrix unitarization scheme of Egs.
(1.1) and(1.2) which was used in the two flavor model will

In the present model we may qualitatively understand théye employed. In particular, no special assumptions about the

decrease in the mass and also width by noting tha{s)
and B(s) vary slowly with s. If they are taken to be constant
the physical masm, would coincide withm’ in Eq. (2.17)
and the physical quantity, I, with 8’ in Eq. (2.17). Thus
the negative sign of the mass shift arises since the bac
ground piece of the amplitude(s) is negative. A rather
rough estimate may be made by evaluating) and 3(s)
for m,=0 and s small. Then one finds B
—3mgare(0)/167F2 while a— — BIM3are(0).

It is interesting to note that our calculated amplitude
T8(s) can be reasonably well-approximated as

o

S—Z

+b

To(s)= (2.21)

o
o

where the two complex numbeasandb are given in Table
| for different choices ofmgare(0o). Since this simple pole
dominated form reasonably fits experiment until the 70
800 MeV range it is not surprising that various determina-
tions ofm, andI’ in the literature are roughly similar to the
ones in Table I. Often the parameters are stated in terms o
72 In the case wherem,=0.458 GeV we havez!?
=0.517-i0.240 GeV. This may be compared, for example,
with a treatment using a non-linear sigma model and includ
ing the p meson[12]. That treatment gave a best fit fot?
=0.585-i0.170 GeV. When it was refitL3] without thep it
yielded z¥?=0.493-10.319 GeV, which is closer to the
value in the present studvherein, of course, spin 1 par-
ticles have not been included

f

Ill. SCATTERING IN THREE FLAVOR LINEAR SIGMA
MODELS

0-

interplay of thec and ¢’ resonances inra scattering will
be made. The tree amplitude will simply be identified with
in Eqg. (1.2). The interesting question about the treatment of
rar scattering is whether it can fit the experimental data,

lf_jiven the complicated strong interferences betweendthe

!

and contact term contributions. The interesting question
about thewK scattering concerns the properties of tke
meson in the present model. Finally they scattering is of
methodological interest. This is because the well-established
a0(980) resonance is expected to appear in a very clean way,
lacking interference from a strong contact tefon even the
possibility of potential interference when vector mesons are
added to the modglas explained, for example [24].

We will first carry out the calculations using the standard
renormalizable form of the three flavor linear sigma model.
This is characterized by the potential in Ed.21). Then the
whole model is extremely predictive. After using as input the
well-established masses of the pseudoscalar nonet and pion
decay constartEq. (1.14)] there is only one quantity left to
choose in order to specify the scattering amplitudes. This one
quantity may be taken to be the baranassmgare(o). The
corresponding values ofigare(o’) and 6 are given in Fig.

1. We shall also carry out the calculations for the most gen-
eral chiral symmetric potential. This allowsgare(o') and

05 to be freely chosen, which is helpful for fitting experi-
ment. As a possible justification for using a non-
renormalizable potential we mention that the model is an
effective one rather than the underlying QCt may be
considered, for example, to be a Wilson-type effective low
energy Lagrangian. While non-renormalizable terms in the
potential are technically irrelevant they play a part in estab-
lishing the spontaneously broken vacuum state and should be

Here we study the pseudoscalar meson scattering ampfietaineds In any event the extra parameters are being added
tudes in the three flavor linear sigma models discussed in th® @ chiral symmetric way.

Introduction. We shall restrict attention to the=0 elastic
scattering amplitudes of

TIT— T,
7K— 7K,

(3.9

TnN— TN,

014031

A. mar scattering

The elastic amplitude for the three flavor linear sigma
model in the tree approximation was given in HG.18
above. Calculating thesJ=0 partial wave amplitude as in
Sec. Il A gives a result which is a straightforward generali-
zation of Eq.(2.9):
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08 in Sec. Il B that the strong interference with the background

appreciably changes the position of the physical pole in the
complexs plane so, while useful for understanding Fig. 7,
these zeroes dR8 do not give true parametrizations of the
pole position.

We have already learned that the choibgyrg(o)=0.6
GeV is too low for a good fit t&R3(s) in the region ofys up
to about 0.6 GeV. Increasinggare(o) improves the fit to
this region and also allows the effects of #aeto come into
play. This is shown as the solid line in Fig. 7 which corre-
sponds to the choicengare(o)=0.73 GeV. Unfortunately
(as expected from Fig.)3his choice is still not high enough
for a good fit in the low energy region. Furthermore, the
structure which should correspond to the experimental
fo(980) resonance has been pushed too high. Increasing

FIG. 7. Comparison with experiment of real part of theJ=0  mgare(o) further will, as the first of Fig. 1 shows, push this
wr scattering amplitude in the renormalizable 8Wlinear sigma  structure even higher. One still must check to see if lowering
model, for Mgare(0) =0.45 GeV(dashes Mgare(0)=0.6 GeV m_, () below 0.6 GeV can work. The dashed line in Fig.
(dots andmgre(o) =0.73 GeV(solid). 7 showsRY(s) for mgare(o) =0.45 GeV. In this case the
structure near thé,(980) is in the right place but much too

04 +

02

& 5.5511x10™7 |

02

B(s) narrow. The structure at lower energies is also very badl
Toued S) =CoSY| a(s)+ s Sistorted. 9 y badly
BAREN By examining the evolution with increasimggare(o) of
2l B(s) the three curves in Fig. 7, one sees that it is not possible to
+Sinty) a(s)+ (o) -5 (32 geta good fit for any choice afigare(c). Nevertheless the

qualitative prediction 0R8(s) is clearly a sensible one. It is
therefore tempting to see if there is an easy way to fix up the

where «(s) and B(s) are respectively gotten by replacing fit

m o)—m o') in a(s) andB(s) of Eq. (2.9. The . . . L
fo?r/?wRuEIEal ()3_2) g\A/iFaEénﬂ; repr(es)ents g(szjm ofqth:e and o’ In a sense, the difficulty in obtaining a good fit arises
related contributions, weighted by coefficients depending off€cause only one parameter—taken {0 hgare(0)—is

the bares— o’ mixing angle . As before, we investigate available for adjustment to give agreement with a rather

