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Unitarized pseudoscalar meson scattering amplitudes from three flavor linear sigma models

Deirdre Black,1,* Amir H. Fariborz,2,† Sherif Moussa,1,‡ Salah Nasri,1,§ and Joseph Schechter1,i

1Department of Physics, Syracuse University, Syracuse, New York 13244-1130
2Department of Mathematics/Science, State University of New York, Institute of Technology, Utica, New York 13504-3050

~Received 20 December 2000; published 8 June 2001!

The three flavor linear sigma model is studied as a ‘‘toy model’’ for understanding the role of possible light
scalar mesons in thepp, pK and ph scattering channels. The approach involves computing the tree level
partial wave amplitude for each channel and unitarizing by a simpleK-matrix prescription which does not
introduce any new parameters. If the renormalizable version of the model is used there is only one free
parameter. While this highly constrained version has the right general structure to explainpp scattering, it is
‘‘not quite’’ right. A reasonable fit can be made if the renormalizability~for theeffectiveLagrangian! is relaxed
while chiral symmetry is maintained. The occurrence of a Ramsauer-Townsend mechanism for thef 0(980)
region naturally emerges. The effect of unitarization is very important and leads to ‘‘physical’’ masses for the
scalar nonet all less than about 1 GeV. Thea0(1450) andK0* (1430) appear to be ‘‘outsiders’’ in this picture
and to require additional fields. Comparison is made with a scattering treatment using a more general nonlinear
sigma model approach. In addition some speculative remarks and a highly simplified larger toy model are
devoted to the question of the quark substructure of the light scalar mesons.

DOI: 10.1103/PhysRevD.64.014031 PACS number~s!: 13.75.Lb, 11.15.Pg, 11.80.Et, 12.39.Fe
re
th
hl
n

ev
w

he
th

id
lit
th
n
to
a
ad
a

o
bo
ir
ro
es
t
r

e’
s-

n is

r-
hich

er-
pro-
m-

Of
of

-
our
s

l
r

ee
ee
sful
I. INTRODUCTION

In the last few years there has been a revival of inte
@1–27# in the possibility that light scalar mesons such as
sigma and kappa exist. This is a very important but hig
controversial subject. The difficulty is that one must demo
strate their existence by comparing with experiment, beli
able theoretical amplitudes containing the light scalars. Ho
ever, the energy range of interest is too low for t
systematic perturbative QCD expansion and too high for
systematic chiral perturbation theory expansion@28#.
Clearly, chiral symmetry should hold but it seems unavo
able to fall back on model dependent approaches. Qua
tively, the dominance of tree amplitudes is suggested by
1/Nc expansion@29# and it has been shown by Schechter a
co-workers@6,12,14,24# that this approach can be used
economically fit the data in the framework of a non-line
chiral Lagrangian which includes vectors and scalars in
dition to the pseudoscalars. Many related approaches h
been discussed by other workers@30#. To put the problem in
historical perspective, the theoretical treatment of mes
meson scattering has been a topic of great interest for a
forty years and has given rise, among other things, to ch
perturbation theory and string theory. Nevertheless, the p
lem itself of explaining light meson scattering amplitud
from threshold to~say! about the 1.5 GeV region is still no
definitively solved. Of course, if the existence of light scala
is true, it will be a crucial step forward.

In such a situation, it is often useful to increase on
perspective by studying simplified ‘‘toy models.’’ The cla
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sic chiral symmetric model which contains a scalar meso
the Gell-Mann–Le´vy two flavor linear sigma model@31#. At
the tree level it yields essentially the samepp scattering
length which is the initial approximation in the chiral pertu
bation scheme. However, compared to that scheme, w
uses a non-linear Lagrangian of pions only@32#, it is less
convenient to systematically implement corrections. Nev
theless it does contain a light scalar meson and it does
vide the standard intuitive picture of spontaneous chiral sy
metry breaking. Furthermore, it is likely to be@33# an
accurate model close to the QCD chiral phase transition.
course there is an enormous literature on the application
the two flavor linear sigma model topp scattering. Re-
cently, Achasov and Shestakov@4# have shown that a quali
tatively reasonable picture emerges at the lower part of
energy range of interest@34# by using a scheme which i
equivalent to what we may call ‘‘K-matrix unitarization.’’
Namely, in the standard parametrization@35# of a given par-
tial waveS matrix,

S5
11 iK

12 iK
[112iT, ~1.1!

we identify

K5Ttree. ~1.2!

Ttree is the given partial waveT matrix computed at tree leve
and is purely real. Such a scheme gives exact unitarity foT
but violates the crossing symmetry whichTtree itself obeys.

For a more realistic application topp scattering@i.e. in-
clusion of thef 0(980)] as well as topK, ph scatterings etc.
it is highly desirable to extend this calculation to the thr
flavor case. That is the purpose of this paper. We will s
that it provides a very predictive and reasonably succes
model which gives interesting new insights.
©2001 The American Physical Society31-1
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The three flavor linear sigma model@36# is constructed
from the 333 matrix field

M5S1 if ~1.3!

whereS5S† represents a scalar nonet andf5f† a pseudo-
scalar nonet. Under a chiral transformationqL→ULqL , qR
→URqR of the fundamental left and right handed light qua
fields, M is defined to transform as

M→ULMUR
† . ~1.4!

To start with, one may consider a general no
renormalizable@37# Lagrangian of the form

L52
1

2
Tr~]mf]mf!2

1

2
Tr~]mS]mS!2V02VSB,

~1.5!

where V0 is an arbitrary function of the independe
SU(3)L3SU(3)R3U(1)V invariants

I 15Tr~MM†!, I 25Tr~MM†MM†!,

I 35Tr„~MM†!3
…, I 456~detM1detM†!.

~1.6!

Of these, onlyI 4 is not invariant underU(1)A . The symme-
try breakerVSB has the minimal form

VSB522~A1S1
11A2S2

21A3S3
3!, ~1.7!

where theAa are real numbers which turn out to be propo
tional to the three light~‘‘current’’ type! quark masses.

The Lagrangian Eq.~1.5! contains the most general ‘‘po
tential’’ term V0 but still has the minimal ‘‘kinetic’’ term. It
is possible1 to also include non-renormalizable kinetic-typ
terms like Tr(]mM]mM†MM†), Tr(]mMM†]mMM†)
1H.c., etc. We shall disregard such terms in the pres
paper. It is interesting to note@37# that the results of ‘‘current
algebra’’ can be derived from Eq.~1.5! without knowing
details ofV0, just from chiral symmetry and the assumptio
that the minimum ofV[V01VSB is non-zero; specifically
the ‘‘vacuum values’’ satisfy

^Sa
b&5aada

b . ~1.8!

The ‘‘one-point’’ vertices~pseudoscalar decay constan!
are related to these parameters by

Fp5a11a2 , FK5a11a3 . ~1.9!

In the isotopic spin invariant limit one has

A15A2 , a15a2 ~ isospin limit!. ~1.10!

Many, though not all, of the ‘‘two-point’’ vertices~par-
ticle squared masses! may be calculated by@37# single dif-

1See, for example, Sec. IV of@38#.
01403
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ferentiation of two ‘‘generating equations’’ which expre
the chiral symmetry ofV0 and also using

K ]V

]Sa
bL 50. ~1.11!

For example, one finds

m2~p1!52
A11A2

a11a2
, m2~K1!52

A11A3

a11a3
. ~1.12!

The formula for the mass of theh8 ~and of the particlesh
andp0 with which it may mix! also involves the quantity

V4[ K ]V0

]I 4
L . ~1.13!

Many of the three point and four point vertices may
obtained by respectively two times and three times differ
tiating the above mentioned generating equations. The
cific terms needed for our subsequent discussion are give
the Appendix.

The present model requires us~in the limit of isospin
invariance! to specify the five parameters,A1 , A3 , a1 , a3
andV4. These may be obtained by using the five experim
tal input values:

mp50.137 GeV, mK50.495 GeV,

mh50.457 GeV, mh850.958 GeV,

Fp50.131 GeV ~ inputs!. ~1.14!

This is a reasonable, but clearly not unique choice for
inputs. ~For example,FK might be used instead ofmh .)
With these input parameters there are two immediate pre
tions for pseudoscalar properties:

up52.05°,
FK

Fp
51.39, ~1.15!

where the pseudoscalar mixing angle,up , is here defined by

S h

h8
D 5S cosup 2sinup

sinup cosup
D S h8

h0
D . ~1.16!

h and h8 are the ‘‘physical’’ states while the ‘‘unmixed’’
states are h85(f1

11f2
222f3

3)/A6 and h05(f1
11f2

2

1f3
3)/A3. The predictions in Eq.~1.15! are qualitatively

reasonable but not very accurate; the usually accepted v
for up , while small, is@39# around218° and the experimen
tal value forFK /Fp is about 1.22.~It is likely that the inclu-
sion of non-renormalizable kinetic terms mentioned abo
will improve this aspect.!

Now, the scalar meson masses are of the most pre
interest. Analogously to the pseudoscalars (p, K, h0 , h8)
we denote the scalars by (a0 , k, s0 , s8). The predicted
squared masses from the ‘‘toy’’ Lagrangian in Eq.~1.5! are

~a22a1!mBARE
2 ~a0

1!52~A22A1!,
1-2
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UNITARIZED PSEUDOSCALAR MESON SCATTERING . . . PHYSICAL REVIEW D64 014031
mBARE
2 ~k1!5

2~A32A1!

a32a1
,

mBARE
2 ~k0!5

2~A32A2!

a32a2
. ~1.17!

In this case, the masses ofs0 , s8 and their mixing angleus
@defined analogously to Eq.~1.16!# arenot predicted. In the
isotopic spin invariant limit, which we shall adopt here, t
a0 mass is not predicted~although it may be reasonably e
timated@40# by taking isospin violation into account!. Note
that we have, in contrast to the pseudoscalar case, put a
script ‘‘BARE’’ on each scalar mass. This is because
pole positions in the pseudoscalar-pseudoscalar scatte
amplitudes corresponding to scalar mesons may be n
trivially shifted by the unitarization procedure of Eqs.~1.1!
and~1.2!. We consider the unitarization to be an approxim
tion to including all higher order corrections. Then, in t
usual field theoretic way of thinking, the pole position det
mines the physical mass, while the tree levelmBARE has no
clear physical meaning.

