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We prove the factorization theorem for the processe$ — y and 7y* — 7 to leading twist in the cova-
riant gauge by means of the Ward identity. Soft divergences cancel and collinear divergences are grouped into
a pion wave function defined by a nonlocal matrix element. The gauge invariance and universality of the pion
wave function are confirmed. The proof is then extended to the exclisiveson decays—wl? andB
—alv in the heavy quark limit. It is shown that a light-coBemeson wave function, though absorbing soft
dynamics, can be defined in an appropriate frame. Factorization dHheI;decay inky space kt being
parton transverse momenta, is briefly discussed. We comment on the extraction of the leading-twist pion wave
function from experimental data.

DOI: 10.1103/PhysRevD.64.014019 PACS nuniferl2.38.Bx

I. INTRODUCTION wave function. Factorization in spin and color spaces means

that there are separate fermion and color flows between a

The fundamental concept of perturbative QGBRCD is  hard amplitude and a wave function, respectively. To
factorization theorem, which states that nonperturbative dyachieve these, we rely on the eikonal approximation for loop
namics of a high-energy QCD process either cancel or can biitegrals in leading infrared regions, the insertion of the Fi-
absorbed into hadron wave functions. The remaining parterz identity to separate fermion flows, and the Ward identity
being infrared finite, is calculable in perturbation theory. Ato sum up diagrams with different color structures. Under the
full amplitude is then expressed as the convolution of a har@jkonal approximation, a soft or collinear gluon is detached
amplitude with hadron wave functions. A wave function, be-f.om the lines in a hard amplitude and in other wave func-

cause of its nonperturbative origin, is not calculable. HOW-ions The Fierz identity decomposes a full amplitude into

ever, PQCD still possesses a predictive power, since a wavg, inytions characterized by different twists. The Ward

function is universal, i.e., process independent. With this uni-

versality. a wave function determined bv Some means Suchﬂentity is essential for proving the factorization theorem in a
Y, y ' non-Abelian gauge theory.

as .QCD sum rules and lattice theory, or extracted_ fr_om X In this paper we shall derive the factorization of the scat-
perimental data, can be employed to make predictions fO{ , . * o
ering processes y* — vy and wy* — , which involve the

other processes involving the same hadron. ; " ;
g S . . pion transition form factor and the pion form factor, respec-
Nonperturbative dynamics is reflected by infrared diver-,. . , . :
tively, at leading twist using the above techniques. Infrared

gences in radiative corrections. There are two types of infraaiver ences, occuring at higher powers 003/ Q bein
red divergences, soft and collinear. Soft divergences comg 9 ' 9 g b 9

. . momentum transfer in the above processes, are neglected. It
from the region of a loop momentumwhere all its compo- . . . .
nents vanish: will be shown that soft divergences cancel and collinear di-

vergences, factored out of the whole proesses order by order,
4= (11719 ~ (AN, (1) are absorbed into a pion wave function, which is defined by
a nonlocal matrix element. The universality of the pion wave
The light-cone variables have been adopted, Jamgla small ~ function is equivalent to the universality of the collinear di-
scale. Collinear divergences are associated with a massle¥grgences in the two processes. The definition of the hard
quark of momentunP=(Q,0,0;), Q being a large scale. In amplitude at each order will be given as a result of the proof.

the collienar region with parallel toP, the components df ~ We emphasize that our derivation is simple, explicitly gauge-
behave like invariant, and appropriate for both the factorizations of the

soft and collinear divergences.
[“~(Q,N2IQ,\N). (2 The factorization of the processy* — y(7r) has been
proved in[1], but in the axial(light-cong gaugeA*=0. In
In both regions the invariant mass of the radiated gluon dithis gauge factorization automatically holds and the analysis
minishes as\?, and the corresponding loop integrand mayis straightforward, because collinear divergences exist only
diverge as W*. As the phase space for loop integration van-in reducible diagrams. Our proof is performed in the covari-
ishes liked*l ~\*, logarithmic divergences are generated. ant gauge, in which collinear divergences also exist in irre-
Factorization of the above infrared divergences in a QCDducible diagrams. The collection of these collinear gluons
process needs to be performed in momentum, spin, and colé@rms a path-ordered integral along the light cone, which
spaces. Factorization in momentum space means that a haiehders a hadron wave function explicitly gauge invariant.
amplitude does not depend on the loop momentum of a soffthe pion wave function has been constructed frofy
or collinear gluon, which has been absorbed into a hadror- 7 in the framework of covariant operator product expan-
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sion [2,3]. However, it was not clear how the path-ordered
integral is generatel8]. We shall demonstrate that it appears (1 — z)P; (1-2)P P,
as a consequence of the Ward identity. The factorization of - 7 I AVAVAVAV
7y* —ar has also been proved [4] based on a generaliza-
tion of the Zimmermann's A-forest” prescription [5],

which involves complicated diagram subtractions. It will be AN
found that our derivation is simpler. zP, P, zP,
We then prove factorization theorem for the exclus/e
meson decay8— ylv and B— 7l v, whose topologies are (a) (b)
similar to the scattering processes* —y and wy* — ,
respectively. The infrared divergences B+ ylv and B FIG. 1. Lowest-order diagrams fary* —y (B— ylv), where

— xlv have been investigated {i6] and [7], respectively. the symbolX represents the virtual photdweak decay vertex.
However, a rigorous proof of factorization theorem has not

yet been available. In the heavy quark limit, terms ofl1(a) with the leading-twist structur®, ys/2N associated
O(Aqcp/Mg), Agcp being the QCD scale anllg the B with the pion,N.=3 being the number of colors, we derive
meson mass, are higher-twist and negligible. It will be shown

that in this limit a gauge-invariarB meson wave function _

and hard amplitudes can be defined. TBemeson wave HO(x) = —ie? \/Etr[é(Pz XP1) yuP1s]

function absorbs soft divergences of the above decays, which 2 (P,—xPy)?

differ from the collinear divergences in the pion wave func-

tion. However, it is still possible to construct a light-coBe _ie? \/Etr(épzmplvs) @
meosn wave functiofi8], if an appropriate frame with the 2 X Q2 '

photon(pion) moving in the minus or plus direction is cho-
sen.

We investigate th®(«;) collinear divergences contained
in the processry* — vy in Sec. Il, and present the all-order
proof of its factorization theorem by means of the Ward
identity in Sec. Ill. The factorization of the processy* ; il b d by the pi f : hich
— a7 is derived in Sec. IV. In Sec. V we prove factorization xregion witt be suppresse y the pion wave function, whic

- — ] " vanishes likex asx—0.
theorem for_ theB— ylv and B—mlv qlecays. Section VIis We identify the infrared divergences fro@(«s) radia-
the cpnclusmn. The detailed evaluat.|on 'of Déw,) cpllm- tive correction§9—11] to Fig. X(a), which are shown in Fig.
ear divergences imry* — are supplied in Appendix A. In > self-energy correction to the internal quark, giving a next-
Appendix B we comment on the extraction of the leading-to-leading-order hard amplitude, is not included. Figures
twsit pion wave functions from experimental data of* 2(a)—2(c) are the reducible diagrams with the additional

Figure 1b) leads to the same amplitude, because the pion
wave function is symmetric under the interchangexaind
1-—x. The internal quarks are regarded as being hard, i.e.,
being off-shell byO(Q?), since contributions from the small

—yandmy* —m. gluon attaching the two valence quarks of the pion. It has
been known that soft divergences cancel among these dia-
Il. O(ay) FACTORIZATION OF m9*—y grams. The reason for this cancellation is that soft gluons,

being huge in space-time, do not resolve the color structure
We start with the factorization of the process* — vy at  of the pion. Collinear divergences in Figga2-2(c) do not
the one-loop level, which will serve as the basis of the all-cancel, since the loop momentum flows into the internal
order proof. The momenturR; of the pion and the momen- quark line in Fig. 2b), but not in Figs. 2a) and 2c). To
tum P, of the outgoing on-shell photon are parametrized asabsorb the collinear divergences, we introduce a nonpertur-
bative pion wave function.

