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Bilocal expansion of the Borel amplitude and the hadronic tau decay width
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The singular part of the Borel transform of a QCD amplitude near the infrared renormalon can be expanded
in terms of higher order Wilson coefficients of the operators associated with the renormalon. In this paper we
observe that this expansion gives nontrivial constraints on the Borel amplitude that can be used to improve the
accuracy of the ordinary perturbative expansion of the Borel amplitude. In particular, we consider the Borel
transform of the Adler function and its expansion around the first infrared renormalon due to the gluon
condensate. Using the next-to-leading or@LO) Wilson coefficient of the gluon condensate operator, we
obtain an exact constraint on the Borel amplitude at the first IR renormalon. We then extrapolate, using
judiciously chosen conformal transformations and Pagjeroximants, the ordinary perturbative expansion of
the Borel amplitude in such a way that this constraint is satisfied. This procedure allows us to predict the
O(a‘S‘) coefficient of the Adler function, which gives a result consistent with the estimate by Kataev and
Starshenko using a completely different method. We then apply this improved Borel amplitude to the tau decay
width and obtain the strong coupling constam;(Mi):O.ll%‘t 0.000%,, +0.001Q s ckm = 0.0009e¢n.
+0.0003,,.- We then compare this result with those of other resummation methods.
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[. INTRODUCTION tive” effects, rendering it impossible to separate them in a
uniqgue way. Thus, the straightforward Borel resummation
The ordinary perturbative expansion in quantum chromo-<defined on a proper contour must be augmented by nonper-
dynamics(QCD) gives a divergent series with rapidly in- turbative effects, which, in general, are impossible to calcu-
creasing perturbative coefficients. Having higher order coriate.
rections, thus does not automatically mean better accuracy. There can be, however, situations where the Borel resum-
A further step should be taken to properly handle the divermation of the perturbation series alone can be useful. For
gent series. For this purpose, the Borel resummation techexample, in hadronic tau decay the nonperturbative effects
nique is often invoked. are known to be small, and so the ambiguities are small or
The Borel resummation of the perturbation series in QCDgven ignorable. In this case, roughly speaking, the true am-
however, is not straightforward because of the nonperturbaplitude is mostly of a perturbative nature and can be well-
tive effects that cause singularities on the Borel plane. Gendescribed by the Borel resummation. Then, the most impor-
erally, the Borel transform of a QCD amplitude has singu-tant thing to do is to describe the Borel amplitude as
larities [1,2]: the ultraviolet (UV) renormalons on the accurately as possible in the interval between the origin and
negative real axis and the infraréldR) renormalons on the the first IR renormalon using the first few perturbative coef-
positive real axis. There are also singularities caused bficients that are known.
instanton—anti-instanton pairs, but these are irrelevant to our To achieve this purpose, a few techniques were devel-
discussion and shall be ignored. oped. One is to use conformal transformation to map the UV
In a Borel resummation the UV renormalons are not arenormalons far away from the origin, which helps accelerate
serious problem, since they can be transformed far awaghe convergence of the perturbative expansion of the Borel
from the Borel integration contour using a proper conformalamplitude. Another is to use the Padpproximant for the
mapping, but the IR renormalons, which are located on th@&orel amplitude, either alone or combined with the confor-
integration contour, cause a real problem. First of all, the IRmal mapping. We introduce in this paper a new technique,
renormalons cause ambiguities in taking a proper contour athich we believe to be powerful enough to predict higher
their positions. The IR renormalons can be associated witbbrder loop corrections, which combines the conformal map-
certain operator condensafdg appearing in operator prod- ping method with a perturbative expansion of the Borel am-
uct expansion, and these ambiguities are known to arise fromplitude in the neighborhood of the IR renormalon.
the ambiguities in defining the renormalized condensates in Since the ambiguities caused by IR renormalons can be
the continuum limit[3]. Because of the ambiguities there associated with certain operator condensates, it is possible to
arises a mixing between “perturbative” and “nonperturba- expand the singular part of the Borel amplitude near the
renormalon in terms of the Wilson coefficients and anoma-
lous dimensions of the associated operators. For simplicity,
*Email address: cvetic@fis.utfsm.cl and because we have hadronic tau decay in mind as an ap-
"Email address: tlee@muon.kaist.ac.kr plication of our technique, we shall confine ourselves to the
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Adler function of the current correlators, and the expansiorwith Q?=—g?>0.!

around its first IR renormalon caused by gluon condensate. The Borel transfornD(b) of the Adler function is de-
In Sec. Il we then show that this expansion gives rise to tWdined, formally, by

exact constraints on the Borel amplitude that need to be sat-

isfied at the IR renormalon. Since one of the constraints in- N bl Bea(Q))

volves the uncalculated next-to-next-to-leadiNNLO) or- D(Q%)= EJO db e ™o D(b), (©)
der Wilson coefficient of the gluon condensate operator, we

have only one constraint available, which depends only oRjyhere a(Q?)=ay(Q?)/m, with ay(Q?) being the strong

the calculated next-to-leading order Wilson coefficient. In : = . : .
Secs. Il and IV we then use this constraint to extrapolatecoUpllng constant. ThB(b) is analytic around the origin at

using judiciously chosen conformal transformations anc})_o and can be expanded in the power series
Padeapproximants that involve the unknovu’m(a‘s‘) coeffi- “ d./ b \"

cient of the Adler function, the perturbative Borel amplitude D(b)=1+ >, —T(—) , (4)

in such a way that the constraint is satisfied at thc;:‘1 renorma- i=1 1 Bo
l(;)lecizzfxlkﬁlcdhsvvaepcrgr?g;?: v(\:iftr:rlﬁeuggt’cilrlgggtig ?(ita(l:gv an ith d,, being t'he coefficients of the perturbation series for
Starshenkd 4] using the method of Stevenson’s minimal he Adler function

scale dependence and find it to be consistent with the latter.

We call our method bilocal expansion because the constraint D(Q%=a(Q?
is derived by using expansion of the Borel amplitude around

the renormalorfaroundb=2) and the evaluation of the con- . . o .
straint is carried out by resummations based on the perturbdN€ constangy is the first coefficient of the QCIB function

tive expansion of the Borel amplitudaroundb=0).

HEgﬂyﬂ. (5)

. . - . d
With this prediction of the amplitude up tﬁ)(a;‘), we 2" a(ud)=Ba(u?))=— Bra( w221+ c al w2
turn in Sec. V to the hadronic tau decay width without the a du? (#%)=pa(uD)= = Boalw™) 18(4°)
massive component fromvS# 0 decays. The width is cal- .
culated from the Adler function by the contour approach in tea(p) -], (6)

the complex momentum plane. We use for the Borel trans- —
form of the Adler function the ansatz which explicitly incor- where K denotes the . renormalization .scgle arg
porates the structure of the first IR renormalon, and we per=/3i/Bo (1=2) parametrize the renormalization scheme.
form the Borel integration by using an optimal conformal The Borel transfornb (b) is known to have singularities, the
transformation to map away the effects of the UV renormaJV renormalons on the negative real axisat —n, and the
lons and the higher IR renormalons. In Sec. VI, based on th&R renormalons on the positive real axiskat n+1 with n
stringent experimental results obtained by the ALEPH,=1.23... . Therenormalon resummation @ (Q? and
OPAL, and CLEO Collaborations, we extract with our of the hadronicr decay width in the larg@, limit has been
method of resummation the following values of the strongperformed if5-7]. While the UV renormalons do not cause
coupling parameter: aS(M§)=O.1193t 0.000%,,  any direct problem, the IR renormalons on the integration
+0.001Q .+ o = 0.0009, o+ 0.0003,,,. We compare contour cause ambiguities in the Borel integral. For simplic-
this result with those of other variants of our resummationity. We shall confine ourselves to the first IR renormalon at
method and with the present world average, and subsd&2=2. The Borel transform around the singularity can be
quently in Sec. VII with the results of resummation methodsWritten in the form

applied previously by others. Section VIII contains a sum-

mary and conclusions. ~ C ~ ~ 2
D(b)= ————[1+cy(1-Db/2)+cCy(1—b/2)"+ - --
(b)= 2 )24+ ]
II. BILOCAL EXPANSION
+ (analytic part, (7)
For definitiveness, we shall consider the current-current
correlation function in the Euclidean region: with v given by
V= 2C1 /BO% 1.580 (8)

fe_in<TJ"(X)J”(0)T>d4X=—i(Q“qV—ng”“”)H(qz),
(1)  for the number of active quark flavoté;=3. The conver-

_ gence radius of the series within the bracket is bounded by
where J#(x)=uy*d(x) is the current of up and down the second IR renormalon bt=3, and so the series is ex-
quarks. The canonically normalized massless Adler functiopected to be convergent fot —b/2|<1/2.

