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Weyl symmetric representation of hadronic flux tubes in the dual Ginzburg-Landau theory
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Hadronic flux-tube solutions describing the mesonic and the baryonic states within the dual Ginzburg-
Landau theory are investigated by using the dual lattice formulation in the Weyl-symmetric approach. The
shape of the flux tubes is determined by placement of the color-electric Dirac-string singularity treated as a
connected stack of quantized plaquettes in the dual lattice formulation. The Weyl symmetric profiles of the
hadronic flux tubes are obtained by using the manifestly Weyl invariant representation of the dual gauge field.
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I. INTRODUCTION

The investigation of the dynamics of an Abrikosov vort
in an ordinary superconductor is an important subject to
derstand superconductivity. Now, we encounter quite a s
lar situation in the study of the QCD vacuum and the had
structure, since studies of lattice QCD in the maximally Ab
lian gauge@1–3# show numerical evidence of Abelian dom
nance@4–6# and monopole condensation@7–10# for the non-
perturbative vacuum of QCD. This means that the QC
vacuum can be considered as the dual supercondu
@11,12# described by the dual Ginzburg-Landau~DGL!
theory @13,14#. In this vacuum, the color-electric flux i
squeezed into an almost one dimensional object such
string due to the dual Meissner effect caused by monop
condensation. The various hadronic objects such as the
son and the baryon are formed with the flux tubes existing
this picture. Hence it is very important to investigate t
flux-tube dynamics in the QCD vacuum.

The DGL theory can be obtained by using Abelian p
jection@15#. This scheme reduces the SU(N) gauge theory to
@U~1!# N21 Abelian gauge theory including color-magnet
monopoles. The symmetry@U(1)#N21 corresponds to the
maximal torus subgroup of SU(N). Here, the dual gauge
field is introduced by the Zwanziger formalism, which mak
the electro-magnetic duality manifest in the presence of b
electric charge and magnetic charge@16#. The summation
over monopole world lines in four-dimensional space-tim
can be rewritten as the theory of a complex scalar field wh
interacts with the dual gauge field@17#. Assuming monopole
condensation, we finally get a Ginzburg-Landau type L
grangian with@U(1)#2 dual gauge symmetry as an effectiv
theory of nonperturbative QCD@13,14#. According to the
fact that QCD is a SU~3! gauge theory, there appear thr
different types of Abelian color charges in the DGL theo
both in the electric sector and the magnetic sector, du
Abelian projection. The color-electric charge and the col
magnetic charge are defined in the weight vector and the
vector diagram, respectively, of the SU~3! algebra such as to
satisfy the Dirac quantization condition. These charges p
sess the global Weyl symmetry, which is permutation inva
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ant among color labels of these charges, so that the W
invariance is an important aspect of the color-singlet cr
rion.

In this paper, we study hadronic flux-tube solutions c
responding to mesonic and baryonic states in the@U(1)#2

DGL theory, which are given by various kinds of combin
tion of the color-electric charges. The baryonic state, wh
is composed of three different types of the color-elect
charge, is a characteristic new element of@U(1)#2 DGL
theory. When we obtain the solution, we pay special att
tion to the Weyl symmetry, since the color-singlet state m
be invariant under the Weyl transformation. This can
achieved by using the manifestly Weyl symmetric repres
tation of the dual gauge field. We also study the usual Ca
representation with 3 and 8 bases for comparison@18#.

We first start from the U~1! DGL theory ~dual Abelian
Higgs model@19#! in order to get acquaintance with the ge
eral features of DGL theory. Thedual lattice formulationis
introduced to obtain the various shapes of the flux-tube
lution. In the one-potential form of the DGL Lagrangian
contrast with Zwanziger’s two-potential form, there appe
a nonlocal term which leads to the string-like singular
inside the flux tube. We call this the color-electric Dira
string. The lattice formulation is useful to treat the Dira
string singularity, since it is not defined on the dual latti
but on the ordinary lattice. Next, we investigate the@U(1)#2

DGL theory by using a similar but extended dual lattice fo
mulation. We discuss the various representations of the d
gauge field including the Weyl symmetric representation.
nally, we apply these formulation to systematically obta
the mesonic and the baryonic flux configurations~see Fig. 1!.

II. THE U „1… DGL THEORY „DUAL ABELIAN HIGGS
MODEL …

In order to warm up for the@U(1)#2 DGL theory in the
next section, we start from the U~1! DGL theory with exter-
nal quark sources, which is regarded to represent the SU~2!
gluodynamics in the Abelian projection. In this section, w
mention some essential structures of the dual lattice form
lation for solving the non linear field equations for flux tube
In the presence of both electric and magnetic charges,
have at least two forms of the Lagrangian, the Zwanzi
©2001 The American Physical Society15-1
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form @16# containing electric and magnetic vector potenti
and the Blagojevic and Senjanovic~BS! form @20#. Although
the Zwanziger form is useful to see the duality between
electric sector and the magnetic sector, we adopt in this
per the BS form since in its one-potential form, written on
in terms of the dual gauge field, the flux-tube solutions
easy to see.

A. The general feature

The U~1! DGL theory is given by the Lagrangian1

LU(1) DGL52
1

4
* Fmn

2 ~B, j !1u~]m1 i ĝBm!xu2

2l̂~ uxu22 v̂2!2, ~2.1!

whereBm and x are the dual gauge field and the compl
scalar monopole field, respectively. The dual gauge coup
is ĝ and l̂ characterizes the strength of monopole se
interaction. The monopole condensatev̂ determines the mas
scale of the system. The dual field strength tensor* Fmn has
the form

* Fmn~B, j !5]mBn2]nBm2
1

n]
emnabna j b. ~2.2!

Here, the nonlocal term appears as a contribution of the
ternal quark current

j m5
e

2
q̄gmq, ~2.3!

where the factor 1/2 is the weight of SU~2! algebra. Accord-
ingly, e/2 becomes the Abelian color-electric charge
SU~2! gluodynamics in the Abelian projection. The nonloc
term is written more explicitly as

1

n•]
«mnabna j b~x!5E d4x8K xU 1

n•] Ux8L «mnabna j b~x8!,

~2.4!

where

1In order to avoid confusion, ‘‘the caret’’ is reserved for the p
rameters of U~1! DGL theory.

FIG. 1. The possible combinations of the color-electric cha
in the hadronic flux tubes, corresponding to~a! the meson and~b!
the baryon.
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K xU 1

n•] Ux8L
is the kernel which satisfies the equation

~n•]!xK xU 1

n•] Ux8L 5d (4)~x2x8!. ~2.5!

Therefore, the solution is found to be

K xU 1

n•] Ux8L 5$pu@~x2x8!•n#2~12p!u@~x82x!•n#%

3d (3)~xW'2xW'8 !. ~2.6!

