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Wilsonian matching of effective field theory with underlying QCD

Masayasu Harada and Koichi Yamawaki
Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
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We propose a novel way of matching effective field theory with the underlying QCD in the sense of a
Wilsonian renormalization group equation~RGE!. We derive Wilsonian matching conditions between current
correlators obtained by the operator product expansion in QCD and those by the hidden local symmetry~HLS!
model. This determines without much ambiguity the bare parameters of the HLS at the cutoff scale in terms of
the QCD parameters. Physical quantities for thep andr system are calculated by the Wilsonian RGE’s from
the bare parameters in remarkable agreement with the experiment.
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I. INTRODUCTION

Recently the concept of the Wilsonian renormalizati
group equation~RGE! has become fashionable in the conte
of matching effective field theories~EFT’s! with underlying
gauge theories to study the phase structure of supersym
ric ~SUSY! gauge theories@1#. However, no attempt ha
been made to match the EFT with the underlying~non-
SUSY! QCD in the sense of a Wilsonian RGE which no
includesquadratic divergencesin addition to the logarithmic
ones in the RGE flow of the EFT. It would be reasonable
consider the effective theory under an ordinary RGE w
just a logarithmic divergence in the situation where spon
neous chiral symmetry breaking is always granted from
beginning as in QCD with the number of almost massl
flavors beingNf53. Actually, the logarithmic RGE is blind
about the change of phase.

In a previous paper@2# we actually demonstrated that th
inclusion of a quadratic divergence in the Wilsonian sens
the EFT does give rise to chiral symmetry restoration by
own dynamics for largeNf under certain conditions, base
on the hidden local symmetry~HLS! Lagrangian@3,4# which
successfully incorporatesr and its flavor partners in the ch
ral Lagrangian. Chiral symmetry restoration for largeNf

QCD is a notable phenomenon observed by various meth
such as lattice simulations@5#, the Schwinger-Dyson equa
tion approach@6#, the dispersion relation@7#, instanton cal-
culations@8#, etc.

In this paper, we shall propose a novel way ofmatching
the EFT with the underlying QCD with Nf53 in the sense of
a Wilsonian RGE, namely, includingquadratic divergences
in the EFT~‘‘Wilsonian matching’’!. By this we demonstrate
that inclusion of the quadratic divergence is important ev
for phenomenology in theNf53 QCD. The basic tool of
Wilsonian matching is theoperator product expansion
~OPE! of QCD for the axial-vector and vector current cor
elators, which are equated with those from the EFT at
matching scaleL. This determines without much ambigui
the bare parameters of the EFT defined at the scaleL in
terms of the QCD parameters.Physical quantities for thep
and r system are calculated by the Wilsonian RGE’s fro
the bare parameters in remarkable agreement with exp
ment.
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II. HIDDEN LOCAL SYMMETRY

Let us first describe the EFT, the HLS model based on
Gglobal3H local symmetry, whereG5SU~Nf!L3SU~Nf!R is
the global chiral symmetry andH5SU~Nf!V is the HLS.
~The flavor symmetry is given by the diagonal sum ofGglobal
andH local.) The basic quantities are the gauge bosonrm of
the HLS and two SU(Nf)-matrix-valued variablesjL and
jR. They transform as

jL,R~x!→jL,R8 ~x!5h~x!jL,R~x!gL,R
† , ~2.1!

where h(x)PH local and gL,RPGglobal. These variables are
parametrized as

jL,R5eis/Fse7 ip/Fp, ~2.2!

wherep5paTa denotes the Nambu-Goldstone~NG! bosons
associated with the spontaneous breaking ofG chiral sym-
metry ands5saTa the NG bosons absorbed into the gau
bosons.Fp and Fs are relevant decay constants, and t
parametera is defined as

a[Fs
2/Fp

2 . ~2.3!

Herep denotes the pseudoscalar NG bosons associated
the chiral SU~Nf!L3SU~Nf!R symmetry andr the HLS
gauge bosons even though we fixNf53. The covariant de-
rivatives ofjL,R are defined by

DmjL5]mjL2 igrmjL1 i jLLm , ~2.4!

and similarly with the replacement L↔R, Lm↔Rm , where
g is the HLS gauge coupling.Lm andRm denote the externa
gauge fields gauging theGglobal symmetry.

The HLS Lagrangian is given by@3,4#

L5Fp
2 tr@â'mâ'

m#1Fs
2 tr@â imâ i

m#1Lkin~rm!, ~2.5!

whereLkin(rm) denotes the kinetic term ofrm and

â'
i

m
5~DmjL•jL

†7DmjR•jR
† !/~2i !. ~2.6!
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III. RENORMALIZATION GROUP EQUATIONS
IN THE WILSONIAN SENSE

In Ref. @2# the quadratic divergence was identified wi
the presence of poles of ultraviolet origin atn52 in the
dimensional regularization@9#. The resultant RGE’s forFp

2 ,
a andg2 are given by@2#

m
dFp

2

dm
5C@3a2g2Fp

2 12~22a!m2#,

m
da

dm
52C~a21!F3a~a11!g22~3a21!

m2

Fp
2 G ,

m
dg2

dm
52C

872a2

6
g4, ~3.1!

whereC5Nf /@2(4p)2# andm is the renormalization scale
We note here that the above RGE’s agree with those
tained in Ref.@10# when we neglect quadratic divergences.
detailed derivation of the above RGE’s is given in Appe
dixes B and C.

In addition to the leading-order terms~2.5! we need to
include theO(p4) higher derivative terms in the prese
analysis~see Appendix A!. The relevant terms are given b
@11#

z1 tr@ V̂mnV̂mn#1z2 tr@ÂmnÂmn#1gz3 tr@ V̂mnrmn#,
~3.2!

where

Âmn5~jRRmnjR
†2jLLmnjL

†!/2,

V̂mn5~jRRmnjR
†1jLLmnjL

†!/2, ~3.3!

with Rmn andLmn being the field strengths ofRm andLm .
Herermn is the gauge field strength of the HLS gauge bos
Since there are no quadratically divergent corrections to
parametersz1 , z2, andz3, we calculate the RGE’s from th
logarithmic divergences listed in Ref.@11#:

m
dz1

dm
5

Nf

~4p!2

524a1a2

24
, m

dz2

dm
5

Nf

~4p!2

a

12
,

m
dz3

dm
5

Nf

~4p!2

112a2a2

12
. ~3.4!

IV. WILSONIAN MATCHING

Now we propose a Wilsonian matching of the EFT w
the underlying QCD: We determine the bare parameter
boundary values of the Wilsonian RGE’s~3.1! and ~3.4! in-
cluding quadratic divergences by matching the HLS with
OPE in QCD at the matching scaleL.

Let us look at axial-vector and vector current correlato
They are well described by the tree contributions with
cluding O(p4) terms when the momentum is around t
01402
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matching scale,Q2;L2. The resultant expressions of th
correlators are given by

PA
(HLS)~Q2!5

Fp
2 ~L!

