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Bilocal expansion of the Borel amplitude and the hadronic tau decay width
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The singular part of the Borel transform of a QCD amplitude near the infrared renormalon can be expanded
in terms of higher order Wilson coefficients of the operators associated with the renormalon. In this paper we
observe that this expansion gives nontrivial constraints on the Borel amplitude that can be used to improve the
accuracy of the ordinary perturbative expansion of the Borel amplitude. In particular, we consider the Borel
transform of the Adler function and its expansion around the first infrared renormalon due to the gluon
condensate. Using the next-to-leading order~NLO! Wilson coefficient of the gluon condensate operator, we
obtain an exact constraint on the Borel amplitude at the first IR renormalon. We then extrapolate, using
judiciously chosen conformal transformations and Pade´ approximants, the ordinary perturbative expansion of
the Borel amplitude in such a way that this constraint is satisfied. This procedure allows us to predict the
O(as

4) coefficient of the Adler function, which gives a result consistent with the estimate by Kataev and
Starshenko using a completely different method. We then apply this improved Borel amplitude to the tau decay
width and obtain the strong coupling constantas(M z

2)50.119360.0007exp.60.0010EW1CKM60.0009meth.

60.0003evol.. We then compare this result with those of other resummation methods.
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I. INTRODUCTION

The ordinary perturbative expansion in quantum chrom
dynamics~QCD! gives a divergent series with rapidly in
creasing perturbative coefficients. Having higher order c
rections, thus does not automatically mean better accur
A further step should be taken to properly handle the div
gent series. For this purpose, the Borel resummation te
nique is often invoked.

The Borel resummation of the perturbation series in QC
however, is not straightforward because of the nonpertu
tive effects that cause singularities on the Borel plane. G
erally, the Borel transform of a QCD amplitude has sing
larities @1,2#: the ultraviolet ~UV! renormalons on the
negative real axis and the infrared~IR! renormalons on the
positive real axis. There are also singularities caused
instanton–anti-instanton pairs, but these are irrelevant to
discussion and shall be ignored.

In a Borel resummation the UV renormalons are no
serious problem, since they can be transformed far a
from the Borel integration contour using a proper conform
mapping, but the IR renormalons, which are located on
integration contour, cause a real problem. First of all, the
renormalons cause ambiguities in taking a proper contou
their positions. The IR renormalons can be associated w
certain operator condensates@1# appearing in operator prod
uct expansion, and these ambiguities are known to arise f
the ambiguities in defining the renormalized condensate
the continuum limit@3#. Because of the ambiguities the
arises a mixing between ‘‘perturbative’’ and ‘‘nonperturb

*Email address: cvetic@fis.utfsm.cl
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tive’’ effects, rendering it impossible to separate them in
unique way. Thus, the straightforward Borel resummat
defined on a proper contour must be augmented by non
turbative effects, which, in general, are impossible to cal
late.

There can be, however, situations where the Borel res
mation of the perturbation series alone can be useful.
example, in hadronic tau decay the nonperturbative effe
are known to be small, and so the ambiguities are smal
even ignorable. In this case, roughly speaking, the true
plitude is mostly of a perturbative nature and can be w
described by the Borel resummation. Then, the most imp
tant thing to do is to describe the Borel amplitude
accurately as possible in the interval between the origin
the first IR renormalon using the first few perturbative co
ficients that are known.

To achieve this purpose, a few techniques were de
oped. One is to use conformal transformation to map the
renormalons far away from the origin, which helps acceler
the convergence of the perturbative expansion of the B
amplitude. Another is to use the Pade´ approximant for the
Borel amplitude, either alone or combined with the confo
mal mapping. We introduce in this paper a new techniq
which we believe to be powerful enough to predict high
order loop corrections, which combines the conformal m
ping method with a perturbative expansion of the Borel a
plitude in the neighborhood of the IR renormalon.

Since the ambiguities caused by IR renormalons can
associated with certain operator condensates, it is possib
expand the singular part of the Borel amplitude near
renormalon in terms of the Wilson coefficients and anom
lous dimensions of the associated operators. For simplic
and because we have hadronic tau decay in mind as an
plication of our technique, we shall confine ourselves to
©2001 The American Physical Society30-1
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Adler function of the current correlators, and the expans
around its first IR renormalon caused by gluon condens
In Sec. II we then show that this expansion gives rise to t
exact constraints on the Borel amplitude that need to be
isfied at the IR renormalon. Since one of the constraints
volves the uncalculated next-to-next-to-leading~NNLO! or-
der Wilson coefficient of the gluon condensate operator,
have only one constraint available, which depends only
the calculated next-to-leading order Wilson coefficient.
Secs. III and IV we then use this constraint to extrapola
using judiciously chosen conformal transformations a
Padéapproximants that involve the unknownO(as

4) coeffi-
cient of the Adler function, the perturbative Borel amplitu
in such a way that the constraint is satisfied at the renor
lon. This yields a prediction of the uncalculatedO(as

4) co-
efficient, which we compare with the estimate by Kataev a
Starshenko@4# using the method of Stevenson’s minim
scale dependence and find it to be consistent with the la
We call our method bilocal expansion because the constr
is derived by using expansion of the Borel amplitude arou
the renormalon~aroundb52) and the evaluation of the con
straint is carried out by resummations based on the pertu
tive expansion of the Borel amplitude~aroundb50).

With this prediction of the amplitude up toO(as
4), we

turn in Sec. V to the hadronic tau decay width without t
massive component fromnS5” 0 decays. The width is cal
culated from the Adler function by the contour approach
the complex momentum plane. We use for the Borel tra
form of the Adler function the ansatz which explicitly inco
porates the structure of the first IR renormalon, and we p
form the Borel integration by using an optimal conform
transformation to map away the effects of the UV renorm
lons and the higher IR renormalons. In Sec. VI, based on
stringent experimental results obtained by the ALEP
OPAL, and CLEO Collaborations, we extract with o
method of resummation the following values of the stro
coupling parameter: as(M z

2)50.119360.0007exp.

60.0010EW1CKM60.0009meth.60.0003evol.. We compare
this result with those of other variants of our resummat
method and with the present world average, and sub
quently in Sec. VII with the results of resummation metho
applied previously by others. Section VIII contains a su
mary and conclusions.

II. BILOCAL EXPANSION

For definitiveness, we shall consider the current-curr
correlation function in the Euclidean region:

E e2 iqx^TJm~x!Jn~0!†&d4x52 i ~qmqn2q2gmn!P~q2!,

~1!

where Jm(x)5ūgmd(x) is the current of up and down
quarks. The canonically normalized massless Adler func
D(Q2) is defined by

D~Q2![24p2Q2
d

dQ2
P~2Q2!21, ~2!
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with Q252q2.0.1

The Borel transformD̃(b) of the Adler function is de-
fined, formally, by

D~Q2!5
1

b0
E

0

`

db e2b/b0a(Q2)D̃~b!, ~3!

where a(Q2)5as(Q
2)/p, with as(Q

2) being the strong
coupling constant. TheD̃(b) is analytic around the origin a
b50 and can be expanded in the power series

D̃~b!511 (
n51

`
dn

n! S b

b0
D n

, ~4!

with dn being the coefficients of the perturbation series
the Adler function

D~Q2!5a~Q2!F11 (
n51

`

dna~Q2!nG . ~5!

The constantb0 is the first coefficient of the QCDb function

m2
d

dm2
a~m2![b„a~m2!…52b0a~m2!2@11c1a~m2!

1c2a~m2!21•••#, ~6!

where m denotes the renormalization scale andcj
[b j /b0 ( j >2) parametrize the renormalization schem
The Borel transformD̃(b) is known to have singularities, th
UV renormalons on the negative real axis atb52n, and the
IR renormalons on the positive real axis atb5n11 with n
51,2,3, . . . . Therenormalon resummation ofD(Q2) and
of the hadronict decay width in the largeb0 limit has been
performed in@5–7#. While the UV renormalons do not caus
any direct problem, the IR renormalons on the integrat
contour cause ambiguities in the Borel integral. For simp
ity, we shall confine ourselves to the first IR renormalon
b52. The Borel transform around the singularity can
written in the form

D̃~b!5
C

~12b/2!11n
@11 c̃1~12b/2!1 c̃2~12b/2!21•••#

1~analytic part!, ~7!

with n given by

n52c1 /b0'1.580 ~8!

for the number of active quark flavorsNf53. The conver-
gence radius of the series within the bracket is bounded
the second IR renormalon atb53, and so the series is ex
pected to be convergent foru12b/2u,1/2.

1For normalization convention, see the discussion after Eq.~A6!
in the Appendix.
0-2
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The part analytic atb52 as well as the exact value of th
residueC are not known, although the latter can be calc
lated in perturbation theory@8#. The coefficientsc̃i in the
expansion of the singular part are calculable~see Refs.@9,10#
for related discussions!, and depend on theb function and
the Wilson coefficients of the gluon condensate operator

To use this expansion around the renormalon singula
in improving the Borel resummation, we consider the fun
tion R(b),

R~b![~12b/2!11nD̃~b!, ~9!

which was introduced in@8# in the perturbative calculation o
the renormalon residue and also in@11# to soften the renor-
malon singularity. Around the singularity,R(b) is given by

R~b!5C@11 c̃1~12b/2!1 c̃2~12b/2!21•••#

1~12b/2!11n~analytic part!, ~10!

which showsR(b) is singular but bounded at the first I
renormalon. Should the analytic part vanish,R(b) would be
analytic at the renormalon position, but since there is
reason to expect this to happen, we should regardR(b) to be
singular atb52. With Eq. ~10! we now obtain a set o
constraints onR(b) for Nf53, and accordingly on the Bore
transformD̃(b), at the singularity

R8~b!

