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Perturbative QCD factorization of pg*\g„p… and B\g„p… l n̄
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We prove the factorization theorem for the processespg* →g andpg* →p to leading twist in the cova-
riant gauge by means of the Ward identity. Soft divergences cancel and collinear divergences are grouped into
a pion wave function defined by a nonlocal matrix element. The gauge invariance and universality of the pion

wave function are confirmed. The proof is then extended to the exclusiveB meson decaysB→g l n̄ and B

→p l n̄ in the heavy quark limit. It is shown that a light-coneB meson wave function, though absorbing soft

dynamics, can be defined in an appropriate frame. Factorization of theB→p l n̄ decay inkT space,kT being
parton transverse momenta, is briefly discussed. We comment on the extraction of the leading-twist pion wave
function from experimental data.

DOI: 10.1103/PhysRevD.64.014019 PACS number~s!: 12.38.Bx
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I. INTRODUCTION

The fundamental concept of perturbative QCD~PQCD! is
factorization theorem, which states that nonperturbative
namics of a high-energy QCD process either cancel or ca
absorbed into hadron wave functions. The remaining p
being infrared finite, is calculable in perturbation theory.
full amplitude is then expressed as the convolution of a h
amplitude with hadron wave functions. A wave function, b
cause of its nonperturbative origin, is not calculable. Ho
ever, PQCD still possesses a predictive power, since a w
function is universal, i.e., process independent. With this u
versality, a wave function determined by some means, s
as QCD sum rules and lattice theory, or extracted from
perimental data, can be employed to make predictions
other processes involving the same hadron.

Nonperturbative dynamics is reflected by infrared div
gences in radiative corrections. There are two types of in
red divergences, soft and collinear. Soft divergences co
from the region of a loop momentuml, where all its compo-
nents vanish:

l m5~ l 1,l 2,l T!;~l,l,l!. ~1!

The light-cone variables have been adopted, andl is a small
scale. Collinear divergences are associated with a mas
quark of momentumP5(Q,0,0T), Q being a large scale. In
the collienar region withl parallel toP, the components ofl
behave like

l m;~Q,l2/Q,l!. ~2!

In both regions the invariant mass of the radiated gluon
minishes asl2, and the corresponding loop integrand m
diverge as 1/l4. As the phase space for loop integration va
ishes liked4l;l4, logarithmic divergences are generated

Factorization of the above infrared divergences in a Q
process needs to be performed in momentum, spin, and c
spaces. Factorization in momentum space means that a
amplitude does not depend on the loop momentum of a
or collinear gluon, which has been absorbed into a had
0556-2821/2001/64~1!/014019~16!/$20.00 64 0140
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wave function. Factorization in spin and color spaces me
that there are separate fermion and color flows betwee
hard amplitude and a wave function, respectively.
achieve these, we rely on the eikonal approximation for lo
integrals in leading infrared regions, the insertion of the
erz identity to separate fermion flows, and the Ward iden
to sum up diagrams with different color structures. Under
eikonal approximation, a soft or collinear gluon is detach
from the lines in a hard amplitude and in other wave fun
tions. The Fierz identity decomposes a full amplitude in
contributions characterized by different twists. The Wa
identity is essential for proving the factorization theorem in
non-Abelian gauge theory.

In this paper we shall derive the factorization of the sc
tering processespg* →g and pg* →p, which involve the
pion transition form factor and the pion form factor, respe
tively, at leading twist using the above techniques. Infra
divergences, occuring at higher powers of 1/Q2, Q being
momentum transfer in the above processes, are neglecte
will be shown that soft divergences cancel and collinear
vergences, factored out of the whole proesses order by o
are absorbed into a pion wave function, which is defined
a nonlocal matrix element. The universality of the pion wa
function is equivalent to the universality of the collinear d
vergences in the two processes. The definition of the h
amplitude at each order will be given as a result of the pro
We emphasize that our derivation is simple, explicitly gaug
invariant, and appropriate for both the factorizations of t
soft and collinear divergences.

The factorization of the processpg* →g(p) has been
proved in@1#, but in the axial~light-cone! gaugeA150. In
this gauge factorization automatically holds and the analy
is straightforward, because collinear divergences exist o
in reducible diagrams. Our proof is performed in the cova
ant gauge, in which collinear divergences also exist in ir
ducible diagrams. The collection of these collinear gluo
forms a path-ordered integral along the light cone, wh
renders a hadron wave function explicitly gauge invaria
The pion wave function has been constructed fromg* g
→p in the framework of covariant operator product expa
©2001 The American Physical Society19-1
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sion @2,3#. However, it was not clear how the path-order
integral is generated@3#. We shall demonstrate that it appea
as a consequence of the Ward identity. The factorization
pg* →p has also been proved in@4# based on a generaliza
tion of the Zimmermann’s ‘‘D-forest’’ prescription @5#,
which involves complicated diagram subtractions. It will
found that our derivation is simpler.

We then prove factorization theorem for the exclusiveB

meson decaysB→g l n̄ and B→p l n̄, whose topologies are
similar to the scattering processespg* →g and pg* →p,
respectively. The infrared divergences inB→g l n̄ and B

→p l n̄ have been investigated in@6# and @7#, respectively.
However, a rigorous proof of factorization theorem has
yet been available. In the heavy quark limit, terms
O(LQCD/MB), LQCD being the QCD scale andMB the B
meson mass, are higher-twist and negligible. It will be sho
that in this limit a gauge-invariantB meson wave function
and hard amplitudes can be defined. TheB meson wave
function absorbs soft divergences of the above decays, w
differ from the collinear divergences in the pion wave fun
tion. However, it is still possible to construct a light-coneB
meosn wave function@8#, if an appropriate frame with the
photon~pion! moving in the minus or plus direction is cho
sen.

We investigate theO(as) collinear divergences containe
in the processpg* →g in Sec. II, and present the all-orde
proof of its factorization theorem by means of the Wa
identity in Sec. III. The factorization of the processpg*
→p is derived in Sec. IV. In Sec. V we prove factorizatio
theorem for theB→g l n̄ andB→p l n̄ decays. Section VI is
the conclusion. The detailed evaluation of theO(as) collin-
ear divergences inpg* →p are supplied in Appendix A. In
Appendix B we comment on the extraction of the leadin
twsit pion wave functions from experimental data ofpg*
→g andpg* →p.

II. O„as… FACTORIZATION OF pg*\g

We start with the factorization of the processpg* →g at
the one-loop level, which will serve as the basis of the a
order proof. The momentumP1 of the pion and the momen
tum P2 of the outgoing on-shell photon are parametrized

P15~P1
1,0,0T!5

Q

A2
~1,0,0T!,

P25~0,P2
2 ,0T!5

Q

A2
~0,1,0T!. ~3!

Let e denote the polarization vector of the outgoing photo
which contains only the transverse components. We cons
the kinematic region with largeQ252q2, q5P22P1 being
the virtual photon momentum, where PQCD is applicable

The lowest-order diagrams are displayed in Fig. 1. T
lower valence quark~an anti-quark! in the pion carries the
fractional momentumxP1. Contracting the amplitude in Fig
01401
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1~a! with the leading-twist structureP” 1g5 /A2Nc associated
with the pion,Nc53 being the number of colors, we deriv

H (0)~x!52 ie2ANc

2

tr@e” ~P” 22xP” 1!gmP” 1g5#

~P22xP1!2

5 ie2ANc

2

tr~e”P” 2gmP” 1g5!

xQ2
. ~4!

Figure 1~b! leads to the same amplitude, because the p
wave function is symmetric under the interchange ofx and
12x. The internal quarks are regarded as being hard,
being off-shell byO(Q2), since contributions from the sma
x region will be suppressed by the pion wave function, wh
vanishes likex asx→0.

We identify the infrared divergences fromO(as) radia-
tive corrections@9–11# to Fig. 1~a!, which are shown in Fig.
2. Self-energy correction to the internal quark, giving a ne
to-leading-order hard amplitude, is not included. Figu
2~a!–2~c! are the reducible diagrams with the addition
gluon attaching the two valence quarks of the pion. It h
been known that soft divergences cancel among these
grams. The reason for this cancellation is that soft gluo
being huge in space-time, do not resolve the color struc
of the pion. Collinear divergences in Figs. 2~a!–2~c! do not
cancel, since the loop momentum flows into the inter
quark line in Fig. 2~b!, but not in Figs. 2~a! and 2~c!. To
absorb the collinear divergences, we introduce a nonper
bative pion wave function.

FIG. 1. Lowest-order diagrams forpg* →g (B→g l n̄), where
the symbol3 represents the virtual photon~weak decay! vertex.

