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Weyl symmetric representation of hadronic flux tubes in the dual Ginzburg-Landau theory
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Hadronic flux-tube solutions describing the mesonic and the baryonic states within the dual Ginzburg-
Landau theory are investigated by using the dual lattice formulation in the Weyl-symmetric approach. The
shape of the flux tubes is determined by placement of the color-electric Dirac-string singularity treated as a
connected stack of quantized plaquettes in the dual lattice formulation. The Weyl symmetric profiles of the
hadronic flux tubes are obtained by using the manifestly Weyl invariant representation of the dual gauge field.
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[. INTRODUCTION ant among color labels of these charges, so that the Weyl
invariance is an important aspect of the color-singlet crite-
The investigation of the dynamics of an Abrikosov vortex rion.

in an ordinary superconductor is an important subject to un- In this paper, we study hadronic flux-tube solutions cor-
derstand superconductivity. Now, we encounter quite a simiresponding to mesonic and baryonic states in [tHé1)]?
lar situation in the study of the QCD vacuum and the hadrorDGL theory, which are given by various kinds of combina-
structure, since studies of lattice QCD in the maximally Abe-tion of the color-electric charges. The baryonic state, which
lian gauge 1-3] show numerical evidence of Abelian domi- js composed of three different types of the color-electric
nance[4—6] and monopole condensatipf-10| for the non-  charge, is a characteristic new element[&f(1)]2 DGL
perturbative vacuum of QCD. This means that the QCDineory. When we obtain the solution, we pay special atten-
vacuum can be considered as the dual superconductgpn, to the Weyl symmetry, since the color-singlet state must
[11,13 described by the dual Ginzburg-Landd®GL)  pe invariant under the Weyl transformation. This can be
theory [13,14. In this vacuum, the color-electric flux is achieved by using the manifestly Weyl symmetric represen-
squeezed into an almost one dimensional object such asgtion of the dual gauge field. We also study the usual Cartan
string due to the dual Meissner effect caused by m0”°p°|?epresentation with 3 and 8 bases for compar{<®j.
condensation. The various hadronic objects such as the me-'\ye first start from the ) DGL theory (dual Abelian
son and the baryon are formed with the flux tubes existing "Higgs model[19]) in order to get acquaintance with the gen-
this picture. Hence it is very important to investigate thegrg| features of DGL theory. Théual lattice formulationis
flux-tube dynamics in the QCD vacuum. _ introduced to obtain the various shapes of the flux-tube so-
~ The DGL theory can be obtained by using Abelian pro-jytion. In the one-potential form of the DGL Lagrangian in
JECt'OnN[115]- This scheme reduces the SU(gauge theory to  contrast with Zwanziger's two-potential form, there appears
[U)]™"* Abelian gauge theory including color-magnetic 4 nponlocal term which leads to the string-like singularity
monopoles. The symmetrfJ(1)]""* corresponds to the inside the flux tube. We call this the color-electric Dirac
maximal torus subgroup of SB. Here, the dual gauge string. The lattice formulation is useful to treat the Dirac
field is introduced by the Zwanziger formalism, which makesstring singularity, since it is not defined on the dual lattice
the electro-magnetic duality manifest in the presence of botiyt on the ordinary lattice. Next, we investigate ftu1)]?
electric charge and magnetic charge]. The summation  pGL theory by using a similar but extended dual lattice for-
over monopole world lines in four-dimensional space-timemy|ation. We discuss the various representations of the dual
can be rewritten as the theory of a complex scalar field whiclyayge field including the Weyl symmetric representation. Fi-
interacts with the dual gauge field7]. Assuming monopole pally, we apply these formulation to systematically obtain

condensation, we finally get a Ginzburg-Landau type Lathe mesonic and the baryonic flux configurati¢sse Fig. 1
grangian withU(1)]? dual gauge symmetry as an effective

theory of nonperturbative QCIP13,14]. According to the
fact that QCD is a S(B) gauge theory, there appear three
different types of Abelian color charges in the DGL theory,
both in the electric sector and the magnetic sector, due to
Abelian projection. The color-electric charge and the color- In order to warm up for th¢U(1)]?> DGL theory in the
magnetic charge are defined in the weight vector and the roatext section, we start from the(l) DGL theory with exter-
vector diagram, respectively, of the &) algebra such as to nal quark sources, which is regarded to represent th)SU
satisfy the Dirac quantization condition. These charges posgluodynamics in the Abelian projection. In this section, we
sess the global Weyl symmetry, which is permutation invari-mention some essential structures of the dual lattice formu-
lation for solving the non linear field equations for flux tubes.
In the presence of both electric and magnetic charges, we
*Email address: koma@rcnp.osaka-u.ac.jp have at least two forms of the Lagrangian, the Zwanziger

II. THE U (1) DGL THEORY (DUAL ABELIAN HIGGS
MODEL )
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— Q 1
Q x| —|x’
(J = 1’ 29 3) n * 07
is the kernel which satisfies the equation
Q 1
@ @ (n~a)x<x — x’> =5 (x—x"). (2.5
(a) (b)
Therefore, the solution is found to be
FIG. 1. The possible combinations of the color-electric charge
in the hadronic flux tubes, corresponding(# the meson andb)
the baryon. X0 X" ) ={pO[(x—x")-n]—(1—p)O[ (X' —x)-n]}
form [16] containing electric and magnetic vector potentials X 53(x, _)Zi)_ (2.6)

and the Blagojevic and SenjanowiBS) form [20]. Although
the Zwanziger form is useful to see the duality between th‘?—lerep is an arbitrary real number an#f®(x) is the 6 func-

electric sector and the magnetic sector, we adopt in this Pgjon defined on a three-dimensional hyper-surface which has
per the BS form since in its one-potential form, written only the normal vecton . so thatx. andx’ are three vectors
L L

. . _ H oo
g\aslr;r;sszfethe dual gauge field, the flux-tube solutions ar(_:‘(generically not spatiawhich are perpendicular to, . One

finds that this nonlocal term represents the stringlike singu-
larity, known as thecolor-electric Dirac string. But now,
there is only one type of color in(@) DGL theory. When we
The U1) DGL theory is given by the Lagrangian extend this idea to theU(1)]?> DGL theory, we will have
three types of color-electric Dirac strings.

