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Wilsonian matching of effective field theory with underlying QCD
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We propose a novel way of matching effective field theory with the underlying QCD in the sense of a
Wilsonian renormalization group equatidRGE). We derive Wilsonian matching conditions between current
correlators obtained by the operator product expansion in QCD and those by the hidden local syiHb®try
model. This determines without much ambiguity the bare parameters of the HLS at the cutoff scale in terms of
the QCD parameters. Physical quantities for thandp system are calculated by the Wilsonian RGE’s from
the bare parameters in remarkable agreement with the experiment.
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I. INTRODUCTION Il. HIDDEN LOCAL SYMMETRY

Let us first describe the EFT, the HLS model based on the

Recently the concept of the Wilsonian renormal|zat|0nGglobal><Hloca1| symmetry, whereG=SU(N,), X SUN;)g is

group eq_uatiorﬁRG_E) h‘?s becom_e fashionaple in the context e global chiral symmetry anél=SU(N;)y is the HLS.
of matching _effectlve field theorigEFT's) with underlying (The flavor symmetry is given by the diagonal SumGfpa
gauge theories to study the phase structure of supersymmeo{hdHlocal_) The basic quantities are the gauge bopgrof

ric (SUSY) gauge theoriegl]. However, no attempt has he HIS and two SUY;)-matrix-valued variableg, and
been made to match the EFT with the underlyifrgpn- ¢r. They transform as

SUSY) QCD in the sense of a Wilsonian RGE which now

includesquadratic divergencei addition to the logarithmic / — T

ones in '?he RGE flow o?‘ the EFT. It would be regsonable to SLRU) = G RO =) LR BLR @3
consider the effective theory under an ordinary RGE Withwhereh(x) € Hygea aNd g € Gopa. These variables are
just a logarithmic divergence in the situation where Spoma‘parametrized as ‘ 9

neous chiral symmetry breaking is always granted from the

beginning as in QCD with the number of almost massless £ p=eFog¥imlFr 2.2
flavors beingN;= 3. Actually, the logarithmic RGE is blind ’

about the change of phase. wherer= 7T, denotes the Nambu-Goldsto¥G) bosons
In a previous papeji2] we actually demonstrated that the ;55ociated with the spontaneous breakingsothiral sym-
inclusion of a quadratic divergence in the Wilsonian sense irﬂnetry ando= 0T, the NG bosons absorbed into the gauge

own dynamics for largeNy under certain conditions, based parameter is defined as

on the hidden local symmetHLS) Lagrangian 3,4] which
successfully incorporatgs and its flavor partners in the chi- a=F2/F2. (2.3
ral Lagrangian. Chiral symmetry restoration for larlye T

QCD is a notable phenomenon observed by various methoqsere 7 denotes the pseudoscalar NG bosons associated with
such as lattice S|mulat_|or[§],_the Schwmge_r-Dyson €4Ua- the chiral SUN;) X SU(N;)r symmetry andp the HLS
tion approacH6], the dispersion relatiofi7], instanton cal- gauge bosons even though we fix=3. The covariant de-

culations[8], etc. rivatives of &, are defined b
In this paper, we shall propose a novel waynaditching fuR y

the EFT with the underlying QCD with{& 3 in the sense of
a Wilsonian RGE, namely, includinguadratic divergences
in the EFT(“Wilsonian matching”). By this we demonstrate - _
that inclusion of the quadratic divergence is important ever‘iir.]d similarly with the rep_lacemenHzR, LyoR,, where
for phenomenology in thél;=3 QCD. The basic tool of gis the _HLS gauge coupling,, andR,, denote the external
Wilsonian matching is theoperator product expansion ga‘fl_%e flfll_(jsslfgauglng_ tBgiopa symme":ry.

(OPB of QCD for the axial-vector and vector current corr- e agrangian is given b, 4|

elators, which are equated with those from the EFT at the g~ a o

matching scale\. This determines without much ambiguity L=F tla, a1+ F ot aef 1+ Lin(p,), (2.5
the bare parameters of the EFT defined at the scalén

terms of the QCD parameterBhysical quantities for ther  whereL,i(p,,) denotes the kinetic term gf, and

and p system are calculated by the Wilsonian RGE’s from

tmhgnktaare parameters in remarkable agreement with experi- &%:(DﬂfoFDﬂfw§E)/(2i)- (2.6)
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lIl. RENORMALIZATION GROUP EQUATIONS matching scaleQ?~ A2, The resultant expressions of the
IN THE WILSONIAN SENSE correlators are given by
In Ref. [2] the quadratic divergence was identified with
the presence of poles of ultraviolet origin at=2 in the (HLS), 2 Ff,(A)
dimensional regularizatiof®]. The resultant RGE’s foF 2, HA(Q%) = o —2z3(A),

a andg? are given by[2]

2

- F2(A)[1-29%(A)z5(A)]

p——=C[3a’g’F2+2(2—a)u?], n{HS)(Q2)=—2 S 272(A), (4.1
du vo(Q9) ME(A)-I—QZ 1(A), (4.
da 2 w? .

Ma:_c(a_ 1)| 3a(a+1)g°—(3a— 1)F— , where we defined
dg?  87-a’ , ME(A)=g%(A)F(A). (4.2

The same correlators are evaluated by the OPE up until
whereC=N;/[2(4m)?] and u is the renormalization scale. O(1/Q°) [12]:
We note here that the above RGE’s agree with those ob-
tained in Ref[10] when we neglect quadratic divergences. A o
detailed derivation of the above RGE's is given in Appen- ) <—SGMG#V>
a a

dixes B a.n.d C. . I1(QCP) Q2) = i 1+ 28 InQ—2+ o
In addition to the leading-order term&.5 we need to 872 w? 3 Q4
include the O(p*) higher derivative terms in the present
analysis(see Appendix A The relevant terms are given by o
[11] 3 1408 as(qQ)?
t 35— |-
T A Auv T 1% 3 27 Q6
VY, W+t A, A+ gz [V, 0" ],
(3.2
where Zs wy
R H(QCD)(QZ):L _ 1+% |nQ_2_|_7T_2<77G’u—VG>
A= (6rRu k= 6L, 812, v 82 w23 Q*
V,,= (&R e+ &.L,,eD12, 3.3 _
s (gR 1% gR gL " gL) ( ) 7T3 896 as(qq>2
with R,,, and £,,, being the field strengths &?,, and £,, . T3 o | 4.3
Herep,,, is the gauge field strength of the HLS gauge boson.
Since there are no quadratically divergent corrections to the
parameterg,, z,, andz;, we calculate the RGE'’s from the wherey is the renormalization scale of QCD.
logarithmic divergences listed in Refl1]: We require that current correlators in the HLS in E41)
can be matched with those in QCD in Ed.3). Note that
dzz N; 5-4a+a’ dz, Ny a both IT{RP) and I1{*°" explicitly depend onu [13]. How-
:“mz(dm)z 24 ﬂmzm 12 ever, the difference between two correlators has no explicit

dependence om [14]. Thus our first Wilsonian matching
condition is given by

dzz Ny 1+2a—a?