Herep is an arbitrary real number andd (3)(x) is thed func-
tion defined on a three-dimensional hyper-surface which
the normal vectornm , so thatxW' and xW'8 are three vectors
~generically not spatial! which are perpendicular tonm . One
finds that this nonlocal term represents the stringlike sin
larity, known as thecolor-electric Dirac string. But now,
there is only one type of color in U~1! DGL theory. When we
extend this idea to the@U(1)#2 DGL theory, we will have
three types of color-electric Dirac strings.

In the one-potential form of the U~1! DGL theory, the
dual gauge field includes another color-electric Dirac str
attached to the color-electric charge of a quark, which
canceled by the color-electric Dirac string in the nonloc
term. In other words, the color-electric charge of the quark
defined by the cancellation of the color-electric Dirac stri
in the dual field tensor@21#. Usually, such a singularity is
considered to come from the phase of the monopole fi
which is of course possible since they are related by sing
dual gauge transformation. However, when we include
quark ~color-electric charge! source in the theory, it seem
natural to regard that the dual gauge fieldBm itself has a
singular part from the beginning.

It should be noted that the color-electric Dirac string
‘‘dual’’ to the original magnetic Dirac string which is at
tached to a magnetic monopole in a Abelian gauge the
such as QED. One may remember that the direction o
magnetic Dirac string can be varied by a singular Abel
gauge transformation, and hence, the magnetic Dirac st
is unphysical in the sense that one cannot detect it. In
case, however, the symmetry which is responsible for
direction of the color-electric Dirac string is thedual gauge
symmetry, achieved by a set of transformations

x→xei f , x* →x* e2 i f , Bm→Bm2
1

ĝ
]m f ,

2
1

ĝ
@]m ,]n# f 2

1

n•]
«mnabna j b→ 1

n8•]
«mnabn8a j b,

~2.7!

where the dual gauge fixing function can be singu
(@]m ,]n# f Þ0). The last relation in Eq.~2.7! determines the
new direction of the color-electric Dirac stringnm8 . This dual

e

5-2
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WEYL SYMMETRIC REPRESENTATION OF HADRONIC . . . PHYSICAL REVIEW D 64 014015
gauge symmetry would be broken by monopole conden
tion ^0uxu0&5 v̂. This is the so-called dual Higgs mech
nism, which is realized by insertingx5( v̂1f/A2)eih

~wheref,hPR) into the U~1! DGL Lagrangian as

LU(1) DGL52
1

4
* Fmn

2 ~B8, j !1
1

2
mB

2Bm8
2

1
1

2
@~]mf!22mx

2f2#1ĝ2Bm8
2SA2v̂f1

f2

2 D
2l̂SA2v̂f31

f4

4 D , ~2.8!

where the phase of the monopole fieldh is absorbed into the
dual gauge field asBm8 5Bm1]mh/ĝ, and accordingly, the
dual gauge field and the monopole field acquire the ma

mB[A2ĝv̂ andmx[2Al̂ v̂, respectively. In that case, onl
the region where the fieldx'0 resembles the normal phas
in the dual superconductor vacuum, which means that
color-electric field can survive only near the regionx'0.
Then, the color-electric Dirac string has a physical mean
since the ‘‘normal region’’ follows the color-electric Dira
string so as to minimize the energy of the system forming
color-electric flux tube. It means that the shape and the
of this normal region are determined by the directionnm and
length, respectively. The width of the flux tube is charact
ized by the inverse massesmB

21 andmx
21 , which correspond

to the penetration depth of the color-electric field and
coherence length of the monopole field, respectively. T
vacuum property, namely, the type of dual superconduc
ity, is governed by the ratio of these lengths, the so-ca
Ginzburg-Landau~GL! parameter

k̂[
mB

21

mx
21

5
A2l̂

ĝ
. ~2.9!

Here, k̂51 is the critical case, the so-called Bogomol’n
limit, and the vacuum is classified into two types divided
this limit: k̂,1 belongs to the type-I vacuum andk̂.1 is
the type-II vacuum. The profile functions connecting the n
mal phase in the center of the flux tube with the dual sup
conducting phase outside are classically determined by
field equations

]n * Fmn52 i ĝ~x* ]mx2x]mx* !12ĝ2Bmx* x[km , ~2.10!

~]m1 i ĝBm!2x522l̂x~x* x2 v̂2!, ~2.11!

wherekm is the monopolesupercurrentwhich circulates in a
transition region, confining the normal phase inside the d
superconducting phase. Solving these field equations,
boundary condition are determined by the position of
color-electric Dirac string, and this information is included
the dual field strength tensor as a nonlocal term. In the
lowing subsection, we explain the dual lattice formulation
solve such nonlinear equations and see how this formula
enables us to obtain various shapes of the flux-tube soluti
01401
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B. The dual lattice formulation

In order to formulate the U~1! DGL theory on the dual
lattice, taking into account Eq.~2.3!, it is convenient to write
the nonlocal term as

1

n•]
«mnabna j b[

e

2
Smn , ~2.12!

whereSmn denotes the singular field strength. By using t
relations~2.4! and ~2.6!, one finds thatSmn satisfies

E
S
Smndsmn561, ~2.13!

whereS is a certain surface which is pierced by the colo
electric Dirac string and the sign depends on the direction
the singular fluxSmn . This is the Dirac quantization condi
tion. Accordingly, this also leads to the flux quantizatio
condition of the color-electric flux induced by the dual gau
field.

As long as we are interested in a three-dimensional st
system, we can start from the Euclidean metric instead of
Minkowski metric. Then, the U~1! DGL Lagrangian is writ-
ten as

LU(1) DGL51
1

4
* Fmn

2 ~B,S!1u~]m1 i ĝBm!xu2

1l̂~ uxu22 v̂2!2, ~2.14!

where

* Fmn~B,S!5]mBn2]nBm2
e

2
Smn . ~2.15!

Now, we formulate this on the dual lattice. Let the du
gauge field be defined onlinks asBx,m , the monopole field
on sites as xx , and the dual field strength tensor and t
color-electric Dirac string term onplaquettesas * Fx,mn and
Sx,mn . The color-electric charge and anticharge are attac
to the ends of the color-electric Dirac string. We go over
dimensionless fields by the transformation

Bx,m→ B̂x,m

aĝ
, xx→ v̂x̂x , Sx,mn→

Ŝx,mn

a2
, ~2.16!

wherea is dual lattice spacing, which has the dimension
length and can be reinserted when needed. Accordingly,
scale is absorbed into the definition of masses of the d

gauge fieldmB[A2ĝv̂, and the monopole fieldmx[2Al̂ v̂.
Then, the action on the dual lattice is given by
5-3
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S5(
x

b̂F1

2 (
m,n

* F̂x,mn
2 1

m̂B
2

2 (
m

ux̂x2eiB̂x,mx̂x1m̂u2

1
m̂B

2m̂x
2

8
~ ux̂xu221!2G , ~2.17!

where b̂[1/ĝ2, m̂B[mBa and m̂x[mxa @22#. The dimen-
sionless dual field strength with the external source is gi
by

* F̂x,mn5B̂x,m1B̂x1m̂,n2B̂x1 n̂,m2B̂x,n22pŜx,mn ,
~2.18!

where the relation between the color-electric charge and
color-magnetic charge, the Dirac quantization condition,eg
54p is used. The integral form of the color-electric flu
quantization condition~2.13! is then replaced by putting

Ŝx,mn561 ~2.19!

on just a single plaquette in themn plane. In the dual lattice
formulation, the kinetic term of the monopole field is writte
as

~]m1 i ĝBm!x→ v̂
a

~Ux,mx̂x1m̂2x̂x!, ~2.20!

whereUx,m is a ~compact! link variable

Ux,m5exp~ iaĝBx,m!5exp~ iB̂x,m!. ~2.21!

