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High-order corrections and subleading logarithms for top quark production
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Physics Department, Florida State University, Tallahassee, Florida 32306-4350
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We derive high-order threshold corrections for top quark production in hadronic collisions from resumma-
tion calculations. We present analytical expressions for the cross section through next-to-next-to-next-to-next-
to-leading order and next-to-next-to-leading logarithmic accuracy. Special attention is paid to the role of
subleading logarithms and how they relate to the convergence of the perturbation series and differences
between various resummation prescriptions. It is shown that care must be taken to avoid unphysical terms in
the expansions. Numerical results are presented for top quark production at the Fermilab Tevatron. We find
sizable increases to the total cross section and differential distributions and a dramatic reduction of the
factorization scale dependence relative to next-to-leading order.
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I. INTRODUCTION

The top quark production cross section at the Ferm
Tevatron receives significant contributions from the thre
old region, where there is limited phase space for the em
sion of real gluons. The incomplete cancellation of infrar
divergences between real and virtual graphs produces fi
but large, logarithmic corrections in the form of ‘‘plus’’ dis
tributions. These corrections can be resummed to all ord
in the perturbative expansion.

The need for threshold resummations was recogni
over a decade ago for the Drell-Yan cross section@1,2#. The
resummation of the leading logarithms for heavy quark p
duction @3–5# relies heavily on this work since these log
rithms are universal between electroweak and QCD indu
cross sections. To go beyond leading logarithms one ha
take into account the complex color structures of QCD cr
sections@6,7#. Resummation for heavy quark production
next-to-leading logarithmic~NLL ! accuracy was first pre
sented in Refs.@6,7# and then in Refs.@8–12#. For a review
see Refs.@13,14#.

Threshold resummation follows from the factorizatio
properties of the cross section@15#, separating long- and
short-distance physics. The hadronic cross section is wri
as a convolution of non-perturbative parton distribution fun
tions with the perturbative partonic cross section. This c
volution becomes a simple product if one takes moment
the cross section. The perturbative cross section still has
sitivity to soft-gluon dynamics and is a smooth function on
away from the edges of partonic phase space. In gener
includes ‘‘plus’’ distributions with respect to a variable th
measures distance from partonic threshold. It is these sin
lar distributions that can be resummed to all orders in p
turbation theory. This is achieved by first refactorizing t
cross section@7# into new functions which absorb the unive
sal collinear singularities associated with the incoming p
tons and a function that describes non-collinear soft glu
emission. Resummation is explicitly derived in mome
space from the renormalization group properties of th
functions @7,11,16,17#. To obtain the physical resumme
cross section the moment space results must be inverted
to momentum space. There have been a few proposa
0556-2821/2001/64~1!/014009~21!/$20.00 64 0140
b
-
s-
d
te,

rs

d

-

d
to
s

t

n
-
-

of
n-

l it

u-
r-

r-
n
t
e

ck
or

‘‘prescriptions’’ for the best way to do the inversion or oth
erwise use the resummation@3–5#. Numerically, the choice
of prescription can have a significant effect. Alternative
the resummed cross section can be used as a generat
perturbation theory. At fixed order no prescription is nec
sary to invert the moment-space results. This is the appro
taken in this paper.

The aim of this paper is two-fold. First, to derive th
expansion of the resummed cross section through nex
next-to-next-to-next-to-leading order and next-to-next-
leading logarithmic~NNLL ! accuracy, and second, to inve
tigate and assess the importance of subleading logarit
~beyond NNLL!. We calculate the numerical effect of thes
higher orders and subleading logarithms for top quark p
duction at the Tevatron. As we will see, this discussion in
mately relates to the convergence of the perturbation se
as well as to the choice of a resummation prescription, o
which there have been different viewpoints@5,18#. We will
show that one has to be careful to avoid unphysical term
the fixed-order expansions. These considerations appl
QCD hard scattering cross sections in general. We find la
corrections for top quark production at the Tevatron and
dramatically reduced factorization scale dependence.
formalism allows us to make predictions for both total a
differential cross sections.

In a companion paper@19# the next-to-leading order an
next-to-next-to-leading order threshold corrections to he
quark production at NNLL accuracy are also studied and
difference between one-particle inclusive~1PI! and pair in-
clusive ~PIM! kinematics is highlighted. Similar NNLO ex
pansions have recently been presented for electroweak-b
@20,21#, direct photon@22,23#, and jet@24# hadroproduction.

In the next section we briefly review the resummati
formalism and give the expression for the resummed cr
section in moment space. In Sec. III we present NLO a
NNLO expansions at NNLL accuracy in single-particle i
clusive kinematics and we discuss in detail the role of s
leading logarithms. We also present numerical results for
top quark total cross section and transverse momentum
tributions at the Tevatron. In Sec. IV we present the next-
next-to-next-to-leading order~NNNLO! corrections at
NNLL accuracy, and again we study the role of sublead
©2001 The American Physical Society09-1
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logarithms at that order. In Sec. V we discuss NNNNL
and higher-order corrections. In Appendix A we list seve
formulas for the Mellin transforms that are used in t
calculations. In Appendix B we collect some formulas f
the integrations involved in the calculation of the hadro
total and differential cross sections. In Appendix C w
present results for the NLO and NNLO expansions in P
kinematics.

II. RESUMMED CROSS SECTION

We begin by briefly reviewing the resummation forma
ism of Refs. @6,7,11#. We will mostly discuss the single
particle inclusive cross section but will make a few co
ments on pair inclusive kinematics where appropriate. T
differences between the two kinematics in the expression
the resummed cross section are minimal.

The factorized single-heavy-quark inclusive cross sec
for hadron-hadron collisions,

hA~pA!1hB~pB!→Q~p1!1X@Q̄#, ~2.1!

where theh’s are the colliding hadrons,Q is the produced
heavy quark, andX represents the additional partons in t
final state including the heavy antiquark, takes the form o
convolution of the perturbative short-distance cross sectioŝ
with the universal parton distribution functionsf:

shAhB→QX

5E dxadxbf f a /hA
~xa ,mF

2 !f f b /hB
~xb ,mF

2 !

3ŝ f af b→QX„s4 ,t1 ,u1 ,m2,mF
2 ,as~mR

2 !…, ~2.2!

wheremF and mR are the factorization and renormalizatio
scales, respectively. Note that here and in the followings

andŝ can denote either the total cross section or any relev
differential cross section. The parton processes involve
the Born level are

q~pa!1q̄~pb!→Q~p1!1Q̄~p2!,

g~pa!1g~pb!→Q~p1!1Q̄~p2!. ~2.3!

The qq̄ channel is dominant for top quark production at t
Tevatron and contributes over 90% of the cross section a
Born level. The partonic invariants in Eq.~2.2! are defined
by

s5~pa1pb!2, t15~pa2p1!22m2,

u15~pb2p1!22m2, ~2.4!
01400
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with m the heavy quark mass, whiles45s1t11u1 measures
the distance from threshold; at thresholds450.

By taking moments and replacing the incoming hadro
by partons, the convolution in Eq.~2.2! simplifies to a prod-
uct @7,11#

s̃ f af b→QX~N!5f̃ f a / f a
~Na!f̃ f b / f b

~Nb!ŝ f af b→QX~N!.
~2.5!

The moments are defined by ŝ(N)5*(ds4 /
s)e2Ns4 /sŝ(s4), with N the moment variable, and similarl
for thef i ’s with respect toxi . The definition ofNi depends
on the kinematics. For 1PI kinematics,Na5N(2u/s) and
Nb5N(2t/s) @11#. For PIM kinematics,Na5Nb5N @7#.

The short-distance perturbative cross sectionŝ still
displays sensitivity to soft gluon emission. The incomple
cancellation between graphs with gluon emission and virt
gluon corrections manifests itself in the occurrence inŝ
of ‘‘plus’’ distributions which are singular ats450, the
partonic threshold. Atnth order in as ~beyond the Born
term!, these distributions are of the form$@ lnk(s4 /m2)#/s4%1 ,
k<2n21. The leading logarithms correspond tok52n
21, NLL to k52n22, NNLL to k52n23 and so on.
Under moments $@ ln2n21(s4 /m2)#/s4%1→ ln2nN ~see
Appendix A!, and our goal becomes to resum logarithms
N.