R~b!
U

b52

52
c̃1

2
,

R9~b!

R~b!
U

b52

5
c̃2

2
. ~11!

In the next section we will exploit one of these equations
constrain the functional behavior of the Borel transform
the interval between the origin and the first IR renorma
singularity.

We now turn to the calculation of the coefficientsc̃1 ,c̃2.
Because of the singularity,D̃(b) has a branch cut beginnin
at b52, and consequently,D(Q2) obtains an imaginary par
from the Borel integral

Im@D~Q2!#}6a~Q2!2ne22/b0a(Q2)@11 1
2 c̃1nb0a~Q2!

1 1
4 c̃2n~n21!b0

2a~Q2!21O~a3!#, ~12!

which is obtained by plugging Eq.~7! into Eq. ~3!. The sign
of the imaginary part depends on whether the contour al
the positive real axis is on the upper or the lower half pla
BecauseD(Q2) must be real, this imaginary part should b
canceled by something else. It has been suggested in@3# that
this imaginary part is canceled by the imaginary part aris
from the ambiguity in defining renormalized gluon conde
sate in the operator product expansion~OPE! of D(Q2),

D~Q2!5C0„a~Q2!…1C4„a~Q2!…
^O4&

Q4

1~higher dimension terms!, ~13!
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where^O4& is the scale-invariant matrix element~gluon con-
densate! of the anomalous-dimension free, dimension-fo
gluon operator

^O4&5 K b~a!

a
Gmn

a GamnL , ~14!

with Gmn
a denoting the gluon field strength tensor.

The Wilson coefficientC0 for the unit operator has the
perturbative expansion given in Eq.~5! while the coefficient
C4 for the gluon condensate operator is known to the ne
to-leading order~NLO! in the modified minimal subtraction
(MS) renormalization scheme@12#:

C4„a~Q2!…52
2p2

3b0
@11w1a~Q2!1w2a~Q2!21O~a3!#,

~15!

with

w15 7
6 2c1~52 11

18 for Nf53!. ~16!

The next-to-next-to-leading order coefficientw2 is not
known yet.

Because the gluon condensate as well as its ambig
should satisfy the homogeneous renormalization group~RG!
equation, the ambiguous, imaginary part from the gluon c
densate can be written as

Im@D~Q2!con.#56C4„a~Q2!…
L4

Q4
, ~17!

with L being a RG-invariant andQ-independent constant
Therefore,

L4

Q4
}expF22Ea(Q2) dx

b~x!G
}a~Q2!2ne22/b0a(Q2)@11v1a~Q2!1v2a~Q2!2

1O~a3!#, ~18!

where the proportionality constants areQ independent, and
v j ’s are obtained by expanding 1/b(x) in powers ofx

v15
2

b0
~2c21c1

2!,

v25
1

2
v1

21
1

b0
~2c312c1c22c1

3!. ~19!

Thus,

Im@D~Q2!con.#}6a~Q2!2ne22/b0a(Q2)@11~v11w1!a~Q2!

1~v21v1w11w2!a~Q2!21O~a3!#. ~20!

Because the imaginary parts in Eqs.~12! and~20! should
cancel each other, we have
0-3
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c̃15
2

nb0
~v11w1!~'20.9990 for Nf53!, ~21!

c̃25
4

n~n21!b0
2 ~v21v1w11w2!. ~22!

III. AN OPTIMAL CONFORMAL MAPPING

To impose the constraints~11! on the Borel transform
defined in series form~4!, D̃(b) needs to be analytically
continued beyond its convergence radiusubu51 which is set
by the first UV renormalon. This cumbersome, analytic co
tinuation, however, can be conveniently avoided by usin
conformal mapping that pushes the UV renormalons aw
from the origin while mapping the first IR renormalon to b
the closest singularity to the origin. Since, in practice, o
the first few coefficients are known, choosing an optim
mapping can help accelerate convergence of the series~4!.
Even though several conformal mappings, optimal or n
were discussed in the literature@14,8,15#, we introduce a new
mapping which is especially well suited for our purpose.

Our criterion for an optimal mapping is simple; with a
optimal mapping

w5w~b!, ~23!

the functionR„b(w)… should be as smooth as possible with
the disk uwu<w0, wherew05uw(b52)u, so thatR„b(w)…
within the radius of convergence can be well approxima
by the first terms of its perturbation series inw

R„b~w!…5 (
n50

`

r nwn. ~24!

With this criterion our strategy for an optimal mapping is
send all the renormalon singularities save the unavoida
first IR renormalon as far away as possible from the orig
As a candidate for an optimal mapping we propose

w5
A11b2A12b/3

A11b1A12b/3
, ~25!

which is obtained by combining the mapping@8#

z5
b

11b
, ~26!

which sends all the UV renormalons to the positive real a
with the mapping@14#

w5
12A12z/z0

11A12z/z0

, ~27!

wherez0[z(b53)53/4, which sends all renormalon singu
larities except for the first IR renormalon to the unit circ
With the conformal mapping~25! the first IR renormalon is
mapped tow51/2 while all other renormalons are mapped
the unit circle~see Fig. 1!. Since we are especially intereste
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in the functional behavior ofR„b(w)… within the radius of
convergencew051/2, we expect the mapping is well suite
for our purpose because the divergence by the renorm
singularities is suppressed due to their relatively large d
tance from the origin.

Now on thew plane the first of the constraints~11! be-
comes

FdR„b~w!…

dw
1

c̃1

2

db

dw
R„b~w!…GU

w51/2

50. ~28!

In the next section we will impose this constraint on t
truncated perturbation series~TPS! of Eq. ~24! to obtain a
higher order correction of the Adler function. By noticin
that the constraint~28! is set up at the first IR renormalon
which is exactly at the radius of convergence of the se
~24!, one may question the validity of applying the constra
directly on the TPS. However, it should be emphasized t
the series~24! is convergent at the renormalon singulari
w51/2 becauseR„b(w)…, even though singular there, i
bounded. Therefore, the constraint can be imposed on
perturbation series.

IV. PREDICTION FOR THE NNNLO COEFFICIENT OF
THE ADLER FUNCTION

The NLO and NNLO coefficientsd1 andd2 of the expan-
sion of the canonical Adler function~5! have been calculated
exactly in the MS scheme in @16,17#: d151.6398, d2

56.3710~at Nf53). The Borel transformD̃(b) ~4! and the
function R(b) ~9! are thus also known up to NNLO inb.
Upon subsequently applying the conformal transformat
~25! to R(b), and expanding inw, we obtain the power ex-
pansion ofR„b(w)… ~24! up to NNLO in w. On the other
hand, if we assumed that the N3LO coefficient d3 were
known, we would obtain the power expansion~24! up to
N3LO

FIG. 1. The conformal mapping~25! maps the first IR renorma-
lon to w51/2, and all other renormalons to the unit circle.
0-4
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R„b~w!…51.21.68394w10.104w2

1~29.6439510.395062d3!w31O~w4!.

~29!

The corresponding derivativedR/dw would then be known
up to NNLO (;w2). If we apply to the constraint~28! the
above N3LO TPS ofR and the corresponding NNLO TPS fo
dR/dw, we obtaind3'34. This prediction, however, is no
sufficiently precise, because, as mentioned before, the p
w51/2 is at the border of the convergence disk ofR„b(w)…
and we are dealing with a strongly truncated series. Th
fore, we apply at this stage yet another efficient mechan
of analytic continuation which would bring us beyond t
w51/2 circle—Pade´ approximants~PA’s!2 that are either di-
agonal or near diagonal@19#. To the N3LO TPS ~29! of
R„b(w)… we can then either apply the@1/2#, @2/1#, or @1/1#
PA and to the NNLO TPS ofdR/dw the @1/1# PA. Then the
constraint~28! predicts the valuesd3'24.7–24.8, virtually
independent of the three PA choices forR„b(w)….3 Another
practical approach is to construct, at a given fixedd3

(0) , the
NNLO TPS ofd ln R/dw and thus the PA@1/1# of d ln R/dw.
Employing this PA in the constraint~28! leads to the predic-
tion d3

(0)'30.4. In the latter approach, however, higher ord
PA’s (@2/1#, @1/2#) cannot be employed.

As a cross check, we carried out the same procedure
with a different conformal transformation

w5
A11b2A12b/4

A11b1A12b/4
. ~30!