Q

P1=<PI,0,0T):E<1,00T>, i
P2=(0,P2,0T)=%(0,10T). 3) ANV AN ®\/\/\/\m

Let e denote the polarization vector of the outgoing photon, 4—% —>

which contains only the transverse components. We conside!
the kinematic region with larg®?= —q?, q=P,— P, being é?
VVVVY AVAVAVAVAY,

the virtual photon momentum, where PQCD is applicable.

The lowest-order diagrams are displayed in Fig. 1. The (d) (e)
lower valence quarkan anti-quark in the pion carries the
fractional momentunxP,;. Contracting the amplitude in Fig. FIG. 2. O(«a,) radiative corrections to Fig.(4).
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The factorization of Figs. (@) —2(c) is achieved by means because the internal quark is off-shell. For example, the loop
of the insertion of the Fierz identity: integrand corresponding to Fig(d} is approximated, in the
|—0 region, by
1 1 1 N
|ij||k—Z|ik||j+Z()’s)ik(?’s)|j+Z(%)ik()’ )j 1
(P,—xPy+D)[(1—x)P,+1]%1?

. a 1 af
+Z(757a)ik(7 75)|j+§(0'a/3)ik(ff TR ) 1

- ~ -3
2(1—x)(P,—xP;)2P4-112 O(A77), (10

wherel represents the identity matrix, and,; is defined by

0.5=1[v4,7p]/2. Different terms in the above identity lead whijch is suppressed by the phase space for loop integration
to contributions of different twists. Take Fig(l as an ex- g4 ~\4, Therefore, we consider only the collinear diver-

ample, whose loop integrand is given by gences. The integrand associated with Figl) & written as
N XPl—r PZ_XP1+Y NC PZ_XP]_ PZ_XP1+I
lp=62g2Cg \/ —=tr{ v, £ | ,qg=—€?g?Cr \/ —tr{ ¢ ,
BTETEEN 2 Y 12 (Py—xPy 1 1)2 ¥ 2 T E TN S p, xP? " (Py—xPy )2
o (1—-x)P,+1 vp 1 ®) y (1-x)P,+f op 1 11
[(1—xPy 1727 7012 B EIRAR D
with Cr being a color factor. Inserting the Fierz identity, we Since ¢ and vy, involve only yr, we drop —xP; and
obtain —xP,+/I in the internal quark propagators in the collinear
region. Equatior(11) is then simplified into
xP—1I o
|2b%igch tr ’yyﬁ 752’), | :_ezgzc &—ZPZV
(xP=D) 2 N2 (p,—xP,+1)2
1-xX)P+/ - 1 N
X A=)y vY V512 a2y /=S P,—xP, (1—X)P,+1 1
[(1-xP,+I2 2 |12 2 xtr| & Ya Y'Piys| =
(Py=xP)? ""[(1-x)Py+1]? 12

Xtr[é(Pz—Xplﬂ)Vﬂ”‘Vs)Pf (12

(@)

_ 2
(P2=xPy+1) For thel-dependent hard propagator, we employ the rela-
Obviously, in the collinear region with the loop momentum tion
parallel toP,, only the pseudo-vector structungy, con- op n (P,—xP;)2
tributes to the first trace as shown above. Moreover, the ma- —2”2~ d { - 2—12 . (13
trices y, and y* must bey_=1vy" andy~, respectively. (Py—xP;+1)2 Nl (Po—=xPy+1)

Equation(7), as integrated ovds is rewritten as the con-
volution of the lowest-order hard amplitut®)(£) with the
O(ag) pion wave functionglt) in the momentum fraction

which is an example of the Ward identity. The dimensionless
vectorn=P,/P, , representing the direction of an eikonal

y_|t/pt - line, lies along the outgoing photon momentum).is called
E=x—17IP;: , 3 :
the eikonal vertex and @/ is called the eikonal propagator.
| ~¢(1)H(°)(§) ) The appearence of the eikonal line is a consequence of the
2b™ ¥ 2b ' Ward identity. Inserting the Fierz identity, we derive the fac-
torization,
xP,—1 *
1) ..o 1 YsY
=iy CF“{ Y e 2 |29~ $STHO) ~HO(&)], (14

with the O(«g) pion wave function

(1—X)P1-H' ’}/_’}/5 1
x R TG N )
[(1=x)Py+1] | Q_ 2 ysy. (L=x)P;+f ¥y ys| 1 n,
b2g=—197Crtn — Y >
(1) . . . . . [(l_X)Pl+|] [=n:
¢35, contains the collinear divergence in Figh2 because (15)
the integrand in Eq(9) diverges as N*. The dependences
onl~ and onl; in H®, being subleading according to Eq. The collinear contribution from Fig.(8) has been split into
(2), have been neglected. two terms, with the first and second terms described by Figs.
Diagrams with the additional gluon attaching the internal3(a) and 3b), respectively, where the eikonal propagator is
quark, Figs. 2d) and Ze), do not contain soft divergences, represented by a double line. In FigbBthe loop momen-
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’ 3(b), zruns frome back toy~. It is easy to confirm that the
%%QQJ ! /ég above definition reproduces all the leading-twist collinear di-
' ﬁ‘ vergences in Figs. (3—2(c) and in Figs. 83)-3(d). The
light-cone coordinatg ™ #0 corresponds to the fact that the
collinear divergences in Fig. 2 do not cancel exactly.
(©) @ At last, the factorization formula for the processy*
— 1y is written, up toO(«sg), as

(¢+ pMe(HO+HD)+0(ad), (20
o with ¢(9=1 and® representing the convolution in the mo-
mentum fraction. Th@(«,) hard amplitudeH® is defined
by
-
(e) d4
HO= f | — (1)®H(0), 21
2 ot (21)

FIG. 3. (a)—(d) Infrared divergent diagrams factored out of Figs.
2(d) and 2e). (e) The graphic definition of the leading-twist pion

. where the subscriptruns from 2 to 2e. Obviously,H®) is
wave function.

infrared finite, since all thed) collinear divergences have

. . . i i o)
tum | flows into the internal quark line, such that the second®&en absorbed into the pion wave functigft).

term is a convolution oH® with ¢S} in the momentum

fraction &. Ill. ALL-ORDER PROOF OF FACTORIZATION
Figure 2e) gives the loop integrand THEOREM
N P._f P Pt In this section we present the all-order proof of leading-
o= €2g%CE \ [—tr " X L 2 XP1t twist factorization theorem for the processy* — 1y, and
¢ 2 (xP;—1)2 (P,—xP;+1)2"" construct a gauge-invariant pion wave function defined by
P,—xP, 1 1 dy” — sy
X————y Pl)’s]_- (16) B(X)= ———— | ——e"*P1Y (0[q(y )—=—P
27K 2
(P,—xP;) I \/Z_Ncpf 27 2
Following the similar procedures, we obtain, in the collinear (v
region, X ex —lgfo dzn-A(zn) |q(0)[m(Py)),
| pe~— pSHO (&) —HO(x)], 17) (22)
with the O(as) pion wave function as shown in Fig. @). The notationP means the path order-
Pt . 1 ing. By expanding the quark fieldgi(y~) and the path-
SV =ig2C, tr! 5" 178 ysy ¥ vs(2 M ordered exponential into powers gf , the above matrix
2e (xP,—1)? 2 2 [12nl element can be expressed as a series of covariant derivatives

(18)  (D*)"q(0), implying that Eq.(22) is gauge invariant.
' . . . It has been mentioned in the Introduction that factoriza-
The first and second terms in E(.7) are described by Figs. tion of a QCD process in momentum, spin, and color spaces

3(c) and 3d), respectively. . ; . . )
. requires summations of many diagrams, especially at higher
Comparing Eqst9), (15), and(18), the Feynman rules for orders. Hence, the diagram summation must be handled in an

the perturbative evaluation of the pion wave function are . : .
. . ; I . For th loy the W

clear: »(*) can be written as a nonlocal hadronic matrix ele-e egant way. For this purpose, we employ the Ward identity,

ment with the structureysy /2 sandwiched, which comes 1,GA(1 Ky Ky k,)=0 (23)

from the insertion of the Fierz identity: ® et

B N where G* represents a physical amplitude with an external
dD(x) = 1 fdieixp;y—mﬁ(y_ﬂﬂ (—ig) gluon carrying the momentuhand withn external quarks

\/2_|\|Cp1+ 2 2 carrying the moment&,, ks, ... k,. All these external
particles are on mass shell. The Ward identity can be easily
derived by means of the Becchi-Rouet-StB&S) transfor-
mation[12].