To separate these soft gluon effects from the hard sca
ing, a refactorization is introduced@6,7,11,16#:

s̃ f af b→QX~N!5c̃ f a / f a
~Na!c̃ f b / f b

~Nb!HIJ
f af bS̃JI

f af b
„m/~NmF!…,

~2.6!

where thec ’s are center-of-mass parton distributions@1# that
absorb the universal collinear singularities associated w
the initial-state partons, andS is the soft-gluon function tha
describes non-collinear soft gluon emission. The mass of
heavy quarks protects the final state from collinear singul
ties. H is the hard-scattering function and is free of so
gluon effects and thus independent ofN. HereH and S are
matrices in the space of color exchanges (I ,J are color indi-
ces! and differ for each partonic process.

Using Eqs.~2.5! and ~2.6! to solve for the perturbative
cross section ŝ, we then have ŝ(N)5@c̃ f a / f a

c̃ f b / f b
/

(f̃ f a / f a
f̃ f b / f b

)#Tr@HS̃#. After resumming theN dependence

in c/f andS @6,7,11#, we obtain the resummed heavy qua
cross section at NLL accuracy1 in moment space:

1Note that although we formally have NLL accuracy in the r
summed exponent, after matching with the exact NLO cross sec
we can determine all NNLL terms in the finite-order expansions
9-2
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ŝ f af b→QX~N!5 exp@E( f a)~Na!1E( f b)~Nb!#expF2E
mF

m dm8

m8
@ga„as~m82!…1gb„as~m82!…#G

3expF4E
mR

m dm8

m8
b„as~m82!…GTrH H f af b

„as~mR
2 !…

3 P̄ expF E
m

m/Ndm8

m8
~GS

f af b!†
„as~m82!…G S̃f af b

„1,as~m2/N2!…P expF E
m

m/Ndm8

m8
GS

f af b
„as~m82!…G J .

~2.7!
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This expression is actually valid for both 1PI and PIM kin
matics with appropriate definitions forNa and Nb as dis-
cussed previously.

The first exponent in Eq.~2.7! resums theN dependence
of the ratioc̃ f i / f i

/f̃ f i / f i
and is given in the modified minima

subtraction (MS) scheme by

E( f i )~Ni !52E
0

1

dz
zNi2121

12z H E
(12z)2s

mF
2 dm82

m82
A( f i )@as~m82!#

1
1

2
k ( f i )@as„~12z!2s…#J . ~2.8!

At next-to-leading order accuracy in lnN, we needA( f ) at
two loops, A( f )(as)5Cf@as /p 1(as /p)2K/2], and k ( f )

52Cf(as /p)@12 ln(2nf)#. Here Cf5CF5(Nc
221)/(2Nc)

for an incoming quark andCf5CA5Nc for an incoming
gluon, with Nc the number of colors, whileK5CA(67/18
2p2/6)25nf /9, wherenf is the number of quark flavors
The n i terms are gauge dependent. They are defined bn i

[(b i•n)2/unu2, whereb i5piA2/s are the particle velocities
and n is the axial gauge vector. We note that all gauge
pendence cancels out in the cross section.

In the deep inelastic scattering~DIS! scheme, which is
usually only applied to quarks, the first exponent in Eq.~2.7!
is given in terms of theMS result as

E(q)~Ni !uDIS5E(q)~Ni !uMS

2E
0

1

dz
zNi2121

12z H E
1

12zdl

l
A(q)@as~ls!#

1B(q)@as„~12z!s…#J , ~2.9!

whereB(q)(as)52(3CF/4)(as /p).
The ga are anomalous dimensions of the fieldsc and are

given at one loop bygq5(as /p)(3CF/4) and gg5(as /
p)(b0/4) for quarks and gluons, respectively. Theb func-
tion is given byb(as)[md ln g/dm52b0as/(4p)1•••, with
b05(11CA22nf)/3.

The trace appearing in the resummed expression is ta
in color space. The symbolsP andP̄ denote path ordering in
the same sense as the variablem8 and against it, respectively
The evolution of the soft function from scalem/N to m fol-
01400
-
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lows from its renormalization group properties and is giv
in terms of the soft anomalous dimension matrixGS @7#. For
the determination ofGS an appropriate choice of color bas
has to be made. For theqq̄ channel we use ans-channel
singlet-octet basis, while for thegg channel we use a basi
consisting of three color tensors@7#. The soft anomalous di-
mension matrix, evaluated through the calculation of o
loop eikonal vertex corrections, has been presented for
partonic processes in heavy quark production in Re
@6,7,13#. In the color bases that we use, the soft matricesS,
are diagonal for both partonic channels, and the hard ma
for theqq̄ channel has only one non-zero element. At low
order, the trace of the product of the hard and soft matri
reproduces the Born cross section in each partonic chan
We also note that theGS matrices are not diagonal in th
color bases that we use. If we perform a diagonalization
that the GS matrices do become diagonal, then the pa
ordered exponentials of matrices in the resummed expres
reduce to simple exponentials; however, this diagonaliza
procedure is complicated in practice@13#.

The integrations overz in the exponents of Eqs.~2.7!,
~2.8! run over the region where the running coupling co
stantas diverges. The prescriptions of Refs.@3–5# have been
proposed to avoid these soft gluon divergences in the
summed cross section. However, if we expand the expon
in the resummed cross section at fixed order inas and invert
back to momentum space using the equations in Appen
A, no divergences are encountered and thus no prescrip
is required. In addition to avoiding the necessity for a resu
mation prescription, a finite-order expansion bypasses
need for the diagonalization procedure that we mentio
above, as well.

III. NLO AND NNLO THRESHOLD CORRECTIONS

In this section we expand the resummed cross sectio
next-to-leading and next-to-next-to-leading orders. In the f
lowing s (n) stands for thenth-order differential corrections
Nominally, it denotess2d2s (n)/(dt1du1) but it can also de-
note any other relevant differential cross section, such
d2s (n)/(dpT

2ds4), with pT the transverse momentum, o
d2s (n)/(dyds4), with y the rapidity, or d2s (n)/(dpTdy),
with appropriate Jacobians inserted into the definition of
Born term,sB, and the functionBQED for the gg channel in
the expressions below.
9-3
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A. NLO threshold corrections

We first expand the resummed cross section to next
leading order in 1PI kinematics. These expansions are
ready known for both 1PI and PIM kinematics@7,11,13#.

For theqq̄ channel in theMS scheme, the full next-to
leading-order threshold corrections are

ŝqq̄→QQ̄
MS(1)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B as~mR

2 !

p H 4CFF ln~s4 /m2!

s4
G

1

1F 1

s4
G

1

F2ReG8 22
qq̄ 22CF12CF lnS sm2

t1u1
D

22CF lnS mF
2

m2D G J 1d~s4!sMS
(1)qq̄S1V , ~3.1!

wheresMS
(1)qq̄S1V denotes the soft plus virtual (S1V) d(s4)

terms in the NLO cross section that can be obtained from
~4.7! in Ref. @25# ~with t1 and u1 interchanged because o
different definitions in that reference!. Also

ReG822
qq̄5CFF4 lnS u1

t1
D2ReLbG

1
CA

2 F23 lnS u1

t1
D2 lnS m2s

t1u1
D1ReLbG ~3.2!

is obtained from the real part of the one-loop soft anomal

dimension matrix elementG22
qq̄ after dropping all gauge de

pendent terms and an overall coefficientas /p. Here Lb
5(122m2/s)/b$ ln@(12b)/(11b)#1pi%, with b
5A124m2/s, is the velocity-dependent eikonal functio
The Born term is given by

sqq̄→QQ̄
B

5pas
2~mR

2 !Kqq̄NcCFF t1
21u1

2

s2
1

2m2

s G , ~3.3!
01400
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s

whereKqq̄5Nc
22 is a color average factor. In our calculatio

for the expansion, we used the result for the soft matrix
lowest order in Eq.~A5! of Ref. @24#. The lowest-order hard

matrix has only one non-zero element, given byH22
qq̄→QQ̄

5@2/(NcCF)#sqq̄→QQ̄
B .