D(Q?) is defined by

D(QZ)E —4772in1'[( —QZ)— 1, 2) IFor normalization convention, see the discussion after(E6)
2 . .
d in the Appendix.
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The part analytic ab=2 as well as the exact value of the where{O,) is the scale-invariant matrix elemefgiuon con-
residueC are not known, although the latter can be calcu-densatg of the anomalous-dimension free, dimension-four

lated in perturbation theorj8]. The coefficientsc; in the  gluon operator
expansion of the singular part are calculasiee Refs[9,10]
for related discussionsand depend on thg function and <O4)=<@Ga Ga,w> (14)
the Wilson coefficients of the gluon condensate operator. a # ’
To use this expansion around the renormalon singularity

in improving the Borel resummation, we consider the func-With G, denoting the gluon field strength tensor.
tion R(b), The Wilson coefficientC, for the unit operator has the

perturbative expansion given in E¢) while the coefficient
R(b)=(1—b/2)**"D(b), 9 C, for the gluon condensate operator is known to the next-
(B)=( ) (b) © to-leading ordeNLO) in the modified minimal subtraction

which was introduced ifi8] in the perturbative calculation of (MS) renormalization schenfd 2]:

the renqrmaloq residue and als.o['rm] tp softe_n the renor- o2
malon singularity. Around the singularitiy(b) is given by Ci(a(Q?)=— 3—180[1+W1a(Q2)+W2a(Q2)2+ 0(a3)],
R(b)=C[1+704(1—b/2)+Cy(1—b/2)2+- - -] (19
+(1—b/2)1" *(analytic par, (10)  With
wy=§—cy(=—135 for N;=3). (16)

which showsR(b) is singular but bounded at the first IR

renormalon. Should the analytic part vanisi{p) would be  the next-to-next-to-leading order coefficient, is not
analytic at the renormalon position, but since there is Nqpqwn yet.

reason to expect this to happen, we should regdi) to be Because the gluon condensate as well as its ambiguity
singular atb=2. With Eq. (10) we now obtain a set of ghqy|d satisfy the homogeneous renormalization giI&R®)
constraints orR(b) for Ny=3, and accordingly on the Borel gqyation, the ambiguous, imaginary part from the gluon con-

transformD(b), at the singularity densate can be written as
R'(b) ¢, R'(b) C, ) s A
RD) |, ,~ 2 Rb),, 2 (11) [D(Q%)con] 4(a(Q ))Q“ 17

In the next section we will exploit one of these equations to?Vith A being a RG-invariant an@-independent constant.

constrain the functional behavior of the Borel transform in Therefore,

the interval between the origin and the first IR renormalon .

singularity. —ocexp{— fa(QZ) dx
We now turn to the calculation of the coefficiertts,c,. Q* B(X)

Because of the singularitfy (b) has a branch cut beginning

atb=2, and consequentlfy (Q?) obtains an imaginary part

from the Borel integral

xa(Q?) e 2P 1 +y,a(Q?) +v,a(Q?)?
+0(a%)], (18

—, 2 ~
IM[D(Q?)]x+a(Q?) e~ P 1+ 3¢ vBoa(Q?) where the proportionality constants aeindependent, and
~ v;'s are obtained by expandingA(x) in powers ofx
+icu(v—1)pga(Q)’+0@%)], (12

2
which is obtained by plugging Eq7) into Eq.(3). The sign v1= 5 (—Cot Ci),
of the imaginary part depends on whether the contour along 0
the positive real axis is on the upper or the lower half plane. 1 1
BecauseD(Qz) must be real, this imaginary part should be Vo= EU%JF ,3_(_C3+ 2clcz—cf). (19
0

canceled by something else. It has been suggestd] that
this imaginary part is canceled by the imaginary part arising]_h
from the ambiguity in defining renormalized gluon conden- us,

sate in the operator product expansi@PB of D(Q?), IM[D(Q?).0.] +a(Q?)~ e~ 2868@I[ 1+ (v, +wy)a(Q?)

@) 2y2 3
D(QZ):Co(a(Qz))+C4(a(Q2))<Q:> +(U2+01W1+W2)3(Q ) +O(a )] (20)
Because the imaginary parts in E4$2) and(20) should
+ (higher dimension terms (13 cancel each other, we have

014030-3



GORAZD CVETIC AND TAEKOON LEE PHYSICAL REVIEW D 64 014030

w-plane

~ 2
c1=—(v1+Wwy)(=—0.9990 for N;=3), (21
vBo

c 2(U2+U]_W1+W2). (22)

4
Co=—"T
v(v—1)B5

Ill. AN OPTIMAL CONFORMAL MAPPING

To impose the constraint€ll) on the Borel transform

defined in series forni4), f)(b) needs to be analytically
continued beyond its convergence radibs=1 which is set

by the first UV renormalon. This cumbersome, analytic con-
tinuation, however, can be conveniently avoided by using a
conformal mapping that pushes the UV renormalons away
from the origin while mapping the first IR renormalon to be
the closest singularity to the origin. Since, in practice, only

the first few coefficients are known, choosing an optimal . )
g P FIG. 1. The conformal mappin@®5) maps the first IR renorma-

mapping can help accelerate convergence of the setles lon tow=1/2, and all other renormalons to the unit circle.
Even though several conformal mappings, optimal or not,
were discussed in the literatyre4,8,15, we introduce a new _ ) o )
mapping which is especially well suited for our purpose. N the functional behavior oR(b(w)) within the radius of

Our criterion for an optimal mapping is simple; with an convergencevo=1/2, we expect the mapping is well suited
optimal mapping for our purpose because the divergence by the renormalon

singularities is suppressed due to their relatively large dis-
w=w(b), (23)  tance from the origin.

Now on thew plane the first of the constrain{d1) be-
the functionR(b(w)) should be as smooth as possible within comes

the disk |w|<w,, wherewy,=|w(b=2)|, so thatR(b(w))

w=1/2

within the radius of convergence can be well approximated dR(b(w)) Z. db
by the first terms of its perturbation seriesvin .t —R(b(w))} =0. (28
} dw 2 dw w12
— n
R(b(w))_zo FaW" (24 In the next section we will impose this constraint on the

truncated perturbation serig$PS of Eq. (24) to obtain a
With this criterion our strategy for an optimal mapping is to higher order correction of the Adler function. By noticing
send all the renormalon singularities save the unavoidablthat the constrain{28) is set up at the first IR renormalon,
first IR renormalon as far away as possible from the originwhich is exactly at the radius of convergence of the series

As a candidate for an optimal mapping we propose (24), one may question the validity of applying the constraint
directly on the TPS. However, it should be emphasized that
V1+b—+/1-hb/3 the series(24) is convergent at the renormalon singularity
W= J1+tb+1_bi3 29 w=1/2 becauseR(b(w)), even though singular there, is
bounded. Therefore, the constraint can be imposed on the
which is obtained by combining the mappifg] perturbation series.
7= L (26) IV. PREDICTION FOR THE NNNLO COEFFICIENT OF
1+b’ THE ADLER FUNCTION

which sends all the UV renormalons to the positive real axis, The NLO and NNLO coefficientd; andd, of the expan-
with the mappind 14] sion of the canonical Adler functiofb) have been calculated

exactly in the MS scheme in[16,17: d,;=1.6398, d,

W 1-V1-2/z, 27) =6.3710(at N;=3). The Borel transfornD (b) (4) and the
1+1-2/z, function R(b) (9) are thus also known up to NNLO ih.

Upon subsequently applying the conformal transformation
wherezy,=z(b=3)=3/4, which sends all renormalon singu- (25) to R(b), and expanding inv, we obtain the power ex-
larities except for the first IR renormalon to the unit circle. pansion ofR(b(w)) (24) up to NNLO inw. On the other
With the conformal mapping25) the first IR renormalon is hand, if we assumed that the®ND coefficient d; were
mapped tov= 1/2 while all other renormalons are mapped toknown, we would obtain the power expansi@4) up to
the unit circle(see Fig. 1 Since we are especially interested N3LO
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R(b(w))=1.—1.68394v+ 0.104n? tion of the N°LO coefficient ofR(b(w)). Similar robustness
is observed when the conformal transformati@0) is used
+(—9.64395+ 0.3950625) w3+ O(w?). instead of(25).

(29 If we applied to the relatioi28) the PA'’s, but no confor-

mal transformation, the predictions would vary more
The corresponding derivativeR/dw would then be known strongly (d;~26-33) with the various choices for PA’s of
up to NNLO (~w?). If we apply to the constrain28) the  R(b). Furthermore, this method does not possess the “ro-
above NLO TPS ofR and the corresponding NNLO TPS for bustness” under the variation of the®ND coefficient of
dR/dw, we obtaind;~34. This prediction, however, is not R(b).
sufficiently precise, because, as mentioned before, the point Thus, our prediction of the HL.O coefficientds, in the
w=1/2is at the border of the convergence diskR¢b(w))  MS scheme, of the Adler functiod (Q?) is
and we are dealing with a strongly truncated series. There-
fore, we apply at this stage yet another efficient mechanism
of analytic continuation which would bring us beyond the d;~25+5 (atN;=3) (31)
w=1/2 circle—PadapproximantgPA’s)? that are either di- 3
agonal or near diagondll9]. To the NLO TPS (29 of
R(b(w)) we can then either apply thd/2], [2/1], or[1/1]
PA and to the NNLO TPS o R/dw the[1/1] PA. Then the
e o e o ¥ Aoy uncertamy € 10) of te predced vluss ) cano e
practical approach is to construct, at a given fixié?f, the ex_cluded,_ and we will use thes.e more conservative uncer-
NNLO TPS ofd In Ridwand thus the PAL/1] of dIn Ridw,  'AINDY estimates in the next sectiofsee Eq(52)].
Employing this PA in the constraiti@8) leads to the predic- Our predictions can be compared, for example, with those

tion d{?~30.4. In the latter approach, however, higher orde®f Ref. [4]. They used the method of effective charfg&H)