Q2
22z2~L!,

PV
(HLS)~Q2!5

Fs
2~L!@122g2~L!z3~L!#

M v
2~L!1Q2

22z1~L!, ~4.1!

where we defined

M v
2~L![g2~L!Fs

2~L!. ~4.2!

The same correlators are evaluated by the OPE up u
O(1/Q6) @12#:

PA
(QCD)~Q2!5

1

8p2
F 2S 11

as

p D ln
Q2

m2
1

p2

3

K as

p
GmnGmnL
Q4

1
p3

3

1408

27

as^q̄q&2

Q6
G ,

PV
(QCD)~Q2!5

1

8p2
F 2S 11

as

p D ln
Q2

m2
1

p2

3

K as

p
GmnGmnL
Q4

2
p3

3

896

27

as^q̄q&2

Q6
G , ~4.3!

wherem is the renormalization scale of QCD.
We require that current correlators in the HLS in Eq.~4.1!

can be matched with those in QCD in Eq.~4.3!. Note that
both PA

(QCD) andPV
(QCD) explicitly depend onm @13#. How-

ever, the difference between two correlators has no exp
dependence onm @14#. Thus our first Wilsonian matching
condition is given by

Fp
2 ~L!

L2
2

Fs
2~L!@122g2~L!z3~L!#

L21M v
2~L!

22@z2~L!2z1~L!#

5
32p

9

as^q̄q&2

L6
. ~4.4!

We also require that the first derivative ofPA
(HLS) in Eq.

~4.1! match that ofPA
(QCD) in Eq. ~4.3!, and similarly for

PV’s. This requirement gives two Wilsonian matching co
ditions
3-2
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Fp
2 ~L!

L2
5

1

8p2
F 11

as

p
1

2p2

3

K as

p
GmnGmnL
L4

1p3
1408

27

as^q̄q&2

L6
G , ~4.5!

Fs
2~L!

L2

L4@122g2~L!z3~L!#

@L21M v
2~L!#2

5
1

8p2
F 11

as

p
1

2p2

3

K as

p
GmnGmnL
L4

2p3
896

27

as^q̄q&2

L6
G . ~4.6!

The above three equations~4.4!–~4.6! are the Wilsonian
matching conditions, which we propose in this paper.

The right-hand sides in Eqs.~4.4!–~4.6! are directly de-
termined from QCD. First note that the matching scaleL
must be smaller than the mass of thea1 meson which is not
included in our effective theory, whereasL has to be big
enough for the OPE to be valid. Here we use

L51.1, 1.2 GeV. ~4.7!

To determine the current correlators from the OPE we u

K as

p
GmnGmnL 50.012 GeV4,

^q̄q&1 GeV52~0.25 GeV!3, ~4.8!

shown in Ref.@12# and

LQCD5350, 400 MeV ~4.9!

as typical values. We use one-loop running to estim
as(L) and ^q̄q&L .

V. DETERMINATION OF THE BARE PARAMETERS
OF THE HLS LAGRANGIAN

Then the bare parametersFp(L), a(L), g(L), z3(L),
andz2(L)2z1(L) can be determined through the Wilsonia
matching conditions. Actually, the Wilsonian matching co
ditions in Eqs.~4.4!–~4.6! are not enough to determine a
the relevant bare parameters. We therefore use the on-
pion decay constantFp(0)588 MeV in the chiral limit@15#
and ther massmr5770 MeV as inputs. The mass ofr is
determined by the on-shell condition

mr
25a~mr!g2~mr!Fp

2 ~mr!. ~5.1!
01402
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Below themr scale,r decouples and henceFp
2 runs by the

p-loop effect alone@16#. Since the parameterFp(m,mr)
does not smoothly connect toFp(m.mr) at themr scale,
we need to include a finite renormalization effect~see Ap-
pendix C!

@Fp
(p)~mr!#25Fp

2 ~mr!1
Nf

~4p!2

a~mr!

2
mr

2 , ~5.2!

whereFp
(p)(m) runs by the loop effect ofp for m,mr .

The resultant values of all the bare parameters of the H
are shown in Table I together with those atm5mr .

VI. PREDICTIONS

Now that we have completely specified the bare Lagra
ian, we can predict the following physical quantities by t
Wilsonian RGE’s including the quadratic divergences, E
~3.1! and ~3.4!.

The r-g mixing strength:
The second term in Eq.~2.5! gives the mass mixing be

tweenr and the external field ofg. The third term in Eq.
~3.2! gives the kinetic mixing. Combining these two at th
on-shell ofr leads to ther-g mixing strength:

gr5g~mr!Fs
2~mr!@12g2~mr!z3~mr!#. ~6.1!

The Gasser-Leutwyler’s parameterL10 @15#:
The relation betweenL10 and the parameters of the HL

at mr scale is given by@11#

L10~mr!52
1

4g2~mr!
1

z3~mr!2z2~mr!1z1~mr!

2

1
Nf

~4p!2

11a~mr!

96
, ~6.2!

where the last term is the finite order correction from t
r-p loop contribution.

The r-p-p coupling constantgrpp :
Strictly speaking, we have to include a higher derivati

type z4 term listed in Ref.@11# ~see Appendix A!. However,
a detailed analysis of the model@17# does not require its
existence@18#. Hence we neglect thez4 term. If we simply
read ther-p-p interaction from Eq.~2.5!, we would obtain
grpp5g(mr)Fs

2(mr)/2Fp
2 (mr). However,grpp should be

defined for on-shellr andp ’s. While Fs
2 andg2 do not run

for m,mr , Fp
2 does run. The on-shell pion decay constan

TABLE I. Five parameters of the HLS atm5L and mr for
LQCD5400 MeV andL51.1 GeV. The unit ofFp is GeV.

m Fp(m) a(m) g(m) z3(m) z2(m)2z1(m)

L 0.149 1.19 3.69 25.2331023 21.0331023

mr 0.110 1.22 6.33 26.3431023 21.2431023
3-3
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TABLE II. Physical quantities predicted by the Wilsonian matching conditions and the Wilsonian RG
The units ofLQCD andL are GeV, and that ofgr is GeV2. Values ofL9(mr) andL10(mr) are scaled by a
factor of 103. Experimental values ofgr and grpp are derived fromG(r→e1e2)5(6.7760.32) keV and
G(r0→p1p2)5(150.862.0) MeV @20#, respectively. Those ofL9(mr) and L10(mr) are taken from Ref.
@21#.

LQCD L gr grpp L9(mr) L10(mr) a(0)

0.35 1.10 0.112 6.17 7.61 25.04 1.99
1.20 1.108 6.20 7.37 24.26 2.01

0.40 1.10 0.118 6.05 7.83 26.14 1.91
1.20 0.114 6.12 7.67 25.36 1.96

Expt. 0.11860.003 6.0460.04 6.960.7 25.260.3
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given by Fp(0). Thus we have to useFp(0) to define the
on-shellr-p-p coupling constant. The resultant expressi
is given by

grpp5
g~mr!

2

Fs
2~mr!

Fp
2 ~0!

. ~6.3!

