
PHYSICAL REVIEW D, VOLUME 64, 014028
Glueball states in a constituent gluon model
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In a model with a dynamical gluon mass, we investigate the bound states of two and three gluons via a
Schrödinger equation. The short distance potential is approximated by one-gluon exchange while the long
distance part is assumed to be of a breakable string. We estimate the masses and in particular thesizesof
low-lying bound states with no orbital angular momentum. By considering quantum-mechanical smearing of
the gluon fields and normalizing to lattice results onM011 andM211, we find that the 011 glueball is rather
small in size compared with the others. The fitted gluon mass is of order 600 to 700 MeV, which is reasonable.
The 021, 122, and 322 three gluon glueball states are nearly degenerate, and their mass ratio with 211 is
largely independent of all the parameters and consistent with lattice calculations. We estimate the mass of the
122 glueball to be around 3.1–3.7 GeV, which is close to the mass ofJ/c andc8.
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I. INTRODUCTION

During the last 20 years there has been much effor
trying to obtain a nonperturbative form for the gluon prop
gator. Perhaps one of the most interesting results is tha
gluon may have a dynamically generated mass@1#. The ex-
istence of a mass scale, or the absence of a pole atk250, is
natural if one assumes that gluons do not propagate to in
ity; i.e., these propagators describe confined gluons.
concept of a massive gluon has been widely used in inde
dent field theoretic studies, and examples of the con
quences of massive gluons can be found in the litera
@2–7#. The infrared behavior of the gluon propagator h
also been studied numerically@8,9#, and recent lattice com
putations give strong evidence for an infrared finite glu
propagator@10#.

The gluon self-coupling in quantum chromodynam
~QCD! implies the existence of bound states of gauge fie
known as glueballs. Numerous technical difficulties have
far hampered our understanding of their properties in exp
ments, largely because glueball states can mix strongly w
nearby qq̄ resonances. However, recent experimental
lattice studies of 011, 211, and 021 glueballs seem to be
converging. All simulations agree that the lightest sca
glueball mass is in the range of 1500–1750 MeV, while
tensor and pseudoscalar masses are in the range
2000–2400 MeV@11–13#. It has been suggested@14# that
improved action lattice predictions@11# agree well with the
mass ratios off 0(1500), h(2190), and f 2(1980), which
have exotic features that make them natural candidates
glueballs. All these states are seen inpp̄ annihilation, central
production inpp collisions, orJ/c→g1X transitions@15–
17#.

In this paper, we reopen the case of the potential mo
with massive constituent gluons, namely, the model of Co
wall and Soni@18,19#. It is not our purpose to pursue th
detailed theoretical bearings for gluon mass. But rather,
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wish to explore how recent results in this field affect t
potential model, and how the potential model can prov
more insight on glueball properties. While the potent
model has its limitations, it gives bound state solutions t
have the advantage of providing information such as the
of glueballs, an aspect which is rarely@20# mentioned in the
literature. In Sec. II, we give the details of model descripti
for low-lying bound states of two-gluon and three-gluo
glueballs. We then use the variational method to estim
their masses and sizes in Sec. III, where some smearin
the gluon field is developed for the 011 case. Finally, we
analyze our results and make some conclusions in Sec.

II. MODEL DESCRIPTION

Although the dynamically generated massm2(q2) should
be scale dependent, phenomenologically we shall t
m2(q2) as constant for simplicity. The Lagrangian for th
massive vector fieldsAm

a is

L52 1
4 Fmn

a Famn1 1
2 m2Am

a Aam, ~1!

wherem is the effective gluon mass defined by Cornwall@1#
and others, and

Fmn
a 5]mAn

a2]nAm
a 1g fabcAm

b An
c . ~2!

The propagator forAm
a is

Dmn
ab~k!5

2 idab~gmn2kmkn/m2!

k22m21 i e
. ~3!

In the nonrelativisic limit, we expand the massive gluon m
mentum and polarization vector to orderuku2,

km>S m1
k2

2m
,kD , ~4!
©2001 The American Physical Society28-1
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em~k!>S k•e

m
,e1

k•e

2m2
kD . ~5!

