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High-order corrections and subleading logarithms for top quark production
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We derive high-order threshold corrections for top quark production in hadronic collisions from resumma-
tion calculations. We present analytical expressions for the cross section through next-to-next-to-next-to-next-
to-leading order and next-to-next-to-leading logarithmic accuracy. Special attention is paid to the role of
subleading logarithms and how they relate to the convergence of the perturbation series and differences
between various resummation prescriptions. It is shown that care must be taken to avoid unphysical terms in
the expansions. Numerical results are presented for top quark production at the Fermilab Tevatron. We find
sizable increases to the total cross section and differential distributions and a dramatic reduction of the
factorization scale dependence relative to next-to-leading order.
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[. INTRODUCTION “prescriptions” for the best way to do the inversion or oth-
erwise use the resummati¢8-5]. Numerically, the choice
The top quark production cross section at the Fermilatof prescription can have a significant effect. Alternatively,
Tevatron receives significant contributions from the threshthe resummed cross section can be used as a generator of
old region, where there is limited phase space for the emisperturbation theory. At fixed order no prescription is neces-
sion of real gluons. The incomplete cancellation of infraredsary to invert the moment-space results. This is the approach
divergences between real and virtual graphs produces finitéaken in this paper.
but large, logarithmic corrections in the form of “plus” dis- The aim of this paper is two-fold. First, to derive the
tributions. These corrections can be resummed to all ordersxpansion of the resummed cross section through next-to-
in the perturbative expansion. next-to-next-to-next-to-leading order and next-to-next-to-
The need for threshold resummations was recognizetbading logarithmigdNNLL) accuracy, and second, to inves-
over a decade ago for the Drell-Yan cross secfib@]. The tigate and assess the importance of subleading logarithms
resummation of the leading logarithms for heavy quark pro{beyond NNLL. We calculate the numerical effect of these
duction[3-5] relies heavily on this work since these loga- higher orders and subleading logarithms for top quark pro-
rithms are universal between electroweak and QCD induceduction at the Tevatron. As we will see, this discussion inti-
cross sections. To go beyond leading logarithms one has tmately relates to the convergence of the perturbation series
take into account the complex color structures of QCD crosss well as to the choice of a resummation prescription, over
sections[6,7]. Resummation for heavy quark production at which there have been different viewpoin&18]. We will
next-to-leading logarithmidNLL) accuracy was first pre- show that one has to be careful to avoid unphysical terms in
sented in Refd.6,7] and then in Refd.8—12. For a review the fixed-order expansions. These considerations apply to
see Refs[13,14. QCD hard scattering cross sections in general. We find large
Threshold resummation follows from the factorization corrections for top quark production at the Tevatron and a
properties of the cross sectidi5], separating long- and dramatically reduced factorization scale dependence. Our
short-distance physics. The hadronic cross section is writteformalism allows us to make predictions for both total and
as a convolution of non-perturbative parton distribution func-differential cross sections.
tions with the perturbative partonic cross section. This con- In a companion pap€r9] the next-to-leading order and
volution becomes a simple product if one takes moments ofiext-to-next-to-leading order threshold corrections to heavy
the cross section. The perturbative cross section still has sequark production at NNLL accuracy are also studied and the
sitivity to soft-gluon dynamics and is a smooth function only difference between one-particle inclusivEPl) and pair in-
away from the edges of partonic phase space. In general @usive (PIM) kinematics is highlighted. Similar NNLO ex-
includes “plus” distributions with respect to a variable that pansions have recently been presented for electroweak-boson
measures distance from partonic threshold. It is these sing(i20,21], direct photor{22,23, and jet[24] hadroproduction.
lar distributions that can be resummed to all orders in per- In the next section we briefly review the resummation
turbation theory. This is achieved by first refactorizing theformalism and give the expression for the resummed cross
cross sectiofi7] into new functions which absorb the univer- section in moment space. In Sec. Ill we present NLO and
sal collinear singularities associated with the incoming parNNLO expansions at NNLL accuracy in single-particle in-
tons and a function that describes non-collinear soft gluortiusive kinematics and we discuss in detail the role of sub-
emission. Resummation is explicitly derived in momentleading logarithms. We also present numerical results for the
space from the renormalization group properties of theséop quark total cross section and transverse momentum dis-
functions [7,11,16,17. To obtain the physical resummed tributions at the Tevatron. In Sec. IV we present the next-to-
cross section the moment space results must be inverted bankxt-to-next-to-leading order(NNNLO) corrections at
to momentum space. There have been a few proposals ®INLL accuracy, and again we study the role of subleading
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logarithms at that order. In Sec. V we discuss NNNNLOwith mthe heavy quark mass, whiga=s+t;+u; measures
and higher-order corrections. In Appendix A we list severalthe distance from threshold; at threshsjd=0.

formulas for the Mellin transforms that are used in the By taking moments and replacing the incoming hadrons
calculations. In Appendix B we collect some formulas for by partons, the convolution in E€R.2) simplifies to a prod-
the integrations involved in the calculation of the hadronicuct[7,11]

total and differential cross sections. In Appendix C we

present results for the NLO and NNLO expansions in PIM

kinematics. ~ ~ ~ ~
! I o1 1, -ox(N)= ¢fa/fa(Na)d’fb/fb(Nb)UfafbaQX(N)-(z 5
II. RESUMMED CROSS SECTION .
We begin by briefly reviewing the resummation formal-

ism of Refs.[6,7,11]. We will mostly discuss the single- The_Ns lements _ are  defined t?y U(N):f(.ds.“/
particle inclusive cross section but will make a few com-S)€ = ~0(Ss), with N the moment variable, and similarly

ments on pair inclusive kinematics where appropriate. ThdOr the ¢i’s with respect tog; . The definition ofN; depends
differences between the two kinematics in the expression fopn the kinematics. For 1PI kinematidsa=N(—u/s) and

the resummed cross section are minimal. Np=N(—t/s) [11]. For PIM kinematicsN,=N,=N [7].
The factorized single-heavy-quark inclusive cross section The short-distance perturbative cross section still
for hadron-hadron collisions, displays sensitivity to soft gluon emission. The incomplete

cancellation between graphs with gluon emission and virtual

— gluon corrections manifests itself in the occurrenceain
ha(Pa) +hg(pe)—Q(p1) +X[Q], (2.1 of “plus” distributions which are singular as,=0, the
partonic threshold. Anth order in «g (beyond the Born

where theh's are the colliding hadronsQ is the produced —term), these distributions are of the forffiln(s,/m)J/s,}. ,
heavy quark, anX represents the additional partons in thek<2n—1. The leading logarithms correspond ko=2n
final state including the heavy antiquark, takes the form of a—1, NLL to k=2n-2, ’;f"illu- to k=2n-3 zan”d So on.
convolution of the perturbative short-distance cross seetion Under —moments {[In*"*(sy/mP)Jsgh, —In'N  (see

with the universal parton distribution functions Qppendlx A, and our goal becomes to resum logarithms of

To separate these soft gluon effects from the hard scatter-
Oh,h.—0X ing, a refactorization is introducd®,7,11,16:
A''B

= | dXadXobr_sn,(Xa s A7) b1, sy (Xo s 47) - - - ottt
f o e ot 1, -ox(N) =1 (Na)¥r_ e, (Np)H 3PS °(M/ (Nug)),
Xa—fafbHQX(S4atlrulvm2uu‘|2: laS(Iu’ZR))I (22)
(2.6)
where ug and ug are the factorization and renormalization
scales, respectively. Note that here and in the following

ando can denote either the total cross section or any relevan¥here they’s are center-of-mass parton distributidas that

differential cross section. The parton processes involved absorb the universal collinear singularities associated with
the Born level are the initial-state partons, arfdlis the soft-gluon function that

describes non-collinear soft gluon emission. The mass of the
. . heavy quarks protects the final state from collinear singulari-
q(pa) +d(pp) —Q(p1) +Q(py), ties. H is the hard-scattering function and is free of soft-
gluon effects and thus independenthf HereH and S are
matrices in the space of color exchangkd (are color indi-

9(p.) +9(pp)— Q(p1) +Q(p,). (2.3)  ces and differ for each partonic process.
Using Egs.(2.5 and (2.6) to solve for the perturbative

The qq channel is dominant for top quark production at theCross sectiona, we then have (}(N)=[@fa/fa<~ﬂfb/fb/
Tevatron and contributes over 90% of the cross section at thé';sfa,fa?pfb,fb)]Tr[Hé]. After resumming theé\ dependence

Born level. The partonic invariants in E.2) are defined ¥l ¢ andS[6,7,11], we obtain the resummed heavy quark
by cross section at NLL accuratjn moment space:

s=(PatPp)? t1=(pa—P1)’—m?,
INote that although we formally have NLL accuracy in the re-
summed exponent, after matching with the exact NLO cross section
Ui=(pp— pl)z— m?, (2.9 we can determine all NNLL terms in the finite-order expansions.
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A mdu’
Tt 1p-ox(N)= equ<fa><Na>+E(fb><Nb>]exr{2 f M—‘f[masw'zmn(asw»]

mduw’
xexr{4 f %B(as(,u’z))
MR

m

_ m/Nd ./
X Pex;{ f (T ag(u2)
7
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Tr[ Hafb(ag(13))