This mapping also removes all the UV renormalons to
unit circle, as well as all the IR renormalons except for t
first (b52) and the second (b53) one: w(b52)'0.42,
w(b53)50.6. This mapping apparently suppresses e
more strongly than Eq.~25! the UV renormalon contribu-
tions, but probably less strongly the next-to-leading IR ren
malon (b53) contributions. The predictions are in this ca
d3'24.3–24.5, in good agreement with the aforemention
predictions. The use of the PA@1/1# of d ln R/dw predicts in
this cased3

(0)'30.3.
We further note another interesting feature of the exp

sion ~29!. Looking at the first three terms that are known,
appears reasonable to expect that the N3LO coefficientr 3 at
w3 is not very large, say,ur 3u,2. Varying r 3 between22
and 2 results in the variation ofd3 between 19.3 and 29.5
i.e., only about 20% around the valued3'24.7. Thus, the
predictions of the described method, using the conform
transformation~25!, are remarkably robust under the vari

2The authors of Ref.@18# showed that combining the conforma
transformations with the PA type of resummations can lead to
nificantly improved results, at least when a sufficient number
terms in the power expansion are known.

3In the procedure, we further require that@1/1# PA of dR/dw not
possess clearly unphysical poles~i.e., poles well beloww50.5).
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tion of the N3LO coefficient ofR„b(w)…. Similar robustness
is observed when the conformal transformation~30! is used
instead of~25!.

If we applied to the relation~28! the PA’s, but no confor-
mal transformation, the predictions would vary mo
strongly (d3'26–33) with the various choices for PA’s o
R(b). Furthermore, this method does not possess the ‘
bustness’’ under the variation of the N3LO coefficient of
R(b).

Thus, our prediction of the N3LO coefficientd3, in the
MS scheme, of the Adler functionD(Q2) is

d3'2565 ~atNf53! ~31!

based on the simultaneous use of relation~28!, the conformal
mapping~25!, and the Pade´ approximants. However, a large
uncertainty (610) of the predicted values ofd3

(0) cannot be
excluded, and we will use these more conservative un
tainty estimates in the next sections@see Eq.~52!#.

Our predictions can be compared, for example, with th
of Ref. @4#. They used the method of effective charge~ECH!
@20–22# and the TPS principle of minimal sensitivity~PMS!
@23,24# for the NNLO TPS of the Adler functionD(Q2).
The obtained approximants were then re-expanded bac
powers ofa0[a(Q2;MS) up to;a0

4, under the assumption

c3
ECH2c3

MS'0 andc3
PMS2c3

MS'0. The resulting prediction
wasd3'27.5, which is consistent with our prediction~31!.

V. ANALYSIS OF THE HADRONIC TAU DECAY

In this section we will apply elements of the previou
sections to the numerical study of thet inclusive hadronic
decay ratio

Rt[
G„t2→nthadrons~g!…

G„t2→nte
2n̄e~g!…

. ~32!

Here, (g) represent possible additional photons or lept
pairs. This inclusive decay ratio has been extensively stud
in the literature, theoretically and numerically@25–31,13#.
The ratio can be expressed, via the application of a varian
the optical theorem, with the two-point correlation functio
of the vector~V! and axial-vector~A! currents, or equiva-
lently, with the Adler functionsDL1T(Q2) andDL(Q2)—we
refer to the Appendix for some details. The theoretic
numerical resummation methods for evaluation of QCD o
servables are most efficient in the limit of massless qua
When excluding hadrons withs ~strange! quarks, and ap-
proximating theu and d quarks to be massless, the expre
sion can be written as a contour integral~A13! in the com-
plex momentum plane@28–31,13#

-
f

0-5
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r t[r t
V 1 A~nS50;mu,d50!

[
Rt

V 1 A~nS50;mu,d50!

3uVudu2~11dEW!
2~11dEW8 ! ~33!

5
1

2pE2p

p

dy~11eiy!3~12eiy!D~Q2

[2s5mt
2eiy!, ~34!

where the~minimal standard model! electroweak correction
~EW! factorsdEW anddEW8 have been calculated in@32,33#,
andD(Q2) is the massless canonical Adler function~2!, ~5!.
The superscript V1 A in the above formulas emphasizes t
fact that the quantities are inclusive in the sense of includ
the vector and axial-vector hadronic currents.

The experimental value of the observableRt
V 1 A(DS

50) can be extracted from the values of the leptonic bran
ing ratios Be[B(t2→e2n̄ent) and Bm[B(t2

→m2n̄mnt), as obtained from the constrained fit deriv
from a set of basis modes@34# ~see also@35#!. The basis
modes form an exlusive set of leptonic and hadronic dec
whose branching ratios are normalized so that their sum
exactly one. The set of basis modes does not include
decays with photons in the final state, i.e., the right-hand s
of Eq. ~32! is for them without (g). The only leptonic
branching ratios in the set of basis modes areBe and Bm .
Therefore,Rt5(12Be2Bm)/Be . The present values ofBe
and Bm , as determined from the constrained fit@34#, based
on the high precision measurements of the basis mode
the t2 decay by the ALEPH, OPAL, and CLEO Collabor
tions @35–39#, are Be5(17.8360.06)31022, Bm5(17.37
60.07)31022. The updated value of the strangene
changing ratio is@40# Rt(DS5” 0)50.163060.0057. This
implies

Rt
V 1 A~DS50!5

~12Be2Bm!

Be
2Rt~DS5” 0! ~35!

53.471360.0171. ~36!

The canonicalt2 decay ratio~33!, at the moment still with-
out the massless quark conditionmu,d→0, i.e., the reduced
decay ratio~A1! in the Appendix, can then be obtained fro
the experimental values~36! by inserting the known value
of the electroweak correction parametersdEW and dEW8 and
of the Cabibbo-Kobayashi-Maskawa~CKM! matrix element
uVudu. Here we have to deal with additional uncertainties

The main EW correction parameter has the valuedEW
50.019460.0050@32#, while the residual correction param
eter isdEW8 50.0010@33#. In calculatingdEW, the additional
contributions from low scales (,mt), dependent on the had
ronic structure, although not enhanced by large logarith
cannot be calculated and were estimated@32# to lead to the
significant uncertainties60.0050.

The values ofuVudu from the~SM! unitarity constraint fit
are 0.974960.0008@34#. On the other hand, the values e
tracted from the decays of mirror nuclei lead to lower valu
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uVudu50.974060.0010. This extraction is, however, fraug
with theoretical uncertainties~see @34# for further refer-
ences!. Further, the values extracted from neutron dec
uVudu50.972860.0012 ~@34# and references therein! are
even lower, but appear to have smaller theoretical uncert
ties. For all these reasons, we will adopt the value range

uVudu50.974960.0021, ~37!

where the central value is the one from the unitarity co
strained fit, but the uncertainty has been increased so tha
values now include all the values from the decays of mir
nuclei and the upper half of the interval of values from ne
tron decays.

This now allows us to extract the values of the canoni
t2 decay ratio~A1!

r t
V 1 A~DS50![

Rt
V 1 A~DS50!

3uVudu2~11dEW!
2~11dEW8 !

50.193360.0059exp.60.0059EW

60.0051CKM , ~38!

where the uncertainty60.0059EW originates from the afore-
mentioned60.0050 uncertainty indEW, and 60.0051CKM
from the60.0021 uncertainty inuVudu ~37!.

The QCD observable~38!, as defined, has the non-QC
effects factored out. However, it still contains the proble
atic, though small, quark mass effects (mu,d5” 0). In the Ap-
pendix, we calculated the numerical strength of the qu
mass contributions~A10!,~A11!. Subtracting these effects a
in Eq. ~A12!, we end up with the following values for th
massless QCD observable~33!

r t[r t
V 1 A~DS50;mu,d50!

50.196060.0059exp.60.0059EW

60.0051CKM ~39!

50.196060.0098. ~40!

In Eq. ~39! we neglected the small contributions;0.0001
from the corrections of the type;mu,d

2 /mt
2 to Eq. ~A11!. In

Eq. ~40!, the three uncertainties of Eq.~39! were added in
quadrature.

The values~39! will be the starting point for our massles
QCD resummation analyses of the hadronict decay. The
experimental uncertainty~39! in the massless QCD observ
able r t is 3%, representing a high experimental precisi
when compared to many other QCD observables. This
can be regarded at present as our main motivation to in
tigate theoretically and numerically this observable. Unfor
nately, as we can see from Eqs.~39!,~40!, the total precision
is worse(5%), due to thepresent uncertainties in the value
of the electroweak corrections and ofuVudu.

By adjusting the numerical~resummed! predictions forr t
to the experimental ones~39!, our main goal will be to pre-
dict the QCD coupling parameteras(mt

2) with the high pre-
0-6
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cision, i.e., with the resummation method uncertain
(das)meth. of the prediction being comparable to, or smal
than, the experimental uncertainty (das)exp. stemming from
(dr t)exp.50.0059~39!. The starting point for our resumma
tion method will be the contour integral representation~34!
of r t in terms of the massless Adler functionD(Q2).

As in the previous sections, we expressD(Q2) as the
Borel integral of its Borel transformD̃(b)5R(b)/(1
2b/2)11n, with the correct first IR renormalon singularit
explicitly enforced in the ansatz

D~Q2!5
1

b0
ReF E

01 i«

`1 i«

db e2b/b0a(j2Q2)
R~b;j2!