Let us consider the system of a two-gluon glueball. Th
are four diagrams contributing at tree level in the gluo
gluon interaction shown as in Fig. 1, corresponding tos-, t-,
u-channel gluon exchange and the seagull~s.g.!. In the non-
relativistic limit, it turns out that all matrix elements are z
roth order in momentum except the contribution froms chan-
nel, which can be removed both because of color and
second order nature in momentum. The short distance po
tial can be extracted from the tree-level Feynman amplit
of Fig. 1,

V~r !5E d3q

~2p!3

ieiq•r

4AE1 fE2 fE1iE2i

iMf i , ~6!

whereq is the momentum transfer of the system.
When extracting the potential, the ‘‘exchange’’ or ‘‘sym

metric’’ diagrams are automatically taken care of by t
properly symmetrized wave function for identical partic
systems. Hence the relevant contributions are

iM f i
t 52 ig2f acef bde^3uJru1&

1

t2m2 ^4uJru2&, ~7!

where

^3uJru1&5e3* •e1~p11p3!r22e3r* p3•e122e1rp1•e3* ,

FIG. 1. gg→gg scattering.
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and

iM f i
s.g.52 ig2@ f abef cde~e1•e3* e2•e4* !

1 f acef bde~e1•e2e3* •e4* 2e1•e4* e2•e3* !#. ~8!

We define the spin operatorS5(S1,S2,S3) as (Sk) i j 5
2 i e i jk , which satisfies

@Si ,Sj #5 i e i jkSk, ~9!

i.e., S1, S2, andS3 are SU(2) group generators as desire
The spin operator can then be extracted via the relation

AiBj5@A•B2~S•B!~S•A!# i j , ~10!

and placing the polarization vectors into the wave functio
We calculate the matrix elements in the center of m
frame, namely,pi[p152p2 , pf[p352p4, and the mo-
mentum transferq[p32p15pf2pi . After some simplifica-
tions, we obtain

iM f i
t 5

ig2f acef bde

q21m2
@4m213q222S2q212~S•q!2

16iS•~q3pi !#, ~11!

iM f i
s.g.5 ig2@ f abef cde2 f acef bde~ 1

2 S222!#, ~12!

whereS[S11S2 is the total spin of the two-gluon gluebal
As stated, we have transferred the spin content of gluon
the wave function, and hence viewiMf i as an operator act
ing on spin space. Note also thatS1 acts one1 ande3 while S2
acts one2 ande4.

Using Eq.~6!, we arrive at the short distance potential
Vsd~r !52
g2f acef bde

4p H F1

4
1

1

3
S21

3

2m2 ~L•S!
1

r

]

]r
2

1

2m2S ~S•¹!22
1

3
S2¹2D Ge2mr

r
1S 12

5

6
S2D p

m2 d3~r !J
1

g2f abef cde

4p

p

m2 d3~r !, ~13!
ht
aks
e a
he

o-
where sd stands for ‘‘short distance.’’
The gluon-gluon interaction potentialVsd in Eq. ~13! is

the Fourier transform of the tree level second order scatte
diagrams of Fig. 1, but it cannot account for gluon confin
ment since it is of a short distance nature. We must ad
term to take into account such long distance effects. We
to Vsd a string potentialVstr which is assumed to be spi
independent,

Vstr52m~12e2bmr!, ~14!

whereb is related to the adjoint string tensionKA via
g
-
a
d

b5
KA

2m2 . ~15!

In the potentialVstr, the color screening of gluons is broug
about by a breakable string, that is, the adjoint string bre
when sufficient energy has been stored in it to materializ
gluon pair. This form of the string potential simulates t
intergluonic potential as seen in lattice calculations@8#.

We thus get the gluon-gluon potential relevant to tw
gluon glueballs
8-2
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V2g~r !52lH F1

4
1

1

3
S21

3

2m2 ~L•S!
1

r

]

]r
2

1

2m2 S ~S•¹!22
1

3
S2¹2D Ge2mr

r
1S 12

5

6
S2D p

m2 d3~r !J 12m~12e2bmr!,

~16!
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wherel is defined as

l[
3g2

4p
, ~17!

and is related to the strong coupling strength of the proc
Note that thef-type constant in the last term of Eq.~13! does
not contribute when contracted with the normalized co
wave function

ccolor~a,b!5
1

A8
dab. ~18!