The tree levelpp scattering amplitude is easily compute
@37# from Eq. ~1.5! in the present scheme. It involves a fo
point ‘‘contact’’ amplitude ands and s8 exchange dia-
grams. The resulting form2 turns out to be remarkably
simple:

A~s,t,u!5
2

Fp
2 H mp

2 1cos2cF ~mBARE
2 ~s!2mp

2 !2

mBARE
2 ~s!2s

2mBARE
2 ~s!G1sin2cF ~mBARE

2 ~s8!2mp
2 !2

mBARE
2 ~s8!2s

2mBARE
2 ~s8!G J , ~1.18!

where s, t and u are the usual Mandelstam variables. T
anglec is defined by the transformation

S s

s8
D 5S cosc 2sinc

sinc cosc D S S1
11S2

2

A2

S3
3

D , ~1.19!

where3 c is related to the angleus @defined analogously to
Eq. ~1.16!# by

cosc5
1

A3
~cosus2A2sinus!, ~1.20!

2The sign ofA(s,t,u) is the negative of the one in the conventio
of @37# but in agreement with those in@12,13,23#.

3Note that neitherc nor us are defined in the same way asus in
Eq. ~3.6! of @15#.
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which translates toc'us154.7°. With the Lagrangian Eq
~1.5! the amplitude Eq.~1.18! depends on the three unknow
parametersmBARE(s), mBARE(s8) andc.

We can increase the predictivity of the model by restri
ing the potentialV0 in Eq. ~1.5! to contain only renormaliz-
able terms. The resulting model is the one usually conside
since it allows for a consistent perturbation treatment~al-
though the coupling constants are very large!. In any event,
we will be working at tree level and ‘‘simulating’’ highe
order corrections by theK-matrix unitarization procedure
Note that all the formulas gotten above with generalV0 con-
tinue to hold in the renormalizable model; there will just
additional restrictions. The renormalizable potential may
written @41# as

V0~renormalizable!5@V12V11~Saaa
2!#I 11

1

2
V11~ I 1!2

1V2I 21V4I 4 , ~1.21!

where we have used the notation

Va[ K ]V0

]I a
L , Vab[ K ]2V0

]I a]I b
L . ~1.22!

As discussed4 in @41#, we may determineV1 andV2 from the
extremum equation Eq.~1.11! while V11 may be expressed in
terms ofmBARE(s). Thus specifyingmBARE(s) determines
the model parameters completely. Actually,mBARE(a0) is
fixed to be 0.913 GeV just by requiring renormalizabilit
independent of the choice ofmBARE(s). Using Eq.~1.17! we
find thatmBARE(k)50.909 GeV, independent of whether w
make the renormalizability restriction or not. Finally, the d
pendences ofmBARE(s8) andus on the choice ofmBARE(s)
are displayed in Fig. 1. Choosing the convention wh
mBARE(s),mBARE(s8), the model does not allow fo
mBARE(s) greater than about 0.813 GeV. Furthermo
mBARE(s8) must be greater than about 0.949 GeV in t
renormalizable model.

In Sec. II we study the simpler two flavor model both f
the purpose of review and for introducing our notation a
the method we will use in the three flavor case. We will a
illustrate just how well the amplitude can be approximat
by a pole in the complex s-plane plus a constant. A num
of new remarks are made. Section III contains a deta
discussion of the s-wavepp, pK andph scattering ampli-
tudes in the unitarized three flavor model. Both plots of t
predicted amplitudes compared with experiment and num
cal calculation of the pole parameters will be seen to
useful for understanding the dynamics. A summary and d
cussion of the calculations of the scalar meson parame
are presented in Sec. IV. Section V contains a more spe

4Please notice the relevant typographical errors in@41#: ~1! In the
first of Eqs.~2.2!, A3 /w21 should be replaced byA3 /w2A1. ~2!
In the second line of Eq.~2.5c! 4awV11 should be replaced by
4a2wV11. ~3! In the numerator of Eq.~2.8! the factor (4a)22

should be replaced by (2a)22.
1-3
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FIG. 1. Dependence~left! of
mBARE(s8) in GeV and~right! of
the octet-singlet mixing angleus

in degrees onmBARE(s), in the
renormalizable linear sigma
model.
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lative discussion on the question of the ‘‘quark substructu
of the light scalars. It is pointed out that there is a differen
in describing this at the ‘‘current’’ and ‘‘constituent’’ quar
levels. Also, while the linear sigma model is set up on
‘‘current’’ quark basis, it does not uniquely describe t
quark substructure. In the present model, the initial ‘‘curre
quark’’ meson field leads to constituent type states which
modified both by details of symmetry breaking and by u
tarization. The possible richness of the scalar meson sys
for further study is illustrated by the introduction of a larg
toy model which includes two differentM matrices.

II. TWO FLAVOR LINEAR SIGMA MODEL

It seems useful to first review the two flavor case and
make some additional comments. We start by exploring
difficulty with a conventional extension of the tree level am
plitude beyond the threshold region. This also provides
usual motivation for the introduction of the nonlinear sigm
model.

A. Standard unitarization procedure and its problems

It is easy to get the two flavorpp scattering amplitude by
taking a suitable limit of the three flavor amplitude given
Eq. ~1.18!. We simply decouple thes8 by setting thes
2s8 mixing anglec to zero, as is evident in Eq.~1.19!.
Then s becomes (S1

11S2
2)/A2, while s85S3

3 does not be-
long to the SU~2! theory and decouples; we are left with th
tree amplitude:5

5Since this formula was gotten as a limit of the SU~3! model with
an arbitrary~not neccessarily a fourth order polynomial! potential,
we see that the tree result Eq.~2.1! is independent of whether th
SU~2! linear sigma model potential has only renormalizable term
01403
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A~s,t,u!5
2

Fp
2 @mBARE

2 ~s!2mp
2 #FmBARE

2 ~s!2mp
2

mBARE
2 ~s!2s

21G .

~2.1!

The pole term in the second bracket represents thes ex-
change Feynman diagram. Naively one would expect
term by itself to describes dominance of the low energy
amplitude. However, the (21) piece, which comes from the
four point contact interaction, is needed in this model
satisfy chiral symmetry. It is easy to see that there is a d
matic partial cancellation of the two terms near thresho
For example, if we take the single unknown parameter in
model,mBARE(s) to be 1 GeV, then the pole term at thres
old @sth54mp

2 # is about 1.06. This gets reduced to just 6
of its value after adding the constant piece. Near thresh
we can approximatemBARE

2 (s)@@mp
2 ,s# to get the famous

‘‘current algebra’’ @42# formula

A~s,t,u!'
2~s2mp

2 !

Fp
2

. ~2.2!

We have just seen that this is a small quantity which h
arisen from a partial cancellation of two relatively larg
terms. Now if we wish to use Eq.~2.1! away from threshold
we run into the problem of an infinity arising whens
5mBARE

2 (s). A standard unitarization procedure to avo
this problem would correspond to making the replaceme

1

mBARE
2 ~s!2s

→ 1

mBARE
2 ~s!2s2 iGmBARE~s!

, ~2.3!

whereG is a width factor. The trouble is that the delica
partial cancellation with the contact term is now spoiled n
threshold and consequently there will be a very poor agr
ment with experiment in the threshold region..
1-4
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The most popular alternative treatment introduces a n
linearly transforming pion field and nos at all. ~Formally it
may be gotten by ‘‘integrating out’’ thes of the linear model
but this is not the most general formulation.! Then the cur-
rent algebra formula Eq.~2.2! is obtained directly from a
derivative type four point contact term~as opposed to the
non-derivative type in the linear model!. This approach
forms the basis of the chiral perturbation scheme~of pions
only!. The next order correction will involve more powers
derivatives and hence will not drastically modify the alrea
reasonable current algebra result.

A sigma-type particle can be introduced in a general w
~independent of the linear sigma model! in the non-linear
framework by using a standard technique@43#. In this ap-
proach thespp couplings are inevitably of derivative typ
so thes-pole contribution is small near threshold and do
not drastically alter the current algebra result. This is clea
convenient since a regularization of the type Eq.~2.3! will
not now alter the threshold behavior drastically. Howev
this does not neccessarily guarantee good experime
agreement away from threshold.

It seems worthwhile to emphasize that general mod
made using either linearly or non-linearly transforming chi
fields represent the same physics—spontaneous breakd
of chiral symmetry. The choice of which to use is hen
primarily a question of convenience in extending the desc
tion away from threshold. Usually the non-linear approach
a lot more convenient. In this paper we focus on studying
linear model, regarding it as a ‘‘toy model’’ useful for in
creasing our understanding.

To go further, we need the partial wave projection of t
amplitude Eq.~2.1!. Here we specialize to the I50 projec-
tion:

AI5053A~s,t,u!1A~u,t,s!1A~ t,s,u!. ~2.4!

The angular momentuml partial wave elastic scattering am
plitude for isospinI is

Tl
I~s!5

1

2
r~s!E

21

1

d cosu Pl~cosu!AI~s,t,u!, ~2.5!

whereAI(s,t,u) is the isospin I invariant amplitude,u is the
center of mass scattering angle and

r~s!5
q~s!

16pAs
, ~2.6!

with q(s) the center of mass momentum for, in general
channel containing particlesa1 anda2:

q25
s21~ma1

2 2ma2

2 !222s~ma1

2 1ma2

2 !

4s
. ~2.7!

Tl
I is related to the partial wave S-matrix,SI

l by Eq.~1.1!. For
understanding the properties of thes-meson, theT0

0 ampli-
tude is clearly the most relevant. Using Eq.~2.1! and Eqs.
~2.4!–~2.7! we get the tree approximation
01403
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T0
0

tree~s!5a~s!1
b~s!

mBARE
2 ~s!2s

~2.8!

where

a~s!5r~s!
mBARE

2 ~s!2mp
2

Fp
2 F21014

mBARE
2 ~s!2mp

2

s24mp
2

3 lnS mBARE
2 ~s!1s24mp

2

mBARE
2 ~s!

D G ,

b~s!5
6r~s!

Fp
2

„mBARE
2 ~s!2mp

2
…

2. ~2.9!