The Gasser-Leutwyler parameterL9 @15#:
Similarly to thez4-term contribution togrpp we neglect

the contribution from the higher derivative typez6 term @11#.
The resultant relation betweenL9 and the parameters of th
HLS is given by@11#

L9~mr!5
1

4 S 1

g2~mr!
2z3~mr!D . ~6.4!

We further define the parametera(0) by the direct
g-p-p interaction in the second term in Eq.~2.5!. This pa-
rameter for on-shell pions is given by

a~0!5
Fs

2~mr!

Fp
2 ~0!

, ~6.5!

which should be compared with the parametera used in the
tree-level analysis,a52 corresponding to the vector meso
dominance~VMD ! @3,4#.

Then we predict the physical quantities as listed in Ta
II. The predicted values ofgr , grpp , L9(mr), andL10(mr)
remarkably agree with experiment within 10%, althou
L10(mr) is somewhat sensitive to the values ofLQCD andL
@19#. Moreover, we havea(0).2, althougha(L).a(mr)
.1.

Some comments are in order.
The Wilsonian matching condition~4.5! and the input val-

ues of Fp(0) and mr together with the Wilsonian RGE’s
determineFp(mr), a(mr), andg(mr), and hencegrpp . The
Wilsonian matching condition~4.6! with the above three pa
rameters determinez3(mr), the value actually needed@22# to
explain the experimental value ofgr . The value ofz3(mr)
together withg(mr) determinesL9(mr). Finally, the Wilso-
nian matching condition~4.4! with the values ofFp(L),
a(L), g(L), andz3(L) determinesz2(mr)2z1(mr), which
gives only a small correction toL10(mr). Although the tree-
01402
e

level r contribution toL10(mr) is large, the finiter-p loop
correction cancels a part of it. The resultant value ofL10(mr)
is close to experiment.

The Kawarabayashi-Suzuki-Riazuddin-Fayyazud
~KSRF! ~I! relationgr52grppFp

2 @23# holds as a low energy
theorem of the HLS@24,10,25#. Here this is satisfied as fol
lows: In the low energy limit higher derivative terms likez3

do not contribute, and ther-g mixing strength becomes
gr(0)5g(mr)Fs

2(mr). Comparing this withgrpp in Eq.
~6.3! @26#, we can easily read that the low energy theorem
satisfied. If we use the experimental values, the KSRF~I!
relation is violated by about 10%. As discussed above,
deviation is explained by the existence of thez3 term.

The KSRF ~II ! relation mr
252grpp

2 Fp
2 @23# is approxi-

mately satisfied by the on-shell quantities even thou
a(mr).1. This is seen as follows. Equation~6.3! with Eq.
~6.5! and mr

25g2(mr)Fs
2(mr) leads to 2grpp

2 Fp
2 (0)

5mr
2
„a(0)/2…. Thus a(0).2 leads to the approximat

KSRF ~II ! relation. Furthermore,a(0).2 implies that the
direct g-p-p coupling is suppressed~VMD !.

Inclusion of the quadratic divergences into the RGE’s w
essential in the present analysis.The RGE’s with logarithmic
divergence alone would not be consistent with the match
to QCD. The bare parameterFp(L)5158 MeV listed in
Table I, which is derived by the matching condition~4.5!, is
about double of the physical valueFp(0)588 MeV. The
logarithmic running by the first term of Eq.~3.1! is not
enough to change the value ofFp . Actually, the present
procedure with logarithmic running would lead togr

50.11 GeV2, grpp510, L9(mr)51331023, and L10(mr)
514.531023. The latter three badly disagree with expe
ment @27#.

VII. DISCUSSION

It is interesting to apply the Wilsonian matching propos
in this paper for an analysis of largeNf QCD done in Ref.
@2#. There it was assumed that the ratioFp

2 (L)/L2 has a
small Nf dependence. As is easily read from Eq.~4.5!, the
Wilsonian matching condition implies that the ratio actua
has a smallNf dependence. The analysis of the largeNf
chiral restoration of QCD in this line will be done in a sep
rate paper@28#.
3-4
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APPENDIX A: DERIVATIVE EXPANSION IN HLS

In chiral perturbation theory~ChPT! @29,15# the deriva-
tive expansion is systematically done by using the fact t
the pseudoscalar meson masses are small compared wit
chiral symmetry breaking scaleLx . The chiral symmetry
breaking scale is considered as the scale where the deriv
expansion breaks down. From the naive dimensional ana
@30# Lx is estimated as

Lx.4pFp;1.1 GeV, ~A1!

which also agrees with the matching scale~4.7! used in the
text. Since ther meson and its flavor partners are light
than this scale, one may consider that a derivative expan
with including vector mesons is possible. Actually, the fi
one-loop calculation based on this notion was done in R
@10#. There it was shown that the low energy theorem of
HLS @24# holds at one loop. This low energy theorem w
proved to hold at any loop order in Ref.@25#. Moreover, a
systematic counting scheme in the framework of the H
was proposed in Ref.@11#. A key point there was the fact tha
the vector meson masses in the HLS become small in
limit of the small HLS gauge coupling. It turns out that su
a limit can actually be realized in QCD when the massl
flavor Nf becomes large as was demonstrated in Refs.@2,28#.
Then one can perform the derivative expansion with incl
ing the vector mesons in the idealized world where the v
tor meson masses are small and extrapolate the results t
world where the vector meson masses take the experime
values. Although the expansion parameter is not very sm

mr
2

~4pFp!2
;0.4, ~A2!

that procedure seems to work in the real world.~See, e.g., the
discussion in Ref.@25#.! Here we apply such a systemat
expansion to the realistic caseNf53.

For the complete analysis at one loop, we need to incl
the term having external scalar and pseudoscalar so
fields S and P, as shown in Ref.@11#. These are included
through the external source fieldx̂ defined by

x̂[jL x jR
† , ~A3!

x[2B~S1 iP !, ~A4!
01402
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whereB is a constant parameter. If there is an explicit chi
symmetry breaking due to the current quark mass, it is in
duced as the vacuum expectation value~VEV! of the exter-
nal scalar source field:

^S&5M5S m1

�

mNf

D . ~A5!

However, in the present paper, we work in the chiral limit,
that we take the VEV to zero.

Now, let us summarize the counting rule of the pres
analysis. As in the ChPT in Ref.@15#, the derivative and the
external gauge fieldsLm andRm are counted asO(p), while
the external source fieldsx̂ ~or x) is counted asO(p2) since
the VEV of x̂ is the square of the pseudoscalar meson m

^x̂&5mp
2 :

]m;Lm;Rm;O~p!,

x̂;O~p2!. ~A6!

For consistency of the covariant derivative shown in E
~2.4! we assignO(p) to Vm[grm :

Vm5grm;O~p!. ~A7!

The above counting rules are the same as those in the C
An essential difference between the order counting in
HLS and that in the ChPT is in the counting rule for th
vector meson mass. In an extension of the ChPT~see, e.g.,
Ref. @21#! the vector meson mass is counted asO(1) at the
scale below the vector meson mass. However, as discu
around Eq.~A2!, we are performing the derivative expansio
in the HLS by regarding the vector meson as light. Th
similarly to the square of the pseudoscalar meson mass
assignO(p2) to the square of the vector meson mass:

mr
25g2Fs

2;O~p2!. ~A8!