We are left with three parameters: effective gluon massm,
string breaking parameterb, and adjoint strong coupling
constant l. We take @8# the conservative rangeb;(1
60.7), whilel is determined by@18#

l5
N

4p F 11N

48p2 lnS 4m2

L2 D G21

, ~19!

for the SU(N) group. ForN53, taking m;600 MeV, L
;350 MeV, one gets l;1.4. For L varying from
250–400 MeV, l varies in the range 1.1–1.6.
dis
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For the case of three-gluon glueballs, we assume that
constituent gluons interact pair wise@19#. Thus

V3g5(
i , j

@Vsd~r i j !1 1
2 Vstr~r i j !#. ~20!

We note that the contribution from thes-channel gluon ex-
change can still be ignored because of its second order na
in momentum. The factor of one-half for the string potent
is because one needs to pull three~and not six! gluons from
the vacuum to screen the three gluons that are origin
there in the glueball.

For the low-lying bound states with relative angular m
mentum l i j 50 for each pair of gluons in the three-gluo
system, the normalized color singlet wave function is eith
symmetric or antisymmetric:

ccolor
d-type~a,b,c!5A 3

40 dabc, ~21!

ccolor
f -type~a,b,c!5A 1

24 f abc. ~22!

After contracting these color wave functions with the sh
distance potential of Eq.~13!, we get the pair-wise potentia
for the three-gluon glueball case
Vd, f~r !52
l

2H F1

4
1

1

3
S21

3

2m2 ~L•S!
1

r

]

]r
2

1

2m2S ~S•¹!22
1

3
S2¹2D Ge2mr

r
1S 612

5

6
S2D p

m2 d3~r !J 1m~12e2bmr!,

~23!
s
n-
t

r-
by
for d and f type, respectively.

III. GLUEBALL MASSES AND SIZES

In this paper, we consider only the case ofL50, hence
ignoring the spin orbit and tensor terms in Eqs.~16! and~23!.
The two-gluon and three-gluon glueball systems are
cussed separately.

A. Two-gluon glueballs

For two-gluon glueballs withL50, we have onlyJPC

5011,211 states. The Hamiltonian is

H52m2
1

m
¹21V2g , ~24!

where
-

V2g~r !52lF S 1

4
1

1

3
S2D e2mr

r
1S 12

5

6
S2D p

m2 d3~r !G
12m~12e2bmr!. ~25!

We immediately notice one serious problem: whenS50,
one has an attractived-function term and the Hamiltonian i
unbounded from below. This ‘‘maximum attraction cha
nel’’ in 0 11 could be related tothe gluon condensation tha
triggers confinement.

In Ref. @18#, the d-function term was treated as a pertu
bation. For our study, we propose a physical solution
smearing the gluon fields, that is, we replace thed function
by the smearing function

D~r !5
k3m3

p (3/2)
e2k2m2r 2

~26!
8-3
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which approachesd3(r ) for k→`. Using the variational
method with trial wave functionc(r )}e2a2m2r 2

, we illus-
trate in Fig. 2 the smearing dependence of two-gluon gl
ball masses forl52 andb50.3.

We see from Fig. 2 that the mass of the 211 glueball
converges rapidly to 3.2m for k.1, illustrating good behav-
ior since thed-function term is repulsive, but the 011 mass
decreases monotonically until it becomes negative fok
*3.8. To illustrate what is happening when the attractived
becomes operative for largerk ~less smearing!, we plot in
Fig. 3 the root-mean-squared radiusr rms5A^r 2& of 011 and
211 glueballs as a function ofk for the same values ofl and
b. It is clear that, while the size of 211 glueball stabilizes
for k*1, the radius for 011 glueball drops monotonically
with its mass, which in turn drops monotonically with in
crease ofk.

One may be tempted to use Fig. 2 and argue that, since
1,k,3, both 211 and 011 glueball masses are relative
stable, hence they have approximately the same mass. H
ever, this isnot what is observedon the lattice nor is sug
gested by experiment. Since we cannot claim to know how
determine the value ofk in Eq. ~26!, we use the converging
experimental and lattice results to fit fork. We takeM011

51730 MeV, andM21152400 MeV @11,14#, hence the
mass ratio

M211

M011

51.39. ~27!