To be sure, the expansion of the NLL resummed cr
section does not give all thed(s4) terms, only thosed(s4)
terms involving the scale; these terms a
sqq̄→QQ̄

B
@as(mR

2)/p#d(s4)$@23/21 ln(t1u1/m
4)#CF ln(mF

2/m2)
1(b0/2)ln(mR

2/m2)%. The rest are obtained by simply matc
ing with the NLO cross section in@25#. Thus we obtain all
the S1V terms at NLO. As shown in Refs.@26,27# these
terms dominate the cross section and are an excellent
proximation at the partonic level to the exact NLO cro
section close to threshold and even quite far from it. We n
that the exact NLO cross section is the sum of the fullS
1V terms and hard gluon corrections; the latter are not ta
into account by threshold studies and vanish at threshold

In the DIS scheme, the corresponding result for theqq̄
channel is

ŝqq̄→QQ̄
DIS (1)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B as~mR

2 !

p H 2CFF ln~s4 /m2!

s4
G

1

1F 1

s4
G

1

F2ReG822
qq̄2

CF

2
1CF lnS s2

t1u1
D

22CF lnS mF
2

m2D G J 1d~s4!sDIS
(1)qq̄S1V , ~3.4!

wheresDIS
(1)qq̄S1V can be obtained from Eq.~4.14! in @25#.

For thegg channel in theMS scheme the NLO threshol
corrections are given by
ŝgg→QQ̄
MS(1)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!5sgg→QQ̄
B as~mR

2 !

p H 4CAF ln~s4 /m2!

s4
G

1

22CA lnS mF
2

m2D F 1

s4
G

1
J

1as
3~mR

2 !KggBQEDF 1

s4
G

1
H Nc~Nc

221!
~ t1

21u1
2!

s2 F S 2CF1
CA

2 DReLb1
CA

2
lnS m2s

t1u1
D2CFG

1
~Nc

221!

Nc
~CF2CA!ReLb1CF

~Nc
221!

Nc
1

Nc
2

2
~Nc

221!lnS u1

t1
D ~ t1

22u1
2!

s2 J
1d~s4!sMS

(1)ggS1V, ~3.5!

whereKgg5(Nc
221)22 is a color average factor and

BQED5
t1

u1
1

u1

t1
1

4m2s

t1u1
S 12

m2s

t1u1
D . ~3.6!
9-4
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Here,sMS
(1)ggS1V again denotes the soft plus virtuald(s4) terms in the NLO cross section. These terms are given by Eq.~6.19!

in Ref. @28#; we note, however, that in that reference the scale was set equal tom. Therefore in addition to those terms we ha
to include insMS

(1)ggS1V the termssgg→QQ̄
B

@as(mR
2)/p#@CA ln(t1u1 /m4)ln(mF

2/m2)1(b0/2)ln(mR
2/mF

2)#. The Born term is given by

sgg→QQ̄
B

52pas
2~mR

2 !KggNcCFFCF2CA

t1u1

s2 GBQED. ~3.7!

In our calculation for the expansion we used the result for the soft matrix at lowest order in Eq.~C3! of Ref. @24#. The
lowest-order hard matrix has the form of Eq.~C6! of Ref. @24#, with independent elementsH11

gg→QQ̄5pas
2BQEDKgg /(2Nc

2),

H13
gg→QQ̄5NcH11

gg→QQ̄(t1
22u1

2)/s2, andH33
gg→QQ̄5Nc

2H11
gg→QQ̄(124t1u1 /s2).

Again as shown in Refs.@26,27# these corrections dominate the cross section near threshold and are an excellent a
mation at the partonic level to the exact NLO cross section. For NLO expansions in PIM kinematics see Appendix C

B. NNLO-NNLL threshold corrections for qq̄\QQ̄

Next we derive the NNLO-NNLL threshold corrections from the two-loop expansion of the resummed cross sectio
the qq̄ channel in theMS scheme these corrections are

ŝqq̄→QQ̄
MS(2)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!5sqq̄→QQ̄
B S as~mR

2 !

p D 2S 8CF
2F ln3~s4 /m2!

s4
G

1

1F ln2~s4 /m2!

s4
G

1

3H 2b0CF112CFFReG822
qq̄2CF1CFlnS sm2

t1u1
D2CF lnS mF

2

m2D G J
1F ln~s4 /m2!

s4
G

1
H 4FReG822

qq̄2CF2CF lnS t1u1

sm2D 2CF lnS mF
2

m2D G 2

14G812
qq̄G821

qq̄

2b0FReG822
qq̄2CF2CF lnS t1u1

sm2D 2CF lnS mR
2

m2D G12CFK216z2CF
214CFcMS

(1)qq̄S1VJ D
1OS F 1

s4
G

1
D , ~3.8!

wherecMS
(1)qq̄S1V is defined by

sMS
(1)qq̄S1V

5
as

p
sqq̄→QQ̄

B
cMS

(1)qq̄S1V , ~3.9!

and the off-diagonal elements of the soft anomalous dimension matrix~dropping an overallas /p) are

G821
qq̄52 lnS u1

t1
D , G812

qq̄5
CF

CA
lnS u1

t1
D . ~3.10!

We are able to derive all the NNLL terms by matching with theS1V terms in the NLO cross section, Eq.~3.9!.
In addition, we can derive at NNLL accuracy the following@1/s4#1 andd(s4) terms involving logarithms of the factor

ization and renormalization scales:

sqq̄→QQ̄
B S as~mR

2 !

p D 2F 1

s4
G

1

S ln2S mF
2

m2D CFH CFF322 lnS t1u1

m4 D G1
b0

4 J 2
3

2
CFb0 lnS mR

2

m2D lnS mF
2

m2D 1 lnS mF
2

m2D
3H 22CFT̂MS

(1)qq̄
2CFK18CF

2z21CFF2 lnS t1u1

m4 D 23G FReG822
qq̄2CF1CF lnS sm2

t1u1
D G J 1

3

2
b0 lnS mR

2

m2D
3FReG822

qq̄2CF2CF lnS t1u1

m2s
D G D 1sqq̄→QQ̄

B S as~mR
2 !

p D 2

d~s4!H ln2S mF
2

m2D F1

2
CF

2 ln2S t1u1

m4 D 1
9

8
CF

22
3

2
CF

2 lnS t1u1

m4 D
22CF

2z22
b0

8
CF lnS t1u1

m4 D 1
3

16
b0CFG1

3

16
b0

2 ln2S mR
2

m2D 1
3

4
CFb0 lnS mF

2

m2D lnS mR
2

m2D F lnS t1u1

m4 D 2
3

2G J , ~3.11!
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whereT̂MS
(1)qq̄ is obtained fromcMS

(1)qq̄S1V in Eq. ~3.9! by drop-

ping all scale terms ln(mF /m) and ln(mR/m) in cMS
(1)qq̄S1V . We

note that at NNLL accuracy we derive all@1/s4#1 scale
terms, but in thed(s4) coefficient we can only determin
quadratic terms in the scale logarithms.

Since theqq̄ channel is dominant for top quark produ
tion at the Tevatron, it is worthwhile to show some nume
cal results for the hadronic cross section in that channel a
before presenting the full cross section~for details of the
hadronic calculation see Appendix B!. In Fig. 1 we plot the
NNLO-NNLL top quark cross sectionqq̄→t t̄ at the Teva-
tron with AS51.8 TeV together with the exact NLO cros

FIG. 1. Top quark production at the Tevatron withAS51.8 TeV

for the qq̄→t t̄ channel in theMS scheme. Plotted are the exa
NLO cross section form5m ~lower solid line!, m/2 and 2m ~upper
and lower dashed lines!, and the NNLL-NNLO cross section fo
m5m ~upper solid line!, m/2 and 2m ~upper and lower dotted
lines!.
01400
-
ne

section@25,29# as a function of the top quark mass; we ha
setm[mF5mR . Here and in the rest of the paper we use t
CTEQ5M parton densities@30# when calculatingMS results.
We note the significant increase of the cross section
NNLO along with the dramatic reduction in scale variatio
betweenm/2 and 2m. This reduction is also evident for
wide range of scale choices in Fig. 2. The NNLO cross s
tion is larger than at NLO and relatively flat with respect
scale variations.

In Table I we present detailed numerical results for theqq̄
corrections to the top quark cross section at the Teva
with m5175 GeV/c2 through NNLO at both NLL and
NNLL accuracy. Some of these numbers will be useful
our discussion in the next subsection.