FIG. 2. O(as) radiative corrections to Fig. 1~a!.
9-2
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The factorization of Figs. 2~a!–2~c! is achieved by mean
of the insertion of the Fierz identity:

I i j I lk5
1

4
I ikI l j 1

1

4
~g5! ik~g5! l j 1

1

4
~ga! ik~ga! l j

1
1

4
~g5ga! ik~gag5! l j 1

1

8
~sab! ik~sab! l j , ~5!

whereI represents the identity matrix, andsab is defined by
sab[ i @ga ,gb#/2. Different terms in the above identity lea
to contributions of different twists. Take Fig. 2~b! as an ex-
ample, whose loop integrand is given by

I 2b5e2g2CFANc

2
trH gn

xP” 12 l”

~xP12 l !2
e”

P” 22xP” 11 l”

~P22xP11 l !2
gm

3
~12x!P” 11 l”

@~12x!P11 l #2
gnP” 1g5J 1

l 2
, ~6!

with CF being a color factor. Inserting the Fierz identity, w
obtain

I 2b' ig2CF trH gn

xP” 12 l”

~xP12 l !2

g5ga

2

3
~12x!P” 11 l”

@~12x!P11 l #2
gn

g2g5

2 J 1

l 2
~2 ie2!ANc

2

3
tr@e” ~P” 22xP” 11 l”!gmgag5!P1

1

~P22xP11 l !2
. ~7!

Obviously, in the collinear region with the loop momentuml
parallel to P1, only the pseudo-vector structureg5ga con-
tributes to the first trace as shown above. Moreover, the
tricesga andga must beg25g1 andg2, respectively.

Equation~7!, as integrated overl, is rewritten as the con
volution of the lowest-order hard amplitudeH (0)(j) with the
O(as) pion wave functionf2b

(1) in the momentum fraction
j5x2 l 1/P1

1 :

I 2b'f2b
(1)H (0)~j!, ~8!

f2b
(1)5 ig2CF trH gn

xP” 12 l”

~xP12 l !2

g5g1

2

3
~12x!P” 11 l”

@~12x!P11 l #2
gn

g2g5

2 J 1

l 2
. ~9!

f2b
(1) contains the collinear divergence in Fig. 2~b!, because

the integrand in Eq.~9! diverges as 1/l4. The dependence
on l 2 and onl T in H (0), being subleading according to E
~2!, have been neglected.

Diagrams with the additional gluon attaching the intern
quark, Figs. 2~d! and 2~e!, do not contain soft divergence
01401
a-

l

because the internal quark is off-shell. For example, the l
integrand corresponding to Fig. 2~d! is approximated, in the
l→0 region, by

1

~P22xP11 l !2@~12x!P11 l #2l 2

'
1

2~12x!~P22xP1!2P1• l l 2
;O~l23!, ~10!

which is suppressed by the phase space for loop integra
d4l;l4. Therefore, we consider only the collinear dive
gences. The integrand associated with Fig. 2~d! is written as

I 2d52e2g2CFANc

2
trH e”

P” 22xP” 1

~P22xP1!2
gn

P” 22xP” 11 l”

~P22xP11 l !2
gm

3
~12x!P” 11 l”

@~12x!P11 l #2
gnP” 1g5J 1

l 2
. ~11!

Since e” and gm involve only gT , we drop 2xP” 1 and
2xP” 11 l” in the internal quark propagators in the colline
region. Equation~11! is then simplified into

I 2d52e2g2CFANc

2

2P2n

~P22xP11 l !2

3trH e”
P” 22xP” 1

~P22xP1!2
gm

~12x!P” 11 l”

@~12x!P11 l #2
gnP” 1g5J 1

l 2
.

~12!

For thel-dependent hard propagator, we employ the re
tion

2P2n

~P22xP11 l !2
'

nn

n• l F12
~P22xP1!2

~P22xP11 l !2G , ~13!

which is an example of the Ward identity. The dimensionle
vector n5P2 /P2

2 , representing the direction of an eikon
line, lies along the outgoing photon momentum.nn is called
the eikonal vertex and 1/n• l is called the eikonal propagato
The appearence of the eikonal line is a consequence of
Ward identity. Inserting the Fierz identity, we derive the fa
torization,

I 2d'f2d
(1)@H (0)~x!2H (0)~j!#, ~14!

with the O(as) pion wave function

f2d
(1)52 ig2CF trH g5g1

2

~12x!P” 11 l”

@~12x!P11 l #2
gn

g2g5

2 J 1

l 2

nn

n• l
.

~15!

The collinear contribution from Fig. 2~d! has been split into
two terms, with the first and second terms described by F
3~a! and 3~b!, respectively, where the eikonal propagator
represented by a double line. In Fig. 3~b! the loop momen-
9-3
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HSIANG-NAN LI PHYSICAL REVIEW D 64 014019
tum l flows into the internal quark line, such that the seco
term is a convolution ofH (0) with f2d

(1) in the momentum
fraction j.

Figure 2~e! gives the loop integrand

I 2e5e2g2CFANc

2
trH gn

xP” 12 l”

~xP12 l !2
e”

P” 22xP” 11 l”

~P22xP11 l !2
gn

3
P” 22xP” 1

~P22xP1!2
gmP” 1g5J 1

l 2
. ~16!

Following the similar procedures, we obtain, in the colline
region,

I 2e'2f2e
(1)@H (0)~j!2H (0)~x!#, ~17!

with the O(as) pion wave function

f2e
(1)5 ig2CF trH gn

P” 12 l”

~xP12 l !2

g5g1

2

g2g5

2 J 1

l 2

nn

n• l
.

~18!

The first and second terms in Eq.~17! are described by Figs
3~c! and 3~d!, respectively.

Comparing Eqs.~9!, ~15!, and~18!, the Feynman rules fo
the perturbative evaluation of the pion wave function a
clear:f (1) can be written as a nonlocal hadronic matrix e
ment with the structureg5g1/2 sandwiched, which come
from the insertion of the Fierz identity:

f (1)~x!5
1

A2NcP1
1E dy2

2p
eixP1

1y2
^0uq̄~y2!

g5g1

2
~2 ig !

3E
0

y2

dzn•A~zn!q~0!up~P1!&. ~19!

The sum over colors is understood. The integral overz in
fact contains two pieces: For the upper eikonal line in F
3~a!, z runs from 0 to`. For the lower eikonal line in Fig

FIG. 3. ~a!–~d! Infrared divergent diagrams factored out of Fig
2~d! and 2~e!. ~e! The graphic definition of the leading-twist pio
wave function.
01401
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3~b!, z runs from` back toy2. It is easy to confirm that the
above definition reproduces all the leading-twist collinear
vergences in Figs. 2~a!–2~c! and in Figs. 3~a!–3~d!. The
light-cone coordinatey2Þ0 corresponds to the fact that th
collinear divergences in Fig. 2 do not cancel exactly.

At last, the factorization formula for the processpg*
→g is written, up toO(as), as

~f (0)1f (1)! ^ ~H (0)1H (1)!1O~as
2!, ~20!

with f (0)51 and^ representing the convolution in the mo
mentum fraction. TheO(as) hard amplitudeH (1) is defined
by

H (1)[(
i
E d4l

~2p!4
I i2f (1)

^ H (0), ~21!

where the subscripti runs from 2a to 2e. Obviously,H (1) is
infrared finite, since all the (as) collinear divergences hav
been absorbed into the pion wave functionf (1).

III. ALL-ORDER PROOF OF FACTORIZATION
THEOREM

In this section we present the all-order proof of leadin
twist factorization theorem for the processpg* →g, and
construct a gauge-invariant pion wave function defined b

f~x!5
1

A2NcP1
1E dy2

2p
eixP1

1y2
^0uq̄~y2!

g5g1

2
P

3expF2 igE
0

y2

dzn•A~zn!Gq~0!up~P1!&,

~22!

as shown in Fig. 3~e!. The notationP means the path order
ing. By expanding the quark fieldq̄(y2) and the path-
ordered exponential into powers ofy2, the above matrix
element can be expressed as a series of covariant deriva
(D1)nq̄(0), implying that Eq.~22! is gauge invariant.

It has been mentioned in the Introduction that factoriz
tion of a QCD process in momentum, spin, and color spa
requires summations of many diagrams, especially at hig
orders. Hence, the diagram summation must be handled i
elegant way. For this purpose, we employ the Ward ident

l mGm~ l ,k1 ,k2 , . . . ,kn!50, ~23!

whereGm represents a physical amplitude with an exter
gluon carrying the momentuml and with n external quarks
carrying the momentak1 , k2 , . . . ,kn . All these external
particles are on mass shell. The Ward identity can be ea
derived by means of the Becchi-Rouet-Stora~BRS! transfor-
mation @12#.

We prove factorization theorem by induction. The facto
ization of theO(as) collinear divergences associated wi
the pion has been worked out in Sec. II. Assume that
factorization holds up toO(as

N):
9-4
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G5f ^ H, ~24!

with

G5(
i 50

N

G( i ), f5(
i 50

N

f ( i ), H5(
i 50

N

H ( i ). ~25!