In the one-potential form of the @) DGL theory, the
dual gauge field includes another color-electric Dirac string
. . attached to the color-electric charge of a quark, which is

—N(|x[2=v??, (2.1 canceled by the color-electric Dirac string in the nonlocal

i term. In other words, the color-electric charge of the quark is

whereB,, and x are the dual gauge field and the complex yefined by the cancellation of the color-electric Dirac string
scaJar morjopole field, respectively. The dual gauge coupling, the dual field tensof21]. Usually, such a singularity is
is g and N characterizes the strength of monopole self-considered to come from the phase of the monopole field,
interaction. The monopole condensatdetermines the mass Wwhich is of course possible since they are related by singular
scale of the system. The dual field strength terisby,, has  dual gauge transformation. However, when we include the
the form quark (color-electric chargesource in the theory, it seems
natural to regard that the dual gauge fidg itself has a
singular part from the beginning.

It should be noted that the color-electric Dirac string is
“dual” to the original magnetic Dirac string which is at-
Here, the nonlocal term appears as a contribution of the exached to a magnetic monopole in a Abelian gauge theory

A. The general feature

1 _ .
Ly(1) peL= — Z*F,ZW(B,J)H(%JHQ B)x|?

. 1 .
*F,.(B,j)=d,B,—d,B,— - €uvapn®i?. (2.2

ternal quark current such as QED. One may remember that the direction of a
magnetic Dirac string can be varied by a singular Abelian

. _ &= 2.3 gauge transformation, and hence, the magnetic Dirac string

Iu qu“q’ ' is unphysical in the sense that one cannot detect it. In our

. _ case, however, the symmetry which is responsible for the
where the factor 1/2 is the weight of &) algebra. Accord- direction of the color-electric Dirac string is tfuial gauge

ingly, e/2 becomes the Abelian color-electric Charge in Symmetryachieved by a set of transformations
SU(2) gluodynamics in the Abelian projection. The nonlocal

term is written more explicitly as . ,
oxel xroxtel BB Zaf,

X' > 8;Lvaﬁnaj B(X,)v
(2.9

1
_ @iBiyy= | gt/ ( x| ——
n.asl’“”aﬁn JP(x) fd X <x —

asﬂwﬁnmjﬂ'

(2.7)

where the dual gauge fixing function can be singular
Yn order to avoid confusion, “the caret” is reserved for the pa- ([,,,,]f#0). The last relation in E¢2.7) determines the
rameters of (1) DGL theory. new direction of the color-electric Dirac strinlg, This dual

1 o B
_E[au!av]f_ﬁs,uvaﬁn | R ]

where
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gauge symmetry would be broken by monopole condensa- B. The dual lattice formulation

tion (0[x|0)=v. This is the so-called dual Higgs mecha- In order to formulate the (1) DGL theory on the dual
nism, which is realized by insertinge=(v+ ¢/\2)e'” lattice, taking into account E@2.3), it is convenient to write

(where ¢, e R) into the U1) DGL Lagrangian as the nonlocal term as
1 1 , 1 - e
Ly DGL:_Z*FiV(B"J)+§mZBBM2 g Euvaph JBEEE,W- (2.12

1 O R i
+50(0,4)?~m¢?]+9%B); (ﬁv¢+ >

where ,, denotes the singular field strength. By using the

. relations(2.4) and(2.6), one finds thak ,, satisfies
—X ﬁ8¢3+% , (2.9

) . fEWda“Eil, (2.13
where the phase of the monopole figjds absorbed into the s

dual gauge field a§;=B#+&M1;/§, and accordingly, the

dual gauge field and the monopole field acquire the MaSSEihere Sis a certain surface which is pierced by the color-
Mg = \/E_gu and meZ\_/XU’ respectively. In that case, only electric Dirac string and the sign depends on the direction of
the region where the fielg~0 resembles the normal phase the singular fluxz ,,. This is the Dirac quantization condi-

in the dual superconductor vacuum, which means that thgon, Accordingly, this also leads to the flux quantization
color-electric field can survive only near the regign=0.  condition of the color-electric flux induced by the dual gauge
Then, the color-electric Dirac string has a physical meaningdsie|d.

since the “normal region™ follows the color-electric Dirac  As long as we are interested in a three-dimensional static
string so as to minimize the energy of the system forming theystem, we can start from the Euclidean metric instead of the

color-electric flux tube. It means that the shape and the sizgjinkowski metric. Then, the (1) DGL Lagrangian is writ-
of this normal region are determined by the directignand  ten as

length, respectively. The width of the flux tube is character-
ized by the inverse masses; ' andm_ *, which correspond

to the penetration depth of the color-electric field and the
coherence length of the monopole field, respectively. The
vacuum property, namely, the type of dual superconductiv-

1 .
Ly peL=+ Z*Fiv(B!E)+ (9, +igB,)x|?

ity, is governed by the ratio of these lengths, the so-called +A(|x[2-v?)?, (2.14
Ginzburg-LandayGL) parameter
X mgl 2% where
K= ) = (2.9)
m, g .
* — _ —
Here, k=1 is the critical case, the so-called Bogomol'nyi Fuu(8,2)=0,8,7,8, 22“”' (219

limit, and the vacuum is classified into two types divided by

this limit: k<1 belongs to the type-l vacuum and-1 is Now, we formulate this on the dual lattice. Let the dual
the type-1l vacuum. The profile functions connecting the nor- auge field be defined dinks asB the moﬁo ole field
mal phase in the center of the flux tube with the dual supergn s%tes as and the dual fieIdX’ls’vt’ren th tenspor and the
conducting phase outside are classically determined by the X . 9 -
. . color-electric Dirac string term oplaquettesas *F, ,, and
field equations . . H

2, uv- The color-electric charge and anticharge are attached
to the ends of the color-electric Dirac string. We go over to

I"*F = —10(x* dux— xdux*)+29°B x* x=k,, (2.1 : - : :
wr= 719X Iux = X9ux*) +297Bx" x=k,, (2.10 dimensionless fields by the transformation