The NNLO-NNLL threshold corrections in the DIS
scheme are

FIG. 2. The scale dependence of the cross section forqq̄→t t̄ in
the MS scheme at the Tevatron withAS51.8 TeV and m
5175 GeV/c2.
ŝqq̄→QQ̄
DIS (2)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!5sqq̄→QQ̄
B S as~mR

2 !

p D 2S 2CF
2F ln3~s4 /m2!

s4
G

1

1F ln2~s4 /m2!

s4
G

1

3H 2
3b0

4
CF16CFFReG822

qq̄2
CF

4
1

CF

2
lnS s2

t1u1
D2CF lnS mF

2

m2D G J
1F ln~s4 /m2!

s4
G

1
H 4FReG822

qq̄2
CF

4
2

CF

2
lnS t1u1

s2 D 2CF lnS mF
2

m2D G 2

14G812
qq̄G821

qq̄2b0FReG228 2
5

8
CF2

3

4
CF lnS t1u1

m4 D 2
1

2
CF lnS mR

2

s D G
1CFK24z2CF

212CFcDIS
(1)qq̄S1VJ D 1OS F 1

s4
G

1
D , ~3.12!
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wherecDIS
(1)qq̄S1V is defined in analogy to Eq.~3.9!. As for theMS corrections, we can also derive additional@1/s4#1 andd(s4)

terms involving the scale in the DIS scheme. These terms are

sqq̄→QQ̄
B S as~mR

2 !

p D 2F 1

s4
G

1

S ln2S mF
2

m2D CFH CFF322 lnS t1u1

m4 D G1
b0

4 J 2
3

2
CFb0 lnS mR

2

m2D lnS mF
2

m2D 1 lnS mF
2

m2D
3H 22CFT̂DIS

(1)qq̄2CFK14CF
2z21CFF lnS t1u1

m4 D 2
3

2G F2ReG822
qq̄2

CF

2
1CF lnS s2

t1u1
D G J 1

3

2
b0 lnS mR

2

m2D
3FReG822

qq̄2
CF

4
2

CF

2
lnS t1u1

s2 D G D 1sqq̄→QQ̄
B S as~mR

2 !

p D 2

d~s4!H ln2S mF
2

m2D F1

2
CF

2 ln2S t1u1

m4 D 1
9

8
CF

22
3

2
CF

2 lnS t1u1

m4 D
22CF

2z22
b0

8
CF lnS t1u1

m4 D 1
3

16
b0CFG1

3

16
b0

2 ln2S mR
2

m2D 1
3

4
CFb0 lnS mF

2

m2D lnS mR
2

m2D F lnS t1u1

m4 D 2
3

2G J , ~3.13!
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whereT̂DIS
(1)qq̄ is defined in analogy to itsMS counterpart.

At the Tevatron, withAS51.8 TeV andmF5mR5m
5175 GeV/c2, and with the CTEQ5D parton densities@30#,
the exact NLO cross section in the DIS scheme is 4.60
and the NNLO-NNLL corrections provide an additional 0.3
pb. The NNLO corrections in the DIS scheme are mu
smaller than the correspondingMS corrections, which fol-
lows from the definition of the two schemes.

Results for the NNLO expansion of the resummed cr
section in PIM kinematics in both theMS and DIS schemes
are presented in Appendix C~see also Ref.@13#!. The differ-
ences between the expansions in the two different kinema
are in the extra terms involving ln(t1u1 /m4) for the 1PI fixed-
order expansions relative to the PIM expansions and in
matching terms needed to reach NNLL accuracy@19#.

C. Subleading logarithms and resummation prescriptions

In the previous subsection we derived all the NNL
threshold corrections forqq̄→t t̄ through NNLL accuracy. It
is interesting to study the effect of subleading@1/s4#1 and
d(s4) terms that come about when inverting the cross sec
from moment to momentum space. As we will see, this
intimately related to the disagreements between various
summation prescriptions that have been proposed. These
scriptions are needed to avoid the soft gluon divergence
the resummed cross section that appear whenas reaches the
Landau pole. As we have discussed before, in a finite-o
expansion, as presented in this paper, there are no d
gences and the results are prescription independent.

There are three resummation prescriptions available in
literature. The earliest is thex-space formalism of Refs
@3,31#. The resummation was performed at leading logar
mic ~LL ! accuracy in momentum space and a cutoff w
chosen to avoid the divergence. In practice, the cutoff w
chosen so that numerically the resummed result would a
with the expansion of the resummed cross section thro
NNLO. This approach was also used at NLL accuracy
Refs. @8,9,12#. The finite-order expansion is essentially t
01400
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same whether the resummation is performed in momen
or moment space, so, although the approach is quite dif
ent, in practice the numerical results from this approach
not inconsistent with the ones we are presenting here at
and NLL accuracy.

The second prescription is principal value resummati
originally developed for Drell-Yan production in Ref.@32#.
A principal value prescription is used to bypass the Land
pole. This approach was used at LL accuracy for top qu
production in Refs.@4,18#. Numerically the results are simi
lar to those of Ref.@3#. This approach has not yet been us
at NLL accuracy for top quark production at present.

The third approach is the minimal prescription of Ref.@5#.
It has been applied at both LL@5# and NLL accuracy@10# to
heavy quark production. Numerically it differs substantia
from the results of Refs.@3,4#. As discussed in Refs.@5,18#
this difference emerges from extra subleading terms, wh
are kept in the minimal prescription approach, that co
from the inversion of the resummed cross section from m
ment to momentum space.

Let us begin our study of subleading terms by rewriti
the MS NLO corrections forqq̄→QQ̄ in Eq. ~3.1! in the
shorthand notation

ŝ (1)~s4!5sB
as

p H c1d~s4!1c2F 1

s4
G

1

1c3F ln~s4 /m2!

s4
G

1
J ,

~3.14!
TABLE I. The MS corrections for top quark production in th

qq̄ channel in pb forpp collisions with AS51.8 TeV andm
5175 GeV/c2. Herem5mF5mR .

qq̄→t t̄ m5m m5m/2 m52m

Born 3.81 5.30 2.87
NLO-exact 0.81 -0.53 1.37
NLO-NLL 1.31 0.03 1.81
NLO-full S1V 1.26 -0.06 1.78
NNLO-NLL 1.01 0.67 1.29
NNLO-NNLL 0.80 0.62 1.22
9-7
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with c354CF , c252ReG822
qq̄22CF12CF ln@sm2/(t1u1)#

22CF ln(mF
2/m2), and c15cMS

(1)qq̄S1V . This result actually
comes from the inversion of the moment space expressi

ŝ (1)~N!5sB
as

p
$c11c2I 0~N!1c3I 1~N!%

5sB
as

p H c12c2 lnÑ1
c3

2
~ ln2Ñ1z2!J ,

~3.15!

whereÑ5NegE, with gE the Euler constant, andI 0 and I 1
are given in Appendix A. Equation~3.15! comes directly
from the expansion of the resummed cross section in
ment space in Eq.~2.7!.

Now, let us examine the NLO expansion at NLL acc
racy, with mF5mR5m. At that accuracy, we keep only th
ln2N and lnN terms in Eq.~3.15!. Since lnN5 ln Ñ2gE ,
upon inversion to momentum space we get back
@ ln(s4 /m2)/s4#1 and@1/s4#1 terms in Eq.~3.14! plus the fol-
lowing extra terms:

sB
as

p F2
c3gE

2

2
1c2gE2

z2

2
c3Gd~s4!. ~3.16!

But there are no terms involvinggE in the exact NLO cal-
culation, i.e., in the termc1 in Eq. ~3.14! which comes from

sMS
(1)qq̄S1V ; therefore these terms are clearly unphysic

They should not appear in the cross section because o
definition of theMS scheme. ThegE terms are an artifact o
the inversion from moment to momentum space. Indeed
we had kept NLL terms in lnÑ rather than lnN, there would
be nogE terms. Also the coefficient of thez2 term is wrong.
As can be seen from the full NLO corrections, it has t
wrong sign. We can study the numerical effect of these e
terms on the cross section. At the Tevatron, withAS51.8
TeV andm5175 GeV/c2, the full NLO S1V corrections,
Eq. ~3.1!, are 1.26 pb formF5mR5m, see Table I. At NLL
accuracy, the corrections are 1.31 pb. If we include all
unphysical terms of Eq.~3.16!, the NLL corrections become
0.39 pb, clearly very far from the true size of the fullS1V
corrections. Keeping only thez2 term in Eq.~3.16! we find
0.74 pb, which is closer to but still well below the fullS
1V corrections. If we keep only thez2 term but with oppo-
site sign, as in the full corrections, we find 1.88 pb. It is cle
that keeping unphysical subleading terms in the cross sec
can produce very misleading results. Even if we discard
unphysical terms and keep only some of the physical s
leading terms, we can still make erroneous predictions, e
cially if the coefficients are wrong. One of the greate
achievements~or, from another viewpoint, tests! of the for-
malism of theshold resummation at NLL and higher ac
racy is that it accurately reproduces the exact NLO cr
section both analytically and numerically. In fact, one m
argue that only because of this agreement is threshold res
mation worthwhile. After all, if the corrections to be re
summed are not dominant, then the necessity for resum
01400
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tion is greatly diminished. That holds not only for heav
quark production but also for other QCD processes such
direct photon@22#, W1 jet @20#, and single-jet production
@24#. Therefore it is important to ensure that we do not
troduce terms, unphysical or otherwise, that would spoil t
agreement.