Since the vector meson mass becomes small in the limi
small HLS gauge coupling, we should assignO(p) to the
HLS gauge couplingg, not toFs :

g;O~p!. ~A9!

This is the most important part in the counting rules in t
HLS. By comparing the order forg in Eq. ~A9! with that for
grm in Eq. ~A7!, the rm field should be counted asO(1).
Then the kinetic term of the HLS gauge boson is counted
O(p2) which is of the same order as the kinetic term of t
pseudoscalar meson.

With the above counting rules the leading order Lagra
ian is given by@3,4,11#
3-5
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L(2)5Fp
2 tr@â'mâ'

m#1Fs
2 tr@â imâ i

m#2
1

2g2
tr@VmnVmn#

1
1

4
Fx

2 tr@ x̂1x̂†#, ~A10!

where as discussed above we rescaled the vector meson
as

Vm5grm . ~A11!

Fx in the fourth term in Eq.~A10!, which was absent in the
previous analysis done in Ref.@11#, was introduced to renor
malize the quadratically divergent correction to the fou
term. We note that thisFx agrees withFp at the tree level. In
the present analysis we will not consider the renormaliza
effect of Fx .

A complete list of theO(p4) Lagrangian for the SU(Nf)
case is shown in Ref.@11#, where use was made of the equ
tions of motion
01402
eld

n

-

Dmâ'
m52 i ~a21!@â im ,â'

m#

1
i

4

Fx
2

Fp
2 S x̂2x̂†2

1

Nf
tr@ x̂2x̂†# D1O~p4!,

~A12!

Dmâ i
m5O~p4!, ~A13!

DnVnm5g2f s
2 â i

m1O~p4!, ~A14!

and the identities

Dmâ'n2Dnâ'm5 i @â im ,â'n#1 i @â'm ,â in#2Âmn ,
~A15!

Dmâ in2Dnâ im5 i @â im ,â in#1 i @â'm ,â'n#

1V̂mn2Vmn . ~A16!
ed
Below we write theO(p4) terms listed in Ref.@11# for readers’ convenience:

L(4)y5y1 tr@â'mâ'
mâ'nâ'

n #1y2 tr@â'mâ'nâ'
mâ'

n #1y3 tr@â imâ i
mâ inâ i

n#1y4 tr@â imâ inâ i
mâ i

n#

1y5 tr@â'mâ'
mâ inâ i

n#1y6 tr@â'mâ'nâ i
mâ i

n#1y7 tr@â'mâ'nâ i
nâ i

m#1y8 $tr@â'mâ i
mâ'nâ i

n#1tr@â'mâ inâ'
n â i

m#%

1y9 tr@â'mâ inâ'
mâ i

n#1y10~ tr@â'mâ'
m#!21y11 tr@â'mâ'n#tr@â'

mâ'
n #1y12~ tr@â imâ i

m#!21y13 tr@â imâ in#tr@â i
mâ i

n#

1y14 tr@â'mâ'
m#tr@â inâ i

n#1y15 tr@â'mâ'n#tr@â i
mâ i

n#1y16~ tr@â'mâ i
m#!21y17 tr@â'mâ in#tr@â'

mâ i
n#

1y18 tr@â'mâ in#tr@â i
mâ'

n #,

L(4)w5w1

Fx
2

Fp
2

tr@â'mâ'
m~x̂1x̂†!#1w2

Fx
2

Fp
2

tr@â'mâ'
m#tr@ x̂1x̂†#1w3

Fx
2

Fp
2

tr@â imâ i
m~x̂1x̂†!#

1w4

Fx
2

Fp
2

tr@â imâ i
m#tr@ x̂1x̂†#1w5

Fx
2

Fp
2

tr@~ â'mâ i
m2â i

mâ'm!~ x̂2x̂†!#1w6

Fx
4

Fp
4

tr@~ x̂1x̂†!2#

1w7

Fx
4

Fp
4 ~ tr@ x̂1x̂†# !21w8

Fx
4

Fp
4

tr@~ x̂2x̂†!2#1w9

Fx
4

Fp
4 ~ tr@ x̂2x̂†# !2,

L(4)z5z1 tr V̂mnV̂mn] 1z2 tr@ÂmnÂmn#1z3 tr@ V̂mnVmn#1 iz4 tr@Vmnâ'
mâ'

n #1 iz5 tr@Vmnâ i
mâ i

n#

1 iz6 tr@ V̂mnâ'
mâ'

n #1 iz7 tr@ V̂mnâ i
mâ i

n#1 iz8 tr@Âmn~â'
mâ i

n1â i
mâ'

n !#. ~A17!

We note here that among those given in Eq.~A17! only z1 , z2, andz3 are relevant to the present analysis which is confin
to the two-point functions in the chiral symmetric limit.

In Sec. V we discussed the low energy parametersL9 andL10 of the ChPT defined in Ref.@15#. Below we shall list the
O(p4) terms in the ChPT for the reader’s convenience:

L(4)
ChPT5L1~ tr@¹mU†¹mU# !21L2 tr@¹mU†¹nU#tr @¹mU†¹nU#1L3 tr@¹mU†¹mU¹nU†¹nU#1L4 tr@¹mU†¹mU#tr @x†U

1xU†#1L5 tr@¹mU†¹mU~x†U1U†x!#1L6 ~ tr@x†U1xU†# !21L7 ~ tr@x†U2xU†# !21L8 tr@x†Ux†U1xU†xU†#

2 i L 9 tr@L mn¹mU¹nU†1R mn¹mU†¹nU#1L10 tr@U†LmnURmn#1H1 tr@LmnL mn1RmnR mn#1H2 tr@x†x#, ~A18!
3-6



al

s
tin

in

.

e

to-

am-
e

e

nite
tion
q.

ion

WILSONIAN MATCHING OF EFFECTIVE FIELD . . . PHYSICAL REVIEW D64 014023
whereLmn and Rmn are the field strengths of the extern
gauge fieldsLm and Rm , respectively,x is defined in Eq.
~A4!, andU is defined as@see Eq.~2.2!#

U[e2ip/Fp5jL
†jR. ~A19!

The covariant derivative acting onU is defined as@see Eq.
~2.4!#

¹mU[]m2 iLmU1 iURm . ~A20!

Here we note that the above expression in Eq.~A18! is valid
for Nf53, and forNf>4 there is an extra term given by

tr@¹mU¹nU†¹mU¹nU†#. ~A21!

The relations at the tree level between the parameter
the ChPT and those in the HLS are obtained by integra
out ther field with the vector meson mass regarded asO(1).
@This implies that the HLS gauge couplingg is regarded as
O(1).# In this case the equation of motion~A14! leads to

â i
m5

1

mr
2
O~p3! ~A22!

and, thus,

Vmn5V̂mn1 i @â'm ,â'n#1
1

mr
2
O~p4!. ~A23!