the unitarized amplitude based on E8.2): complicated experimental shape. The easiest way to proceed
is to modify some parameters involved in the calculation. If
TO (s) a parameter to be varied is arbitrarily chosen there is how-
0 Otree( . . . .
To(s)= —5 , (3.3 ever a danger of breaking the chiral symmetry relations in-
1=iToyeds) trinsic to the model. For example, suppose we choose to vary

o o o _ _ the coupling constant of the bare sigma to two pions. This
which is being interpreted as an approximation to includingnree-point coupling constant, as mentioned in Sec. |, is re-
the effects of the higher order corrections. lated to the masses of the particles involyede Appendix
_ First, consider the renormalizable model. To see how wellrhe “changing it without changing the masses will break the
it predicts the interesting4J=0 amplitude we may simply ngerlying chiral symmetry. Of course, we have written the
plot the real part of Eq(3.3), Ry(s) againsts for various  formula for the tree amplitude, E¢L.18) in such a way that
choices of the single undetermined paramet®are(0).  the correct relations for the 4 and 3 point coupling constants
(Since we are working in an elastic, exactly unitary approxi-are automatically taken into account for any choice of the
mation, the imaginary part of the amplitude direct_ly f(_)llows contained parametersgare(o), Mgare(o’) andés. In fact
from the real parj.Clearly the effect of ther" contribution  these three parameters may be freely chosen in the linear
is small when the mixing anglé is small. Then one returns sigma model Eq(1.5) with an arbitrary chiral invariant po-
to the two flavor case discussed in Sec. Il. Recalling that tential, V,. It is only by restrictingV, to be renormalizable
%-034‘-54.70 and referring to the SeCO!’]d of F|g 1 shows thaﬁ:hat one can re|athARE(o-’) and 05 to mBARE(U)' Thus we
this will be the case whemgare(o) is around 0.6 GeV.  can freely varymgare(o’) andés in addition tomgare(o) if
RY(s) for this case is shown as the dotted line in Fig. 7. Thewe choose to obtain the tree amplitude from the non-
experimentally derived poin{gl4] are included for compari- renormalizable model of Ed1.5).
son. This looks similar to the curves for the two flavor case |n such a model it is easy to fit the experimental data for
shown in Fig. 5, except that a sharp blip appears at about(s). A best fit obtained using theinuiT package is shown
1.09 GeV corresponding to the’ pole in T,... Note, as in Fig. 8. It corresponds to the parameter choices
can be seen from Eq2.14), that the real parRy(s) will Mpare(0) =0.847 GeV, Mgare(c’)=1.30 GeV and ¢
vanish both at/s=mgare(o) and/s=mgare(o’). We saw  =48.6°. The physical masses and widths are obtained, as in
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0.6

04 |

0.2

°o

oe 55511x10™"f

0.2 014 0‘.6

FIG. 8. Comparison of our best fit for the real part of thel+=0
7 scattering amplitude in the non-renormalizable ($Uinear
sigma model with experiment.

Eq. (2.20 in the two flavor case, from the pole positions in
the complexs plane. These, together with the residues at th
poles, are listed in Table II.

For orientation we first note that the parameters describ
ing the lower mass scalag; are in the same range, as ex-
pected, as the parameters of Table | which give good fits t
the low energy data using thein the two flavor case. In fact

the masses are very close to each other but the effect of th

additional flavor requires a somewhat greater width param
eter. The contribution of the—-pole tng(s) is read off as

a —a ~ —0.167-i0.210
$=Z, mZ-s—im,I', 0.209-s—i0.289

g o

(3.9

Note that this form is very different from a pure Breit-
Wigner form which would require the numerator to be 0.289
Ge\2. This illustrates(as does the two flavor cgsthe im-

Q

PHYSICAL REVIEW B4 014031

scribed in Sec. Il for the two flavor case. It seems reasonable
to consider the physical values of, andI", to be the ones
which are significant.

The well-established resonantg 980) will be identified
with the o’ The contribution of ther’ pole toTJ(s) is read
off as

a,  -a | —0.053i0.005
s—z, m,—s—im T, 0.986-s—i0.051
(3.5

In this case the form of a pure Breit-Wigner would require
that the numerator be-0.051 GeV\f. To a reasonable ap-
proximation this holds except for an overall sign. Now ref-
erence to the formula Ed2.18 for a Breit-Wigner with a
background, shows that the background phége /2 must
be supplying this negative sign. Clearly the negative sign is
required by the experimental data showing the real part
RY(s) to be negative before and positive after the resonance
at about 1 GeV. It was notdd 2] that this is an example of
the well-known Ramsauer-Townsend effect in scattering

o’

qheory. It is also interesting to observe from Table Il that the

bare mass of the’ is substantially shifted down from 1.300
GeV [where a zero oﬂ?g(s) remains, as previously dis-
cussed to about 1 GeV. The bare width is even more sub-
Stantially shifted from about 4 GeV to 50 MeV.

e One might wonder whether the simple pole dominance
approximation Eq(2.21) for the two flavor case can be gen-
eralized to this more complicated three flavor case contain-
ing two poles. It turns out to be true; the prediction of our
model can be numerically approximated by the sum of the
two pole terms and a suitably chosen constant:

a, a,

S—Z

TY(s)=R3(s)+il§(s)~ + +b, (3.6

o S—Z,/

(o8

where the numbers,,, a,, z,, z,» andb are listed in

Table II. This is illustrated in Fig. 9 foR3(s) and!3(s). In

portance of the interplay between the resonance and th@ese figures Eq3.6) is being compared with our prediction

“background.” It also illustrates the possible difficulty of
trying to get properies of the from experiment with the use
of a pure Breit-Wigner approximation. Not@gain from
Table Il that the physical mass and width,. andI’ , respec-

in Fig. 8. Of course, there is no reason to use E3j6)
instead of the more accurate and complicated formula Eg.
(3.3) but it nicely shows the dominating effect of the poles.
The pole approximation is seen however not to be very ac-

tively, are very much reduced from their bare values. The.yrate near threshold.

detailed mechanism is evidently similar to what we de-

TABLE Il. Physicalo ando’ parameters obtained from best fit
using non-renormalizable 3B) linear sigma model.