Note thata(s) in Eq. ~2.9! doesnot blow up whenq25(s
24mp

2 )/4→0.
Using the partial wave amplitude Eqs.~2.8! and~2.9! it is

straightforward to give a more detailed discussion of the d
ficulty of regulating the infinity ats5mBARE

2 (s) while still
maintaining the good agreement near threshold. Conside
placing the denominator in Eq.~2.8! according to the pre-
scription Eq.~2.3!. The effect of different constant widthsG
in Eq. ~2.3! is illustrated in Fig. 2 for an arbitrary choice o
mBARE(s)5560 MeV. It is seen that the effect of increasin
the width is to change the slope of the real part ofT0

0(s),
R0

0(s) near threshold from positive to negative, which co
tradicts experiment@44#. Note that the unitarity bound
uR0

0(s)u< 1
2 is violated not too far away from threshold

Theoretically, it is most natural to use instead of an arbitr
constant, the ‘‘running’’ perturbative width,

FIG. 2. Predicted real part ofpp I50 s-wave amplitude using
regularization with different constant widths according to Eq.~2.3!.
The widths are 50 MeV~solid!, 100 MeV ~dots!, 200 MeV
~dashes!, 300 MeV ~long-dashes!, 500 MeV ~dot-dashes!. Here,
mBARE(s)5560 MeV.
1-5
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G~s!5
3

16pFp
2As

A12
4mp

2

s
@mBARE

2 ~s!2mp
2 #2,

~2.10!

as was tried also in@4#. A plot of the real part of the resulting
amplitudeR0

0(s) is shown in Fig. 3 and is seen to bad
disagree with experiment. This is due to the large value
the perturbative widthG@s5mBARE

2 (s)#. It is amusing that
the somewhat arbitrary modification in the last factor of E
~2.10!:

@mBARE
2 ~s!2mp

2 #2→@s2mp
2 #2 ~2.11!

greatly improves the agreement near threshold, as is
shown in Fig. 3. However somewhat beyond threshold
amplitude also starts to deviate greatly from experime
Thus the prescription Eq.~2.11! does not completely solve
the problem, but may help fitting to experiment if the effec
of other possible particles are also taken into account.
effect of different values ofmBARE(s) in Eq. ~2.9! is illus-
trated in Fig. 4 for this scheme.

B. K-matrix unitarization

We can force unitarity at alls for the scalar partial wave
amplitude,T0

0(s) by taking the tree amplitudeT0
0

tree(s) given
in Eqs.~2.8! and~2.9! to coincide withK(s) in Eq. ~1.1!. To
see what is happening first considerT0

0
tree(s) to be small~for

example near thepp scattering threshold!. Then, in this
single channel case,

S0
0[112iT0

05112iT0
0

tree~s!1•••, ~2.12!

FIG. 3. Variations on SU~2! linear sigma model prediction fo
real part ofpp I50 s-wave amplitude. The dashed curve is t
‘‘current algebra’’ result Eq.~2.2!, the solid curve uses Eq.~2.3!
with the perturbative width calculated from Eq.~2.10! and the dot-
ted curve uses the regularization prescription outlined around
~2.11!. Here,mBARE(s)5560 GeV.
01403
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so thatT0
0(s) starts out asT0

0
tree(s), which is a reasonable

approximation. A presumably better approximation is o
tained by including more terms in an expansion of the
nominator:

T0
0~s!5

T0
0

tree

12 iT0
0

tree

5T0
0

tree@11 iT0
0

tree1~ iT0
0

tree!
21•••#.

~2.13!

As observed in@4# this has the structure of a bubble sum
field theory. However, in the present case one is work
with the partial wave, rather than the invariant amplitude
there is no integration over intermediate state momenta
course, in either case, crossing symmetry is lost. WhileT0

0
tree

is gotten from a crossing symmetric invariant amplitude, it
unlikely that the specially iterated amplitude Eq.~2.13! can
be gotten in this way. The advantage of the method is tha
guarantees unitarity. If, as is common,T0

0
tree(s) starts getting

too large,T0
0 will be chopped down to size. For example

T0
0

tree gets very large:

S0
0→21; T0

0→ i . ~2.14!

The real partR0
0 of T0

0 vanishes in such a case while th
imaginary partI 0

0→1. In particular this occurs, as we se
from Eq. ~2.8!, at the pole ofT0

0
tree, wheres5mBARE

2 .
With the tree level amplitude of Eq.~2.8!, the unitarized

S-matrix takes the form

S0
0~s!5

@11 ia~s!#@mBARE
2 ~s!2s#1 ib~s!

@12 ia~s!#@mBARE
2 ~s!2s#2 ib~s!

, ~2.15!

wherea(s) andb(s) are given in Eq.~2.9!. Equation~2.15!
is sufficient for comparing the predictions of the mod

q.

FIG. 4. Effect of different values ofmBARE(s) on the general-
ized ‘‘running width’’ prescription, outlined around Eq.~2.11!, on
the SU~2! linear sigma model prediction for real part of thepp I50
s-wave scattering amplitude. We show the curves for~in MeV!
mBARE(s)5300 ~dots!, 400~solid!, 500~dashes!, 600~long dashes!
and 800~dot-dashes!.
1-6
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@which contains the single unknown parametermBARE(s)]
with the experiment. However it is also of interest to rewr
the amplitude so that it looks more like a conventional re
nance in the presence of a background. Manipulating
~2.15! gives the factorized expression

S0
0~s!5e2idbg(s)

m82~s!2s1 ib8~s!

m82~s!2s2 ib8~s!
, ~2.16!

where

tan@dbg~s!#5a~s!,

m82~s!5mBARE
2 ~s!1

a~s!b~s!

11a2~s!
,

b8~s!5
b~s!

11a2~s!
. ~2.17!

This has the desired form although it should be noted thatm8
andb8 are boths-dependent. TheT amplitude which follows
from Eq. ~2.16! and Eq.~1.1! is the sum of a backgroun
term and a modified resonance term

T0
0~s!5eidbg(s)@sindbg~s!#1e2idbg(s)

b8~s!

m822s2 ib8~s!
.

~2.18!

It is important to observe that the resonance mass
width ~corresponding to a pole in the complex s plane! are
shifted from their bare values. These new values should
obtained from the complex solution,6 zs of

m82~z!2z2 ib8~z!50. ~2.19!

We may choose to identify thephysicalmass and width of
the s from7

ms
22 imsGs5zs . ~2.20!

One should keep in mind that the resonance term is
longer precisely of Breit-Wigner form.

A plot of the real partR0
0(s) of Eq. ~2.18! is presented in

Fig. 5 for the choices of~the single parameter in the mode!
mBARE(s)50.5 GeV, 0.8 GeV and 1 GeV. It is seen,
already noted in@4#, that there is reasonable agreement w
experiment up to aboutAs50.8 GeV ifmBARE(s) lies in the
0.8 to 1 GeV range. BeyondAs50.8 GeV, the effects of the
f 0(980), which does not appear in the two flavor model,
clearly important. Also, the unitarized curves formBARE(s)
in the 0.8 to 1 GeV range give a reasonable looking desc

6For complex arguments the ln function ina(z) is chosen to have
an imaginary piece lying between2 ip and ip.

7A different definition of the resonance mass and width was u
in @4# but the numerical results are close to each other.
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tion of the threshold region, as opposed to the conventio
unitarization scheme of Eq.~2.3!.

Figure 6 shows how theK matrix unitarization works in
detail by comparingR0

0(s) with R0
0(s) tree . It is seen that

R0
0

tree already violates the unitarity bound atAs50.43 GeV.
Since we are regarding theK-matrix unitarization as a

method of approximating all the higher order corrections
the pp scattering amplitude, it is clear that the quantities
physical significance should not be the bare mass and w
of s but rather the pole massms and widthGs defined~with
a usual convention! by Eqs.~2.19! and~2.20!. These quanti-
ties were obtained numerically and are given in Table I
the three choices ofmBARE(s) used above. Evidently ther

d

FIG. 5. Comparison with experiment of real part of the I5J50
pp scattering amplitude in the SU~2! linear sigma model, for
mBARE(s)50.5 GeV ~dots!, mBARE(s)50.8 GeV ~dashes! and
mBARE(s)51 GeV ~solid!. Experimental data@44# are extracted
from Alekseevaet al. ~squares! and Grayeret al. ~triangles!.

FIG. 6. Comparison of real part ofK-matrix regularized I5J50
pp scattering amplitude with the diverging real part of the tr
approximation, formBARE(s)50.8 GeV.
1-7
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TABLE I. Physicals parameters in the two flavor linear sigma model.

mBARE(s) ~GeV! 0.5 0.8 1
GBARE(s) ~GeV! 0.311 1.58 3.22
ms ~GeV! 0.421 0.458 0.449
Gs ~GeV! 0.202 0.476 0.624
zs (GeV2) 0.17720.085 i 0.21020.218 i 0.20220.281 i
as (GeV2) 20.01510.078 i 0.08810.169 i 0.15810.188 i
bs 20.42010.443 i 20.32410.704 i 20.27410.753 i
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are very substantial shifts of the bare mass and the
width. The physical sigma pole mass is around 0.45 G
while the pole width is around 0.5–0.6 GeV formBARE(s) in
the 0.8 to 1 GeV range.

In the present model we may qualitatively understand
decrease in thes mass and also width by noting thata(s)
andb(s) vary slowly with s. If they are taken to be consta
the physical massms would coincide withm8 in Eq. ~2.17!
and the physical quantitymsGs with b8 in Eq. ~2.17!. Thus
the negative sign of the mass shift arises since the b
ground piece of the amplitudea(s) is negative. A rather
rough estimate may be made by evaluatinga(s) and b(s)
for mp50 and s small. Then one finds b
→3mBARE

4 (s)/16pFp
2 while a→2b/mBARE

2 (s).
It is interesting to note that our calculated amplitu

T0
0(s) can be reasonably well-approximated as

T0
0~s!5

as

s2zs
1bs , ~2.21!

where the two complex numbersa andb are given in Table
I for different choices ofmBARE(s). Since this simple pole
dominated form reasonably fits experiment until the 70
800 MeV range it is not surprising that various determin
tions ofms andGs in the literature are roughly similar to th
ones in Table I. Often thes parameters are stated in terms
z1/2. In the case wherems50.458 GeV we havez1/2

50.5172 i0.240 GeV. This may be compared, for examp
with a treatment using a non-linear sigma model and incl
ing ther meson@12#. That treatment gave a best fit forz1/2

50.5852 i0.170 GeV. When it was refit@13# without ther it
yielded z1/250.4932 i0.319 GeV, which is closer to th
value in the present study~wherein, of course, spin 1 par
ticles have not been included!.