(9,+i9B,)2x=—2\x(x* x—0v?), (2.11

wherek,, is the monopolesupercurrentvhich circulates in a By, — BLAM Y0 Xns Sy o Ex,;w’ (2.16
transition region, confining the normal phase inside the dual ' ag ’ a?
superconducting phase. Solving these field equations, the

boundary condition are determined by the position of the ) ) ) ) ) )
color-electric Dirac string, and this information is included in Wherea is dual lattice spacing, which has the dimension of
the dual field strength tensor as a nonlocal term. In the follength and can be reinserted when needed. Accordingly, the
lowing subsection, we explain the dual lattice formulation toScale is absorbed into the definition of masses of the dual
solve such nonlinear equations and see how this formulatiogauge fieldng=\2gv, and the monopole fieImXEZ\/Kv.
enables us to obtain various shapes of the flux-tube solution$hen, the action on the dual lattice is given by
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rﬁé i tion with respect to the dual gauge field and the monopole

1 - R
5 Z 7 E | Xx field becomes zero. For the dual gauge fiBld,_, , 3 this
# condition leads to

s=> B

X

12 a2

m: .
+— = (d?—1)? (2.17)
IS D * * B * B * B 211 (2)
— = B(*Fyijt *Fx_ijit *Fxikt "Fx_ikitmghy)
where B=1/g%, mg=mga andm =m,a [22]. The dimen- 9By
sionless dual field strength Wlth the external source is given -
by ? J =pBXxi s (2.22
which corresponds to E¢2.10 in the continuum limit. Here
. . N N A A we have defined
FX AV B BX+;;,,V_ BX+;,,LL_BX,V—27TEX,,U,V7
(2.18
1
where the relation between the color-electric charge and the by )_Xx(Xx+| cosB, ;- Xx+| sinB,.;)
color-magnetic charge, the Dirac quantization condit®g, Al AR .= ~ R
_ ; ; ; +x,(x,.:SinBy i+ x,.-cosBy;), (2.23
=41 is used. The integral form of the color-electric flux XX\ X+ x0T Xxti x,i

quantization conditior§2.13) is then replaced by putting

R b(z)—XX(XX+?SII"IBX|+X ,;C0sB, ;)
DIV | (2.19 o . . .
_ _ _ _ —XWX5.cosB, — XL, sinB, ). (2.24
on just a single plaquette in thev plane. In the dual lattice
formulation, the kinetic term of the monopole field is written The labelsi,j,k=1,2,3 should be taken cyclically. We find

as that the four terms of the dual field strength tengd¥, ;

M*'A:x—ﬁ,ki in Eq. (2.22 are nothing else but the sum of

5 plaguettes which are attached to the linkkgiointing in the
(9, +19B ) x— = (Us uXxs o= Xx)» (220 i direction. The superscript of the monopol_e fi&d denote

a its real and its imaginary part. The candidate value of the
dual gauge potential, which locally satisfies the dual lattice
field equationsX, ;=0, is obtained by a relaxation step tak-
ing into account the second derivative of the actianla
Newton and Raphson as

whereU, , is a(compact link variable

U, =exp(iagB, ) =expiB, ). (2.2D)
In the static three-dimensional system, we only need space- 5 1
like links 42 or v=1,2,3. Note that four-dimensional Monte 5 & _g _[ 7S S s A
Carlo simulation of Y1) DGL theory in Euclidean metric is ol eB2 By Y armip®’
possible if we add the timelike link contribution. ’ ' (2.25

The field equation on the lattice is obtained when we for-
mulate the cooling procedure, which aims to minimize theFor the monopole field, similarly, the local solution is given
action (2.17). We require that the first derivative of the ac- by the update

“R "R'_"R_ Xs XXx(X XR+X>< x)
Xx 7 Xx = Xx 1. . . + 1. 1. . . . . . ’
6+ M xc 1) {6+ SME(x+ X2 1) 6+§m§(x52+x'x2—1>+m§(x52+x'f]
(2.26
~ ~! ~ X!( XXX(XRXR—’_;(!(X!()
Xx 7 Xx = Xx— 1. + 1. 1. )
R2 R2 R2 ~2/7R2, "I2
6+—m X+ X —1) 6+—m XX —1) 6+—m PO 00— 1)+ M2+ Xy ]
(2.27

where
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3
- ~R A Sl A
Xi=6x— 2 (x4 CosBy — Xy 7 SinBy)

el |T Qf |da
+(5(§7i‘COSBx—T,i+;(L7iSinéx—f,i)} 1 ) / T

" i 77
l.orr ~Rr2, =12 4%
MO X~ 1), (2.28 I a ,

L

: ide adl
~ ~R . = ~ -
X674, (8B, K. 0 ;

Y
+(xo s(—sinB, 1)+ X, _:cosB, 7 )} Zx (a) (b)

Aonl,AR2 . 12 FIG. 2. The color-electric Dirac string dual to singular
+ EmXXx(Xx X —1). (2.29 plaquettegshaded ending in external charges.

The dual lattice field equations for the monopole field areyt the dual field strength tens¢2.18, *F . (i,j=1,2,3)
R_ vyl _ ; : . ) X,ij ) 1439 ).
Xy =Xy=0, which corresponds to Ed2.11) in the con-  The color-magnetic current is without the last term of

tinuum limit. . ~ 2. (2) .
: . . . Xxi=123 N Eq. (2.22, —mghs7, which corresponds t&,,
One finds that the behavior of the classical profile doesm Eg.(2.10 in the continuum limit. The length of the arrows

not depend on the coupling, since this is factored out from i these figures show the relative strength of fields. In the
the field equation. Hence, one can set ghyo study the figure of the color-electric field, one can observe the Cou-
behavior of profile. At the same time, this implies that it is Jombic behaviors of the field aineap the position of the
not necessary to specify the lattice spaciagOnce the quark (sourcé and the antiquarksink). Here, in order to
massesng andm, are provided in physical units, the lattice obtain the vector variables defined on sites from the color-
spacinga is known to characterize thickness and length ofelectric fields on plaquettes and the color-magnetic currents

the flux tube. _ _ _on links, the appropriate averages such*d&% = (*F,;
It is noted that when we discuss the magnitude of profiles ’ '

i ) i - +* IAZX+|;JJ-)/2, where (,],k:cyclic), etc., are associated with
or the classical string tension of the flux tub@should be  conters of cubes. This is also where the quark and the anti-
taken into account. In such casealso becomes important,