We prove factorization theorem by induction. The factor-
The sum over colors is understood. The integral avémn ization of theO(as) collinear divergences associated with
fact contains two pieces: For the upper eikonal line in Fig.the pion has been worked out in Sec. Il. Assume that the
3(a), z runs from 0 tox=. For the lower eikonal line in Fig. factorization holds up t@(ak):

><foyidzn-A(zn)q(O)|7-r(P1)). (19)
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We then discuss factorization of irreducidBN*2). Let
(QQD9) + é + ® a a be the outer most vertex on the upper quark line, gnd
égbb) denote the attachments of the other end of the radiated gluon
insideG™). The pion possesses the leading-twist spin struc-
(a) ture P,ys from the Fierz identity. The fermion propagator

adjacent to the vertex is proportional toP; in the collinear
I { I region with the loop momenturnparallel toP,. Hence, the
<QO§ componenty® in y*, which is located between the spin
structure and the fermion propagator, gives the leading con-
tribution. The vertexB must be dominated by the minus
component. With the above reasoning, we propose the fol-
(6) lowing replacement for the tensa®? appearing in the
propagator of the radiated gluon:

%QJ + %ﬂ ® ol ga,l?*)na_lﬁ 27)
()

il

n-l°

The lightlike vectorn, in the minus direction, which was

introduced in Eq(13), selects the plus component gf. In

FIG. 4. (a) Factorization ofo(aN*?) reducible diagrams(p) ~ the collinear regior lies mainly in the plus direction, arig
The Ward identity.(c) Factorization ofO(a)*?) irreducible dia-  Selects the minus component of the vergexTherefore, Eq.

grams. (27) extracts the leading-twist collinear divergences from the
irreducibleG(N*1),
G=¢®H, (24) The contraction of# hints the application of the Ward
identity in Eq. (23) to the case with two external on-shell
with quarks. Figure &) contains a complete set of contractions of

I8, which are represented by arrows, since the second and
N N N third diagrams have been added. The cuts on the quark lines
G=> GO, ¢=> ¢O, H=> HD. (25  denote the insertion of the Fierz identity. The Ward identity,
=0 =0 =0 namely, the equation described by Figb} holds. The sec-

G denotes the full diagrams @(ca’) with G@O=H®© in ond diagram gives

Eq. (4), the pion wave functiop is defined by theD(a) 1
terms in the perturbative expansion of Eg2), andH® is g YPP1vs
the infrared-finite hard amplitude @(«L). We then have (1-x)P =1
the relations
. =—[I-(1-X)P+(1—-Xx)P]P
. i _ a (1—X)Pl—f[ ( 11 ( 1JP17s
GIH=> pWenHi-N, (26)
e _(A0Plys 08
fori=0, ... N, whichimply that all collinear divergences in (1-x)P,—1 175

GO have been collected int¢!)), j<i, systematically.
Consider a complete set of full diagran@N™1) of  The first term in the second expression vanishes because of

o(a's““)_ We look for the gluon, one of whose ends at- the on-shell conditiorP§=0. The second term corresponds

taches the outer most vertex on the upper quark line in thto the O(ay) full diagramsG™. Similarly, the third dia-
pion. Such a gluon exists, sin@&"N*) are finite-order dia- gram leads to

grams. We then classif@™N*Y) into two categories, reduc-

ible and irreducible, according to the attachment of the other 5 1 XP?ys

end of this gluon. If the other end attaches the upper or lower |gP1YsY xP.—1 - XP.—] —P1ys, (29)
quark lines directly, the diagrams are reducible. Thex,) ! !

examples are Figs.(@-2(c). All other diagrams, with the \here the first term vanishes and the second term corre-
other end attaching inside of tt@(ay) full diagramsG™,  sponds toG™. The factorn,/n-1 from the collinear re-
are irreducible. Th®(as) examples are Figs.(@) and Ze). placement in Eq(27) is exactly the Feynman rule associated
The factorization of reducible diagrams is the same as that okith the eikonal line in the direction af. Equationg28) and
Figs. 2a)—2(c): we simply insert the Fierz identity to sepa- (29) imply that in the collinear region the irreducib®™N*1)
rate GNY into the convolution ofGN) with the O(es)  are factorized as shown in Fig(c}. Obviously, the factor-
collinear divergent diagrams, which contribute to the pionization of the irreducible diagrams with the gluon emitted
wave functiong®. The result is shown in Fig.(d). The from the outer most vertex on the lower quark line exists.
explicit expression of;s(z}]) has been derived in E¢). We conclude that the irreducibi@N 1) can be factorized
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into the convolution ofG™N) with ¢ described by Figs. (1 — z,)P, (1—25) P
3(a)—3(d), in which the radiated gluon attaches the eikonal
lines.
We derive the collinear factorization &N+ 1):
(N+1) o 4(1) (N)
G oG, (30 2. P, 5P,

where ¢ contains both the reducible gluons in Figay
and the irreducible gluons in Figs(é8—3(d). The remaining (a) (b)

part FN*1) | defined via o
FIG. 5. Lowest-order diagrams fery* — @ (B— =l v), where
GN* D= M GMN+ F(N*1), (3)  the symbolx represents the virtual photdweak decay vertex.

is infrared finite, i.e., free from the collinear divergence as-

B N . . -
sociated with the pion. The above procedures are also appfS the convolution 0@‘( )_W'th the O(as) infrared divergent
cable to theO(aN*™1) pion wave functiong™* D, which is diagrams as shown in Fig(a. It is easy to confirm that the

S )

: : . derivation in Egs(6)—(8) still applies to the soft region with
defined by the perturbative expansion of E2R). We have
! y per Ve expansi ) v the loop momenturh— 0. The soft divergences in ti@(«s)

¢(N+l):¢(l)®¢(N)+E(N+l)' (32) diagrams cancel in the same way as in Figs)-22(c). The
remainingG™") are free from soft divergences as assumed
with the infrared-finite functiore™N* 1), above. Hence, the reducibleé™*? have no soft diver-
Employing Egs(26), (31), and(32), we write gences.
ploving =4 We then consider irreducib@™N 1), The diagram&™,
N _ _ without soft divergences, are dominated either by hard or by
GV h=¢We ZO pNoHN"D 4 F(NTD collinear dynamics. In the hard region 6\, internal par-
= ticle propagators behave like@?. The attachment of a soft
N _ o . gluon, producing one more hard propagator, does not intro-
=> [0 D—FUD]gHN-D+F(N+D) duce soft divergences. The reason for this absence of soft
1=0 divergences is the same as in Et0). In the collinear region
N+1 of GIN), where momenta parallel ®; dominate, we employ
= > pDgHN+I-) L yN+1) (33  the eikonal approximation for the small loop momentym
=1
with the O(al™ 1) hard amplitude, P+ P,

P~ P,. (36)
N _ (P2 TPt
H(N+1)EF(N+1)—2 Fl+DgHN-I), (34)
=1

Obviously, the functiorH™*) does not contain any collin- The contraction of the numeratér, , to the outer most ver-
tex y*, which is mainlyy*, leads to a vanishing contribu-
tion. Therefore, the irreducibl&™*Y) do not contain soft

divergences either. Extendimgto infinity, we prove that the

N+1 processmy* — v is free from soft divergences.