—-—= 3.4
K dM (477)2 12 ( ) 2 2 2
Fo(A)  Fo(A)[1-297(A)z3(A)]
- VT ~2[2p(A)~23(A)]
IV. WILSONIAN MATCHING A A“+MZ(A)
Now we propose a Wilsonian matching of the EFT with 327 as<aq>2
the underlying QCD: We determine the bare parameters as ~ g A6 44

boundary values of the Wilsonian RGH3.1) and(3.4) in-

cluding quadratic divergences by matching the HLS with the

OPE in QCD at the matching scale. We also require that the first derivative Bf{™S) in Eq.
Let us look at axial-vector and vector current correlators(4.1) match that ofl1{?°®) in Eq. (4.3), and similarly for

They are well described by the tree contributions with in-II,/'s. This requirement gives two Wilsonian matching con-

cluding O(p*) terms when the momentum is around theditions
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as TABLE |. Five parameters of the HLS agt=A and m, for
Fi(A) 1 w, 212 <?GWG‘“’> Aqcp=400 MeV andA=1.1GeV. The unit o is GeV.
A% 8nm? T 3 A* po Fo(w) a(m) 9w z3(1) 2p(w) —z4(w)
A 0.149 119 3.69 —5.23x10% —1.03x103
1408 a(qq)> m, 0110 122 633 -6.34x10° -1.24x10°
S
37 A6 ’ (45)

Below them, scale,p decouples and hencR-fT runs by the

F2(A) A [1-292(A)z5(A)] m-loop effect along16]. Since the parametdf (u<m,)
A2 [AZ+ M2(A)]? does not smoothly connect o,(x>m,) at them, scale,
v we need to include a finite renormalization effésee Ap-

s pendix Q
_> pv
L, a5+2772 7 CwC -
=25 P A N; a(m
872 T 3 A4 [Fgf)(mp)]2=FfT(mp)+(47T)2 2" m,, (5.2
, 896 ar5(qq)? whereF{™ () runs by the loop effect ofr for u<m,.
TT27 T AS (4.6 The resultant values of all the bare parameters of the HLS

are shown in Table | together with thoseatm,, .
The above three equatioit4.4)—(4.6) are the Wilsonian

matching conditions, which we propose in this paper. VI. PREDICTIONS
The right-hand sides in Eq$4.4)—(4.6) are directly de- -
termined from QCD. First note that the matching scale Now that we have completely specified the bare Lagrang-

must be smaller than the mass of tnemeson which is not 12N, we can predict the following physical quantities by the
included in our effective theory, whereds has to be big Wilsonian RGE’s including the quadratic divergences, Egs.

enough for the OPE to be valid. Here we use (3D and(3.4.
The p-vy mixing strength:

A=1.1, 1.2 GeV. (4.7) The second term in Eq2.5) gives the mass mixing be-
tweenp and the external field of. The third term in Eq.

To determine the current correlators from the OPE we use (3.2 gives the kinetic mixing. Combining these two at the
on-shell ofp leads to thep-y mixing strength:

as vy —
<;GWG“ >—0-012 GeV, 9,=9(m)F5(m,)[1-g%(m,)zs(m,)]. (6.1

- — (0.25 GeV®, 4.8 The Gasser-Leutwyler's parametey, [15]:

(a1 6ev=—( v “48 The relation betweeh ;o and the parameters of the HLS
shown in Ref[12] and atm, scale is given by11]

Agcp=350, 400 MeV 4.9 Logm,) = 1 N z3(m,) —25(m,) +z,(m,)
1 p) — 2
as typical values. We use one-loop running to estimate 4g7(m,) 2
as(A) and(qa), . . _Ne 11a(m,) 6.2
(4m)? 96 ' '

V. DETERMINATION OF THE BARE PARAMETERS

OF THE HLS LAGRANGIAN . _ .
where the last term is the finite order correction from the

Then the bare parameteFs (A), a(A), g(A), z3(A), p- loop contribution.
andz,(A)—z;(A) can be determined through the Wilsonian ~ The p-7-r coupling constany,, ., :
matching conditions. Actually, the Wilsonian matching con-  Strictly speaking, we have to include a higher derivative
ditions in Egs.(4.4)—(4.6) are not enough to determine all typez, term listed in Ref[11] (see Appendix A However,
the relevant bare parameters. We therefore use the on-shelldetailed analysis of the modEl7] does not require its
pion decay constari (0)=88MeV in the chiral limit[15]  existenceg18]. Hence we neglect the, term. If we simply
and thep massm,=770 MeV as inputs. The mass pfis  read thep- - interaction from Eq(2.5), we would obtain

determined by the on-shell condition 9,7»=9(M,)F2(m,)/2F2(m,). However,g,,, should be
5 ) 5 defined for on-shelp and #’s. While Fi andg? do not run
m;=a(m,)g=(m,)F2(m,). G.D  for w<m,, F2 does run. The on-shell pion decay constant is
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TABLE II. Physical quantities predicted by the Wilsonian matching conditions and the Wilsonian RGE’s.
The units ofAgcp and A are GeV, and that of, is Ge\2. Values ofLg(m,) andLo(m,) are scaled by a
factor of 1¢. Experimental values af, andg,,,, are derived fronl’(p—e*e™)=(6.77+0.32) keV and
I'(p°— 7" 77)=(150.8+2.0) MeV [20], respectively. Those dfg(m,) andLqo(m,) are taken from Ref.

[21].
AQCD A gp gp‘n’w Lg(mp) LlO(mp) a(o)
0.35 1.10 0.112 6.17 7.61 —5.04 1.99
1.20 1.108 6.20 7.37 —4.26 2.01
0.40 1.10 0.118 6.05 7.83 —6.14 191
1.20 0.114 6.12 7.67 —5.36 1.96

Expt. 0.118-0.003 6.04-0.04 6.9:0.7 —5.2+-0.3

given by F .(0). Thus we have to usg ,(0) to define the level p contribution toL;o(m,) is large, the finitgp- 7 loop
on-shellp- -7 coupling constant. The resultant expressioncorrection cancels a part of it. The resultant valué g{m,)
is given by is close to experiment.

The Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin

~g(m,) F2(m,) (KSRP (1) relationg, =29, ,,F2 [23] holds as a low energy

Ypmm™ 2 R’ 6.3 theorem of the HLS24,10,25. Here this is satisfied as fol-
i lows: In the low energy limit higher derivative terms like
The Gasser-Leutwyler parameteg [15]: do not contribute, and the-y mixing strength becomes

Similarly to thez,-term contribution tag, ., we neglect gp(0)=g(mp)F§(mp). Comparing this withg,,, in Eq.
the contribution from the higher derivative typgterm[11]. (6.3 [26], we can easily read that the low energy theorem is
The resultant relation betwedn, and the parameters of the satisfied. If we use the experimental values, the KSRF
HLS is given by[11] relation is violated by about 10%. As discussed above, this
deviation is explained by the existence of theterm.
1/ 1 The KSRF(Il) relation m>=2g>_F2 [23] is approxi-
Lo(my)=7 W‘ZS(mp) : (64 mately satisfied by the on-shell quantities even though
gimy a(m,)=1. This is seen as follows. Equati¢6.3) with Eq.

2 __ 2 2 2
We further define the paramete(0) by the direct (85 and mp=g*m,)F;(m,) leads to 2 .F7(0)

y-m- interaction in the second term in E@®.5). This pa- =M,(@(0)/2). Thus a(0)=2 leads to the approximate
rameter for on-shell pions is given by KSREF (Il) relation. Furthermorea(0)=2 implies that the
direct y- -7 coupling is suppresse®MD).
F2(m) Inclusion of the quadratic divergences into the RGE’s was
a(0)=— e, (6.5 essential in the present analysisie RGE’s with logarithmic
F=(0) divergence alone would not be consistent with the matching

. ) . to QCD. The bare parametefF (A)=158 MeV listed in
which should be compared with the parametersed in the  Taple I, which is derived by the matching conditiéh5), is
tree-level analysisa=2 corresponding to the vector meson apout double of the physical valug,(0)=88 MeV. The
dominance(VMD) [3,4]. logarithmic running by the first term of Eq3.1) is not

Then we _predict the physical quantities as listed in Tableanough to change the value &f,. Actually, the present
Il. The predicted values df,, g, Lo(M,), andLio(m,)  procedure with logarithmic running would lead tg,
remarkably agree with experiment within 10%, although—g 11 Ge\?, 9prr=10, Lg(m,)=13x 103, and L,o(m,)
L1o(my) is somewhat sensitive to the values/ohcp andA = 14 5x 1072, The latter three badly disagree with experi-
[19]. Moreover, we havea(0)=2, althougha(A)=a(m,) ment[27].
=1.

Some comments are in order.

The Wilsonian matching conditiof.5) and the input val- VIl. DISCUSSION
ues of F,(0) andm, together with the Wilsonian RGE’s
determineF .(m,), a(m,), andg(m,), and hencg,, ... The It is interesting to apply the Wilsonian matching proposed
Wilsonian matching conditiofé.6) with the above three pa- in this paper for an analysis of lardé; QCD done in Ref.
rameters determing;(m,), the value actually need¢@2]to  [2]. There it was assumed that the rat-‘rc’;,(A)IA2 has a
explain the experimental value gf,. The value ofzz(m,) small N; dependence. As is easily read from KE4.5), the
together withg(m,) determined ¢(m,). Finally, the Wilso-  Wilsonian matching condition implies that the ratio actually
nian matching condition(4.4) with the values ofF _(A), has a smallN; dependence. The analysis of the lafge
a(A), g(A), andzz(A) determinesg,(m,) —z;(m,), which  chiral restoration of QCD in this line will be done in a sepa-
gives only a small correction tb;o(m,). Although the tree- rate papef28].
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However, in the present paper, we work in the chiral limit, so
that we take the VEV to zero.

In chiral perturbation theoryChPT) [29,15 the deriva- Now, let us summarize the counting rule of the present
tive expansion is systematically done by using the fact thaanalysis. As in the ChPT in Ref15], the derivative and the
the pseudoscalar meson masses are small compared with tieternal gauge field§,, and’R,, are counted aé)(p), while
chiral symmetry breaking scald,. The chiral symmetry the external source fieldg (or x) is counted ag)(p?) since

breaking scale is considered as the scale where the derivati\{ﬁe VEV of)} is the square of the pseudoscalar meson mass
expansion breaks down. From the naive dimensional analy5|<sn> 2 - ’
X)=Mg.

[30] A, is estimated as

APPENDIX A: DERIVATIVE EXPANSION IN HLS

A, =47F ~1.1GeV, (A1) 9y~ L,~R,~0O(p),

which also agrees with the matching scéde?) used in the x~0(pd. (AB)
text. Since thep meson and its flavor partners are lighter

th.an .this s<_:a|e, one may consi_der tha_t a derivative expansiqgor consistency of the covariant derivative shown in Eq.
with including vector mesons is possible. Actually, the flrst(2 4) we assignd(p) to V,=gp, :

one-loop calculation based on this notion was done in Ref.”™ # we
[10]. There it was shown that the low energy theorem of the

HLS [24] holds at one loop. This low energy theorem was V.=9p,~0(p).
proved to hold at any loop order in RdR5]. Moreover, a

systematic counting scheme in the framework of the HLSThe above counting rules are the same as those in the ChPT.
was proposed in Refl11]. A key point there was the fact that An essential difference between the order counting in the
the vector meson masses in the HLS become small in theElLS and that in the ChPT is in the counting rule for the
limit of the small HLS gauge coupling. It turns out that suchvector meson mass. In an extension of the Cligge, e.g.,

a limit can actually be realized in QCD when the massles®Ref.[21]) the vector meson mass is counted®d) at the
flavor N; becomes large as was demonstrated in R&f28]. scale below the vector meson mass. However, as discussed
Then one can perform the derivative expansion with includ-around Eq(A2), we are performing the derivative expansion
ing the vector mesons in the idealized world where the vecin the HLS by regarding the vector meson as light. Thus,
tor meson masses are small and extrapolate the results to thienilarly to the square of the pseudoscalar meson mass, we
world where the vector meson masses take the experimentassign®(p?) to the square of the vector meson mass:
values. Although the expansion parameter is not very small,

(A7)

m>=g?F2~0(p?). (A8)
m2

£ 0.4, (A2)

2 Since the vector meson mass becomes small in the limit of
(4wF )

small HLS gauge coupling, we should assi@(p) to the

that procedure seems to work in the real wotfke, e.g., the HLS gauge coupling, not toF,:

discussion in Ref[25].) Here we apply such a systematic
expansion to the realistic cadg=3. g~O(p). (A9)
For the complete analysis at one loop, we need to include

the term having external scalar and pseudoscalar sourCehis is the most important part in the counting rules in the

fields S and P, as shown in Ref[11]. These are included HLS. By comparing the order fay in Eq. (A9) with that for

through the external source fiejddefined by gp, in Eq. (A7), the p, field should be counted aS(1).
Then the kinetic term of the HLS gauge boson is counted as
O(p?) which is of the same order as the kinetic term of the

o 1
X=ELX &R (A3) pseudoscalar meson.