’

g g

Meare (GeV) 0.847 1.300
Tgare (GeV) 0.830 4.109

m (GeV) 0.457 0.993

T (GeV) 0.632 0.051

z (Ge\R) 0.209-i 0.289 0.986-i 0.051
a (Ge\R) 0.167+i 0.210 0.053-i 0.005
b —0.248+0.856 i

Incidentally the deep dip img(s) at what we have found
to be the o’ physical pole position also represents the
Ramsauer-Townsend effect. This appears Ri%(s) as a
“flipped” resonance curve, as discussed above. Actually this
Ramsauer-Townsend phenomenon can be pictured in an al-
ternative manner. If we consid&),,.{s) corresponding to
two “bare” resonances, one following the other, we see that
there must be a point in between them whigfg,=0. Then
Eqg. (3.3) shows that, afteKK-matrix unitarization,Rg will
also vanish at this point. This point appears visually as the
pole position zero of a “flipped” standard resonance curve.
In the Ramsauer-Townsend interpretation the flipping is in-
terpreted as a background phasend®. Our explicit deter-
mination of the pole positions for the sigma model amplitude
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FIG. 9. Comparison of{left)
real and(right) imaginary parts of
pole approximation Eg. (3.6)
(dashed ling with those of our
predicted amplitude Eq.(3.2

(solid line).
shows that this is the pole which captures the dynamics of T2
the f,(980). Its narrow width is seen to be the result of its Té’zz%, (3.9
getting “squeezed” between two nearby “bare” poles by 1-1Toee

the unitarization in this model.

which is related to the corresponding S-matrix element by
B. @K scattering Eq. (1.7).
As mentioned in the Introduction the value mgare( «)
is independent of whether or not the chiral invariant potential
in Eq. (1.5 is renormalizable, but depends only on the set of
input parameterge.g. Eq.(1.14]. This may be seen from the
quation

We are interested in the=I1/2, J=0 scattering amplitude
in order to investigate the properties of tkeresonance in
the direct channel. The tree level amplitude involvegx-
changes in thes andu channelsg ando’ exchanges in the
t channel as well as a four point contact term. The relevant
tree level invariant amplitude may be written as

2 2 2 FKmﬁ_ Fﬂmi
Allz(s,t,u)=—gf<4)+§ Ok 1 Ok mBARE(K):ﬁ (3.10

2 mZBARE(K)_S 2 méARE(K)_U

0.6

_ Jomn9okK . 9o’ 790’ KK (37)

2 2 '
Maare(0) —t  Mgage(a’) —t 04|

wheres, t and u are the usual Mandelstam variables. The
four point contact interactiogf{‘) and the bare three point

coupling constants shown are listed in the Appendix. As for
the cases ofr ando’ we have put a subscript BARE on the

x mass to indicate that the location of the physical pole after
unitarization may come out different from this. The scalar 02
partial wave tree amplitude is next defined by

02|

= 5.5511x10™"7 f

1

Té’tfeezp(s)f d cosd AY4(s,t,u). (3.8 o5 , , ‘ ‘

-1 0.63 0.83 1.08 — 1.23 1.43
AV
Note thatp(s) was already defined by Eq&2.6) and (2.7). FIG. 10. Comparison of our prediction for the real part of the
The specific formula for Eq(3.8) in the present model is a |=1, J=0 =K scattering amplitude in the non-renormalizable
bit lengthy and is shown in the Appendix. SU(3) linear sigma model with experiment. The curves correspond
According to our plan we do not introduce any new pa-to mgare(x)=1.3 GeV (solid), 1.1 GeV (dashedl and 0.9 GeV

rameters for unitarization and simply write (dotted. The experimental data are extracted frptB.
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TABLE lll. Physical x parameters obtained in the non-renormalizablg33Wnear sigma model for
different values oimgare(x) Which result from different choices of input parameters.

Mgare(x) (GeV) 0.9 1.1 1.3

Fx 1.4,25° 1.23-4.6° 1.16,—8.8°
Fo

I'gare(x) (GeV) 0.403 1.138 2.35

m, (GeV) 0.799 0.818 0.798

I, (GeV) 0.257 0.461 0.614

z, (GeV?) 0.639-i 0.205 0.669-1 0.378 0.637%i 0.490
a, (GeV?) —0.043+i 0.190 0.096-i 0.340 0.263i 0.378
b, —0.438+i 0.420 —0.419+i 0.660 —0.357+i 0.800

which follows from Eqgs.(1.9), (1.12 and(1.17 in the iso-  dicted amplitude is fairly well approximated as the sum of a
topic spin invariant limit. This means that there are no newpole term and a constant:
unknown quantities beyond those used in the fit to #he

scattering amplitude above. However we observe that the

predicted value ofmgare(k) is very sensitive to the differ- Télz(s)*
enceFy —F . Actually the choice of input parameters given
in Eq. (1.14 results in a somewhat too high prediction for
Fx, as mentioned before.

One might therefore wonder whether the choice of inpu
parameters in Eq1.14) unfairly biases our treatment aiK
scattering by giving a too small value fotgare(«). In order ,
to check this we will also consider the slightly different me—im I =z,. (3.12
choice of input parametears(mﬁ,m,(,m,?,,F,T,FK). This
will not affect the w# scattering results in the non- It is notable that the pole position mass is always close to
renormalizable model just discussed. We first chobge 800 MeV regardless of the choice i ge( ). Furthermore
=1.16~, which is slightly smaller than the physical value the widths obtained from Eq3.12 are substantially reduced
but has the advantage that it givessare(x)=1.3 GeV  from their “bare” (tree level values, but are more sensitive
which yields a zero fol2%(s) at 1.3 GeV, in agreement with to the choice oimgare(«).
the experimental data. For this new input set we also have All in all, the properties of the« obtained here are very
explicitly checked that there is still no possibility of getting a analogous to those of the in either the two or three flavor

aK

+b,. (3.11

K

The values forz,., a, andb, corresponding to the three
ldifferent choices of input parameters are shown in Table .
Again we identify the physical mass and width by

good fit to w7 scattering in the renormalizable model. treatments ofrm scattering. Compare with Fig. 5, for ex-
With this choice of input and other coupling constantsample.
taken in agreement with those found in the best fitnto It does seem that the pole mass, E812), of thex is a

scattering we have the prediction for the real part of thegood indication of the energy region where it provides a
ampIitudeRé’z(s) shown in Fig. 10. The experimental data reasonable fit to the data. It also seems clear that the physics
[45], which start around 0.83 GeV and go to about 1.6 GeVassociated with the higher mas§ (1430) is not being taken

are also shown in this graph. It is seen that the predictioiinto account in this model.

from the linear sigma model agrees with the data from about
0.83 GeV to about 0.92 GeV. However at higher energies the
predicted curve lies much too low until about 1.35 GeV and
thereafter seems to completely miss the structure which is The tree level invariant amplitude takes the form

usually associated with thHej (1430) resonance.