; . X . " quark are located. Note that the parameter set used here is
since the dimensionful physical quantities are recovered biﬁptimal for a 33 dual lattice and intended to compare with

using thisa. Ref.[22], where the relation of the flux-tube profile between

C. The solution

Now, the boundary condition of the dual lattice field S
equations becomes very easy to handle, since all we have t N P L S
do is to place a set of configurations of plaquetss,, ° Ceeeg /'-: T ‘
#0 which is pierced by the color-electric Dirac string in |-« - -« .
three-dimensional space. For instance, if we assume that Bpoorres ‘
straight color-electric Dirac string is placed on theaxis, | - ‘

which means that the quark and the antiquark are placed or | .. ... .
N Qpe v oo '

the z axis, the only nonvanishing plaquette3s ;,, where | @ '
x=(0,0x®) andx3 belongs to the region between a quark
and an antiquark. A schematic figure is shown in Fi@)2
where the nonvanishing plaguettes are shaded. They form
connected stack of plaguettes dual to the color-electric Dirac

string connectingy and g. Here, %, ,,=+1 (—1) means

that the color-electric Dirac string is regarded piercing the

nv plane atx to u/\v (— u/\v) direction. ] -
In Fig. 3 we show the profiles of the color-electric field, x

the color-magnetic current which circulates around the flux _ o

tube, and the modulus of the monopole field. Here hdi@l '(:)I(?I. ?t) the prolf”e of the fo'or'e'ect”!c f;fn': in :hez p'fti“e gt
o - =0 (left), the color-magnetic current in ane atz=

IAatt|ceA is used, and the mass parameters are takgh-ds {right-uppe), and the mon%pole field in thez plar{ezty=0 (right-

mg=m,=0.5. The quark and the antiquark position are|ower of the mesonic flux tube in the () DGL theory. The quark

taken as X,y,z)=(0,0,—8) and (0,0,8), respectively. The and the antiquark are placed at,y,z)=(0,0~8) and (0,0,8),

color-electric field is given by the space-space componentsspectively.
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30 ' ' ' ' dual gauge symmetry is extended[td(1)]?, which corre-
sponds to Abelian projected $8 gluodynamics. Accord-
o5 | ingly, there appear three different types of color-electric
charge and color-magnetic charge, respectively. Among
these charges, we have the glolétyl symmetry, which is
—~ 2| ] permutation invariance of the color charges.
©
<
1 5 A. The general feature
The[U(1)]? DGL Lagrangian in the one-potential form
. similar to the U1) case is given by
10F , 1 . .
Liuy2poeL= — Z* FiV(B,j)JF Zl [1(d,+ige-B)xil?
5 , , , , =
0 5 10 15 20 25

R/a —M|xil*=v??2], (3.)

FIG. 4. The quark-antiquark potential in th¢l) DGL theory,  where the dual field tensor has the form
whereR/a denotes tha-q distance. The parameter set is taken as

S 1
=1, mg=m =0.5. - = = = o
p=1, mg=m, *FuuBi)=0,B,=9,B,~ —e,.qnif. (32
the classical solution of (1) DGL theory and that of the
Abelian projected SI2) lattice gauge theory23] is dis- In this LagrangianB, and y; denote the two-component
cussed. dual gauge field and the three-component complex scalar

The relationr:nBzth implies that the vacuum is at the monopole field. The interaction between quarks through the
Bogomol'nyi limit, just between type-I and type-Il vacuum. dual gauge field and with the monopole field originates from
The inter-quark potential is shown in Fig. 4. One finds thatthe existence of a quark curreint=eqy,Hq in the nonlocal

the slope of the linear part of the potential, which is theterm, wherd:|=(T3,T8). Since the quark field is regarded as
string tension, obeys the analytic result on the Bogomol'nyiz f,ndamental representation of @Jgroup, this has a form
limit, as o-=2mv2a%= Brm3~0.78[24,25. Here, the su-

perscriptL denotes the dimensionless string tension. Note (o1

that the force always contains a Coulomb self-energy, which q=| a 3.3
corresponds to a constant term in the poteitid@/a). If we ' '
choose a finer dual lattice, smaller the self-energy be- Us

comes large, and accordingly, the constant takes a larger
value. In such case, we could observe the fine structure of thinere the labels 1,2,3 correspond to the three types of the

short-distance behavior of the potential. In this paper, wéolor-electric charge redR), blue (B), and green ). By

only pay attention to the long distance region. using the relation
It is worth emphasizing that the dual lattice formulation -

presented here is also applicable to the “ bending " flux tube wp, 0 0

[see Fig. 2o)]. If we assume that the bending is restricted to |:|:(-|-3'-|-8): 0 ng 0|, (3.4)

the 1-3 plane, that means thakfcomponent of the color-

electric Dirac string appears, i.e., some teiis; have non-

vanishing value;= 1. In this case, the sign of this plaquette is R ,

similarly treated as discussed above. In this sense, the dusinerew; are the weight vectors of the $&) algebra

lattice formulation is quite useful to obtain various shapes of

0 0 w

the flux-tube solutions in 1) DGL theory numerically. In - (1 1 - (11 - _lo 1
the next section, we investigate theJ(1)]?> DGL theory Yool TPl 27203) Wa= | P 3/
with the similar technique. In thidJ(1)]2 DGL theory, there (3.5
appears a flux-tube structure which includes three valence

quarks corresponding to the baryonic state. In order to studwe obtain an explicit form of the quark current

such a flux configuration, we need the skill to treat the bend-

ing flux tube. - S

. THE [U(1)]?> DGL THEORY

In this section, we analyze tH&J(1)]?> DGL theory by
using a similar technique as in the previous section. The ?In the[U(1)]? DGL theory, we do not use carets for the param-
main difference from the (1) DGL theory is now that the eters in order to distinguish them from the&1ly ones.
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We find that the color-electric charge is given éy;. The ~ Where the phase of the monopole figjdis absorbed into the
nonlocal term can be written in a similar way aélDGL  dual gauge fieldB,, as €-B,=¢-B,+d,7;/g, and ac-
theory as 3 cordingly the dual gauge field and the monopole field acquire

igwaﬁna]—*ﬂ:iswaﬁna,eE W; a7 the massesmg=3gv, m,=2\v, respectively. The GL
n-d n-d =1 parameter is then given by
_ i h 1 an B
—ejzlem%mﬁ” a;7"q; mst 20
s m.' V3g

I
[u

J

Here, one finds thak,,, describes the color-electric Dirac AS explained in W1) DGL theory, k=1 is the case of spe-

string singularity attached to the color-electric charge of¢i@l interest, the Bogomol'nyi limif26,27.
e\7vj, which satisfies a similar quantization condition in an

integral form such as Eq2.13. In this case, we have B. Various representations of the dual gauge field

fz_ dotr=+1 (3.9 The color-electric charge of the quark is given by three
s components aR, B, andG, which is spanned by the weight

) . S vector of SU3) algebra. The color-magnetic charge of the
whereSis a certain surface which is pierced once by themonopole is defined by components %R, *B, and *G,

color-electric Dirac string. _ _ which is spanned by the root vector of @Y algebra. Now,
_The color-magnetic charge of the monopole is defined byye are interested in the color-singlet state corresponding to
ge;, whereg; are the root vectors of the $8) algebra the meson and the baryon, which should be invariant under

the exchange of the color charges. Hence, it is important to
pay attention to the Weyl symmetry in the DGL theory.