PA’s ([2/1], [1/2]) cannot be employed. [20-22 and the TPS principle of minimal sens_itivi(?l\/;S)
As a cross check, we carried out the same procedure bl£3:24 for the NNLO TPS of the Adler functiod(Q).

based on the simultaneous use of relat®8), the conformal
mapping(25), and the Padapproximants. However, a larger

with a different conformal transformation The obtained approximants were then re-expanded back in
powers ofag=a(Q?MS) up to~a§, under the assumption
ECH_ m~0 dcPMs_ m~0 Th i dicti
A+b—1—b/4 C3 '—C3 =~0 andcz ~—c3 ~0. The resulting prediction

(30 wasd;~27.5, which is consistent with our predicti¢8l).

w= .
V1+b+1-b/4

This mapping also removes all the UV renormalons to the  \/, ANALYSIS OF THE HADRONIC TAU DECAY
unit circle, as well as all the IR renormalons except for the

first (b=2) and the secondbE3) one:w(b=2)~0.42, In this section we will apply elements of the previous
w(b=3)=0.6. This mapping apparently suppresses evesections to the numerical study of theinclusive hadronic
more strongly than Eq(25) the UV renormalon contribu- decay ratio

tions, but probably less strongly the next-to-leading IR renor-

malon (b=3) contributions. The predictions are in this case

d;~24.3-24.5, in good agreement with the aforementioned I'(+~—v_hadrongy))
predictions. The use of the P{A/1] of d In R/dw predicts in R,= — — : (32
this cased{”~30.3. P(r"—v.e ve(y))

We further note another interesting feature of the expan-

sion (29). Looking at the first three terms that are known, it . N

appears reasonable to expect that tie® coefficientr; at ~ Here, (v) represent possible additional photons or lepton

w? is not very large, saylrs|<2. Varyingrs between— 2 pairs. This inclusive decay ratio has been extensively studied

and 2 results in the variation af; between 19.3 and 29.5, in the literature, theoretically and numerical5-31,13.

i.e., only about 20% around the valdg~24.7. Thus, the The ratio can be expressed, via the application of a variant of

predictions of the described method, using the conformathe optical theorem, with the two-point correlation functions

transformation(25), are remarkably robust under the varia- of the vector(V) and axial-vector(A) currents, or equiva-
lently, with the Adler function®*7(Q?) andD"(Q?)—we
refer to the Appendix for some details. The theoretical/

2The authors of Ref[18] showed that combining the conformal numerical resummation methods for evaluation of QCD ob-

transformations with the PA type of resummations can lead to sigS€rvables are most efficient in the limit of massless quarks.
nificantly improved results, at least when a sufficient number ofWhen excluding hadrons witk (strangg quarks, and ap-

terms in the power expansion are known. proximating theu andd quarks to be massless, the expres-
3In the procedure, we further require tfjiafl] PA of dR/dw not  sion can be written as a contour integfAfL3) in the com-
possess clearly unphysical polg., poles well belowv=0.5). plex momentum planf28-31,13
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r.=rY " A(AS=0;m, 4=0) |Vudl=0.9740= 0.0010. This extraction is, however, fraught
' with theoretical uncertaintiessee [34] for further refer-
_RY*A(AS=O;mu'd:0) ence$. Further, the values extracted from neutron decays

—(1+ Sgw) (33 |V, 4 =0.9728:0.0012 ([34] and references therginare
even lower, but appear to have smaller theoretical uncertain-
ties. For all these reasons, we will adopt the value range

3|Vl 2(1+ Sew)

1 (= . .
- iY\3(1 _ alY 2
2wf_7dy(1+e )(1-eDQ IVl = 0.9749¢ 0.0021, 37)
=-—s=m?eY), (34 where the central value is the one from the unitarity con-
strained fit, but the uncertainty has been increased so that the
where the(minimal standard modgklectroweak correction  yalues now include all the values from the decays of mirror
(EW) factors &gy and 6\, have been calculated (82,33,  nuclei and the upper half of the interval of values from neu-
andD(Q?) is the massless canonical Adler functi@, (5). tron decays.
The superscript W A in the above formulas emphasizes the  This now allows us to extract the values of the canonical
fact that the quantities are inclusive in the sense of including-~ decay ratio(A1)
the vector and axial-vector hadronic currents.

The experimental value of the observat® *A(AS RY *A(AS=0)

V+A _ — ’
=0) can be extracted from the values of the leptonic branch- ry T AAS=0)=r o —(1+ 5w
. . - = o 3[Vyd *(1+ Sew)
ing  ratios Be=B(7 —e ver;) and B,=B(r
—u v,v,;), as obtained from the constrained fit derived =0.1933+0.0052,,*0.005%y
from a set of basis modd84] (see alsd35]). The basis
modes form an exlusive set of leptonic and hadronic decays +0.005%m (38)

whose branching ratios are normalized so that their sum IS here the uncertainty: 0.005,,, originates from the afore-

exactly one. The set of basis modes does not include the ~ . : X
: . : . C . mentioned=0.0050 uncertainty inSgy, and *0.005%km
decays with photons in the final state, i.e., the right-hand sid fom the +0.0021 uncertainty ifV,q (37).

of Eq. (32) is for them without ). The only leptonic !
branching ratios in the set of basis modes BgeandB,, . The QCD observablé38), as _defl_ned, ha_s theh non-(g|CD
Therefore,R, = (1—Be—B,)/B,. The present values d, effectrs1 facLored ﬂut. Holl/vever, |tffst|II contains t ehpro em-
andB,, as determined from the constrained[8#], based atic, though small, quark mass effecta,{¢#0). In the Ap-

® 8]gnd|x, we calculated the numerical strength of the quark

on the high precision measurements of the basis modes L .
_ mass contributiongA10),(A11). Subtracting these effects as
the °_decay by the ALEPH, OPAL, and CLEO Collabora- in Eq. (A12), we end up with the following values for the

tions [35-39, are B,=(17.83+0.06)x 10 2, B,=(17.37
+0.07)x10 2. The updated value of the strangeness-maSSIeSS QCD observak(g3)

changing ratio is[40] R,(AS#0)=0.1630-0.0057. This r.=rV*AAS=0:m, 4=0)
implies T T
oneol (1-B. B, s ] =0.1960+ 0.005,, = 0.005%y
R:"A(AS=0)=——p—"—R(AS#0) (39 +0.005%y (39)
=3.4713:£0.0171. (36) =0.1960+0.0098. (40)

The canonical™~ decay ratio(33), at the moment still with-  In Eq. (39) we neglected the small contributions0.0001
out the massless quark conditiom, 4— 0, i.e., the reduced from the corrections of the type mﬁ’d/mi to Eq.(A11). In
decay ratio/Al) in the Appendix, can then be obtained from Eq. (40), the three uncertainties of E¢39) were added in
the experimental value@6) by inserting the known values quadrature.
of the electroweak correction parametésy and dg,, and The valueg39) will be the starting point for our massless
of the Cabibbo-Kobayashi-Maskaw@KM) matrix element QCD resummation analyses of the hadromiclecay. The
|V.4l.- Here we have to deal with additional uncertainties. experimental uncertaint{39) in the massless QCD observ-
The main EW correction parameter has the valig, abler_is 3%, representing a high experimental precision
=0.0194+0.0050[32], while the residual correction param- when compared to many other QCD observables. This fact
eter is gy, =0.0010[33]. In calculatingdgy, the additional can be regarded at present as our main motivation to inves-
contributions from low scales<{m,), dependent on the had- tigate theoretically and numerically this observable. Unfortu-
ronic structure, although not enhanced by large logarithmgyately, as we can see from E@89),(40), the total precision
cannot be calculated and were estimdtg?] to lead to the is worse(5%), due to theresent uncertainties in the values
significant uncertainties: 0.0050. of the electroweak corrections and |&f, 4.
The values ofV,4| from the (SM) unitarity constraint fit By adjusting the numericdtesummegpredictions forr
are 0.9749 0.0008[34]. On the other hand, the values ex- to the experimental ong89), our main goal will be to pre-
tracted from the decays of mirror nuclei lead to lower valuesdict the QCD coupling parameter,(m?) with the high pre-
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cision, i.e., with the resummation method uncertaintypushes all the UV renormaloriand all the higher IR renor-
(Sag) metn. Of the prediction being comparable to, or smallermalons atb=3) onto a unit circle in the plane of the new
than, the experimental uncertaintyds) e, stemming from  variablew. The first IR renormalon d=2 now corresponds
(O ;) exp=0.0059(39). The starting point for our resumma- to w=1/2, i.e., within the unit circle. Then, the expansion
tion method will be the contour integral representat{8) R(b(w);&?) in powers ofw represents a convergent series
of r, in terms of the massless Adler functi®(Q?). for w=<1/2, i.e., for the corresponding(w)=<2. Thus, the
As in the previous sections, we expre®$Q?) as the use of the corresponding®NO TPS of R(b(w);£?), which
Borel integral of its Borel transformD(b)=R(b)/(1 is also explicitly known, will have a much better chance to
—Db/2)t*7, with the correct first IR renormalon singularity describe reasonably well the tri¢b(w); £%) within the in-