We can extend our study of subleading logarithms
NNLO. The NNLO threshold corrections in moment spa
are given in shorthand notation by

ŝ (2)~N!5sB
as

2

2p2 H c3
2

4
ln4 Ñ2c3c2 ln3 Ñ

1Fc3S c11
1

2
z2c3D1c2

2G ln2 Ñ22c2 ln Ñ

3S c11
1

2
z2c3D1S c11

1

2
z2c3D 2

1F̃~b0 ,GS
2 ,K,2-loop!J , ~3.17!

i.e., by the square of the terms in curly brackets in Eq.~3.15!,
plus a functionF̃ that comprises theb0 terms that come from
changing the argument in the running coupling,as(m82)
5as(m

2)@12b0 ln(m82/m2)as(m
2)/(4p)#; the two-loop K

terms, withK defined below Eq.~2.8!; square terms from the
off-diagonal soft anomalous dimension matrix elements; a
two-loop GS and other terms@we have also absorbed inF̃ a
term2T1

2, with T15c1(m5m)]. Note that apart from theK
terms, the other two-loop terms appear only beyond NN
accuracy and are not known at present. We then rewrite
~3.17! in terms ofI 3 , I 2 , I 1, andI 0 defined in Appendix A.

We can then immediately invert back to momentum sp
and find

ŝ (2)~s4!5sB
as

2

p2 H 1

2
c3

2F ln3~s4 /m2!

s4
G

1

1
3

2
c3c2F ln2~s4 /m2!

s4
G

1

1~c3c11c2
22z2c3

2!

3F ln~s4 /m2!

s4
G

1

1~c2c12z2c2c31z3c3
2!F 1

s4
G

1

1S c1
2

2
2

c2
2

2
z21

1

4
c3

2z2
21z3c3c22

3

4
z4c3

2D d~s4!

1F~b0 ,GS
2 ,K,2-loop!J . ~3.18!

HereF denotes the terms that come from the inversion oF̃
and starts contributing at NLL and higher accuracy. One
easily see that this form, with the appropriate explicit expr
sion forF, agrees with the NNLO-NNLL expansion given i
Eq. ~3.8!, including the additional scale terms of Eq.~3.11!.
Clearly we do not know all the@1/s4#1 and d(s4) terms
9-8
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because of unknown two-loop corrections inF. Of course
there are nogE terms in the NNLO cross section. This is als
known from the two-loop Drell-Yan cross section@33–35#:
many of the NNLO terms are the same as for top qu
production since the exponent in the resummed cross se
that comes from the incoming partons is universal, and th
are nogE terms. Again, this follows from the definition o
the MS scheme. These terms are clearly unphysical at b
NLO and NNLO and indeed at any higher order.

Now, let us see what happens if one keeps the logarith
only at a certain accuracy. At NNLL accuracy, we keep
ln4 N, ln3 N, and ln2 N terms inŝ (2)(N), Eq.~3.17!. Then, the
subleading terms from the inversion to momentum space

sB
as

2

p2 H S z3c3
22

3

2
c3c2z2D F 1

s4
G

1

1d~s4!

3S c3
2z2

2

8
1c3c2z32

3

4
c3

2z42
z2

2
c2

22
z2

2
c3c1

22z2G812
qq̄G821

qq̄D J ~3.19!

plus

sB
as

2

p2 H b0CFz2F 1

s4
G

1

1d~s4!F2
2

3
b0CFz32z2

3S 2
b0

4
c21CFK D G J ~3.20!

plus

sB
as

2

p2 H gES b0CFgE14G812
qq̄G821

qq̄2
b0

2
c212CFK D F 1

s4
G

1

1d~s4!gE
2 S 2

3
b0CFgE12G812

qq̄G821
qq̄2

b0

4
c21CFK D J

1sB
as

2

p2 H Fc3
2

2
gE

32
3

2
c3c2gE

212gES c3c11c3
2z2

2
1c2

2D G
3F 1

s4
G

1

1d~s4!F3

8
c3

2gE
42c3c2gE

31gE
2

3S c3c11c3
2 z2

2
1c2

2D G J . ~3.21!

The subleadingz terms in Eq.~3.19! appear also in the ful
cross section of Eq.~3.18!. However, a comparison betwee
these two equations shows that some of these terms hav
wrong coefficients. The terms in Eq.~3.21! are again the
unphysicalgE terms that should not appear at any order
the perturbative series. Again, if we had kept NNLL terms
ln Ñ rather than lnN, there would be nogE terms. Theb0
andK terms in Eq.~3.20! would also be absent in an exa
01400
k
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th
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f

calculation. This is because they appear in integrals of
form of Eq.~A1!, which upon inversion to momentum spac
should give back the original ‘‘plus’’ distributions with no
subleading terms.

We can again study the numerical effect of these ex
subleading terms. In the following, we keepmF5mR5m. At
the Tevatron, withAS51.8 TeV andm5175 GeV/c2, the
MS NNLO-NNLL corrections forqq̄→t t̄ are 0.80 pb as we
saw in Table I. If we keep also the subleadingz terms in Eq.
~3.19! the result becomes 0.39 pb. If we keep the sublead
terms in both Eqs.~3.19! and~3.20!, the corrections become
0.13 pb. Finally, if we include all subleading terms, Eq
~3.19!, ~3.20!, and ~3.21!, the corrections become 0.08 p
This last result is similar to the result presented in Ref.@10#
~note that different parton densities are used; also our form
ism resums the fully differential cross section while@10# re-
sums only the total cross section; the latter approach in
duces some additional errors; see the discussion in
@36#!. Clearly the inclusion of the unphysicalgE and other
terms decreases the NNLO-NNLL corrections by a factor
10. The effects of these unphysical terms are much big
than those of the LL, NLL, and NNLL terms. It is difficult to
accept a result in which unphysical subleading terms do
nate the three leading powers of the logarithms. Such a re
defies the meaning of leading level, next-to-leading level a
so on. And as was evidenced by the NLO exercise, a re
with these subleading terms substantially underestimates
correct value for the cross section. We also note that if
keep the subleadingz terms from the inversion at full accu
racy, as in Eq.~3.18!, the corrections are 0.45 pb, muc
closer to the NNLO-NNLL result. Of course, we cannot d
rive the full NNLO cross section beyond NNLL accurac
because of missing two-loop terms, but this certainly in
cates that the corrections with subleading terms tend to
larger the better the accuracy.

We can also repeat this exercise at NLL accuracy. H
we will disregard thegE andb0 ,K terms. At NLL accuracy
for ŝ (2), the subleadingz terms from the inversion are

sB
as

2

p2 H 2
3

2
z2c3

2F ln~s4 /m2!

s4
G

1

1S z3c3
22

3

2
c3c2z2D F 1

s4
G

1

1d~s4!F3

8
c3

2~z2
222z4!1c3c2z3G J . ~3.22!

Again, the subleading terms above appear also in the
cross section of Eq.~3.18! but some of these terms have th
wrong coefficients. As we saw in Table I, the NNLO-NL
corrections are 1.01 pb. If one adds the subleading te
above, the result becomes 0.23 pb. Our conclusions rem
the same. We also note that if we keep only t
$@ ln(s4 /m2)#/s4%1 subleading terms from the inversion, w
find that the corrections are 0.58 pb, quite different from
result we get~0.80 pb! when we calculate the full NNLL
terms~if we also include the unphysical terms the disagre
ment is far worse!. In addition, we observe that if we per
form a LL calculation and then include subleading NLL„i.e.,
$@ ln2(s4 /m2)#/s4%1… terms from the inversion involvinggE ,
9-9
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the corrections become 0.28 pb versus the 1.01
that we find with a full NLL calculation. All these
exercises highlight the numerical problems that
encountered if one includes unjustified subleading te
in the expansion.