III. SCATTERING IN THREE FLAVOR LINEAR SIGMA
MODELS

Here we study the pseudoscalar meson scattering am
tudes in the three flavor linear sigma models discussed in
Introduction. We shall restrict attention to the J50 elastic
scattering amplitudes of

pp→pp,

pK→pK,

ph→ph, ~3.1!
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which contain the scalars of the model - (a0 , k, s, s8) - in
the direct channel.

Exactly the sameK-matrix unitarization scheme of Eqs
~1.1! and ~1.2! which was used in the two flavor model wi
be employed. In particular, no special assumptions about
interplay of thes and s8 resonances inpp scattering will
be made. The tree amplitude will simply be identified withK
in Eq. ~1.1!. The interesting question about the treatment
pp scattering is whether it can fit the experimental da
given the complicated strong interferences between thes,
s8 and contact term contributions. The interesting quest
about thepK scattering concerns the properties of thek
meson in the present model. Finally theph scattering is of
methodological interest. This is because the well-establis
a0(980) resonance is expected to appear in a very clean w
lacking interference from a strong contact term~or even the
possibility of potential interference when vector mesons
added to the model!, as explained, for example in@24#.

We will first carry out the calculations using the standa
renormalizable form of the three flavor linear sigma mod
This is characterized by the potential in Eq.~1.21!. Then the
whole model is extremely predictive. After using as input t
well-established masses of the pseudoscalar nonet and
decay constant@Eq. ~1.14!# there is only one quantity left to
choose in order to specify the scattering amplitudes. This
quantity may be taken to be the bares mass,mBARE(s). The
corresponding values ofmBARE(s8) andus are given in Fig.
1. We shall also carry out the calculations for the most g
eral chiral symmetric potential. This allowsmBARE(s8) and
us to be freely chosen, which is helpful for fitting exper
ment. As a possible justification for using a no
renormalizable potential we mention that the model is
effective one rather than the underlying QCD.~It may be
considered, for example, to be a Wilson-type effective l
energy Lagrangian. While non-renormalizable terms in
potential are technically irrelevant they play a part in est
lishing the spontaneously broken vacuum state and shoul
retained.! In any event the extra parameters are being ad
in a chiral symmetric way.

A. pp scattering

The elastic amplitude for the three flavor linear sigm
model in the tree approximation was given in Eq.~1.18!
above. Calculating the I5J50 partial wave amplitude as in
Sec. II A gives a result which is a straightforward genera
zation of Eq.~2.8!:
1-8
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T0tree
0 ~s!5cos2cFa~s!1

b~s!

mBARE
2 ~s!2s

G
1sin2cF ã~s!1

b̃~s!

mBARE
2 ~s8!2s

G , ~3.2!

where ã(s) and b̃(s) are respectively gotten by replacin
mBARE(s)→mBARE(s8) in a(s) andb(s) of Eq. ~2.9!. The
formula ~3.2! evidently represents a sum of thes and s8
related contributions, weighted by coefficients depending
the bares2s8 mixing anglec. As before, we investigate
the unitarized amplitude based on Eq.~3.2!:

T0
0~s!5

T0tree
0 ~s!

12 iT0tree
0 ~s!

, ~3.3!

which is being interpreted as an approximation to includ
the effects of the higher order corrections.

First, consider the renormalizable model. To see how w
it predicts the interesting I5J50 amplitude we may simply
plot the real part of Eq.~3.3!, R0

0(s) againsts for various
choices of the single undetermined parametermBARE(s).
~Since we are working in an elastic, exactly unitary appro
mation, the imaginary part of the amplitude directly follow
from the real part.! Clearly the effect of thes8 contribution
is small when the mixing anglec is small. Then one return
to the two flavor case discussed in Sec. II. Recalling thac
'us154.7° and referring to the second of Fig. 1 shows t
this will be the case whenmBARE(s) is around 0.6 GeV.
R0

0(s) for this case is shown as the dotted line in Fig. 7. T
experimentally derived points@44# are included for compari-
son. This looks similar to the curves for the two flavor ca
shown in Fig. 5, except that a sharp blip appears at ab
1.09 GeV corresponding to thes8 pole in T0tree

0 . Note, as
can be seen from Eq.~2.14!, that the real partR0

0(s) will
vanish both atAs5mBARE(s) andAs5mBARE(s8). We saw

FIG. 7. Comparison with experiment of real part of the I5J50
pp scattering amplitude in the renormalizable SU~3! linear sigma
model, for mBARE(s)50.45 GeV ~dashes!, mBARE(s)50.6 GeV
~dots! andmBARE(s)50.73 GeV~solid!.
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in Sec. II B that the strong interference with the backgrou
appreciably changes the position of the physical pole in
complexs plane so, while useful for understanding Fig.
these zeroes ofR0

0 do not give true parametrizations of th
pole position.

We have already learned that the choicemBARE(s)50.6
GeV is too low for a good fit toR0

0(s) in the region ofAs up
to about 0.6 GeV. IncreasingmBARE(s) improves the fit to
this region and also allows the effects of thes8 to come into
play. This is shown as the solid line in Fig. 7 which corr
sponds to the choicemBARE(s)50.73 GeV. Unfortunately
~as expected from Fig. 5! this choice is still not high enough
for a good fit in the low energy region. Furthermore, t
structure which should correspond to the experimen
f 0(980) resonance has been pushed too high. Increa
mBARE(s) further will, as the first of Fig. 1 shows, push th
structure even higher. One still must check to see if lower
mBARE(s) below 0.6 GeV can work. The dashed line in Fi
7 showsR0

0(s) for mBARE(s)50.45 GeV. In this case the
structure near thef 0(980) is in the right place but much to
narrow. The structure at lower energies is also very ba
distorted.

By examining the evolution with increasingmBARE(s) of
the three curves in Fig. 7, one sees that it is not possibl
get a good fit for any choice ofmBARE(s). Nevertheless the
qualitative prediction ofR0

0(s) is clearly a sensible one. It is
therefore tempting to see if there is an easy way to fix up
fit.

In a sense, the difficulty in obtaining a good fit aris
because only one parameter—taken to bemBARE(s)—is
available for adjustment to give agreement with a rat
complicated experimental shape. The easiest way to proc
is to modify some parameters involved in the calculation
a parameter to be varied is arbitrarily chosen there is h
ever a danger of breaking the chiral symmetry relations
trinsic to the model. For example, suppose we choose to v
the coupling constant of the bare sigma to two pions. T
three-point coupling constant, as mentioned in Sec. I, is
lated to the masses of the particles involved~see Appendix!.
Then, changing it without changing the masses will break
underlying chiral symmetry. Of course, we have written t
formula for the tree amplitude, Eq.~1.18! in such a way that
the correct relations for the 4 and 3 point coupling consta
are automatically taken into account for any choice of
contained parametersmBARE(s), mBARE(s8) andus . In fact
these three parameters may be freely chosen in the li
sigma model Eq.~1.5! with an arbitrary chiral invariant po-
tential, V0. It is only by restrictingV0 to be renormalizable
that one can relatemBARE(s8) andus to mBARE(s). Thus we
can freely varymBARE(s8) andus in addition tomBARE(s) if
we choose to obtain the tree amplitude from the no
renormalizable model of Eq.~1.5!.

In such a model it is easy to fit the experimental data
R0

0(s). A best fit obtained using theMINUIT package is shown
in Fig. 8. It corresponds to the parameter choic
mBARE(s)50.847 GeV, mBARE(s8)51.30 GeV and c
548.6°. The physical masses and widths are obtained, a
1-9
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Eq. ~2.20! in the two flavor case, from the pole positions
the complexs plane. These, together with the residues at
poles, are listed in Table II.

For orientation we first note that the parameters desc
ing the lower mass scalar,s are in the same range, as e
pected, as the parameters of Table I which give good fit
the low energy data using thes in the two flavor case. In fac
the masses are very close to each other but the effect o
additional flavor requires a somewhat greater width para
eter. The contribution of thes-pole toT0

0(s) is read off as

as

s2zs
5

2as

ms
22s2 imsGs

5
20.1672 i0.210

0.2092s2 i0.289
. ~3.4!

Note that this form is very different from a pure Brei
Wigner form which would require the numerator to be 0.2
GeV2. This illustrates~as does the two flavor case! the im-
portance of the interplay between the resonance and
‘‘background.’’ It also illustrates the possible difficulty o
trying to get properies of thes from experiment with the use
of a pure Breit-Wigner approximation. Note~again! from
Table II that the physical mass and width,ms andGs respec-
tively, are very much reduced from their bare values. T
detailed mechanism is evidently similar to what we d

FIG. 8. Comparison of our best fit for the real part of the I5J50
pp scattering amplitude in the non-renormalizable SU~3! linear
sigma model with experiment.

TABLE II. Physicals ands8 parameters obtained from best
using non-renormalizable SU~3! linear sigma model.

s s8

mBARE ~GeV! 0.847 1.300
GBARE ~GeV! 0.830 4.109
m ~GeV! 0.457 0.993
G ~GeV! 0.632 0.051
z (GeV2) 0.2092i 0.289 0.9862i 0.051
a (GeV2) 0.1671i 0.210 0.0532i 0.005
b 20.24810.856 i
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scribed in Sec. II for the two flavor case. It seems reasona
to consider the physical values ofms andGs to be the ones
which are significant.

The well-established resonancef 0(980) will be identified
with thes8. The contribution of thes8 pole toT0

0(s) is read
off as

as8

s2zs8

5
2as8

ms8
2

2s2 ims8Gs8

5
20.0531 i0.005

0.9862s2 i0.051
.

~3.5!

In this case the form of a pure Breit-Wigner would requ
that the numerator be10.051 GeV2. To a reasonable ap
proximation this holds except for an overall sign. Now re
erence to the formula Eq.~2.18! for a Breit-Wigner with a
background, shows that the background phasedbg5p/2 must
be supplying this negative sign. Clearly the negative sign
required by the experimental data showing the real p
R0

0(s) to be negative before and positive after the resona
at about 1 GeV. It was noted@12# that this is an example o
the well-known Ramsauer-Townsend effect in scatter
theory. It is also interesting to observe from Table II that t
bare mass of thes8 is substantially shifted down from 1.30
GeV @where a zero ofR0

0(s) remains, as previously dis
cussed# to about 1 GeV. The bare width is even more su
stantially shifted from about 4 GeV to 50 MeV.