In the static three-dimensional system, we only need sp
like links m or n51,2,3. Note that four-dimensional Mont
Carlo simulation of U~1! DGL theory in Euclidean metric is
possible if we add the timelike link contribution.

The field equation on the lattice is obtained when we f
mulate the cooling procedure, which aims to minimize t
action ~2.17!. We require that the first derivative of the a
01401
n

e

e-

-
e

tion with respect to the dual gauge field and the monop
field becomes zero. For the dual gauge fieldB̂x,i 51,2,3, this
condition leads to

]S

]B̂x,i

5b̂~ * F̂x,i j 1 * F̂x2 ĵ , j i 1 * F̂x,ik1 * F̂x2 k̂,ki1mB
2bx,i

(2)!

[b̂Xx,i , ~2.22!

which corresponds to Eq.~2.10! in the continuum limit. Here
we have defined

bx,i
(1)[x̂x

R~ x̂x1 î
R cosB̂x,i2x̂x1 î

I sinB̂x,i !

1x̂x
I ~ x̂x1 î

R sinB̂x,i1x̂x1 î
I cosB̂x,i !, ~2.23!

bx,i
(2)[x̂x

R~ x̂x1 î
R sinB̂x,i1x̂x1 î

I cosB̂x,i !

2x̂x
I ~ x̂x1 î

R cosB̂x,i2x̂x1 î
I sinB̂x,i !. ~2.24!

The labelsi , j ,k51,2,3 should be taken cyclically. We fin
that the four terms of the dual field strength tensor* F̂x,i j

; * F̂x2 k̂,ki in Eq. ~2.22! are nothing else but the sum o
plaquettes which are attached to the link atx pointing in the
i direction. The superscript of the monopole fieldR,I denote
its real and its imaginary part. The candidate value of
dual gauge potential, which locally satisfies the dual latt
field equationsXx,i50, is obtained by a relaxation step ta
ing into account the second derivative of the action,a la
Newton and Raphson as

B̂x,i→B̂x,i8 5B̂x,i2S ]2S

]B̂x,i
2 D 21

]S

]B̂x,i

5B̂x,i2
Xx,i

41m̂B
2bx,i

(1)
.

~2.25!

For the monopole field, similarly, the local solution is give
by the update
x̂x
R→x̂x

R85x̂x
R2

Xx
R

61
1

2
m̂x

2~ x̂x
R21x̂x

I221!

1
m̂x

2x̂x
R~ x̂x

RXx
R1x̂x

I Xx
I !

H 61
1

2
m̂x

2~ x̂x
R21x̂x

I221!J H 61
1

2
m̂x

2~ x̂x
R21x̂x

I221!1m̂x
2~ x̂x

R21x̂x
I2!J ,

~2.26!

x̂x
I →x̂x

I 85x̂x
I 2

Xx
I

61
1

2
m̂x

2~ x̂x
R21x̂x

I221!

1
m̂x

2x̂x
I ~ x̂x

RXx
R1x̂x

I Xx
I !

H 61
1

2
m̂x

2~ x̂x
R21x̂x

I221!J H 61
1

2
m̂x

2~ x̂x
R21x̂x

I221!1m̂x
2~ x̂x

R21x̂x
I2!J ,

~2.27!

where
5-4
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Xx
R56x̂x

R2(
i 51

3

$~ x̂x1 î
R cosB̂x,i2x̂x1 î

I sinB̂x,i !

1~ x̂x2 î
R cosB̂x2 î ,i1x̂x2 î

I sinB̂x2 î ,i !%

1
1

2
m̂x

2x̂x
R~ x̂x

R21x̂x
I221!, ~2.28!

Xx
I 56x̂x

I 2(
i 51

3

$~ x̂x1 î
R sinB̂x,i1x̂x1 î

I cosB̂x,i !

1„x̂x2 î
R

~2sinB̂x2 î ,i !1x̂x2 î
I cosB̂x2 î ,i…%

1
1

2
m̂x

2x̂x
I ~ x̂x

R21x̂x
I221!. ~2.29!

The dual lattice field equations for the monopole field a
Xx

R5Xx
I 50, which corresponds to Eq.~2.11! in the con-

tinuum limit.
One finds that the behavior of the classical profile do

not depend on the couplingb̂, since this is factored out from
the field equation. Hence, one can set anyb̂ to study the
behavior of profile. At the same time, this implies that it
not necessary to specify the lattice spacinga. Once the
massesmB andmx are provided in physical units, the lattic
spacinga is known to characterize thickness and length
the flux tube.

It is noted that when we discuss the magnitude of profi
or the classical string tension of the flux tube,b̂ should be
taken into account. In such case,a also becomes importan
since the dimensionful physical quantities are recovered
using thisa.

C. The solution

Now, the boundary condition of the dual lattice fie
equations becomes very easy to handle, since all we hav

do is to place a set of configurations of plaquettesŜx,mn

Þ0 which is pierced by the color-electric Dirac string
three-dimensional space. For instance, if we assume th
straight color-electric Dirac string is placed on thez axis,
which means that the quark and the antiquark are place

the z axis, the only nonvanishing plaquette isŜx,12, where
x5(0,0,x3) and x3 belongs to the region between a qua
and an antiquark. A schematic figure is shown in Fig. 2~a!,
where the nonvanishing plaquettes are shaded. They fo
connected stack of plaquettes dual to the color-electric D

string connectingq and q̄. Here, Ŝx,mn511 (21) means
that the color-electric Dirac string is regarded piercing
mn plane atx to m`n (2m`n) direction.