With the above counting rules the leading order Lagrang-
x=2B(S+iP), (A4)  ianis given by[3,4,1]
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S .. 1 D at=—i(a—1)[ay,,a"
Loy=F2tla, ,at]+F2ul ay,of]- Ftr[v,”w”] poL ( L]
g ;g2
i Fo /. . 1 . .
1 g | XX g e X ) + 0",
+ 7Pt +x'l, (A10) w f
(A12)
where as discussed above we rescaled the vector meson field R
as D,af'=0(p?), (A13)
Va0 AL e grrZa+ o, (A14)
F in the fourth term in Eq(A10), which was absent in the o
previous analysis done in R¢fL1], was introduced to renor- and the identities
malize the quadratically divergent correction to the fourth R R o R R R
term. We note that this, agrees witlF , at the tree level. In Dya,,—Dya, ,=ila,,a ]+ila ,,op]—A,,,
the present analysis we will not consider the renormalization (A15)
effect of F, .
A complete list of theO(p*) Lagrangian for the SW\;) Du‘}Hv_ Dv&\m:i[&nﬂ ,&Hv]ﬂ[&w ,5@ )
case is shown in Refl11], where use was made of the equa- .
tions of motion V= V- (Al6)

Below we write the®(p*) terms listed in Ref[11] for readers’ convenience:
Lay=yatla ,ala,all+ystla) a0 alal]+ystlayaf ay,af1+Ya tl ap,ap,af of ]
+ystla ot apafl+ystla aaf of]+yrtla; o ofaf ] +ys{tl e af @y of |+t e, a),a) of 1)
+yotrla, ya,at afl+yiltla, ,af D2 +yntla o), Il alal 1+t ay,af D+ yistl ap,ap, ]t af of ]
+ywtla, et ltlay,afl+yistla, o, ot af1+yetla, ,af D>+ yirtla, o]t el af]

+ letr[ &J.M&Hv]tr[ &ﬁ&I]!

P2 2 o 2
E(4)W=W1F—§tr[ a et (x+x"] +W2F—; ta, ot x+ x] +W3F—2X tayaf (x+x"]
F2 2 £4

P AT W e ) (3] Wo St 310

w

F4 F4 F4
+W7F—4X(tr[x+XT])2+W8F—ftr[(X—XT)2] +W9F—f(tf[x—)(*])2,

Loy =210V, VW + 2, [ A, AP+ 23]V, VA +iza ]V, ab el [+izs iV, af of ]
+izgt Vet al 1+iz; 0V, af of 1+izg [ A, (alaf + afal)]. (A17)

We note here that among those given in E§l7) only z;, z,, andz; are relevant to the present analysis which is confined
to the two-point functions in the chiral symmetric limit.

In Sec. V we discussed the low energy parameltgrandL ,, of the ChPT defined in Refl15]. Below we shall list the
O(p* terms in the ChPT for the reader’s convenience:

LY=LtV ,UTVAUD?+ Lot V,UTV, UTr [VAUTV U T+ Lot V,,UTVAUV U TV UL+ L iV, UTVAU T [ x U
+ XU+ Lstr[V, UTVEU (X TU+UT) ]+ Le ([ xTU+ xUTD2+ L, ([ xTU = xUTD 2+ Lg tr xTUXTU + xUTxUT]
—iLgtr[ £, VAUV'UT+R , VAUV U]+ Lot (UL, UR, I+ H UL, LA+ R, R*]T+Hotr xTx], (A18)
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where £, and R, are the field strengths of the external come of higher order in the ChPT. The remaining terms to-
gauge fieldsC, and R, respectively,y is defined in Eq. gether with the kinetic term of the HLS gauge bogtine

(A4), andU is defined agsee Eq.(2.2)]

third term in Eq.(A10)] become thed(p*) ChPT Lagrang-

— : ian. Below, we list the correspondence between the param-
U=e”™rr=¢§ &R. (A19)  eters in the HLS and th@(p*) ChPT parameters at the tree
level for Ny=3:

The covariant derivative acting dd is defined agsee Eq.
(2.9)]

V,U=3,~iL,U+iUR,. (A20)

Here we note that the above expression in &d.8) is valid
for N;=3, and forN;=4 there is an extra term given by

t{V,Uv,utvAuv utl. (A21)

The relations at the tree level between the parameters in
the ChPT and those in the HLS are obtained by integrating
out thep field with the vector meson mass regarded®4).
[This implies that the HLS gauge couplimgis regarded as
O(1).] In this case the equation of moti¢A14) leads to

~ 1
af'=—0(p) (A22)

p

and, thus,

2
P

A A . 1
VMV=VM+I[aLM,aLV]+m—O(p4). (A23)
Furthermore, we have
~ i ¢ 1 T gt
aLuzsz'VU‘ngigR'VU &L (A24)
and

N 1
LV, W)= il L, L4+ R, R# = SHUTL,, UR,,],

~ A 1 1
A AR )= Z0L L, LH7 4R, R+ Etr[UTEWU Rl
(A25)
where we used Eq3.3) with Eq. (A19). By substituting Eq.
(A24) into the HLS Lagrangian, the first and fourth terms in

the leading order HLS Lagrangi@A10) become the leading
order ChPT Lagrangian:

ChPT__ T t m Tt
L=V, UTVHU L+ U+ XU,

] 1 N 1 N 1
1&'63—292 3—2y2 1_6y10:
L + ! + 1
ztierﬁgf Eyz Ey”’
L + ! !
<:> - T 5 e = b
3tree 1®2 16y1 8y2
. 1
4<:> —W2,
tree4
. 1
5<:> —Wl,
tree4
L6<:>W7l
tree
L, < wy,

L 1(1 + =(24+25)
9= 7| 5773 24T Zg),
tree4 92
1
Lio= st 5 (28— 2t 2y),
tree g
1
Hlt::eve——2+z(z3+22+zl),
Hy < 2(Wg—wg), (A27)

tree

where we took=, =F .. It should be noticed that the above
relations are valid at the tree level. As discussed in Rf|
we have to relate these at the one-loop level where finite

(A26) order corrections appear in several relations: The relation
N . betweenL,y and the parameters in the HLS becomes Eq.
where we took=, =F . In addition, the second term in Eq. (6.2) by adding finite order correctiongwe will derive this
(A10) with Eq. (A22) substituted becomes @(p°®) in the finite order correction later in EGC26).] On the other hand,
ChPT and the third terrtthe kinetic term of the HLS gauge there is no substantial finite order correction to the relation
boson with Eq. (A23) becomes oO(p®) in the ChPT. Inthe  for . Moreover, as discussed above E6.3) a detailed
O(p*) HLS Lagrangian(A17) the terms includingx(* be-  analysig[17] using a similar modell31] does not require the
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existence of a higher derivative typg term as well as ag
term. Hence we neglected tlzg and zg terms and obtained
the relation in Eq(6.4).