C. @y scattering

. 7 Al(s,t,u)
Figure 10 also shows the predictions for the cases when
mMgare( ) = 1.1 GeV(corresponding td-y taking its e>_<peri- o 1 1
mental valug and mgage(x)=0.9 GeV [corresponding to =—g'M+ Ohmn| =5 +—
the input choice of Eq(1.14)]. These are in worse agreement Mgare(80) =S Maare(@o) —U
with the experiment and also seem to miss K#(1430)
structure. + gU”)T’?TgO'7]7] + go’ﬂ'wgo”rjn , (313
As in the two flavormar case, which also contains only a M3are(0) —t  Miare(o’)—t

single direct channel resonance we have found that the pre-

where the four point contact term g(,74) as well as the three
point coupling constants are listed in the Appendix. Other
e then predictm,~0.53 GeV rather than the experimental conventions are the same as above. Similarly the scalar par-
value of 0.547 GeV. tial wave amplitude is
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TABLE IV. Physicala, parameters in renormalizab(frst col-
umn) and non-renormalizablésecond columnSU(3) linear sigma

0.4- model using corresponding best-fit parameters from scattering.

Mgare(80) (GeV) 0.913 1.100
T'gare(ag) (GeV) 0.129 0.381
Mg, (GeV) 0.890 1.013
0.2 Fao (GeV) 0.109 0.241
Zy, (Ge\/2) 0.793-i 0.097 1.027%i 0.244
a,, (GeV?) —0.065+i 0.064 —0.076+i 0.200
baO —0.299+i 0.204 —0.312+i 0.408

aa
To(s)=

— (3.16

021 The physical mass and width are found from

2

maO—|maol"ao=zal

. 3.19
-0.4 and the appropriate values for the two cases mentioned are
listed in Table IV. While Fig. 11 seems to be just what one
0.8 1 12 14 would expect for the real part of a resonance amplitude,
E Table 1V, as in the previous cases, reveals some interesting
FIG. 11. Prediction for the real part of the:1, J=0 w7 partial ~ features. First, since, is clearly different from—Im(z, ),
wave scattering amplitude Eq3.15 in the non-renormalizable the resonance is not a pure Breit-Wigner resonance. The lo-
SU(3) linear sigma modelparameters as in second column of Table cation of the physical pole is close to the positive peak of
V). R3(s) rather than to its zero, as would hold for a Breit-
Wigner resonance. Compared to the scalar resonance
1 1 and wK channels we notice that there are smaller shifts go-
Totree™ P(S)J ld cosfA(s,t,u), (314 ing from mgare(@o) to M, and fromlgare(ag) to 'y - This
is reasonably interpreted as due to less effect of interference
with the background. This is manifest in the non-linear
which is also listed in the Appendix. Again we unitarize by sigma model approach 7 scattering24] and can thus be
substituting this into the formula understood as a consequence of the similarity of the non-
linear and linear chiral models. In addition, we note tﬁgg
1 is predicted to be somewhat larger than the experimental
Té= Totree . (3.19 value [46] of 50—-100 MeV. Nevertheless, the prediction is
1—iT3ee qualitatively reasonable.

. . . . IV. SUMMARY AND DISCUSSION
Since there is apparently no experimental phase shift analy-

sis available for this channel, we will have to be content to We have treated the three flavor linear sigma model as a
just present our theoretical results and compare with th&toy model” for examining the role of possible light scalar
mass and width of the experiment@}(980) resonance. It mesons in therw, wK and 7» scattering channels. This is
was already noted that the renormalizable mdaéth the  a highly predictive model which contains only one free pa-
inputs Eq.(1.14] yields the somewhat too low bare massrameter, which may be taken agare(0), in the renormal-
(which gets shifted down by unitarizatipnf 913 MeV. We izable case. If we give up renormalizability for this effective
will also present the results for the non-renormalizableLagrangian but maintain chiral symmetry in a straightfor-
model which gave a good picture afw scattering and for ward way, mgare(o’), the scalar mixing angleds and
which we are still free to choosengare(ag). A value  mgare(@g) may also be freely chosen, which is helpful for
mgare(@g) =1.100 GeV gives roughly the correct “physical fitting experiment in the desired energy range of threshold to
mass” and the plot of the real part of E¢3.15 for this  the 14+ GeV region. Our approach just involves computing
choice is shown in Fig. 11. The result of the regularization isthe tree amplitude for each channel and unitarizing by a
generally similar to the curves obtained for thein =7  simple “K-matrix” prescription which does not itself intro-
scattering and the in 7K scattering. We have found in this duce any new parameters. In general the unitarization has
case too that the predicted amplitude is reasonably well apsery important effects converting “bare” scalar meson
proximated by the sum of a pole and a constant: masses and widths into “physical” ones. It turns out that
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TABLE V. Predicted “physical” masses and widths in MeV of the nonet of scalar mesons contrasted
with suitable(as discussed in the tgxtomparison values.

g fo K ao
Present Model
mass(MeV), width (MeV) 457, 632 993, 51 800, 260-610 890-1010, 110-240
Comparison
mass(MeV), width (MeV) 560, 370 986-10, 40-100 900, 275 985, 50-100

there is not too much “wiggle room” in this procedure so the physicalo nor the physicalf, are described by simple
that what results is characteristic of the mo¢atd the uni-  Breit-Wigner terms. Both have masses and widths greatly
tarization scheme This tightness comes from the demand reduced from their “bare” values by the unitarization pro-
that the starting tree amplitudes satisfy chiral symmetry recedure. The light, broad is somewhat lighter and broader
strictions. This means, as discussed in Sec. |, that the fouhan the comparison one obtained in the non-linear model
point contact interaction vertices are related to the three point 2], (However when the vector meson contribution in the
interactions which are related to the particle masée® o Jinear model was consistently eliminate8] the o in
point object$ which are related in turn to the one point terms ot model also became broader and lightehe f , obtained