G( i ) denotes the full diagrams ofO(as
i ) with G(0)5H (0) in

Eq. ~4!, the pion wave functionf ( i ) is defined by theO(as
i )

terms in the perturbative expansion of Eq.~22!, andH ( i ) is
the infrared-finite hard amplitude ofO(as

i ). We then have
the relations

G( i )5(
j 50

i

f ( j )
^ H ( i 2 j ), ~26!

for i 50, . . . ,N, which imply that all collinear divergences in
G( i ) have been collected intof ( j ), j < i , systematically.

Consider a complete set of full diagramsG(N11) of
O(as

N11). We look for the gluon, one of whose ends a
taches the outer most vertex on the upper quark line in
pion. Such a gluon exists, sinceG(N11) are finite-order dia-
grams. We then classifyG(N11) into two categories, reduc
ible and irreducible, according to the attachment of the ot
end of this gluon. If the other end attaches the upper or lo
quark lines directly, the diagrams are reducible. TheO(as)
examples are Figs. 2~a!–2~c!. All other diagrams, with the
other end attaching inside of theO(as

N) full diagramsG(N),
are irreducible. TheO(as) examples are Figs. 2~d! and 2~e!.
The factorization of reducible diagrams is the same as tha
Figs. 2~a!–2~c!: we simply insert the Fierz identity to sepa
rate G(N11) into the convolution ofG(N) with the O(as)
collinear divergent diagrams, which contribute to the pi
wave functionf (1). The result is shown in Fig. 4~a!. The
explicit expression off2b

(1) has been derived in Eq.~9!.

FIG. 4. ~a! Factorization ofO(as
N11) reducible diagrams.~b!

The Ward identity.~c! Factorization ofO(as
N11) irreducible dia-

grams.
01401
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We then discuss factorization of irreducibleG(N11). Let
a be the outer most vertex on the upper quark line, andb
denote the attachments of the other end of the radiated g
insideG(N). The pion possesses the leading-twist spin str
ture P” 1g5 from the Fierz identity. The fermion propagato
adjacent to the vertexa is proportional toP” 1 in the collinear
region with the loop momentuml parallel toP1. Hence, the
componentg1 in ga, which is located between the spi
structure and the fermion propagator, gives the leading c
tribution. The vertexb must be dominated by the minu
component. With the above reasoning, we propose the
lowing replacement for the tensorgab appearing in the
propagator of the radiated gluon:

gab→ nal b

n• l
. ~27!

The lightlike vectorna in the minus direction, which was
introduced in Eq.~13!, selects the plus component ofga. In
the collinear regionl lies mainly in the plus direction, andl b
selects the minus component of the vertexb. Therefore, Eq.
~27! extracts the leading-twist collinear divergences from
irreducibleG(N11).

The contraction ofl b hints the application of the Ward
identity in Eq. ~23! to the case with two external on-she
quarks. Figure 4~b! contains a complete set of contractions
l b, which are represented by arrows, since the second
third diagrams have been added. The cuts on the quark l
denote the insertion of the Fierz identity. The Ward identi
namely, the equation described by Fig. 4~b!, holds. The sec-
ond diagram gives

l b

1

~12x!P” 12 l”
gbP” 1g5

5
1

~12x!P” 12 l”
@ l”2~12x!P” 11~12x!P” 1#P” 1g5

5
~12x!P1

2g5

~12x!P” 12 l”
2P” 1g5 . ~28!

The first term in the second expression vanishes becaus
the on-shell conditionP1

250. The second term correspond
to the O(as

N) full diagramsG(N). Similarly, the third dia-
gram leads to

l bP” 1g5gb
1

xP” 12 l”
52

xP1
2g5

xP” 12 l”
2P” 1g5 , ~29!

where the first term vanishes and the second term co
sponds toG(N). The factorna /n• l from the collinear re-
placement in Eq.~27! is exactly the Feynman rule associat
with the eikonal line in the direction ofn. Equations~28! and
~29! imply that in the collinear region the irreducibleG(N11)

are factorized as shown in Fig. 4~c!. Obviously, the factor-
ization of the irreducible diagrams with the gluon emitt
from the outer most vertex on the lower quark line exis
We conclude that the irreducibleG(N11) can be factorized
9-5
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into the convolution ofG(N) with f (1) described by Figs.
3~a!–3~d!, in which the radiated gluon attaches the eikon
lines.

We derive the collinear factorization ofG(N11):

G(N11)'f (1)
^ G(N), ~30!

wheref (1) contains both the reducible gluons in Fig. 4~a!
and the irreducible gluons in Figs. 3~a!–3~d!. The remaining
part F (N11), defined via

G(N11)5f (1)
^ G(N)1F (N11), ~31!

is infrared finite, i.e., free from the collinear divergence a
sociated with the pion. The above procedures are also a
cable to theO(as

N11) pion wave functionf (N11), which is
defined by the perturbative expansion of Eq.~22!. We have

f (N11)5f (1)
^ f (N)1F̄ (N11), ~32!

with the infrared-finite functionF̄ (N11).
Employing Eqs.~26!, ~31!, and~32!, we write

G(N11)5f (1)
^ (

j 50

N

f ( j )
^ H (N2 j )1F (N11)

5(
j 50

N

@f ( j 11)2F̄ ( j 11)# ^ H (N2 j )1F (N11)

5 (
j 51

N11

f ( j )
^ H (N112 j )1H (N11), ~33!

with the O(as
N11) hard amplitude,

H (N11)[F (N11)2(
j 51

N

F̄ ( j 11)
^ H (N2 j ). ~34!

Obviously, the functionH (N11) does not contain any collin
ear divergence, since bothF and F̄ are infrared finite. Be-
cause off (0)51, Eq. ~33! becomes

G(N11)5 (
j 50

N11

f ( j )
^ H (N112 j ). ~35!

The above expression indicates that all collinear divergen
in the full diagrams ofpg* →g can be factored into the
definition of the pion wave function in Eq.~22! order by
order, and that the remaining hard amplitude is infrared
nite. Allowing N to approach infinity, we prove factorizatio
theorem for the processpg* →g to all orders.

At last, we prove by induction that soft divergences
not exist in the processpg* →g to leading twist. TheO(as)
soft cancellation has been explained in Sec. II. Assume
theO(as

N) full diagramsG(N) do not contain any soft diver
gence~though they contain collinear divergences!. Consider
the O(as

N11) full diagramsG(N11). Similarly, we look for
the gluon radiated from the outer most vertex on the up
quark line, and classify the diagrams into the reducible a
irreducible types. For reducible diagrams, we expressG(N11)
01401
l

-
li-

es

-

at

r
d

as the convolution ofG(N) with theO(as) infrared divergent
diagrams as shown in Fig. 4~a!. It is easy to confirm that the
derivation in Eqs.~6!–~8! still applies to the soft region with
the loop momentuml→0. The soft divergences in theO(as)
diagrams cancel in the same way as in Figs. 2~a!–2~c!. The
remainingG(N) are free from soft divergences as assum
above. Hence, the reducibleG(N11) have no soft diver-
gences.

We then consider irreducibleG(N11). The diagramsG(N),
without soft divergences, are dominated either by hard or
collinear dynamics. In the hard region ofG(N), internal par-
ticle propagators behave like 1/Q2. The attachment of a sof
gluon, producing one more hard propagator, does not in
duce soft divergences. The reason for this absence of
divergences is the same as in Eq.~10!. In the collinear region
of G(N), where momenta parallel toP1 dominate, we employ
the eikonal approximation for the small loop momentuml,

P” 11 l”

~P11 l !2
gaP” 1'

P1a

P1• l
P” 1 . ~36!

The contraction of the numeratorP1a to the outer most ver-
tex ga, which is mainlyg1, leads to a vanishing contribu
tion. Therefore, the irreducibleG(N11) do not contain soft
divergences either. ExtendingN to infinity, we prove that the
processpg* →g is free from soft divergences.

IV. FACTORIZATION OF pg*\p

We investigate infrared divergences in the processpg*
→p, and discuss only the factorization of the initial-sta
pion wave function. The discussion of the final-state wa
function is the same. Assume that the incoming and outgo
pions carry the momentaP1 andP2, respectively, which are
defined by Eq.~3!, and that the momentum fractionx1 (x2)
is associated with the lower quark line in the incoming~out-
going! pion. The above kinematic variables have been in
cated in the lowest-order diagrams in Fig. 5. Similarly, w
consider the region with large momentum transferQ2

52q2, q5P22P1 being the virtual photon momentum.
Contracting the four-quark amplitudes in Fig. 5 with th

leading-twist spin structuresP” 1g5 /A2Nc and g5P” 2 /A2Nc
from the initial and final states, respectively, we derive

FIG. 5. Lowest-order diagrams forpg* →p (B→p l n̄), where
the symbol3 represents the virtual photon~weak decay! vertex.
9-6
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H5a
(0)~x1 ,x2!5

i

2
eg2CF

tr@gng5P” 2gn~P” 22x1P” 1!gmP” 1g5#

~P22x1P1!2~x1P12x2P2!2

52
4eg2CF

x1x2Q2
iP1m , ~37!