G(N+1) = 2 ¢(J’)®H(N+l*j)_ (35)
=0

ear divergence, since both and F are infrared finite. Be-
cause of¢p(®=1, Eq.(33) becomes

L . . IV. FACTORIZATION OF *
The above expression indicates that all collinear divergences Ty

in the full diagrams ofwy* —y can be factored into the We investigate infrared divergences in the process
definition of the pion wave function in Eq22) order by — 4, and discuss only the factorization of the initial-state
order, and that the remaining hard amplitude is infrared fipion wave function. The discussion of the final-state wave
nite. Allowing N to approach infinity, we prove factorization function is the same. Assume that the incoming and outgoing
theorem for the processy* — v to all orders. pions carry the momentd; andP,, respectively, which are
At last, we prove by induction that soft divergences dodefined by Eq(3), and that the momentum fraction (x,)
not exist in the process y* — vy to leading twist. TheD(«ag) is associated with the lower quark line in the incom{ogt-
soft cancellation has been explained in Sec. Il. Assume thajoing) pion. The above kinematic variables have been indi-
the O(aY) full diagramsG™ do not contain any soft diver- cated in the lowest-order diagrams in Fig. 5. Similarly, we
gence(though they contain collinear divergenteSonsider consider the region with large momentum transf@f
the O(a*?) full diagramsG(N*Y, Similarly, we look for =—gq? g=P,— P being the virtual photon momentum.
the gluon radiated from the outer most vertex on the upper Contracting the four-quark amplitudes in Fig. 5 with the
quark line, and classify the diagrams into the reducible andeading-twist spin structure®;ys/v2N, and ysP,/\2N,
irreducible types. For reducible diagrams, we exp@$5™Y)  from the initial and final states, respectively, we derive
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CIHD(xy %) —HD(£1,x2)], (39

N
« v © lee~ 5 PelHE (X1 x0) —HQ(E 2], (40)

ad with £&,=x,—17/P; . The dependences ¢n andl in H)
have been neglected, since they are subleading in the collin-

ear region. Collinear divergences frdrparallel toP; vanish
() (e) (£) (@) in Figs. &f) and Gg). We have separated the integramgs
andl g, into two terms, similar to those in Eq&l4) and(17).

m However, the color factors are different because of the dif-

ferent color flows in Figs. @) and &d). We shall explain
how to fix the color factors after calculating FigghB-6(k).
The collinear factorization of the irreducible corrections
(QQO9) in Figs. 8h)—6(k) relies on the eikonal approximation. The
() @) () (k) results are written as

FIG. 6. O(as) radiative corrections to Fig.(&). lgh~—

SeN, e HE (e xo), (41)

Y ysPoy, (Po—X1P1) v, P1ys]

i

HO(x, %)= —eg?C _ (D ()

Sa( 1 2) 2 gz F (PZ_lel)z(lel_XZPZ)Z I('}I 2C N d) H5a(§1,X2), (42)
4e?Ck 1

= = . (UH (0)

X1X2Q2 IPlM’ (37) I6J ZC N d) (él!XZ) (43)
1
Ly 5Py u(P1—XoP2) v, P1ys] ~ (WH O

Hgk)))(xl 1X2) = _eg2 E Lt I6k ZC N ¢ (Xl 1X2) (44)

(P1=X,P2)%(X1P1—X,P;)?
degC To discuss soft divergences, we simply allbivto appraoch
__*® FiP2 _ (39) zero, i.e.,&1—Xq. It is easy to find that soft divergences
X1X,Q? “ cancel between Figs(I6) and i) and between Figs.(§ and
6(k). Hence, irreducible corrections are free from soft diver-
The other two lowest-order diagrams, where the virtual phogences.
ton attaches the lower quark lines, lead to the same expres- Combining Eq(41) and Eq.(42) with the first and second
sions but with different electric charge Since contributions  terms in Eq.(39), respectively, and combining E¢3) and

from soft partons X;,x,—0) are suppressed by the pion Eq. (44) with the second and first terms in E@0), respec-
wave functions, the exchanged gluons in Fig. 5, off-shell byt|ve|y, we obtain the correct color factors:

0(Q?), are regarded as being hard.

loa)— 600~ PSHTHD (X1, %2) —HD (&1 ,%,)]

o | . + PSAIHQ (1, %)~ HEN (&1, %2)], (45)

We first identify infrared divergences fro@(«s) radia-
tive corrections[13] to Fig. 5a). The diagrams in Fig. 6 which are also described by FigsaB-3(d). It is observed
contain potential infrared divergences associated with the infrom the above expression that the collinear divergences in
coming pion. We do not consider self-energy corrections td¢he summation of Figs.(6)—6(k) are identical to those in the
the inernal lines, since they, without infrared divergencessummation of Figs. @) and Ze), consistent with the univer-
give only a next-to-leading-order hard amplitude. The treatsality of hadron wave functions.
ment of Figs. 6a)—6(c) is the same as that of Figs(a@- We then investigate infrared divergences from radiative
2(c): soft divergences cancel and collinear divergences areorrections to Fig. &). The diagrams in Fig. 7 contain po-
factored into the pion wave functiopp!™) by inserting the tential infrared divergences associated with the incoming
Fierz identity. pion. The factorization of Figs.(@—7(c) is the same as that

Diagrams with the additional gluon attaching the internalof Figs. §a)—6(c): They are absorbed into the leading-twist
lines, such as Figs.(6)—6(g), do not generate soft diver- pion wave functionp®) straightforwardly. The contributions
gences, because the internal lines are off-shell. We conceffrom Figs. 7d) and de) are the same as those from Figs.
trate only on collinear divergences. Following the detailed6(d) and Ge).
calculation in Appendix A, the collinear divergences in Figs.  For Figs. 7f), we consider only the collinear divergences
6(d) and Ge) are given by from | parallel toP4,

A. O(ay) factorization

014019-7
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E B. All-order factorization

g The analysis of th®©(«,) collinear divergences iary*
@@5) — 1 indicates that factorization of a QCD process requires
(@ ® © summations of many diagrams. For example, the summation
(@_Ob) of Figs. 1f) and 7h) removes the dependence of the hard
E /g amplitude on the loop momentumThe summations of Figs.

6(d) and @&h) and of Figs. 7d), 7(f), and 7h) give the correct
color factors. To prove factorization theorem to all orders,
we deal with these summations by means of the Ward iden-
(d) (e) () ) tity. It is trivial to generalize the proof for the processy*

— 1y to my* — . In the present case the amplitu@ in

(666@55) Eq. (23) contains four external on-shell quarks. We simply
interpret the functiorH as the part that does not involve the
collinear divergences associated with the incoming pion.
Then repeat the procedures and further factokzimto the
@@9) the convolution of a hard amplitude with the wave function
h) (0 ) ") associated with the outgoing pion. _ _

The proof of the absence of soft divergences in the pro-
cessmy* —ar is subtler. It has been shown that t0¢ «.)
corrections do not produce soft divergences. Assume that the
soft cancellation exists up ©(«Y). For reducibled(al 1)
full diagramsGN*Y), we insert the Fierz identity to factor
out the O(«y) infrared divergent diagrams, which involve

(46)  the gluons emitted from the outer most vertices on the upper
and lower quark lines. This insertion works for both the
initial- and final-state pions. The soft divergences in the
O(ag) diagrams cancel in the same way as in Fige)-2
2(c). The remainingd(aY) full diagramsG™) have no soft
Qivergences as assumed above. Hence, the redu@fBie?
do not contain soft divergences.

For irreducibleGIN*Y), we consider the gluon emitted

FIG. 7. O(«s) radiative corrections to Fig.(B).

_ig? n-[(1=x;)Py+I]
NG [(1—x)P;+114%n-(P,+1)

Hgt)))(xl 1X2) .

The result differs form that of Fig.(6), which vanishes. Note
that the collinear divergence in E@L6) is not in the correct

consider the collinear factorization of Fig(hy,

ig2 n-[(1=%;)Py+1] n P, from the outer most vertices on the upper and lower quark
I~ 1 > — HO(x1,%,). lines in the incoming pion. Sinc&™ are free from soft
¢ [(1=xy) Py 1] n-(Py+1) N divergences, they are dominated either by hard or by collin-

(47) ear dynamics. In the hard region and in the collinear region
with momenta parallel t®,, the soft divergences vanish for
Combining Eqs(46) and (47), we have the simpler expres- the same reason as for the procesg® — y. In the collinear
sion region with momenta parallel t&,, we adopt the eikonal
approximation,

P+t n,

= aP A~ —
(P12 ™ 2 il

| 1 HSHHD (x4 ,x5) (48)
7t+7h 2CeN, P2d oo (X1.X2), P,. (49

whose collinear divergence is exactly the same as that of Fidt is easy to observe that the above approximation can be
6(h) in Eqg. (41). At last, combining the collinear divergences achieved by the replacement in EgY7).
in Eq. (48) and those from Fig. (d), we obtain the result We propose to employ E@27) to extract the soft diver-
described by Fig. @&). gences in the irreducibl&é™* 1), In the hard region and in