explicitly enforced in the ansatz terval between the origin and the first IR renormalon. There-
fore, the double integra#?2) will be rewritten in terms of the
e & ariable
D(QZ): iR f +i db e*b/ﬁoa(ngz)m vari W
Bo O+ie 1-b2t | B
(41) Wmax db(W) R(b(w),g )
r’T% R vlv'
27y 0 dw [1-b(w)/2]1""

where the integration contour is chosen to be on the upper

half plane to avoid the singularity &t=2 (Cauchy principal w , o 2 2

value prescription By explicitly enforcing the renormalon x f_ dy(1+eY)3(1—el¥)e PW/Boam: exply))
singularity, the Borel transform around the singularity can be N

more accurately described, and also the validity of the per- (43

turbative Borel transform can be extended beyond the first IR

renormalon. The Borel transfori(b) as well asR(b) de- 3 Cor1
pend on the renormalization scheme and on the renormaliza- =7 Re{ e"ﬁf dx(1—w?)(1—w+w?)»"1
tion scale parametef®= u2/Q? through the¢? dependence mBo 0

of the perturbative coefficientd, in Eq. (5) when the run- 5

ning couplinga(Q?) is replaced bya(£2Q?). While we % R(b(w); £%) f” dy(1+eV)3
choose theviS scheme throughout this paper, the renormal- (12—w)rtr2—w)ttv) -«

ization scale paramet&? will be kept arbitrary for the time
being. When inserting E¢41) into Eq.(34), and exchanging
the order of integrations, we obtain

X (1— el¥) e~ b/ Boaem? expy)) (44)

W—xei‘f’]

1 % wo+ig R(b,fz) . .
r.=——R~rR J' d where we can choose in Eq13) wy,,,2>1/2, corresponding
2mPBo o+ie  (1—b/2)t*" to bmae>2. In practice, we can go in théw integration in
Eq. (43) beyondw= 1, where thewv contour then follows the
> fﬁ dy(l+eiy)S(l_eiy)efb/BOa(gzm,zr exp@y))]_ unit circle arc into the first quadrant—for example up to a
— complex W= expli¢) with 0< p<¢.,, wherew(b=cx)

=expl¢.), ¢..= /3. The fact that in this way we reach the

b~3 region, where the truR(b) has an IR renormalon, and

even go beyond it, does not change the result of(E§). in

is convenient and reasonable to integrate over the Borel var aractice. This is S0 because the contributions from the arc
w|=1 (corresponding td=3) turn out to be extremely

ableb just to a certain valub,,,, lying beyond the first IR ;
renormalon. The contribution from the region beyond thesyppressed in E43) (see also footnote 6 of the next sec-

first IR renormalon is expected to be smaller or comparablé'on?l' T_TS in]:[eﬁ]ratiohn can b_e implement_eg inf pracéice TOSt
to the nonperturbative effect by the gluon condensate, whicfasily. It we follow the rayw—xexp@gb), with xfromOto 1
is known to be small13]. If we know the perturbation series (€€ Fig. 2 because the integration over the corresponding

of the Adler functionD(Q?) up to N°LO then we know closed contour yields zero since no singularities are en-
automaticallyR(b: £%) up to N°LO, i.e., including the term closed. This practical “ray”-integral implementation is de-

~b3. Further,R(b:¢%) has no singularities on the positive "0ted in Eq.44). .

ax?s forlé)t<2e ,,aég,gn)ly ; zoﬁosisng%lfla?it)t/?=02, tbSt ﬁor?;s ) The first tWO. coefﬁmentsﬂl anddzl of the expansion of
some UV renormalons on the negative axis rather close tH‘e Adler function(5), which determine the expansions 9f
the origin: b=—1,—2. These UV renormalons make the D(b) andR(b) up to NNLO, have been calculated exactly in
power expansion oR(b:&2) in powers ofb divergent for  the literature[16,17. For the choiceu?=Q? and in theMS
Ib|=1, which signals that the use of the {80) TPS in  scheme, witiN;=3, they ared{”’=1.6398,dy")=6.3710. In
powers ofb for R(b;&?) in Eq. (42) may run into serious the previous section, the arguments were presented suggest-
trouble already ab= + 1. An efficient solution to this prob- ing the value of the RLO coefficientd{”)~25. When the

lem was already constructed in Sec. IlI, in the form of anrenormalization scalg.?=¢2Q? is changed §2+1), these
optimal conformal transformatiob=b(w) (25), which  coefficients change accordingly:

(42

Since the integrand is exponentially suppressed at larife
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all effects beyond the one loop in E2) (B8;—0 for j
w-plane =1, »—0). In this approximation, the contour integration
overy can be carried out explicitly and it yields an oscillat-
ing function ofb which has a zero di=2, thus erasing the
singularity there. However, we wish to stress that this effect
ray implies only that the nonperturbative power terml/mﬁ
contribution tor , is suppressed. This effect does not imply

that the behavior of the Borel transfor(b) nearb=2 is

not important for the determination of the value rof. In

fact, if we did not factor out the first IR renormalon singu-
larity in Eqgs.(42)—(44), the contributions from thb~2 re-
gion would be very imprecise, thus adversely affecting our
analysis. On the other hand, the higher IR renormalons, e.g.,
atb=3, which are not suppressed by powersygf contrib-

ute insignificantly to the integrd3), as will be shown be-
low.

FIG. 2. Integration along the rayw=xexp(i$) (0<x<1, ¢
fixed) gives the same result as the integration parallel to the positive

real axis (0<w<1) and arwv— exp(ié')(0< ¢’ < &). VI. PREDICTIONS OF @, FROM THE HADRONIC TAU
DECAY
dy;=d{?+ B, In &2, (45) For the evaluation of Eq(44), we will employ, at any
o ) ) , - given choice of £2, the corresponding MO TPS of
dy=dy"+2BgIn&7dy"+ B1InE7+(BoIn £9)°, R(b(w);£?), where we will use ford® the values around

(48 d{»=25 suggested in Sec. IV. The double integesd) then
yields, for any given values af and aoEa(mf), a specific
da=d”+3(d;d,—d{”d5”) —2(di i) prediction forr .. We then have to adjust, at a givéh, the
—(cl/2)(di—d(l°)2)+cz(dl—d(l°)). (47 value of aOEa(mf) in such a way that the prediction is
within the experimental limits(39). The renormalization
These relations follow from the expressions for the renormalscale parametes” is then chosen according to the principle
ization scheme and scale invariants, p,, ps, as given, ©Of minimal sensitivity,
e.g., in[23]. As an example, at?=2 they imply d;
=3.1994, d,=16.6908, d;=97.4436. The corresponding ar (&%)
N3LO Borel transform is P =0, (50

LE2N 1 2 3
R(b(w); £%)=1-1.68394v+0.104v"+0.23259% i.e., at the point in which the unphysicét dependence dis-

(£2=1), (48)  appears locally.
There is still one minor technical detail that we might
=1+ 0.395499v+ 3.30834v2+5.13735°3 worry about; we have only a limited knowledge of thS
beta functiong(a) that governs the running of the coupling
(£=2). (49 parametem—its power expansion ia is known only up to

the four-loop term— Bycza® (~a®) [41]. In the region with
the low w?=&°m2exply) (|u?|~m?~3 Ge\?) where the
contour integration in Eq(44) is applied, the values of

The apparently quite strong® dependence of the Borel
transform functiorR(b(w); €2) in Eq. (44) is combined with
the strongé? dependence of the coupling parameté#?Q?)
in the exponeni{44) in such a way that the entire double
integral is&? independent. However, since we know just the
first few terms 01R(b(W);§2), the§2 dependence of Eq44) 4t is instructivg to see wh)é our methpd shoulq fail ?t gmall and
will appear. If the method is good this dependence should bEge values of”. At small £ the running coupling(£°Q%) be-
weak, at least locally in a renormalization scale regién comes large, and so the Borel integté#) will receive significant
~1. Further, there should be some dependence on the choit
of the renormalization scheme, but the scheme dependen
is, in general, weaker than tié dependence and we choose couplinga(£2Q?) becomes small, and for the integfa¥) to be £2
the MS scheme throughout. . independent the Borel transforR(b(w); &%) should increase rap-
At first sight, one may argue that the first IR renormalonjgly as ¢2 increasegin fact, it can be shown tha@(b(w): £2) in-
of the Adler function has no significant bearing on the quan<reases approximately §2°]. This means that the Borel transform
tity r . because the singularity bt=2 is formally suppressed becomes steeper @ increases, making the perturbation theory
by a power ofa due to the contour integratiaqB4) (see Ref.  less efficient. It is therefore reasonable to expect an optifhébr
[13]). We can see this, for example, if we consistently ignoreour method, and we expect it to be given by the PMS principle.

ntribution from the region far beyond the first IR renormalon, in
ich the Borel transform cannot be well described by the first few
erms of the perturbation theory. On the other hand, at I§fg¢he
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02 -

FIG. 3. The value of the predicted ratio
=rY *A(AS=0;m, 4=0) of Eq.(44) as a func-
tion of the renormalization scale paramegérfor
the choice ay(m?;MS)=0.3265 andd{®)= 25,
when the conformal transformatio®5) is em-
ployed (full curve; ¢=0.1, i.e.,by~3), and
when none is employeddotted curve; by«
=3.). The measured valué40) are included as
dotted horizontal lines.