H5b
(0)~x1 ,x2!5

i

2
eg2CF

tr@gng5P” 2gm~P” 12x2P” 2!gnP” 1g5#

~P12x2P2!2~x1P12x2P2!2

52
4eg2CF

x1x2Q2
iP2m . ~38!

The other two lowest-order diagrams, where the virtual p
ton attaches the lower quark lines, lead to the same exp
sions but with different electric chargee. Since contributions
from soft partons (x1 ,x2→0) are suppressed by the pio
wave functions, the exchanged gluons in Fig. 5, off-shell
O(Q2), are regarded as being hard.

A. O„as… factorization

We first identify infrared divergences fromO(as) radia-
tive corrections@13# to Fig. 5~a!. The diagrams in Fig. 6
contain potential infrared divergences associated with the
coming pion. We do not consider self-energy corrections
the inernal lines, since they, without infrared divergenc
give only a next-to-leading-order hard amplitude. The tre
ment of Figs. 6~a!–6~c! is the same as that of Figs. 2~a!–
2~c!: soft divergences cancel and collinear divergences
factored into the pion wave functionf (1) by inserting the
Fierz identity.

Diagrams with the additional gluon attaching the intern
lines, such as Figs. 6~d!–6~g!, do not generate soft diver
gences, because the internal lines are off-shell. We con
trate only on collinear divergences. Following the detai
calculation in Appendix A, the collinear divergences in Fig
6~d! and 6~e! are given by

FIG. 6. O(as) radiative corrections to Fig. 5~a!.
01401
-
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y
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d
.

I 6d'
Nc

2CF
f2d

(1)@H5a
(0)~x1 ,x2!2H5a

(0)~j1 ,x2!#, ~39!

I 6e'
Nc

2CF
f2e

(1)@H5a
(0)~x1 ,x2!2H5a

(0)~j1 ,x2!#, ~40!

with j15x12 l 1/P1
1 . The dependences onl 2 andl T in H5a

(0)

have been neglected, since they are subleading in the co
ear region. Collinear divergences froml parallel toP1 vanish
in Figs. 6~f! and 6~g!. We have separated the integrandsI 6d
andI 6e into two terms, similar to those in Eqs.~14! and~17!.
However, the color factors are different because of the
ferent color flows in Figs. 2~d! and 6~d!. We shall explain
how to fix the color factors after calculating Figs. 6~h!–6~k!.

The collinear factorization of the irreducible correctio
in Figs. 6~h!–6~k! relies on the eikonal approximation. Th
results are written as

I 6h'2
1

2CFNc
f2d

(1)H5a
(0)~x1 ,x2!, ~41!

I 6i'
1

2CFNc
f2d

(1)H5a
(0)~j1 ,x2!, ~42!

I 6 j'
1

2CFNc
f2e

(1)H5a
(0)~j1 ,x2!, ~43!

I 6k'2
1

2CFNc
f2e

(1)H5a
(0)~x1 ,x2!. ~44!

To discuss soft divergences, we simply allowl 1 to appraoch
zero, i.e.,j1→x1. It is easy to find that soft divergence
cancel between Figs. 6~h! and 6~i! and between Figs. 6~j! and
6~k!. Hence, irreducible corrections are free from soft div
gences.

Combining Eq.~41! and Eq.~42! with the first and second
terms in Eq.~39!, respectively, and combining Eq.~43! and
Eq. ~44! with the second and first terms in Eq.~40!, respec-
tively, we obtain the correct color factors:

I 6(d)26(k)'f2d
(1)@H5a

(0)~x1 ,x2!2H5a
(0)~j1 ,x2!#

1f2e
(1)@H5a

(0)~x1 ,x2!2H5a
(0)~j1 ,x2!#, ~45!

which are also described by Figs. 3~a!–3~d!. It is observed
from the above expression that the collinear divergence
the summation of Figs. 6~d!–6~k! are identical to those in the
summation of Figs. 2~d! and 2~e!, consistent with the univer-
sality of hadron wave functions.

We then investigate infrared divergences from radiat
corrections to Fig. 5~b!. The diagrams in Fig. 7 contain po
tential infrared divergences associated with the incom
pion. The factorization of Figs. 7~a!–7~c! is the same as tha
of Figs. 6~a!–6~c!: They are absorbed into the leading-twi
pion wave functionf (1) straightforwardly. The contributions
from Figs. 7~d! and 7~e! are the same as those from Fig
6~d! and 6~e!.

For Figs. 7~f!, we consider only the collinear divergence
from l parallel toP1,
9-7
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I 7 f'
ig2

Nc

n•@~12x1!P11 l #

@~12x1!P11 l #2l 2n•~P11 l !
H5b

(0)~x1 ,x2!.

~46!

The result differs form that of Fig. 6~f!, which vanishes. Note
that the collinear divergence in Eq.~46! is not in the correct
eikonal form. To show that it does not cause any trouble,
consider the collinear factorization of Fig. 7~h!,

I 7h'
ig2

Nc

n•@~12x1!P11 l #

@~12x1!P11 l #2l 2n•~P11 l !

n•P1

n• l
H5b

(0)~x1 ,x2!.

~47!

Combining Eqs.~46! and ~47!, we have the simpler expres
sion

I 7 f 17h'2
1

2CFNc
f2d

(1)H5b
(0)~x1 ,x2!, ~48!

whose collinear divergence is exactly the same as that of
6~h! in Eq. ~41!. At last, combining the collinear divergence
in Eq. ~48! and those from Fig. 7~d!, we obtain the result
described by Fig. 3~a!.

A similar analysis shows that the collinear divergences
the sum of Figs. 7~g! and 7~j! are the same as in Fig. 6~j!.
Combined with the divergences from Fig. 7~e!, we obtain the
result described by Fig. 3~c!. The results for Figs. 7~i! and
7~k! are the same as for Figs. 6~i! and 6~k!, respectively, and
their collinear factorizations, combined with Figs. 7~d! and
7~e!, are described by Figs. 3~b! and 3~d!, respectively. We
conclude that theO(as) collinear divergences in Figs. 6 an
7 are identical to those in Fig. 2, and can be formulated i
the leading-twist pion wave functionf (1) defined in Eq.
~19!.

FIG. 7. O(as) radiative corrections to Fig. 5~b!.
01401
e

ig.

n

o

B. All-order factorization

The analysis of theO(as) collinear divergences inpg*
→p indicates that factorization of a QCD process requi
summations of many diagrams. For example, the summa
of Figs. 7~f! and 7~h! removes the dependence of the ha
amplitude on the loop momentuml. The summations of Figs
6~d! and 6~h! and of Figs. 7~d!, 7~f!, and 7~h! give the correct
color factors. To prove factorization theorem to all orde
we deal with these summations by means of the Ward id
tity. It is trivial to generalize the proof for the processpg*
→g to pg* →p. In the present case the amplitudeGm in
Eq. ~23! contains four external on-shell quarks. We simp
interpret the functionH as the part that does not involve th
collinear divergences associated with the incoming pi
Then repeat the procedures and further factorizeH into the
the convolution of a hard amplitude with the wave functi
associated with the outgoing pion.

The proof of the absence of soft divergences in the p
cesspg* →p is subtler. It has been shown that theO(as)
corrections do not produce soft divergences. Assume tha
soft cancellation exists up toO(as

N). For reducibleO(as
N11)

full diagramsG(N11), we insert the Fierz identity to facto
out the O(as) infrared divergent diagrams, which involv
the gluons emitted from the outer most vertices on the up
and lower quark lines. This insertion works for both th
initial- and final-state pions. The soft divergences in t
O(as) diagrams cancel in the same way as in Figs. 2~a!–
2~c!. The remainingO(as

N) full diagramsG(N) have no soft
divergences as assumed above. Hence, the reducibleG(N11)

do not contain soft divergences.
For irreducibleG(N11), we consider the gluon emitte

from the outer most vertices on the upper and lower qu
lines in the incoming pion. SinceG(N) are free from soft
divergences, they are dominated either by hard or by col
ear dynamics. In the hard region and in the collinear reg
with momenta parallel toP1, the soft divergences vanish fo
the same reason as for the processpg* →g. In the collinear
region with momenta parallel toP2, we adopt the eikona
approximation,

P” 21 l”

~P21 l !2
gaP” 2'

na

n• l
P” 2 . ~49!

It is easy to observe that the above approximation can
achieved by the replacement in Eq.~27!.