- m/Nd ./
Sfafo(1,a(M?/N?))P exp[ f i,r;afb(asw”))H .
moou

(2.7)

This expression is actually valid for both 1Pl and PIM kine-lows from its renormalization group properties and is given

matics with appropriate definitions fdd, and N, as dis-
cussed previously.
The first exponent in Eq2.7) resums theN dependence

of the ratioiy, /1, /b1, and is given in the modified minimal
subtraction M1S) scheme by

1 ZNi—l_l 2 dM/z
F)(NY=— I— KF () 12
E (N|) fodz 1—7 [J(l—z)zs,u,'z A [a's(,u )]

+ %K“O[as«l—zﬁs)]]. (2.8

At next-to-leading order accuracy in ) we needA(" at
two loops, AV (ag)=Cag/m +(as/m)?K/2], and
=2C(as/m)[1— In(2r;)]. Here Ci=Cg=(N2—1)/(2N,)
for an incoming quark and€C;=C,=N. for an incoming
gluon, with N. the number of colors, whil& =C,(67/18
— %16)—5n;/9, wheren; is the number of quark flavors.
The v; terms are gauge dependent. They are defined;by
=(B;-n)?/|n|?, wherep;=p;\/2/s are the particle velocities

in terms of the soft anomalous dimension mafrix[7]. For
the determination of 5 an appropriate choice of color basis

has to be made. For thgq channel we use as-channel
singlet-octet basis, while for thgg channel we use a basis
consisting of three color tensofg]. The soft anomalous di-
mension matrix, evaluated through the calculation of one-
loop eikonal vertex corrections, has been presented for the
partonic processes in heavy quark production in Refs.
[6,7,13. In the color bases that we use, the soft matries,
are diagonal for both partonic channels, and the hard matrix

for theqq channel has only one non-zero element. At lowest
order, the trace of the product of the hard and soft matrices
reproduces the Born cross section in each partonic channel.
We also note that th& s matrices are not diagonal in the
color bases that we use. If we perform a diagonalization so
that thel's matrices do become diagonal, then the path-
ordered exponentials of matrices in the resummed expression
reduce to simple exponentials; however, this diagonalization
procedure is complicated in practif€3].

The integrations over in the exponents of Eqg2.7),
(2.8) run over the region where the running coupling con-

andn is the axial gauge vector. We note that all gauge destanta, diverges. The prescriptions of Ref8—5] have been

pendence cancels out in the cross section.

In the deep inelastic scatterin@!S) scheme, which is
usually only applied to quarks, the first exponent in &47)
is given in terms of theMS result as

EO(N)|pis=E@(N))|s

1o NTI-1( r1-zd) @
_fodzT[L A ag\9)]

+ B<q)[as((1—z)s)]] , (2.9

whereB@(ag) = — (3C/4) (as! ).

The y, are anomalous dimensions of the fieldsand are
given at one loop byy,=(as/m)(3Cg/4) and yg=(as/
) (Bol4) for quarks and gluons, respectively. TBefunc-
tion is given byB(as)=ud In g/du=—Boas/(4m)+ - - -, with
BOI(lch—an)B

proposed to avoid these soft gluon divergences in the re-
summed cross section. However, if we expand the exponents
in the resummed cross section at fixed ordestirand invert
back to momentum space using the equations in Appendix
A, no divergences are encountered and thus no prescription
is required. In addition to avoiding the necessity for a resum-
mation prescription, a finite-order expansion bypasses the
need for the diagonalization procedure that we mentioned
above, as well.

[II. NLO AND NNLO THRESHOLD CORRECTIONS

In this section we expand the resummed cross section to
next-to-leading and next-to-next-to-leading orders. In the fol-
lowing o™ stands for thenth-order differential corrections.
Nominally, it denotess?d?cW/(dt,du,) but it can also de-
note any other relevant differential cross section, such as
d?0(M/(dp3ds,), with pr the transverse momentum, or

The trace appearing in the resummed expression is takef?+("/(dyds,), with y the rapidity, ord2¢™/(dp;dy),

in color space. The symboBandF denote path ordering in
the same sense as the varighleand against it, respectively.
The evolution of the soft function from scahe/N to m fol-

with appropriate Jacobians inserted into the definition of the
Born term,o®, and the functiorBqgp for the gg channel in
the expressions below.
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A. NLO threshold corrections whereK ;=N ? is a color average factor. In our calculation
We first expand the resummed cross section to next-tofor the expansion, we used the result for the soft matrix at
leading order in 1P| kinematics. These expansions are alowest order in Eq(A5) of Ref.[24]. The lowest-order hard
ready known for both 1Pl and PIM kinemati£g 11,13. matrix has only one non-zero element, given B3~ <%

For theqq channel in theMS scheme, the full next-to- =[2/(N.Cg)]o"-

. : a9—QQ"
leading-order threshold corrections are To be sure, the expansion of the NLL resummed cross

~ M5(1) 2 ot section does not give all th&(s,) terms, only those5(s,)
qu—»Q354’m S\t Up, e HR) terms involving the scale; these terms are

o oo as(uB) w8 — 312+ In(tyuy/)Cr In(uZ/in?)

2 2
:Uz’qﬂQM[ 4C¢ In(s;& _Jr(,BQI'Z)In(M%/mZ)}. The rest are (_)btained by simply match-
4 + ing with the NLO cross section if25]. Thus we obtain all
the S+V terms at NLO. As shown in Ref$26,27 these
T el ZRglqg_ch+2CF In<ﬁ> terms dominate the cross section and are an excellent ap-
Sal, tug proximation at the partonic level to the exact NLO cross
section close to threshold and even quite far from it. We note
uE (1)9g5+V that the exact NLO cross section is the sum of the &ll
—2CgIn ﬁ +6(s4) oygs ' 3.1) +V terms and hard gluon corrections; the latter are not taken

into account by threshold studies and vanish at threshold.

Whereg%qasw denotes the soft plus virtuaBgV) 8(s,) In the. DIS scheme, the corresponding result for dfte
terms in the NLO cross section that can be obtained from E¢-hannel is

(4.7) in Ref. [25] (with t; and u; interchanged because of

different definitions in that referengeAlso

~DIS (1
B ! UquQ)§S4:m2:5't1vU1,MFvMR)
199 _ )
Rel"22=Ce|4 '”( ) R o amB [ [in(s/m?)
5 ~%q0-QQ F Sy
Ca Uy +
+—|—3In| =] - In(— +ReLs| (3.2

2 tl tlul 1 _ CF SZ
_ ] +|—| |2Rd"3— 5 +CglIn| —
is obtained from the real part of the one-loop soft anomalous S4], 2 thuy

dimension matrix elemeritJs after dropping all gauge de- 2
pendent terms and an overall coefficiemt/ 7. Here L, —-2C: In(ﬁ)
=(1—2m?/s)/ B{In[(1—B)/(1+ B)]+ =i}, with B m?
=\1-4m?s, is the velocity-dependent eikonal function.

The Born term is given by

] +8(sy) IS (3.4

whereo1)3%*V can be obtained from Ed4.14) in [25].

(33 For thegg channel in theViS scheme the NLO threshold
corrections are given by

ti+uf 2m?
2

B _ 2, 2
UQE—* Qa_ Tras(/"LR) anNCCF

2 2 2
~MS(1) 2 B 7as(,u*R) In(s4/m*?) B HE i
(t2+u?) Ca Ca (m?s
3,2 2
+as(MR)KggBQED S_4 +[NC(NC—1) 2 _CF+7 ReLB+7In m —Cg
(NZ—1) (NZ-1) NZ uy | (5-ud)
+ Ng (CF_CA)R¢5+CFN—C+7(NC_1)IH E 2
+8(s4) oY 3.5

whereK 4= (Ng— 1)~2is a color average factor and

t;, u; 4m3s m?2s
Ly 2 ( ) (3.6

Bogp=—+ — + -
QED~T Tt

1 tiug tiuy)”
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Here,o (l)ggS+V again denotes the soft plus virtud(s,) terms in the NLO cross section. These terms are given by&t9)

in Ref. [28] we note, however, that in that reference the scale was set equallteerefore in addition to those terms we have
to include ma(”ggs+V the termS(rngHQ—[aS(M%)/ﬂ'][CAIn(tlullrr14)ln(M,2:/rnz)+(BO/2)In(,uZR/,u,Z:)]. The Born term is given by

B

T99-QQ~ Cr— CA

=2mal(nk)KggN.Cr BQED 3.7

In our calculation for the expansion we used the result for the soft matrix at lowest order itC8gof Ref. [24]. The
lowest-order hard matrix has the form of HE6) of Ref. [24], with independent elements$~°°= maZBoepK 4/ (2N7),
HIg~ Q0= N HI9~ 02— u?)/s2, andHYg~ 0= N2HZ 91— 4t,u, /s?).

Agam as shown in Ref§26,27] these correctlons dominate the cross section near threshold and are an excellent approxi-
mation at the partonic level to the exact NLO cross section. For NLO expansions in PIM kinematics see Appendix C.