Furthermore, we have

â'm5
i

2
jL•¹U•jR

†5
1

2i
jR•¹U†

•jL
† ~A24!

and

tr@ V̂mnV̂mn#5
1

4
tr@LmnL mn1RmnR mn#2

1

2
tr@U†LmnURmn#,

tr@ÂmnÂmn#5
1

4
tr@LmnL mn1RmnR mn#1

1

2
tr@U†LmnURmn#,

~A25!

where we used Eq.~3.3! with Eq. ~A19!. By substituting Eq.
~A24! into the HLS Lagrangian, the first and fourth terms
the leading order HLS Lagrangian~A10! become the leading
order ChPT Lagrangian:

L(2)
ChPT5

Fp
2

4
tr@¹mU†¹mU#1

Fp
2

4
tr@xU†1x†U#,

~A26!

where we tookFx5Fp . In addition, the second term in Eq
~A10! with Eq. ~A22! substituted becomes ofO(p6) in the
ChPT and the third term~the kinetic term of the HLS gaug
boson! with Eq. ~A23! becomes ofO(p4) in the ChPT. In the
O(p4) HLS Lagrangian~A17! the terms includingâ i

m be-
01402
in
g

come of higher order in the ChPT. The remaining terms
gether with the kinetic term of the HLS gauge boson@the
third term in Eq.~A10!# become theO(p4) ChPT Lagrang-
ian. Below, we list the correspondence between the par
eters in the HLS and theO(p4) ChPT parameters at the tre
level for Nf53:

L1 ⇔
tree

1

32g2
1

1

32
y21

1

16
y10,

L2 ⇔
tree

1

16g2
1

1

16
y21

1

16
y11,

L3 ⇔
tree

2
3

16g2
1

1

16
y12

1

8
y2,

L4 ⇔
tree

1

4
w2,

L5 ⇔
tree

1

4
w1,

L6 ⇔
tree

w7,

L7 ⇔
tree

w9,

L8 ⇔
tree

~w61w8!,

L9 ⇔
tree

1

4 S 1

g2
2z3D 1

1

8
~z41z6!,

L10⇔
tree

2
1

4g2
1

1

2
~z32z21z1!,

H1 ⇔
tree

2
1

8g2
1

1

4
~z31z21z1!,

H2 ⇔
tree

2~w62w8!, ~A27!

where we tookFx5Fp . It should be noticed that the abov
relations are valid at the tree level. As discussed in Ref.@11#
we have to relate these at the one-loop level where fi
order corrections appear in several relations: The rela
betweenL10 and the parameters in the HLS becomes E
~6.2! by adding finite order corrections.@We will derive this
finite order correction later in Eq.~C26!.# On the other hand,
there is no substantial finite order correction to the relat
for L9. Moreover, as discussed above Eq.~6.3! a detailed
analysis@17# using a similar model@31# does not require the
3-7
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existence of a higher derivative typez4 term as well as az6
term. Hence we neglected thez4 andz6 terms and obtained
the relation in Eq.~6.4!.

APPENDIX B: BACKGROUND GAUGE FIELD METHOD

We adopt the background gauge field method to ob
quantum corrections to the parameters.~For calculations in
other gauges, see Ref.@10# for the Rj-like gauge and Ref.
@25# for the covariant gauge.! This appendix is a preparatio
to calculate the renormalization group equations in Appen
C. The background field method was used in the ChPT
Ref. @15#, and was applied to the HLS in Ref.@11#. Follow-
ing Ref. @11# we introduce the background fieldsj̄L and j̄R
as

jL,R5 ĵL,Rj̄L,R , ~B1!

where ĵL,R denote the quantum fields. It is convenient
write

ĵL5 ĵS• ĵP
† , ĵR5 ĵS• ĵP,

ĵP5exp@ i ŵp
a Ta#, ĵS5exp@ i ŵs

aTa#, ~B2!

with ŵp and ŵs being the quantum fields corresponding
the NG bosonp and the would-be NG bosons. The back-
ground fieldV̄m and the quantum fieldv̂m of the HLS gauge
boson are introduced as

Vm5V̄m1gv̂m . ~B3!

We use the following notation for the background fields
cluding j̄L,R :

Ām[
1

2i
@]mj̄L• j̄L

†2]mj̄R• j̄R
†#1

1

2
@ j̄LLmj̄L

†2 j̄RRmj̄R
†#,

V̄m[
1

2i
@]mj̄L• j̄L

†1]mj̄R• j̄R
†#1

1

2
@ j̄LLmj̄L

†1 j̄RRmj̄R
†#,

~B4!

which correspond toâ'm and â im1Vm , respectively. The
field strengths ofĀm and V̄m are defined as

V̄mn5]mV̄n2]nV̄m2 i @ V̄m ,V̄n#2 i @Ām ,Ān#,

Āmn5]mĀn2]nĀm2 i @ V̄m ,Ān#2 i @Ām ,V̄n#, ~B5!

which correspond toV̂mn andÂmn , respectively. In addition
we usex̄ for the background field corresponding tox̂:

x̄[2Bj̄L~S1 iP !j̄R
† . ~B6!

It should be noticed that the quantum fields as well as
background fieldsj̄R,L transform homogeneously under th
background gauge transformation, while the backgrou
gauge fieldV̄m transforms inhomogeneously:
01402
in
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d

j̄R,L→h~x!j̄R,LgR,L
† ,

V̄m→h~x!V̄mh†~x!1 ih~x!•]mh†~x!,

ŵp→h~x!ŵph†~x!,

ŵs→h~x!ŵsh†~x!,

v̂m→h~x!v̂mh†~x!. ~B7!

Thus, the expansion of the Lagrangian in terms of the qu
tum field does not violate the HLS of the background fie
V̄m @11#.

We adopt the background gauge fixing in ’t Hooft
Feynman gauge,

LGF52tr@~D̄mv̂m1gFs
2 ŵs!2#, ~B8!

where D̄m is the covariant derivative on the backgroun
field:

D̄mv̂n5]mv̂n2 i @V̄m,v̂n#. ~B9!

The Faddeev-Popov~FP! ghost term associated with th
gauge fixing~B8! is

LFP52i tr@C̄„D̄mD̄m1~gFs!2
…C#1•••, ~B10!

where the ellipsis stands for interaction terms of the dyna
cal fieldsŵp , ŵs , and v̂m and the FP ghosts.

Now, the completeO(p2) LagrangianL(2)1LGF1LFP is
expanded in terms of the quantum fieldsŵp , ŵs , v̂, andC.
The terms which do not include the quantum fields are no
ing but the originalO(p2) Lagrangian with the fields re
placed by the corresponding background fields. The te
which are of first order in the quantum fields lead to t
equations of motions for the background fields:

D̄mĀm52 i ~a21!@ V̄m2V̄m ,Ām#

1
i

4

Fx
2

Fp
2 S x̄2x̄†2

1

Nf
tr@ x̄2x̄†# D1O~p4!,

~B11!

D̄m~ V̄m2V̄m!5O~p4!, ~B12!

D̄nV̄nm5g2Fs
2~ V̄m2V̄m!1O~p4!, ~B13!

which correspond to Eqs.~A12!, ~A13!, and ~A14!, respec-
tively.