However, since the dual gauge fieﬂ?;b which connects the
3.9 color-electric charge and the color-magnetic charge has only
two components in the sense of Cartan decomposition, and
accordingly, the independent color-electric flux has two
components, we cannot observe the Weyl symmetric struc-
ture in the color-electric flux tube itself. This fact makes it
difficult to see the Weyl invariant structure of hadronic
“states. In order to investigate the Weyl symmetric structure
of the flux tube in the DGL theory, it would be favorable to

(1@)(1ﬁ

€1= T5r Ty €2= _E’_7)’ 23:(1.0),

where the labels 1,2,3 correspond to dual reR), dual blue
(*B), and dual green*(G). Here, an asterisk denotes dual.
Both the gauge couplingand the dual gauge couplirggare
related by the Dirac quantization conditieg= 4. It might
be worthwhile to remember that the relation of the root vec
tor and the weight vector of the $8) algebra is given by

0 1 -1 represent the dual gauge field in a Weyl symmetric way.
I | 13 1 In this subsection, we write tHéJ(1)]?> DGL Lagrangian
€i-Wj=5 -1 0 1 ) kzl EijkEEmijv in various representations of the dual gauge field, among

1 -1 0 B which the Weyl symmetric representation of the dual gauge

(3.10 field is also discussed. We first pay attention to the original

Cartan representation of the dual gauge field with two com-

wherem;; is an integer which takes 0 or 1. ponents. Next, we will discuss other two possible represen-

The typical scale of U(1)]?> DGL theory is determined tations of the dual gauge field, the color-electric representa-

by taking into account the dual Higgs mechanism d$)U tion and the color-magnetic representation, which are

DGL theory. By inserting x;=(v+¢;/\/2)el” (where achieved by spanning the dual gauge field with the weight
¢, m €R) into [U(1)]?> DGL Lagrangian(3.1), we get vector and the root vector, respectively.

1., - . 1 - 1. Cartan 3-8 representation
E[U(l)]ZDGL:—Z*F,ZW(B',J)JF EméB,’f .
The two-component dual gauge fieBd, can be written as

3
1
+ 2 510,007 -mia]

; B ! B3 B (3.13
3 2 =— —_. .
S bi Fogl T # 3
+2 gz<ei~BM)2( V2vdi+ 5 3
4
_ 3, 70 The factor\/§ is to make 3 and 8 components symmetric.
)\( v2v ¢t 4 } 319 The dual field strength tensor becomes

014015-7
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>

E =5 B 0,8 2m(Sy,,- 3
,uv_g u=v vPu 77( luv 2,uv)l

1
ﬁ{aﬂsﬁ— 9,B5 —2m(S1,,+ 20, 223,”)})
1 *FBV

where we have useglg=41 to get the factor - in front of

2 - The[U(1)]?> DGL Lagrangian is written as
E?W?)]ZDGL:_%gz(*FiV)Z_ %292(*':/%)2
1 2
+|| 9u+i5(=BL+By) [x1] —Mlxal?—v?)?
1 2
+|| 9u+i5(=Ba=By) [x2 —Mlx2l?—v?)?

+[(9,+1BY)xal*~N(|xsl?~vH2  (3.19

Note that the Lagrangiai3.15 is invariant under the
[U(1)]? dual gauge transformation

xi—xiel, xroxre i (i=123),

(B%, B)—(B3-4,f5, B2—(9,f1—d,f,), (3.1
where the phasefs satisfy the constraint?_, f;=0[13,14].
The field equations are given by

1 vrx3 i * * 1 3 8\ . %
E& Fuv= 451X~ X19,X1) —5(=BL+Bu)x1 xa

i
+5 (X2 9uX2~ X20,X3)

1 .
= 5(=BL=BLX3 X2~ (X3 0uXa— Xad,x3)

+2B5 x5 X3, (3.17

1 i
3—9207”* Fo,=- 5 (X1 9uX1~ X10,X1)

1 i
+5(=Ba+BLXT X1+ 5(X5 duXo— X20,X3)

—5(=B,=Bix}xz. (318

H 2
|
dut5(=BL+BL) | xa= —20 (i xa—v?),
(3.19

PHYSICAL REVIEW D 64 014015

H 2
|
9u+5(=BL=BL) | x2= ~2\x2(X5 X2~ V),

(3.20

(9, +1B3)%x3=— 2\ x3(x5 x3—v?).
(3.21)

From these field equations, we find the boundary condi-
tions: If * Ff’w and* Ffw have a nonvanishing nonlocal term
3,0, the dual gauge fiel®’, and B also have a singular
part. At the place where the dual gauge field is singular, the
monopole field is required to disappear. At large distance
from the singularity, the monopole fielg, approaches the
vacuum expectation value and the dual gauge field asymp-
totically vanishesB>=B%=0. These field equations are to
be solved by using the dual lattice formulation, and one will
find that these boundary conditions are realized.