We propose to employ Eq.~27! to extract the soft diver-
gences in the irreducibleG(N11). In the hard region and in
the collinear region with momenta parallel toP1, the re-
placement in Eq.~27! simply modifies subleading contribu
tions, that are free from soft divergences. In the colline
region with momenta parallel toP2, the replacement extract
the correct soft divergences in the irreducibleG(N11).
Hence, Eq.~27! always works for a leading-twist analysis o
soft divergences. The derivation from Eq.~28! to Eq. ~30!
holds, and the irreducibleG(N11) are factorized into the con
volution of G(N) with Figs. 3~a!–3~d!. SinceG(N) have no
soft divergences, we allow the loop momentuml flowing
insideG(N) to approach zero. It is then obvious that the s
9-8
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divergences cancel between Figs. 3~a! and 3~b! and between
Figs. 3~c! and 3~d!. That is, the irreducibleG(N11), like the
reducibleG(N11), are also free from soft divergences. T
same argument applies to the gluons emitted from the
going pion side. At last, extendingN to infinity, we prove the
absence of soft divergences in the processpg* →p.

We conclude from the discussions in Secs. III and IV th
the leading-twist infrared structures in the processespg*
→p andpg* →g are identical, and that the pion wave fun
tion, defined by Eq.~22!, is universal.

V. FACTORIZATION OF B MESON DECAYS

In this section we present the all-order proof of factoriz
tion theorem for the exclusiveB meson decaysB→g l n̄ and
B→p l n̄ in the heavy quark limit. It will be shown that th
proof for the pion transition form factor in Sec. III can b
generalized toB meson decays, if terms suppressed by po
ers of 1/MB are neglected. The momentumP1 of the B me-
son and the momentumP2 of the outgoing on-shell photon
~pion! are parametrized as

P15
MB

A2
~1,1,0T!, P25

MB

A2
~0,h,0T!, ~50!

whereh denotes the energy fraction carried by the pho
~pion!. Assume that the light spectator quark in theB meson
carries the momentumk, and thate denotes the polarization
vector of the photon. We consider the kinematic region w
small q2, q5P12P2 being the lepton pair momentum, i.e
with largeh, where PQCD is applicable. In the heavy qua
limit the mass difference between theB meson and theb
quark, L̄5MB2mb , is a small scale, which will appear a
higher-twist terms proportional toL̄/MB . The four compo-
nents of the spectator quark momentumk are of the same
order asL̄.

The lowest-order diagrams for theB→g l n̄ decay and for
theB→p l n̄ decay are displayed in Fig. 1 and Fig. 5, resp
tively, but with the upper quark line replaced by ab quark
line and with the vertex3 representing a weak decay verte
It is easy to observe that Figs. 1~a! and 1~b! scale like

H1a
(0)}

1

~P22k!2
;

1

L̄MB

, ~51!

H1b
(0)}

1

~q2k!22MB
2

;
1

MB
2

, ~52!

indicating that Fig. 1~b! is power-suppressed. In the follow
ing analysis we shall concentrate only on Fig. 1~a!. There are
two leading-twist spin structures for theB meson,

~P” 11MB!n”̄g5

2ANc

,
~P” 11MB!n”g5

2ANc

, ~53!
01401
t-

t

-

-

n

h

-

with the dimensionless vecorn̄5(1,0,0T), each of which is
associated with aB meson wave function. For the radiativ
decay B→g l n̄, only the first structure contributes at th
leading-twist.

Contracting the amplitudes in Fig. 1~a! with (P” 1

1MB)n”̄g5 /(2ANc), we derive

H1a
(0)~x!52e

ANc

2

tr@e”P” 2gm~12g5!n” #

xhMB
, ~54!

where x5k1/P1
1 is the momentum fraction. SinceP2 has

been chosen in the minus direction, only the plus compon
k1 of k is relevant. We have dropped the higher-twist ter
proportional tok in the numerators andL̄ by assumingmb
'MB . It is then possible to integrate out thek2 and kT
dependences in theB meson wave functionc1(k), leading
to the light-coneB meson wave function,

f1~x!5E dk2d2kTc1~k!. ~55!

It will be shown that a light-coneB meson wave function can
always be defined, if an appropriate frame is chosen, e
though the four components ofk are of the same order.

A. O„as… factorization of B\g l n̄

We start with the one-loop diagrams in Fig. 2 for theB

→g l n̄ decay, discussing the factorization of their infrar
divergences. The factorization of Figs. 2~a!–2~c! requires the
insertion of the Fierz identity. Take Fig. 2~b! as an example
@the analysis of Figs. 2~a! and 2~c! is trivial#. The loop inte-
grand is written as

I 2b' ig2CF trH gn

k”2 l”

~k2 l !2

g5ga

2

3
P” 12k”1 l”1MB

~P12k1 l !22MB
2

gn
~v”1I !n”̄g5

2 J 1

l 2

3e
ANc

2

tr@e” ~P” 22k”1 l”!gm~12g5!MBgag5#

~P22k1 l !2
,

~56!

where we have kept only the leading-twist structureg5ga in
the Fierz identity, and introduced the dimensionless vec
v5P1 /MB . The other structures, such asg5 andg5sab, do
not contribute, because the corresponding hard amplit
vanishes:

e
ANc

2

tr@e” ~P” 22k”1 l”!gm~12g5!MBg5#

~P22k1 l !2
50. ~57!

In the heavy quark limit we have the eikonal approxim
tion,
9-9



on

uc

th

c
-
te

-
n
ha

a
,

c
d

ces
nal
of

on.
.
e

t

s.

HSIANG-NAN LI PHYSICAL REVIEW D 64 014019
P” 12k”1 l”1MB

~P12k1 l !22MB
2

gn~v”1I !'
vn

v•~ l 2k!
~v”1I !, ~58!

which is in fact equivalent to the heavy quark expansi
Obviously, only the componentg15g2 of ga contributes to
the hard amplitude at leading twist, requiring the spin str
tureg5ga to beg5g1 in the first trace for theB meson wave
function. Equation~56! becomes

I 2b'~f1
(1)!2bH1a

(0)~j!, ~59!

with j5x2 l 1/P1
1 and theO(as) B meson wave function,

~f1
(1)!2b5 ig2CFtr H gn

k”2 l”

~k2 l !2

g5g1

2

~v”1I !n”̄g5

2 J
3

1

l 2

vn

v•~ l 2k!
. ~60!

Figure 2~b! has been expressed as the convolution of
hard amplitudeH1a

(0) with the O(as) infrared divergent dia-
grams, which contribute tof1

(1) , in the momentum fraction
j.

Equation~60! is simplified into

~f1
(1)!2b52 ig2CF

2v2~ l 12k1!

~k2 l !2l 2v•~ l 2k!
. ~61!

Performing the contour integration over, say,l 2, we observe
that the integral is singular only when the componentl 1 is of
O(L̄). This observation implies that the infrared divergen
associated with theB meson is of the soft type. This dynam
ics differs from the collinear type of divergences associa
with the pion in the processpg* →g. It is easy to under-
stand that the soft divergences in Figs. 2~a!–2~c! do not can-
cel in B meson decays@7#: The light spectator quark, carry
ing a small amount of momenta, forms a color cloud arou
the b quark. This cloud is also huge in space-time, such t
soft gluons resolve the color structure of theB meson.

Diagrams with the additional gluon attaching the intern
quark in Figs. 2~d! and 2~e! also contain soft divergences
since the internal quark is off-shell only byO(L̄MB). Note
that the internal quark in the processpg* →g is off-shell by
O(Q2). There is no collinear divergence froml parallel to
P2, because the internal quark propagator remains the s
ing law 1/L̄MB , instead of 1/L̄2. The integrand associate
with Fig. 2~d! is written as

I 2d52 ieg2CF

ANc

2
trH e”

P” 22k”

~P22k!2
gn

P” 22k”1 l”

~P22k1 l !2

3gm~12g5!
P” 12k”1 l”1MB

~P12k1 l !22MB
2

gn~P” 11MB!n”̄g5J 1

l 2
.

~62!

Inserting the Fierz identity, we have
01401
.

-

e

e

d

d
t

l

al-

I 2d'2 ig2CF

2P2n

~P22k1 l !2
trH g5ga

2

P” 12k”1 l”1MB

~P12k1 l !22MB
2

3gn
~v”1I !n”̄g5

2 J 1

l 2
e
ANc

2

tr@e”P” 2gm~12g5!MBgag5#

~P22k!2
.

~63!

Obviously, the first trace is proportional ton̄a in the heavy
quark limit.

We employ the relation similar to Eq.~13!,

2P2n

~P22k1 l !2
'

nn

n• l F12
~P22k!2

~P22k1 l !2G , ~64!

where the terms (k2 l )2;O(L̄2) andk2;O(L̄2) have been
neglected. The eikonal line in the direction ofn appears.
Equation~63! reduces to

I 2d'~f1
(1)!2d@H1a

(0)~x!2H1a
(0)~j!#, ~65!

with the O(as) B meson wave function,

~f1
(1)!2d52 ig2CF

nn

n• l
trH g5g1

2

~v”1I !n”̄g5

2 J 1

l 2

vn

v•~ l 2k!
.

~66!