~12b/2!11nG ,

~41!

where the integration contour is chosen to be on the up
half plane to avoid the singularity atb52 ~Cauchy principal
value prescription!. By explicitly enforcing the renormalon
singularity, the Borel transform around the singularity can
more accurately described, and also the validity of the p
turbative Borel transform can be extended beyond the firs
renormalon. The Borel transformD̃(b) as well asR(b) de-
pend on the renormalization scheme and on the renorma
tion scale parameterj25m2/Q2 through thej2 dependence
of the perturbative coefficientsdn in Eq. ~5! when the run-
ning coupling a(Q2) is replaced bya(j2Q2). While we
choose theMS scheme throughout this paper, the renorm
ization scale parameterj2 will be kept arbitrary for the time
being. When inserting Eq.~41! into Eq.~34!, and exchanging
the order of integrations, we obtain

r t5
1

2pb0
ReF E

01 i«

`1 i«

db
R~b;j2!

~12b/2!11n

3E
2p

p

dy~11eiy!3~12eiy!e2b/b0a„j2mt
2 exp(iy)…G .

~42!

Since the integrand is exponentially suppressed at largeb, it
is convenient and reasonable to integrate over the Borel v
ableb just to a certain valuebmax lying beyond the first IR
renormalon. The contribution from the region beyond t
first IR renormalon is expected to be smaller or compara
to the nonperturbative effect by the gluon condensate, wh
is known to be small@13#. If we know the perturbation serie
of the Adler functionD(Q2) up to N3LO then we know
automaticallyR(b;j2) up to N3LO, i.e., including the term
;b3. Further,R(b;j2) has no singularities on the positiv
axis forb,2, and only a soft singularity atb52, but it has
some UV renormalons on the negative axis rather clos
the origin: b521,22. These UV renormalons make th
power expansion ofR(b;j2) in powers ofb divergent for
ubu>1, which signals that the use of the (N3LO) TPS in
powers ofb for R(b;j2) in Eq. ~42! may run into serious
trouble already atb>11. An efficient solution to this prob-
lem was already constructed in Sec. III, in the form of
optimal conformal transformationb5b(w) ~25!, which
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pushes all the UV renormalons~and all the higher IR renor-
malons atb>3) onto a unit circle in the plane of the ne
variablew. The first IR renormalon atb52 now corresponds
to w51/2, i.e., within the unit circle. Then, the expansio
R„b(w);j2

… in powers ofw represents a convergent seri
for w<1/2, i.e., for the correspondingb(w)<2. Thus, the
use of the corresponding N3LO TPS ofR„b(w);j2

…, which
is also explicitly known, will have a much better chance
describe reasonably well the trueR„b(w);j2

… within the in-
terval between the origin and the first IR renormalon. The
fore, the double integral~42! will be rewritten in terms of the
variablew

r t'
1

2pb0
ReF E

0

wmax
dw

db~w!

dw

R~b~w!;j2!

@12b~w!/2#11n

3E
2p

p

dy~11eiy!3~12eiy!e2b(w)/b0a„j2mt
2 exp(iy)…G

~43!

5
3

2pb0
ReFeifE

0

1

dx~12w2!~12w1w2!n21

3
R„b~w!;j2

…

~1/22w!11n~22w!11nE2p

p

dy~11eiy!3

3~12eiy!e2b(w)/b0a„j2mt
2 exp(iy)…U

w5xeif
G , ~44!

where we can choose in Eq.~43! wmax@1/2, corresponding
to bmax@2. In practice, we can go in thedw integration in
Eq. ~43! beyondw51, where thew contour then follows the
unit circle arc into the first quadrant—for example up to
complex wmax5exp(if) with 0,f,f` , where w(b5`)
5exp(if`), f`5p/3. The fact that in this way we reach th
b'3 region, where the trueR(b) has an IR renormalon, an
even go beyond it, does not change the result of Eq.~43! in
practice. This is so because the contributions from the
uwu51 ~corresponding tob*3) turn out to be extremely
suppressed in Eq.~43! ~see also footnote 6 of the next se
tion!. This integration can be implemented in practice m
easily, if we follow the rayw5x exp(if), with x from 0 to 1
~see Fig. 2!, because the integration over the correspond
closed contour yields zero since no singularities are
closed. This practical ‘‘ray’’-integral implementation is de
noted in Eq.~44!.

The first two coefficientsd1 and d2 of the expansion of
the Adler function~5!, which determine the expansions o
D̃(b) andR(b) up to NNLO, have been calculated exactly
the literature@16,17#. For the choicem25Q2 and in theMS
scheme, withNf53, they ared1

(0)51.6398,d2
(0)56.3710. In

the previous section, the arguments were presented sug
ing the value of the N3LO coefficientd3

(0)'25. When the
renormalization scalem25j2Q2 is changed (j25” 1), these
coefficients change accordingly:
0-7
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d15d1
(0)1b0 ln j2, ~45!

d25d2
(0)12b0 ln j2d1

(0)1b1 ln j21~b0 ln j2!2,
~46!

d35d3
(0)13~d1d22d1

(0)d2
(0)!22~d1

32d1
(0)3!

2~c1/2!~d1
22d1

(0)2!1c2~d12d1
(0)!. ~47!

These relations follow from the expressions for the renorm
ization scheme and scale invariantsr1 , r2 , r3, as given,
e.g., in @23#. As an example, atj252 they imply d1
53.1994, d2516.6908, d3597.4436. The correspondin
N3LO Borel transform is

R~b~w!;j2!5121.68394w10.104w210.232591w3

~j251!, ~48!

5110.395499w13.30834w215.13735w3

~j252!. ~49!

The apparently quite strongj2 dependence of the Bore
transform functionR„b(w);j2

… in Eq. ~44! is combined with
the strongj2 dependence of the coupling parametera(j2Q2)
in the exponent~44! in such a way that the entire doub
integral isj2 independent. However, since we know just t
first few terms ofR„b(w);j2

…, thej2 dependence of Eq.~44!
will appear. If the method is good this dependence should
weak, at least locally in a renormalization scale regionj2

;1. Further, there should be some dependence on the ch
of the renormalization scheme, but the scheme depend
is, in general, weaker than thej2 dependence and we choo
the MS scheme throughout.

At first sight, one may argue that the first IR renormal
of the Adler function has no significant bearing on the qu
tity r t because the singularity atb52 is formally suppressed
by a power ofas due to the contour integration~34! ~see Ref.
@13#!. We can see this, for example, if we consistently igno

FIG. 2. Integration along the rayw5x exp(if) (0,x,1, f
fixed! gives the same result as the integration parallel to the pos
real axis (0,w,1) and arcw5exp(if8)(0,f8,f).
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all effects beyond the one loop in Eq.~42! (b j°0 for j
>1, n°0). In this approximation, the contour integratio
over y can be carried out explicitly and it yields an oscilla
ing function ofb which has a zero atb52, thus erasing the
singularity there. However, we wish to stress that this eff
implies only that the nonperturbative power term;1/mt

4

contribution tor t is suppressed. This effect does not imp
that the behavior of the Borel transformD̃(b) nearb52 is
not important for the determination of the value ofr t . In
fact, if we did not factor out the first IR renormalon sing
larity in Eqs.~42!–~44!, the contributions from theb;2 re-
gion would be very imprecise, thus adversely affecting o
analysis. On the other hand, the higher IR renormalons, e
at b53, which are not suppressed by powers ofas , contrib-
ute insignificantly to the integral~43!, as will be shown be-
low.

VI. PREDICTIONS OF as FROM THE HADRONIC TAU
DECAY

For the evaluation of Eq.~44!, we will employ, at any
given choice of j2, the corresponding N3LO TPS of
R„b(w);j2

…, where we will use ford3
(0) the values around

d3
(0)525 suggested in Sec. IV. The double integral~44! then

yields, for any given values ofj2 anda0[a(mt
2), a specific

prediction forr t . We then have to adjust, at a givenj2, the
value of a0[a(mt

2) in such a way that the prediction i
within the experimental limits~39!. The renormalization
scale parameterj2 is then chosen according to the princip
of minimal sensitivity,

]r t~j2!

]j2
50, ~50!

i.e., at the point in which the unphysicalj2 dependence dis
appears locally.4

There is still one minor technical detail that we mig
worry about; we have only a limited knowledge of theMS
beta functionb(a) that governs the running of the couplin
parametera—its power expansion ina is known only up to
the four-loop term2b0c3a5 (;a5) @41#. In the region with
the low m25j2mt

2 exp(iy) (um2u;mt
2'3 GeV2) where the

contour integration in Eq.~44! is applied, the values o

4It is instructive to see why our method should fail at small a
large values ofj2. At small j2 the running couplinga(j2Q2) be-
comes large, and so the Borel integral~44! will receive significant
contribution from the region far beyond the first IR renormalon,
which the Borel transform cannot be well described by the first f
terms of the perturbation theory. On the other hand, at largej2, the
couplinga(j2Q2) becomes small, and for the integral~44! to bej2

independent the Borel transformR(b(w);j2) should increase rap
idly as j2 increases@in fact, it can be shown thatR„b(w);j2

… in-
creases approximately asj2b]. This means that the Borel transform
becomes steeper asj2 increases, making the perturbation theo
less efficient. It is therefore reasonable to expect an optimalj2 for
our method, and we expect it to be given by the PMS principle

e

0-8
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FIG. 3. The value of the predicted ratior t

[r t
V 1 A(DS50;mu,d50) of Eq. ~44! as a func-

tion of the renormalization scale parameterj2 for
the choiceas(mt

2 ;MS)50.3265 andd3
(0)525,

when the conformal transformation~25! is em-
ployed ~full curve; f50.1, i.e., bmax'3), and
when none is employed~dotted curve; bmax