2. Color-electric representation

The dual gauge field can be expressed by using the weight

vectorvT/J- , where the labej=1,2,3 corresponds to the color-
electric chargeR, B and G. In this sense, we call this the
color-electric representation of the dual gauge field, which is
defined by

3
N 2 -
B,= g_gJZl w;BS,, (3.22
where
3 e onan. . B
Je= Eg’ BjME 29 Wi - B,u' (323

Note that now the dual gauge field is written as a three-
component field, however all of them are not independent
since Ej3=leM:O. The dual field strength tensor has the
form

3
- 2 -
* F,uy: \/;121 WJ(&/LBTV_ 0—',,8;_)#— 2772““,),
e

(3.29

whereeg=4 is used. Then, we get the Lagrangian

electric _
‘C[U(l)]z DGL ™

, (3.29

where

014015-8
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FIG. 6. The profiles of the color-magnetic current in the Cartan
representation for 8eft) and 8(right) components in thR—ﬁ(up-
pen, the B-B (middle), and theG-G (lowen systems in thex-y
plane atz=0. The quark and the antiquark are placed>at/ (z)
=(0,0,—-10) and (0,0,10), respectively.

&=w;—w, (i,jk:cyclic). (3.28
- Apparently, the Lagrangiari3.25 is invariant under the
* [U(1)]® dual gauge transformation, which is defined by
FIG. 5. The profiles of the color-electric field in the Cartan it N * —if:
representation for 8eft) and 8(right) components in th&R (up- Xi—Xi€h  xi —xi €
pen, the B-B (middle), and theG-G (lower) systems in thex-z 3
plane aty=0. The quark and the antiquark are placeda/ (z) e e B .
=(0,0,~10) and (0,0,10), respectively. Bi“_)Bj“—i_;l Mjid,.fi (3.29
3 wherei,j=1,2,3. However, this does not mean an increase
_ 2 :
*Ff#,,=f7,LB?v_avBieﬂ_2W 22“‘”_;1 mjkzkw . ofatheegziuge degrees of freedom because of the constraint
(3_2@ 2j=lBj#‘*0.

The field equations foy=1,2,3 and =1,2,3 are given by

Here, we have used the relations 1 3 i
?aV*FFW:;l mjj| — §(Xi*'9ﬂ)(i*)(if9MXi*)

22 1 ¢
9e€i-Bu=gei \/:2 wiBf, =3 > myBf,, >

+ 2241 MiBi, X Xi | (3.30

014015-9



PHYSICAL REVIEW D 64 014015

Y. KOMA, E.-M. ILGENFRITZ, T. SUZUKI, AND H. TOKI

FIG. 7. The profiles of the color-electric field in the color-electric representation, expressed on the weight vectors ¢8)ttaég8hra,

0. The quark

-

-

w; (left), w, (cente}, andws (right) in the R-R (uppe), the B-B (middle), and theG-G (lower) systems in the-z plane aty

(0,0,-10) and (0,0,10), respectively.

and the antiquark are placed aty,z)

that the dual gauge field represented here experiences the
color-electric Dirac string singularity in a Weyl symmetric
way. The dual lattice formulation will make this situation

representation of the dual gauge field. The main difference is
clear.

condition is given by a similar discussion as in the Cartan
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from the matrix structure in labels andj. The boundary
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NNNS— s

FIG. 8. The profiles of the color-magnetic current in the color-electric representation, expressed on the weight vectors (&) the SU
aIgebra,vT/1 (left), VT/2 (centey, andvT/3 (right) in the R-R (uppep, the B-B (middle), and theG-G (lower) systems in the-y plane atz
=0. The quark and the antiquark are placedxay(z)=(0,0,—10) and (0,0,10), respectively.

3. Color-magnetic representation 2 3 3
The dual gauge field can also be spanned by using the*Fu= \/ 722 6i<a,¢LBirT:/_(9VBiTL_2W2 M %]
R 3gm|=1 =1
root vectore;, where the label=1,2,3 corresponds to the (3.34
monopole charget R, *B, and *G. In this sense, we call

this the color-magnetic representation of the dual gauge fielgyhere we useeg=4m. Hence, the Lagrangian with the

[27], defined by color-magnetic representation of the dual gauge field is given
by
2 3
B,=1\/—2 B", (3.32 . 3 1 _
Yo Ve Ll oe= 2 ~ 22 Ul 410, 1Bl Xl
- gm
where 2_ . 2\2
=M xil*—v?)?|, (3.39

3 2 -5
gmz\/zg, B{‘LE\[ggmei-BM- 333 where
3

Note that allB{}, are not independent sinﬁlei”;fO. The *EM =g BM—0,B — 273 mS;,,. (336
dual field strength tensor is written as K r i=1

014015-11
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expressed on the root vectors (3)thégshia,

FIG. 9. The profiles of the color-electric field in the color-magnetic representation

0. The quark

-

€, (left), 22 (centey, andes (right) in the R-R (upped, the B-B (middle), and theG-G (lower) systems in the-z plane aty

and the antiquark are placed aty,z)=(0,0,—10) and (0,0,10), respectively.

-

the W(1) DGL theory, except for the labelsandj, one finds

Here, we have used the relations

that the dual gauge symmetry becomes very easy to observe

xi—xte ',

if;

Xi— Xi

(3.37

>

1. . .
—§(ej—ek) (i,],k:cyclic).

W.

(3.38

(i=1,2,3),

BIL

Since the Lagrangia3.35 has a quite similar form as

014015-12
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FIG. 10. The profiles of the color-magnetic current in the color-magnetic representation, expressed on the root vectors (8j the SU

algebrase; (left), €, (centey, ande; (right) in the R-R (uppe), theB-B (middle), and theG-G (lowen systems in the-y plane az=0. The
quark and the antiquark are placed afy,z) =(0,0,—10) and (0,0,10), respectively.

and accordingly the LagrangidB.35 has the extended dual
gauge symmetrjU(1)]3 with a constrainEleBi”;= 0. This

C. The solution

In order to solve the field equation with various represen-

is the same as in the color-electric representation of the duahtions of the dual gauge field, we adopt the dual lattice

gauge field. formulation with the W1) DGL theory, but extended to more
The field equations for=1,2,3 have the form degrees of freedom. In this subsection, we first investigate
the mesonic flux tube, and next the baryonic flux tube. We

1 use the words “mesonic” or “baryonic” to distinguish the
7&v* Fp;w: —i(x* 9, Xi *Xi%)(i* )+ ZBinLXi* Xis re_al qolor-.singlet hadron. from the plassical state that we deal
m with in this paper. For instance, if we want to obtain real

(3.39 meson or baryon state, we need to consider the quantum state

given by

(9, +1BI)2xi= =2\ xi(x¥ xi—v?), (3.40

which is exactly the same as the field equation in th#&)U
DGL theory, replicated with respect to the indexin this
sense, the boundary conditions can be taken similarly as the
U(1) case. Therefore, the color-magnetic representation of
the dual gauge field is particularly simple as compared with
other representations.