The above expression implies that the infrared divergen
in irreducible diagrams can also be collected by the eiko
line along the light cone. This is attributed to the choice
the frame, in which the photon moves in the minus directi
The first and second terms in Eq.~66! are described by Figs
8~a! and 8~b!, respectively, where the eikonal lines in th
directions ofv and ofn have been indicated. In Fig. 8~b! the
loop momentuml flows into the internal quark line, such tha
the second term appears as a convolution ofH1a

(0) with
(f1

(1))2d in the momentum fractionj.
Figure 2~e! gives the loop integrand

FIG. 8. ~a!–~d! Infrared divergent diagrams factored out of Fig

2~d! and 2~e! for the B→g l n̄ decay.~e! The graphic definition of
the leading-twistB meson wave function.
9-10
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I 2e5 ieg2CF

ANc

2
trH gn

k”2 l”

~k2 l !2
e”

P” 22k”1 l”

~P22k1 l !2
gn

3
P” 22k”

~P22k!2
gm~12g5!~P” 11MB!n”̄g5J 1

l 2
. ~67!

Inserting the Fierz identity, we have

I 2e' ig2CF

2P2n

~P22k1 l !2
trH gn

k”2 l”

~k2 l !2

g5ga

2

~v”1I !n”̄g5

2 J 1

l 2

3e
ANc

2

tr@e”P” 2gm~12g5!MBgag5#

~P22k!2
. ~68!

Similarly, the componentg15g2 of ga in the second trace
is selected. Employing Eq.~64!, the above expression is re
written as

I 2e'2~f1
(1)!2e@H1a

(0)~j!2H1a
(0)~x!#, ~69!

with the O(as) B meson wave function

~f1
(1)!2e5 ig2CF

nn

n• l
trH gn

k”2 l”

~k2 l !2

g5g1

2

~v”1I !n”̄g5

2 J 1

l 2
.

~70!

We have split Fig. 2~e! into two terms, whose infrared diver
gent factors are described by Figs. 8~c! and 8~d!, respec-
tively.

Comparing Eqs.~60!, ~66!, and ~70!, the Feynman rules
for the perturbative evaluation of theB meson wave function
are clear:fB

(1) can be written as a nonlocal hadronic mat
element with the structureg5g1/2 sandwiched:

f1
(1)~x!5

1

A2NcMB
E dy2

2p
eixP1

1y2
^0uq̄~y2!

g5g1

2
~2 ig !

3E
0

y2

dzn•A~zn!bv~0!uB~P1!&, ~71!

where the rescaledb quark field,

bv~y!5exp~ iM Bv•y!
v”1I

2
b~y!, ~72!

has been introduced. The Feynman rules associated witbv
are those for an eikonal line in the direction ofv given in Eq.
~58!. The above definition reproduces the contributions fr
Figs. 2~a!–2~c! and from Figs. 8~a!–8~d!, if it is evaluated
perturbatively.

The factorization formula for theB→g l n̄ decay is writ-
ten, up toO(as), as

~f1
(0)1f1

(1)! ^ ~H1a
(0)1H1a

(1)!1O~as
2!, ~73!

with f1
(0)51 and^ representing the convolution in the mo

mentum fraction. TheO(as) hard amplitudeH1a
(1) is defined

by
01401
H1a
(1)[(

i
E d4l

~2p!4
I i2f1

(1)
^ H1a

(0) , ~74!

where the subscripti runs from 2a to 2e. Obviously,H1a
(1) is

infrared finite, since all the (as) soft divergences have bee
absorbed into theB meson wave functionf1

(1) .

B. All-order factorization of B\g l n̄

We prove leading-twist factorization theorem for theB

→g l n̄ decay to all orders, and construct a gauge-invari
light-coneB meson wave function defined by

f1~x!5
1

A2NcMB
E dy2

2p
eixP1

1y2
^0uq̄~y2!

g5g1

2
P

3expF2 igE
0

y2

dzn•A~zn!Gbv~0!uB~P1!&,

~75!

as shown in Fig. 8~e!. The eikonal lines in the directions ofv
and ofn have been indicated. By expanding the light qua
field q̄(y2) and the path-ordered exponential into powers
y2, the nonlocal matrix element can be expressed as a s
of covariant derivatives (D1)nq̄(0), implying that Eq.~75!
is gauge invariant.

We present the proof by induction. The factorization
the O(as) infrared divergences associated with theB meson
has been worked out. Assume that the factorization of
infrared divergences holds up toO(as

N), that is, we have

Eqs. ~24!–~26! for the B→g l n̄ decay. Consider a complet
set of O(as

N11) full diagrams G(N11). We look for the
gluon, one of whose ends attaches the outer most verte
the b quark line. We classifyG(N11) into the reducible and
irreducible types as in Sec. III. The factorization of the r
ducible G(N11) is the same as that of Figs. 2~a!–2~c!: Fol-
lowing Eqs.~56!–~60!, we insert the Fierz identity to sepa
rate the reducibleG(N11) into the convolution ofG(N) with
the O(as) infrared divergent diagrams, which contribute
theB meson wave functionfB

(1) . The result is similar to that
shown in Fig. 4~a!.

For the factorization of the irreducible diagrams, we re
on the Ward identity in Eq.~23!. In this case the amplitude
Gm contains two on-shell external quarks, one of which
the heavyb quark. As hinted by theO(as) analysis, the soft
divergence, associated with the gluon radiated by the o
most vertex on theb quark line, can be collected by th
eikonal approximation, i.e., by the replacement in Eq.~27!.
The reason is as follows. In the heavy quark limit the f
diagrams of theB→g l n̄ decay are dominated by the mo
mentum flow along the photon momentumP2 in the minus
direction. Strickly speaking, they are dominated byP22k.
Hence, the vertexb insideG(N) the radiated gluon attache
is mainly minus, and the vertexa on the b quark line is
9-11
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mainly plus. Apparently, the tensornal b /n• l extracts the
correct leading contribution. Therefore, we have the equa
described by Fig. 4~b!.

The second and third diagrams in Fig. 4~b! give

l b

1

P” 12k”2 l”2MB

gb~v”1I !n”̄g5

52
1

P” 12k”2 l”2MB

k” ~v”1I !n”̄g52~v”1I !n”̄g5 ,

~76!

l b~v”1I !n”̄g5gb
1

k”2 l”
5~v”1I !n”̄g5k”

1

k”2 l”
2~v”1I !n”̄g5 ,

~77!

respectively. After assigning the quark propagators on
right-hand sides of the above expressions into the co
sponding loop integrals, the first terms are proportional tk

;O(L̄). They are suppressed byO(L̄/MB) compared to the
second terms, which correspond toG(N). Neglecting the
higher-twist terms, the irreducibleG(N11) are factorized into
the convolution ofG(N) with theO(as) B meson wave func-
tion, in which the radiated gluon attaches the eikonal lines
in Figs. 8~a! and 8~b!. The factorization of the irreducible
G(N11), with the gluon emitted from the outer most verte
on the light spectator quark line, is similar. The resulta
O(as) infrared divergent diagrams for theB meson wave
function are those in Figs. 8~c! and 8~d!.

Combining the factorizations of the reducible and irredu
ible G(N11), we arrive at Eq.~31!. The factorization in Eq.
~32! for the B meson wave functionf1

(N11) also exists. Fol-
lowing the steps in Eqs.~33!–~35!, we complete the all-orde
proof of leading-twist factorization theorem for theB
→g l n̄ decay. The definition of the hard amplitude at ea
order is the same as in Eq.~34!. Since the full diagrams are
dominated by momenta alongP2, only the plus componen
k1 of k is relevant in the hard amplitude. This is the reas
we can integrate theB meson wave function overk2 andkT ,
obtaining the light-coneB meson wave function in Eq.~75!.

C. Factorization of B\p l n̄

The factorization of the pion wave function in Secs.
III, IV, and the factorization of theB meson wave function in
the B→g l n̄ decay can be applied to theB→p l n̄ decay
straightforwardly. Here we simply explain some points of t
proof, and neglect the details. The lowest-order diagrams
shown in Fig. 5. Both the spin structures in Eq.~53! contrib-
ute to Fig. 5~b!, but only the first one contributes to Fig. 5~a!.
Since P2 has been chosen in the minus direction, only
plus componentk1 of k is relevant. It is then possible t
define a light-coneB meson wave function for theB→p ln
decay. We first identify infrared divergences fromO(as)
radiative corrections to Fig. 5~a!, which are displayed in Fig
6, since their analysis is similar to that of theB→g l n̄ decay.
Note that Fig. 6 is complete only for the construction of t
01401
n

e
e-

s

t

-

h

n

re

e

B meson wave function. We do not consider self-energy c
rections to the internal lines, which give only next-t
leading-order hard amplitudes.