One might wonder whether the simple pole dominan
approximation Eq.~2.21! for the two flavor case can be gen
eralized to this more complicated three flavor case cont
ing two poles. It turns out to be true; the prediction of o
model can be numerically approximated by the sum of
two pole terms and a suitably chosen constant:

T0
0~s!5R0

0~s!1 i I 0
0~s!'

as

s2zs
1

as8

s2zs8

1b, ~3.6!

where the numbersas , as8 , zs , zs8 and b are listed in
Table II. This is illustrated in Fig. 9 forR0

0(s) and I 0
0(s). In

these figures Eq.~3.6! is being compared with our predictio
in Fig. 8. Of course, there is no reason to use Eq.~3.6!
instead of the more accurate and complicated formula
~3.3! but it nicely shows the dominating effect of the pole
The pole approximation is seen however not to be very
curate near threshold.

Incidentally the deep dip inI 0
0(s) at what we have found

to be the s8 physical pole position also represents t
Ramsauer-Townsend effect. This appears inR0

0(s) as a
‘‘flipped’’ resonance curve, as discussed above. Actually t
Ramsauer-Townsend phenomenon can be pictured in a
ternative manner. If we considerR0tree

0 (s) corresponding to
two ‘‘bare’’ resonances, one following the other, we see t
there must be a point in between them whereR0tree

0 50. Then
Eq. ~3.3! shows that, afterK-matrix unitarization,R0

0 will
also vanish at this point. This point appears visually as
pole position zero of a ‘‘flipped’’ standard resonance curv
In the Ramsauer-Townsend interpretation the flipping is
terpreted as a background phase ofp/2. Our explicit deter-
mination of the pole positions for the sigma model amplitu
1-10
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FIG. 9. Comparison of~left!
real and~right! imaginary parts of
pole approximation Eq. ~3.6!
~dashed line! with those of our
predicted amplitude Eq.~3.2!
~solid line!.
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shows that this is the pole which captures the dynamics
the f 0(980). Its narrow width is seen to be the result of
getting ‘‘squeezed’’ between two nearby ‘‘bare’’ poles b
the unitarization in this model.

B. pK scattering

We are interested in the I51/2, J50 scattering amplitude
in order to investigate the properties of thek resonance in
the direct channel. The tree level amplitude involvesk ex-
changes in thes andu channels,s ands8 exchanges in the
t channel as well as a four point contact term. The relev
tree level invariant amplitude may be written as

A1/2~s,t,u!52gK
(4)1

3

2

gkKp
2

mBARE
2 ~k!2s

2
1

2

gkKp
2

mBARE
2 ~k!2u

2
gsppgsKK

mBARE
2 ~s!2t

2
gs8ppgs8KK

mBARE
2 ~s8!2t

, ~3.7!

where s, t and u are the usual Mandelstam variables. T
four point contact interactiongK

(4) and the bare three poin
coupling constants shown are listed in the Appendix. As
the cases ofs ands8 we have put a subscript BARE on th
k mass to indicate that the location of the physical pole a
unitarization may come out different from this. The sca
partial wave tree amplitude is next defined by

T0tree
1/2 5r~s!E

21

1

d cosu A1/2~s,t,u!. ~3.8!

Note thatr(s) was already defined by Eqs.~2.6! and ~2.7!.
The specific formula for Eq.~3.8! in the present model is a
bit lengthy and is shown in the Appendix.

According to our plan we do not introduce any new p
rameters for unitarization and simply write
01403
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T0
1/25

T0tree
1/2

12 iT0tree
1/2

, ~3.9!

which is related to the corresponding S-matrix element
Eq. ~1.1!.

As mentioned in the Introduction the value ofmBARE(k)
is independent of whether or not the chiral invariant poten
in Eq. ~1.5! is renormalizable, but depends only on the set
input parameters@e.g. Eq.~1.14!#. This may be seen from the
equation

mBARE
2 ~k!5

FKmK
2 2Fpmp

2

FK2Fp
~3.10!

FIG. 10. Comparison of our prediction for the real part of t
I5 1

2 , J50 pK scattering amplitude in the non-renormalizab
SU~3! linear sigma model with experiment. The curves correspo
to mBARE(k)51.3 GeV ~solid!, 1.1 GeV ~dashed! and 0.9 GeV
~dotted!. The experimental data are extracted from@45#.
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TABLE III. Physical k parameters obtained in the non-renormalizable SU~3! linear sigma model for
different values ofmBARE(k) which result from different choices of input parameters.

mBARE(k) ~GeV! 0.9 1.1 1.3

FK

Fp
, up

1.4, 2.5° 1.23,24.6° 1.16,28.8°

GBARE(k) ~GeV! 0.403 1.138 2.35
mk ~GeV! 0.799 0.818 0.798
Gk ~GeV! 0.257 0.461 0.614
zk (GeV2) 0.6392i 0.205 0.6692i 0.378 0.6372i 0.490
ak (GeV2) 20.0431i 0.190 0.0961i 0.340 0.2631i 0.378
bk 20.4381i 0.420 20.4191i 0.660 20.3571i 0.800
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which follows from Eqs.~1.9!, ~1.12! and ~1.17! in the iso-
topic spin invariant limit. This means that there are no n
unknown quantities beyond those used in the fit to thepp
scattering amplitude above. However we observe that
predicted value ofmBARE(k) is very sensitive to the differ-
enceFK2Fp . Actually the choice of input parameters give
in Eq. ~1.14! results in a somewhat too high prediction f
FK , as mentioned before.

One might therefore wonder whether the choice of in
parameters in Eq.~1.14! unfairly biases our treatment ofpK
scattering by giving a too small value formBARE(k). In order
to check this we will also consider the slightly differe
choice of input parameters8 (mp ,mK ,mh8 ,Fp ,FK). This
will not affect the pp scattering results in the non
renormalizable model just discussed. We first chooseFK
51.16Fp which is slightly smaller than the physical valu
but has the advantage that it givesmBARE(k)51.3 GeV
which yields a zero forT0

1/2(s) at 1.3 GeV, in agreement with
the experimental data. For this new input set we also h
explicitly checked that there is still no possibility of getting
good fit topp scattering in the renormalizable model.

With this choice of input and other coupling constan
taken in agreement with those found in the best fit topp
scattering we have the prediction for the real part of
amplitudeR0

1/2(s) shown in Fig. 10. The experimental da
@45#, which start around 0.83 GeV and go to about 1.6 G
are also shown in this graph. It is seen that the predic
from the linear sigma model agrees with the data from ab
0.83 GeV to about 0.92 GeV. However at higher energies
predicted curve lies much too low until about 1.35 GeV a
thereafter seems to completely miss the structure whic
usually associated with theK0* (1430) resonance.

Figure 10 also shows the predictions for the cases w
mBARE(k)51.1 GeV~corresponding toFK taking its experi-
mental value! and mBARE(k)50.9 GeV @corresponding to
the input choice of Eq.~1.14!#. These are in worse agreeme
with the experiment and also seem to miss theK0* (1430)
structure.

As in the two flavorpp case, which also contains only
single direct channel resonance we have found that the

8We then predictmh'0.53 GeV rather than the experiment
value of 0.547 GeV.
01403
e

t

e

e

n
ut
e

d
is

n

e-

dicted amplitude is fairly well approximated as the sum o
pole term and a constant:

T0
1/2~s!'

ak

s2zk
1bk . ~3.11!

The values forzk , ak andbk corresponding to the thre
different choices of input parameters are shown in Table
Again we identify the physical mass and width by

mk
22 imkGk5zk . ~3.12!

It is notable that the pole position mass is always close
800 MeV regardless of the choice ofmBARE(k). Furthermore
the widths obtained from Eq.~3.12! are substantially reduce
from their ‘‘bare’’ ~tree level! values, but are more sensitiv
to the choice ofmBARE(k).

All in all, the properties of thek obtained here are very
analogous to those of thes in either the two or three flavo
treatments ofpp scattering. Compare with Fig. 5, for ex
ample.

It does seem that the pole mass, Eq.~3.12!, of the k is a
good indication of the energy region where it provides
reasonable fit to the data. It also seems clear that the phy
associated with the higher massK0* (1430) is not being taken
into account in this model.

C. ph scattering

The tree level invariant amplitude takes the form

A1~s,t,u!

52gh
(4)1ga0ph

2 F 1

mBARE
2 ~a0!2s

1
1

mBARE
2 ~a0!2u

G
1

gsppgshh

mBARE
2 ~s!2t

1
gs8ppgs8hh

mBARE
2 ~s8!2t

, ~3.13!

where the four point contact term2gh
(4) as well as the three

point coupling constants are listed in the Appendix. Oth
conventions are the same as above. Similarly the scalar
tial wave amplitude is
1-12
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T0tree
1 5r~s!E

21

1

d cosuA1~s,t,u!, ~3.14!

which is also listed in the Appendix. Again we unitarize b
substituting this into the formula

T0
15

T0tree
1

12 iT0tree
1

. ~3.15!

Since there is apparently no experimental phase shift an
sis available for this channel, we will have to be content
just present our theoretical results and compare with
mass and width of the experimentala0(980) resonance. I
was already noted that the renormalizable model@with the
inputs Eq.~1.14!# yields the somewhat too low bare ma
~which gets shifted down by unitarization! of 913 MeV. We
will also present the results for the non-renormaliza
model which gave a good picture ofpp scattering and for
which we are still free to choosemBARE(a0). A value
mBARE(a0)51.100 GeV gives roughly the correct ‘‘physica
mass’’ and the plot of the real part of Eq.~3.15! for this
choice is shown in Fig. 11. The result of the regularization
generally similar to the curves obtained for thes in pp
scattering and thek in pK scattering. We have found in thi
case too that the predicted amplitude is reasonably well
proximated by the sum of a pole and a constant:

FIG. 11. Prediction for the real part of the I51, J50 ph partial
wave scattering amplitude Eq.~3.15! in the non-renormalizable
SU~3! linear sigma model~parameters as in second column of Tab
IV !.
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T0
1~s!5

aa0

s2za0

1ba0
. ~3.16!