A similar analysis shows that the collinear divergences irthe collinear region with momenta parallel ®,, the re-
the sum of Figs. (@) and 7j) are the same as in Fig(ji placement in Eq(27) simply modifies subleading contribu-
Combined with the divergences from FigeY, we obtain the tions, that are free from soft divergences. In the collinear
result described by Fig.(8). The results for Figs.(f) and  region with momenta parallel ., the replacement extracts
7(k) are the same as for Figsiipand k), respectively, and the correct soft divergences in the irreducib@&N*1).
their collinear factorizations, combined with Figgdyand  Hence, Eq(27) always works for a leading-twist analysis of
7(e), are described by Figs(® and 3d), respectively. We soft divergences. The derivation from E@8) to Eq. (30)
conclude that th©(a.) collinear divergences in Figs. 6 and holds, and the irreduciblé™ 1) are factorized into the con-
7 are identical to those in Fig. 2, and can be formulated intovolution of G with Figs. 3a)—3(d). SinceG™Y) have no
the leading-twist pion wave functiog* defined in Eq. soft divergences, we allow the loop momentunfiowing
(19). insideG(N) to approach zero. It is then obvious that the soft
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PERTURBATIVE QCD FACTORIZATION OFmy* — y() . . . PHYSICAL REVIEW D 64 014019

divergences cancel between Figé)3and 3b) and between jith the dimensionless vecar=(1,0,0;), each of which is
Figs. 3c) and 3d). That is, the irreducibl&™*1), like the  associated with 8 meson wave function. For the radiative
reducibleG™ V), are also free from soft divergences. The decay B— ylv, only the first structure contributes at the
same argument applies to the gluons emitted from the Ouﬁ'eading-twist. ’

going pion side. At last, extending to infinity, we prove the Contracting the amplitudes in Fig. (@ with (P,

absence of soft divergences in the procesg — . - .
We conclude from the discussions in Secs. Il and IV that ™M e)iys/(2VNc), we derive

the leading-twist infrared structures in the processes
—  andmy* — y are identical, and that the pion wave func- HO ()= —e ING ] P2y, (1 y5)1] 54
tion, defined by Eq(22), is universal. la 2 x7Mg ’

V. FACTORIZATION OF B MESON DECAYS WhereX:kJr/F);_r is the momentum fraction. Sindéz has
been chosen in the minus direction, only the plus component
In this section we present the all-order proof of factoriza-k* of k is relevant. We have dropped the higher-twist terms
tion theorem for the exclusivB meson decayB—ylv and  proportional tok in the numerators and by assumingm,
B— wlv in the heavy quark limit. It will be shown that the ~Mpg. It is then possible to integrate out the and ky
proof for the pion transition form factor in Sec. Ill can be dependences in thB meson wave functiony, (k), leading
generalized t@ meson decays, if terms suppressed by pow+o the light-coneB meson wave function,
ers of 1My are neglected. The momentuy of the B me-

son and the momenturd, of the outgoing on-shell photon o
(pion) are parametrized as . (x)= | dk d%kqipi (k). (55)
Mg M It will be shown that a light-con8 meson wave function can

B
P1= \/E(lylﬂT), Py= \/E(O,W,OT), (500 always be defined, if an appropriate frame is chosen, even
though the four components &fare of the same order.

where 7 denotes the energy fraction carried by the photon o _
(pion). Assume that the light spectator quark in Bieneson A. O(ey) factorization of B—ylw

carries the momenturk and thate denotes the polarization We start with the one-loop diagrams in Fig. 2 for e
vector of the photon. We consider the kinematic region with_, yl? decay, discussing the factorization of their infrared

2 _ _ . . -
smallg®, q=P,—P; being the lepton pair momentum, i.e., yjyergences. The factorization of FiggaR-2(c) requires the
with large », where PQCD is applicable. In the heavy quarkinsertion of the Fierz identity. Take Fig(1® as an example

limit the mass difference between tiiemeson and thé [y, analysis of Figs.(@) and 4c) is trivial]. The loop inte-
quark,A=Mg—m,, is a small scale, which will appear as grand is written as

higher-twist terms proportional tK/MB. The four compo-
nents of the spectator quark momentknare of the same

order asA.
The lowest-order diagrams for tte— yl v decay and for
theB— 7l v decay are displayed in Fig. 1 and Fig. 5, respec-

k=1 ysy”
(k=1)2 2

lp=~ig®Cetr{ v,

Pi—k+I+Mg  ($+Dhys| 1

X
tively, but with the upper quark line replaced bybajuark (P1—k+1)2—M3 y 2 12
line and with the vertex< representing a weak decay vertex.
It is easy to observe that Figs(al and Xb) scale like e R tr E(Po—K+1) vy, (1— v5)Mgy,ys]
2 (Py—k+1)2 ’
1 1
H{Dex ~—, (51) (56)
(P2—K)? AMg
where we have kept only the leading-twist structyee/® in
1 1 the Fierz identity, and introduced the dimensionless vector
H o —— s~ —, (520  v=P;/Mg. The other structures, such gs and ysa*#, do
(q-k)*=Mg Mg not contribute, because the corresponding hard amplitude
vanishes:
indicating that Fig. b) is power-suppressed. In the follow-
ing analysis we shall concentrate only on Figg)1There are Nt £(P— K+1 1= ve)M
two leading-twist spin structures for tleemeson, e\/—c (P )7u(1~ 75)Ma7s] =0. (57
2 (Po—k+1)?
+Mpg)#- +M
(PitMe)hys (Pt Mp)fys (53) In the heavy quark limit we have the eikonal approxima-

2N, 2N, tion,
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P,—k+I+Mg wﬂ)%ﬁwﬂ), (58) v %n ! ég éﬁﬂ‘
© @

(Pi—k+1)2—Mm2”

which is in fact equivalent to the heavy quark expansion.

Obviously, only the component, =y~ of vy, contributes to () (b)
the hard amplitude at leading twist, requiring the spin struc-
ture ysy* to beysy ™ in the first trace for thd& meson wave v
function. Equation56) becomes 0
Lo~ ($)2H (), (59 .
oo

with ¢=x—17/P] and theO(as) B meson wave function,

k=1 ysy" (B+1)hys
(k=12 2 2

(¢'M)ap=1g2Ctri v, ()

FIG. 8. (8)—(d) Infrared divergent diagrams factored out of Figs.
1 v’ 2(d) and Ze) for the B— ylv decay.(e) The graphic definition of

><|_2 v-(I—-Kk)" (60) the leading-twisB meson wave function.
Figure 2b) has been expressed as the convolution of the L 2P,, v5y® Pi—K+1+Mg
hard amplitudeH{? with the O(ay) infrared divergent dia- 124~ —19°C¢ S 2N 5 SRRTCRrYY.
grams, which contribute t@'", in the momentum fraction (P2 ) (P ) B

" Equation(60) is simplified into

y V(l/)+|)ﬁ7’5 1n\/N—c [ £P2y,(1—y5)Mpyays]
T2 i 2 (Po—k)?
20 (1" —k*) (63)
. 61
F(k=1)22%-(1-k) (6)

(¢)2=—ig?C

Obviously, the first trace is proportional o in the heavy
Performing the contour integration over, shy, we observe quark limit.

that the integral is singular only when the comporiénis of We employ the relation similar to Eg13),

O(A). This observation implies that the infrared divergence

associated with thB meson is of the soft type. This dynam- 2P,  n, (P,—k)?