Epsbemtjr(])sialar mesgn detl:ay consﬁamsedctr;]ose_the(;nputs approximately looked like a Breit-Wigner in a background
0 be the four pseudoscalar masses and the pion decay Qg pag g phased,y=/2. This is known as the

stant[Eq. (1.14]. However the pseudoscalar mixing angle Ramsauer-Townsend effect in scattering theory. The fact that

and kaon decay constant were not perfectly predicted s emerges in the present model was noted to be explicable in
there is already a source of error present before even going { 9 P P

the scattering amplitudes. Nevertheless we investigated thfgrms of thg region between tW_O n@ghbonng “bare” reso-
point by considering an alternative input set obtained by usn@Nces getting squeezed by unitarization. _
ing Fy instead ofm,, and found that there was not much The entries in Table V for th& mass and width require
qualitative change for the scattering predictions. some (_explanatlon: The baremass: and width in this model _
Our point of view in this paper is to see what are the@r® uniquely predicted once the input parameters are speci-
results of computing in a relatively simple and natural modelffied; regardiess of whether or not the potential is taken to be
for the purpose of comparison with oth@nd possibly fu- renormallzabl.e'. However t.he predictions of tk]@{:\ra}meters
ture) more elaborate treatments. It seems to us that the resuf®§€ Very sensitive & [which measures the deviation of the
are interesting and instructive. In the simpler two flavor caseYacuum from exact S@3) flavor symmetry in this model
which was applied ifi4] to a lower energy treatment of Thus we aIIoweq dlfferent.mput sets yielding different bare
scattering, the results were already reasonable. Here we Masses, as discussed in Sec. Ill B. Whatever reasonable
have, in Sec. II, reviewed the two flavor case in a S|ight|yChO|Ce was made, the unitarization always brought the phy5|-
different way as preparation for the more complicated thre€@l «x mass down to around 800 MeV. However the physical
flavor case. We have also made some new comments af¥§dth is more dependent on this choice. Furthermore, as
suggested an alternative “naive” unitarization procedureShown in Fig. 10, the: resonance can only explain the lower
which might be handy for future studies. energywK scattering data. This would be the analog of the
Table V contains a brief summary of the physical masse$U(2) treatment ofwm scattering, where the- alone can
and widths of the scalar mesons predicted in the preserifovide a reasonable description of the low energy region.
model and discussed in some detail in Sec. IlI. In the cases dfhe x cannot explain the data in the region of #g(1430)
the f,(980) anda,y(980) resonances comparison is beingscalar resonance. In other words, we cannot explain the
made with experimental valud46]. In the cases of ther $(1430) as the strange scalar of the usual linear sigma
and thex, which are less well-established experimentally,model treated witiK-matrix unitarization.
we have compared with the earlier computations of the Syra- In the case of ther» channel there does not appear to be
cuse groug12,14,13 which were based on a non-linear chi- any experimental phase shift data, so we compare with ex-
ral effective Lagrangian treatment, including vector mesonsperimental determinations of they(980) mass and width.
Many other author$30] were led to similar predictions for The lower physical mass entry for tlag in Table V corre-
the o while similar predictions for thex were made if11]  sponds to the bare mass of the renormalizable model. It is
and the third of 16]. Answers to the concerns expressed insomewhat too low but not very far off. This can be easily
[47] on the experimental existence of tkewere made in adjusted by using the non-renormalizable potential. The pre-
[14], the third of[16] and in[48]. dicted width is somewhat too large but qualitatively reason-
The predicted properties of the and f, in the present able. Clearly, thea, of the present model is describing the
model come from their role inr7r scattering as discussed in low energy part ofr 5 scattering and should correspond to
Sec. lllA. It was found that the single parameter describingthe ay(980) rather than thay(1450).
the renormalizable model could not be adjusted to give a Allin all, the three flavor linear sigma model with a gen-
reasonable fit to the experimental data. This could be doneral (non-renormalizablechiral invariant potential and regu-
when the renormalizability condition was relaxed. Neitherlarized by the simplé-matrix procedure can approximately
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describe the complicated s scalar scattering amplitude as  Actually there is a lot of ambiguity in stating what the
well as the low energy part of th€ 7 scalar amplitude and quark structure of a physical hadron means. Generally people
the a(980) 77 resonance. Thi} (1430) anday(1450) are think of the question in the context of a potential-type model
“outsiders” in this picture and would have to be put in by wherein, for example, thp meson is made of a “constitu-
hand to realize the higher mass scalar resonanceKimnd  ent” quark of mass about 300 MeV and a constituent anti-
w7 scattering. The picture is qualitatively similar to that quark of the same mass. The idea is that the fundamental
obtained in treatments using the non-linear sigma model forcurrent quarks of QCD” (with masses about 10 Me\in-
mar [12], 7K [14] and 75 [24] scattering. The,(980) and  teract strongly with each other and with gluons to make the
f,(980) seem to belong to the same multiplet as the controrelatively weakly interacting constituents whose combined
versial lighto and light x. Of course, it is possible for par- masses roughly approximate the physical hadron masses.
ticles with the same quantum numbers belonging to othef hus the quark structure really depends on the model used to
multiplets to mix with them. treat the hadrons. At the field theory level of “current
There are several straightforward, but lengthy to carefullyquarks” there is always some probability for extyg pairs
implement, ways to improve this treatment. Modified kineticor other structures to be present. In 8&(3), X SU(3)x
terms, as mentioned in Sec. |, can be included to improve thehiral effective Lagrangian treatments, the quark substruc-
fit to pseudoscalar masses and decay constants. Vector atute of the fields being used does not enter the formulation in
axial vector mesons can be added to introduce more of tha unique way. An infinite number of different quark sub-
low-lying physical resonances which are expected to be imstructures will give rise to the san8J(3), X SU(3)R trans-
portant in thews and wK channels. Certainly, inelastic formation properties for the mesons. This is apparent for the
channels should be included. In the treatmentraf scatter-  non-linear chiral model in which scalars are added to the
ing using the non-linear model ifl2] it was found that pseudoscalar meson Lagrangian as “matter fields” in the

taking some account of théK channel did not change the usual mannef43]. Then it is known that only the SB)
basic structure of the elastic scattering amplitude for the enflavor transformation properties of the scalars are relevant.
ergy range considered here. Since the unitarization procedurgowever we found in our earlier studg5] that the value of
played an important role in our analysis it seems very desirthe scalar mixing angle suggested indirectly that the light
able to investigate more “dynamical”’ methods than the con-scalars do have an important four quark component. Consid-
ventional K-matrix scheme employed here. A promising €ring the properties of the heavier scalag1450) and
scheme which introduces one new parameter has been ré3 (1430) suggeste®5] that these states did not belong to a
cently suggested by Oller and Meissihé8]. “pure” qq multiplet but to one which mixed with the lighter
scalar multiplet.
When it comes to the linear sigma model where the chiral
V. SPECULATION ON SCALAR MESON'S QUARK transformations of the scalars are linked with those of the
STRUCTURE pseudoscalars in a natural way, there seems to be a feeling