53.). The measured values~40! are included as
dotted horizontal lines.
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uau ([uasu/p) are no longer very small (uau'0.1), and ex-
pansion terms with powers higher thana5 may become sig-
nificant in the resummed value ofb(a). To be specific, we
chose the@2/3# Padéapproximant for the resummedb(a) in
the RG evolution ofa, above all because of the reasonab
singularity structure of this beta function (asingularity
50.311).5 Later we will show how the results change wh
(N3LO)TPSb functions are used instead. Further, we cho
in Eq. ~44! f50.1, i.e.,wmax5exp(i30.1), corresponding to
bmax'3.03, i.e., well beyond the first IR renormalon.6 It
turns out that thej2 values as determined by the PMS pri
ciple ~50! of the expression~44! are j2'1.75–1.80 when
d3

(0)525. In Fig. 3 we show the numerical predictions of E
~44! as functions of the parameterj2, for the choiceas

(0)

[as(mt
2)50.3265~and d3

(0)525.). The central experimen
tal value~39! r t50.1960 is then achieved at the PMS~50!
valuej2'1.77. We see that the unphysicalj2 dependence is
really quite weak in a large interval 1,j2,5, indicating that
the method is reliable. In the figure, we include for compa
son the analogous predictions for the case~42!, i.e., when no
conformal transformationb°b(w) is carried out in Eq.~42!
@we used«50.005 andbmax53 in Eq. ~42!#. The latter
method has a somewhat differentj2 dependence and
slightly different value at the PMS point. As argued after E
~42!, the predictions of the curve~s! involving the conformal
transformation are expected to be more reliable.

The predictions foras(mt
2), obtained by matching the

results of the described resummation~44! with the experi-
mental results~39!, for the choiced3

(0)525, are

5This PA choice forb(a) was motivated and used in Refs.@42#,
where a renormalization–scheme- and scale-invariant method
developed and employed for the resummations of NNLO TPS’s
Euclidean massless QCD observables, a generalization of
renormalization-scale-invariant Pade´-related method of Refs.@43#.

6When wmax5exp(if) in Eq. ~44! is varied betweenw(b53)
(f'0) andw(b54) (f'0.505 rad!, the values of Eq.~44! change
insignificantly ~relative change is about 2.531026).
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as~mt
2!50.326560.0062exp.60.0062EW60.0053CKM

~d3
(0)525!. ~51!

The perturbative QCD part of the information incorporat
in the prediction~51! was the N3LO TPS for theNf53
Adler function D(Q2), with the N3LO coefficient d3(j2

51)[d3
(0) set equal tod3

(0)525, as obtained by the argu
ments of Sec. IV. Of course, the exact value ofd3

(0) is not yet
known. The authors of Ref.@4#, using the effective charge
~ECH! @20–22# and the TPS principle of minimal sensitivit
~PMS! @23,24# methods, predictedd3

(0)527.5. When consid-
ering a one-parameter subgroupQ2°egQ2 of the renormal-
ization group, which of course leaves the coefficients of
~ECH! b function d@D(Q2)#/d@ ln Q2#52b0d

2(11r1d
1r2d

21•••) invariant, the authors of Ref.@44# obtained an
estimated3

(0)530.9 using a variant of the PMS, and the a
thors of Ref.@45# obtainedd3

(0)528.7 using a so-calledG
scheme. Further, when employing the simple@2/1# PA esti-
mate for the NNLO TPSD(Q2)5a0(11d1

(0)a01d2
(0)a0

2), at
m25Q2 (5mt

2), the prediction is d3
(0)pr.5d2

(0)2/d1
(0)

524.75. If using the simple@3/1# PA estimate for the ECH
TPS b function 2b0d2(11r1d1r2d2), the prediction is
r3

pr.5r2
2/r155.39 and thus7 d3

(0)pr.522.4. Keeping all these
estimates ford3

(0) in mind, as well as the estimate~31! of our
approach, it appears reasonable and safe to allow for
following variation of the values ofd3

(0) around the value 25
from Sec. IV

d3
(0)est.525610 . ~52!

as
f

he
7Note that r152d1

(0)1b0 ln mt
2/L̃255.094 is obtained here by

using the ~unsubtracted! Stevenson equation@23#, with as(mt
2)

50.33 and with the@2/3# PA for the MS b function; r25d2
(0)

2d1
(0)22c1d1

(0)1c2
MS55.238. Further, d3

(0)pr.5r3
pr.1d1

(0)@2d2
(0)

2d1
(0)21c1d1

(0)/21r2#2c3
MS/2.
0-9
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The610 variation ind3
(0) results in the variation of70.0039

for as(mt
2), respectively. Thej2 values as determined by th

PMS principle~50! vary as welljPMS
2 '2.10,1.75,1.35, for

d3
(0)515,25,35, respectively.

In order to obtain an estimate of the various uncertain
in as(mt

2) due to the use of the method itself, we proceed
the following way.

One of the major uncertainties is connected with our tr
cation ofR„b(w),j2

… to the N3LO TPS. One way of estimat
ing these uncertainties would be to repeat the analysis u
N4LO TPS for R„b(w),j2

… in Eq. ~44!. For this, we need
also the value of the coefficientd4

(0) in D(Q2). We note that
the coefficientsdj

(0) in D(Q2) follow roughly the geometric
series pattern withd2

(0)/d1
(0)'d3

(0)/d2
(0)'4. Therefore, we

may estimated4
(0)'4d3

(0) . Using these values ofd4
(0) with

the d3
(0) values ~52!, our method gives predictions fo

as(mt
2) which differ from the original (N3LO TPS! method

by 0.0012,0.0007,0.0003, whend3
(0)515,25,35, respec

tively. The PMS-determinedj2 are in the N4LO TPS case
jPMS

2 '3.2,2.7,2.15, respectively. However, if we fixj2 to
the PMS-determined values of the original (N3LO TPS!
method (2.10,1.75,1.35, respectively!, then the differences in
the predictions foras(mt

2) are 0.0035,0.0025,0.0020, respe
tively. Choosing the largest difference here, this would s
gest that the truncation uncertainty in our prediction
as(mt

2) is about 0.0035.
We may obtain another estimate of the truncation erro

the following way. We use forR„b(w)… in Eq. ~44!, instead
of the N3LO TPS of the type~48!,~49!, the corresponding
Padéapproximant@2/1#(w). We expect the most reasonab
pole of this PA to bewpole'1, corresponding tob'3 ~i.e.,
the second IR renormalon pole!. We varyd3

(0) , at two fixed
values ofj2 parameter,j251.75 and 1.95~i.e., 'jPMS

2 for
d3

(0)525,20, respectively! in such a way thatwpole varies
betweenwpole51 and wpole50.64. The latter value corre
sponds to the location of theb pole half way between the
first and second renormalon@b(w50.64)'2.5#. The varia-
tions of d3

(0) needed for this ared3
(0)523.5–27.0, and 21.0–

25.5, respectively. The variation of the predictions ofas(mt
2)

for such variation ofd3
(0) , with the use of N3LO TPS and

@2/1# PA for R„b(w),j2
…, is then das(mt

2)
50.0042,0.0048, for the two aforementioned choices ofj2,
respectively. This variation~e.g., the larger one, 0.0048! can
be regarded as an estimate of the truncation error of
method, especially since the PA@2/1#R(w) represents a spe
cific realization of the resummation ofR„b(w),j2

…. Since
this estimate is larger than the previous one~0.0035!, we will
use it:das(mt

2)tr.50.0048.
There is also an uncertainty in the predictions of o

method due to possible ambiguities in the choice of
renormalization scale parameterj2. Our choice was to fixj2

by the local PMS principle~50!. Somewhat similarly as we
estimated the truncation error, we may now varyj2 instead
and keepd3

(0) fixed ~525!. If we vary j2 from j2'1.55 to
j2'2.0, the aforementioned PA@2/1#R(w) changes its pole
from wpole51 to wpole50.64. The resulting variation in th
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predicted~central! values ofas(mt
2), with the use of N3LO

TPS and@2/1# PA for R„b(w),j2
…, is then about 0.0033

Alternatively, the change of20.0033 inas(mt
2) would cor-

respond to the variation of the renormalization scale para
eter j2'1.50–4.10 around its PMS~50! value j2'1.77
when the N3LO TPS approach of Eq.~44! is applied. Very
similar results are obtained ifd3

(0)520 is used instead. We
will take for the uncertainty due to thej2 ambiguity the
valuedas(mt

2)dj250.0033.
Further, the predictions change when the renormaliza

scheme parametersc2 and c3 change. The leading schem
parameter isc2. We havec2

MS54.471 andc3
MS520.99 (Nf

53). For comparison, for the N3LO TPS Adler function
~with d3

(0)525) in the TPS PMS scheme@23# we have
c2

PMS56.584, c3
PMS536.80 ~and j2'0.55), and in the ECH

scheme@20–22# c2
ECH55.238,c3

ECH516.06~andj2'0.48).
This would indicate that it is reasonable to allow for th
variation of the leading scheme parameterc2 from its MS
value by about 50%, i.e.,c254.471(1.60.5), while adjust-
ing the renormalization scale parameterj2 according to the
PMS condition~50!. The central prediction in Eq.~51! then
varies by about60.0019. On the other hand, changing t
NNLO scheme parameterc3 by 50% around itsMS value
changes the central prediction foras(mt

2) by about
60.0006. Adding in quadrature, the uncertainty due to
change of the scheme parameters8 is about60.0020.