To write down the terms which are of quadratic order
the quantum fields in a compact and unified way, let us
fine the following ‘‘connections’’:

Gm,ab
(pp)[ i tr$@~22a!V̄m1aV̄m#@Ta ,Tb#%, ~B14!

Gm,ab
(ss)[ i tr†~ V̄m1V̄m!@Ta ,Tb#‡, ~B15!
3-8
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Gm,ab
(ps)[2 iAa tr†Ām@Ta ,Tb#‡, ~B16!

Gm,ab
(sp)[2 iAa tr†Ām@Ta ,Tb#‡, ~B17!

Gm,ab
(VaVb)

[22i tr†V̄m@Ta ,Tb#‡ gab. ~B18!

Here one might doubt the minus sign in front ofGm
(VaVb)

compared with Gm
(SS) (S5p,s). However, sincegab5

2dab for a51,2,3, the minus sign is the correct one. Co
respondingly, we should use an unconventional metr
2gab to change the upper indices to the lower ones:

Gm(Va ,ab
Vb)

[(
a8

~2gaa8!Gmab
(Va8Vb) . ~B19!

Further we define the following quantities corresponding
the ‘‘mass’’ part:

Sab
(pp)[2

423a

2
tr†@Ām,Ta#@Ām ,Tb#‡

2
a2

2
tr†@ V̄m2V̄m,Ta#@ V̄m2V̄m ,Tb#‡

1
Fx

2

2Fp
2

tr@~ x̄1x̄†22M̂p!$Ta ,Tb%#, ~B20!

Sab
(ss)[2

1

2
tr†@ V̄m2V̄m,Ta#@ V̄m2V̄m , Tb#‡

2
a

2
tr†@Ām,Ta#@Ām ,Tb#‡, ~B21!

Sab
(ps)[ iAa tr†D̄mĀm@Ta ,Tb#‡1

1

2
Aa tr†[ Ām ,Ta]

3@ V̄m2V̄m,Tb#‡1S 12
a

2DAa tr†@ V̄m2V̄m ,Ta#

3@Ām,Tb#‡, ~B22!

Sab
(sp)[Sba

(ps), ~B23!

Sab
(VaVb)

[24i tr†V̄ab@Ta ,Tb#‡, ~B24!

Sab
(pVb)

[2iagFp tr†Āb@Ta ,Tb#‡, ~B25!

Sab
(Vap)

[22iagFp tr†Āa@Ta ,Tb#‡, ~B26!

Sab
(sVb)

[2igFs tr†~ V̄b2V̄b!@Ta ,Tb#‡, ~B27!

Sab
(Vas)

[22igFs tr†~ V̄a2V̄a!@Ta ,Tb#‡, ~B28!

where

Mp[2BM, ~B29!
01402
-

o

with the quark mass matrixM being defined in Eq.~A5!.
Here by using the equation of motion in Eq.~B11!, Sab

(ps) is
rewritten as

Sab
(ps)5Aa~12a! tr†@Ām ,V̄m2V̄m#@Ta ,Tb#‡

2 i
Aa

4

Fx
2

Fp
2

tr†~ x̄2x̄†!@Ta ,Tb#‡1
1

2
Aa tr†@Ām ,Ta#

3@ V̄m2V̄m,Tb#‡1S 12
a

2DAa tr†@ V̄m2V̄m ,Ta#

3@Ām,Tb#‡. ~B30!

To achieve more unified treatment let us introduce
following quantum fields:

F̂A[~p̂a,ŝa,v̂a
a ![~Fpŵp

a ,Fsŵs
a ,v̂a

a !, ~B31!

where the lower and upper indices ofF̂ should be distin-
guished as in Eq.~B19!. Thus the metric acting on the indi

ces ofF̂ is defined by

hAB[S dab

dab

2gabdab

D ,

hB
A[S dab

dab

gb
adab

D ,

hAB[S dab

dab

2gabdab

D . ~B32!

The tree mass matrix is defined by

M̃AB[S M̄p,adab

M̄V
2dab

2gabM̄V
2dab

D ,

~B33!

whereM̄V
2[g2Fs

2 , and the pseudoscalar meson massM̄p,a is
defined by

M̄p,a
2 dab[

Fx
2

Fp
2

tr@M̂p$Ta ,Tb%#. ~B34!

Here the generatorTa is defined in such a way that the abov
masses are diagonalized when we introduce the explicit
ral symmetry breaking due to the current quark masses
should be noticed that we work in the chiral limit in th
paper, so that we take

Mp50 or M̄p,a50. ~B35!
3-9
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Let us further define

~ G̃m!AB[S Gm,ab
(pp) Gm,ab

(ps) 0

Gm,ab
(sp) Gm,ab

(ss) 0

0 0 Gm,ab
(VaVb)

D , ~B36!

S̃AB[S Sab
(pp) Sab

(ps) Sab
(pVb)

Sab
(sp) Sab

(ss) Sab
(sVb)

Sab
(Vap)

Sab
(Vas)

Sab
(VaVb)

D , ~B37!

and

~D̃m!AB[hAB]m1~ G̃m!AB. ~B38!

It is convenient to consider the FP ghost contribution se
rately. For the FP ghost part we define similar quantities

Gm,ab
(CC)[2i tr†V̄m@Ta ,Tb#‡, ~B39!

~D̃m!ab
(CC)[dab]m1Gm,ab

(CC), ~B40!

M̃ab
(CC)[dabM̄V

2. ~B41!

By using the above quantities the terms quadratic in term
the quantum fields in the total Lagrangian are rewritten a

E d4x @L(2)
(2)1LGF1LFP#

52
1

2 (
A,B

E d4x F̂A@~D̃m•D̃m!AB1M̃AB1S̃AB#F̂B

1 i(
a,b

E d4x C̄a@~D̃m•D̃m!ab
(CC)1M̃ab

(CC)#Cb, ~B42!

where

~D̃m•D̃m!AB[(
A8

~D̃m!AA8~D̃m!A8
B , ~B43!

~D̃m•D̃m!ab
(CC)[(

c
~D̃m!ac

(CC)~D̃m!cb
(CC). ~B44!

APPENDIX C: RENORMALIZATION
GROUP EQUATIONS

In this appendix, we show the detailed derivation of t
RGE’s forFp , Fs ~anda[Fs

2/Fp
2 ), g, z1 , z2, andz3 for the

reader’s convenience. These RGE’s are derived by calcu
ing the divergent corrections at one loop to the two-po
functions of the background fields,Ām , V̄m , and V̄m . Note
that the RGE’s forFp , a[Fs

2/Fp
2 and g without quadratic

divergences were obtained in Ref.@10#. Note also that the
RGE’s forFp anda with quadratic divergences were derive
in Ref. @2#, and the RGE’s forz1 , z2, andz3 were in Ref.
@11#.
01402
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In the present analysis it is important to includequadratic
divergencesto obtain RGE’s in the Wilsonian sense. Since
naive momentum cutoff violates chiral symmetry, we nee
careful treatment of the quadratic divergences. Thus
adopt dimensional regularization and identify quadratic
vergences with the presence of poles of ultraviolet origin
n52 @9#. This can be done by the following replacement
the Feynman integrals:

E dnk

i ~2p!n

1

2k2
→ L2

~4p!2
,

E dnk

i ~2p!n

kmkn

@2k2#2
→2

L2

2~4p!2
gmn . ~C1!