0.195
hl*

0.19

0.185

|a| (=|as|/m) are no longer very smal|§~0.1), and ex- ag(M?) =0.3265+ 0.0062,, = 0.0062y= 0.0053
pansion terms with powers higher thah may become sig- o
nificant in the resummed value @f(a). To be specific, we (d{=25). (52)

chose the 2/3] Padeapproximant for the resummeg{a) in

the RG evolution ofa, above all because of the reasonablethg perturbative QCD part of the information incorporated
singularity - structure of this beta functionadnguarity  in the prediction(51) was the NLO TPS for theN;=3
=0.311) > Later we will show how the results change when Adler function D(Q?), with the NLO coefficient dy( &2
(N3LO)TPS 3 functions are used instead. Further, we chose_ 1)=d® set equal tod©@ =25 as obtained by the argu-
in Eq.(44) $=0.1, i.e..Wna= exp(x0.1), corresponding to 3 3 !
bmax=3.03, i.e., well beyond the first IR renormaldnit
turns out that thé? values as determined by the PMS prin-
ciple (50) of the expressior(44) are £~1.75-1.80 when

d{"=25. In Eig. 3 we show the numerical predictipns (%f) Eq'ering a one-parameter subgro@8—eQ2 of the renormal-
(44) aszfunctlons of the(garameté?, for the ch0|ceqs ization group, which of course leaves the coefficients of the
=a¢(m?7)=0.3265(and d3' =25). The central experimen- (ECH B function d[D(Q?)]/d[InQ?=—pByd¥(1+pd

tal vall,;e(39) r.=0.1960 is then achieved at the PMS) |, 4?1 ...) invariant, the authors of Ref44] obtained an
valueé“~1.77. We see that the U“pth'@é'dePe”‘?'ence IS estimated{")=30.9 using a variant of the PMS, and the au-
really quite weak in a large intervakl{“<5, indicating that 0. ¢ Ref.[45] obtainedd®=28.7 using a so-calle

scheme. Further, when employing the sim@él] PA esti-

the method is reliable. In the figure, we include for compari-
son the analogous predictions for the c&&®, i.e., when no mate for the NNLO TP$)(Q2)=a0(1+d(10)a0+d(20)a§), at
the prediction is d{P"=d{®?/d{®

conformal transformatiob—b(w) is carried out in Eq(42) 12=Q2 (=md)
e usede=0.005 andb,,=3 in Eq. (42)]. The latter - o

[we usede ma=3 I Eq. (42)] —24.75. If using the simplg3/1] PA estimate for the ECH

TPS B function — Bod?(1+ p,d+p,d?), the prediction is

method has a somewhat differegt dependence and a
slightly different value at the PMS point. As argued after Eq." = 7, ™7 L 4Opr— :
(42), the predictions of the cur¢s involving the conformal ~ P3 __92/91_5'5’9_ and thusdy™™=22.4. Keeping all these
transformation are expected to be more reliable. estimates f‘?d(s 'in mind, as well as the estimat81) of our

The predictions forag(m?), obtained by matching the approach, it appears reasonable and safe to allow for the
results of the described resummatiotd) with the experi-  following variation of the values o ¥ around the value 25
mental resultg39), for the choiced{” =25, are from Sec. IV

ments of Sec. IV. Of course, the exact valual§¥ is not yet

known. The authors of Ref4], using the effective charge
(ECH) [20—-29 and the TPS principle of minimal sensitivity
(PMS) [23,24 methods, predicted{)=27.5. When consid-

d{est=25+10. (52)

This PA choice forg(a) was motivated and used in Refd2],
where a renormalization—scheme- and scale-invariant method was—
developed and employed for the resummations of NNLO TPS'’s of . 0 ~ ) .
Euclidean massless QCD observables, a generalization of the NOt€ thatp;=—di”+BoIn mi/A =5.094 is obtained here2 by
renormalization-scale-invariant Padsated method of Ref§43]. using the (unsubtracted Stevenson equatiop23], with as(m:)

SWhen Wa=expid) in Eq. (44) is varied betweerw(b=3)  =0.33 and with the[2/3] PA for the MS B function; p,=df”
(¢~0) andw(b=4) (¢~0.505 rad, the values of Eq44) change ~ —di”?—c,d{”+c}5=5.238.  Further, d{P"=p8"+d{”[2d{”
insignificantly (relative change is about 2&07°). —d{92+¢,d912+ p,]—c¥S/2.
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The = 10 variation ind$” results in the variation 0£ 0.0039  predicted(centra) values ofag(m?), with the use of NLO

for ag(m?), respectively. The? values as determined by the TPS and[2/1] PA for R(b(w),&2), is then about 0.0033.
PMS principle (50) vary as well&3,¢~2.10,1.75,1.35, for  Alternatively, the change of 0.0033 inag(m?) would cor-
dg?): 15,25,35, respectively. respond to the variation of the renormalization scale param-
In order to obtain an estimate of the various uncertaintie®ter £2~1.50—4.10 around its PM$50) value &?~1.77
in a.(m?) due to the use of the method itself, we proceed inwhen the NLO TPS approach of Eq44) is applied. Very
the following way. similar results are obtained #’=20 is used instead. We
One of the major uncertainties is connected with our trunWill take for the uncertainty due to th¢” ambiguity the
cation of R(b(w), £2) to the NPLO TPS. One way of estimat- value Sag(m?) 2= 0.0033.
ing these uncertainties would be to repeat the analysis using Further, the predictions change when the renormalization
N*LO TPS for R(b(w),&?) in Eq. (44). For this, we need Scheme parameters, andcs change. The leading scheme
also the value of the coefficiedt?) in D(Q2). We note that Parameter ic,. We havecy'®=4.471 andcy'°=20.99 (N
the coefficientsd(®) in D(Q?) follow roughly the geometric =3). F(cg)r comparison, for the MO TPS Adler function
series pattern withd{?/d{¥~d{/d{¥’~4. Therefore, we (VF‘,’,{;EQ d3 :25)PM'S” the TPS P';/'S schemg23] we have
may estimated{¥~4d{. Using these values af{®) with ~ C2 —6:584,C5""=36.80(and £7~0.55), and in the ECH
the d{¥) values (52), our method gives predictions for scheme[20-23 c;™"=5.238, c5 = 16.06 (and {°~0.48).

ag(m?) which differ from the original (RLO TPS method This would indicate that it is reasonable to allow for the
b; 0’0012 0.0007,0.0003, whed®)=15,2535, respec variation of the leading scheme parametgrfrom its MS
. I 1Y ) 3 ’ ’ ’ -

. o, 5 value by about 50%, i.eG,=4.471(1%+0.5), while adjust-
tively. The PMS-determined” are in the NLO TPS case ing the renormalization scale paramegéraccording to the

2 N . . - ) N g
¢pus™3.2,2.7,2.15, respectively. However, |fswe X 10 pMs condition(50). The central prediction in Eq51) then
the PMS-determined values of the original "D TPS  varies by about=0.0019. On the other hand, changing the
method §2..10,1.75,1.35'-'>, respectivelthen the differencesin  NNLO scheme parameter; by 50% around itsMS value
the predictions forrg(m?) are 0.0035,0.0025,0.0020, respec-changes the central prediction forg(m?) by about
tively. Choosing the largest difference here, this would sug-+ 0.0006. Adding in quadrature, the uncertainty due to the
gest that the truncation uncertainty in our prediction ofchange of the scheme parametéssabout=+0.0020.
a(m?) is about 0.0035. Hence, our result is

We may obtain another estimate of the truncation error in

the following way. We use foR(b(w)) in Eq. (44), instead ag(m?)=0.3265+ 0.0062,,*0.0062Zy* 0.0053 kv
of the N°LO TPS of the type(48),(49), the corresponding
Padeapproximan{ 2/1](w). We expect the most reasonable +0.003%4,*0.0048 = 0.0033 ;2= 0.002,
pole of this PA to bew,,e~1, corresponding th~3 (i.e.,

the second IR renormalon poléVe varyd!?, at two fixed (53)
values of&? parameter£?=1.75 and 1.95i.e., ~ &3, for —0.3265+ 0.0062,, = 0.0082

d{)=25,20, respectivelyin such a way thaw,, varies ' ' we W e
betweenw,ye=1 and wpy,e=0.64. The latter value corre- *+0.0073etn.- (54)

sponds to the location of thie pole half way between the
first and second renormaldi(w=0.64)~2.5]. The varia- In the last line, we added the corresponding uncertainties in
tions of d?) needed for this ard{")=23.5-27.0, and 21.0- quadrature; the method uncertainty contains the uncertainties
25.5, respectively. The variation of the predictionsigfm?)  due to the variation ofl”, truncation error, and renormal-
for such variation ofdgo), with the use of NLO TPS and ization scale and scheme ambiguities. If we use foiMi$e3
[2/1]] PA for R(b(w),&%), is then 5as(m§) function the NLO TPS, instead of2/3] 5, the predictions in
=0.0042,0.0048, for the two aforementioned choiceg’f Eds. (53),(54) decrease by 0.0006-0.0007, indicating that
respectively. This variatiofe.g., the larger one, 0.0048an  those nonperturbative effects which originate in the behavior
be regarded as an estimate of the truncation error of ou?f the g function are not strong in the applied resummation
method, especia"y since the F[A/l]R(W) represents a spe- method. This has to do with relatively Iarge values of the
cific realization of the resummation @(b(w),&2). Since PMS-fixed (50) renormalization scale parameters”
this estimate is larger than the previous ¢0@035, we will ~ =u?/m’ (~1.77 wherd{)=25). The uncertainty due to the
use it: Sas(m?),;, = 0.0048.