FIG. 2. M011 ~solid! andM211 ~dashed! vs smearing paramete
k for l52, b50.3. In the largek limit, one recovers thed-function
potential which drivesM011 negative.

FIG. 3. Glueball radius for 011 ~solid! and 211 ~dashed! glue-
balls vs smearing parameterk.
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Using Eq.~27! to determinek, we find that it depends mainly
on l, but is almost independent ofb. This is to be expected
since the need for smearing comes from the short dista
potential. With the mass ratio fixed, we find a smallerl ~and
a greaterb in general! can accommodate a largerk value,
which is reasonable. The typical value ofk falls in the range
of 2.3 to 4.3, which ensures that the 211 mass is stable.

With k determined for givenl andb, the mass and size
of two-gluon glueballs can be calculated. SinceM011 is
lighter than M211 from experiment/lattice input, the 011

glueball is rather small in size compared to the 211 glueball.
This is reasonable because of the attractive~repulsive! d
function potential for 011 (211). Except for this smallness
in size of 011 glueball, which is dominated by thel part of
the potential, the 011 mass and the mass and size of t
211 glueball are all more dependent onb, the string part of
the potential. We plot the masses~in units ofm) and sizes~in
units of 1/m) vs b for three different values ofl in Figs. 4
and 5, respectively. These figures illustrate the range of
certainties within the model. We find that the masses
crease with increasingb or decreasingl; however, increas-
ing b or decreasingl will increase the size of the 211

glueball but decrease the size of the 011 glueball. We will
give a more detailed discussion on this later.

As mentioned already, the 211 glueball mass is stable
and almost independent ofk for k.2, which holds for all

FIG. 4. M011 andM211 vs b for l51.5, 2.0, and 2.5 as indi-
cated by the symbols ‘‘1,’’ ‘‘o,’’ and ‘‘x,’’ respectively. To guide
the eye, the points are linked by solid and dashed lines. The m
ratio is held fixed by Eq.~27!.

FIG. 5. Glueballr rms radius for 011 and 211 glueballs vsb for
l51.5, 2.0, and 2.5 as indicated by the symbols ‘‘1,’’ ‘‘o,’’ and
‘‘x,’’ respectively, and linked by solid and dashed lines.
8-4
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solvable (l, b) parameter space. Hence, taking the 211

glueball mass range of 3.4m to 3.9m from Fig. 4 and the
lattice result ofM21152400 MeV, we estimate the effec
tive gluon mass to be 0.6–0.7 GeV, which agrees well w
the gluon mass;0.66 GeV needed@5,7# to explain the pho-
ton spectrum in radiativeJ/c decay. With gluon massm
determined, the typical size of 211 and 011 glueballs can
be read off from Fig. 5, which are in the ranges
0.8–1.1 fm and 0.1–0.2 fm, respectively, which is in go
agreement with the results@20# obtained on a lattice using
the source method. For a more direct calculation of the 011

glueball mass on the lattice, one would need relatively fi
lattice spacings@21#. It would be interesting to see if ou
result of small 011 size could be further replicated on th
lattice.

B. Three-gluon glueballs

For three-gluon glueballs, we introduce the center-
mass and relative coordinatesR5(r 11r 21r 3)/A3, r 12

5(r 12r 2)/A2, and r5A2/3(r 11r 222r 3). Since we con-
sider only pures states, one has the pair potential

Vd, f~r !52
l

2 F S 1

4
1

1

3
Spair

2 D e2mr

r
1S 61

2
5

6
Spair

2 D p

m2 d3~r !G1m~12e2bmr!, ~28!

whereSpair is the spin of any pair of gluons in a three-gluo
glueball system. The Hamiltonian for this system is then

Hd, f53m2
1

2m
¹ r

22
1

2m
¹ r12

2 1Vd, f~r 12!1Vd, f~r 23!

1Vd, f~r 31!. ~29!

Since the glueball wave function must be symmetric w
respect tor1 , r2, andr3, the contributions of the three pa
potentials are the same. Hence the spin and spatial par
the glueball wave function are independent and

( Spair
2 5~S11S2!21~S21S3!21~S31S1!2

5~S1
21S2

21S3
2!1~S11S21S3!2. ~30!