In Fig. 3 we show the profiles of the color-electric fiel
the color-magnetic current which circulates around the fl
tube, and the modulus of the monopole field. Here a 323 dual
lattice is used, and the mass parameters are taken asb̂51,
m̂B5m̂x50.5. The quark and the antiquark position a
taken as (x,y,z)5(0,0,28) and (0,0,8), respectively. Th
color-electric field is given by the space-space compone
01401
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of the dual field strength tensor~2.18!, * F̂x,i j ( i , j 51,2,3).
The color-magnetic current is without the last term
Xx,i 51,2,3 in Eq. ~2.22!, 2m̂B

2bx,i
(2) , which corresponds tokm

in Eq. ~2.10! in the continuum limit. The length of the arrow
in these figures show the relative strength of fields. In
figure of the color-electric field, one can observe the Co
lombic behaviors of the field at~near! the position of the
quark ~source! and the antiquark~sink!. Here, in order to
obtain the vector variables defined on sites from the co
electric fields on plaquettes and the color-magnetic curre
on links, the appropriate averages such as* F̂x,i j

fig [(* F̂x,i j

1 * F̂x1 k̂,i j )/2, where (i , j ,k:cyclic), etc., are associated wit
centers of cubes. This is also where the quark and the a
quark are located. Note that the parameter set used he
optimal for a 323 dual lattice and intended to compare wi
Ref. @22#, where the relation of the flux-tube profile betwee

FIG. 2. The color-electric Dirac string dual to singula
plaquettes~shaded! ending in external charges.

FIG. 3. The profile of the color-electric field in thex-z plane at
y50 ~left!, the color-magnetic current in thex-y plane atz50
~right-upper!, and the monopole field in thex-z plane aty50 ~right-
lower! of the mesonic flux tube in the U~1! DGL theory. The quark
and the antiquark are placed at (x,y,z)5(0,0,28) and (0,0,8),
respectively.
5-5
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the classical solution of U~1! DGL theory and that of the
Abelian projected SU~2! lattice gauge theory@23# is dis-
cussed.

The relationm̂B5m̂x implies that the vacuum is at th
Bogomol’nyi limit, just between type-I and type-II vacuum
The inter-quark potential is shown in Fig. 4. One finds th
the slope of the linear part of the potential, which is t
string tension, obeys the analytic result on the Bogomol’
limit, as sL52p v̂2a25b̂pm̂B

2;0.78 @24,25#. Here, the su-
perscriptL denotes the dimensionless string tension. N
that the force always contains a Coulomb self-energy, wh
corresponds to a constant term in the potentialV(R/a). If we
choose a finer dual lattice, smallera, the self-energy be-
comes large, and accordingly, the constant takes a la
value. In such case, we could observe the fine structure o
short-distance behavior of the potential. In this paper,
only pay attention to the long distance region.

It is worth emphasizing that the dual lattice formulatio
presented here is also applicable to the ‘‘ bending ’’ flux tu
@see Fig. 2~b!#. If we assume that the bending is restricted
the 1-3 plane, that means that ax1 component of the color-

electric Dirac string appears, i.e., some termsŜx,23 have non-
vanishing value,61. In this case, the sign of this plaquette
similarly treated as discussed above. In this sense, the
lattice formulation is quite useful to obtain various shapes
the flux-tube solutions in U~1! DGL theory numerically. In
the next section, we investigate the@U(1)#2 DGL theory
with the similar technique. In the@U(1)#2 DGL theory, there
appears a flux-tube structure which includes three vale
quarks corresponding to the baryonic state. In order to st
such a flux configuration, we need the skill to treat the be
ing flux tube.

III. THE †U„1…‡2 DGL THEORY

In this section, we analyze the@U(1)#2 DGL theory by
using a similar technique as in the previous section. T
main difference from the U~1! DGL theory is now that the

FIG. 4. The quark-antiquark potential in the U~1! DGL theory,

whereR/a denotes theq-q̄ distance. The parameter set is taken

b̂51, m̂B5m̂x50.5.
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dual gauge symmetry is extended to@U(1)#2, which corre-
sponds to Abelian projected SU~3! gluodynamics. Accord-
ingly, there appear three different types of color-elect
charge and color-magnetic charge, respectively. Amo
these charges, we have the globalWeylsymmetry, which is
permutation invariance of the color charges.

A. The general feature

The @U(1)#2 DGL Lagrangian in the one-potential form
similar to the U~1! case is given by2

L[U(1)] 2 DGL52
1

4
* FW mn

2 ~BW , jW !1(
i 51

3

@ u~]m1 igeW i•BW m!x i u2

2l~ ux i u22v2!2#, ~3.1!

where the dual field tensor has the form

* FW mn~BW , jW !5]mBW n2]nBW m2
1

n]
«mnabna jWb. ~3.2!

In this Lagrangian,BW m and x i denote the two-componen
dual gauge field and the three-component complex sc
monopole field. The interaction between quarks through
dual gauge field and with the monopole field originates fro
the existence of a quark currentjWm5eq̄gmHW q in the nonlocal
term, whereHW 5(T3 ,T8). Since the quark field is regarded a
a fundamental representation of SU~3! group, this has a form

q5S q1

q2

q3

D , ~3.3!

where the labels 1,2,3 correspond to the three types of
color-electric charge red (R), blue (B), and green (G). By
using the relation

HW 5~T3 ,T8!5S wW 1 0 0

0 wW 2 0

0 0 wW 3

D , ~3.4!

wherewW j are the weight vectors of the SU~3! algebra

wW 15S 1

2
,

1

2A3
D , wW 25S 2

1

2
,

1

2A3
D , wW 35S 0,2

1

A3
D ,

~3.5!

we obtain an explicit form of the quark current

jWm5e(
j 51

3

wW j q̄ jgmqj . ~3.6!

2In the @U(1)#2 DGL theory, we do not use carets for the param
eters in order to distinguish them from the U~1! ones.

s
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We find that the color-electric charge is given byewW j . The
nonlocal term can be written in a similar way as U~1! DGL
theory as

1

n•]
«mnabna jWb5

1

n•]
«mnabna

•e(
j 51

3

wW j q̄ jg
bqj .

5e(
j 51

3

wW j

1

n•]
«mnabnaq̄ jg

bqj

[e(
j 51

3

wW jS j mn . ~3.7!

Here, one finds thatS j mn describes the color-electric Dira
string singularity attached to the color-electric charge
ewW j , which satisfies a similar quantization condition in
integral form such as Eq.~2.13!. In this case, we have

E
S
S j mndsmn561, ~3.8!

where S is a certain surface which is pierced once by t
color-electric Dirac string.

The color-magnetic charge of the monopole is defined
geW i , whereeW i are the root vectors of the SU~3! algebra

eW15S 2
1

2
,
A3

2 D , eW25S 2
1

2
,2

A3

2 D , eW35~1,0!,

~3.9!

where the labels 1,2,3 correspond to dual red (* R), dual blue
(* B), and dual green (* G). Here, an asterisk denotes dua
Both the gauge couplinge and the dual gauge couplingg are
related by the Dirac quantization conditioneg54p. It might
be worthwhile to remember that the relation of the root v
tor and the weight vector of the SU~3! algebra is given by

eW i•wW j5
1

2 S 0 1 21

21 0 1

1 21 0
D 5

1

2 (
k51

3

e i jk[
1

2
mi j ,

~3.10!

wheremi j is an integer which takes 0 or61.
The typical scale of@U(1)#2 DGL theory is determined

by taking into account the dual Higgs mechanism as U~1!
DGL theory. By inserting x i5(v1f i /A2)eih i ~where
f i ,h iPR) into @U(1)#2 DGL Lagrangian~3.1!, we get

L[U(1)] 2 DGL52
1

4
* FW mn

2 ~BW 8, jW !1
1

2
mB

2BW m8
2

1(
i 51

3
1

2
@~]mf i !