There is also an uncertainty in the predictions of our
method due to possible ambiguities in the choice of the 8the problem of the renormalization scale and scheme depen-
renormalization scale parametr. Our choice was to fi¥”  gence in the determination afy(m?,MS) from they-contour rep-
by the local PMS principlé50). Somewhat similarly as we resentation(34) of r. was discussed by Raka[46]. Using the
estimated the truncation error, we may now vgfyinstead NNLO TPS for D(Q?), he showed that a change from tMS
and keepd fixed (=25). If we vary ¢ from £&2~1.55 t0  schemewith £&2=1) to the TPS PMS scheme and scale results in
£2~2.0, the aforementioned PJR/1]x(w) changes its pole the change ofey(m?,MS) by 0.01, which is significant in the view
from wpge=1 to Wye=0.64. The resulting variation in the of the new precise experimental data.

014030-10



BILOCAL EXPANSION OF THE BOREL AMPLITULE . .. PHYSICAL REVIEW D 64 014030

variation of b, in Eq. (43) (3<b,<4, i.e.,, 0<¢  the N;th flavor [we assumedm.(m.)=1.25 GeV and
<0.505 rad) turns out to be insignificant, as mentioned bemy(m,) =4.25 GeV]. This leads to our final result

fore. For example, if changing fromp=0.1 (corresponding ) N N
t0 bpa=3.03) t0 ¢p=0.505 O .~4) the central value of as(M7)=0.1193+0.000%, * 0.001Qw+ckm* 0-0009er,

Eq. (54) increases by less than 1% +0.0003,0, , (55)
One may argue that the method uncertainty as given '
above is too nonconservative, i.e., too small. Therefore, we =0.1193+0.0015. (56)

carried out an additional cross check. We performed the re-
summation for , by the double integration of the tygd4),  In Eq.(56), we added the uncertainties of E§5) in quadra-
but this time taking into account explicitly the first UV ture. In Eq.(55), we included the uncertainty-0.0003,q,
renormalonatb=—1) in the ansatz for the Borel transform dUt? totthg Rt()at ('avoclju'tio?hfr?TT to M. ThkiS ur)cer'czaiq]fy
=y B 1 (14 . _ estimate is obtained in the following way: keepirg-2, i
[D4(7b)153 th)a(lp;rt%rme(é atg);/;i)n the ’Corn/grhmalylm a%s&% we vary the_ massnc(m9)=1.25t 0.10 GeV, the resulting
= ) — _ uncertainty is=0.0002; if we vary the mass,(m,) =4.25
=b(w) (25), expansion oR(b(w)) in powers ofwuptoand  +0.15 GeV, the uncertainty is 0.0001. If we vary the fla-
including the NLO (~w?), and subsequently performed the yor threshold parametex around its central valuac=2
double integration analogous to Eg¢4), with $=0.1. The  from 1.5 to 3, the uncertainty is0.0001. Furthermore, if
scale parameteg? was again fixed by the PMS principle we use for the ih,—M,) RG evolution, instead of the PA
(50), resulting, for the choiced{”=15,2535[and as(m?)  [2/3]4ys, the corresponding four-loop TPBys function,
~0.32-0.34] in considerably lower values¢?  the resultingaS(Mg) changes by 0.0001. Adding all these
~0.91,0.88,0.85, respectively. We used for me B func- uncertainties in quadrature gives us approximately the uncer-
tions again the PA2/3]. The predicted values of the QCD tainty =0.0003 given in Eq(55).
coupling parameter turned out to be very close to those If we repeat the entire calculation ef(m?) andag(M?)
(53),(54) of the method(44): ay(m?)=0.3257- 0.0062,, by using throughout the four loop TP8S g function in-
+0.006Zy+0.0054y+0.0014y,. For example, the pre- stead of the P_/[\Z/B]BM—S, the predictions_ fous(Mf)_rgmain
diction for as(m?) corresponding to the central experimental the same as in Eq55),(56), up to the displayed digits. The
value of Eq.(39) with this method differed from the predic- Féason for this is that the aforezment|oned changg diinc-
tion of the method(44) by —0.0027, —0.0008, +0.0018, tions predicts the values ai(m?) by about 0.0006—-0.0007
when d{®=15 2535, respectively. This would indicate lower than those of Eq¢53),(54), but then the RG evolution
again that the resummation method uncertainty does not suf® #=M; pushes the results up, thus approximately neutral-
pass 0.0073, i.e., in accordance with the method uncertaint$ing this effect. . _
estimate in Eq(54). Due to the hlg_h precision experimental data E_M)—

If we apply the resummatiof43) without the conformal (39) on _the !ncluswe hadronic decay of t.he experlmental
transformation[using b,.~3, &=0.005 in Eq.(42)], for uncertainty in the extracted strong couphng. constant is .Iow.
d§°)=15,25,35, the PMS-fixed50) renormalization scale By mcorppratmg a wealth of known theoretical information
parameters aréay,s~3.00,2.35,1.25, respectivelyand the lﬁpe”twbaD“"ezas well as rte)zlnotrmab?nn tttf;e r?Iated Adlel_r
prediction s ag(m?)=0.3271-0.0062,,=0.0062,, ncionD(Q"), we were able to extract the strong coupling

0 ; . constant with the method uncertainty not significantly sur-
i0'005%KMi0'_006Q5d3' whicht is only Sllght_|y different passing the experimental uncertainty. Further, the analysis by
from the one with the conformal transformati¢®l)—(53). the ALEPH Collaboratiorf35,37 showed that those power
Although not using the conformal transformation is not so(nonperturbative contributions in  the  observable

well motivated[see also the discussion after E42)], this R *A(AS=0) which do not originate from the nonzero

T

result may represent yet another justification for the Sma'huark masses are consistent with zésee also the next sec-

estimate of the method uncertainty in E¢S3),(54). tion), and these OPE-type contributions were not included in
The result(54) was then evolved from the scale=m, 4 r resummation either.
~1.777 GeV to the canonical scaié,=91.19 GeV, by us- The experimental situation with other low energy QCD

ing the RG equation with thg2/3],s Padeapproximant  gpservables is not so favorable, and the experimental uncer-

(based on the four loopys [41]) and the three loop match- tainties of the extracted strong coupling constants appear to

ing conditions[48] for the flavor thresholds. We used the gominate over the theoretical uncertainties. This is reflected

matching atu(N¢) = xkmg(N¢) with the choicex=2, where jn the present world averagever various measured QCD

;_L(Nf) is the scale above whicNf_ flavors are assumed ac- observables ag"_S(Mi):O.ll?C;‘tO.OOZO by Ref[49] and

tive, andmy(Ny) means the running quark masg(mg) of  ( 1184+ 0. 0031 by Ref[50], where the extracte@ombined
experimental and theoretigalincertainties are significantly
higher than those in Ed55).

®For d{)=35, no strict stationarity is achieved, but &t~1.25 In this context, we mention that the question of the viola-
the slope(50) is almost zerodr (£2)/9&2~—2.3x 10 4. tion of the quarkgluon)-hadron duality for correlation func-

'°The variation=0.0060y, for d{®=25+10 is in fact+0.0043  tions has been raised and investigated by the authors of Refs.
for d{)=15 and—0.0060 ford{?=35. [51]. They argued that the corrections to the correlation func-
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tions due to the duality violation could be significdnp to a They-contour integration approach, where we just use the
few percent However, no quantitative analyses are avail-N°LO TPS for the Adler functiorD(Q?) (with d{¥’=25) in
able at present. This violation could possibly affect manyihe contour integra(34), i.e., the approach di30], in MS
QCD (quasjobservables, including the Adler function scheme with RLO TPS Bys, achieves the minimal sensi-

D(Q?) and R,. tivity condition (50) at £2~0.4 and reproduces there the cen-
Further, the authors of Reff52,53 analyzed the possi- traly experime(nt;I ialue- of EZ- 39 at aymd)

bility that the operator product expansi¢h3) contains an 03399 (0.3416 if using[2/3]mg). corresponding to

additional 1Q? term (other than thel=2 quark mass terms o .ok e
whose origin would be an effective tachyonic gluon mass®s(Mz)=0.1209 (0.1210), significantly higherthan our

reflecting short-distance nonperturbative QCD effects. Thé&entral value(55). However, if taking instead the simple
authors of Ref[52] suggested that such terms would de-TPS  r,=a[1+(d{”+3.563)+ (dY+19.99)+ (d”
crease the value afy(m?) extracted from hadronic decays ~ +78.)a%] (see[30]), at renormalization scalg=m,, the
by about 10%. However, the authors of RE§4] showed predictions  change  significantly: ag(m?)=0.3211
that the coefficient of the @” term is consistent with zero. +0.0056,,+0.0056:y* 0.004&y*0.001%y, (for df”
They did this by fitting a dimension-two finite energy sum _ 55+ 10), corresponding thS(Mf)zo.llSSt 0.000%,,

rule to the new ALEPH data on the vector and aX|aI-vect0ri 0.001Gy; = 0.0002,. . These values are lower than
spectral functions extracted from measurediecays. The e
type of sum rule used by the authors of R@4] in ruling  OUr values(55). The arithmetic average of the central values

2
out the aforementioned Q7 term are well satisfied at the Of these two methodsag(m?)arinm=(0.3399+0.3211)/2

continuum threshold scales~2-3 GeV relevant forr _, =0.3305 is close to the central value of the ALEPH analysis
as has been shown independently by two grd@as56. (57), the difference being that the ALEPH used the higher
values for the hadronie decay ratio available in 1998. This
VIl. COMPARISON WITH OTHER ANALYSES value is close to the upper bounds of our predic{i54).