The Hamiltonian above can then be simplified as

Hd, f53m2
1

2m
¹ r

22
1

2m
¹ r12

2 1Vd, f
T ~r 12! ~31!

where

Vd, f
T ~r 12!52

l

2 F S 1

4
1

1

3
~61Stotal

2 ! D e2mr12

r 12
1S 612

5

6
~6

1Stotal
2 ! D p

m2d3~r 12!G1m~12e2bmr12!, ~32!

whereStotal is now thetotal spinof the system, i.e.,J. In Ref.
@19#, one introduced an additional quantum number cal
01402
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d

Spair in JPC(Spair) which is clearly not adequate, resulting
a spurious 122 state.

There are three possible pures states, with quantum num
bersJPC5021, 122, and 322. For these glueballs, all the
d terms are repulsive, hence their masses are automati
bounded from below and there is no need to smear thd
function. We estimate the masses and sizes of these glue
using the variational method with the wave functionc(r )

}e2a2m2(r21r12
2 ), which is symmetric with respect tor1 , r2,

andr3. We find that the masses and sizes are almostl inde-
pendent, hence we plot them only vsb in Figs. 6 and 7,
respectively. Note that for the 021 quantum number there i
also a two-gluon glueball in theL51 state, which is ex-
pected to have a mass lower than the three-gluon state
cussed here@18#. Mixing between the two-gluon and three
gluon states should lead to level repulsion and raise the 021

three-gluon state above the other two states.
From Fig. 6, we find that the masses of the three low

lying three-gluon glueballs are within 0.1m ~or 100 MeV! of
each other, which holds for anyb value. In other words, they
are nearly degenerate, which we will discuss further in
next section. We note that the ratio with 211 mass is around
1.53, almost independent ofb andl, and agrees with naive
constituent counting. Scaling from the lattice result
M21152000–2400 MeV the mass range of these glueb
is 3.1–3.7 GeV, right in the ballpark ofJ/c andc8 masses.

FIG. 6. Three-gluon glueball massesM021, M122, andM322

vs b, as indicated by the symbols ‘‘1,’’ ‘‘o,’’ and ‘‘x,’’ respec-
tively.

FIG. 7. Glueball radius vsb for 021, 122, and 322 three-
gluon glueballs, as denoted by the symbols ‘‘1,’’ ‘‘o,’’ and ‘‘x,’’
respectively. To guide the eye, the points are linked by solid lin
8-5
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Their sizes are only slightly larger than the 211 two-gluon
glueball, and fall into the range of 0.9–1.3 fm.

IV. DISCUSSION AND CONCLUSION

We approximated the attractived function by a smearing
function D(r ) in Eq. ~26!. This is physically reasonabl
since the gluons in a glueball cannot have very large rela
momentum that corresponds to very short distance sep
tion. Through the variational method, besides the constitu
terms 2m and 3m, one can check four sources for the glu
ball mass: kinetic energy, Yukawa and delta function pot
tials, and string energy. It is clear that smaller glueball s
implies a greater kinetic energy contribution to its mass. T
Yukawa term is always attractive and contributes negativ
to the glueball mass. It is proportional to the adjoint stro
coupling constantl, Eq. ~17!, and becomes more negativ
for smaller glueball size. The delta-function term, replac
by the smearing functionD(r ) of Eq. ~26!, is also propor-
tional to l, and becomes stronger for smaller glueball si
As for string energy term, a bigger glueball can store m
energy hence a larger glueball mass. A greater string ten
b also stores more energy in the string. Knowing about th
four sources, we can see how the mass and size of a glu
comes about.

Let us first consider masses. For the 211 glueball, the
kinetic energy is relatively small due to its rather large s
compared to the 011 glueball. On the other hand, there is
cancellation betweenl-dependent attractive Yukawa pote
tial and repulsive delta-function terms. The resulting value
always negative, and will further cancel against the kine
energy term. Hence the main contribution to the mass co
from the string energy, and the stronger the string tensionb,
the heavier the mass. For fixed string tension, a largel
value gives a stronger cancellation between the remnant
short distance potential and the kinetic energy, resulting
smaller contribution to the glueball mass. In other words,
211 glueball mass increases with increasingb or decreasing
l, as can be seen in Fig. 4.