The construction of the pion wave function is basica
the same as that for the processpg* →p. That is, the infra-
red divergences associated with the outgoing pion is of
collinear type. Soft divergences cancel by pairs, because
gluons do not interact with the color singlet pion. For e
ample, soft divergences cancel between Figs. 6~h! and 6~i!
and between Figs. 6~j! and 6~k!. The collinear gluons are stil
collected by the eikonal lines along the light cone, ev
though they may attach the heavyb quark. The reason is tha
when a loop momentuml is parallel to the pion momentum
P2 in the minus direction, only the componentg1 of the
vertex on theb quark line andP1

1 of the B meson momen-
tum are selected. Consequently, we derive the definition
the pion wave function, which is identical to Eq.~22!. This
conclusion is consistent with the universality of hadron wa
functions.

We then concentrate on theB meson wave function. The
treatment of the reducible diagrams in Figs. 6~a!–6~c! is ex-
actly the same as in Figs. 2~a!–2~c! for the B→g l n̄ decay.
We insert the Fierz identity to separate these diagrams
the convolution of Fig. 5~a! with the O(as) soft divergent
diagrams, which contribute to theB meson wave function
f1

(1) . The investigation of the irreducible diagrams in Fig
6~d! and 6~e! hints that the soft divergences can be collec
by the eikonal lines along the direction ofn, a conclusion
similar to that for Figs. 2~d! and 2~e!. Hence, the replacemen
in Eq. ~27! for the loop gluon extracts the soft divergences
the irreducible diagrams in Figs. 6~d!–6~k!. The Ward iden-
tity applies, and the sum of these irreducible diagrams
factorized into the convolution of Fig. 5~a! with part of f1

(1)

described by Figs. 8~a!–8~d!. Following the procedures in
Sec. III, we prove leading-twist factorization theorem f
Fig. 5~a! in theB→p l n̄ decay. TheB meson wave functions
f1 constructed from theB→g l n̄ and B→p l n̄ decays are
identical.

The discussion of theO(as) radiative corrections to Fig
5~b! shown in Fig. 7 is similar, though more complicate
The soft approximation, the Fierz insertion, and the Wa
identity apply. Because of the existence of the heavy qu
propagator, the spin structuresg5ga, g5, andg5sab in the
Fierz identity contribute. In this case two leading-twistB
meson wave functions can be constructed@8#. Besidesf1

defined in Eq.~75!, we derive the additional light-coneB
meson wave function associated with the structure (P” 1

1MB)n”g5 /(2ANc),

f2~x!5
1

A2NcMB
E dy2

2p
eixP1

1y2
^0uq̄~y2!

g5g2

2
P

3expF2 igE
0

y2

dzn•A~zn!Gbv~0!uB~P1!&.

~78!

In summary, the nonlocal hadronic matrix element for theB
meson is expressed as
9-12
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E dy2

2p
eixP1

1y2
^0uq̄g~y2!bb~0!uB~P1!&

52H ~P” 11MB!

A2Nc
F n”̄

A2
f1~x!1

n”

A2
f2~x!Gg5J

gb

.

~79!

This result is exactly the same as that obtained in@8# at
leading twist.

A remark is in order. The hard amplitude from Fig. 5~b!,
proportional to 1/(x1x2

2), x2 being the momentum fraction
associated with the pion, develops an infrared singularity
the pion wave function vanishes likex2 asx2→0 @14#. Even
though we have proved leading-twist factorization theor
for the B→p l n̄ decay, its practical application is questio
able. It has been shown that the inclusion of parton tra
verse momentakT smears the singularities from the en
point region of momentum fractions@7#. When kT is
included, the dependence on the transverse loop momen
l T , being of the same order askT , is not negligible in the
hard amplitude. This complexity can be resolved by Fou
transforming the factorization formula from thekT space into
theb space, whereb is the impact parameter conjugate tokT
@15,16#. The l T dependence then appears in the fac
exp(2ilT•b), and decouples from the hard amplitude. Th
factor can be assigned into the corresponding loop integ
which contributes to the definition of the meson wave fun
tions. We claim that the factorization of theB→p l n̄ decay
must be performed in the impact parameter space@17#.

VI. CONCLUSION

In this paper we have investigated the infrared div
gences in the processespg* →g andpg* →p. We summa-
rize their comparision below. There are no soft divergenc
since they are either absent or cancel among sets of
grams. In the collinear region withl parallel to P1, Figs.
2~a!–2~c! are identical to Figs. 6~a!–6~c! @Figs. 7~a!–7~c!#.
Figures 2~d! and 2~e! are identical to the combination o
Figs. 6~d!–6~k! @Figs. 7~d!–7~k!#. That is, the collinear struc
tures are the same at the leading twist, consistent with
concept of universality of hadron wave functions in PQC
factorization theorem. However, due to the potential sign
cant subleading contributions at low energies, the extrac
of the leading-twist pion wave function from thepg*
→g(p) data suffers ambiguity. For details, refer to Appe
dix B.

We have presented an all-order proof of leading-twist f
torization theorem for the processespg* →g andpg* →p,
and for the decaysB→g l n̄ and B→p l n̄ by means of the
Ward identity. The small scales, such as the light spect
quark momentumk and theB meson andb quark mass dif-
ferenceL̄, are neglected in the heavy quark limit, such th
the Ward identity holds. Our proof is simple compared
that in @4#, and explicitly gauge invariant, compared to th
in @1#. We have constructed the gauge-invariant pion anB
meson wave functions, and confirmed their universality. T
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path-ordered integral appears as a consequence of the W
idenity. Note the difference between the definitions for t
pion andB meson wave functions. The former, collecting t
collinear divergences, depends on the structureg5g1. The
latter, collecting the soft divergences, depends on the st
ture g5v” . We emphasize that it is possible to define a lig
coneB meson wave function, if an appropriate frame is ch
sen, in which the photon~pion! moves in the minus or plus
direction. This is also the reason we can extract the infra
divergences inpg* →g(p) andB→g(p) l n̄ using the same
replacement in Eq.~27!.

The leading-twist factorization of theB→p l n̄ decay can
be proved straightforwardly, following the procedures p
sented in Secs. II–V. However, for a practical applicatio
the parton transverse momentakT must be included in orde
to smear the end-point singularities in the hard amplitu
We shall derive factorization theorem including these ad
tional degrees of freedom elsewhere@17#. Our proof will be
generalized to nonleptonicB meson decays, such asB
→pp. This factorization is more complicated, since nonle
tonic decays involve three characteristic scales: theW boson
massMW , MB , and small scales ofO(L̄), such askT .
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APPENDIX A: O„as… COLLINEAR CORRECTIONS

In this appendix we supply the details of the derivation
the collinear divergences in the processpg* →p. The loop
integrand from Fig. 6~d! is written as

I 6d5
2 ieg4

2Nc
trH glg5P” 2gb

P” 22x1P” 11 l”

~P22x1P11 l !2

3gm

~12x1!P” 11 l”

@~12x1!P11 l #2
3gaP” 1g5J

3
tr~TaTbTc!Gabl

abc

l 2~x1P12x2P22 l !2~x1P12x2P2!2
, ~A1!

with Nc being the number of colors and the triple-gluon ve
tex,

Gabl
abc 52 f abc@gab~2l 2x1P11x2P2!l1gbl~2x1P1

22x2P22 l !a1gla~x2P22x1P12 l !b#, ~A2!
9-13
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HSIANG-NAN LI PHYSICAL REVIEW D 64 014019
f abc being a antisymmetric tensor. In the collinear regi
with l parallel to P1, only the term proportional togbl is
important, since the terms proportional togla and gab ,
giving

@~12x1!P” 11 l”#gaP” 1g5glgla

52P1•@~12x1!P11 l #g5

;O~l2!,gaP” 1g5~2l”2x1P” 11x2P” 2!g5P” 2gbgab

52P1•~2l 2x1P1!P” 2;O~l2!P” 2 , ~A3!

do not produce collinear divergences. Considering the s
ond term in Eq.~A2!, Eq. ~A1! exhibits the collinear diver-
gence

I 6d'
23ig2P2•@~12x!P11 l #

@~12x!P11 l #2l 2@P2•~ l 2xP1!#
H5a

(0) , ~A4!

where we have employed the identities

tr ~TaTbTc!5
1

4
~dabc1 i f abc!, dabcf abc50,

f abcf abc524, ~A5!

dabc being a symmetric tensor, and the approximation for
denominator

~x1P12x2P22 l !252x2P2•~ l 2x1P1!. ~A6!

It is found that the infrared divergent piece of the radiat
correction has been completely factored out. The remain
part, denoted by the lowest-order hard amplitudeH5a

(0) , does
not depend on the loop momentuml at all.

Figure 6~e! gives the loop integrand

I 6e5
ieg4

2Nc
trH ga

x1P” 12 l”

~x1P12 l !2
glg5P” 2gb

P” 22x1P” 1

~P22x1P1!2

3gmP” 1g5J tr~TaTbTc!Gabl
abc

l 2~x1P12x2P22 l !2~x1P12x2P2!2
,

~A7!

with the triple-gluon vertex,

Gabl
abc 52 f abc@gab~ l 2x1P11x2P2!l1gbl~2x1P122x2P2

1 l !a1gla~x2P22x1P122l !b#. ~A8!