22mx
2f i

2#

1(
i 51

3 Fg2~eW i•BW m8 !2SA2vf i1
f i

2

2 D
2lSA2vf i

31
f i

4

4 D G , ~3.11!
01401
f

y

-

where the phase of the monopole fieldh i is absorbed into the

dual gauge fieldBW m8 , as eW i•BW m8 5eW i•BW m1]mh i /g, and ac-
cordingly the dual gauge field and the monopole field acqu
the masses,mB5A3gv, mx52Alv, respectively. The GL
parameter is then given by

k[
mB

21

mx
21

5
2Al

A3g
. ~3.12!

As explained in U~1! DGL theory,k51 is the case of spe
cial interest, the Bogomol’nyi limit@26,27#.

B. Various representations of the dual gauge field

The color-electric charge of the quark is given by thr
components asR, B, andG, which is spanned by the weigh
vector of SU~3! algebra. The color-magnetic charge of th
monopole is defined by components as* R, * B, and * G,
which is spanned by the root vector of SU~3! algebra. Now,
we are interested in the color-singlet state correspondin
the meson and the baryon, which should be invariant un
the exchange of the color charges. Hence, it is importan
pay attention to the Weyl symmetry in the DGL theor
However, since the dual gauge fieldBW m which connects the
color-electric charge and the color-magnetic charge has o
two components in the sense of Cartan decomposition,
accordingly, the independent color-electric flux has tw
components, we cannot observe the Weyl symmetric st
ture in the color-electric flux tube itself. This fact makes
difficult to see the Weyl invariant structure of hadron
states. In order to investigate the Weyl symmetric struct
of the flux tube in the DGL theory, it would be favorable
represent the dual gauge field in a Weyl symmetric way.

In this subsection, we write the@U(1)#2 DGL Lagrangian
in various representations of the dual gauge field, am
which the Weyl symmetric representation of the dual gau
field is also discussed. We first pay attention to the origi
Cartan representation of the dual gauge field with two co
ponents. Next, we will discuss other two possible repres
tations of the dual gauge field, the color-electric represen
tion and the color-magnetic representation, which
achieved by spanning the dual gauge field with the wei
vector and the root vector, respectively.

1. Cartan 3-8 representation

The two-component dual gauge fieldBW m can be written as

BW m[
1

g S Bm
3 ,

Bm
8

A3
D . ~3.13!

The factorA3 is to make 3 and 8 components symmetr
The dual field strength tensor becomes
5-7



di-

r
the
ce

-
o
ill

ight
r-
e

is

ee-
ent
e

Y. KOMA, E.-M. ILGENFRITZ, T. SUZUKI, AND H. TOKI PHYSICAL REVIEW D 64 014015
* FW mn5
1

g S ]mBn
32]nBm

3 22p~S1mn2S2mn!,

1

A3
$]mBn

82]nBm
8 22p~S1mn1S2mn22S3mn!% D

[
1

g S * Fmn
3 ,

* Fmn
8

A3
D , ~3.14!

where we have usedeg54p to get the factor 2p in front of
S j mn . The @U(1)#2 DGL Lagrangian is written as

L[U(1)] 2 DGL
328

52
1

4g2
~* Fmn

3 !22
1

12g2
~* Fmn

8 !2

1UF]m1 i
1

2
~2Bm

3 1Bm
8 !Gx1U2

2l~ ux1u22v2!2

1UF]m1 i
1

2
~2Bm

3 2Bm
8 !Gx2U2

2l~ ux2u22v2!2

1u~]m1 iBm
3 !x3u22l~ ux3u22v2!2. ~3.15!

Note that the Lagrangian~3.15! is invariant under the
@U~1!# 2 dual gauge transformation

x i→x ie
i f i, x i* →x i* e2 i f i ~ i 51,2,3!,

~Bm
3 , Bm

8 !→~Bm
3 2]m f 3 , Bm

8 2~]m f 12]m f 2!!, ~3.16!

where the phasesf i satisfy the constraint( i 51
3 f i50 @13,14#.

The field equations are given by

1

g2
]n * Fmn

3 51
i

2
~x1* ]mx12x1]mx1* !2

1

2
~2Bm

3 1Bm
8 !x1* x1

1
i

2
~x2* ]mx22x2]mx2* !

2
1

2
~2Bm

3 2Bm
8 !x2* x22 i ~x3* ]mx32x3]mx3* !

12Bm
3 x3* x3 , ~3.17!

1

3g2
]n * Fmn

8 52
i

2
~x1* ]mx12x1]mx1* !

1
1

2
~2Bm

3 1Bm
8 !x1* x11

i

2
~x2* ]mx22x2]mx2* !

2
1

2
~2Bm

3 2Bm
8 !x2* x2 , ~3.18!

F]m1
i

2
~2Bm

3 1Bm
8 !G2

x1522lx1~x1* x12v2!,

~3.19!
01401
F]m1
i

2
~2Bm

3 2Bm
8 !G2

x2522lx2~x2* x22v2!,

~3.20!

~]m1 iBm
3 !2x3522lx3~x3* x32v2!.

~3.21!

From these field equations, we find the boundary con
tions: If * Fmn

3 and * Fmn
8 have a nonvanishing nonlocal term

S j mn , the dual gauge fieldBm
3 andBm

8 also have a singula
part. At the place where the dual gauge field is singular,
monopole field is required to disappear. At large distan
from the singularity, the monopole fieldx i approaches the
vacuum expectation valuev and the dual gauge field asymp
totically vanishesBm

3 5Bm
8 50. These field equations are t

be solved by using the dual lattice formulation, and one w
find that these boundary conditions are realized.

2. Color-electric representation

The dual gauge field can be expressed by using the we
vectorwW j , where the labelj 51,2,3 corresponds to the colo
electric charge,R, B and G. In this sense, we call this th
color-electric representation of the dual gauge field, which
defined by

BW m[A 2

ge
2(j 51

3

wW jBj m
e , ~3.22!

where

ge[
3

A2
g, Bj m

e [A2gewW j•BW m . ~3.23!

Note that now the dual gauge field is written as a thr
component field, however all of them are not independ
since ( j 51

3 Bj m
e 50. The dual field strength tensor has th

form

* FW mn5A 2

ge
2(j 51

3

wW j~]mBj n
e 2]nBj m

e 22pS j mn!,

~3.24!

whereeg54p is used. Then, we get the Lagrangian

L[U(1)] 2 DGL
electric

52
1

4ge
2 (

j 51

3

~* F j mn
e !2

1(
i 51

3 FUS ]m1 i
1

3 (
j 51

3

mi j Bj m
e D x iU2

2l~ ux i u22v2!2G , ~3.25!

where
5-8
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* F j mn
e []mBj n

e 2]nBj m
e 22pS 2S j mn2 (

k51

3

mjk
2 SkmnD .