In Fig. 4 we present the predictions of three methods for
We may compare our resub4) with that of an indepen- - as functions ofxg(m?): (i) our method(44) [Borel trans-
dent analysis of the hadronic decays by the ALEPH Col- form approachBTA), in [2/3]; MS schemé; (ii) the afore-
laboration[35,37), who used forRY *4(AS=0) instead of mentioned method of thg-contour approach for the O
the values(36), the different values available in 1998 TPS Adler function(CATPS (with “PMS” ¢2=0.40, in
(3.492+0.016), N3LO TPS; MS schemg (ii) the N°LO TPS of r, (with
w?=m?). The values(52) were taken for the RLO coeffi-

2\ ——
as(M;)=0.334-0.00%,+0.024, (ALEPH), = cientd{®?=d;(u?=Q? MS). On thex axis, we denoted the

Xp.—

(57 corresponding values af4(m?) when the predicted values
ts(M2) = 0.1203+ 0.0008,,+ 0.0025, of the three methods, witti")= 25, reach the central experi-
mental valug(39) r,=0.1960.
+0.0003,,. (ALEPH). (59 In addition, we included on th& axis of the figure the

. . central value ofas(mi) predicted by théNNLO) ECH ap-
They used slightly smaller uncertainties ¢, (= 0.0040) proach[20—22 applied directly to the NNLO TPS of ,

and drastically smaller uncertainties in the CKM element, . .
|Vl =0.9752+0.0007. They used different methods which (using theEC':l'NIKA—CS) TPSB functions of the ECH andiS

involved, in addition, the analysis of moments(tfeir own [Sgg]e”jl_?]scs tﬁs '_>0f) 'Ri?téé?e apgr?r?ch appt>lied| in Ref.
; () — 2 ) . The authors of Re used the input values,
measurefispectral functions Inbl,,(s) (s<m?) as pro ~0.2030-0.007Q,,, which yield ag(M?) = 0.3184

posed by[57]. The ALEPH’s V+ A analysis of the men-
tioned moments showed that those nonperturbat®EE
contributions which do not originate from the nonzero quark o
masses were consistent with ze#o, (NP,m, 4=0)=0.000 HThis contour approach, iRS scheme, was also applied in Ref.
+0.004; and their quark mass nonperturbative contribution£58]. On the other hand, if we apply in this approach the ® TPS
basically agree with our$A11) (compare Table 8, fourth Adler function in the ECH renormalization scale and scheme
column, of Ref[35]). Further, the central value of EG7)  (éecr=0.482483; ¢5°"=5.23783; c5°"=16.0613-10 for df’
was obtained by taking the arithmetic average of the predic=25* 10), and using the .0 TPS (or [2/3] Padeapproximants
tions of two methodsi) the y-contour integration approach for the B funcnons_,we obtain from Eq39) similar results:

(34), with just the NLO TPS for the AdletD(Q?) function, adm? MS) = 0.3400+ 0.008Q,, = 0.008Q,y

with d{’=50+50, inMS, i.e., the approach ¢80]; (ii) the

, : +0.006Qy = 0.0034,

simple N\LO TPS of the power expansion of. The large 3
theoretical uncertainty in Eq57) originates primarily from (0.3413+0.0083,, = 0.008%+ 0.007%xm* 0.0034, ),
the difference of the predictions of the two aforementionedcorresponding to

met_hod_s, from the ambiguities of the choiced'.g?) renor- agMZ,MS)=0.1210=0.0009,;, = 0.001 2y ciu
malization scheme and scale, and the electroweak parameter

S +0.00043,* 0.0003,5,.
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0.24 . T

BTAd3=25. ——
BTA,d3=15,,35, e
CATPS,d3-25. -
023 | CATPS,d3=15,35.

TPS,d3=25. -
TPS,d3=15.35. -

FIG. 4. The values of the predicted ratio

1 =r/"A(AS=0;m,4=0) as functions of
as(mf,MS) from various methods: our Borel
transform approach of Eq44) [BTA, with ¢
=0.1 and PMS conditiori50)]; the contour ap-
proach method using the>NO TPS for the Adler
function (CATPS, with the “PMS” §2=0.40);
and the fixed RLO TPS evaluation of , (TPS, at
w?=m?). The uncertainties due w{’=25+10
are included. The measured valug®) are in-
cluded as dotted horizontal lines. On thexis,
we denoted the values ofs(mi,MS) of these
three methodswith d{’=25), for which the
central measured value=0.1960 is obtained. In
addition, we included the analogous prediction of

ECH | TPS  BTA . CATPS the (NNLO) ECH method when applied to the
*1%a 0315 0.32 0.325 0.33 0.335 0.34 0.345 0.35 fixed NNLO TPS ofr .

2
ocs(mT)

047 7 i

+0.006Q,,, and ag(M2)=0.1184+0.0007%,,."? Using our ~ Minkowskian quantityD(Q?), i.e., we used thg-contour
updated input valueg39) for r,, this method predicts representatior(34).® Various authorg4,62,63 have sug-
ag(m?)=0.3124~ 0.0052,,*0.0052,+0.004% (inde-  gested that resummation technique¢doasjobservables be
pendent ofd{) since it is NNLO methol corresponding to  Used in the non-Minkowskian regions, becaus_ezthe phzysical
as(M5):0-1177i0-000lxp.1”0-000%w+c+<|v|- However, singularities appear on the Minkowskian axig“€—Q

this ECH method, applied directl , appears to be un- >0). - . .
stable under the incﬁ)l?sion of the%”/btgr infgfmation, above The reason that the predictions of our method differ sig-

all because the ECH renormalization scale parameter for nificantly from those of the simpler CATP$contour ap-
) > o, o P proach lies in the apparently important role of the 2 IR
is dangerously low£g.=u?/m?~0.10. The NLO ECH . L= .

0y . renormalon singularity ob (b) [see the ansatz in Eqgll)—
approach ta ., with d{)=25+10 (and using NLO TPS3 4201 for th ianalvii inuation & (b d of th
functions of the ECH ani1S schemesthus gives very dif- (44)] for the quasianalytic continuation @ (b) and of the

Adler functionD(Q?), and consequently for the resumma-
. 2y _
ferent  results: as(m7)=0.3373£0.0079,20.007%w  ion of r _via they-contour integration. This is so despite the

; 2
iO.OO6%KMiO.0192;d3, corresponding  to agy(M3) fact that they-contour integration leads to a suppression of
=0.1207=0.0009p *0.001 2y ckm = 0.002Qyq. the contributions fronb~2 (see also the last paragraph of

The authors of60] used the diagon&P/2] Padeapproxi- ~ Sec. V.
mation to resum the NLO TPS ofr, (with £&2=1), where
the N°LO coefficientr ; of the series was determined by the
asymptotic Padeapproximant methodAPAP) [61]. They We presented a new method of determination of the
obtained ag(m?) =0.314+0.010. The central value is sig- N°LO coefficientdy” of the Adler functionD(Q?). The
nificantly lower than our predictiofb3), although they used method makes use of the known radiative correction to the
for the input the values,=0.2048+0.0129 where the cen- 1/Q” term in the operator product expansion®{Q?). By
tral value is considerably higher than that of our input valueg€duiring that theQ dependence of the ambiguity induced by
(39). the first nonzero infrared renormalonD{ Q?) (b=22) is tge

The results of the methods by both groups of author$@me as th® dependence of the OPE teith(a(Q"))/Q",
[59,60 thus give in general lower predictions fat than our ~ the €xact condition(28) N obtained, which involves the
method and the central value of the ALEPH method, as als§Cr€! transform of D(Q). Thls(o)condltlon, in principle,
seen in Fig. 4. We wish to point out, however, that bothV_"°”|d determine the coefficiert; - However, this condi-
groups of authors of Refd59,60 applied resummation tion has to bg evaluated at a relatively large vahse2 of
methods directly to the observable ., which is the Borel variable, and the present knowledge of only two
Minkowskian (2= m2>0). We applied our resummation to terms beyond the leading order leads to significant uncertain-

T ' . ties in the evaluation of this condition. We solved this prac-

the (Borel transform of the predominantly non- icai problem by applying judicious conformal transforma-
tions b=b(w) and Paderesummation techniques, thus

VIIl. SUMMARY

2The evolution uncertainty+0.0006,,, given in Ref.[59] is
larger than ours in Eq(55), possibly because they used a lower °The problematic Minkowskian region contributicgf= — Q?
threshold parametei=1, while we usedkgena—=2 and >0 (y= =) in the contour integral34) is suppressed by the third
=1.5-3. power, i.e., by the factor (£e')3.
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improving the convergence properties. The resulting value isontributions from the reduced hadronic decay width
then d{?¥~25+5 (at Ny=3), but uncertainties of up to rY"A(AS=0). The general expression for the latter quan-
6d(3°): +10 cannot be entirely excluded and were used intity, including the quark mass effects, isee, for example,
the subsequent analyses of thdnclusive hadronic decay Refs.[13,31])

ratio.