Up to th|s point we have reported the resu|ts Of a Stra|ght_that the matri)M Should describe qq f|e|d In faCt, there are
forward and h|gh|y predictive treatment of the three ﬂavorsti” an infinite number of quark substructures which trans-
linear sigma model. Our original reason for pursuing thisform in the same manner und&u(3), X SU(3)g. It may
investigation was to check the results obtained in our treatbe worthwhile to illustrate this for the SpeciﬁC cases of inter-
ment of meson scattering in the non-linear sigma mode®st in the literature.
which contained additional particles and channels. That The schematic structure for the matfi(x) realizing a
treatment used a different unitarization procedure in whichgq composite in terms of quark fieldg,a(x) can be written
crossing symmetry and unitarity were both approximately
satisfied.(Actually in the study of direct channel scalar reso- ()b ¢ 1tys
nances, the crossed scalar exchanges are relatively Jsmall. Ma " =(Aba) 74— Gaa, (5.)
We already noted that the locations and widths ofgihgsi-
cal scalar states obtained in the linear model were qualitagyherea andA are respectively flavor and color indices. Our
tl\_/er similar to those obtained in the non-linear model. convention for matrix notation is (P MWD ThenM @)
Since theo, fg, ag aan all come out less than or about 1 .5nsforms under chir&U(3), X SU(3)g as
GeV, and the scattering regions near #§1450) and the

6 (1430) apparently must be described by fields other than MOy MBUL (5.2)
those contained in the matrid, the well known puzzle of

the quark structure of these scalars comes to the surface. \yhere U, and Uy are unitary, unimodular matrices associ-
In this section we will make some speculative remarks Onyteq with the transformations on the left handeg =3 (1

this controversial subject and introduce another toy model vs)q] and right handedgz=2(1— ys)q] quark projec-

which may illuminate some of the issues. The puzzle, ofjons. For the discrete transformations charge conjugagion

course, is why, if the scalars areytj states,” they are con- and parityP one verifies

siderably lighter than the other p-wave states and why the

isovectoray(980) is tied for being the heaviest, rather than c: MOMAOT  p: MO(x)-MDT(—x).

the lightest, member of the multiplet. (5.3
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FinaIIy,__the U(l)a transfprmation acts asl, —€'"0aL, MélA)f:(L,?LV,AB)TRLv,AB- (5.10
Jar—€ '"0ar and results in

M e2ivpm D). (5.4) where the dagger operation includes a facterl(®us* %4,
M®) also transforms likeM® and M® under all of
One interesting moddb0] for explaining the scalar me- SU(3) XSU(3)r, C, P andU(1),. The specific form fa-
son puzzlgat least insofar as tha,(980) andf,(980) states vored by the MIT bag model calculation actually corre-
are concernelds to postulate that the light scalars are “mol- sponds to a particular linear combinationhf®) and M,
ecules” made out of two pseudoscalar mesons. The chirdfurthermore one can verify thad(?) in Eq. (5.5) is related
realization of this picture would result in the following sche- by a Fierz transformation to a linear combination Mf®)

matic structure: andM @, Thus only two ofM ), M®) andM® are linearly
@b bet, ag (L)1 & g (1T independent. At the effective Lagrangian level the distinction
M= €acae”” (M) (M )5 (5.5  petween meson-meson and diquark-antidiquark models is

clearly blurred.
What is the significance of these remarks for construction
of the general effective chiral Lagrangian used in this paper

One can verify thaM (® transforms exactly in the same
way as M®) under SU(3), X SU(3)g, C and P. Under

U(1)a it transforms as [Eq. (1.5]? All that is required foiM is that it transform like
M@ a—4ir\ (@) (5.6 M@ underSU(3), X SU(3)g, C andP and that it carry a

' non-zeroU (1), “charge” which gets broken by the poten-

which differs from Eq.(5.4). tial. The specifidd (1), transformation property does differ

Another interesting approad1] to explaining the light ~between the two quark realizatio®) and the four quark
scalar mesons was formulated by Jaffe in the framework ofealizations ¥, M® and M*) but this would just be
the MIT bag model. It was observed that the spin-gfiw~ @absorbed, in the present work, by a different value for the
perfing piece of the one gluon exchange interaction betweemparametel,. Thus, if one knew nothing else about hadronic
quarks gives an exceptionally strong binding to an s-wavephysics than the present toy Lagrangian, one would not be

qqqq scalar state. Furthermore, this model naturally predicté"b(lle) to a(griori easily discriminate among the possibilities
an “inverted” mass spectrum of the type summarized inM'~—M™, or in fact any others, for the underlying quark
Table V. A more detailed recent discussion is givefiig]. ~ Substructure of the scalafand pseudoscalgrdNevertheless,
The scalar states of this type may be formally written ason€ mlght glance at t_he ob_talned scalar_masses in Table V
bound states of a “dual quark™ and “dual antiquark.” There and notice that there is an inverted physical mass spectrum.
are two possibilities if the dual antiquark is required to be-One might then decide to make a judgement oncibrestitu-