~3.26!

Here, we have used the relations

geW i•BW m5geW i•A 2

ge
2(j 51

3

wW jBj m
e 5

1

3 (
j 51

3

mi j Bj m
e ,

~3.27!

FIG. 5. The profiles of the color-electric field in the Carta

representation for 3~left! and 8~right! components in theR-R̄ ~up-

per!, the B-B̄ ~middle!, and theG-Ḡ ~lower! systems in thex-z
plane aty50. The quark and the antiquark are placed at (x,y,z)
5(0,0,210) and (0,0,10), respectively.
01401
eW i5wW j2wW k ~ i , j ,k:cyclic!. ~3.28!

Apparently, the Lagrangian~3.25! is invariant under the
@U~1!# 3 dual gauge transformation, which is defined by

x i→x ie
i f i, x i* →x i* e2 i f i,

Bj m
e →Bj m

e 1(
i 51

3

mji ]m f i , ~3.29!

where i , j 51,2,3. However, this does not mean an increa
of the gauge degrees of freedom because of the const
( j 51

3 Bj m
e 50.

The field equations forj 51,2,3 andi 51,2,3 are given by

1

ge
2
]n * F j mn

e 5(
i 51

3

mi j F2
i

3
~x i* ]mx i2x i]mx i* !

12(
k51

3

mikBkm
e x i* x i G , ~3.30!

FIG. 6. The profiles of the color-magnetic current in the Car

representation for 3~left! and 8~right! components in theR-R̄ ~up-

per!, the B-B̄ ~middle!, and theG-Ḡ ~lower! systems in thex-y
plane atz50. The quark and the antiquark are placed at (x,y,z)
5(0,0,210) and (0,0,10), respectively.
5-9
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FIG. 7. The profiles of the color-electric field in the color-electric representation, expressed on the weight vectors of the SU~3! algebra,

wW 1 ~left!, wW 2 ~center!, andwW 3 ~right! in theR-R̄ ~upper!, theB-B̄ ~middle!, and theG-Ḡ ~lower! systems in thex-z plane aty50. The quark
and the antiquark are placed at (x,y,z)5(0,0,210) and (0,0,10), respectively.
tan
e is

the
ic
n

S ]m1 i
1

3 (
j 51

3

mi j Bj m
e D 2

x i522lx i~x i* x i2v2!. ~3.31!

We find that each field equation has U~1! structure, apart
from the matrix structure in labelsi and j. The boundary
01401
condition is given by a similar discussion as in the Car
representation of the dual gauge field. The main differenc
that the dual gauge field represented here experiences
color-electric Dirac string singularity in a Weyl symmetr
way. The dual lattice formulation will make this situatio
clear.
5-10
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FIG. 8. The profiles of the color-magnetic current in the color-electric representation, expressed on the weight vectors of th~3!

algebra,wW 1 ~left!, wW 2 ~center!, andwW 3 ~right! in the R-R̄ ~upper!, the B-B̄ ~middle!, and theG-Ḡ ~lower! systems in thex-y plane atz
50. The quark and the antiquark are placed at (x,y,z)5(0,0,210) and (0,0,10), respectively.
th
e
l
e e

ven
3. Color-magnetic representation

The dual gauge field can also be spanned by using
root vectoreW i , where the labeli 51,2,3 corresponds to th
monopole charge,* R, * B, and * G. In this sense, we cal
this the color-magnetic representation of the dual gauge fi
@27#, defined by

BW m[A 2

3gm
2 (i 51

3

eW iBim
m , ~3.32!

where

gm[A3

2
g, Bim

m [A2

3
gmeW i•BW m . ~3.33!

Note that allBim
m are not independent since( i 51

3 Bim
m 50. The

dual field strength tensor is written as
01401
e

ld

* FW mn5A 2

3gm
2 (i 51

3

eW iS ]mBin
m2]nBim

m 22p(
j 51

3

mi j S j mnD ,

~3.34!

where we useeg54p. Hence, the Lagrangian with th
color-magnetic representation of the dual gauge field is gi
by

L[U(1)] 2 DGL
magnetic

5(
i 51

3 F2
1

4gm
2 ~* Fimn

m !21u~]m1 iBim
m !x i u2

2l~ ux i u22v2!2G , ~3.35!

where

* Fimn
m []mBin

m2]nBim
m 22p(

j 51

3

mi j S j mn . ~3.36!
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FIG. 9. The profiles of the color-electric field in the color-magnetic representation, expressed on the root vectors of the SU~3! algebra,

eW1 ~left!, eW2 ~center!, andeW3 ~right! in the R-R̄ ~upper!, theB-B̄ ~middle!, and theG-Ḡ ~lower! systems in thex-z plane aty50. The quark
and the antiquark are placed at (x,y,z)5(0,0,210) and (0,0,10), respectively.
erve

Here, we have used the relations

wW i52
1

3
~eW j2eW k! ~ i , j ,k:cyclic!. ~3.37!

Since the Lagrangian~3.35! has a quite similar form as
01401
the U~1! DGL theory, except for the labelsi and j, one finds
that the dual gauge symmetry becomes very easy to obs

x i→x ie
i f i, x i* →x i* e2 i f i,

Bim
m →Bim

m 2]m f i ~ i 51,2,3!, ~3.38!
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FIG. 10. The profiles of the color-magnetic current in the color-magnetic representation, expressed on the root vectors of t~3!

algebra,eW1 ~left!, eW2 ~center!, andeW3 ~right! in theR-R̄ ~upper!, theB-B̄ ~middle!, and theG-Ḡ ~lower! systems in thex-y plane atz50. The
quark and the antiquark are placed at (x,y,z)5(0,0,210) and (0,0,10), respectively.
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and accordingly the Lagrangian~3.35! has the extended dua
gauge symmetry@U~1!# 3 with a constraint( i 51

3 Bim
m 50. This

is the same as in the color-electric representation of the
gauge field.

The field equations fori 51,2,3 have the form

1

gm
2

]n * Fimn
m 52 i ~x i* ]mx i2x i]mx i* !12Bim

m x i* x i ,

~3.39!