We wish to emphasize that our determinationdg?t is VA RY "A(AS=0) ,
fundamentally different from the previous estimates in the I; (AS=0)=_————————(1+ )
literature. The latter estimates were mainly based on re- 3|Vudl “(1+ Sew)
expanding the resumme@uasianalytically continugdex-
pressions foD(Q?) in powers of the coupling parameter, _ . ds S
thus relying on the assumption that a quasianalytic continu- =(=mi) |S|:m§? E

ation of the NNLO truncated perturbation seriesifQ?)

was efficient. However, this may only be true if the main s 4
contribution to the coefficiend”) comes from those higher X <l+ — D-*T(—9)+ §DL(—s)
order Feynman diagrams which do not have new topological m;

structures in comparison with the lower order diagrams con- _1, (A1)

tributing tod$” [4,62,64. In contrast, our relatio(28), and

its evaluation, are not based just on the knowledge of thgyhere the contour integration is counterclockwise in the

edge of the first nonzero infrared renormalon including itspL gre expressed with the current-current correlation func-

first radiative correction. Therefore, it is possible that the;,ng

resummations of the expressions of Eg8) do not suffer

from the uncertainties about the topologies of the Feynman d

diagrams. D- (=) =—s5c > [H{(s)+I{IAs)],
We then used the obtainet{”), and the structure of the J=01

~ o A2
Borel transformD (b) of D(Q?) near the first infrared renor- (A2)
malon atb=2, and an optimal conformal transformation, to s d
evaluate ther inclusive hadronic decay ratiR,, or more DY —s)= _2d_{S[HEJ%),V(S)+HEJ%),A(S)]}v
specifically its massless QCD reduced versign via the m: dS
contour integration method. Comparing the obtained predic- (A3)

tions with the precise experimental data available now, we e ) N
obtained the predictio65) for ag(M2), where the estimated Wherelljqy,, are components in the Lorentz decomposition
uncertainties from the metho@nd RG evolutioph do not . V2 (1) )

surpass significantly the uncertainties from the experimental g via(@) = (—g*" g+ a#q") ¢ va(Q)

data. All the uncertainties in Eq§55),(56) are significantly pr—) 2

lower than the uncertainties in the present world average +a%q g via(a7) (A4)

ag°(M7)=01173-0.0020 by Ref. [49] and 0.1184 f e two-point correlation functions“},, of the vector

+0.0031 by Ref[50]. Furthermore, the central valyg5) is il 4 axial N ’ lor-sinal

by 0.0020 and 0.0009 higher than these two world averaged.ud=94Y"U and axial-vectorA;=dy”ysu (color-single}
In view of the present high precision experimental dataCurrents

for the R, decay ratio, we believe that the valuesea{ M 5)

deduced from it should eventually serve as the referenceiH{f&V(q)=J’ d*x€9X(0|T{VE(X)V4(0)T}0),  (A5)

value for future tests of QCD via the experimental measure-

ments and theoretical analyses of other QCD observables.

For this, the theoretical EW correction factorRg should be _iHGLdVA(q)Zf d4xe‘q‘X(O|T{Aﬁd(x)A5d(O)*}|O}. (AB)

investigated further, and the present uncertainties in the '

value of the CKM elemenitv, ¢/ should be reduced. In the massless quark liming, 4—0), D(s) vanishes, the

ACKNOWLEDGMENTS perturbative vector and axial-vector contributionsDh * T
become equal andD:*T(—s)—[1+D(-s)]/(27?),

G.C. is thankful to M. DaviefALEPH Collaborationfor ~ whereD(Q?) is the canonically normalized massless Adler
useful communication. T.L. is thankful to Pyungwon Ko for function (2) with the perturbative expansidb).1* In order to
useful discussions, and was supported in part by the BK2&apply the massless QCD analysis to the measured observable
Core Program. The work of G.C. was supported by the FON{A1), we have to subtract from it the quark mass,(
DECYT (Chile) Grant No. 1010094, #0) contributions. These are largely the,#0 contribu-

APPENDIX: SUBTRACTING THE QUARK MASS

EFFECTS
HUsually in the literaturge.g., see Refd.31]), the (ud) Adler

In order to be able to apply the massless QCD approach tnctionsD"*T andD" (A2),(A3) include by convention the addi-
our analysis, we have to subtract the quark masgy0) tional CKM factor |V,,¢2.
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tions from the pion ¢~) pole. The pion pole contributes to

the axial-current correlation functionﬂfﬂ&A(s). Using

PCAC, these contributions can be obtained and they lead to

the corresponding contributions in the Adler functidd$
(—s;m)=2f2m2s/(s—m2)?/m> and D-*T(—s;7)=
—2f2s/(s—m?)2. This leads, via Eq(A1), to the following
estimate of the pion pole contribution td *A(AS=0):

2

al

~0.2135<(1-0.0123~0.2109.

g2t

rY*AAS=0;m7)=

(A7)

Here, we employed the known valugs84] f_,=92.4
+0.3 MeV, m_-=139.6 MeV,m_=1777 MeV. In order to
check whether the framework leading to E47) is realistic,
we may calculate from here the branching ratio for
—T v,

' —7w v, -
———B(7 —e ver,)

B(r~—m v,

- I'(r~—e ver,)

=R, (m)Be=3|V,d?rY " A(AS=0;7)~0.1072,
(A8)

where we wused for the branching rati®.=B(7"

—e ver,) the middle value of the world averad84| B,
=0.1783, andV,4=0.9749. On the other hand, the mea-
sured branching ratio forr™—a v, is B(7 —7 v,)
=0.1109+0.0012[34]. The value(A8), obtained from the
PCAC-motivated approacfA7), thus differs by less than
4% from the actual prediction.

We can now read from the expressiA7) the quark
mass (,4#0, i.e.,, m #0) contribution torY *A(AS

:O),
16m2f2m? m?
V+A . _ i T
5['7_ (AS_O)mW#O__ mi (1_ 2m§
~ —0.0026. (A9)

PHYSICAL REVIEW D 64 014030

ory TA(AS=0)m, 40

+my){qc 23 ag(m?)\?
wlﬁwz(mu md)<q<1>[1+_(as( J) }
(A10)
16m2f2m2[  23[ ag(m?)\?
Comt sl
~—0.0027. (A11)

In Eq. (A10) we denoted qq)={uu)~(dd). The renormal-
ization scale in this quantity and im, and my in Egs.
(A10),(A11) can be taken to be~m_. In Eq. (A1l) we
took into account the PCAC relationm{+mgy){qq)~
—f2m2. There are corrections to the expressi@il) of
the order~mZ,/m?, i.e., of the order of the OPE=2
terms which can reach, at most, valued0 4. Comparing
the previous pion pole expressioh9) with the OPE expres-
sion (Al1l), we see that the latter apparently represents a
slight improvement since it includes the radiative correc-
tions. In obtaining the numbefAll), we further used the
value as(m?,MS)~0.32.

The OPE approach ¢fL.3] includes other nonperturbative
terms contributing tor ., which do not stem from quark
masses, the=4 gluon condensate and tlle=6 term. The
latter term could be large, but it also has comparably large
uncertaintie$13]. The gluon condensate contributionrtoin
the OPE approach igg suppressed. The ALEPH analysis
[35] indicates that thesel=4,6 nonperturbative contribu-
tions are consistent with the value zero.

When subtracting the quark mass contributions
(A10),(A11) from Eg. (Al), we end up with the massless
QCD observable

r,=r’ "AAS=0;m,4=0)

T

=1} "AAS=0)-or "AAS=0)n 40 (A12)
IJ ds 1 S 14 S b
" 2a)gents m_i m_i (—s),
(A13)

However, we can go somewhat beyond the approximatioivhere the integration is counterclockwise, and the canoni-
made so far in calculating this contribution. In the operatorcally normalized massless Adler functioB(Q?=—s)

product expansion approachRa ratio, as given if13], the
largest quark mass contributions are of dimensiba4
(ocl/m‘;', quark condensate contributions

(2), (5) was introduced according to the aforementioned
limiting procedure: D“(s)—0 and D-"T(-s)—[1
+D(—s)]/(27%) (whenm, —0).
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