The physical mass and width are found from

ma0

2 2 ima0
Ga0

5za0
~3.17!

and the appropriate values for the two cases mentioned
listed in Table IV. While Fig. 11 seems to be just what o
would expect for the real part of a resonance amplitu
Table IV, as in the previous cases, reveals some interes
features. First, sinceaa0

is clearly different from2Im(za0
),

the resonance is not a pure Breit-Wigner resonance. The
cation of the physical pole is close to the positive peak
R0

1(s) rather than to its zero, as would hold for a Bre
Wigner resonance. Compared to the scalar resonancepp
andpK channels we notice that there are smaller shifts
ing from mBARE(a0) to ma0

and fromGBARE(a0) to Ga0
. This

is reasonably interpreted as due to less effect of interfere
with the background. This is manifest in the non-line
sigma model approach toph scattering@24# and can thus be
understood as a consequence of the similarity of the n
linear and linear chiral models. In addition, we note thatGa0

is predicted to be somewhat larger than the experime
value @46# of 50–100 MeV. Nevertheless, the prediction
qualitatively reasonable.

IV. SUMMARY AND DISCUSSION

We have treated the three flavor linear sigma model a
‘‘toy model’’ for examining the role of possible light scala
mesons in thepp, pK andph scattering channels. This i
a highly predictive model which contains only one free p
rameter, which may be taken asmBARE(s), in the renormal-
izable case. If we give up renormalizability for this effectiv
Lagrangian but maintain chiral symmetry in a straightfo
ward way, mBARE(s8), the scalar mixing angleus and
mBARE(a0) may also be freely chosen, which is helpful fo
fitting experiment in the desired energy range of threshold
the 11 GeV region. Our approach just involves computin
the tree amplitude for each channel and unitarizing by
simple ‘‘K-matrix’’ prescription which does not itself intro
duce any new parameters. In general the unitarization
very important effects converting ‘‘bare’’ scalar meso
masses and widths into ‘‘physical’’ ones. It turns out th

TABLE IV. Physicala0 parameters in renormalizable~first col-
umn! and non-renormalizable~second column! SU~3! linear sigma
model using corresponding best-fit parameters frompp scattering.

mBARE(a0) ~GeV! 0.913 1.100
GBARE(a0) ~GeV! 0.129 0.381
ma0

~GeV! 0.890 1.013
Ga0

~GeV! 0.109 0.241
za0

(GeV2) 0.7932i 0.097 1.0272i 0.244
aa0

(GeV2) 20.0651i 0.064 20.0761i 0.200
ba0

20.2991i 0.204 20.3121i 0.408
1-13
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TABLE V. Predicted ‘‘physical’’ masses and widths in MeV of the nonet of scalar mesons contr
with suitable~as discussed in the text! comparison values.

s f 0 k a0

Present Model
mass~MeV!, width ~MeV! 457, 632 993, 51 800, 260–610 890–1010, 110–24
Comparison
mass~MeV!, width ~MeV! 560, 370 980610, 40–100 900, 275 985, 50–100
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there is not too much ‘‘wiggle room’’ in this procedure s
that what results is characteristic of the model~and the uni-
tarization scheme!. This tightness comes from the dema
that the starting tree amplitudes satisfy chiral symmetry
strictions. This means, as discussed in Sec. I, that the
point contact interaction vertices are related to the three p
interactions which are related to the particle masses~two
point objects! which are related in turn to the one point term
~pseudoscalar meson decay constants!. We chose the inputs
to be the four pseudoscalar masses and the pion decay
stant @Eq. ~1.14!#. However the pseudoscalar mixing ang
and kaon decay constant were not perfectly predicted
there is already a source of error present before even goin
the scattering amplitudes. Nevertheless we investigated
point by considering an alternative input set obtained by
ing FK instead ofmh and found that there was not muc
qualitative change for the scattering predictions.

Our point of view in this paper is to see what are t
results of computing in a relatively simple and natural mo
for the purpose of comparison with other~and possibly fu-
ture! more elaborate treatments. It seems to us that the re
are interesting and instructive. In the simpler two flavor ca
which was applied in@4# to a lower energy treatment ofpp
scattering, the results were already reasonable. Here
have, in Sec. II, reviewed the two flavor case in a sligh
different way as preparation for the more complicated th
flavor case. We have also made some new comments
suggested an alternative ‘‘naive’’ unitarization procedu
which might be handy for future studies.

Table V contains a brief summary of the physical mas
and widths of the scalar mesons predicted in the pre
model and discussed in some detail in Sec. III. In the case
the f 0(980) anda0(980) resonances comparison is bei
made with experimental values@46#. In the cases of thes
and thek, which are less well-established experimenta
we have compared with the earlier computations of the S
cuse group@12,14,15# which were based on a non-linear ch
ral effective Lagrangian treatment, including vector meso
Many other authors@30# were led to similar predictions fo
the s while similar predictions for thek were made in@11#
and the third of@16#. Answers to the concerns expressed
@47# on the experimental existence of thek were made in
@14#, the third of@16# and in @48#.

The predicted properties of thes and f 0 in the present
model come from their role inpp scattering as discussed
Sec. III A. It was found that the single parameter describ
the renormalizable model could not be adjusted to giv
reasonable fit to the experimental data. This could be d
when the renormalizability condition was relaxed. Neith
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the physicals nor the physicalf 0 are described by simple
Breit-Wigner terms. Both have masses and widths gre
reduced from their ‘‘bare’’ values by the unitarization pr
cedure. The light, broads is somewhat lighter and broade
than the comparison one obtained in the non-linear mo
@12#. ~However when the vector meson contribution in t
non-linear model was consistently eliminated@13# the s in
that model also became broader and lighter.! The f 0 obtained
approximately looked like a Breit-Wigner in a backgroun
which has a phasedbg5p/2. This is known as the
Ramsauer-Townsend effect in scattering theory. The fact
it emerges in the present model was noted to be explicab
terms of the region between two neighboring ‘‘bare’’ res
nances getting squeezed by unitarization.

The entries in Table V for thek mass and width require
some explanation. The barek mass and width in this mode
are uniquely predicted once the input parameters are sp
fied, regardless of whether or not the potential is taken to
renormalizable. However the predictions of thek parameters
are very sensitive toFK @which measures the deviation of th
vacuum from exact SU~3! flavor symmetry in this model#.
Thus we allowed different input sets yielding different ba
k masses, as discussed in Sec. III B. Whatever reason
choice was made, the unitarization always brought the ph
cal k mass down to around 800 MeV. However the physi
width is more dependent on this choice. Furthermore,
shown in Fig. 10, thek resonance can only explain the low
energypK scattering data. This would be the analog of t
SU~2! treatment ofpp scattering, where thes alone can
provide a reasonable description of the low energy regi
Thek cannot explain the data in the region of theK0* (1430)
scalar resonance. In other words, we cannot explain
K0* (1430) as the strange scalar of the usual linear sig
model treated withK-matrix unitarization.

In the case of theph channel there does not appear to
any experimental phase shift data, so we compare with
perimental determinations of thea0(980) mass and width
The lower physical mass entry for thea0 in Table V corre-
sponds to the bare mass of the renormalizable model.
somewhat too low but not very far off. This can be eas
adjusted by using the non-renormalizable potential. The p
dicted width is somewhat too large but qualitatively reaso
able. Clearly, thea0 of the present model is describing th
low energy part ofph scattering and should correspond
the a0(980) rather than thea0(1450).

All in all, the three flavor linear sigma model with a gen
eral ~non-renormalizable! chiral invariant potential and regu
larized by the simpleK-matrix procedure can approximate
1-14
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UNITARIZED PSEUDOSCALAR MESON SCATTERING . . . PHYSICAL REVIEW D64 014031
describe the complicatedpp scalar scattering amplitude a
well as the low energy part of theKp scalar amplitude and
thea0(980) ph resonance. TheK0* (1430) anda0(1450) are
‘‘outsiders’’ in this picture and would have to be put in b
hand to realize the higher mass scalar resonances inpK and
ph scattering. The picture is qualitatively similar to th
obtained in treatments using the non-linear sigma model
pp @12#, pK @14# andph @24# scattering. Thea0(980) and
f 0(980) seem to belong to the same multiplet as the con
versial lights and lightk. Of course, it is possible for par
ticles with the same quantum numbers belonging to ot
multiplets to mix with them.

There are several straightforward, but lengthy to carefu
implement, ways to improve this treatment. Modified kine
terms, as mentioned in Sec. I, can be included to improve
fit to pseudoscalar masses and decay constants. Vecto
axial vector mesons can be added to introduce more of
low-lying physical resonances which are expected to be
portant in thepp and pK channels. Certainly, inelasti
channels should be included. In the treatment ofpp scatter-
ing using the non-linear model in@12# it was found that
taking some account of theKK̄ channel did not change th
basic structure of the elastic scattering amplitude for the
ergy range considered here. Since the unitarization proce
played an important role in our analysis it seems very de
able to investigate more ‘‘dynamical’’ methods than the co
ventional K-matrix scheme employed here. A promisin
scheme which introduces one new parameter has bee
cently suggested by Oller and Meissner@49#.

V. SPECULATION ON SCALAR MESON’S QUARK
STRUCTURE

Up to this point we have reported the results of a straig
forward and highly predictive treatment of the three flav
linear sigma model. Our original reason for pursuing t
investigation was to check the results obtained in our tre
ment of meson scattering in the non-linear sigma mo
which contained additional particles and channels. T
treatment used a different unitarization procedure in wh
crossing symmetry and unitarity were both approximat
satisfied.~Actually in the study of direct channel scalar res
nances, the crossed scalar exchanges are relatively sm!
We already noted that the locations and widths of thephysi-
cal scalar states obtained in the linear model were qua
tively similar to those obtained in the non-linear mod
Since thes, f 0 , a0 andk all come out less than or about
GeV, and the scattering regions near thea0(1450) and the
K0* (1430) apparently must be described by fields other t
those contained in the matrixM, the well known puzzle of
the quark structure of these scalars comes to the surfac

In this section we will make some speculative remarks
this controversial subject and introduce another toy mo
which may illuminate some of the issues. The puzzle,
course, is why, if the scalars are ‘‘qq̄ states,’’ they are con-
siderably lighter than the other p-wave states and why
isovectora0(980) is tied for being the heaviest, rather th
the lightest, member of the multiplet.
01403
r

o-

r

y

e
nd
e
-

n-
re

r-
-

re-

t-
r
s
t-
l
t

h
y

ll.