Hence, our result is

as~mt
2!50.326560.0062exp.60.0062EW60.0053CKM

60.0039dd3
60.0048tr.60.0033d j 260.0020dcj

,

~53!

50.326560.0062exp.60.0082EW 1 CKM

60.0073meth.. ~54!

In the last line, we added the corresponding uncertaintie
quadrature; the method uncertainty contains the uncertain
due to the variation ofd3

(0) , truncation error, and renorma
ization scale and scheme ambiguities. If we use for theMS b
function the N3LO TPS, instead of@2/3#b , the predictions in
Eqs. ~53!,~54! decrease by 0.0006–0.0007, indicating th
those nonperturbative effects which originate in the behav
of the b function are not strong in the applied resummati
method. This has to do with relatively large values of t
PMS-fixed ~50! renormalization scale parametersj2

[m2/mt
2 ('1.77 whend3

(0)525). The uncertainty due to th

8The problem of the renormalization scale and scheme dep
dence in the determination ofas(mt

2 ,MS) from they-contour rep-
resentation~34! of r t was discussed by Ra¸czka @46#. Using the
NNLO TPS for D(Q2), he showed that a change from theMS
scheme~with j251) to the TPS PMS scheme and scale results
the change ofas(mt

2 ,MS) by 0.01, which is significant in the view
of the new precise experimental data.
0-10
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variation of bmax in Eq. ~43! (3,bmax,4, i.e., 0,f
,0.505 rad) turns out to be insignificant, as mentioned
fore. For example, if changing fromf50.1 ~corresponding
to bmax'3.03) to f50.505 (bmax'4) the central value of
Eq. ~54! increases by less than 1026.

One may argue that the method uncertainty as gi
above is too nonconservative, i.e., too small. Therefore,
carried out an additional cross check. We performed the
summation forr t by the double integration of the type~44!,
but this time taking into account explicitly the first UV
renormalon~at b521) in the ansatz for the Borel transform

D̃(b)5R̄(b)(11b)2g1(12b/2)2(11n), with g152.589
@47,15#. We performed again the conformal mappingb

5b(w) ~25!, expansion ofR̄„b(w)… in powers ofw up to and
including the N3LO (;w3), and subsequently performed th
double integration analogous to Eq.~44!, with f50.1. The
scale parameterj2 was again fixed by the PMS principl
~50!, resulting, for the choicesd3

(0)515,25,35@and as(mt
2)

'0.32–0.34] in considerably lower values j2

'0.91,0.88,0.85, respectively. We used for theMS b func-
tions again the PA@2/3#. The predicted values of the QCD
coupling parameter turned out to be very close to th
~53!,~54! of the method~44!: as(mt

2)50.325760.0062exp.

60.0062EW60.0054CKM60.0014dd3
. For example, the pre

diction for as(mt
2) corresponding to the central experimen

value of Eq.~39! with this method differed from the predic
tion of the method~44! by 20.0027, 20.0008, 10.0018,
when d3

(0)515,25,35, respectively. This would indica
again that the resummation method uncertainty does not
pass 0.0073, i.e., in accordance with the method uncerta
estimate in Eq.~54!.

If we apply the resummation~43! without the conformal
transformation@using bmax'3, «50.005 in Eq.~42!#, for
d3

(0)515,25,35, the PMS-fixed~50! renormalization scale
parameters arejPMS

2 '3.00,2.35,1.25, respectively,9 and the
prediction is as(mt

2)50.327160.0062exp.60.0062EW

60.0053CKM60.0060dd3
, which10 is only slightly different

from the one with the conformal transformation~51!–~53!.
Although not using the conformal transformation is not
well motivated@see also the discussion after Eq.~42!#, this
result may represent yet another justification for the sm
estimate of the method uncertainty in Eqs.~53!,~54!.

The result~54! was then evolved from the scalem5mt
'1.777 GeV to the canonical scaleM z591.19 GeV, by us-
ing the RG equation with the@2/3#bMS Padéapproximant
~based on the four loopbMS @41#! and the three loop match
ing conditions@48# for the flavor thresholds. We used th
matching atm(Nf)5kmq(Nf) with the choicek52, where
m(Nf) is the scale above whichNf flavors are assumed ac
tive, andmq(Nf) means the running quark massmq(mq) of

9For d3
(0)535, no strict stationarity is achieved, but atj2'1.25

the slope~50! is almost zero:]r t(j
2)/]j2'22.331024.

10The variation60.0060dd3
for d3

(0)525610 is in fact10.0043
for d3

(0)515 and20.0060 ford3
(0)535.
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the Nf th flavor @we assumedmc(mc)51.25 GeV and
mb(mb)54.25 GeV]. This leads to our final result

as~M z
2!50.119360.0007exp.60.0010EW1CKM60.0009meth.

60.0003evol., ~55!

50.119360.0015. ~56!

In Eq. ~56!, we added the uncertainties of Eq.~55! in quadra-
ture. In Eq.~55!, we included the uncertainty60.0003evol.
due to the RG evolution frommt to M z . This uncertainty
estimate is obtained in the following way: keepingk52, if
we vary the massmc(mc)51.2560.10 GeV, the resulting
uncertainty is60.0002; if we vary the massmb(mb)54.25
60.15 GeV, the uncertainty is60.0001. If we vary the fla-
vor threshold parameterk around its central valuek52
from 1.5 to 3, the uncertainty is60.0001. Furthermore, if
we use for the (mt→M z) RG evolution, instead of the PA
@2/3#bMS, the corresponding four-loop TPSbMS function,
the resultingas(M z

2) changes by 0.0001. Adding all thes
uncertainties in quadrature gives us approximately the un
tainty 60.0003 given in Eq.~55!.

If we repeat the entire calculation ofas(mt
2) andas(M z

2)
by using throughout the four loop TPSMS b function in-
stead of the PA@2/3#bMS, the predictions foras(M z

2) remain
the same as in Eqs.~55!,~56!, up to the displayed digits. The
reason for this is that the aforementioned change ofb func-
tions predicts the values ofas(mt

2) by about 0.0006–0.0007
lower than those of Eqs.~53!,~54!, but then the RG evolution
to m5M z pushes the results up, thus approximately neut
izing this effect.

Due to the high precision experimental data Eqs.~36!–
~39! on the inclusive hadronic decay oft, the experimental
uncertainty in the extracted strong coupling constant is lo
By incorporating a wealth of known theoretical informatio
~perturbative as well as renormalon! on the related Adler
functionD(Q2), we were able to extract the strong couplin
constant with the method uncertainty not significantly s
passing the experimental uncertainty. Further, the analysi
the ALEPH Collaboration@35,37# showed that those powe
~nonperturbative! contributions in the observabl
Rt

V 1 A(DS50) which do not originate from the nonzer
quark masses are consistent with zero~see also the next sec
tion!, and these OPE-type contributions were not included
our resummation either.

The experimental situation with other low energy QC
observables is not so favorable, and the experimental un
tainties of the extracted strong coupling constants appea
dominate over the theoretical uncertainties. This is reflec
in the present world average~over various measured QCD
observables! as

MS(M z
2)50.117360.0020 by Ref.@49# and

0.118460.0031 by Ref.@50#, where the extracted~combined
experimental and theoretical! uncertainties are significantly
higher than those in Eq.~55!.

In this context, we mention that the question of the vio
tion of the quark~gluon!-hadron duality for correlation func
tions has been raised and investigated by the authors of R
@51#. They argued that the corrections to the correlation fu
0-11
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tions due to the duality violation could be significant~up to a
few percent!. However, no quantitative analyses are ava
able at present. This violation could possibly affect ma
QCD ~quasi!observables, including the Adler functio
D(Q2) andRt .

Further, the authors of Refs.@52,53# analyzed the possi
bility that the operator product expansion~13! contains an
additional 1/Q2 term~other than thed52 quark mass terms!,
whose origin would be an effective tachyonic gluon ma
reflecting short-distance nonperturbative QCD effects. T
authors of Ref.@52# suggested that such terms would d
crease the value ofas(mt

2) extracted from hadronict decays
by about 10%. However, the authors of Ref.@54# showed
that the coefficient of the 1/Q2 term is consistent with zero
They did this by fitting a dimension-two finite energy su
rule to the new ALEPH data on the vector and axial-vec
spectral functions extracted from measuredt decays. The
type of sum rule used by the authors of Ref.@54# in ruling
out the aforementioned 1/Q2 term are well satisfied at th
continuum threshold scaless0'2 –3 GeV2 relevant forr t ,
as has been shown independently by two groups@55,56#.

VII. COMPARISON WITH OTHER ANALYSES

We may compare our result~54! with that of an indepen-
dent analysis of the hadronict decays by the ALEPH Col-
laboration @35,37#, who used forRt

V1A(DS50) instead of
the values ~36!, the different values available in 199
(3.49260.016),

as~mt
2!50.33460.007exp.60.021th. ~ALEPH!, ⇒

~57!

as~M z
2!50.120360.0008exp.60.0025th.