B. NNLO-NNLL threshold corrections for qE-»Qa

Next we derive the NNLO-NNLL threshold corrections from the two-loop expansion of the resummed cross section. For
the gq channel in theMS scheme these corrections are

21\ 2 3 2 2 2
MS(2) B as(ur) 2 In®(s4/m?) In“(s4/m?)
" oo(Sa, M2 S by Uy e R) = T hq ( ) F +
744-QQ 94-QQ sa |, e |,
sn? z
, HE
x ! — BoCr+12C¢| Rel" 99— CF+CFIn< ) CeIn| ==
tiug m
2
In(s4/m?) taU; nE P
+|— Rel—"qq —CglIn| — | =CgIn| = | | +4I"{T'3
S4 N " sne P\ m2 2
2
_ 9_c Ly MR 2 (1)ggs+v
ﬁo Rd—‘I 22 CF CF In - 4 CF|I’1 +2C|:K 16§2C +4C|:C
sn? m?
1
+0||— ) (3.8
Sa .
wherec(l)qqsw is defined by
(L)qas+v_ ¥s B (1)qgS+v
oS — Tqa-QaMs , (3.9

and the off-diagonal elements of the soft anomalous dimension médnapping an overalkg /) are
Cg (u
['99=2 In( 1), r'%9==Fin 1) (3.10
Ca
We are able to derive all the NNLL terms by matching with 8%V terms in the NLO cross section, E@.9).

In addition, we can derive at NNLL accuracy the followiptys,], and &(s,) terms involving logarithms of the factor-
ization and renormalization scales:

2

B _as(,U«zR)z_ IZMFC cl3—o tyuy +@ _3 | | MF +inl #E
T 4q-Q0 p= S, m2 F n m4 4 CeBoln m2 n mz 2
P t,u s 3 i
! —2C A9 K +8C2¢,+Ce| 2 In| 22| —3|| R 39— Ce+ Ce In[ —| | | + = BoIn| —
m* tyuy 2 2

,qq tiug B ag(up) |\’ ) pe||1 2 ol tale| 9 5 3, [t

Rel''3 —CglIn m_23 +O'anQ6 — O(sy)1 | — ECFIn F + gCF— ECFI 7
Bo U1 ,U~2 3 ,U«Z s tiug) 3

—2C2¢,— 3 Crin| — |+ 7gBoCr | + 16,eom +— C,:Boln In — In pelElle (3.12)
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qg—>tf S™=1.8TeV
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FIG. 1. Top quark production at the Tevatron wif=1.8 TeV
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qq->tt m=175GeV/c® S'=1.8 TeV

10 .
——- NNLO-NNLL

8 - —— NLO exact §
2
Ll -
g D
2 FeT T — —
[ —
»
0
g 4r 1
(&)

2 r ]

0 1

1 10

n/m

FIG. 2. The scale dependence of the cross sectioqaeptt_in

for the qq—tt channel in theMS scheme. Plotted are the exact the MS scheme at the Tevatron witfS=1.8 TeV and m

NLO cross section fop=m (lower solid ling, m/2 and 2n (upper
and lower dashed lingsand the NNLL-NNLO cross section for
p=m (upper solid ling, m/2 and 2n (upper and lower dotted
lines).

whereT{2% is obtained frome{2%" in Eq. (3.9) by drop-

MS
ping all scale terms Inf=/m) and Infug/m) in ¢G99 we

note that at NNLL accuracy we derive dll/s,], scale
terms, but in thed(s,) coefficient we can only determine
guadratic terms in the scale logarithms.

Since theqa channel is dominant for top quark produc-

tion at the Tevatron, it is worthwhile to show some numeri-

=175 GeVL?.

section[25,29 as a function of the top quark mass; we have
setu=ug=ug. Here and in the rest of the paper we use the
CTEQS5M parton densitigs30] when calculatingVIS results.

We note the significant increase of the cross section at
NNLO along with the dramatic reduction in scale variation
betweenm/2 and 2n. This reduction is also evident for a
wide range of scale choices in Fig. 2. The NNLO cross sec-
tion is larger than at NLO and relatively flat with respect to
scale variations.

In Table | we present detailed numerical results forqﬁe
corrections to the top quark cross section at the Tevatron

cal results for the hadronic cross section in that channel alongith m=175 Gevt? through NNLO at both NLL and

before presenting the full cross sectidior details of the
hadronic calculation see Appendi¥.Bn Fig. 1 we plot the
NNLO-NNLL top quark cross sectiogg—tt at the Teva-
tron with \/S=1.8 TeV together with the exact NLO cross

NNLL accuracy. Some of these numbers will be useful in
our discussion in the next subsection.

The NNLO-NNLL threshold corrections in the DIS
scheme are

2y\ 2 3 2 2 2
~DIS (2) 2 8 [as(uRr) ,[IN%(s4/m?) In?(s,/m?)
qu‘)Qa(S‘hm ’S’tl’ul”u’FJ-’LR)_a-qq*}QQ( 2C|: . +"— S4 X
| 3o e ravig Cry Coin ) ol “E
4 CFTORRIEE 2T T ) R 2
2
In(s,/m?) ~ Cr Ce [tyu; u2
4| rqq_ ZF _ ZF _ HE
si |, ARz oI ~Celnl 3

- B

+CeK —4¢,C2+2Cec{esY

tiug) 1 é
F) e’y

L)

Sy

.5 3

+0 (3.12
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wherec(Dl,)SquW is defined in analogy to E¢3.9). As for theMS corrections, we can also derive additionbks, ], and &(s,)
terms involving the scale in the DIS scheme. These terms are

2 2 2 2

2
B [as(pr)| |1 o MF tiug Bo| 3 MR ME ME
UQQﬁQQ( p 3_4 X In E Cry Ck 3—-21In ? +Z —ECF,BOIn E In E +1In E
A(l)qa 2 tlul 3 ,qa CF 82 3 ,u«%
X1 —2CeTpis " —CeK+4Cg{,+Cg| In F —3 2Rd’ 22—7+C|:|n E +§,80In -
- Cr Cp [ting B as(ph)\’ ne|1 tiug| 9 3 tiuy
rqq_ ZF _ ZF 1717 [ TSRS 2l CF 222l 2 £ 22 22l A2
X| Rel™" 33 7 In & Tqa—0al o 8(s4)1 In 2 2CFI 2 +8CF 2CFI 2
_oc2 _ﬁoc | tiug| 3 c 3 2 |2 1R 3C | pE | 1R | tiu;) 3 31
Fingnmel—GBopﬁLl—GBo” ﬁ"'ZFlgonﬁnﬁ 2| (3.13
|
WhereﬁDquE is defined in analogy to itMS counterpart. same whether the resummation is performed in momentum

or moment space, so, although the approach is quite differ-
ent, in practice the numerical results from this approach are
ot inconsistent with the ones we are presenting here at LL
nd NLL accuracy.

At the Tevatron, with\/S=1.8 TeV and ur=pug=m
=175 GeVLt?, and with the CTEQ5D parton densitiga0], .
the exact NLO cross section in the DIS scheme is 4.60 p%
and the NNLO-NNLL corrections provide an additional 0.30 The second prescription is principal value resummation,

pb. The NNLO corrections in _the DIS scheme are muchyisinally developed for Drell-Yan production in ReB2].

smaller than the correspondidS corrections, which fol- A principal value prescription is used to bypass the Landau

lows from the definition of the two schemes. pole. This approach was used at LL accuracy for top quark
Results for the NNLO expansion of the resummed crosgroduction in Refs[4,18]. Numerically the results are simi-

section in PIM kinematics in both thédS and DIS schemes lar to those of Ref[3]. This approach has not yet been used

are presented in Appendix Gee also Ref.13]). The differ-  at NLL accuracy for top quark production at present.

ences between the expansions in the two different kinematics The third approach is the minimal prescription of Héfl.

are in the extra terms involving ln@, /nt) for the 1Pl fixed- It has been applied at both LI5] and NLL accuracy10] to

order expansions relative to the PIM expansions and in th8eavy quark production. Numerically it differs substantially

this difference emerges from extra subleading terms, which

_ _ _ o are kept in the minimal prescription approach, that come
C. Subleading logarithms and resummation prescriptions from the inversion of the resummed cross section from mo-
In the previous subsection we derived all the NNLO mel?ttto mgmgntum Slto"’:jce-f bleading 1 ) "
threshold corrections faygq—tt through NNLL accuracy. It h '\eﬂ_suinggln our S ) ny su ea_mg Eerm; 1y. revr\:n "9
is interesting to study the effect of subleadiftys,]. and the thand tC(t)."eCt'OnS orqg—QQ in Eq. (3.1 in the
5(s,4) terms that come about when inverting the cross sectiof 1ortnand notation

from moment to momentum space. As we will see, this is _ L 5 s 1 In(s4/m?)
intimately related to the disagreements between various re-0(sy) =0 1 C1(8a)+Cg | HCy ———| |,
summation prescriptions that have been proposed. These pre- 4+ N +
scriptions are needed to avoid the soft gluon divergences in (3.14
the resummed cross section that appear wigereaches the TABLE I. The MS corrections for top quark production in the

Landau_ pole. As we have _discgssed before, in a finite-or_dedﬁ channel in pb forpp collisions with yS=1.8 TeV andm
expansion, as presented in this paper, there are no diver175 geve2. Here u=pur=pug.

gences and the results are prescription independent.