014015-13
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TABLE I. The color-electric Dirac string structure in the dual string tension is reproduced by the numerical potential in
gauge field ing-q system for various representatioffer Figs.  Fig. 12. In order to get quantitatively realistic results, we
5-11) is schematically summarized. Herg,and | correspond to  need more information about the parameter set of &(1)
the one Dirac string singularity. If we circulate around these singuDGL theory from QCD.

larities in a Coyntercloclfwise way, they lead to the phass@sr and It is worth noting that in the mesonic case, we can reduce
—2m, respectively. Notice tha=2xT1 andl=2x. the[U(1)]? DGL theory to the W1) DGL theory[28]. Let us
3-8 basis Electric basis Magnetic basis see this in theR-R system with the Cartan representation of

the dual gauge field, as an example. Other systems and other

B2 B® BS BS BS BT BT BT representations can be treated similarly. Here, we already
o M Iz Iz Iz Iz Iz Iz Iz . .

RR e le  Ue Te Te 0 Tm Im know the profiles of the color-electric flux tube and the con-

5 1 ! 1 U 1 ! 0 1 tribution of the dual gauge field and the monopole field as

° oc ﬂc Te Te Ue Tm | om shown in Figs. 5 and 11. Thus, one can tikg=B%=B,

G-G c e e e m m andx1=v, x2=x*, xs=x. The[U(1)]? DGL Lagrangian

(3.19 is reduced to the form

where RR denotes theR-R flux tube, and so forth. In the g 5
classical solution, we can only treat a piece of these states.  L{uy(1)2peL= — ;(%Bv_‘?vBu_z”El )
However, even then it is necessary to pay attention to the 9

Weyl symmetry, since all states can be reduced to the same +2[[(9,+1B ) xI>=N(| x|?~v?)?2].
classical state for the meson and the baryon, respectively.

(3.41
1. Mesonic flux tube(q-q system) The redefinitions of the couplings and the fields
Since the three types of the color-electric charge are rep-
resented by nonvanishing plaquett®g,,,, 2x2,,, and g=-——g, A=2\, v= i{} B, QB X—>i
~ —_— —_— ) ’ ) :“ /_L 1 1
3.y 34v» the mesonic state correspondingd RR), |BB), and V3 V2 V2

|G€> are given by some stacks of connected plaquettes of (3.42

each color. For example, if we want to consider the straigh}ead to the Lagrangian of @ DGL theory as is given in Eq.

R-R flux-tube system, all we have to do is to put only one of(2.1).
the color-electric Dirac string plaqueti®, ;,,#0 such as
Fig. 2a), whereasS, 5,,=3,3,,=0 for all over the three 2. Baryonic flux tube(q-q-q system)

dimensional space. For thB-B flux-tube system, we set We solve the field equations in the presence of three types
3 3 _3 _ = of the color-electric charges. Since these color-electric
Zrauy? 0 ANy 3, =2, =0, for theG-G flux-tube sys- charges are defined in thegweight vector diagram of33U
tem, 2y 5,,#0 andXy 1, =3y2,,=0. _algebra, and the color-electric Dirac strings which are at-
In Figs. 5-10, we show the profiles of the color-electriciyched to these charges carry the same quantity, respectively,
field and corresponding monopole currentR®R, B-B, and  these Dirac strings can join at a certain point to cancel each
G-G flux-tube systems for various representations of the duabther (Ef:leJ\/j=0), which we call a junction. Here, we

gauge field, the Cartan representation, the color-electric regonsider the simple case that the three types of the color-
resentation, and the color-magnetic representation, respegtectric charge are placed on the corners of a regular triangle.
tively. We find that the last two representations enable us tg-, . 2 2 2

. ; e nonvanishing plaquettes, q,,,, = ,,, and2, s, are
see the Weyl symmetric structure of the flux tube. The Dlracproperly included so as to minimize the length of the color-

stnr:gt.struc_turesn the_dugl gﬁuge I.'ekflv'th V‘?”lz)olusl T€Pre- electric Dirac string, which corresponds to the energy mini-
sentations 1S summarized schematically in faple 1. mization condition. Then, the position of the junction is

The profile of the monopole field is shown in Fig. 11. One . : ;
finds that this does not depend on the choice of the represe l_\é?]r;pb gdﬂ:,?uf_?:g: : Opgj?lergﬁ]ﬁ AUS( g)gélﬂt’,{r\:\é%%et iaetypilr(]:: !
tation of the dual gauge field, since the monopole field isbaryonic flux tube T

defined on the S(B) root vector. That is the reason why this In Figs. 13—15, we show the profiles of the color-electric

d|str|but'§|on 'S S|m|l?rt§o thef (;ﬁlorc—ielelctrlc f|elcfi' 'Tdth_?hCOI.of[' field corresponding to the Cartan, the color-electric, and the
magnetic representation ot the dual gauge fieid. 1he in erc':olor-magnetic representations of the dual gauge field. The
quark potential is shown in Fig. 12, which, of course, doe

td d th tai Th i i yl symmetric structure can be observed in the last two
not depend on the representation. The parameter Set USgh, o sentations. The monopole field does not depend on
here is the same as in thg1) case. We took3=1/g°=1,

PO i oo _ which representation is chosen, for the same reason as in the
mg=m, =0.5. This set is simply to see the behavior of thegiscussion of the mesonic flux tube, which is shown in Fig.
profiles and to compare the string tension of the potentiais. One finds that all of these profiles faithfully reflect the
with the analytical value in the Bogomolnyi limito"  structure of the color-electric Dirac string. The potential is
=4mv 2a2=4B7rrAn§/3 [26,27). One finds that the analytical obtained analogously to the mesonic system, which is shown

014015-14
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FIG. 11. The profiles of the monopole field [ofy| (left), | x,| (centeF, and| 3| (right) in the R-R (upped, the B-B (middle), and theG-
G (lower) systems in the--z plane aty=0. The quark and the antiquark are placedxay (z) =(0,0,—10) and (0,0,10), respectively.