For the 011 glueball, the kinetic energy term is relative
large because of the small size, which in turn is brou
about by the attractived function and there is strong cance
lation between these two terms. Since we have fixed
mass ratio with 211, it turns out that the kinetic energ
overcomes the attractived function and subsequently cance
against the attractive Yukawa term. The net result could
positive or negative depending on smaller or largerl value.
The main contribution still comes from the string term but
cannot be as strong as in the case of 211 because of the
small size. We stress again that in Fig. 4 we have held
211 and 011 ratios fixed according to Eq.~27!.

We turn to the consideration of sizes, i.e., understand
Fig. 5. We find that the glueball size increases with mass
211 glueball. This is easily understood in terms of a rep
sived and the dominance of string energy. For 011 glueball,
its size is sensitive tol, which can be understood as comin
indirectly from smearing. As a consequence of imposing
~27!, the value fork depends mainly onl and can become
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larger for lowerl. For largerk, the smearing functionD(r )
approaches the delta function and is more attractive. Th
paradoxially, a smallerl ~‘‘less attractive’’! is more able to
‘‘pull in’’ the glueball, leading to decrease in size. Howeve
the size of the 011 glueball is almostb independent pre-
cisely because of its small size, hence insensitive to
string energy. We note that the smallness of the 011 glueball
stretches the applicability of our relativistic expansion. It
therefore amusing that Figs. 4 and 5 are in rather good ag
ment with the findings of Ref.@20#.

For three-gluon glueballs, there are three possible puS
states, namelyJPC5021, 122, and 322. For these glue-
balls, all thed terms in the potential are repulsive, hence
smearing is needed. There is al-dependent cancellation be
tween the Yukawa and delta-function terms. Interesting
both terms become stronger for larger total spin~or J), and
the cancellation hides the spin effect, resulting in the mas
being nearly degenerate. In other words, their masses
sizes are almostl independent and depend basically onb,
just like the 211 case. It is rather intriguing that the mas
difference of the three glueballs are within 100 MeV of ea
other. But as we have mentioned earlier, the 021 state would
become heavier via mixing with theL51 two-gluon state.

Comparing Figs. 4 and 6, we note that the three-glu
glueball masses are about 1.5 times larger than 211, largely
independent ofb and l. Taking M211 between52267
6104 MeV @12# and 24006256120 MeV @11#, one finds
M122 in the range of 3.5–3.7 GeV, close to thec8 mass of
3686 MeV. We note that the proximity of the 122 glueball
to c8 may be called for from comparison ofJ/c andc8 two
body hadronic decays@22#. However, if thef 2(1980) state is
the 211 glueball@14#, then we findM122 is of order 3 GeV
or closer to theJ/c, where an older proposal@23# of the 122

glueball ~called O) could be behind the rather sizab
strength ofJ/c→rp;1%. At the moment, improved actio
lattice results@11# find 122 glueball masses heavier tha
those discussed here. We urge further refined, dedic
studies to help clarify the phenomenology. Direct sea
methods for the lowest lying three-gluon glueballs were d
cussed in Ref.@19#, which should also be brought up to dat

In conclusion, we investigate the bound states of two a
three massive gluons with a Schro¨dinger equation. We cal-
culate the short distance potential from one gluon exchan
and give arguments for the long distance confining poten
We calculate glueball masses and sizes using a variati
method. By considering the effect of smearing of the glu
fields, we find that the size of the 011 glueball could be
rather small compared with others. The other glueball mas
are stable with respect to such smearing. Using the conv
ing experimental and lattice results for 011 and 211 glue-
balls, we estimate the effective gluon mass to be 0.6 to
GeV, in agreement with phenomenological results. The ty
cal size of 211 and 011 are of order 1 fm and 0.1 to 0.2 fm
respectively. This means that to extract the 011 glueball size
on a lattice, one would need rather fine lattice spacings
would be of interest to see if our result would be replicat
on the lattice. For three-gluon glueballs, their sizes are a
estimated to be in the range of 0.9–1.3 fm, similar to that
the 211 state. We find that the three lowest lying three-glu
8-6
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glueballs to be largely degenerate. In particular, the mas
the 122 glueball is in the range of 3 to 3.7 GeV, which
consistent with arguments from a phenomenological poin
view.
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