60.0003evol. ~ALEPH!. ~58!

They used slightly smaller uncertainties fordEW (60.0040)
and drastically smaller uncertainties in the CKM eleme
uVudu50.975260.0007. They used different methods whi
involved, in addition, the analysis of moments of~their own
measured! spectral functions ImP ūd,V/A

(J) (s) (s<mt
2) as pro-

posed by@57#. The ALEPH’s V1 A analysis of the men-
tioned moments showed that those nonperturbative~OPE!
contributions which do not originate from the nonzero qua
masses were consistent with zero,dr t(NP,mu,d50)50.000
60.004; and their quark mass nonperturbative contributi
basically agree with ours~A11! ~compare Table 8, fourth
column, of Ref.@35#!. Further, the central value of Eq.~57!
was obtained by taking the arithmetic average of the pre
tions of two methods~i! the y-contour integration approac
~34!, with just the N3LO TPS for the AdlerD(Q2) function,
with d3

(0)550650, in MS, i.e., the approach of@30#; ~ii ! the
simple N3LO TPS of the power expansion ofr t . The large
theoretical uncertainty in Eq.~57! originates primarily from
the difference of the predictions of the two aforemention
methods, from the ambiguities of the choice ofd3

(0) renor-
malization scheme and scale, and the electroweak param
dEW.
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They-contour integration approach, where we just use
N3LO TPS for the Adler functionD(Q2) ~with d3

(0)525) in
the contour integral~34!, i.e., the approach of@30#, in MS
scheme with N3LO TPS bMS, achieves the minimal sens
tivity condition ~50! at j2'0.4 and reproduces there the ce
tral experimental value of Eq. ~39! at as(mt

2)
50.3399 (0.3416 if using@2/3#bMS), corresponding to
as(M z

2)50.1209 (0.1210), significantly higher11 than our
central value~55!. However, if taking instead the simpl
TPS r t5a@11(d1

(0)13.563)a1(d2
(0)119.99)a21(d3

(0)

178.)a3# ~see @30#!, at renormalization scalem5mt , the
predictions change significantly: as(mt

2)50.3211
60.0056exp.60.0056EW60.0048CKM60.0011dd3

~for d3
(0)

525610), corresponding toas(M z
2)50.118860.0007exp.

60.0010EW1CKM60.0002dd3
. These values are lower tha

our values~55!. The arithmetic average of the central valu
of these two methodsas(mt

2)arithm.5(0.339910.3211)/2
50.3305 is close to the central value of the ALEPH analy
~57!, the difference being that the ALEPH used the high
values for the hadronict decay ratio available in 1998. Thi
value is close to the upper bounds of our prediction~54!.

In Fig. 4 we present the predictions of three methods
r t as functions ofas(mt

2): ~i! our method~44! @Borel trans-
form approach~BTA!, in @2/3#b MS scheme#; ~ii ! the afore-
mentioned method of they-contour approach for the N3LO
TPS Adler function~CATPS! ~with ‘‘PMS’’ j250.40, in
N3LO TPSb MS scheme!; ~iii ! the N3LO TPS of r t ~with
m25mt

2). The values~52! were taken for the N3LO coeffi-
cient d3

(0)[d3(m25Q2,MS). On thex axis, we denoted the
corresponding values ofas(mt

2) when the predicted value
of the three methods, withd3

(0)525, reach the central exper
mental value~39! r t50.1960.

In addition, we included on thex axis of the figure the
central value ofas(mt

2) predicted by the~NNLO! ECH ap-
proach @20–22# applied directly to the NNLO TPS ofr t

~using the NNLO TPSb functions of the ECH andMS
schemesc3

ECH,c3
MS°0), i.e., the approach applied in Re

@59#. The authors of Ref.@59# used the input valuesr t

50.203060.0070exp., which yield as(mt
2)50.3184

11This contour approach, inMS scheme, was also applied in Re
@58#. On the other hand, if we apply in this approach the N3LO TPS
Adler function in the ECH renormalization scale and sche
(jECH

2 50.482483; c2
ECH55.23783; c3

ECH516.0613610 for d3
(0)

525610), and using the N3LO TPS~or @2/3# Padéapproximants!
for the b functions, we obtain from Eq.~39! similar results:

as~mt
2 ,MS!50.340060.0080exp.60.0080EW

60.0069CKM60.0034dd3

~0.341360.0083exp.60.0083EW60.0071CKM60.0034dd3
!,

corresponding to

as~Mz
2 ,MS!50.121060.0009exp.60.0012EW1CKM

60.0004dd3
60.0003evol..
0-12
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FIG. 4. The values of the predicted ratior t

[r t
V 1 A(DS50;mu,d50) as functions of

as(mt
2 ,MS) from various methods: our Bore

transform approach of Eq.~44! @BTA, with f
50.1 and PMS condition~50!#; the contour ap-
proach method using the N3LO TPS for the Adler
function ~CATPS, with the ‘‘PMS’’ j250.40);
and the fixed N3LO TPS evaluation ofr t ~TPS, at
m25mt

2). The uncertainties due tod3
(0)525610

are included. The measured values~40! are in-
cluded as dotted horizontal lines. On thex axis,
we denoted the values ofas(mt

2 ,MS) of these
three methods~with d3

(0)525), for which the
central measured valuer t50.1960 is obtained. In
addition, we included the analogous prediction
the ~NNLO! ECH method when applied to th
fixed NNLO TPS ofr t .
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60.0060exp. and as(M z
2)50.118460.0007exp..

12 Using our
updated input values~39! for r t , this method predicts
as(mt

2)50.312460.0052exp.60.0052EW60.0045CKM ~inde-
pendent ofd3

(0) since it is NNLO method!, corresponding to
as(M z

2)50.117760.0007exp.60.0009EW1CKM . However,
this ECH method, applied directly tor t , appears to be un
stable under the inclusion of the N3LO information, above
all because the ECH renormalization scale parameter for t

is dangerously low:jECH
2 [m2/mt

2'0.10. The N3LO ECH
approach tor t , with d3

(0)525610 ~and using N3LO TPSb
functions of the ECH andMS schemes! thus gives very dif-
ferent results: as(mt

2)50.337360.0079exp.60.0079EW

60.0068CKM60.0192dd3
, corresponding to as(M z

2)

50.120760.0009exp.60.0012EW1CKM60.0020dd3
.

The authors of@60# used the diagonal@2/2# Padéapproxi-
mation to resum the N3LO TPS of r t ~with j251), where
the N3LO coefficientr 3 of the series was determined by th
asymptotic Pade´ approximant method~APAP! @61#. They
obtainedas(mt

2)50.31460.010. The central value is sig
nificantly lower than our prediction~53!, although they used
for the input the valuesr t50.204860.0129 where the cen
tral value is considerably higher than that of our input valu
~39!.

The results of the methods by both groups of auth
@59,60# thus give in general lower predictions foras than our
method and the central value of the ALEPH method, as a
seen in Fig. 4. We wish to point out, however, that bo
groups of authors of Refs.@59,60# applied resummation
methods directly to the observabler t , which is
Minkowskian (q25mt

2.0). We applied our resummation t
the ~Borel transform of the! predominantly non-

12The evolution uncertainty60.0006evol. given in Ref. @59# is
larger than ours in Eq.~55!, possibly because they used a low
threshold parameterk51, while we used kcentral52 and k
51.5–3.
01403
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Minkowskian quantityD(Q2), i.e., we used they-contour
representation~34!.13 Various authors@4,62,63# have sug-
gested that resummation techniques to~quasi!observables be
used in the non-Minkowskian regions, because the phys
singularities appear on the Minkowskian axis (q2[2Q2

.0).
The reason that the predictions of our method differ s

nificantly from those of the simpler CATPSy-contour ap-
proach lies in the apparently important role of theb52 IR
renormalon singularity ofD̃(b) @see the ansatz in Eqs.~41!–
~44!# for the quasianalytic continuation ofD̃(b) and of the
Adler function D(Q2), and consequently for the resumm
tion of r t via they-contour integration. This is so despite th
fact that they-contour integration leads to a suppression
the contributions fromb'2 ~see also the last paragraph
Sec. V!.

VIII. SUMMARY

We presented a new method of determination of
N3LO coefficient d3

(0) of the Adler functionD(Q2). The
method makes use of the known radiative correction to
1/Q4 term in the operator product expansion ofD(Q2). By
requiring that theQ dependence of the ambiguity induced b
the first nonzero infrared renormalon ofD(Q2) (b52) is the
same as theQ dependence of the OPE termC4„a(Q2)…/Q4,
the exact condition~28! is obtained, which involves the
Borel transform ofD(Q2). This condition, in principle,
would determine the coefficientd3

(0) . However, this condi-
tion has to be evaluated at a relatively large valueb52 of
the Borel variable, and the present knowledge of only t
terms beyond the leading order leads to significant uncert
ties in the evaluation of this condition. We solved this pra
tical problem by applying judicious conformal transform
tions b5b(w) and Pade´ resummation techniques, thu

13The problematic Minkowskian region contributionq2[2Q2

.0 (y56p) in the contour integral~34! is suppressed by the third
power, i.e., by the factor (11eiy)3.
0-13
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improving the convergence properties. The resulting valu
then d3

(0)'2565 ~at Nf53), but uncertainties of up to
dd3

(0)5610 cannot be entirely excluded and were used
the subsequent analyses of thet inclusive hadronic decay
ratio.