There are three resummation prescriptions available in thﬁa—nt_ w=m w=mi2 w=2m
literature. The earliest is tha&space formalism of Refs.
[3,31]. The resummation was performed at leading logarith-Born 3.81 5.30 2.87
mic (LL) accuracy in momentum space and a cutoff wasNLO-exact 0.81 -0.53 1.37
chosen to avoid the divergence. In practice, the cutoff wasiLO-NLL 1.31 0.03 1.81
chosen so that numerically the resummed result would agre@LO-full S+V 1.26 -0.06 1.78
with the expansion of the resummed cross section througRINLO-NLL 1.01 0.67 1.29
NNLO. This approach was also used at NLL accuracy inNNLO-NNLL 0.80 0.62 1.22

Refs.[8,9,12. The finite-order expansion is essentially the

014009-7
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with  c3=4Cg, cz=2ReF’§§— 2Cq+2C¢ In[sn?/(t,u;)]  tion is greatly diminished. That holds not only for heavy

—2C In(u?), and ¢ :C@qasw This result actuall quark production but also for other QCD processes such as
FIMAETT), 1= ~ws ' Y direct photon[22], W+jet [20], and single-jet production

comes from the inversion of the moment space EXPressionrag). Therefore it is important to ensure that we do not in-

o troduce terms, unphysical or otherwise, that would spail this
aD(N)=0®—{c1+ ¢l o(N) + 3l 1(N)} agreement, . .

™ We can extend our study of subleading logarithms to

NNLO. The NNLO threshold corrections in moment space

- C ~ ; . :
:UB% c;—C,InN+ ?3(|n2N+gz) , are given in shorthand notation by
o
(3.15 . a? (2 _ -
0(2)(N)=052 32 Zsln4N—c3czln3N
whereN=Ne’e, with yg the Euler constant, andy and | 7
are given in Appendix A. Equatiofi3.15 comes directly 1 - _
from the expansion of the resummed cross section in mo- +|Csl C1t 5?203 +¢3|IN“N—-2c;InN

ment space in Eq2.7).

Now, let us examine the NLO expansion at NLL accu-
racy, with ur=ur=m. At that accuracy, we keep only the X
In?N and InN terms in Eq.(3.15. Since InN=InN—1g,
upon inversion to momentum space we get back the
[In(sy/mP)/s,], and[1/s,]. terms in Eq.(3.14 plus the fol-
lowing extra terms:

1 1 2
Cit §§203 +{Ct 55203

+E(ﬁo,r2,K,2-|oop)}, (3.17

i.e., by the square of the terms in curly brackets in BdlL5),

(3.16 plus a functiorF that comprises thg, terms that come from
changing the argument in the running coupling,(u'?)

o = ag(u?)[1- BoIN(w'% ?)af(u?)I(4m)]; the two-loop K

But there are no terms involvinge in the exact NLO cal-  terms, withK defined below Eq(2.8); square terms from the

culation, i.e., in the terne; in Eq. (3.14 which comes from  off_diagonal soft anomalous dimension matrix elements; and

oISV therefore these terms are clearly unphysical.two-loop I's and other term$we have also absorbed a

They should not appear in the cross section because of therm _Ti with T;=c,(x=m)]. Note that apart from th&

definition of theMS scheme. Theg terms are an artifact of terms, the other two-loop terms appear only beyond NNLL

the inversion from moment to momentum space. Indeed, ihccuracy and are not known at present. We then rewrite Eq.

we had kept NLL terms in IN rather than I, there would ~ (3.17) in terms ofl, I, I, andl, defined in Appendix A.

be noye terms. Also the coefficient of thg, term is wrong. We can then immediately invert back to momentum space

As can be seen from the full NLO corrections, it has theand find

wrong sign. We can study the numerical effect of these extra

2
g@| C3VE £
B8 — 22

- 2 + CoVE 2

C3|8(S4).

terms on the cross section. At the Tevatron, wiff=1.8 ~(2) 8 a?(1 ) In3(s,/m?)

TeV andm=175 GeVk?, the full NLO S+V corrections, 7 (Sa)=¢@ 21299 s,

Eq. (3.1), are 1.26 pb foug=ug=m, see Table |. At NLL N

accuracy, the corrections are 1.31 pb. If we include all the 3 In?(s,/m?) 5 5

unphysical terms of Eq3.16), the NLL corrections become + 5030y ——| +(CaCatCrm{5C3)
+

0.39 pb, clearly very far from the true size of the fBl+V
corrections. Keeping only th&, term in Eq.(3.16 we find
0.74 pb, which is closer to but still well below the full
+V corrections. If we keep only thg, term but with oppo-
site sign, as in the full corrections, we find 1.88 pb. It is clear
that keeping unphysical subleading terms in the cross section +
can produce very misleading results. Even if we discard the
unphysical terms and keep only some of the physical sub-

leading terms, we can still make erroneous predictions, espe- + F(,BO,FZ,K,Z-Ioop)J . (3.18
cially if the coefficients are wrong. One of the greatest

achievementsor, from another viewpoint, test®f the for- 5
malism of theshold resummation at NLL and higher accu-HereF denotes the terms that come from the inversioifr of
racy is that it accurately reproduces the exact NLO crosand starts contributing at NLL and higher accuracy. One can
section both analytically and numerically. In fact, one mayeasily see that this form, with the appropriate explicit expres-
argue that only because of this agreement is threshold resursion forF, agrees with the NNLO-NNLL expansion given in
mation worthwhile. After all, if the corrections to be re- Eg. (3.8), including the additional scale terms of E§.11).
summed are not dominant, then the necessity for resummalearly we do not know all th¢1/s,], and 5(s,) terms

In(s,/m?
« (S4/m?)

2
~ +(CoC1— {2CC3+ {5C3)

+

Sal,
2 2

ci C5 1 3

> ?§2+ ZC§§§+ {3C3Cr— 25405) 6(S4)
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because of unknown two-loop corrections Fn Of course calculation. This is because they appear in integrals of the
there are noyg terms in the NNLO cross section. This is also form of Eq. (A1), which upon inversion to momentum space
known from the two-loop Drell-Yan cross sectip83—39: should give back the original “plus” distributions with no
many of the NNLO terms are the same as for top quarksubleading terms.

production since the exponent in the resummed cross section We can again study the numerical effect of these extra
that comes from the incoming partons is universal, and thersubleading terms. In the following, we kegp = ug=m. At

are noye terms. Again, this follows from the definition of the Tevatron, with/S=1.8 TeV andm=175 GeVk?, the

the MS scheme. These terms are clearly unphysical at botms NNLO-NNLL corrections forqa—>tt_are 0.80 pb as we
NLO and NNLO and indeed at any higher order. saw in Table I. If we keep also the subleadifiterms in Eq.
Now, let us see what happens if one keeps the logarithmg.19) the result becomes 0.39 pb. If we keep the subleading
only at a certain accuracy. At NNLL accuracy, we keep theterms in both Eqs(3.19 and(3.20), the corrections become
In*N, In®N, and Irf N terms inc®(N), Eq.(3.17. Then, the  0.13 pb. Finally, if we include all subleading terms, Egs.
subleading terms from the inversion to momentum space are3.19, (3.20, and (3.21), the corrections become 0.08 pb.
This last result is similar to the result presented in R&@)]
1 (note that different parton densities are used; also our formal-
ot o(s4) ism resums the fully differential cross section wHilk®] re-
40+ sums only the total cross section; the latter approach intro-

2
a 3
UBW—Zl ( {3C5— 50302§2>

c2s2 3 s s duces some additional errors; see the discussion in Ref.
%+C3C2§3_ Zc§§4— ?203— Ezcgc1 [36)). Clearly the inclusion of the unphysicak and other
terms decreases the NNLO-NNLL corrections by a factor of

X

o 10. The effects of these unphysical terms are much bigger
—2g2r'ggr'gg)] (3.19  than those of the LL, NLL, and NNLL terms. It is difficult to
accept a result in which unphysical subleading terms domi-
nate the three leading powers of the logarithms. Such a result
plus defies the meaning of leading level, next-to-leading level and
so on. And as was evidenced by the NLO exercise, a result
2 with these subleading terms substantially underestimates the
N §'80CF§3_§2 correct value for the cross section. We also note that if we
keep the subleading terms from the inversion at full accu-
racy, as in Eq.(3.18, the corrections are 0.45 pb, much
- ZCZ’LCFK) (320 closer to the NNLO-NNLL result. Of course, we cannot de-
rive the full NNLO cross section beyond NNLL accuracy
because of missing two-loop terms, but this certainly indi-
cates that the corrections with subleading terms tend to get
larger the better the accuracy.
.