ER,L"h(X)gR,Lg;,L*

V,—h(x)V,hT(x)+ih(x)-d,h"(x),

APPENDIX B: BACKGROUND GAUGE FIELD METHOD ~ ~ ot
e-—h(x) e h"(x),
We adopt the background gauge field method to obtain R R
guantum corrections to the parametdior calculations in e,—h(X) e, hT(x),
other gauges, see RédfL0] for the R;-like gauge and Ref. A A
[25] for the covariant gaugeThis appendix is a preparation U#Hh(x)vﬂh’f(x), (B7)

to calculate the renormalization group equations in Appendix
C. The background field method was used in the ChPT irfhus, the expansion of the Lagrangian in terms of the quan-
Ref.[15], and was applied to the HLS in RéfL1]. Follow-  tum field does not violate the HLS of the background field
ing Ref.[11] we introduce the background fielgs and &g~ V, [11].

as We adopt the background gauge fixing in 't Hooft—

o Feynman gauge,
ELRT ELRELRS (B1) . R
. Lep=—t[(D*v,+gFo¢,)°], (B8)

where ¢ g denote the quantum fields. It is convenient to o
write where D

x Is the covariant derivative on the background
field:

b=t & &r=isp, R

D*v,=d*v,—i[V*v,]. (B9)

Eo=exfdi ¢2T,], &s=exdi ¢2T,], B2
femexill exTal. £s=exill ¢ Tl (B2 The Faddeev-PopoyFP) ghost term associated with the

with & and o, being the quantum fields corresponding to 92uge fixing(B8) is
the NG bosonm and the would-be NE; bosom. The back- i t[C(D*D, +(gF,)2)C]+ - - - (810)
ground fieldV,, and the quantum field,, of the HLS gauge Lep=21([C(DFD,+ (gF, :
boson are introduced as where the ellipsis stands for interaction terms of the dynami-
cal fieldsg,,, ¢,, andv, and the FP ghosts.

Now, the complete)(p?) Lagrangianl )+ Lget Lep iS

We use the following notation for the background fields in-expanded in terms of the quantum fields, ¢, v, andC.
The terms which do not include the quantum fields are noth-

V,=V,+gv,. (B3)

cluding &, g: ) - ) _ . )
' ing but the originalO(p“) Lagrangian with the fields re-
— 1 — 1 placed by the corresponding background fields. The terms
AMEE[% L €L~ duér R] T E[éL[’;LgL_fRR,u.gR]a which are of first order in the quantum fields lead to the
equations of motions for the background fields:
_ 1 _ 1 _ _ . -
V= 570,80 €+ d,ubr ER1+ STELLE + ERR,ER], D, Ak=—i(a=1)[V, =V, 4]
(B4) P F2 1 ,
. - - _ Ry X—XT—N—U[X—XT] +0(p"),
which correspong tmlﬂ_and a,tV,, respectively. The Fa f
field strengths of4,, and)), are defined as (B11)
VMVZt?MVV—ﬂVVM_i[VM,VV]_i[A,u,.AV], Bﬂ(vﬂ_vﬂ):O(p‘l), (B12)
Ap=0,A,-0,A,—i[V, A]-i[A4,V,], (BY D,V =g2F2(VE—Vk) +O(p?), (B13)
which correspond t/,, andA ,,, respectively. In addition which correspond to Eq$A12), (A13), and (A14), respec-
we usey for the background field corresponding %o tively.
To write down the terms which are of quadratic order in
;Ezga(sﬂp)a;_ (B6)  the quantum fields in a compact and unified way, let us de-

fine the following “connections”:
It should be noticed that the quantum fields as well as the

background fieldsg, transform homogeneously under the rim=itd[(2-a)V,+aVv,][T.. Tyl},  (B19)
background_ gauge transformation, while the background o
gauge fieldV,, transforms inhomogeneously: TeR=itr[(V,+V,)[Ta, Tpll, (B15)

014023-8
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T{ra=—iVatlA,[Ta, Toll, (B16)

T m=—iVatlA,[ T, Toll, (B17)
el =—2i [V, [T, Tpl1g". (B19)

Here one might doubt the minus sign in front Biv”vﬁ)

compared withT'(>9 (S=m,0). However, sinceg*’=

— 8, for «=1,2,3, the minus sign is the correct one. Cor-
respondingly, we should use an unconventional metric

—d,p to change the upper indices to the lower ones:

P-(V ,ab 2 (= Gaar )FP-;\() ,Vﬁ) (819)

PHYSICAL REVIEW D64 014023

with the quark mass matrid being defined in Eq(A5).
Here by using the equation of motion in E&11), 3{7? is
rewritten as

3= \Ja(1—a) t{[ A, , V*—V*][T,, Toll

F2 1 —
—i JTE F—gtr[(x—xT)[Ta Toll+ 5Vatf[ A, T

- a — —
X[V =VE Tl ]+ | 1= 5 | Vatf[V,—V, Tl

X[ A* To]1. (B30)

To achieve more unified treatment let us introduce the
following quantum fields:

Further we define the following quantities corresponding to

the “mass” part:

3(rm= 4

3a —
trl[A*,Tal[ A, Toll

a2 -
= SV = VATV, =V, Tyl

2 _
+ o X = 2M){Ta To}, (B20)
3le0)= —tr[[ﬁ‘—V”,Ta][V#—VM L Toll
a _ _
— LA TRl A, Toll, (B21)

S 1 —
ST0=iatr[D*A,[Ta, Tpl]+ E\/a trl[A, Ta

—_ — a .