We wish to emphasize that our determination ofd3
(0) is

fundamentally different from the previous estimates in
literature. The latter estimates were mainly based on
expanding the resummed~quasianalytically continued! ex-
pressions forD(Q2) in powers of the coupling paramete
thus relying on the assumption that a quasianalytic cont
ation of the NNLO truncated perturbation series ofD(Q2)
was efficient. However, this may only be true if the ma
contribution to the coefficientd3

(0) comes from those highe
order Feynman diagrams which do not have new topolog
structures in comparison with the lower order diagrams c
tributing to d2

(0) @4,62,64#. In contrast, our relation~28!, and
its evaluation, are not based just on the knowledge of
NNLO truncated perturbation series, but also on the kno
edge of the first nonzero infrared renormalon including
first radiative correction. Therefore, it is possible that t
resummations of the expressions of Eq.~28! do not suffer
from the uncertainties about the topologies of the Feynm
diagrams.

We then used the obtainedd3
(0) , and the structure of the

Borel transformD̃(b) of D(Q2) near the first infrared renor
malon atb52, and an optimal conformal transformation,
evaluate thet inclusive hadronic decay ratioRt , or more
specifically its massless QCD reduced versionr t , via the
contour integration method. Comparing the obtained pre
tions with the precise experimental data available now,
obtained the prediction~55! for as(M z

2), where the estimated
uncertainties from the method~and RG evolution! do not
surpass significantly the uncertainties from the experime
data. All the uncertainties in Eqs.~55!,~56! are significantly
lower than the uncertainties in the present world aver
as

MS(M z
2)50.117360.0020 by Ref. @49# and 0.1184

60.0031 by Ref.@50#. Furthermore, the central value~55! is
by 0.0020 and 0.0009 higher than these two world avera

In view of the present high precision experimental d
for theRt decay ratio, we believe that the values ofas(M z

2)
deduced from it should eventually serve as the refere
value for future tests of QCD via the experimental measu
ments and theoretical analyses of other QCD observab
For this, the theoretical EW correction factor toRt should be
investigated further, and the present uncertainties in
value of the CKM elementuVudu should be reduced.
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APPENDIX: SUBTRACTING THE QUARK MASS
EFFECTS

In order to be able to apply the massless QCD approac
our analysis, we have to subtract the quark mass (mu,d5” 0)
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contributions from the reduced hadronict decay width
r t

V 1 A(DS50). The general expression for the latter qua
tity, including the quark mass effects, is~see, for example,
Refs.@13,31#!

r t
V 1 A~DS50![

Rt
V 1 A~DS50!

3uVudu2~11dEW!
2~11dEW8 !

5~2p i !E
usu5mt

2

ds

s S 12
s

mt
2D 3

3F S 11
s

mt
2D DL 1 T~2s!1

4

3
DL~2s!G

21, ~A1!

where the contour integration is counterclockwise in t
complexs plane, and the general Adler functionsDL 1 T and
DL are expressed with the current-current correlation fu
tions

DL 1 T~2s!52s
d

ds (
J50,1

@Pud,V
(J) ~s!1Pud,A

(J) ~s!#,

~A2!

DL~2s!5
s

mt
2

d

ds
$s@Pud,V

(0) ~s!1Pud,A
(0) ~s!#%,

~A3!

wherePud,V/A
(J) are components in the Lorentz decompositi

Pud,V/A
mn ~q!5~2gmnq21qmqn!Pud,V/A

(1) ~q2!

1qmqnPud,V/A
(0) ~q2! ~A4!

of the two-point correlation functionsPud,V/A
mn of the vector

Vud
m 5d̄gmu and axial-vectorAud

m 5d̄gmg5u ~color-singlet!
currents

2 iPud,V
mn ~q!5E d4xeiq•x^0uT$Vud

m ~x!Vud
n ~0!†%u0&, ~A5!

2 iPud,A
mn ~q!5E d4xeiq•x^0uT$Aud

m ~x!Aud
n ~0!†%u0&. ~A6!

In the massless quark limit (mu,d→0), DL(s) vanishes, the
perturbative vector and axial-vector contributions inDL 1 T

become equal and DL 1 T(2s)→@11D(2s)#/(2p2),
whereD(Q2) is the canonically normalized massless Ad
function~2! with the perturbative expansion~5!.14 In order to
apply the massless QCD analysis to the measured observ
~A1!, we have to subtract from it the quark mass (mu,d
Þ0) contributions. These are largely themp5” 0 contribu-

14Usually in the literature~e.g., see Refs.@31#!, the (ud) Adler
functionsDL1T andDL ~A2!,~A3! include by convention the addi
tional CKM factor uVudu2.
0-14



o

d

a-

tio
to

s a
c-

e

rge

is
-

ns
s

ni-

ed

BILOCAL EXPANSION OF THE BOREL AMPLITUDE . . . PHYSICAL REVIEW D 64 014030
tions from the pion (p2) pole. The pion pole contributes t
the axial-current correlation functionsPud,A

(J) (s). Using
PCAC, these contributions can be obtained and they lea
the corresponding contributions in the Adler functionsDL

(2s;p)52 f p
2 mp

2 s/(s2mp
2 )2/mt

2 and DL 1 T(2s;p)5

22 f p
2 s/(s2mp

2 )2. This leads, via Eq.~A1!, to the following
estimate of the pion pole contribution tor t

V1A(DS50):

r t
V 1 A~DS50;p!5

8p2f p
2

mt
2 S 12

mp
2

mt
2 D 2

'0.21353~120.0123!'0.2109. ~A7!

Here, we employed the known values@34# f p592.4
60.3 MeV, mp25139.6 MeV,mt51777 MeV. In order to
check whether the framework leading to Eq.~A7! is realistic,
we may calculate from here the branching ratio fort2

→p2nt

B~t2→p2nt!5
G~t2→p2nt!

G~t2→e2n̄ent!
B~t2→e2n̄ent!

5Rt~p!Be'3uVudu2r t
V 1 A~DS50;p!'0.1072,

~A8!

where we used for the branching ratioBe[B(t2

→e2n̄ent) the middle value of the world average@34# Be
50.1783, anduVudu50.9749. On the other hand, the me
sured branching ratio fort2→p2nt is B(t2→p2nt)
50.110960.0012 @34#. The value~A8!, obtained from the
PCAC-motivated approach~A7!, thus differs by less than
4% from the actual prediction.

We can now read from the expression~A7! the quark
mass (mu,d5” 0, i.e., mp5” 0) contribution to r t

V 1 A(DS
50),

dr t
V 1 A~DS50!mp5” 052

16p2f p
2 mp

2

mt
4 S 12

mp
2

2mt
2D

'20.0026. ~A9!

However, we can go somewhat beyond the approxima
made so far in calculating this contribution. In the opera
product expansion approach toRt ratio, as given in@13#, the
largest quark mass contributions are of dimensiond54
(}1/mt

4 , quark condensate contributions!
01403
to

n
r

dr t
V 1 A~DS50!mu,d5” 0

'16p2
~mu1md!^q̄q&

mt
4 F11

23

8 S as~mt
2!

p D 2G
~A10!

'2
16p2f p

2 mp
2

mt
4 F11

23

8 S as~mt
2!

p D 2G
'20.0027. ~A11!

In Eq. ~A10! we denoted̂ q̄q&[^ūu&'^d̄d&. The renormal-
ization scale in this quantity and inmu and md in Eqs.
~A10!,~A11! can be taken to bem'mt . In Eq. ~A11! we
took into account the PCAC relation (mu1md)^q̄q&'
2 f p

2 mp
2 . There are corrections to the expression~A11! of

the order;mu,d
2 /mt

2 , i.e., of the order of the OPEd52
terms which can reach, at most, values;1024. Comparing
the previous pion pole expression~A9! with the OPE expres-
sion ~A11!, we see that the latter apparently represent
slight improvement since it includes the radiative corre
tions. In obtaining the number~A11!, we further used the
valueas(mt

2 ,MS)'0.32.
The OPE approach of@13# includes other nonperturbativ

terms contributing tor t , which do not stem from quark
masses, thed54 gluon condensate and thed56 term. The
latter term could be large, but it also has comparably la
uncertainties@13#. The gluon condensate contribution tor t in
the OPE approach isas suppressed. The ALEPH analys
@35# indicates that thesed54,6 nonperturbative contribu
tions are consistent with the value zero.

When subtracting the quark mass contributio
~A10!,~A11! from Eq. ~A1!, we end up with the massles
QCD observable

r t[r t
V 1 A~DS50;mu,d50!

5r t
V 1 A~DS50!2dr t

V 1 A~DS50!mu,d5” 0 ~A12!

52
i

2pEusu5mt
2

ds

s S 12
s

mt
2D 3S 11

s

mt
2D D~2s!,

~A13!

where the integration is counterclockwise, and the cano
cally normalized massless Adler functionD(Q2[2s)
~2!, ~5! was introduced according to the aforemention
limiting procedure: DL(s)→0 and DL 1 T(2s)→@1
1D(2s)#/(2p2) ~whenmu,d→0).
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