On the other hand, the logarithmic divergence is identifi
with the pole atn54. The same result as that after the r
placements Eq.~C1! can also be obtained in the heat kern
expansion with the proper time regularization in which t
physical interpretation of the quadratic divergence is m
explicit with L having the same meaning as the naive cuto

Let us start from the one-loop corrections to the two-po
functionĀm-Ān . The relevant diagrams are shown in Fig.
The divergent contributions of these diagrams are evalua
as

PĀĀ
(a)mn

~p!udiv5gmn
Nf

2~4p!2
@22aM̄V

2 ln L2#,

PĀĀ
(b)mn

~p!udiv5gmn
Nf

2~4p!2 F2aL21
1

2
aM̄V

2 ln L2G
2~gmnp22pmpn!

Nf

2~4p!2

a

6
ln L2,

PĀĀ
(c)mn

~p!udiv5gmn
Nf

2~4p!2
@2~a21!L2#. ~C2!

The divergences in Eq.~C2! are renormalized by the bar
parameters in the Lagrangian. The tree-level contribut
with the bare parameters is given by

FIG. 1. One-loop corrections to the two-point functionĀm-Ān .
The vertex with a dot (d) implies the derivatives acting on th
quantum fields, while that with a circle (s) implies that no deriva-
tives are included: The vertices in~a! are fromSab

(pVb) andSab
(Vap) in

Eqs.~B25! and~B26!; the vertices in~b! are fromGm,ab
(ps) andGm,ab

(sp)

in Eqs.~B16! and~B17! together with the derivatives acting on th
quantum fields; the vertex in~c! is from the first term ofSab

(pp) in
Eq. ~B20! and(cGm,ac

(ps)Gcb
m,(sp) @32#.
3-10
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PĀĀ
(tree)mn

~p2!5Fp,bare
2 gmn12z2,bare~p2gmn2pmpn!.

~C3!

Thus the renormalization is done by requiring that the f
lowing be finite:

Fp,bare
2 2

Nf

4~4p!2
@2~22a!L213a2g2Fp

2 ln L2#5~finite!,

z2,bare2
Nf

2~4p!2

a

12
ln L25~finite!.

~C4!

The above renormalizations lead to the following RGE’s
Fp @the first equation in Eqs.~3.1!# andz2 @the second equa
tion in Eqs.~3.4!#:

m
dFp

2

dm
5

Nf

2~4p!2
@3a2g2Fp

2 12~22a!m2#, ~C5!

m
dz2

dm
5

Nf

~4p!2

a

12
, ~C6!

wherem is the renormalization scale.
Next we calculate one-loop corrections to the two-po

function V̄m-V̄n . The relevant diagrams are shown in Fig.
The divergent contributions are evaluated as

P V̄V̄
(a)mn

~p!udiv5gmn
Nf

2~4p!2
@22aM̄V

2 ln L2#,

P V̄V̄
(b)mn

~p!udiv5gmn
Nf

2~4p!2 F2
1

2
L21

1

2
M̄V

2 ln L2G
2~gmnp22pmpn!

Nf

2~4p!2

1

12
ln L2,

FIG. 2. One-loop corrections to the two-point functionV̄m-V̄n .
The vertices in~a! are fromSab

(sVb) and Sab
(Vas) in Eqs. ~B27! and

~B28!; the vertices in~b! are fromGm,ab
(ss) in Eq. ~B15! together with

derivatives acting on the quantum fields; the vertices in~c! are from
Gm,ab

(pp) in Eq. ~B14! together with derivatives acting on the quantu
fields; the vertex in~d! is from the second term ofSab

(pp) in Eq.
~B20! and(cGm,ac

(pp)Gcb
m,(pp) .
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r

t
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P V̄V̄
(c)mn

~p!udiv5gmn
Nf

2~4p!2 F2
~22a!2

2
L2G

2~gmnp22pmpn!
Nf

2~4p!2

~22a!2

12
ln L2,

P V̄V̄
(d)mn

~p!udiv5gmn
Nf

2~4p!2
@22~a21!L2#. ~C7!

Similarly to theĀm-Ān two-point function, we require tha
the following quantities be finite:

Fs,bare
2 2

Nf

4~4p!2
@~11a2!L213ag2Fp

2 ln L2#5~finite!,

z1,bare2
Nf

2~4p!2

524a1a2

12
ln L25~finite!.

~C8!

The above renormalizations lead to the following RGE’s
Fs andz1 @the first equation in Eqs.~3.4!#:

m
dFs

2

dm
5

Nf

2~4p!2
@3ag2Fp

2 1~11a2!m2#, ~C9!

m
dz1

dm
5

Nf

~4p!2

524a1a2

24
. ~C10!

The RGE fora[Fs
2/Fp

2 @the second equation in Eqs.~3.1!#
is derived from the RGE’s forFs andFp given in Eqs.~C5!
and ~C9!:

m
da

dm
52C~a21!F3a~a11!g22~3a21!

m2

Fp
2 G ,

~C11!

whereC5Nf /@2(4p)2#.
Now, we calculate the one-loop correction to the tw

point functionV̄m-V̄n . The relevant diagrams are shown
Fig. 3. These are evaluated as

P V̄V̄
(a)mn

~p!udiv5gmn
Nf

2~4p!2
@24L218M̄V

2 ln L2#

1~gmnp22pmpn!
Nf

2~4p!2

20

3
ln L2,

P V̄V̄
(b)mn

~p!udiv5gmn
Nf

2~4p!2
@22M̄V

2 ln L2#,
3-11
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P V̄V̄
(c)mn

~p!udiv5gmn
Nf

2~4p!2
@4L224M̄V

2 ln L2#

1~gmnp22pmpn!
Nf

2~4p!2

2

3
ln L2,

P V̄V̄
(d)mn

~p!udiv5gmn
Nf

2~4p!2
@4L228M̄V

2 ln L2#,

P V̄V̄
(e)mn

~p!udiv5gmn
Nf

2~4p!2
@24L214M̄V

2 ln L2#,

P V̄V̄
(f)mn

~p!udiv5gmn
Nf

2~4p!2 F2
1

2
L21

1

2
M̄V

2 ln L2G
2~gmnp22pmpn!

Nf

2~4p!2

1

12
ln L2

P V̄V̄
(g)mn

~p!udiv5gmn
Nf

2~4p!2 F2
a2

2
L2G

2~gmnp22pmpn!
Nf

2~4p!2

a2

12
ln L2. ~C12!

Summing up the contributions in Eq.~C12!, we obtain the
following divergent contribution:

FIG. 3. One-loop corrections to the two-point functionV̄m-V̄n .
The vertices in~a! are fromSab

(VaVb) in Eq. ~B24! andGm,ab
(VaVb) in Eq.