XVE=VE T+ 1= 5 Vatl[V,—V,,T.]
X[A-Tp]], (B22)
sM=3(27, (B23)
3P = — itV T, Tyl], (B24)
(VP =2iagF, t[AP[T,, Tyll, (B25)
s (= —2iagF,, LAY T,,Tp]l, (B26)
V0= 2igF, t[(VP—VA)[ T4, Ty, (827)
30 = - 2igF i (V' — V) [T, Ty, (828)

where

M, =2BM, (B29)

Dp=(70%03)=(F, ¢ F,02,0%), (B3]

where the lower and upper indices & should be distin-
guished as in EqB19). Thus the metric acting on the indi-

ces ofd is defined by

5ab
nB= Sab :
- gaﬂ‘sab
5ab
7]B 5ab ’
gg5ab
5ab
NAB= Bap : (B32
- gaB 5ab

The tree mass matrix is defined by
I\Wq-r,a&ab
M\zléab
_QQBM\Zléab

MABE

(B33)

whereMZ=g?F2, and the pseudoscalar meson miss, is
defined by

_ F2
Mfr,agabE F_;(

ko

[ M {T., Tl (B34)

Here the generatar, is defined in such a way that the above
masses are diagonalized when we introduce the explicit chi-
ral symmetry breaking due to the current quark masses. It
should be noticed that we work in the chiral limit in this
paper, so that we take
M,.=0

or M, ,=0. (B35)
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Let us further define

rimm o) 0

w,ab w,ab
(T fe=| TV TV 0 |, (B39
(VoVp)
0 0 Fﬂ'abﬂ
T o Vv
REA S
< o oo oV
sAe=| sgm 3G E;bﬁ) , (B37)
(Vom) (Vo0) (VaVg)
2ab 2ab Eab g
and
= JAB_ ,AB T \AB
(D)= 9""a,+(I',)"". (B38)

PHYSICAL REVIEW D 64014023

n n x

A- H \ A-v M :.VVW .:l‘ :’
= S b ’ M
v [y
(@ ®) ©

FIG. 1. One-loop corrections to the two-point functidn-.A, .
The vertex with a dot @) implies the derivatives acting on the
guantum fields, while that with a circléX) implies that no deriva-
tives are included: The vertices (a) are fromE;’gvﬁ) andig\gﬂ) in
Egs.(B25) and(B26); the vertices inb) are fromI'{"g) andT'("7)
in Egs.(B16) and(B17) together with the derivatives acting on the
quantum fields; the vertex ifc) is from the first term of2{7™ in
Eq. (B20) and = I ") 4,07 [32],

In the present analysis it is important to inclugieadratic

It is convenient to consider the FP ghost contribution Sepadivergencesto obtain RGE’s in the Wilsonian sense. Since a

rately. For the FP ghost part we define similar quantities:

IED=2i [V, [ T4, Tyl], (B39)
(D,)59= 629, +TCQ, (B40)
MEO=6,,M2. (B41)

By using the above quantities the terms quadratic in terms of
the quantum fields in the total Lagrangian are rewritten as

f d*x [ LB+ Lart Lepl

1 L U
== 52 | dxPA[(D,-D*)A8+ A+ 340 Dy
A,B

+i§) fd4x6a[(f>#-Bﬂ)g‘gc>+ﬁ4g%°)]cb, (B42)
where

(D, -DmA8=2 (D) (D™,

!

(B43)

(D, -DME9=2 (D )EOD,EC.

C

(B44)

APPENDIX C: RENORMALIZATION
GROUP EQUATIONS

In this appendix, we show the detailed derivation of the

RGE’s forF ., F, (anda=F2%/F2), g, z, z,, andz; for the

reader’s convenience. These RGE’s are derived by calculat-

naive momentum cutoff violates chiral symmetry, we need a
careful treatment of the quadratic divergences. Thus we
adopt dimensional regularization and identify quadratic di-
vergences with the presence of poles of ultraviolet origin at
n=2 [9]. This can be done by the following replacement in

the Feynman integrals:

f dk 1 A2
i(2m)" —k? (4m)?

d%k Kk, A2
f : 272 29ur
i(2m)" [—k“] 2(4)

On the other hand, the logarithmic divergence is identified
with the pole an=4. The same result as that after the re-
placements Eq.C1) can also be obtained in the heat kernel
expansion with the proper time regularization in which the
physical interpretation of the quadratic divergence is more
explicit with A having the same meaning as the naive cutoff.

Let us start from the one-loop corrections to the two-point
function A,,- A, . The relevant diagrams are shown in Fig. 1.
The divergent contributions of these diagrams are evaluated
as

(CD

ing the divergent corrections at one loop to the two-point

functions of the background fieldsi,, V,, andV,,. Note
that the RGE'’s forF ., a=F2/F2 and g without quadratic

divergences were obtained in R¢L10]. Note also that the

N _
(@pv _ v f _ 2 2
I (p)av=9" 2(477)2[ 2aMy In A<],
1% ()] 4, = g+ _aA?+ ZaM?In A2
AA div 2(477)2 2 v
N¢ a
—(g""p®—p*p” —InA2,
(9""p pp)2(477)26
H@’”( )| div=9"" Ny [2(a—1)A?] (C2)
AA p dlv_g 2(47T)2 .

RGE's forF . anda with quadratic divergences were derived The divergences in EqC2) are renormalized by the bare

in Ref.[2], and the RGE’s forz;, z,, andz; were in Ref.
[11].

parameters in the Lagrangian. The tree-level contribution
with the bare parameters is given by

014023-10
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S

i)
Q)

G , Ne [ (2-a)?
V, // \\ V ’\/vv\‘ ‘vvvvv fv\/\/\‘ lvvvvv " \‘i H %’u ( p) | div - g " 2 |: - 2 A ’

5

(a)

¢ T UV N2 MV Nf (2_ a)2 I AZ
) © @ SRR e 12 M
FIG. 2. One-loop corrections to the two-point functlb’p V
The vertices in(a) are fromE(Uvﬁ) andE(V ) in Egs.(B27) and (v )
(B28); the vertices ir(b) are fromF("") in Eq (B15) together with I (p)lav=9 s[—2(a=1)A7]. (C7)

derivatives acting on the quantum flelds the verticegjrare from 2(4 )

{7 in Eq. (B14) together with derivatives acting on the quantum o
fields; the vertex in(d) is from the second term &E{7™ in Eq.  Similarly to the A,,- A, two-point function, we require that
(B20) and = I ("D 47 . the following quantities be finite:

(tree)/“’ 2 v 2 uv v
F2 pared"’+22 HY—prpY). Ny
(p ) bareg 2,bare(p g pTp ) (C3) Fi,bare 4(4 ) [(1+a2)A2+3ag F InAZ] (flnlte)

Thus the renormalization is done by requiring that the fol- )
lowing be finite: 2 e Nt 5—4a+a
,bare 2(47T)2 12

In A?=(finite).