in Fig. 17. Here, parametrizing the potential of the linear parthe color-magnetic representation provides the 3-flux-type

as structure. It is, of course, possible to study the energy and the
field distribution corresponding to different shapes of bary-
8 onic flux tube in a static configuration.
V(Xq, %0, X3)~ 0 > [xi—= Xy, (3.43

o IV. SUMMARY AND DISCUSSION
wherex; andx; denote the position of the quarks and of the  \ve have studied the classical flux-tube solutions for the
junction on the dual lattice, respectively, we can extract thenesonic and the baryonic states within the dual Ginzburg-
string tensions". One finds that this is almost reproduced by | andau(DGL) theory by using the dual lattice formulation in
the analytical one, sinceL~l.O~4Bwrﬁ§/3. It is interest- the Weyl symmetric approach. The color-electric Dirac
ing to note that while each profile of the color-electric field string singularity, which determines the filament core inside
in the color-electric representation has similar form to thethe flux tube, has been treated as a connected stack of quan-
8-flux in the Cartan representation, the color-electric field intized plaquettes which lead to the phas@ in the dual
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FIG. 12. The quark-antiquark potential in thi&)(1)]°> DGL
theory, whereR/a denotes thay-q distance. The parameter set is

taken as=1, mg=m,=0.5. R
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R S L R FIG. 14. The profiles of the color-electric field in the color-
cans g : electric representation, expressed on the weight vectors of the
A0 poe . SU(3) algebra,w, (upped, w, (middle), and ws (lowen in the
iliiIIIIuUNT Lol baryonic flux-tube system in thez plane aty=0. The junction and
e LTy Ty T the quarks are located axk,f/,z)=(0,0,0), andR(0,0,9), B(9,0,
15 10 -5 0 5 10 15 —5), G(—9,0,-5), respectively.

FIG. 13. The profiles of the color-electric field in the Cartan lattice formulation. This formulation is flexible to reproduce
representation for 8upped and 8(lower components in the bary- various shapes of the flux tube just by putting the quantized
onic flux tube in thex-z plane aty=0. The junction and the quarks plagquettes which are pierced by a color-electric Dirac string
are located at X,y,z)=(0,0,0), andR(0,0,9), B(9,0-5), G  of any form. We have found that the manifestly Weyl sym-
(—9,0,-5), respectively. metric approach, in particular, the color-magnetic represen-
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FIG. 16. The profiles of the Higgs field df¢;| (uppe, |x-|
(middle), and| x| (lower) in the baryonic flux-tube system in tixe
z plane aty=0. The junction and the quarks are located at
(x,¥,2)=(0,0,0), andR(0,0,9),B(9,0-5), G(—9,0-5), respec-
tively.

classical flux-tube solution in the () and[U(1)]? DGL
theory. This work can be extended to the study of the flux
tube in the quantized DGL theory by using the Monte Carlo
~ - _ 2 _ / method in four-dimensional Euclidean space time. Then, also
algebra,e; (uppe), €, (middle), and e; (lower) in the baryonic  the effect of string fluctuations becomes a possible topic of
flux-tube system in the-z plane aty=0. The junction and the j,egtigation. Even without string fluctuations, we can dis-
quarks are located ak(y,z)=(0,0,0), andR(0,0,9),B(9.0-5). ;55 more quantitative properties of the hadronic flux tubes,
G(=9,0,-5), respectively. based on a quantum DGL theory. This is under preparation.
The application of this formulation to the flux-tube ring so-
tation of the dual gauge field is the most convenient one tdution as the glueball staf9] is also interesting.
investigate flux-tube solutions in tHé&J(1)]? DGL theory, A crucial criterion for a viable confinement mechanism is
since this gives a quite similar form with thg1) case[27].  the ability to reproduce the Casimir scaling of the forces at
In this paper we have concentrated on formulating antermediate distances between static charges in different
simple method to investigate the qualitative properties of theepresentationf-r /FRj=Cz(Ri)/02(RJ) with C, as the ei-

FIG. 15. The profiles of the color-electric field in the color-
magnetic representation, expressed on the root vectors of tf® SU
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FIG. 17. The three-quark potential in the(1)]? DGL theory,

whereR; =|x;—x,|. The parameter set is taken As=1, mg=m
=0.5.

X

genvalue of the quadratic Casimir oper in the repre-
sentations}; andR;, respectively. For the ratio of adjoint to
fundamental charges in $8) gauge theory, this would give
T adjl T1ung= 9/4. Casimir scaling is in the discussion since the
first lattice indications for it appeared in the 198{8€], and

at that time it was challenging for the bag modaL]. En-
hanced attention recently, due to the lively discussion o
competing confinement mechanisms, in R&R] the string
tensions of the fundamental and the adjoint representatio
were computed and the ratio came out to be nearly 2, whic
was close to 9/4. On the other hand, in R&3] they have

studied the ratio of entire potentials including Coulomb and

PHYSICAL REVIEW D 64 014015

logical level, it would be sufficient to restrict it exclusively to
mesonic, baryonic, glueball, and perhaps to exotic states, and
it would be inappropriate to apply it to the so-called glue-
lump bound states made of infinitely heavy adjoint charges.
However, because of the current interest, it might be amus-
ing to consider briefly how this kind of string would be rep-
resented within the DGL theory. Although this theory, as an
effective theory of gluodynamics with external charges, is
constructed referring to Abelian projection, we are free to
look at the Casimir problem afresh.

In fact, the DGL theory is rather promising to discuss the
Casimir scaling problem without extra effort. To see this, we
recall that the DGL theory represents the mesonic string as

degeneratdR-R, B-B, and G-G colored states. In the same
spirit it is natural to represent gluelump strings as stretching
out between pairs of adjoint charges, each of them being

made out of quark and antiquark B&-BG, GR-GR, and

RB-RB states. Thus, it is rather a string formed by two pairs
with their respective Dirac strings superposed. In the
Bogomol'nyi limit one directly gets the ratio g/ ong Using

the manifest Weyl invariant formulation of the DGL theory
[27]. In this limiting case the ratio is equal to 2, reflecting the
presence of two independent color-electric Dirac strings in-
side the adjoint flux tube. Entering the type-Il dual supercon-
ductor parameter range, the ratio will increase, while de-
creasing towards the type-I region. Our studies show that the

{atio of string tensions depends only on the ratio between

dual vector and monopole mass, wiam, /mg. It has been
(‘sonjectured that the ratio 9/4 is reproduced in a certain
pe-Il vacuum.
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