+5(S4)

plus

We can also repeat this exercise at NLL accuracy. Here
we will disregard theyg and By ,K terms. At NLL accuracy

for ¢, the subleading terms from the inversion are

2
@ ! a1 ! q BO 1
UB—z Ye| BoCrye+al" 13— 5 Co+ 2CeK || —
T 2 Sy

+5(54)3’%(;ﬁoCFYE‘FZF,TgF,gf_ %CZ+CFK)]
s [ 3 [In(sy/m?) , 3 1
S 0" T 580 T | (4337 5C3CL2 )| o~
g% ||C5 5 3 2 262 | 5 77 * 4+
to — 5 YET 5C3C2VET 27| CaC1tCi5 € 3
3 + &(s4) §C§(§§_2§4)+C3C2§3 J (3.22
X 5| +(sy)| gCivE—CaCari+ vk
41+ Again, the subleading terms above appear also in the full
¢ cross section of E(3.18 but some of these terms have the
X | cgCq+ c§§+c§ ] (3.2)  wrong coefficients. As we saw in Table I, the NNLO-NLL

corrections are 1.01 pb. If one adds the subleading terms
above, the result becomes 0.23 pb. Our conclusions remain
The subleading terms in Eq.(3.19 appear also in the full the same. We also note that if we keep only the
cross section of Eq3.18. However, a comparison between {[|n(s,/n?)/s,}. subleading terms from the inversion, we
these two equations shows that some of these terms have tigq that the corrections are 0.58 pb, quite different from the
wrong coefficients. The terms in E¢3.21) are again the result we get(0.80 ph when we calculate the full NNLL
unphysicalyg terms that should not appear at any order ofterms if we also include the unphysical terms the disagree-
the perturbative series. Again, if we had kept NNLL terms inment is far WOfS}E In addition, we observe that if we per-
InN rather than InN, there would be noyg terms. TheB,  form a LL calculation and then include subleading Nile.,
andK terms in Eq.(3.20 would also be absent in an exact {[In%(s,/m?)]/s,},) terms from the inversion involving/g,
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the corrections become 0.28 pb versus the 1.01 plpansion, as we have determined all logarithmic coefficients.
that we find with a full NLL calculation. All these Our numerical analyses above confirm that. We also note
exercises highlight the numerical problems that arethatin our approach the results for the NNLO corrections do
encountered if one includes unjustified subleading termsot change substantially when going from LL to NNLL ac-
in the ‘expansion. _ _ curacy(they change from 0.59 pb to 0.80)plhile the cor-

_ As is noted in Ref[37], the integrals of the leading loga- responding results with all subleading terms change by al-
rithmic distributions with any smooth function, such as themost an order of magnitudéhat can also be seen by
convolution with parton distributions, produce factorial con-comparing Table 1 of Ref5] with Table 2 of Ref.[10]).
tributions atnth order of the formag(2n—1)!/n!+---.  The relative stability of our results versus logarithmic accu-
These factorial terms naturally arise in both the exact crosg,cy js an additional justification of our approach. We can
section at any fixed order and in the finite-order expansiong,, estigate keeping the terms as a rough estimate of error,
of the resummed cross section. In the minimal prescription,¢ e have done above, but we should keep in mind that they

of Ref. [5] subleading terms are kept in the resummed CrOSf‘nay not necessarily offer an improvement on the calculation

section and its expansion in order to avoid certain power , o
corrections, arising from these factorial contributions, WhiChiaStﬁ\e”iirrf:rciicz(l);nng:es’:Is_orreesSeur:i.d-l;zetLei;Orz, gf;;r;(iétrzf:itn
have been shown to be absent in the Drell-Yan cross sectiol y P pap

in Refs.[38,39. This is indeed a problem that deserves at-any terms beyond NNLL accuracy. Thus, we do n_ot find th(_a
tention as pointed out in Ref5]. However, the absence of very fast convergence of the higher order corrections that is

unphysical power corrections does not require the introduc¢/@imed in Refs[5,10]. o

tion in the expansion of unphysical terms, which, as we have N @ recent paper40] it is argued that threshold
seen above, may greatly underestimate the true value of tfghhancements are dominated by the region where the
cross section. The exact cross section does not have theBigrarchy among different powers of the threshold
power corrections but also it does not have theterms, logarithms is lost, and therefore NLL resummation is
only the ¢ terms, as we have seen explicitly at NLO and not reliable. Our numerical results at fixed order do not
NNLO. Moreover, one has to be careful not to introduceagree with this claim, although it is certainly true that
extra terms, even physical ones, that produce erroneous nthe coefficients of lower powers of the logarithm can
merical results. At low orders, with= 1,2, the factorial con- be large. Moreover, we note that even if the hierarchy
tributions are negligible or small anyway, and certainlyamong different powers of the logarithms were lost, at
smaller than other terms in the expansisee also the dis- NNLO we have determined the coefficients of all the powers
cussion in Ref[18]). At higher orders of course the factorial of the logarithms, so our results are reliable regardless. Be-
contribution grows and moreover we have ever increasingond NNLO, however, there are subleading powers of loga-
numbers of unknown coefficients of subleading logarithmsithms with undetermined coefficients, which can be large,
(which actually may be more important numerically than theand then the ambiguities with regard to the effect of sublead-
factorial termg. Therefore we stop the expansion at NNLO, ing terms increase. Therefore, as discussed above, for de-
thus avoiding the theoretical problem with power correc-tailed numerical results we prefer to stop the expansion at
tions. At NLO and NNLO we can trust the perturbative ex- NNLO.

D. NNLO-NNLL threshold corrections for gg—QQ

For thegg channel in theMS scheme the NNLO-NNLL corrections are

~MS(2)
O'gg_>Q6(S4,m2,S,tl,Ul JAE S MR)

24\ 2 3 2 2 2 2
B as(uR) ,| IN°(S4/mM*%) 5[ #E) || IN“(s4/ M%)
_gggﬂQQ( p- [SCA— - ~BoCa=12ChIn| G ||| = )
4, 2 2 2 2 2 2
as(ur) In“(s4/m (t7+u?) m-s
+ =5 oy ST Nz gy T (TS
gg-Q m2 ¢ SZ ¢ tlul
+

C C 1 t2—u?) (u
—2NC<C,:— —A) Rel ;— 2N Cg|+21 "~ +2(Ce—Cp) Rel g+ Nﬁ(l—lln(—l)

2 N, N, s? ty
In(s4/|| 2) as(ﬂ%{) 2 B IU’ZR thuy
= + — |+ ==
2 X - UggﬁQQ BO CA CAln 2 CAIn 25
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4, 2
ag(ug) 2tiu,
+2C,K—16{,C2+4C C(l)ggs+v]+s—8 1-—=
A 2La A 27T(Ng—1) QED! 2
2
‘4N

2
t,u
Rel'99—Cp— CAIn( ) CAIn( ! 1)
m

N
+f<N§+4><r'%‘f)z—ﬁoNcRer'%S]

% oD t182 { 4T'Y9 Re'99-C CAIn( 2) Caln (tn: +2(N2-2)I"' Y
X|Rd'$-C CA'“(MSE ~Caln trln—uj)]—ﬁoNTgr'gg}Jr%BQED
><|Nic Rel'§§—Ca—Caln 'Ué —Cal tl—u:) 2—%(1"'%%)2_’\%
«| Rel"99— cAm(’%ﬁ —Cun %) 2 ﬁoqur’gg—zr'ggJ ‘o i4+) (3.23
where c(l)ggs+v is defined in analogy to Eq3.9), and the elements of the soft anomalous dimension maédrspping

gauge- dependent terms and an ovedgll) are

2
u
Rel'99=—Cr(ReLz+1)+Cp, I'P= |n(t—21) ,
1

C

m?s

As for theqachannel, we can also derive at NNLL accuracy additigi#s,], and d(s,) terms involving the scale. These
terms are

27\ 2 2 2 2 2
B as(pur) |1 o MF S tuy 3 MR\, [ KE ME
—_ — J— —_— — — —_— R [ — J’_ —
O-QQHQQ( pm ) S4 +[In mz CA 4[30 2CA|I’] m4 chﬁoln m2 In > I m2
(1og 1Yz 2.2 11t oy [tabn| [m?
—2Cp T +80A§2 CaK+ BoNc+ BN In| —= | —=2NZIn —2N¢In 2 In| —
m?s m* S

2

—2N2In (tlul) —ECA,BOIn Er |n(tlﬂ)+1H+a§(”§) Born | 1
m* 2 m? ms T Ng(N2—1)[S4],
«| Rel" 99— 2Ra 99+ tsz NZRel™ 99+ Nfr Ml . ) cA|n(tr1n—“41 n| 5 +%| Zg
+@|n +a'§g_)Q6(%M2R))25(S4)( —2§2C,§+%Ci|n2<%)—ZBOCAm(t;]—u:HIM :]_E
+ /30cA|n(n:j In “E In “é /30| n2 “; } (3.25
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pp—>tf S7=1.8TeV
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Threshold corrections
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FIG. 3. The Born, NLO, and NNLO corrections for top quark
production at the Tevatron witklS=1.8 TeV.

Where'T'%gg is defined in analogy to its counterpart in the

gq channel.

At the Tevatron, withS=1.8 TeV andur=ugr=m
=175 GeVE?, the exact NLO cross section for thg chan-
nel is 0.55 pb and the NNLO-NNLL corrections provide an
additional 0.32 pb. The relative size of the NNLO correc-
tions for thegg channel compared to NLO is much greater
than for theqqg channel. This is because of the different color
coefficients in the expressions for the two channels, as i
obvious from the coefficients of the leading logarithms.

NNLO results for thegg channel in PIM kinematics are
presented in Appendix Gee also Refl13]).

E. Top quark production at the Tevatron

In this subsection we add the numerical contributions

from the qq and gg partonic channels and present some

numerical results for the top quark total cross section and

transverse momentum distributions at the Tevafsee Ap-
pendix B for a discussion of the hadronic calculafiowe
use the CTEQ5M parton densiti€30].