As is noted in Ref.@37#, the integrals of the leading loga
rithmic distributions with any smooth function, such as t
convolution with parton distributions, produce factorial co
tributions at nth order of the formas

n(2n21)!/n! 1•••.
These factorial terms naturally arise in both the exact cr
section at any fixed order and in the finite-order expansi
of the resummed cross section. In the minimal prescript
of Ref. @5# subleading terms are kept in the resummed cr
section and its expansion in order to avoid certain pow
corrections, arising from these factorial contributions, wh
have been shown to be absent in the Drell-Yan cross sec
in Refs. @38,39#. This is indeed a problem that deserves
tention as pointed out in Ref.@5#. However, the absence o
unphysical power corrections does not require the introd
tion in the expansion of unphysical terms, which, as we h
seen above, may greatly underestimate the true value o
cross section. The exact cross section does not have t
power corrections but also it does not have thegE terms,
only the z terms, as we have seen explicitly at NLO a
NNLO. Moreover, one has to be careful not to introdu
extra terms, even physical ones, that produce erroneous
merical results. At low orders, withn51,2, the factorial con-
tributions are negligible or small anyway, and certain
smaller than other terms in the expansion~see also the dis
cussion in Ref.@18#!. At higher orders of course the factoria
contribution grows and moreover we have ever increas
numbers of unknown coefficients of subleading logarith
~which actually may be more important numerically than t
factorial terms!. Therefore we stop the expansion at NNL
thus avoiding the theoretical problem with power corre
tions. At NLO and NNLO we can trust the perturbative e
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pansion, as we have determined all logarithmic coefficie
Our numerical analyses above confirm that. We also n
that in our approach the results for the NNLO corrections
not change substantially when going from LL to NNLL a
curacy~they change from 0.59 pb to 0.80 pb! while the cor-
responding results with all subleading terms change by
most an order of magnitude~that can also be seen b
comparing Table 1 of Ref.@5# with Table 2 of Ref.@10#!.
The relative stability of our results versus logarithmic acc
racy is an additional justification of our approach. We c
investigate keeping thez terms as a rough estimate of erro
as we have done above, but we should keep in mind that
may not necessarily offer an improvement on the calculat
as evidenced from the NLO results. Therefore, we find it b
in the numerical analyses presented in this paper not to re
any terms beyond NNLL accuracy. Thus, we do not find
very fast convergence of the higher order corrections tha
claimed in Refs.@5,10#.

In a recent paper@40# it is argued that threshold
enhancements are dominated by the region where
hierarchy among different powers of the thresho
logarithms is lost, and therefore NLL resummation
not reliable. Our numerical results at fixed order do n
agree with this claim, although it is certainly true th
the coefficients of lower powers of the logarithm ca
be large. Moreover, we note that even if the hierarc
among different powers of the logarithms were lost,
NNLO we have determined the coefficients of all the pow
of the logarithms, so our results are reliable regardless.
yond NNLO, however, there are subleading powers of lo
rithms with undetermined coefficients, which can be lar
and then the ambiguities with regard to the effect of suble
ing terms increase. Therefore, as discussed above, for
tailed numerical results we prefer to stop the expansion
NNLO.
D. NNLO-NNLL threshold corrections for gg\QQ̄

For thegg channel in theMS scheme the NNLO-NNLL corrections are

ŝgg→QQ̄
MS(2)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!

5sgg→QQ̄
B S as~mR

2 !

p D 2H 8CA
2F ln3~s4 /m2!

s4
G

1

1F2b0CA212CA
2 lnS mF

2

m2D G F ln2~s4 /m2!

s4
G

1
J

1
as

4~mR
2 !

p
KggBQEDF ln2~s4 /m2!

m2 G
1

CA3~Nc
221!H ~ t1

21u1
2!

s2 FNc
2 lnS m2s

t1u1
D

22NcS CF2
CA

2 DReLb22NcCFG12
CF

Nc
12

1

Nc
~CF2CA! ReLb1Nc

2
~ t1

22u1
2!

s2
lnS u1

t1
D J

1F ln~s4 /m2!

m2 G
1

S S as~mR
2 !

p D 2

sgg→QQ̄
B H b0FCA1CA lnS mR

2

m2D 1CA lnS t1u1

m2s
D G
9-10
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12CAK216z2CA
214CAcMS

(1)ggS1VJ 1
as

4~mR
2 !

2p~Nc
221!

BQEDS 12
2t1u1

s2 D
3H 4NcFReG822

gg2CA2CA lnS mF
2

s D 2CA lnS t1u1

m4 D G 2

1
Nc

4
~Nc

214!~G831
gg!22b0NcReG822

ggJ
1

as
4~mR

2 !

2p~Nc
221!

BQEDS t1
22u1

2

s2 D H 4G831
ggFReG811

gg2CA2CA lnS mF
2

s D 2CA lnS t1u1

m4 D G12~Nc
222!G831

gg

3FReG822
gg2CA2CA lnS mF

2

s D 2CA lnS t1u1

m4 D G2b0

Nc
2

4
G831

ggJ 1
as

4~mR
2 !

2p~Nc
221!

BQED

3H 4

Nc
FReG811

gg2CA2CA lnS mF
2

s D 2CA lnS t1u1

m4 D G 2

2
Nc

2
~G831

gg!22
8

Nc

3FReG822
gg2CA2CA lnS mF

2

s D 2CA lnS t1u1

m4 D G 2

2b0

1

Nc
Re~G811

gg22G822
gg!J D 1OS F 1

s4
G

1
D , ~3.23!

where cMS
(1)ggS1V is defined in analogy to Eq.~3.9!, and the elements of the soft anomalous dimension matrix~dropping

gauge-dependent terms and an overallas /p) are

ReG811
gg52CF~ReLb11!1CA , G831

gg5 lnS u1
2

t1
2 D ,

ReG822
gg52CF~ReLb11!1

CA

2 F21 lnS t1u1

m2s
D 1ReLbG . ~3.24!

As for theqq̄ channel, we can also derive at NNLL accuracy additional@1/s4#1 andd(s4) terms involving the scale. Thes
terms are

sgg→QQ̄
B S as~mR

2 !

p D 2F 1

s4
G

1
H ln2S mF

2

m2D CAF5

4
b022CA lnS t1u1

m4 D G2
3

2
CAb0 lnS mR

2

m2D lnS mF
2

m2D 1 lnS mF
2

m2D
3F22CAT̂MS

(1)gg
18CA

2z22CAK1b0Nc1b0Nc lnS t1u1

m2s
D 22Nc

2 ln2S t1u1

m4 D 22Nc
2 lnS t1u1

m4 D lnS m2

s D
22Nc

2 lnS t1u1

m4 D G2
3

2
CAb0 lnS mR

2

m2D F lnS t1u1

m2s
D 11G J 1

as
4~mR

2 !

p

BQED

Nc~Nc
221!

F 1

s4
G

1

3FReG811
gg22ReG822

gg1S 12
2t1u1

s2 D Nc
2ReG822

gg1
Nc

3

4
G831

gg
~ t1

22u1
2!

s2 GFCA lnS t1u1

m4 D lnS mF
2

m2D 1
b0

2
lnS mR

2

mF
2 D

1
b0

4
lnS mR

2

m2D G1sgg→QQ̄
B S as~mR

2 !

p D 2

d~s4!H F22z2CA
21

1

2
CA

2 ln2S t1u1

m4 D 2
5

8
b0CA lnS t1u1

m4 D G ln2S mF
2

m2D
1

3

4
b0CA lnS t1u1

m4 D lnS mF
2

m2D lnS mR
2

m2D 1
3

16
b0

2 ln2S mR
2

mF
2 D J , ~3.25!
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where T̂MS
(1)gg is defined in analogy to its counterpart in th

qq̄ channel.
At the Tevatron, withAS51.8 TeV andmF5mR5m

5175 GeV/c2, the exact NLO cross section for thegg chan-
nel is 0.55 pb and the NNLO-NNLL corrections provide a
additional 0.32 pb. The relative size of the NNLO corre
tions for thegg channel compared to NLO is much great
than for theqq̄ channel. This is because of the different co
coefficients in the expressions for the two channels, a
obvious from the coefficients of the leading logarithms.

NNLO results for thegg channel in PIM kinematics are
presented in Appendix C~see also Ref.@13#!.

E. Top quark production at the Tevatron

In this subsection we add the numerical contributio
from the qq̄ and gg partonic channels and present som
numerical results for the top quark total cross section
transverse momentum distributions at the Tevatron~see Ap-
pendix B for a discussion of the hadronic calculation!. We
use the CTEQ5M parton densities@30#.