ics differs from the collinear type of divergences associated (P,—k+1)2 Thl (P,—k+1)2 ' (64)

with the pion in the processy* —y. It is easy to under-

stand that the soft divergences in Fig&)22(c) do not can- where the termsK—I)2~O(/T2) andk2~O(X2) have been

cel in B meson decayf7]: The light spectator quark, carry- negjected. The eikonal line in the direction ofappears.
ing a small amount of momenta, forms a color cloud aroun quation(63) reduces to

the b quark. This cloud is also huge in space-time, such that
soft gluons resolve the color structure of tBeneson. ~(pD (0)( sy — H(0)
Diagrams with the additional gluon attaching the internal 2= ($5D2l H1a (0 = Hia ()], (69
quark in Figs. 2d) and 2e) also contain soft divergences, with the O(«g) B meson wave function,
since the internal quark is off-shell only (A M3g). Note .
that the internal quark in the process* — v is off-shell by 1) L, N, veyt +Dhys| 1 vY
O(Q?). There is no collinear divergence frohparallel to (¢57)2¢= ~197C n.|tr 2 2 12v-(I-k)°
P2, because the internal quark propagator remains the scal- (66)
ing law 1/AMg, instead of 1A2. The integrand associated
with Fig. 2(d) is written as The above expression implies that the infrared divergences
in irreducible diagrams can also be collected by the eikonal
N P,—k P,—k-+1 line along the light cone. This is attributed to the choice of
2 try £ 12 Yy DY the frame, in which the photon moves in the minus direction.
(P2=k)"  (Pa=k+1) The first and second terms in E&6) are described by Figs.
P—K+]+M 1 8(a) and 8&b), respectively, where the eikonal lines in the
! 5P+ Mg)hyst—. directions ofv and ofn have been indicated. In Fig(i the
(P;—k+1)2=M3 12 loop momentum flows into the internal quark line, such that
(62) the second term appears as a convolutionH3f) with
(¢1),q in the momentum fractio®.
Inserting the Fierz identity, we have Figure Ze) gives the loop integrand

l,g=—ieg’Ce

Xy, (1=vs)
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NG K= P,—K+I a4l
_ieqtc. WNe | . ) HD= f | — 6D HO 74
2= 1€0°Cr Y (k—1)2 (Pz_k+|)27 la 2 (2m) — ¢ la (74)

P,—K )1
X (P,—k)2 Yu(1=7vs)(P1+M B)'/Ws] 1z (67 where the subscriptruns from 2 to 2e. Obviously,H{Y) is
2 infrared finite, since all thed;) soft divergences have been

Inserting the Fierz identity, we have absorbed into th& meson wave functiost).
~igiCe— 2ty K1 yoy (84 1e| 1 ll-order factorization of Iy
2e F(Pz—k+l)2 (k—1)2 2 2 |2 B. All-order factorization of B—ylv
We prove leading-twist factorization theorem for tBe
\/— L Poy,(1— 75)M37a75] 69) —vlv decay to all orders, and construct a gauge-invariant
2 (P,—k)? light-coneB meson wave function defined by

Similarly, the componeny, =y~ of vy, in the second trace y oXPTY
is selected. Employing Eq64), the above expression is re- ~ #+(X)= WM Y (0fa(y)
written as

757

~— (M) H (&) —H (0], (69) xexr{—igfoydznA(zn) b,(0)|B(Py)),

with the O(«s) B meson wave function (75)

o LI B B 7 ($+)hys| 1
(¢%)2=19 Fn-l (k—I)2 2 2 12 as shown in Fig. &). The eikonal lines in the directions of
(70) and o_fn have been indicated. By expanding the light quark
o ) ] ) field g(y~) and the path-ordered exponential into powers of
We have split Fig. @) into two terms, whose infrared diver- - the nonlocal matrix element can be expressed as a series
?enlt factors are described by Figdc)8and 8d), respec- of covariant derivatives*)"q(0), implying that Eq.(75)
|v%y. ing Eqs(60), (66), and (70), the F | is gauge invariant.
omparing £qs(ob), (9), an , the meynman rules We present the proof by induction. The factorization of
for the perturbative evaluation of tiiemeson wave function the O(ay) infrared divergences associated with Beneson
S.

are clear:cégl) can be written fs a nonlqcal hadronic matrix has been worked out. Assume that the factorization of the
element with the structurgsy™/2 sandwiched: infrared divergences holds up ©(aY), that is, we have

1 dy~ y Egs. (24)—(26) for the B— ylv decay. Consider a complete
dV ()= —— f e*P1Y (0|q(y" ) (—ig) set of O(aY*?) full diagrams GN*Y. We look for the
WM gluon, one of whose ends attaches the outer most vertex on
. the b quark line. We classiffG("* 1) into the reducible and
xf dzn-A(zn)b,(0)|B(Py)), (71)  irreducible types as in Sec. lll. The factorization of the re-
0 ducible GIN*1) is the same as that of Figs(a?—2(c): Fol-
lowing Egs.(56)—(60), we insert the Fierz identity to sepa-
rate the reducibl&& 1) into the convolution ofG™NY) with
b+ the O(«s) infrared divergent diagrams, which contribute to
b, (y)=exp(iMgv -y) ——b(y), (72 the B meson wave functiowy . The result is similar to that
shown in Fig. 4a).
has been introduced. The Feynman rules associatedbyith For the factorization of the irreducible diagrams, we rely
are those for an eikonal line in the directionwofjiven in Eq. 0N the Ward identity in Eq(23). In this case the amplitude
(58). The above definition reproduces the contributions fromG* contains two on-shell external quarks, one of which is

Figs. 4a)—2(c) and from Figs. 8)—8(d), if it is evaluated the heavyb quark. As hinted by th©(«s) analysis, the soft
perturbatively. divergence, associated with the gluon radiated by the outer

most vertex on théy quark line, can be collected by the
eikonal approximation, i.e., by the replacement in E).
The reason is as follows. In the heavy quark limit the full
(P4 M) o (HO+HE)+0(a?), (73)  diagrams of theB— ylv decay are dominated by the mo-
mentum flow along the photon momentu?s in the minus
with ¢¥’=1 and® representing the convolution in the mo- direction. Strickly speaking, they are dominated Py— k.
mentum fraction. Th@® () hard amplitudeH{Y) is defined Hence, the verteyd inside GV the radiated gluon attaches
by is mainly minus, and the vertex on theb quark line is

where the rescaled quark field,

The factorization formula for th8— yl?decay is writ-
ten, up toO(«s), as
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B meson wave function. We do not consider self-energy cor-

correct leading contribution. Therefore, we have the equationections to the internal lines, which give only next-to-

described by Fig. ®).
The second and third diagrams in Figb¥give

| g————————— P+ 1)1
ﬁpl_k_y_MB‘)’( s

1 _ _
=———K@+DHhys— (¥ +1)hys,
P K—1—Mq (@+Dhys—(@+Dhys
(76)

— 1 _ 1 _
(6 +DhysyP——= G+ Dhysk— — G+ 1A ys,
,3( Yhysy K| ( Jhys k| ( Jhys
(77)

respectively. After assigning the quark propagators on th
right-hand sides of the above expressions into the corre-
sponding loop integrals, the first terms are proportiondt to

~O(A). They are suppressed B(A/Mg) compared to the
second terms, which correspond @&". Neglecting the
higher-twist terms, the irreducib®™ 1) are factorized into
the convolution ofG™N) with the O(«,) B meson wave func-

tion, in which the radiated gluon attaches the eikonal lines a
in Figs. 8§a) and 8b). The factorization of the irreducible

G(N*1) | with the gluon emitted from the outer most vertex
on the light spectator quark line, is similar. The resultant’:

O(«y) infrared divergent diagrams for th® meson wave
function are those in Figs.(§ and &d).

Combining the factorizations of the reducible and irreduc

ible GIN*1) we arrive at Eq(31). The factorization in Eq.
(32) for the B meson wave functiogyN ") also exists. Fol-

lowing the steps in Eq$33)—(35), we complete the all-order

proof of leading-twist factorization theorem for thB

—ylv decay. The definition of the hard amplitude at each
order is the same as in E4). Since the full diagrams are

leading-order hard amplitudes.

The construction of the pion wave function is basically
the same as that for the process* — . That is, the infra-
red divergences associated with the outgoing pion is of the
collinear type. Soft divergences cancel by pairs, because soft
gluons do not interact with the color singlet pion. For ex-
ample, soft divergences cancel between Figh) &nd i)
and between Figs.(§ and 6k). The collinear gluons are still
collected by the eikonal lines along the light cone, even
though they may attach the heavyuark. The reason is that
when a loop momenturhis parallel to the pion momentum
P, in the minus direction, only the componeft of the
vertex on theb quark line andP; of the B meson momen-
tum are selected. Consequently, we derive the definition for
the pion wave function, which is identical to E@2). This
conclusion is consistent with the universality of hadron wave

?unctions.

We then concentrate on tlBemeson wave function. The
treatment of the reducible diagrams in Fig&a)6-6(c) is ex-

actly the same as in Figs(&-2(c) for the B— yl v decay.