In Fig. 3 we plot the Born term and the NLO and NNLO
corrections for top quark production at the Tevatron with
JS=1.8 TeV as a function of the top mass. At NLO we

show the exact corrections as well as the NLL threshold

corrections and the full 8V threshold corrections. At
NNLO we show results with both NLL and NNLL accuracy.
__In Fig. 4 we plot the exact NLO and the NNLO-NNLL
MS top quark cross section at the Tevatron wifB=1.8

TeV as a function of the top-quark mass. We note a dramatic
decrease of the scale dependence of the cross section whe

we include the NNLO-NNLL corrections. We observe that
the NNLO cross section is uniformly above the NLO cross
section for all scale choicgsve stress that there is no field-

theoretical reason for the NNLO results to lie within the

PHYSICAL REVIEW D 64 014009

pp—>tf S"=1.8TeV

1 6 T T T T
14 NNLO-NNLL upper curves
NLO lower curves
12 m/2<p<2m ]
‘é 10 B CDF
[ =
k]
S 8
(7]
2
Q2 6
(&)
4
2 - i
o " T " " 1 1 1 " " " ' & k " " e 1
150 160 170 180 190 200
Top mass (GeV/c?)

FIG. 4. The total cross section for top quark production at the
Tevatron with/S=1.8 TeV. The labels are as in Fig. 1. Recent
results from CDF and DO are also shown.

Detector at FermilagCDF) [41] and DO[42] and note the
agreement between experiment and theory. In Fig. 5 we
show the corresponding results for the upgraded Tevatron
with S=2.0 TeV.

In Table Il we list the exact NLO and the NNLO-NNLL
total cross sections in pb for top quark production at the
Tevatron withy/S=1.8 TeV and 2.0 TeV, a top quark mass
m=175 GeVkt?, and scalex=m,m/2,2m. The NNLO-
8INLL cross section withy/S=1.8 TeV is 6.3 pb versus 5.2
pb at NLO, an enhancement of over 20%,uat m. Good
agreement is observed with recent results from CbF,
=6.5"14 pb with m=176.1+6.6 GeVk? [41], and DO,o
=5.9+1.7 pb withm=172.1+ 7.1 GeVk? [42]. Similar en-
hancements are noted for the upgraded Tevatron energy.

pp—>t 8%=2.0Tev

20 T T T T
NNLO-NNLL upper curves
W NLO lower curves
15 mR2<p<2m J
-y
a
c
2
B0t
(7]
2
=t
(&)
5 L
0 n n n n 1 1 n n n n 1 1 n n n n
150 160 170 180 190 200
Top mass (GeV/c?)

FIG. 5. The total cross section for top quark production at the

NLO results. We also show recent results from the Collider Tevatron withy/S=2.0 TeV. The labels are as in Fig. 1.
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TABLE II. The hadronictt production cross section in pb for with a minimal error estimate as 6.3 pb at S=1.8
pp collisions with S=1.8 TeV and 2.0 TeV, andm TeV and as 8.83: pb at VS=2.0 TeV, where the

=175 GeVk?. larger lower error indicates the uncertainty from subleading
— terms.

pp—tt VS=1.8 Tev VS=2.0 Tev Our formalism allows the calculation of any relevant
P NLO NNLO NLO NNLO diffgrgntia! cross sect.ion. Tr.ansverse. mqmentum and
w=mi2 54 64 74 89 rapidity distributions with leading logarithmic resumma-
=m 52 63 71 88 tion have been presented for top quark production
=2m 47 63 65 8.8 at the Tevatron in Ref[44]. The exact NLO and the

NNLO-NNLL  top quark transverse  momentum
(pr=tyu,/s>—m?) distributions at the Tevatron, with
JS=1.8 TeV and 2.0 TeV, andm=175 GeVkt? are
We would like to stress that the significantly reducedshOWn in Fig. 6, again in theS scheme. We note an
scale dependence should not be interpreted as an equivalqp\;era" enhancement at NNLO with little change of

reduction of the uncertainty in the value of the erss_seqtlonshape. Similar conclusions are also reached for the rapidity
Other sources of error, such as from parton distributions,. .~ " .
distributions[45].

subleading logarithms, and distance from threshold, can Finally, we note that threshold resummation is also rel-

provide more uncertainty than the scale variation, and .
those errors cannot all be calculated precisely at presen‘?.vant for bottom quark production at the DESY HERA-B

This is why we do not give more than one significanteXperimem' Leading logarithmic resummed results for the
figure after the decimal point in the numbers of bottom quark total cross section and differential distributions
Table 1. However, it is gratifying to see that perturbation have been presented in Relf87,46; for the NLL resummed
theory behaves as we would expect it [@€3]: at higher ~Cross section see Reff8,10. At NNLO-NNLL with /S
orders the scale variation decreases. Since the effect 6f41.6 GeV andu=m=4.75 GeVt* we find a cross sec-
subleading logarithms is the greatest uncertainty in theion for that experiment of 42 nb, while the NLO cross sec-

calculation, the totaltt cross section can be written tionis 18 nb.

IV. NNNLO THRESHOLD CORRECTIONS

We now go beyond the NNLO corrections and expand the resummed cross section to next-to-next-to-next-to-leading order
at NNLL accuracy.

For theqachannel in theMS scheme the NNNLO-NNLL threshold corrections are given by

pp->tf S"™=1.8TeV pp->tf S"=20Tev
0.1 T T T T T 1 0.1 T T T T T
NNLO-NNLL upper curves
........... NLO lower curves
T NNLO-NNLL upper curves m2<p<2m
. NLO lower curves
m2<p<2m
3 3
2 2
e e
E-. 0.01 E-. 0.01
g g
~ ~
8 8
0.001 1 1 1 1 1 \ 0.001 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
pr (GeV/c) pr (GeV/c)

FIG. 6. Top quark transverse momentum distribution at the Tevatron,\@thl.S TeV and 2.0 TeV, anth=175 GeVLt?2. The labels
are as in Fig. 1.
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~ MS(3
qic)gdsmm 'Sty Uy, pp, 1R)
2 4 2
8 as( u) 5[ IN°(s4/m?) 5 Jaq sn? B #e|  Bol[In*(s4/m?)
_quﬂQQ( - ) - ++20c:F Rel"$—Cet Celnl |~ Celn| 2| = s .
BZ
+1{8CZc;+4Cpc5+16C:I'] F"M?CF 64CEL,+8CEK+48,Cr
| =2 com 1) he, i +Cr—Rel"Y In*(sa/m?) 0] In(s4/m®) (4.1)
- nl— nl — - —_— , _
3 " sm? F 2 F Sy ) S, .

wherec,,c, are defined below Eq3.14). Note that at NNLL accuracy there are no cubic termE ¢ they start contributing
at O({[In?(sy/m?)]/s,}.). One can also derive terms involving the factorization and renormalization scales at lower powers of
the logarithms as was explained in Sec. Ill.

For thegg channel the leading logarithms at NNNLO are of course the same as fomtlshannel with the substitution
Cg—C, in the coefficients. Beyond leading logarithms the more complex color structure of the hard scatteringdgr the
channel makes the calculation more lengthy, as is evident already at NNLO, and will not be pursued here.

In the DIS scheme the corresponding result is

"DIS(3)
quQa(SA(,mZ,S,tl,Ul yME ’MR)

2\\ 3 5 2 2 2 4 2
B as(UR) 3| IN°(S4/mM*%) P Cr ( S ) ME|  Bol|In"(s4/m%)
=g - — > 4 5c ReY9- S 4 c In —Celn| = | - = || ———=
quQQ( F S4 . F 2 4 " 27F F 2 4 Sy N
+[2C§c1+2CFc§2+8cFF'QQF"N+ 24ﬁOCF 8C2¢,+2CEK+ BoCr
3 t,Uy Mz 5 In3(s,/m?) In2(s,/m?)
x| =cy+ 5Celn| = | +Celn +4Cr 2R | ————| |40 |——— |, (4.2
4 + 4 +

wherec]=c@9%*V andc=2Rd" 39— Cp/2+ Cr IN[s2(tyuy)]— 2Cx In(u2/r?).

We can extend our study of subleading logarithms to NNNLO. The NNNLO thresviSlctorrections forqH—>Q6 in
moment space are given in shorthand notation by

3

3
o ~ C ~
c®(N)=0 —S[ C1— o INN+ = (In2N+ &)
67 2

+T:’(,eo,r2,r3,|<,3-|oop)], 4.3

i.e. by the cube of the terms in curly brackets in B315 plus a functiorF’ that gives the3, terms that come from changing
the argument in the running coupling, the two-loBpterms, additional square and cubic terms in the soft anomalous
dimension matrix elements, and two- and three-ldapand other terms. Note that we have also absorbef! ithe terms
2T3—3TZ ¢, — ¢, INN+(cy/2) (IPN+£,)], with T;=c;(x=m). We then rewrite Eq(4.3) in terms ofl5,l4,13,1,,11, andl,
defined in Appendix A.