In Fig. 3 we plot the Born term and the NLO and NNL
corrections for top quark production at the Tevatron w
AS51.8 TeV as a function of the top mass. At NLO w
show the exact corrections as well as the NLL thresh
corrections and the full S1V threshold corrections. At
NNLO we show results with both NLL and NNLL accurac

In Fig. 4 we plot the exact NLO and the NNLO-NNLL
MS top quark cross section at the Tevatron withAS51.8
TeV as a function of the top-quark mass. We note a dram
decrease of the scale dependence of the cross section
we include the NNLO-NNLL corrections. We observe th
the NNLO cross section is uniformly above the NLO cro
section for all scale choices~we stress that there is no field
theoretical reason for the NNLO results to lie within th
NLO results!. We also show recent results from the Collid

FIG. 3. The Born, NLO, and NNLO corrections for top qua
production at the Tevatron withAS51.8 TeV.
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Detector at Fermilab~CDF! @41# and D0 @42# and note the
agreement between experiment and theory. In Fig. 5
show the corresponding results for the upgraded Teva
with AS52.0 TeV.

In Table II we list the exact NLO and the NNLO-NNLL
total cross sections in pb for top quark production at
Tevatron withAS51.8 TeV and 2.0 TeV, a top quark mas
m5175 GeV/c2, and scalem5m,m/2,2m. The NNLO-
NNLL cross section withAS51.8 TeV is 6.3 pb versus 5.2
pb at NLO, an enhancement of over 20%, atm5m. Good
agreement is observed with recent results from CDF,s
56.521.4

11.7 pb with m5176.166.6 GeV/c2 @41#, and D0,s
55.961.7 pb withm5172.167.1 GeV/c2 @42#. Similar en-
hancements are noted for the upgraded Tevatron energy

FIG. 4. The total cross section for top quark production at
Tevatron withAS51.8 TeV. The labels are as in Fig. 1. Rece
results from CDF and D0 are also shown.

FIG. 5. The total cross section for top quark production at
Tevatron withAS52.0 TeV. The labels are as in Fig. 1.
9-12
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We would like to stress that the significantly reduc
scale dependence should not be interpreted as an equiv
reduction of the uncertainty in the value of the cross sect
Other sources of error, such as from parton distributio
subleading logarithms, and distance from threshold,
provide more uncertainty than the scale variation, a
those errors cannot all be calculated precisely at pres
This is why we do not give more than one significa
figure after the decimal point in the numbers
Table II. However, it is gratifying to see that perturbatio
theory behaves as we would expect it to@43#: at higher
orders the scale variation decreases. Since the effec
subleading logarithms is the greatest uncertainty in
calculation, the total t t̄ cross section can be writte

TABLE II. The hadronict t̄ production cross section in pb fo

pp̄ collisions with AS51.8 TeV and 2.0 TeV, andm
5175 GeV/c2.

pp̄→t t̄ AS51.8 TeV AS52.0 TeV

m5mF5mR NLO NNLO NLO NNLO
m5m/2 5.4 6.4 7.4 8.9
m5m 5.2 6.3 7.1 8.8
m52m 4.7 6.3 6.5 8.8
01400
lent
n.
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n
d
nt.
t

of
e

with a minimal error estimate as 6.320.4
10.1 pb at AS51.8

TeV and as 8.820.5
10.1 pb at AS52.0 TeV, where the

larger lower error indicates the uncertainty from sublead
terms.

Our formalism allows the calculation of any releva
differential cross section. Transverse momentum a
rapidity distributions with leading logarithmic resumm
tion have been presented for top quark product
at the Tevatron in Ref.@44#. The exact NLO and the
NNLO-NNLL top quark transverse momentum
(pT5t1u1 /s22m2) distributions at the Tevatron, with
AS51.8 TeV and 2.0 TeV, andm5175 GeV/c2 are
shown in Fig. 6, again in theMS scheme. We note an
overall enhancement at NNLO with little change
shape. Similar conclusions are also reached for the rapi
distributions@45#.

Finally, we note that threshold resummation is also r
evant for bottom quark production at the DESY HERA-
experiment. Leading logarithmic resummed results for
bottom quark total cross section and differential distributio
have been presented in Refs.@27,46#; for the NLL resummed
cross section see Refs.@8,10#. At NNLO-NNLL with AS
541.6 GeV andm5m54.75 GeV/c2 we find a cross sec
tion for that experiment of 42 nb, while the NLO cross se
tion is 18 nb.
ing order
IV. NNNLO THRESHOLD CORRECTIONS

We now go beyond the NNLO corrections and expand the resummed cross section to next-to-next-to-next-to-lead
at NNLL accuracy.

For theqq̄ channel in theMS scheme the NNNLO-NNLL threshold corrections are given by

FIG. 6. Top quark transverse momentum distribution at the Tevatron, withAS51.8 TeV and 2.0 TeV, andm5175 GeV/c2. The labels
are as in Fig. 1.
9-13
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ŝqq̄→QQ̄
MS(3)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B S as~mR

2 !

p D 3S 8CF
3F ln5~s4 /m2!

s4
G

1

120CF
2FReG822

qq̄2CF1CF lnS sm2

t1u1
D2CF lnS mF

2

m2D 2
b0

6 G F ln4~s4 /m2!

s4
G

1

1H 8CF
2c114CFc2

2116CFG812
qq̄G821

qq̄1
b0

2

3
CF264CF

3z218CF
2K14b0CF

3F2
c2

3
1CF lnS t1u1

sm2D 1CF lnS mR
2

m2D 1CF2ReG822
qq̄G J F ln3~s4 /m2!

s4
G

1

D 1OS F ln2~s4/m2!

s4
G

1
D , ~4.1!

wherec1 ,c2 are defined below Eq.~3.14!. Note that at NNLL accuracy there are no cubic terms inGS ; they start contributing
at O„$@ ln2(s4/m

2)#/s4%1…. One can also derive terms involving the factorization and renormalization scales at lower pow
the logarithms as was explained in Sec. III.

For thegg channel the leading logarithms at NNNLO are of course the same as for theqq̄ channel with the substitution
CF→CA in the coefficients. Beyond leading logarithms the more complex color structure of the hard scattering forgg
channel makes the calculation more lengthy, as is evident already at NNLO, and will not be pursued here.

In the DIS scheme the corresponding result is

ŝqq̄→QQ̄
DIS (3)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B S as~mR

2 !

p D 3S CF
3F ln5~s4 /m2!

s4
G

1

15CF
2FReG822

qq̄2
CF

4
1

1

2
CF lnS s2

t1u1
D2CF lnS mF

2

m2D 2
b0

4 G F ln4~s4 /m2!

s4
G

1

1H 2CF
2c1812CFc28

218CFG812
qq̄G821

qq̄1
7

24
b0

2CF28CF
3z212CF

2K1b0CF

3F2c281
3

2
CF lnS t1u1

m4 D 1CF lnS mR
2

s D 1
5

4
CF22ReG822

qq̄G J F ln3~s4 /m2!

s4
G

1

D 1OS F ln2~s4/m2!

s4
G

1
D , ~4.2!

wherec185cDIS
(1)qq̄S1V , andc2852ReG822

qq̄2CF/21CF ln@s2/(t1u1)#22CF ln(mF
2/m2).

We can extend our study of subleading logarithms to NNNLO. The NNNLO thresholdMS corrections forqq̄→QQ̄ in
moment space are given in shorthand notation by

ŝ (3)~N!5sB
as

3

6p3 H Fc12c2 ln Ñ1
c3

2
~ ln2 Ñ1z2!G3

1F̃8~b0 ,GS
2 ,GS

3 ,K,3-loop!J , ~4.3!

i.e. by the cube of the terms in curly brackets in Eq.~3.15! plus a functionF̃8 that gives theb0 terms that come from changin
the argument in the running coupling, the two-loopK terms, additional square and cubic terms in the soft anoma
dimension matrix elements, and two- and three-loopGS and other terms. Note that we have also absorbed inF̃8 the terms
2T1

323T1
2@c12c2 ln Ñ1(c3/2)(ln2 Ñ1z2)#, with T15c1(m5m). We then rewrite Eq.~4.3! in terms ofI 5 ,I 4 ,I 3 ,I 2 ,I 1, andI 0

defined in Appendix A.
Inverting back to momentum space, we have

ŝ (3)~s4!5sB
as

3

p3 H 1

8
c3

3F ln5~s4 /m2!

s4
G

1

1
5

8
c3

2c2F ln4~s4 /m2!

s4
G

1

1S c3c2
21

c1c3
2

2
2z2c3

3D F ln3~s4 /m2!