-
.

n

n
el
f

e

Actually there is a lot of ambiguity in stating what th
quark structure of a physical hadron means. Generally pe
think of the question in the context of a potential-type mod
wherein, for example, ther meson is made of a ‘‘constitu
ent’’ quark of mass about 300 MeV and a constituent an
quark of the same mass. The idea is that the fundame
‘‘current quarks of QCD’’~with masses about 10 MeV! in-
teract strongly with each other and with gluons to make
relatively weakly interacting constituents whose combin
masses roughly approximate the physical hadron mas
Thus the quark structure really depends on the model use
treat the hadrons. At the field theory level of ‘‘curre
quarks’’ there is always some probability for extraqq̄ pairs
or other structures to be present. In theSU(3)L3SU(3)R
chiral effective Lagrangian treatments, the quark substr
ture of the fields being used does not enter the formulatio
a unique way. An infinite number of different quark su
structures will give rise to the sameSU(3)L3SU(3)R trans-
formation properties for the mesons. This is apparent for
non-linear chiral model in which scalars are added to
pseudoscalar meson Lagrangian as ‘‘matter fields’’ in
usual manner@43#. Then it is known that only the SU~3!
flavor transformation properties of the scalars are relev
However we found in our earlier study@15# that the value of
the scalar mixing angle suggested indirectly that the li
scalars do have an important four quark component. Con
ering the properties of the heavier scalarsa0(1450) and
K0* (1430) suggested@25# that these states did not belong to

‘‘pure’’ qq̄ multiplet but to one which mixed with the lighte
scalar multiplet.

When it comes to the linear sigma model where the ch
transformations of the scalars are linked with those of
pseudoscalars in a natural way, there seems to be a fe
that the matrixM should describe aqq̄ field. In fact, there are
still an infinite number of quark substructures which tran
form in the same manner underSU(3)L3SU(3)R . It may
be worthwhile to illustrate this for the specific cases of int
est in the literature.

The schematic structure for the matrixM (x) realizing a
qq̄ composite in terms of quark fieldsqaA(x) can be written

Ma
(1)b5~qbA!†g4

11g5

2
qaA , ~5.1!

wherea andA are respectively flavor and color indices. O
convention for matrix notation isMa

(1)b→Mab
(1) . Then M (1)

transforms under chiralSU(3)L3SU(3)R as

M (1)→ULM (1)UR
† ~5.2!

whereUL and UR are unitary, unimodular matrices assoc
ated with the transformations on the left handed@qL5 1

2 (1
1g5)q# and right handed@qR5 1

2 (12g5)q# quark projec-
tions. For the discrete transformations charge conjugatioC
and parityP one verifies

C: M (1)→M (1)T, P: M (1)~x!→M (1)†~2x!.
~5.3!
1-15
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Finally, the U(1)A transformation acts asqaL→einqaL ,
qaR→e2 inqaR and results in

M (1)→e2inM (1). ~5.4!

One interesting model@50# for explaining the scalar me
son puzzle@at least insofar as thea0(980) andf 0(980) states
are concerned# is to postulate that the light scalars are ‘‘mo
ecules’’ made out of two pseudoscalar mesons. The ch
realization of this picture would result in the following sch
matic structure:

Ma
(2)b5eacde

be f~M (1)†!e
c~M (1)†! f

d . ~5.5!

One can verify thatM (2) transforms exactly in the sam
way as M (1) under SU(3)L3SU(3)R , C and P. Under
U(1)A it transforms as

M (2)→e24inM (2), ~5.6!

which differs from Eq.~5.4!.
Another interesting approach@51# to explaining the light

scalar mesons was formulated by Jaffe in the framework
the MIT bag model. It was observed that the spin-spin~hy-
perfine! piece of the one gluon exchange interaction betw
quarks gives an exceptionally strong binding to an s-w
qqq̄q̄ scalar state. Furthermore, this model naturally pred
an ‘‘inverted’’ mass spectrum of the type summarized
Table V. A more detailed recent discussion is given in@15#.
The scalar states of this type may be formally written
bound states of a ‘‘dual quark’’ and ‘‘dual antiquark.’’ Ther
are two possibilities if the dual antiquark is required to b
long to a 3̄representation of flavor SU~3!. In the first case it
belongs to a 3̄of color and is a spin singlet. This has th
schematic chiral realization,

LgE5egabeEABqaA
T C21

11g5

2
qbB ,

RgE5egabeEABqaA
T C21

12g5

2
qbB , ~5.7!

whereC is the charge conjugation matrix of the Dirac theo
A suitable form for theM matrix is

Mg
(3) f5~LgA!†Rf A. ~5.8!

M (3) can be seen to transform in the same way asM (2) under
SU(3)L3SU(3)R , C, P andU(1)A . In the second case th
dual antiquark belongs to a 6 representation of color and
spin 1. It has the corresponding schematic chiral realizat

Lmn,AB
g 5Lmn,BA

g 5egabqaA
T C21smn

11g5

2
qbB ,

Rmn,AB
g 5Rmn,BA

g 5egabqaA
T C21smn

12g5

2
qbB , ~5.9!

wheresmn5(1/2i )@gm ,gn#. This choice leads to anM ma-
trix
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Mg
(4) f5~Lmn,AB

g !†Rmn,AB
f , ~5.10!

where the dagger operation includes a factor (21)dm41dn4.
M (4) also transforms likeM (2) and M (3) under all of
SU(3)L3SU(3)R , C, P andU(1)A . The specific form fa-
vored by the MIT bag model calculation actually corr
sponds to a particular linear combination ofM (3) andM (4).
Furthermore one can verify thatM (2) in Eq. ~5.5! is related
by a Fierz transformation to a linear combination ofM (3)

andM (4). Thus only two ofM (2), M (3) andM (4) are linearly
independent. At the effective Lagrangian level the distinct
between meson-meson and diquark-antidiquark model
clearly blurred.

What is the significance of these remarks for construct
of the general effective chiral Lagrangian used in this pa
@Eq. ~1.5!#? All that is required forM is that it transform like
M (1) underSU(3)L3SU(3)R , C and P and that it carry a
non-zeroU(1)A ‘‘charge’’ which gets broken by the poten
tial. The specificU(1)A transformation property does diffe
between the two quark realizationM (1) and the four quark
realizations (M (2), M (3) and M (4)) but this would just be
absorbed, in the present work, by a different value for
parameterV4. Thus, if one knew nothing else about hadron
physics than the present toy Lagrangian, one would not
able toa priori easily discriminate among the possibilitie
M (1)2M (4), or in fact any others, for the underlying qua
substructure of the scalars~and pseudoscalars!. Nevertheless,
one might glance at the obtained scalar masses in Tab
and notice that there is an inverted physical mass spectr
One might then decide to make a judgement on theconstitu-
ent quark substructure by fitting the scalar spectrum to
Okubo type mass formula@52#. This was done recently, fo
example, in Sec. II of@15# and suggests that the scalars a
behaving roughly as composites of four constituent qua
Roughly, this amounts to simply counting the number
strange constituent pieces in each state; in the four qu
picture bothf 0(980) anda0(980) have two. The combined
effects of spontaneous chiral symmetry breaking and un
rization ~presumably taking radiative corrections into a
count! appears to split the constituent structures of the s
lars from the pseudoscalars, regardless of which cur
quark structure~i.e. choice ofM ) we start with.

However the true situation is likely to be more comp
cated. The present model does not appear to accommo
thea0(1450) andK0* (1430) scalars as states belonging toM.
These states would seem at first sight to be reasonable
didates for a nonet of ordinaryqq̄ scalars. Still it is a little
puzzling thatK0* (1430) is not heavier thana0(1450). There
are some other puzzles too but all can be qualitatively
plained@25# if a qq̄ scalar nonet mixes with aqqq̄q̄ scalar
nonet. If we want to realize such a scheme in the lin
model framework it would be natural to introduce a Lagran
ian with two differentM matrices. Such a model seems
yield a variety of interesting dynamical possibilities whic
may lead to new insights and approximation schemes for
energy QCD. Thus it may be worthwhile to give a bri
discussion here.

Let us start with the fieldM (1) which we shall simply
1-16
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designateM. At the kinematical level it represents a curren
type quark antiquark operator. This is modified for both t
pseudoscalar and scalar states by the~almost! spontaneous
breakdown of chiral symmetry. For the scalars~which occur
as poles in the physical region! there is an additional modi
fication due to the unitarization required. Of course,
choice of the free parameters gives an ‘‘experimental’’ inp
to this process. The resulting scalars seem to be rou
consistent with aqqq̄q̄ constituent-quark structure, as ju
discussed. Now consider adding a current type four qu
operator which may be any combination ofM (2), M (3) or
M (4) ~we could not tell the difference in an effective La
grangian framework! and denote it byM 8. Allow M 8 to mix
with M. What happens?

The Lagrangian which directly generalizes Eq.~1.5! is
written as

L52
1

2
Tr~]mM]mM†!2

1

2
Tr~]mM 8]mM 8†!

2V0~M ,M 8!2VSB, ~5.11!

where V0(M ,M 8) stands for a general polynomial mad
from SU(3)L3SU(3)R @but not U(1)A] invariants formed
out of M andM 8. FurthermoreVSB is taken to be the same a
Eq. ~1.7! since it is Tr(M1M†) which ‘‘mocks up’’ the
quark mass terms. Other physical particles~including glue-
balls! could be added for more realism, but Eq.~5.11! is
already quite complicated.

To get an indication of what kinds of questions might
answered, let us consider a very simplified approximation
which the quark mass effective term,VSB is absent and
whereV0 is simply given by

V052c2Tr~MM†!1c4Tr~MM†MM†!

1d2Tr~M 8M 8†!1eTr~MM 8†1M 8M†!.

~5.12!

Herec2 , c4 andd2 are positive real constants. TheM matrix
field is chosen to have a wrong sign mass term so that t
will be spontaneous breakdown of chiral symmetry. A ps
doscalar octet will thus be massless. On the other hand
matrix field M 8 is being set up to have trivial dynamic
except for its mixing term withM. The mixing is controlled
by the parametere and thee-term is the only one which
violates U(1)A symmetry. Its origin is presumably due t
instanton effects at the fundamental QCD level.@Other
U(1)A-violating terms which contribute toh8 mass etc. are
not being included for simplicity.# Using the notationsM
5S1 if andM 85S81 if8 we may expect vacuum values

^Sa
b&5ada

b , ^Sa8
b&5bda

b . ~5.13!