Inverting back to momentum space, we have

3 5 2 4 2 2 3
- ag |1 . In>(s4/mMm) 5 In*(s,/mM?) ciC In®(s,/m?)
Gl g)=gB—] 23— ) T2 2 2, 178, 3 4
o)) =0 773’803 Ss g 032 Ss . CsCa™ {2C3 Ss X
3 c3 5 In?(s,4/m?)
2 2 3 4
+ 5010203—3§2c3c2+ ?‘F §c3§3) —54 .
2 2
CiC3 5 15 In(s4/m?)
= +C1C5— {556, — 520302+5§3C302+ chs 2 —C3a R
"
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1 15 , , . 5, 11
+ 50201+303§5 C30254 2C3{»{3+C1C3¢3+2C3C5 3+ 2030252_01020352 54aC3|| — S
N
i 3 3 3, 5,4 )
+ 5 C3§6+30302§5+ 035254 C30254 4030154+ 6(303_252@0203"‘010203(3
;1 1 1 1 ) 3
+§§ __C3§2+ C10352+ CaC5L5— C1C2§2 8(s4)+F'(Bo,I's,I's,K,3-loop) ¢, (4.9

whereF’ comes from the inversion d¥’ and starts contributing at NLL and higher accuracy. One can easily see that the
above equation, with the appropriate explicit expressiorFforagrees with the NNNLO-NNLL expansion given in E¢.1).
Of course we cannot derive all of tHeIn%(s,/m?)]/s,}, and lower terms in Eq4.4) because of unknown 3-loop corrections
inF'.

Again, let us see what happens if one keeps the logarithms only at a certain accuracy. At NLL accur@cy foe
subleading terms from the inversigkeeping only/ terms and n@3,,K, yg terms as discussed in Sec. Il @re

3 3 2 2 2 2
g% | S oIn°(s4/m7) 5. 5 15, In“(s4/m*) 15 s In(s,/m?)
oo 452 e 54303~ 77 C5C282 —54 . (§2 2{4)Cc3+5C3Co{5 i
5 15 5 52 &3 5
+|| = 582l 385 |3+ g eiea(5—2L4) + §c§< T gbabale| +ChCo| — 5 0alst3Ls||5(sa) |-
(4.5

At NNLL accuracy fora® the corresponding subleading terms from the inversion to momentum space are

3 2 2
@ 5 15 In“(s,/m?) 5 3 3 e
UBW—Z{ 55303_70502 2) e +|3 —Z§4+ gfg C§+SC§C2§3_3§2C30%_5520105_480F§2F 1ar'gt
+
In(s,/m?) . 15, G H
XS—4 (—2§2§3+3§5)Cs+§cgcz(§z 2(4)+2{3C3C5+ {3C1C5+ 32CE L5l JT 9 )
+ +
1, 1,5, , | 5
+ 5C3 _Z§2+ §§3+3§2§4_5§6 +C3C; _§§2§3+3§5
3 2 C1C3 2 qqprqd 72
+Z C3C2+T ({5—284)+12Ck r’ 21—‘ 1(€ —204)|6(Sy) |- (4.6

A comparison of both the NLL and the NNLL subleading predictions at this order. This also relates to the questions
terms with Eq.(4.4) shows that most of these terms haveraised in Ref[40] as we discussed earlier. A full NNNLO
incorrect coefficients. The subleading terms bring down thecalculation may give substantially differeggnd smallerre-
value of theMS NNNLO corrections forqg—tt at the  sults from the NNNLO-NNLL calculation, but at present we
Tevatron with\/S=1.8 TeV andm=175 GeVk?2 from 0.9  cannot calculate corrections beyond NNLL accuracy. There-
pb (1.1 ph at NNLL (NLL) to around 0.3 pb. As we dis- fore, as we have stated before, for reliable numerical predic-
cussed in Sec. Il C, retaining subleading terms with incorlions we prefer to stop the expansion at NNLO.
rect coefficients in the expansions can produce misleading
results. We also note that in the DIS scheme the correspond-

ing correctiongwithout subleading termsare 0.2 pb, again V. NNNNLO AND HIGHER-ORDER THRESHOLD
smaller than th/S result because of the specification of the CORRECTIONS
DIS scheme. _ _ _ _
Since we do not know théotentially large coefficients Finally, we briefly discuss the corrections at next-to-next-

of subleading power¢beyond NNLL of the logarithms at to-next-to-next-to-leading and higher orders.

NNNLO, in contrast to the NNLO calculation where all For theqachannel in theM'S scheme at NLL accuracy,
logarithms were determined, we cannot make firm numericathe NNNNLO threshold corrections are given by
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~ MS(4
qié6(s4vm S tl,Ul,/—LF /‘LR)

_U'B_ (as(MR)) [1—6C4

VI. CONCLUSIONS

Threshold resummation can make powerful improve-
ments to NLO calculations of heavy quark production cross
sections. The analytical form of the threshold corrections to
the fully differential cross section can be derived at NNLL
accuracy at arbitrarily high order and explicit results have

In’(s,/m?)
S4

qa—-QQ| ~ 4 3 °F

+

2

56, , snt ME . ——
+ gc Rel'’ qq Ce+CglIn ol —Celn| — been provided in this paper through NNNNLO. The role of
-1 m subleading logarithms has been studied in detail and it has
5 5 5 5 been shown that care must be taken to arrive at reliable nu-
_ @ I°(S4/m°) +0 In°(s4/m") (5.1) merical predictions for the cross section. For top quark pro-
4 S |, Sa L) duction at the Tevatron NNLO-NNLL predictions have been

made for the total cross section and transverse momentum
distributions. The NNLO-NNLL corrections are significant
By matching with the exact NLO cross section, as we haveand they dramatically reduce the dependence of the cross
described before, one can derive the full NNLL terms assection on the scale relative to NLO.
well. We note that no cubic or quartic termsliy appear at
NNLL accuracy. A full determination of the cross section at

this order would require four-loop calculations. The leading ACKNOWLEDGMENTS

logarithms for thegg channel at NNNNLO again follow ) ) )

from Eq. (5.1) with the substitutiorCr—Cp. | wish to thank George Sterman for drawing my attention
In the DIS scheme the corresponding NLL result is to the importance of subleading logarithms in resummation
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~ DIS(4) 2 Some of the results in Secs. IlIB and IlID were derived
S4,M%,S,t1,Uq, g, . i ! X
qq_’Qa( 4 1:UL 4F o 1R) within the collaboration of Ref[19] and will also be dis-

. as(MzR) 41 , In"(s,/m?) cussed alo_ng with other results in that paper. This work was
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+
Ce 2 ,uﬁ )
+— Cs Rdwqq_ _+ CFIn —Celn| = APPENDIX A: MELLIN TRANSFORMS
4 tLu 2
t m Here we present some useful formulas for the Mellin
15 In%(s, /m?) In3(s,/m?) transforms that are used in the resummed cross section and
- —Bo — +0( — ) the finite-order expansions.
56 Sq + Sq + We define
(5.2
N1 In"(1-2)
Again, numerically the corrections in the DIS scheme are In(N)=dez 1-z |, (A1)
smaller than in théMS scheme.
The finite-order expansion procedure can be extended to
arbitrarily high orders at NNLL accuracy. In generalngh  one may also define
order inag (beyond the Born teriithe leading logarithms in
the MS scheme are
% IN"(s,/m?
|n(Ny=f dg@—N%““-—l—i——l . (A2
- MS(n) 0 Sa +

q;»Qa(S4vm Stliulqu ILLR)

In>"~1(s,/m?)

B (as(MR)
— ot
S4

q9—QQ T

2n
) H(ZCF)n

(e«9-1)|l1+0

The results below are identical for either definition.
+ Then, we havég?2]
+.. (5.3
a\"1 1
. Ln(N) o= lim | =] | = <
For the DIS scheme we only need to replac€¢2" by C/ 0t Jde| | € N
in the above equation. For tlggg channel we simply replace (A3)
Cr by C, as discussed before. It is easy to check that Eq.
(5.3 reproduces the leading logarithms in all the expansions

presented in this paper. where
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oo n—-1 o)
w()=—IN+3 (~1)"—(,=F ae" (Ad)
n=2 n n=0
with
~ (_1)i+1
a0=—InN, aizTgH, i=1,...°. (A5)

Here N=Ne”e with y¢ the Euler constantyz=0.577 . .. .
Also {,= 1?16, {,=m*190, (= w1945, {3= 7?9450, etc.,

while  73=1.202058 ..., (5=1.03692B...,
=1.008343 ..., etc.
Then
lo(N)=—InN
Il(N)=—In2N+%

1, 3 3 3,

PHYSICAL REVIEW B4 014009

n+1
0

In(N)=n+1+na8_1a1+n(n—l)a8_2a2+n(n—1)
2
-3 al
X(n—2)ag - T2 +n(n—1)(n—2)

X (n—3)a) *(a;a,+as)+n(n—1)(n—2)(n—3)

n—->5 ai ag

The expressions fdr, have been presented uprie-3 in
[2]. Here we extend this table ta=7, useful through
NNNNLO expansions:

1 5N 3N 2N INTZ4 6
1a(N) == 2 In°N=24,In*N - 4¢3 10N -3 InN(£3+2£0) — 4| Lolat £ 4

1 .. 5 - 20 - 15 - .
I5(N)=€In6N+§§2In4N+§§3ln3N+7(§§+2§4)In2N+4(5§2§3+6§5)InN+5

g

2

4,
+ §§3+ 38284+ 4L

1 . - - ~ ~
ls(N)=— 7|n7 N—34,In°N—1043 In*N—15£3+2¢,) In*N—12(6£5+5,43) In*N—15

X

1 7 o~ 105 i~ ,~ 105
|7(N):§|n N+§§2In N+14§3|n N+T(§2+2§4)|n N+4(42§5+35§2§3)|n N+ —

X

3 8 2 2N
[3+8Le+ 5 55+60004| IN?N+4

315 ,
+ 7§A(§2+§4)+420§2§6+ 630+ 1407, (5.