Similarly, in the region withl parallel toP1 we have

I 6e'
23ig2

~x1P12 l !2l 2
H5a

(0) . ~A9!

The integrand associated with Fig. 6~f! is written as
01401
c-

e

g

I 6 f5
eg4CF

2

2
trH gag5P” 2ga

P” 22x1P” 1

~P22x1P1!2

3gn

P” 22x1P” 11 l”

~P22x1P11 l !2
gm

~12x1!P” 11 l”

@~12x1!P11 l #2
gnP” 1g5J

3
1

l 2~x1P12x2P2!2
, ~A10!

which is simplified into

I 6 f522eg4CF
2

3
tr@gm~P” 21 l”!P” 1l”#

@~12x1!P11 l #2~P22x1P11 l !2l 2~x1P12x2P2!2
.

~A11!

The trace in the above expression is proportional to the v
ishing factorP1• l , which suppresses the divergence from t
denominator@(12x1)P11 l #2. Figure 6~g! does not contain
collinear divergences for the same reason.

The loop integrand associated with Fig. 6~h! is written as

I 6h52
eg4CF

4Nc
trH gag5P” 2gn

~12x2!P” 21 l”

@~12x2!P21 l #2

3ga
P” 22x1P” 11 l”

~P22x1P11 l !2
gm

~12x1!P” 11 l”

@~12x1!P11 l #2
gnP” 1g5J

3
1

l 2~x1P12x2P2!2
, ~A12!

which is simplified into

I 6h52
2eg4CF

Nc

P1•@~12x2!P21 l #

@~12x2!P21 l #2

3trH P” 2

P” 22x1P” 11 l”

~P22x1P11 l !2
gm

~12x1!P” 11 l”

@~12x1!P11 l #2J
3

1

l 2~x1P12x2P2!2
. ~A13!

In the region withl parallel toP1, we have the approxima
tion

I 6h'
ig2

Nc

P2•@~12x1!P11 l #

@~12x1!P11 l #2l 2P2• l
H4a

(0)

5
ig2

Nc

n•@~12x1!P11 l #

@~12x1!P11 l #2l 2n• l
H5a

(0) , ~A14!

where we have adopted the approximation for the qu
propagator@(12x2)P21 l #'2(12x2)P2• l , and dropped all
the terms proportional toP1• l .
9-14
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The loop integrand corresponding to Fig. 6~i! is written as

I 6i5
eg4CF

4Nc
trH ga

x2P” 21 l”

~x2P21 l !2
gng5P” 2ga

P” 22x1P” 11 l”

~P22x1P11 l !2
gm

3
~12x1!P” 11 l”

@~12x1!P11 l #2
gnP” 1g5J 1

l 2~x1P12x2P22 l !2
,

~A15!

whose sign is opposite to that of Eq.~A12! due to the anti-
quark propagator. The above expression is simplified int

I 6i5
2eg4CF

Nc
trH x2P” 21 l”

~x2P21 l !2

P” 22x1P” 11 l”

~P22x1P11 l !2
gm

3
~12x1!P” 11 l”

@~12x1!P11 l #2J P1•P2

l 2~x1P12x2P22 l !2
.

~A16!

It is easy to derive the collinear approximation,

I 6i'
2 ig2

Nc

n•@~12x1!P11 l #

@~12x1!P11 l #2l 2n• l

~x1P12x2P2!2

~x1P12x2P22 l !2
H5a

(0) .

~A17!

The similar procedures apply to Figs. 6~j! and 6~k!.
The integrand associated with Fig. 7~f! is written as

I 7 f52
eg4CF

4Nc
trH gag5P” 2gm

P” 12x2P” 2

~P12x2P2!2

3gn

P” 12x2P” 21 l”

~P12x2P21 l !2
ga

~12x1!P” 11 l”

@~12x1!P11 l #2
gnP” 1g5J

3
1

l 2~x1P12x2P2!2
, ~A18!

which is simplified into

I 7 f52
2eg4CF

Nc

P1•~ l 2x2P2!

~P12x2P21 l !2
trH P” 2gm

P” 12x2P” 2

~P12x2P2!2

3
~12x1!P” 11 l”

@~12x1!P11 l #2J 1

l 2~x1P12x2P2!2
. ~A19!

In the collinear region we have the approximation

I 7 f'
ig2

Nc

P2•@~12x1!P11 l #

@~12x1!P11 l #2l 2P2•~P11 l !
H5b

(0) . ~A20!

The integrand corresponding to Fig. 7~h! is written as
01401
I 7h52
eg4CF

4Nc
trH gag5P” 2gn

~12x2!P” 21 l”

@~12x2!P21 l #2

3gm

P” 12x2P” 21 l”

~P12x2P21 l !2
ga

~12x1!P” 11 l”

@~12x1!P11 l #2
gnP” 1g5J

3
1

l 2~x1P12x2P2!2
, ~A21!

which is simplified into

I 7h52
2eg4CF

Nc

P2•@~12x1!P11 l #

@~12x1!P11 l #2
trH ~12x2!P” 21 l”

@~12x2!P21 l #2
gm

3
P” 12x2P” 21 l”

~P12x2P21 l !2
P” 1J 1

l 2~x1P12x2P2!2
. ~A22!

We have the collinear approximation,

I 7h'
ig2

Nc

P2•@~12x1!P11 l #

@~12x1!P11 l #2l 2P2•~P11 l !

P1•P2

P2• l
H5b

(0) .

~A23!

APPENDIX B: DETERMINATION OF THE PION WAVE
FUNCTION

In this appendix we comment on the determination of
leading-twist pion wave function, which can be parametriz
as

f~x!5
3 f p

A2Nc

x~12x!F11
3

2
c„5~122x!221…G , ~B1!

with the shape parameterc. It has been proposed to extra
the leading-twist pion wave function from experimental da
of the pion transition form factor@18#. The asymptotic mode
was obtained with the shape parameterc;0,

fAS~x!5
3 f p

A2Nc

x~12x!. ~B2!

The pion wave function can also be determined from ot
processes involving pions, such as the pion form factor
the B meson decaysB→p l n̄ and B→Dp. It has been
known that a large value ofc is preferred for explaining the
data of the pion form factor@15#.

Another quantity that has been considered is the ratio
the branching ratios of theB→Dp decays@19,20#,

R[
B~B1→D0p1!

B~B0→D2p1!
. ~B3!

The chargedB meson decay contains both factorizable a
nonfactorizable amplitudes: theB→D form factor associated
with the external-W emission, theB→p form factor associ-
ated with the internal-W emission, and the nonfactorizab
9-15
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amplitude associated with the internal-W emission. The neu-
tral B meson decay contains only the factorizable externaW
emission amplitude. The Wilson coefficient for the factor
able internal-W emission amplitude is small at scales arou
theb quark mass. Hence, the difference between the bra
ing ratiosB(B1→D0p1) andB(B0→D2p1) is attributed
to the nonfactorizable internal-W emission amplitude. To ex
plain the data ofR;1.6, a largerc;0.5 has been obtaine
@21#. This value of c is located between those for th
asymptotic model and for the Chernyak-Zhinitsky~CZ!
model corresponding toc52/3 @22#,

fCZ~x!5
5A6 f p

2
x~12x!~122x!2. ~B4!

Note that the coefficientc50.44 ~at the factorization scale
about 1 GeV! derived from QCD sum rules@23# is close to
that extracted from the ratioR. However, also note that a fla
pion wave function was concluded in the framework of c
variant quark-pion model@24# and of QCD sum rules
@25,26#.

The above results seem not to be well consistent with
,

jd

d

in,

01401
-

h-

-

e

universality of the pion wave function. We emphasize th
the infrared structures of the processespg* →g and pg*
→p are different at next-to-leading twist. For example, t
collinear divergences associated with the pseudoscalar s
ture g5 are absent inpg* →g, but exist inpg* →p. The
three-parton wave functions contribute to both the pion tr
sition form factor and the pion form factor. It is expected th
at the maximal energy scales around 8 GeV2, where data are
available, these subleading contributions are sizeable rela
to the leading ones. It has been explicitly demonstrated
if higher-twist contributions from parton transverse mome
are taken into account, the CZ wave function is not exclud
by the data of the pion transition form factor@27#, contrary to
the conclusion in@18#. It has been shown that the pion form
factor suffers substantial higher-twist contributions prop
tional to the chiral condensate at currently available ene
scales@28#. The B→p transition form factor also receive
nonvanishing higher-twist contributions@29#. Because of
these next-to-leading-twist ambiguity, we argue that
above different extractions of the leading-twist pion wa
function should not be regarded as an inconsistency.
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