— , ' . ent quark substructure by fitting the scalar spectrum to an
long to a 3re£resentat|on of flavor §8). In the first case it Okubo type mass formulEs2]. This was done recently, for

belongs to a 3of color and is a spin singlet. This has the gxample, in Sec. Il of15] and suggests that the scalars are

schematic chiral realization, behaving roughly as composites of four constituent quarks.
14 Roughly, this amounts to simply counting the number of
L9E= 6@1c'vlbeEAF-‘q;AC’1 275 Obg» strange constituent pieces in each state; in the four quark

picture bothfy(980) anday(980) have two. The combined
effects of spontaneous chiral symmetry breaking and unita-
GE_ _gab EABT ~-11_ 75 rization (presumably taking radiative corrections into ac-
R9== €9%%¢=""q,AC (o (5.7 . )
2 cound appears to split the constituent structures of the sca-
) ) ) _ _ lars from the pseudoscalars, regardless of which current
whereC is the charge conjugation matrix of the Dirac theory. quark structurdi.e. choice ofM) we start with.
A suitable form for theM matrix is However the true situation is likely to be more compli-
MG Z (| gAY TRIA 58 cated. The present model does not appear to accommodate
g — (L7 ' 58 theay(1450) andK§ (1430) scalars as states belongind/to
M can be seen to transform in the same wa4® under These states would seem at first sight to be reasonable can-

SU(3), X SU(3)g, C, PandU(1),. In the second case the didates for a nonet of ordinanyq scalars. Still it is a little
dual antiquark belongs to a 6 representation of color and ha@uzzling that< (1430) is not heavier thaay(1450). There
spin 1. It has the corresponding schematic chiral realizationare some other puzzles too but all can be qualitatively ex-
plained[25] if a qq scalar nonet mixes with gqqqg scalar
L9 =LY _ =e9abqT c iy 1+7’5q nonet. If we want to realize such a scheme in the linear
prAB =y BA an prop  HbB model framework it would be natural to introduce a Lagrang-
ian with two differentM matrices. Such a model seems to
B 1— s ield a variety of interesting dynamical possibilities which
RoAs= R, 8a= 9°qi,C oy, 5 Yos> (5.9 ?/nay lead to n)éw insights angc]i agproximati%n schemes for low
energy QCD. Thus it may be worthwhile to give a brief
whereo,,=(1/2))[ v, ,v,]. This choice leads to akl ma-  discussion here.
trix Let us start with the field®® which we shall simply
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designateM. At the kinematical level it represents a current- 1 e?

type quark antiquark operator. This is modified for both the az:g(cﬁ FNE (5.19
pseudoscalar and scalar states by (@enos) spontaneous 4 2

breakdown of chiral symmetry. For the scalangich occur In the absence of mixing the “four-quark” condensae

as poles in the physical regipthere is an additional modi- \anishes while the usual two quark condensatemains.
fication due to the unitarization required. Of course, the The mass spectrum resulting from E§.12) has two sca-
choice of the free parameters gives an “experimental” inpuljar oetets and two pseudoscalar octets, each with an associ-
to this process. The resulting scalars seem to be rough'XtedSU(3) singlet. Each octet has eight degenerate mem-
consistent with ajqqq constituent-quark structure, as just bers since the quark mass terms have been turned off. Let us
discussed. Now consider adding a current type four quarkocus on the +1, positively charged particles for definite-
operator which may be any combination ®f?, M®) or  ness and define

M@ (we could not tell the difference in an effective La-

grangian frameworkand denote it bM’. Allow M’ to mix mt=¢3, 7w T=¢?, a'=S, a'"=§?.
with M. What happens? (5.1
The Lagrangian which directly generalizes EG.5) is . L
written as Then the 22 squared mass matrix of and 7' is
1 n_ 1 t ¢ e
LZ:—ETr(aMM(?#M )—ETr(aMM a,M"" 0| d, . (5.17
~Vo(M,M')—Vgg, (5.11) e &
where Vo(M,M") stands for a general polynomial made This has eigenstates
from SU(3), X SU(3)g [but notU(1),] invariants formed o\ — 112
out of M andM'. Furthermore/ggis taken to be the same as mo=|1+ & ( p— Ew/) ,
Eq. (1.7) since it is Tr(M+MT™) which “mocks up” the P dg d;
guark mass terms. Other physical particlexluding glue-
bally could be added for more realism, but E&.11) is e?\ "2 o
already quite complicated. w;,: 1+— (d—w+ 7', (5.18
To get an indication of what kinds of questions might be d 2
answered, let us consider a very simplified approximation in . h
which the quark mass effective terigg is absent and with masses
whereV, is simply given by 2¢2
m2(m,)=0, m3 )=——+2d,. (5.1
Vo=—C,Tr(MMT)+¢,TMMTMMT) () Barel Tp) = g 2. (519
+d,Tr(M'M' ") +eTr(MM’ T+ M'M™). We put the subscript “BARE” orm?(r;) to indicate that it

(5.12 may receive non-negligible corrections frdtamatrix unita-
rization as in our detailed treatment of theonly Lagrang-
Herec,, ¢, andd, are positive real constants. TMematrix  ian in the above. A possible experimental candidate for such
field is chosen to have a wrong sign mass term so that them particle is ther(1300).
will be spontaneous breakdown of chiral symmetry. A pseu- Computing the axial vector current by Noether’s theorem
doscalar octet will thus be massless. On the other hand, thgelds
matrix field M’ is being set up to have trivial dynamics

except for its mixing term wittM. The mixing is controlled (I2NI=F g ,m)+- -,

by the parametee and thee-term is the only one which

violates U (1), symmetry. Its origin is presumably due to e\

instanton effects at the fundamental QCD levEDther Fr=2a\/1+ d_z) : (5.20

U(1),-violating terms which contribute tg’ mass etc. are

not being included for simplicity. Using the notationsv wherea is given in Eq.(5.15.

=S+i¢ andM’'=S"+i¢’ we may expect vacuum values  Notice that a term liked,7,* does not appear in our
semi-classical approximation.

by_ b by _ b
(Sa)=ada, (S:)=PB0,. (5.13 The 2x2 squared mass matrix of the scalaranda’ is
The minimization conditio9V,/9S,?)=0 leads to 6e?
4c,+ — 2e
__* - dz : (5.20)
p=- d,“ (5.19 2e 2d,
while (Vo/9S2) =0 yields The eigenstates are defined by
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This is graphed, as a function efin Fig. 12(with parameter
choicesc,=0.25 Ge\f, d,=0.32 Ge\f). In such a scenario,

theqqqq scalar would be the next lightest after g Gold-
stone boson. Each particle would be a mixtureqof and

ggqq to some extent. For the given parameters the mixing
angle remains small however because the denominator of Eq.
(5.23 is always negative and increases in magnitudeZas
increases. Note especially, that due to the spontaneous break-
down of chiral symmetry, there is no guarantee that the low-

est lying scalar is ofjq type. Also note thatr, is expected
to be more massive thaay, .