~B18! together with derivatives acting on the quantum fields;
vertices in~b! are fromSab

(sVb) andSab
(Vas) in Eqs.~B27! and~B28!;

the vertices in~c! are fromGm,ab
(CC) in Eq. ~B39! together with deriva-

tives acting on the quantum fields; the vertex in~d! is from Sab
(VaVb)

and (c,gGm,Vg),ac
(Va Gcb

m,(VgVb) ; the vertex in ~e! is from

(cGm,ac
(CC)Gcb

m,(CC) ; the vertices in~f! are from Gm,ab
(ss) in Eq. ~B15!

together with derivatives acting on the quantum fields; the vert
in ~g! are fromGm,ab

(pp) in Eq. ~B14! together with derivatives acting
on the quantum fields.
01402
P V̄V̄
(1-loop!mn

~p!udiv

52
Nf

4~4p!2
@~11a2!L213ag2Fp

2 ln L2#gmn

1
Nf

2~4p!2

872a2

12
ln L2~p2gmn2pmpn!.

~C13!

On the other hand, the tree contribution is given by

P V̄V̄
(tree)mn

~p2!5Fs,bare
2 gmn2

1

gbare
2 ~p2gmn2pmpn!.

~C14!

The first term in Eq.~C13! which is proportional togmn is
renormalized byFs,bare

2 through the requirement in Eq.~C8!.
The second term in Eq.~C13! is renormalized bygbare
through

1

gbare
2

2
Nf

2~4p!2

872a2

12
ln L25~finite!. ~C15!

This renormalization leads to the following RGE forg @the
third equation in Eqs.~3.1!#:

m
dg2

dm
52

Nf

2~4p!2

872a2

6
g4. ~C16!

We also calculate the one-loop correction to the two-po
function V̄m-V̄n to determine the renormalization ofz3. The
relevant diagrams are shown in Fig. 4. The divergent con
butions are evaluated as

e

s

FIG. 4. One-loop corrections to the two-point functionV̄m-V̄n .
The vertices in~a! are fromSab

(sVb) and Sab
(Vas) in Eqs. ~B27! and

~B28!; the vertices in~b! are fromGm,ab
(ss) in Eq. ~B15! together with

derivatives acting on the quantum fields; the vertices in~c! are from
Gm,ab

(pp) in Eq. ~B14! together with derivatives acting on the quantu
fields; the vertex in~d! is from the second term ofSab

(pp) in Eq.
~B20! and (cGm,ac

(pp)Gcb
m,(pp) ; the vertex in~e! is from the second

term of Sab
(ss) in Eq. ~B21! and(cGm,ac

(ss)Gcb
m,(ss) .
3-12



h

dent

ed

or
t

WILSONIAN MATCHING OF EFFECTIVE FIELD . . . PHYSICAL REVIEW D64 014023
P V̄V̄
(a)mn

~p!udiv5gmn
Nf

2~4p!2
@2M̄V

2 ln L2#,

P V̄V̄
(b)mn

~p!udiv5gmn
Nf

2~4p!2 F2
1

2
L21

1

2
M̄V

2 ln L2G
2~gmnp22pmpn!

Nf

2~4p!2

1

12
ln L2,

P V̄V̄
(c)mn

~p!udiv52gmn
Nf

2~4p!2

a~22a!

2
L2

2~gmnp22pmpn!
Nf

2~4p!2

a~22a!

12
ln L2,

P V̄V̄
(d)mn

~p!udiv5gmn
Nf

2~4p!2
aL2,

P V̄V̄
(e)mn

~p!udiv5gmn
Nf

2~4p!2
@L222M̄V

2 ln L2#. ~C17!

Thus

P V̄V̄
(1-loop!mn

~p!udiv5
Nf

4~4p!2
@~11a2!L213ag2Fp

2 ln L2#gmn

2
Nf

2~4p!2

112a2a2

12

3 ln L2~p2gmn2pmpn!. ~C18!

The tree contribution is given by

P V̄V̄
(tree)mn

~p2!5Fs,bare
2 gmn12z3,bare~p2gmn2pmpn!.

~C19!

The first term in Eq.~C18! which is proportional togmn is
renormalized byFs,bare

2 through the requirement in Eq.~C8!.
The second term in Eq.~C18! is renormalized byz3,bare
through

z3,bare2
Nf

2~4p!2

112a2a2

12
ln L25~finite!. ~C20!

This leads to@the third equation in Eqs.~3.4!#

m
dz3

dm
5

Nf

~4p!2

112a2a2

12
. ~C21!

To summarize, Eqs.~C5!, ~C11!, and~C16! are the RGE’s
for Fp

2 , a and g shown in Eq.~3.1!, and Eqs.~C10!, ~C6!,
and ~C21! are the RGE’s forz1 , z2, and z3 shown in Eq.
~3.4!.

Below themr scale,r decouples and henceFp runs by
the loop effect ofp alone. The relevant Lagrangian wit
01402
least derivatives is given by the first term of Eq.~A26! @or,
equivalently, the first term of Eq.~2.5!#, and the diagram
contributing toFp

2 is shown in Fig. 1~c!. The resultant RGE
for Fp is given by

m
d

dm
@Fp

(p)#25
2Nf

~4p!2
m2 ~m,mr!. ~C22!

Unlike the parameters renormalized in a mass indepen
scheme, the parameterFp(m) (m,mr) does not smoothly
connect toFp(m) (m.mr) at the mr scale. We need to
include the effect of finite renormalization. This is evaluat
by taking quadratic divergence proportional toa in Eq. ~C2!
and replacingL by mr . This leads to the relation~5.2!:

@Fp
(p)~mr!#25Fp

2 ~mr!1
Nf

~4p!2

a~mr!

2
mr

2 , ~C23!

where Fp
(p)(m) runs by the loop effect ofp alone for m

,mr .
Finally, let us show the finite correction to the relation f

L10 given in Eq.~6.2!. This is evaluated from the finite par
of the gmn part of theĀm-Ān two-point function.@Here the
gmn part of the Ām-Ān two-point function is defined by
PĀĀ

L (p2)[(pmpn /p2)PĀĀ
mn (p).# From Fig. 1 we obtain

PĀĀ
(a)L

~p!52NfaM̄v
2B0~p2;M̄ v,0!,

PĀĀ
(b)L

~p!5Nf

a

4
@BA~p2;M̄ v,0!2A0~M̄ v!2A0~0!#,

PĀĀ
(c)L

~p!5Nf~a21!A0~0!, ~C24!

where

A0~M2![E dnk

i ~2p!n

1

M22k2
,

B0~p2;M ,m![E dnk

i ~2p!n

1

@M22k2#@m22~k2p!2#
,

BA~p2;M ,m![
~M22m2!2

p2
@B0~p2;M ,m!2B0~0;M ,m!#.

~C25!

According to the analysis in Ref.@11#, the O(p2) part of
PĀĀ

(1-loop!L(p2)[PĀĀ
(a)L(p2)1PĀĀ

(b)L(p2)1PĀĀ
(c)L(p2) gives a

finite order correction toL10 as

2
1

4

d

dp2
PĀĀ

(1-loop!L
~p2!U

p250

5
Nf

~4p!2

11a

96
, ~C26!

which is the last term in Eq.~6.2!.
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