~]m1 iBim
m !2x i522lx i~x i* x i2v2!, ~3.40!

which is exactly the same as the field equation in the U~1!
DGL theory, replicated with respect to the indexi. In this
sense, the boundary conditions can be taken similarly as
U~1! case. Therefore, the color-magnetic representation
the dual gauge field is particularly simple as compared w
other representations.
01401
al

he
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C. The solution

In order to solve the field equation with various represe
tations of the dual gauge field, we adopt the dual latt
formulation with the U~1! DGL theory, but extended to mor
degrees of freedom. In this subsection, we first investig
the mesonic flux tube, and next the baryonic flux tube. W
use the words ‘‘mesonic’’ or ‘‘baryonic’’ to distinguish the
real color-singlet hadron from the classical state that we d
with in this paper. For instance, if we want to obtain re
meson or baryon state, we need to consider the quantum
given by

umeson&5
1

A3
~ uRR̄&1uBB̄&1uGḠ&),

ubaryon&5
1

A6
~ uRBG&1uBGR&1uGRB&

2uRGB&2uGBR&2uBRG&),
5-13
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whereRR̄ denotes theR-R̄ flux tube, and so forth. In the
classical solution, we can only treat a piece of these sta
However, even then it is necessary to pay attention to
Weyl symmetry, since all states can be reduced to the s
classical state for the meson and the baryon, respective

1. Mesonic flux tube„q-q̄ system)

Since the three types of the color-electric charge are

resented by nonvanishing plaquettesŜx,1mn , Ŝx,2mn , and

Ŝx,3mn , the mesonic state corresponding touRR̄&, uBB̄&, and
uGḠ& are given by some stacks of connected plaquette
each color. For example, if we want to consider the strai
R-R̄ flux-tube system, all we have to do is to put only one

the color-electric Dirac string plaquetteŜx,1mnÞ0 such as

Fig. 2~a!, whereasŜx,2mn5Ŝx,3mn50 for all over the three
dimensional space. For theB-B̄ flux-tube system, we se

Ŝx,2mnÞ0 andŜx,3mn5Ŝx,1mn50, for theG-Ḡ flux-tube sys-

tem, Ŝx,3mnÞ0 andŜx,1mn5Ŝx,2mn50.
In Figs. 5–10, we show the profiles of the color-elect

field and corresponding monopole current ofR-R̄, B-B̄, and
G-Ḡ flux-tube systems for various representations of the d
gauge field, the Cartan representation, the color-electric
resentation, and the color-magnetic representation, res
tively. We find that the last two representations enable u
see the Weyl symmetric structure of the flux tube. The Di
string structuresin the dual gauge fieldwith various repre-
sentations is summarized schematically in Table I.

The profile of the monopole field is shown in Fig. 11. O
finds that this does not depend on the choice of the repre
tation of the dual gauge field, since the monopole field
defined on the SU~3! root vector. That is the reason why th
distribution is similar to the color-electric field in the colo
magnetic representation of the dual gauge field. The in
quark potential is shown in Fig. 12, which, of course, do
not depend on the representation. The parameter set
here is the same as in the U~1! case. We tookb[1/g251,
m̂B5m̂x50.5. This set is simply to see the behavior of t
profiles and to compare the string tension of the poten
with the analytical value in the Bogomol’nyi limit,sL

54pv2a254bpm̂B
2/3 @26,27#. One finds that the analytica

TABLE I. The color-electric Dirac string structure in the du

gauge field inq-q̄ system for various representations~for Figs.
5–11! is schematically summarized. Here,↑ and ↓ correspond to
the one Dirac string singularity. If we circulate around these sin
larities in a counterclockwise way, they lead to the phases12p and
22p, respectively. Notice that⇑523↑ and⇓523↓.

3-8 basis Electric basis Magnetic basis

Bm
3 Bm

8 B1 m
e B2 m

e B3 m
e B1 m

m B2 m
m B3 m

m

R-R̄ ↓c ↓c ⇓e ↑e ↑e 0 ↑m ↓m

B-B̄ ↑c ↓c ↑e ⇓e ↑e ↓m 0 ↑m

G-Ḡ 0 ⇑c ↑e ↑e ⇓e ↑m ↓m 0
01401
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string tension is reproduced by the numerical potential
Fig. 12. In order to get quantitatively realistic results, w
need more information about the parameter set of U(2

DGL theory from QCD.
It is worth noting that in the mesonic case, we can redu

the@U(1)#2 DGL theory to the U~1! DGL theory@28#. Let us
see this in theR-R̄ system with the Cartan representation
the dual gauge field, as an example. Other systems and o
representations can be treated similarly. Here, we alre
know the profiles of the color-electric flux tube and the co
tribution of the dual gauge field and the monopole field
shown in Figs. 5 and 11. Thus, one can takeBm

3 5Bm
8 [Bm

andx15v, x2[x* , x3[x. The @U(1)#2 DGL Lagrangian
~3.15! is reduced to the form

L[U(1)] 2 DGL
328

52
1

3g2
~]mBn2]nBm22pS1 mn!2

12@ u~]m1 iBm!xu22l~ uxu22v2!2#.

~3.41!

The redefinitions of the couplings and the fields

g[
2

A3
ĝ, l[2l̂, v[

1

A2
v̂, Bm→ĝBm , x→ x

A2
,

~3.42!

lead to the Lagrangian of U~1! DGL theory as is given in Eq.
~2.1!.

2. Baryonic flux tube„q-q-q system)

We solve the field equations in the presence of three ty
of the color-electric charges. Since these color-elec
charges are defined in the weight vector diagram of SU~3!
algebra, and the color-electric Dirac strings which are
tached to these charges carry the same quantity, respecti
these Dirac strings can join at a certain point to cancel e
other (( j 51

3 ewW j50), which we call a junction. Here, we
consider the simple case that the three types of the co
electric charge are placed on the corners of a regular trian

The nonvanishing plaquettesŜx,1mn , Ŝx,2mn , andŜx,3mn are
properly included so as to minimize the length of the col
electric Dirac string, which corresponds to the energy mi
mization condition. Then, the position of the junction
given by the Fermat point@18#. As a result, we get a typica
Y-shaped flux-tube object in U(1)2 DGL theory, i.e., the
baryonic flux tube.

In Figs. 13–15, we show the profiles of the color-elect
field corresponding to the Cartan, the color-electric, and
color-magnetic representations of the dual gauge field.
Weyl symmetric structure can be observed in the last t
representations. The monopole field does not depend
which representation is chosen, for the same reason as in
discussion of the mesonic flux tube, which is shown in F
16. One finds that all of these profiles faithfully reflect th
structure of the color-electric Dirac string. The potential
obtained analogously to the mesonic system, which is sho

-
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FIG. 11. The profiles of the monopole field ofux1u ~left!, ux2u ~center!, andux3u ~right! in theR-R̄ ~upper!, theB-B̄ ~middle!, and theG-

Ḡ ~lower! systems in thex-z plane aty50. The quark and the antiquark are placed at (x,y,z)5(0,0,210) and (0,0,10), respectively.
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in Fig. 17. Here, parametrizing the potential of the linear p
as

V~x1 ,x2 ,x3!;sL(
i 51

3

uxi2xJu, ~3.43!

wherexi andxJ denote the position of the quarks and of t
junction on the dual lattice, respectively, we can extract
string tensionsL. One finds that this is almost reproduced
the analytical one, sincesL;1.0;4bpm̂B

2/3. It is interest-
ing to note that while each profile of the color-electric fie
in the color-electric representation has similar form to
8-flux in the Cartan representation, the color-electric field
01401
rt

e

e
n

the color-magnetic representation provides the 3-flux-ty
structure. It is, of course, possible to study the energy and
field distribution corresponding to different shapes of ba
onic flux tube in a static configuration.