On the other hand, if the QCD dynamics underlying the
effective Lagrangian is such thatdZ>4c, we will get a
mass ordering mBARE(aé,)>mBARE(7-r’)>mBARE(ap) in
which the four quark scalar appears heaviest. However, in
this case we will definitely get a large mixing asncreases
since the denominator of E€6.23 starts out positive when
e=0 and will go to zero ag s increased. Thus the next-to-

lowest lyinga, can be expected to have a larggqq ad-
mixture.

All of these remarks pertain to the meson current-quark
type operators in the toy model. The important effects of
unitarization (i.e. mgage— M) are likely, as in our earlier
treatment, to favor an interpretation of the low lying physical
FIG. 12. Plots ofmgare(ay) (solid), meare(a,) (dashedand  scalars as being of four constituent quark type in either case.

Meage(7p,) Versus the mixing parameterfor the choicec,=0.25 The main lesson from our preliminary treatment of a chi-
GeV* and d,=0.32 GeVf. The highest lying curve is mainly a ral model with mixing is perhaps that even though te
“qq” scalar, while the lowest lying curve is mainly aqtogq” fields carry “chiral indices” it is not easy to assign an un-
scalar. The excited pseudoscalar curve is in the middle. ambiguous quark substructure. On the other hand there is a

great potentiality for learning more about non-perturbative
QCD from further study of the light scalars. Such features as
, (5.22 scalar mixing(including the possibility of mixing with glue-
balls for the =0 stateg four quark condensates and excited
pseudoscalars may eventually get correlated with each other

COw —Sinw

Sinw COSw

ap|
a

p

a
a’

with and with the experimental data on the scattering of light
pseudoscalars.
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h h | . ds f , APPENDIX: COUPLING CONSTANTS AND PARTIAL
where the uppetlower) sign stands fom,,, (ap). WAVE AMPLITUDES

It is interesting to examine the masses of the degenerate
octets in a little more detail. For orientation, first consider the For the scattering processes under consideration we will
case when the mixing parametevanishes. The usualdq’ ng_ed the four-point pseudoscalar contact inte_ractions and the
pseudoscalarsr, are zero mass Goldstone bosons in thistrilinear - scalar-pseudoscalar-pseudoscalar interactions. In
approximation. If £,>2d,, a,, the original scalar partner isotopic spin notation the relevant pieces of the Lagrangian

of m, lies higher than the degeneratejfaq” scalar and 2" respectively,

pseudoscalaa, and 7,. When the mixing is turned on, a w_ 1 @ 2. 1w
four quark condensate develops and the mass ordering is L =197 (m W+ S0 KK
Maare(8p) > Meare( Tp) > Mpare(@p) > Mpare( 7p) ?50-25) + %g(:),mﬂ-. - (A1)
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and

Yk

~Lspp="7= 2

ga KK—
\75 Kz aOK+gKK7;(KK7]+H C)+gKK7] (KKW +HC)+ga 71'7780 7777+ga07777’a0 7777

(K7 wx+H.c)+ gTO'ﬂ' 17+g(,KK0'KK+ QTO_ 7w+ Q, k0’ KK

oy + g(,;,,], on'n'+ %0’ NN+ Qo gy o' 1+ g”;""’ an'n. (A2

ann
2
The trilinear couplings which do not involve three isoscalars are predicted in terms of the masses. These ar¢3jfandn
we present them here for completeness:

1 5 2 1 : 2 2
gKKw:F_K(mBARE(K)_m'n-)a QKKn:—\/EF (Cosap+2\/§S|n0p)(mn_mBARE(K))a (A3)
K
1 5 2
Guk ' = \/_ (2\/50056?p S|n0p)(mBARE(K) ,,r) gaoKKzF_K(mBARE(aO)—mK),
Fk

= (Mpe(a0) ) X M ame(80)— )
Yagmn™ F_ pMBare! o e gaom;'—Fw plMearel Qo 7

V2

Jomn™ F_as(méARE( 0-) - qur)’ o’ 7T7T:F_ bS(méARE( o’ ) - me)’
Qokk = \/— ——(C0SOs+2\/25IN ) (ME — M pre( ),
K

9o kk= \/— ——(2\/2c0s65—Sin 05) (M pre( ') — MR).
Fk

The trilinear coupling constants involving three isoscalars may depend,.oRor 7w elastic scattering we will also need

bs
= X+agy, (Ad)

9o/ 9y= 2

a
—X—bgY,

opy= V2

where

X=

2
a 2
—") F—W[ZaiméAREw)+2b§méARE<o'>—mi—a§m%, bpm?, —12(2F ¢~ F ,)V,]

V2

2 2 2 2 ’ 48
+ bp2|:—[ —V2ab (M2 ge(0) — M2 are( o)) — 12F V4 ]+ Eapbpv4 , (A5)

2
a 2
= \/_%) F_,,[ —V2abs(Mare(0) ~ Miare(0)) — 24F V4]

2
+ brz,ZF—[bgszARE(cr)+a§szARE(o’) —bjm2—aZm?’,]. (A6)

In these equations we have used the convenient abbreviations
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cosf,— \/Esin Op b \/fcosap+ sind,
=, =,
P V3 P V3

with analogous expressions fag=cosy andbg=sin in terms offs. The contact coupling constants are then given by

(A7)

4
gW= = (@im3are(0) +bZMEare(a’) —m?2), (A8)

1
9(4)_ [mBARE(K) Mg — M2+ aZm3 are( o) +bZMEare(a)

- \/Easbs(méARE(o') - méARE(OJ N1,

2 b 2
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Finally, the tree-level partial wave amplitudes @K and 7 scattering are
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whereq(s) andp(s) for each case are given by Eq2.7) and(2.6) respectively. Furthermore
1 2 2
Bk= 2q2[mBARE(K) m2—mz+2y(m2+g?)(mz+q?)] (A12)
and
1 2 2 2 2 2\ (22
B,]=2—qz[mBARE(aO)—mw—mn+2\/(mﬂ+q )(m%,+99)]. (A13)
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