\P (C8)
2 2 22 2
Foabae ———5[2(2—a)A +3a%g?FZ In A%]= (finite),
4(4m) The above renormalizations lead to the following RGE's for
F, andz; [the first equation in Eqg3.4)]:

N
Zop ——In A?=(finite). dFZ
e 2(4m)2 12 P _[3ag?F2+(1+ad)u?],  (C9
(C4 du 2(4 )2
The above renormalizations lead to the following RGE'’s for dz N 5—4a+a?

F . [the first equation in Eq$3.1)] andz, [the second equa-
tion in Egs.(3.9)]:

“du (am? 24 (€19

The RGE fora=F2/F2 [the second equation in Eq&.1)]

2
w dF% [3a%g2F2+2(2—a)u?], (C5) is derived from the RGE'’s foF , andF , given in Eqs.(C5)
di " 2(an )2 and (C9):
da wu?
9z Ni a2 6 uy. =—Cla—1) 3a(a+1)g’~(3a- 1)—
du (4m)2 12 H
(C1)
where i is the renormalization scale. whereC =N, /[2(4m)2].

Next we calculate one-loop corrections to the two-point

functionvﬂ-@. The relevant diagrams are shown in Fig. 2
The divergent contributions are evaluated as

Now, we calculate the one-loop correction to the two-

‘point functionvﬂ-vv. The relevant diagrams are shown in
Fig. 3. These are evaluated as

2% ()] g =g"" N 2amZinAZ, & ()| L _[~4A%+8MZInA2]
v 2(4 )2 P)laiv= 2(477_)2 \
N, 20
- N 1,01, +(gp?=pHp’) o 5 InA?,
HW (p)|diV:gM 2(4,“_)2 _EA +§MV|nA 2(4 )
2(4m )2 " w YT 2(4m ) v
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v S ¢ g g z
v 0 C v G T
(@ (b) © @) ®) ©
v ¢ S T m o
\\}é/,« \\“ﬁ—/,, \\ L \\ S
(@) (©)
@ ® ® (®
FIG. 4. One-loop corrections to the two-point functlvp v,
FIG. 3. One-loop corrections to the two-point funct\m V,. The vertices in(@) are froms rrVﬁ andE(V ) in Egs. (B27) and
V.V
The vertices ina) are fromE( # in Eq. (B24) andF Vin Eq. (B28); the vertices inb) are froml“("" in Eq (B15) together with

(B18) together with derivatives acting on the quantum fields; thederivatives acting on the quantum flelds the verticeg)rare from
vertices in(b) are fromE(‘rVﬁ) andE(V “) in Egs.(B27) and(B29); I‘(”) in Eq. (B14) together with derivatives acting on the quantum
the vertices in(c) are fromF(C in Eq (B39) together with deriva- f|e|ds the vertex |n(d) is from the second term 0‘£(”) in Eq.

tives acting on the quantum flelds, the vertexdhis from E;V oVp) (B20) and =.I' ’”T)F 7 - the vertex in(e) is from the second

(Vo | pi(ViVg), i i term of (7 in Eq, (B2D) and =, IO e
and ECYFMV)achb ; the vertex in (e) is from erm o in Eq. (B21) an

,ac
3. I(COraCO” the vertices in(f) are from riod) in Eq. (B15)

w,act ch a
together with derlvatlves acting on the quantum fields; the vertices 1‘[(1 '°°p’“’(p)|dlv
in (g) are fromI'{77) in Eq. (B14) together with derivatives acting
on the quantum fields.

Ny
= [(1+a®)A?+3ag®F2In A?]gH”

4(4)?
(C)MV 2 2
(P)aw=0""7——[4A%~4MTIn A?] Ny 87—-a?
2(4m >2 ! : In A2(pg""—p#p").
2(4m)? 12
2
+(g“"p?—pHp) “inA2, (c13

2(4m )2 3
On the other hand, the tree contribution is given by

1924 (p)| 4iy= g* [4A2—8M2In A2], . 1
\AY div ( )2 \Y H%E)ﬂ (p )_Fo-bareguv_z_(ng#v_ pp,pv)
bare
(C14
5 (p)|av=9 . 2[ 4A%+4MTIn A2, The first term in Eq(C13 which is proportional tog*” is
( ) renormalized b)Fﬁyba,ethrough the requirement in ECC8).
The second term in Eq(C13 is renormalized bygpae
N 1 1 through
(f),U«V(p)|dlv 2 f 2|:_§A2+§M\2/|HA2
o LN sat s (finite).  (C15
- n A<= (finite).
_(g,U«Vp p~p”) InA2 ggare 2(477)2 12
2(4 )2 12
This renormalization leads to the following RGE fgithe
) third equation in Eqs(3.1)]:
Nf a
H@#V L — MY _ 2}
w (Pl 2(4m)?l 2 dg? N, 87-a%
== 9" (C1e
N, a? du~ 2(4m? 6
—(aMVn2_ pin? — 2
(@ PP o S pn A% (€12

function VM-V,, to determine the renormalization of. The

We also calculate the one-loop correction to the two-point

Summing up the contributions in E¢C12), we obtain the relevant diagrams are shown in Fig. 4. The divergent contri-

following divergent contribution: butions are evaluated as
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H%ﬂv(p)ldiv:g# 2(4 [2M2|HA2]
N 1 1
(v MY f _ T A2 T2 2
55" (P)av=9 2am)? 5 A%+ SMGIn A
_ HVA2 _ ALY f —In 2
(9P =p*p") 2 A
N a(2—a)
©uv L — MY f
HW (p)|dlv g 2(477)2 2
N; a(2—a)
—(g""p?—p*p” InA2,
(9P =P P S T 1
N¢
e aA2,
p)|d|v 2(477)2
192 (o) =g’”L[A2—2I\72 InA2]. (C17)
w YE 2(4m)2 v
Thus
(Lloop v Ni 21 A 2E2 | A 2]
Iy (P)]aiv= a4 )2[(1+a)A +3ag°FZ In A%]g”

N; 1+2a—a?

2(4m? 12
XIn A%(p®g**—p*p”). (C18
The tree contribution is given by
TG (%) = F2 pare0"" + 225 par P20 — p*p*).
(C19

The first term in Eq(C18) which is proportional tog*” is
renormalized bfﬁ,barethrough the requirement in E¢C8).
The second term in Eq(C18) is renormalized byzs e
through

Ny 1+2a—a?

Z3 bare— In A= (finite). (C20
3,bare 2(477)2 12 ( ) ( )
This leads tdthe third equation in Eq¥3.4)]
dzz Ny 1+2a-a’
(C21

Haw du (411')2 12

To summarize, EqSC5), (C11), and(C16) are the RGE’s
for Ff,, a andg shown in Eq.(3.1), and Eqs.(C10), (C6),
and (C21) are the RGE's forz;, z,, and zz; shown in Eq.
(3.4).