IV. SUMMARY AND DISCUSSION

We have studied the classical flux-tube solutions for
mesonic and the baryonic states within the dual Ginzbu
Landau~DGL! theory by using the dual lattice formulation i
the Weyl symmetric approach. The color-electric Dir
string singularity, which determines the filament core ins
the flux tube, has been treated as a connected stack of q
tized plaquettes which lead to the phase62p in the dual
5-15
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FIG. 13. The profiles of the color-electric field in the Cart
representation for 3~upper! and 8~lower! components in the bary
onic flux tube in thex-z plane aty50. The junction and the quark
are located at (x,y,z)5(0,0,0), and R(0,0,9), B(9,0,25), G
(29,0,25), respectively.

FIG. 12. The quark-antiquark potential in the@U(1)#2 DGL

theory, whereR/a denotes theq-q̄ distance. The parameter set

taken asb51, m̂B5m̂x50.5.
01401
lattice formulation. This formulation is flexible to reproduc
various shapes of the flux tube just by putting the quanti
plaquettes which are pierced by a color-electric Dirac str
of any form. We have found that the manifestly Weyl sym
metric approach, in particular, the color-magnetic repres

FIG. 14. The profiles of the color-electric field in the colo
electric representation, expressed on the weight vectors of

SU~3! algebra,wW 1 ~upper!, wW 2 ~middle!, and wW 3 ~lower! in the
baryonic flux-tube system in thex-z plane aty50. The junction and
the quarks are located at (x,y,z)5(0,0,0), andR(0,0,9), B(9,0,
25), G(29,0,25), respectively.
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WEYL SYMMETRIC REPRESENTATION OF HADRONIC . . . PHYSICAL REVIEW D 64 014015
tation of the dual gauge field is the most convenient one
investigate flux-tube solutions in the@U(1)#2 DGL theory,
since this gives a quite similar form with the U~1! case@27#.

In this paper we have concentrated on formulating
simple method to investigate the qualitative properties of

FIG. 15. The profiles of the color-electric field in the colo
magnetic representation, expressed on the root vectors of the S~3!

algebra,eW1 ~upper!, eW2 ~middle!, and eW3 ~lower! in the baryonic
flux-tube system in thex-z plane aty50. The junction and the
quarks are located at (x,y,z)5(0,0,0), andR(0,0,9), B(9,0,25),
G(29,0,25), respectively.
01401
o

a
e

classical flux-tube solution in the U~1! and @U(1)#2 DGL
theory. This work can be extended to the study of the fl
tube in the quantized DGL theory by using the Monte Ca
method in four-dimensional Euclidean space time. Then, a
the effect of string fluctuations becomes a possible topic
investigation. Even without string fluctuations, we can d
cuss more quantitative properties of the hadronic flux tub
based on a quantum DGL theory. This is under preparat
The application of this formulation to the flux-tube ring s
lution as the glueball state@29# is also interesting.

A crucial criterion for a viable confinement mechanism
the ability to reproduce the Casimir scaling of the forces
intermediate distances between static charges in diffe
representation,FRi

/FRj
5C2(Ri)/C2(Rj ) with C2 as the ei-

FIG. 16. The profiles of the Higgs field ofux1u ~upper!, ux2u
~middle!, andux3u ~lower! in the baryonic flux-tube system in thex-
z plane at y50. The junction and the quarks are located
(x,y,z)5(0,0,0), andR(0,0,9),B(9,0,25), G(29,0,25), respec-
tively.
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genvalue of the quadratic Casimir operatorl j
2 in the repre-

sentationsRi andRj , respectively. For the ratio of adjoint t
fundamental charges in SU~3! gauge theory, this would give
sadj/s fund59/4. Casimir scaling is in the discussion since t
first lattice indications for it appeared in the 1980’s@30#, and
at that time it was challenging for the bag model@31#. En-
hanced attention recently, due to the lively discussion
competing confinement mechanisms, in Ref.@32# the string
tensions of the fundamental and the adjoint representat
were computed and the ratio came out to be nearly 2, wh
was close to 9/4. On the other hand, in Ref.@33# they have
studied the ratio of entire potentials including Coulomb a
constant terms in addition to the linear term and the ra
turns out to be very close to 9/4. All detailed and micr
scopic mechanisms of confinement find it hard to explain
observation, while it is more natural from the point of vie
of the semiphenomenological stochastic vacuum model@34#.

Discussing the Abelian projection in terms ofl3 andl8
would suggest to evaluatesadj/s fund with diagonal gluons
only, giving a ratio 3. This makes it hard to understand w
Casimir scaling should hold in Abelian projected gluod
namics. Considering the DGL theory just at a phenome

FIG. 17. The three-quark potential in the@U(1)#2 DGL theory,

whereRi5uxi2xJu. The parameter set is taken asb51, m̂B5m̂x

50.5.
ys

tt.

.
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l.
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-
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logical level, it would be sufficient to restrict it exclusively t
mesonic, baryonic, glueball, and perhaps to exotic states,
it would be inappropriate to apply it to the so-called glu
lump bound states made of infinitely heavy adjoint charg
However, because of the current interest, it might be am
ing to consider briefly how this kind of string would be re
resented within the DGL theory. Although this theory, as
effective theory of gluodynamics with external charges,
constructed referring to Abelian projection, we are free
look at the Casimir problem afresh.

In fact, the DGL theory is rather promising to discuss t
Casimir scaling problem without extra effort. To see this,
recall that the DGL theory represents the mesonic string
degenerateR-R̄, B-B̄, and G-Ḡ colored states. In the sam
spirit it is natural to represent gluelump strings as stretch
out between pairs of adjoint charges, each of them be
made out of quark and antiquark asBḠ-B̄G, GR̄-ḠR, and
RB̄-R̄B states. Thus, it is rather a string formed by two pa
with their respective Dirac strings superposed. In t
Bogomol’nyi limit one directly gets the ratiosadj/s fund using
the manifest Weyl invariant formulation of the DGL theo
@27#. In this limiting case the ratio is equal to 2, reflecting t
presence of two independent color-electric Dirac strings
side the adjoint flux tube. Entering the type-II dual superco
ductor parameter range, the ratio will increase, while
creasing towards the type-I region. Our studies show that
ratio of string tensions depends only on the ratio betwe
dual vector and monopole mass, viak5mx /mB . It has been
conjectured that the ratio 9/4 is reproduced in a cert
type-II vacuum.
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