We insert the Fierz identity to separate these diagrams into
the convolution of Fig. &) with the O(«g) soft divergent
diagrams, which contribute to thB meson wave function
D The investigation of the irreducible diagrams in Figs.
6(d) and Ge) hints that the soft divergences can be collected
by the eikonal lines along the direction of a conclusion
similar to that for Figs. @) and 2e). Hence, the replacement
in Eq. (27) for the loop gluon extracts the soft divergences of
the irreducible diagrams in Figs(d—6(k). The Ward iden-

tity applies, and the sum of these irreducible diagrams is
factorized into the convolution of Fig.(& with part of ¢
described by Figs. (8 —8(d). Following the procedures in
Sec. lll, we prove leading-twist factorization theorem for
Fig. 5a) in theB— 7l v decay. TheB meson wave functions

¢, constructed from th&— yl? andB—mlv decays are

dominated by momenta alorf,, only the plus component identical.

k* of k is relevant in the hard amplitude. This is the reason

we can integrate thB meson wave function ovée™ andky,
obtaining the light-con® meson wave function in Eq75).

C. Factorization of B—rlv

The discussion of th©(«) radiative corrections to Fig.
5(b) shown in Fig. 7 is similar, though more complicated.
The soft approximation, the Fierz insertion, and the Ward
identity apply. Because of the existence of the heavy quark
propagator, the spin structuregy®, ys, and yso*# in the
Fierz identity contribute. In this case two leading-twit

The factorization of the pion wave function in Secs. Il, meson wave functions can be construcf8fl Besidesg
11, IV, and the factorization of th& meson wave function in defined in Eq.(75), we derive the additional light-conB

the B— yl? decay can be applied to thB— mlv decay

meson wave function associated with the structuRy (

straightforwardly. Here we simply explain some points of the+ Mg)Ays/(2N,),
proof, and neglect the details. The lowest-order diagrams are

shown in Fig. 5. Both the spin structures in E§3) contrib-
ute to Fig. §b), but only the first one contributes to Figah

dy” oty Y5
- y -

1
(f),(X)— \/Z_NCMB

Since P, has been chosen in the minus direction, only the

plus componenk™ of k is relevant. It is then possible to

define a light-cond8 meson wave function for thB— rl v
decay. We first identify infrared divergences fro@n«g)

radiative corrections to Fig.(8), which are displayed in Fig.

6, since their analysis is similar to that of tBe— yl?decay.

Xex;{—igfydzn.A(zn) b,(0)|B(Py)).
0

(78)

In summary, the nonlocal hadronic matrix element for Bhe

Note that Fig. 6 is complete only for the construction of themeson is expressed as
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dy™ oy n— path-ordered integral appears as a consequence of the Ward
f €717 (0]a,(y )bs(0)[B(Py)) idenity. Note the difference between the definitions for the
pion andB meson wave functions. The former, collecting the
(P1+Mp) N h collinear divergences, depends on the structge™. The
=\ ——| =X+ —=d_(X) |75 latter, collecting the soft divergences, depends on the struc-
V2N, V2 V2 VB ture ys¢. We emphasize that it is possible to define a light-

(79) coneB meson wave function, if an appropriate frame is cho-
sen, in which the photofpion) moves in the minus or plus
This result is exactly the same as that obtainedghat  direction. This is also the reason we can extract the infrared

leading twist. divergences inry* — y(7r) andB— y()l v using the same

A remark is in order. The hard amplitude from Figbg  replacement in Eq(27).
proportional to 1/¢,x3), X, being the momentum fraction The leading-twist factorization of thB— =l v decay can
associated with the pion, develops an infrared singularity, ibe proved straightforwardly, following the procedures pre-
the pion wave function vanishes likg asx,—0 [14]. Even  sented in Secs. II-V. However, for a practical application,
though we have proved leading-twist factorization theorenthe parton transverse momemtamust be included in order
for the B— rl v decay, its practical application is question- to smear the end-point singularities in the hard amplitude.
able. It has been shown that the inclusion of parton transWe shall derive factorization theorem including these addi-
verse moment&; smears the singularities from the end- tional degrees of freedom elsewh¢i&]. Our proof will be
point region of momentum fraction§7]. When k; is  generalized to nonleptoni® meson decays, such &8
included, the dependence on the transverse loop momentum 7. This factorization is more complicated, since nonlep-
I+, being of the same order &g, is not negligible in the tonic decays involve three characteristic scalesMhieoson
hard amplitude. This complexity can be resolved by FouriemassM,,, Mg, and small scales dD(A), such ay.
transforming the factorization formula from tke space into
theb space, wheré is the impact parameter conjugatektp
[15,16. The |; dependence then appears in the factor ACKNOWLEDGMENTS
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In this paper we have investigated the infrared diver-
gences in the processey* — y and7y* — 7. We summa-
rize their comparision below. There are no soft divergences, APPENDIX A: O(as) COLLINEAR CORRECTIONS
since they are either absent or cancel among sets of dia- . . . L
grams. In the collinear region with parallel to P,, Figs. In th'_s appe_ndlx we supply the detalls*of the derivation of
2(a)-2(c) are identical to Figs. @)—6(c) [Figs. 7a)—7(c)]. f[he collinear dlve_rgencgs m_the process* — . The loop
Figures 2d) and 2e) are identical to the combination of Ntégrand from Fig. @) is written as
Figs. 6d)—6(k) [Figs. 1d)-7(k)]. That is, the collinear struc-

tures are the same at the leading twist, consistent with the —ieg’ Po—x. P, +1
concept of universality of hadron wave functions in PQCD lgg=—=——tr{ ¥ ),5|,z>2),,8;12
factorization theorem. However, due to the potential signifi- 2N, (Pa=xPy+1)

cant subleading contributions at low energies, the extraction

of the leading-twist pion wave function from they* X y (1—x)Py+! X Py,
— () data suffers ambiguity. For details, refer to Appen- “I(1—x))P+17? Lre
dix B.

We have presented an all-order proof of leading-twist fac- tr(T3TPTE) 208

torization theorem for the processesy* — v and wy* — m, (A1)

and for the decay8— ylv and B—=lv by means of the
Ward identity. The small scales, such as the light spectator
quark momentunk and theB meson and quark mass dif- with N being the number of colors and the triple-gluon ver-

ferenceA, are neglected in the heavy quark limit, such thatt®X:

the Ward identity holds. Our proof is simple compared to

that in[4], and explicitly gauge invariant, compared to that rabe — _ gab 2l =X+ P1+X-P.).\ + 2%.P

in [1]. We have constructed the gauge-invariant pion Bnd e 19 1P 2Pt 9o (20,
meson wave functions, and confirmed their universality. The —2XP2— 1) o Oha(XoP2—Xx1P1—1)gl,  (A2)

12(x1P1—XP2—1)2(X, Py —X,P5)? ’
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f"".bC being a antisymmetric tensor. In the collinear region eg'C2 P,—x,P;
with | parallel toP4, only the term proportional t@g, is IGfZTtr )’ﬂst?’a—z
important, since the terms proportional g, and g,z, (P2=X,Py)
gIVIng X 7 PZ_X]_Pl_"Y 7 (1_X1)Pl+y »),VP 7
[(1=x)P1+117"P1y5Y O "(Py=xaPyt )2 PT(A=xy P+
=2P1-[(1=xy)P1+1]vys 1
X, (A10)
~O(\?), y*P1ys(2l =X, P1+XoP2) Y5 P2 Y70 0 15(X1P1—=X,P3)
=2P;- (21 =x,P1)P,~O(\?)P,, (A3)  which is simplified into
do not produce collinear divergences. Considering the secdg;= —2eg“C§
ond term in Eq.(A2), Eq. (Al) exhibits the collinear diver-
gence » trl v, (Po+1)P4S]
[(1=x%1)P1+113(Py— X1 P+ D)22(x;P1—X,P5)?
—3ig%P,-[(1—x)P,+1]
lgg™ HO (Ag) (A11)

[(1=x)P1+I11217[P,- (1—xPy)]

The trace in the above expression is proportional to the van-

where we have employed the identities ishing factorP -1, which suppresses the divergence from the
denominatoif (1—x,)P;+1]?. Figure &g) does not contain

) 1 e iean beeab collinear divergences for the same reason.
tr(TETPTE) = 7 (d*P5+if 229, d™F*e=0, The loop integrand associated with Fighpis written as
fabCfabC:24 (A5) eQACF (1—X2)P2+Y

len="———t" Ya¥sP2y,——————
6h 4N, YaVs572Y [(1—xp)Py+ ]2

d3P¢ peing a symmetric tensor, and the approximation for the
denominator o P X P+t (1-x1)Py+!