The minimization condition̂]V0 /]Sa8
b&50 leads to

b52
e

d2
a ~5.14!

while ^]V0 /]Sa
b&50 yields
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a25
1

2c4
S c21

e2

d2
D . ~5.15!

In the absence of mixing the ‘‘four-quark’’ condensateb
vanishes while the usual two quark condensatea remains.

The mass spectrum resulting from Eq.~5.12! has two sca-
lar octets and two pseudoscalar octets, each with an as
atedSU(3) singlet. Each octet has eight degenerate me
bers since the quark mass terms have been turned off. Le
focus on the I51, positively charged particles for definite
ness and define

p15f1
2 , p815f18

2 , a15S1
2 , a815S18

2 .
~5.16!

Then the 232 squared mass matrix ofp andp8 is

2F e2

d2
e

e d2

G . ~5.17!

This has eigenstates

pp5S 11
e2

d2
2D 21/2S p2

e

d2
p8D ,

pp85S 11
e2

d2
2D 21/2S e

d2
p1p8D , ~5.18!

with masses

m2~pp!50, mBARE
2 ~pp8!5

2e2

d2
12d2 . ~5.19!

We put the subscript ‘‘BARE’’ onm2(pp8) to indicate that it
may receive non-negligible corrections fromK-matrix unita-
rization as in our detailed treatment of theM only Lagrang-
ian in the above. A possible experimental candidate for s
a particle is thep(1300).

Computing the axial vector current by Noether’s theore
yields

~Jm
axial!1

25Fp]mpp
11•••,

Fp52aA11S e

d2
D 2

, ~5.20!

wherea is given in Eq.~5.15!.
Notice that a term like]mpp8

1 does not appear in ou
semi-classical approximation.

The 232 squared mass matrix of the scalarsa anda8 is

F 4c21
6e2

d2
2e

2e 2d2

G . ~5.21!

The eigenstates are defined by
1-17
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S ap

ap8
D 5Fcosv 2sinv

sinv cosv
G S a

a8
D , ~5.22!

with

tan 2v5
4e

2d224c22
6e2

d2

. ~5.23!

The corresponding masses are

mBARE
2 ~ap ,ap8!52c21d21

3e2

d2
72e csc2v, ~5.24!

where the upper~lower! sign stands forap , (ap8).
It is interesting to examine the masses of the degene

octets in a little more detail. For orientation, first consider
case when the mixing parametere vanishes. The usual ‘‘qq̄’’
pseudoscalarspp are zero mass Goldstone bosons in t
approximation. If 4c2.2d2 , ap , the original scalar partne
of pp lies higher than the degenerate ‘‘qqq̄q̄’’ scalar and
pseudoscalarap8 and pp8 . When the mixing is turned on,
four quark condensate develops and the mass ordering

mBARE~ap!.mBARE~pp8!.mBARE~ap8!.mBARE~pp!50.
~5.25!

FIG. 12. Plots ofmBARE(ap) ~solid!, mBARE(ap8) ~dashed! and
mBARE(pp8) versus the mixing parametere for the choicec250.25
GeV2 and d250.32 GeV2. The highest lying curve is mainly a

‘‘ qq̄’’ scalar, while the lowest lying curve is mainly a ‘‘qqq̄q̄’’
scalar. The excited pseudoscalar curve is in the middle.
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This is graphed, as a function ofe, in Fig. 12~with parameter
choicesc250.25 GeV2, d250.32 GeV2!. In such a scenario
theqqq̄q̄ scalar would be the next lightest after theqq̄ Gold-
stone boson. Each particle would be a mixture ofqq̄ and
qqq̄q̄ to some extent. For the given parameters the mix
angle remains small however because the denominator o
~5.23! is always negative and increases in magnitude ase2

increases. Note especially, that due to the spontaneous b
down of chiral symmetry, there is no guarantee that the lo
est lying scalar is ofqq̄ type. Also note thatpp8 is expected
to be more massive thanap8 .

On the other hand, if the QCD dynamics underlying t
effective Lagrangian is such that 2d2.4c2 we will get a
mass ordering mBARE(ap8).mBARE(p8).mBARE(ap) in
which the four quark scalar appears heaviest. However
this case we will definitely get a large mixing ase increases
since the denominator of Eq.~5.23! starts out positive when
e50 and will go to zero ase is increased. Thus the next-to
lowest lying ap can be expected to have a largeqqq̄q̄ ad-
mixture.

All of these remarks pertain to the meson current-qu
type operators in the toy model. The important effects
unitarization ~i.e. mBARE→m) are likely, as in our earlier
treatment, to favor an interpretation of the low lying physic
scalars as being of four constituent quark type in either ca

The main lesson from our preliminary treatment of a c
ral model with mixing is perhaps that even though theM
fields carry ‘‘chiral indices’’ it is not easy to assign an u
ambiguous quark substructure. On the other hand there
great potentiality for learning more about non-perturbat
QCD from further study of the light scalars. Such features
scalar mixing~including the possibility of mixing with glue-
balls for the I50 states!, four quark condensates and excite
pseudoscalars may eventually get correlated with each o
and with the experimental data on the scattering of lig
pseudoscalars.
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APPENDIX: COUPLING CONSTANTS AND PARTIAL
WAVE AMPLITUDES

For the scattering processes under consideration we
need the four-point pseudoscalar contact interactions and
trilinear scalar-pseudoscalar-pseudoscalar interactions
isotopic spin notation the relevant pieces of the Lagrang
are, respectively,

2L (4)5
1

16
gp

(4)~p•p!21
1

2
gK

(4)K̄Kp•p

1
1

4
gh

(4)hhp•p1••• ~A1!
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2LSff5
gkKp

A2
~K̄t•pk1H.c.!1

gspp

2
sp•p1gsKKsK̄K1

gs8pp

2
s8p•p1gs8KKs8K̄K

1
ga0KK

A2
K̄t•a0K1gkKh~ k̄Kh1H.c.!1gkKh8~ k̄Kh81H.c.!1ga0pha0•ph1ga0ph8a0•ph8

1
gshh

2
shh1gshh8shh81

gsh8h8
2

sh8h81
gs8hh

2
s8hh1gs8hh8s8hh81

gs8h8h8
2

s8h8h8. ~A2!

The trilinear couplings which do not involve three isoscalars are predicted in terms of the masses. These are given in@37# and
we present them here for completeness:

gkKp5
1

FK
„mBARE

2 ~k!2mp
2
…, gkKh5

1

A6FK

~cosup12A2sinup!„mh
22mBARE

2 ~k!…, ~A3!

gkKh85
1

A6FK

~2A2cosup2sinup!„mBARE
2 ~k!2mh8

2
… ga0KK5

1

FK
„mBARE

2 ~a0!2mK
2
…,

ga0ph5
A2

Fp
ap„mBARE

2 ~a0!2mh
2
…, ga0ph85

A2

Fp
bp„mBARE

2 ~a0!2mh8
2
…,

gspp5
A2

Fp
as„mBARE

2 ~s!2mp
2
…, gs8pp5

A2

Fp
bs„mBARE

2 ~s8!2mp
2
…,

gsKK5
1

A6FK

~cosus12A2sinus!„mK
2 2mBARE

2 ~s!…,

gs8KK5
1

A6FK

~2A2cosus2sinus!„mBARE
2 ~s8!2mK

2
….

The trilinear coupling constants involving three isoscalars may depend onV4. For ph elastic scattering we will also need

gshh5
as

A2
X2bsY, gs8hh5

bs

A2
X1asY, ~A4!

where

X5S ap

A2
D 2

2

Fp
@2as

2mBARE
2 ~s!12bs

2mBARE
2 ~s8!2mp

2 2ap
2mh

22bp
2mh8

2
212~2FK2Fp!V4#

1bp
2 2

2FK2Fp
@2A2asbs„mBARE

2 ~s!2mBARE
2 ~s8!…212FpV4#1

48

A2
apbpV4 , ~A5!

Y5S ap

A2
D 2

2

Fp
@2A2asbs„mBARE

2 ~s!2mBARE
2 ~s8!…224FpV4#

1bp
2 2

2FK2Fp
@bs

2mBARE
2 ~s!1as

2mBARE
2 ~s8!2bp

2mh
22ap

2mh8
2

#. ~A6!

In these equations we have used the convenient abbreviations
014031-19
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ap5
cosup2A2sinup

A3
, bp5

A2cosup1sinup

A3
, ~A7!

with analogous expressions foras5cosc andbs5sinc in terms ofus . The contact coupling constants are then given by

gp
(4)5

4

Fp
2
„as

2mBARE
2 ~s!1bs

2mBARE
2 ~s8!2mp

2
…, ~A8!

gK
(4)5

1

FpFK
@mBARE

2 ~k!2mK
2 2mp

2 1as
2mBARE

2 ~s!1bs
2mBARE

2 ~s8!

2A2asbs„mBARE
2 ~s!2mBARE

2 ~s8!…#,

gh
(4)5

2

Fp
F as

A2
gshh1

bs

A2
gs8hh1

2

Fp
ap

2
„mBARE

2 ~a0!2mh
2
…G . ~A9!

Finally, the tree-level partial wave amplitudes forpK andph scattering are

T0tree
1/2 5r~s!F22gK

(4)1gkKp
2 F2

1

4q2
lnS BK11

BK21D1
3

mBARE
2 ~k!2s

G1
1

2q2
gsppgsKKlnS mBARE

2 ~s!14q2

mBARE
2 ~s!

D
1

1

2q2
gs8ppgs8KKlnS mBARE

2 ~s8!14q2

mBARE
2 ~s8!

D G ~A10!

and

T0tree
1 5r~s!F22gh

(4)1ga0ph
2 F 1

2q2
lnS Bh11

Bh21D1
2

mBARE
2 ~a0!2s

G1
1

2q2
gsppgshhlnS 11

4q2

mBARE
2 ~s!

D
1

1

2q2
gs8ppgs8hhlnS 11

4q2

mBARE
2 ~s8!

D G , ~A11!

whereq(s) andr(s) for each case are given by Eqs.~2.7! and ~2.6! respectively. Furthermore

BK5
1

2q2
@mBARE

2 ~k!2mp
2 2mK

2 12A~mp
2 1q2!~mK

2 1q2!# ~A12!

and

Bh5
1

2q2
@mBARE

2 ~a0!2mp
2 2mh

212A~mp
2 1q2!~mh

21q2!#. ~A13!
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