, 8, . 720
8§6+§2+§§3+6§2§4 In N_60§3§4_7

(71— 12585~ 3005¢ 3

2

105, \ . 105,
126,05+ 10854+ 18057+ —- 53¢ | INN+ =13+ 3360345

(A7)
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APPENDIX B: HADRONIC CROSS SECTIONS

The double differential hadronic cross section
d®o n,/dT1dU; is written as a convolution of parton dis-

tributions with the partonic differential cross section:

dzo'hlhz(S!Tl ’ u 1)
dT,dU;

1dx; f1dxX,
. J J; ——= i, (X1, 48) b, (X2, 47)
2

d?oii(s,t;,u
st IJ( 1 l)’

dt;du, (B1)

where the sum is over all massless parton flavors and , 2, d

#i(x,u2) are the parton distribution functions for flavioin
hadronh at factorization scalg.r . The hadronic invariants
S, T4,U; are defined in analogy to their partonic counter-
parts. The lower limits of the momentum fractions of the
partons in the hadrons are given by=-U,/(S+T,) and
Xy ==X T1/(X:S+Uy).

By making a transformation from the variables
(T1,U1,X1,X,) to the variablesY,pZ,x,,s,), with Y andpr
the rapidity and transverse momentum, via

Ti=VS(p2+m?e ", U,=S(p2+m?)e",

S4_ XlTl

X1S+U;’ (B2)

X2:

we may write the differential cross sectionpr andY as

fl dxlfxl(sw D+U;
i

=X T ¢(X1)¢

2
d 0'h1h2

dp2dY

, d%0y;
dt;duy
(B3)

X1 1)5
x1$+ U,

Now, let us write the&kth-order partonic threshold corrections
in the shorthand notation

(2

2k—1
+ 2 a:J(Svtliul)
I=0

,d%00(s,ty,uy)

ij
dtldul A (S tl’ul)5(s4)

In'(s,/m?)

J

(B4)
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K
dz(’ﬁl)hz > (as>kl 1dx1¢( )
- T " = J— — — X
dp2dy T la) Shgx T
fxl(S+Tl)+Ul dS4 54_X1T1
X
0 Sa— X1 T1 "\ 1S+ U,
21 In'(s,/m?)

2 a:j S4)

X1 All(s,)8(s4)+

J

(B5)

Sy

After some rearrangements of terms and partial integrations,
we can rewrite this as

d20%), 1 %
2
prdY 2 (TF) S Eo

{ 1dxy
X - d(Xq) ds,0(s,—A)
x; X1

fxl(S+T1)+Ul
- P(X1

| 54 1 S4_X1Tl
" 2] |25 =T ¢ st o,
1 _XlTl
—A O Yksto, }
1dx| 1 X1(S+T,)+U
+f '+t XS+ T+, a,(0)
XI X1 I+1 m2
A0)| — —ah B6
+A(0) (—T)¢(X1)¢XS+U . (B6)
The transverse momentum distributions are then given by
K K 2 _(k
da-ﬁl)h2: p d0'|(f]1)h2 2p v+ d (1)h2 (B7)
dpy T dp2 TIv-" dpdy’
where
.1 (14 By
=4
Y _2In 1—ﬂT) (B8)

andBr=+1- 4(pT2 + mz)/S. The total cross section can then

be retrieved by integrating EGB7) over pt with lower limit

0 and upper limityS/4—m?.

APPENDIX C: NLO AND NNLO THRESHOLD
CORRECTIONS IN PIM KINEMATICS

In this appendix we present results for the NLO and
NNLO expansions of the resummed cross section in heavy-
guark-pair inclusive kinematicésee also Refs[7,13,19).
Here the distance from threshold is measured in terms of the

By substituting the above expression for the partonic threshvariablez=Q?/s, with Q? the invariant mass squared of the

old corrections in Eq.(B3), we can write the hadronic
kth-order corrections as

heavy quark-antiquark pair, and the corresponding “plus”
distributions are of the form[ IN{(1—2)1/(1—2)}. .
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1. NLO threshold corrections For thegg—QQ channel the NLO-NLL corrections in
In the MS scheme the NLO-NLL corrections for tgg ~ the MS scheme are
—QQ channel are

MS(1
ggiéil Z,m?,s,ty, U, g , 4R)
(’-;/IqsilQ)a(l Z, m 'S, tlaul1MF MR) 2
B _as(MR) In(1-2) 2 In HE
5 adup) In(1-2) “99-QQ AT1-z |, s
~%a0-0Q 4 1=z |,
,u
g ><1T +6(1— z)@m R }
E ZRJ,gg 2C—2CgIn| — ,LL,:
i
1 (t5+uf)
3 +ad(ud)KyB D[—} Nc(NZ—1)
+5(1—z)——CFI( +@|( R)] SURITeTE 17| s
2 S
C tiu
(CY) ~Cet o |ReL gt o In| X —Ce
me<s
We note that in theS(1—2z) contribution the expansion re-
produces only the scale-dependent terms. The rest of the (Nﬁ—l) t,uy
8(1—2) terms can only be obtained by matching to the exact N (CF—CA)ReLﬁ—(Ng— Din —
NLO cross section in PIM kinematidd 9]; this is exactly ¢ m=s
analogous to what was presented in Sec. Il for 1PI kinemat-
ics. ? P +C (I\I(Z:—_]-)+N_§(N2_1)|n(ﬂ> (ti_ui)

In the DIS scheme the corresponding result is FON 2°° ty 2 '
pIEE) (C3)
qq Q6(1 Z,mz,s,tl,u:]_,,U/F,/.LR)

2. NNLO threshold corrections
5 as(4R) In(1-2) o _
~%40-QQ FIT1—2 We now present the NNLO corrections in PIM kinemat-
+ ics. We give explicit results at NLL accuracy. As noted in
Ce u? Sec. lll, to reach NNLL accuracy we need to derive match-
1= ZRd“’qq— T—ZCF In( ” ing terms in PIM kinematic§19]. The only other difference
z], between the expansions in the two different kinematics is in
3 B 2 the extra terms involving Imfu, /m®) for the 1PI fixed-order
+8(1-2)| - _CFI ('“’F + 29 (@) ] expansions relative to the PIM expansions. o
S 2 S In the MS scheme, the NNLO-NLL corrections farq
(C2 —QQ are
|
25\\ 2 3 2
oS (2) 2 B as(pRr) ,[In°(1-2) In(1—2)
4(1_Z!m !Sitlauluu’F!lu’R)zo-iﬁ <— F
T49-QQ qq—QQ 1—2z N 1—2z N
— " In(1-2z
><|—,80C,:+12C,:[Rel" 99— Cg—CeIn ( SF)H+ %
+

MF

‘CF In( ’;F) { —8Rd'99+ 2C+4Cy In(

IZMF
S

)
)

We note that, at NLL accuracy, in thén(1—2)/(1—2)]. coefficient we derive only the terms involving the factorization and
renormalization scales, and in th&/(1—2)], coefficient we can only determine quadratic terms in the scale logarithms.
In the DIS scheme the corresponding corrections are

2
MR

1 3
~5CrBoln| —

1-z

/30

+
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2 3 2
~DIS (2) B as(R) ,[In°%(1-2) In%(1-2)
Oqq ool 1~ ZM" Sty Us, pp , R) = qu—»QQ(T) Flo1-z |, 1-z |,
Cr In(1-z
x{—ﬁcp+6CF[Rer'Q‘4———cF|n<“F) ++ In(1=2)
S 1-z |,
e q e 3 e
x{cpln(? [—SRd“’gg—CF+4CF In(? +§CF,80In <

Bo

+ CF(3CF+—

- (5

J

M%) (MZ:)
- |n -
S S

M 3
I 2( s )_ECFﬂoln

.
In the MS scheme for thgg— QQ channel the NNLO-NLL corrections are

,[In%(1-2)
A 1—

IN’(1—2)
1-z

24\ 2
M_S 2 B [as(pR)
%1 z,m :S'tlvULMFvMR)—‘ngHQQ(

—BoCa—12C5 In ( MSF)

+

4 2
as(’U“R) In“(1-2) 2 [( 1 1) (tlul)
KgoBoen ————| Ca3(N:i—1) 2|nl 222
QED A
99 1—7 . c 82 c mZS
ol C 21ReL —2N.C +2C +21 —sz +21 C-—C,) ReL
F— B F N, n U N_c( F—Ca) Relg
p(t-ud) g [as(ud)\7In(1-2) pl
NC 2 to o |I’1 - CA
S tl 99—-QQ T 1-z |,
sn? 2
—2By+4Cp In( )+1+In e +3CAIBOIn(@>>
thug s
4
as(,LLR) In(1-2) (,u,F) 5 (ul)(ul t )
——KggB In Ca2(Ng—1) N In -
99=QED T N A t 2
2,2
A (t3+u3) tiuy ( 2CF)
+2N (C ——=|(ReLgtl)————+In| —|+|2— | (ReLg+1)—1
¢\ ¥FT ( B g2 (sz) N, ( B
24\\ 2 2 2 5
B as(uR) 1 5 o[ MF 3 e g
+UggﬂQQ< - ) 1-z), ZCABOIn Y —ECA,BOIn < In| — (C6)
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