X 'P
7 (Po=x;Py+1)? yu[(l_xl)Pl‘H]zy 1
(X1 P1= %P = 1)?=2x,P5- (I =x;Py). (A6)
1
It is found that the infrared divergent piece of the radiative X|2(X P, x,P,)2’ (A12)
correction has been completely factored out. The remaining 1 nerz
part, denoted by the lowest-order hard amplititid) , does  \which is simplified into
not depend on the loop momentdnat all.
Figure @e) gives the loop integrand 2efCr Py [(1—X)Py+1]
6h— —
N _ 2
iegt [Pl PPy o [17x)Port]
be 2NCL (lel_l)zy ys zy (P2—X1P1)2 Xtr P PZ_X]_P]_‘{'Y (1_X1)P1+y
2 Y
tr(TaTbTC)Fa%()I\ (PZ_X1P1+I)2 M[(l_xl)Pl+|]2
Xy, P = :
T 1)/5]|2(X1P1_X2P2_|)2(X1P1_X2P2)2 x 1 (A13)
(A7) 12(x1P1—X2P5)?
with the triple-gluon vertex, In the region withl parallel toP,, we have the approxima-
tion
130 = — fab9 g 45(1 — X, P1+X,P2)) + gy (2%, Py — 2X,P
afN af 171 2 2)\ BN 171 22 .
| | 9P PalI=x)Pitl]
+ )a+g)\a(x2p2_xlpl_2 )ﬁ] (AS) 6h N, [(1_X1)P1+|]2|2P2'| 4a
Similarly, in the region withl parallel toP; we have - E n-[(1—%;)Py+1] SO AL
_3ig? Ne [(1-x)Py+1]22n.1 2"
o~ —9 o (A9)
6e 212 5a * . .
(xP1=1)“l where we have adopted the approximation for the quark

propagatof (1 —x,)P,+1]~2(1—x,)P,-1, and dropped all
The integrand associated with Figf)is written as the terms proportional t&-1.
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The loop integrand corresponding to Figi)Gs written as

| -:eg4C;:+r y X2P2+y vy P y“ P2_X1P1+y y
g 4NC a(X2P2+|)2 vrete (PZ_X1P1+I)2 "
(1—xq)P,+1

1
175}|2(X1P1_X2P2_|)2’
(A15)

[(1-x)P, 112

whose sign is opposite to that of EGA12) due to the anti-

quark propagator. The above expression is simplified into

X2P2+y PZ_X1P1+Y
(%P2 +1)2 (Py—xyPyt1)? "

_2ed'Ce [

P, P,
|2(X1P1_X2P2_|)2.

(A16)

[(1-%y)P;+1]2

It is easy to derive the collinear approximation,

—ig? n-[(1=X)P1+IT  (X{P1—X,P5)? ©
6i~ N 212 2H5a "
¢ [(1=x)P;+172%n-1 (x,P1—x,P,—1)

(A17)

The similar procedures apply to Figgj)6and GKk).
The integrand associated with Figf)7is written as

eg'C

F P P1—xP,
—4—thr YaVsP2v,

7= —
(P1—X,P5)?

Pl_X2P2+Y a (1_X1)P1+y -
XYy 5 Y 5
(P1=XPo+ D) [(1—=x9)Py+I]

P175]

(A18)

1

X—!
|2(X1Pl_X2F’2)2

which is simplified into

| 2e'Ce Py (1-%2Py) P1—x,P,
= — tr e —
i Ne  (Py—x,Po+1)? ZYM(Pl_szz)Z
(1—xq) P, +1 1
[(1—X1) Py +172) 12(x;P1—x2P2)?

(A19)

In the collinear region we have the approximation

ig? Py [(1-x)Pyt]
 Ne [(1—xq) Py +11212P,- (Py+1)

144 HO) . (A20)

The integrand corresponding to FighyY is written as

PHYSICAL REVIEW D 64 014019

eg'C

F (1=x2)Po+I
|7h:_—4N tr ¥ovsP2v,
C

[(1—xp)Py+1]2

Pl_X2P2+’ « (1_X1)P1+Y

X P
T (Pi—xaPyt )2 [(1=xy)Py 4112 ”5]

1

-, (A21)
IZ(lel_XZPZ)Z

which is simplified into

_ 2ed'Ce Pz-[(l—xl)PlJrI]*r{ (1—x)Po+1
[

| = L
7“ Ne  [(1-x)Pi+I1? | [(1-xp)Pp+1]2 7"
Py —x,P,+] 1
— Py . (A22)
(P1=xPo+1) 19(X1P1—=X,P3)
We have the collinear approximation,
| %E Po-[(1—=Xq)P1+1] P1-P2 (0
NG [(1=xy)Py+171212P,- (Py+1) Porl 5"
(A23)

APPENDIX B: DETERMINATION OF THE PION WAVE
FUNCTION

In this appendix we comment on the determination of the
leading-twist pion wave function, which can be parametrized
as

3f,
V2N,

with the shape parameter It has been proposed to extract
the leading-twist pion wave function from experimental data
of the pion transition form factdrl8]. The asymptotic model
was obtained with the shape parameterO,

d(X)= x(1—X) 1+gc(5(1—2x)2—1) , (B1)

m

V2N,

The pion wave function can also be determined from other
processes involving pions, such as the pion form factor and

the B meson decay8— wlv and B—D. It has been
known that a large value af is preferred for explaining the
data of the pion form factdrl5].

Another quantity that has been considered is the ratio of
the branching ratios of thB— D 7 decayg 19,20,

M%) = X(1=Xx). (B2)

B(BT—D%™)

R=e—— .
B(B°—~D =)

(B3)

The charged meson decay contains both factorizable and
nonfactorizable amplitudes: tli&— D form factor associated
with the externaMV emission, thdB— 7 form factor associ-
ated with the internal/ emission, and the nonfactorizable
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amplitude associated with the intern&l-emission. The neu- universality of the pion wave function. We emphasize that
tral B meson decay contains only the factorizable extevdal- the infrared structures of the processes* —y and 7y*
emission amplitude. The Wilson coefficient for the factoriz- — 7 are different at next-to-leading twist. For example, the
able internaWv emission amplitude is small at scales aroundcollinear divergences associated with the pseudoscalar struc-
theb quark mass. Hence, the difference between the branchure . are absent inry* — 1y, but exist inmy* — 7. The
ing ratiosB(B*—D%r ") andB(B°—~D~ ") is attributed  three-parton wave functions contribute to both the pion tran-
to the nonfactorizable intern&l emission amplitude. To ex-  sition form factor and the pion form factor. It is expected that
plain the data oR~1.6, a largerc~0.5 has been obtained 4t the maximal energy scales around 8 GeNhere data are
[21]. This value ofc is located between those for the 5 aijlaple, these subleading contributions are sizeable relative
asymptotic model and for the Chemyak-Zhinitsk€Z) 4 the leading ones. It has been explicitly demonstrated that
model corresponding to=2/3[22], if higher-twist contributions from parton transverse momenta
5./6f are taken into account, the CZ wave function is not excluded
¢S4 x)= T”x(l—x)(l— 2x)2. (B4) by the data of the pion transition form fac{@7], contrary to
the conclusion if18]. It has been shown that the pion form
Note that the coefficient=0.44 (at the factorization scale factor suffers substantial higher-twist contributions propor-
about 1 GeV derived from QCD sum rulef23] is close to tional to the chiral condensate at currently available energy
that extracted from the ratid. However, also note that a flat Scales[28]. The B— transition form factor also receives
pion wave function was concluded in the framework of co-nonvanishing higher-twist contributiong29]. Because of
variant quark-pion mode[24] and of QCD sum rules these next-to-leading-twist ambiguity, we argue that the
[25,26. above different extractions of the leading-twist pion wave
The above results seem not to be well consistent with théunction should not be regarded as an inconsistency.
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