Below them, scale,p decouples and hende, runs by

PHYSICAL REVIEW D64 014023

least derivatives is given by the first term of E&26) [or,
equivalently, the first term of Eq2.5)], and the diagram
contributing toFf, is shown in Fig. 1c). The resultant RGE
for F, is given by

,udﬂ[ FP= et (w<m). (22

Unlike the parameters renormalized in a mass independent
scheme, the parametér,(u) (u<m,) does not smoothly
connect toF ;(u) (u>m,) at them, scale. We need to
include the effect of finite renormalization. This is evaluated

by taking quadratic divergence proportionaladn Eg. (C2)
and replacing by m,,. This leads to the relatiob.2):

Ny a(my)

[F{(m,)]P=F2(m,)+ G 2

(C23

where F{™(u) runs by the loop effect ofr alone for u
<m,.

P

Finally, let us show the finite correction to the relation for
Lo given in Eq.(6.2). This is evaluated from the finite part
of the g*” part of the A - A, two-point function.[Here the
g’” part of theA - A, two-point function is defined by

A—A( p?)= (pMpV/pZ)H—”(p) .] From Fig. 1 we obtain

2% (p)= —N;aM2By(p%M,,0),

2 (p)=N; [BA<p2;Mu,0>—Ao<M,,>—Ao<0>],

1 (p)=N(a—1)Aq(0), (C24)
where

PUVE L

) iemn M2—k?

1

BolpsM.m)= j<2w> " MK (k—p)?]

5 (MZ_mZ)Z )
BA(P;M )= = [Bo(p:M.m) ~ Bo(0:M.m)].

(C29

According to the analysis in Refl11], the O(p?) part of
M (p2) =1 (02 + T (P +TIEE(P?) gives a
finite order correction td. ;4 as

1d

(1Ioop)L( 2) _ Nf % (C26)
oo (4m)? 967

the loop effect ofw alone. The relevant Lagrangian with which is the last term in Eq6.2).

014023-13



MASAYASU HARADA AND KOICHI YAMAWAKI

[1] See, e.g., N. Seiberg, Nucl. Phy435, 129 (1995.

[2] M. Harada and K. Yamawaki, Phys. Rev. Le&3, 3374
(1999.

[3] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T.
Yanagida, Phys. Rev. Leth4, 1215(1985.

[4] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rej4, 217
(1988.

[5] J.B. Kogut and D.R. Sinclair, Nucl. PhyB295, 465 (1988;
F.R. Brown, H. Chen, N.H. Christ, Z. Dong, R.D. Mawhinney,
W. Shaffer, and A. Vaccarino, Phys. Rev.4B, 5655(1992);

Y. lwasaki, K. Kanaya, S. Sakai, and T. YoshRhys. Rev.
Lett. 69, 21(1992; Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai,
and T. Yoshie Prog. Theor. Phys. Suppl31, 415(1998.

[6] T. Appelquist, J. Terning, and L.C.R. Wijewardhara, Phys.

Rev. Lett.77, 1214(1996; V.A. Miransky and K. Yamawaki,
Phys. Rev. D65, 5051(1997.

[7] R. Oehme and W. Zimmerman, Phys. Rev2D 471 (1980);
21, 1661(1980.

[8] M. Velkovsky and E. Shuryak, Phys. Lett. 487, 398(1998.

[9] M. Veltman, Acta. Phys. Pol. B2, 437(1981).

[10] M. Harada and K. Yamawaki, Phys. Lett. 7, 151(1992.

[11] M. Tanabashi, Phys. Lett. B16, 534 (1993.

[12] M.A. Shifman, A.l. Vainstein, and V.l. Zakharov, Nucl. Phys.
B147, 385(1979; B147, 448(1979.

[13] Such dependences are assigned to the paranmmigxy and
z,(A). This situation is similar to that for the high energy
parameters in chiral perturbation thedb].

[14] It should be noticed that the/w term andag(qq)? term
depend on the renormalization pojatof QCD, and that those
generate a small dependence of the bare parameters of the H
on w. It is reasonable to takg to be equal to the matching
scaleA.

[15] J. Gasser and H. Leutwyler, Ann. Phy@N.Y.) 158 142
(1984; Nucl. Phys.B250, 465 (1985.

[16] The RGE forF2 for u<m, is given by puttinga=0 in the
first equation of Eqs(3.1).

[17] M. Harada and J. Schechter, Phys. Revb4) 3394 (1996.

PHYSICAL REVIEW D 64014023

[18] Note that the existence of kinetic typey mixing from thezg
term was needed to explain the experimental datd @f
—ete”) [17].

[19] One might think of the matching by the Borel transformation
of the correlators. However, agreement of the predicted values,
especiallyg, , is not as remarkably good as that for the present
case.

[20] Particle Data Group, D.E. Grooet al, Eur. Phys. J. A5, 1
(2000.

[21] G. Ecker, J. Gasser, A. Pich, and E. De Rafael, Nucl. Phys.
B321, 311(1989.

[22] See, e.g., Ref.17].

[23] K. Kawarabayashi and M. Suzuki, Phys. Rev. Ldif, 255
(1966; Riazuddin and Fayyazuddin, Phys. ReM7, 1071
(1966.

[24] M. Bando, T. Kugo, and K. Yamawaki, Nucl. Phyg259 493
(1989; Prog. Theor. Physr3, 1541(1985.

[25] M. Harada, T. Kugo, and K. Yamawaki, Phys. Rev. L&tt,
1299(1993; Prog. Theor. Phy91, 801 (1994).

[26] The contribution from the higher derivative term is neglected
in the expression ofg,,, given in Eq. (6.3), i.e., 9,.»
=0,7-(M3;0,0)=9,,,(0;0,0).

[27] The parameter choicé =m,, does not work, either.

[28] M. Harada and K. Yamawaki, Phys. Rev. L&8, 757(2001).

[29] S. Weinberg, Physica A6, 327 (1979.

[30] A. Manohar and H. Georgi, Nucl. PhyB234, 189(1984).

[31] 0. Kaymakcalan and J. Schechter, Phys. Rev3D 1109
(1985.

I_[§2] One_mE;ht think that there exists @&tadpole contribution to
the A-A two-point function with the vertex from the second
term of 377 in Eq. (B21). However, the vertex is exactly
canceled with the vertex fro (77T %™ . Thus there is
no o-tadpole contribution to thed-.4 two-point function.
Similar cancellations occur between contributions from the
first term of 277 and = I WO 47 to V-V as well as to
V-V.

014023-14