s4
G

1

1S 3

2
c1c2c323z2c3

2c21
c2

3

2
1

5

2
c3

3z3D F ln2~s4 /m2!

s4
G

1

1Fc1
2c3

2
1c1c2

22z2c3
2c12

5

2
z2c3c2

215z3c3
2c21

5

4
z2

2c3
32

15

4
c3

3z4GF ln~s4 /m2!

s4
G

1
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1F1

2
c2c1

213c3
3z52

15

4
c3

2c2z422c3
3z2z31c1c3

2z312c3c2
2z31

5

4
c3

2c2z2
22c1c2c3z22

1

2
z2c2

3GF 1

s4
G

1

1Fc1
3

6
2

5

2
c3

3z613c3
2c2z51

3

2
c3

3z2z42
3

2
c3c2

2z42
3

4
c3

2c1z41
5

6
z3

2c3
322z2z3c2c3

21c1c2c3z3

1
c2

3

3
z32

1

6
c3

3z2
31

1

4
c1c3

2z2
21

1

2
c3c2

2z2
22

1

2
c1c2

2z2Gd~s4!1F8~b0 ,GS
2 ,GS

3 ,K,3-loop!J , ~4.4!

whereF8 comes from the inversion ofF̃8 and starts contributing at NLL and higher accuracy. One can easily see tha
above equation, with the appropriate explicit expression forF8, agrees with the NNNLO-NNLL expansion given in Eq.~4.1!.
Of course we cannot derive all of the$@ ln2(s4 /m2)#/s4%1 and lower terms in Eq.~4.4! because of unknown 3-loop correction
in F8.

Again, let us see what happens if one keeps the logarithms only at a certain accuracy. At NLL accuracy forŝ (3) the
subleading terms from the inversion~keeping onlyz terms and nob0 ,K,gE terms as discussed in Sec. III C! are

sB
as

3

p3 H 2
5

4
z2c3

3F ln3~s4 /m2!

s4
G

1

1S 5

2
z3c3

32
15

4
c3

2c2z2D F ln2~s4 /m2!

s4
G

1

1F15

8
~z2

222z4!c3
315c3

2c2z3GF ln~s4 /m2!

s4
G

1

1F S 2
5

2
z2z313z5D c3

31
15

8
c3

2c2~z2
222z4!GF 1

s4
G

1

1F5

2
c3

3S 2
z2

3

8
1

z3
2

3
1

3

4
z2z42z6D 1c3

2c2S 2
5

2
z2z313z5D Gd~s4!J .

~4.5!

At NNLL accuracy forŝ (3) the corresponding subleading terms from the inversion to momentum space are

sB
as

3

p3 H S 5

2
z3c3

32
15

4
c3

2c2z2D F ln2~s4 /m2!

s4
G

1

1F3S 2
5

4
z41

3

8
z2

2D c3
315c3

2c2z323z2c3c2
22

3

2
z2c1c3

2248CFz2G812
qq̄G821

qq̄G
3F ln~s4 /m2!

s4
G

1

1F ~22z2z313z5!c3
31

15

8
c3

2c2~z2
222z4!12z3c3c2

21z3c1c3
2132CFz3G812

qq̄G821
qq̄GF 1

s4
G

1

1F1

2
c3

3S 2
1

4
z2

31
5

3
z3

213z2z425z6D1c3
2c2S 2

5

2
z2z313z5D

1
3

4 S c3c2
21

c1c3
2

2 D ~z2
222z4!112CFG812

qq̄G821
qq̄~z2

222z4!Gd~s4!J . ~4.6!
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A comparison of both the NLL and the NNLL subleadin
terms with Eq.~4.4! shows that most of these terms ha
incorrect coefficients. The subleading terms bring down

value of the MS NNNLO corrections forqq̄→t t̄ at the
Tevatron withAS51.8 TeV andm5175 GeV/c2 from 0.9
pb ~1.1 pb! at NNLL ~NLL ! to around 0.3 pb. As we dis
cussed in Sec. III C, retaining subleading terms with inc
rect coefficients in the expansions can produce mislead
results. We also note that in the DIS scheme the corresp
ing corrections~without subleading terms! are 0.2 pb, again
smaller than theMS result because of the specification of t
DIS scheme.

Since we do not know the~potentially large! coefficients
of subleading powers~beyond NNLL! of the logarithms at
NNNLO, in contrast to the NNLO calculation where a
logarithms were determined, we cannot make firm numer
01400
e

-
g
d-

al

predictions at this order. This also relates to the questi
raised in Ref.@40# as we discussed earlier. A full NNNLO
calculation may give substantially different~and smaller! re-
sults from the NNNLO-NNLL calculation, but at present w
cannot calculate corrections beyond NNLL accuracy. The
fore, as we have stated before, for reliable numerical pre
tions we prefer to stop the expansion at NNLO.

V. NNNNLO AND HIGHER-ORDER THRESHOLD
CORRECTIONS

Finally, we briefly discuss the corrections at next-to-ne
to-next-to-next-to-leading and higher orders.

For theqq̄ channel in theMS scheme at NLL accuracy
the NNNNLO threshold corrections are given by
9-15
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ŝqq̄→QQ̄
MS(4)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B S as~mR

2 !

p D 4H 16

3
CF

4F ln7~s4 /m2!

s4
G

1

1
56

3
CF

3FReG822
qq̄2CF1CF lnS sm2

t1u1
D2CF lnS mF

2

m2D
2

b0

4 G F ln6~s4 /m2!

s4
G

1
J 1 OS F ln5~s4/m2!

s4
G

1
D . ~5.1!

By matching with the exact NLO cross section, as we ha
described before, one can derive the full NNLL terms
well. We note that no cubic or quartic terms inGS appear at
NNLL accuracy. A full determination of the cross section
this order would require four-loop calculations. The leadi
logarithms for thegg channel at NNNNLO again follow
from Eq. ~5.1! with the substitutionCF→CA .

In the DIS scheme the corresponding NLL result is

ŝqq̄→QQ̄
DIS(4)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B S as~mR

2 !

p D 4H 1

3
CF

4F ln7~s4 /m2!

s4
G

1

1
7

3
CF

3FReG822
qq̄2

CF

4
1

1

2
CF lnS s2

t1u1
D2CF lnS mF

2

m2D
2

15

56
b0G F ln6~s4 /m2!

s4
G

1
J 1OS F ln5~s4/m2!

s4
G

1
D .

~5.2!

Again, numerically the corrections in the DIS scheme
smaller than in theMS scheme.

The finite-order expansion procedure can be extende
arbitrarily high orders at NNLL accuracy. In general, atnth
order inas ~beyond the Born term! the leading logarithms in
the MS scheme are

ŝqq̄→QQ̄
MS(n)

~s4 ,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B S as~mR

2 !

p D n2n

n!
~2CF!nF ln2n21~s4 /m2!

s4
G

1

1•••. ~5.3!

For the DIS scheme we only need to replace (2CF)n by CF
n

in the above equation. For thegg channel we simply replace
CF by CA as discussed before. It is easy to check that
~5.3! reproduces the leading logarithms in all the expansi
presented in this paper.
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VI. CONCLUSIONS

Threshold resummation can make powerful improv
ments to NLO calculations of heavy quark production cro
sections. The analytical form of the threshold corrections
the fully differential cross section can be derived at NNL
accuracy at arbitrarily high order and explicit results ha
been provided in this paper through NNNNLO. The role
subleading logarithms has been studied in detail and it
been shown that care must be taken to arrive at reliable
merical predictions for the cross section. For top quark p
duction at the Tevatron NNLO-NNLL predictions have be
made for the total cross section and transverse momen
distributions. The NNLO-NNLL corrections are significan
and they dramatically reduce the dependence of the c
section on the scale relative to NLO.
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APPENDIX A: MELLIN TRANSFORMS

Here we present some useful formulas for the Mel
transforms that are used in the resummed cross section
the finite-order expansions.

We define

I n~N!5E
0

1

dzzN21F lnn~12z!

12z G
1

. ~A1!

One may also define

I n~N!5E
0

`

ds4e2Ns4 /m2F lnn~s4 /m2!

s4
G

1

. ~A2!

The results below are identical for either definition.
Then, we have@2#

I n~N!uN→1`5 lim
e→01

S ]

]e D nF1

e
~eea(e)21!GF11OS 1

ND G
~A3!

where
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a~e!52 ln Ñ1 (
n52

`

~21!n
en21

n
zn5 (

n50

`

anen ~A4!

with

a052 ln Ñ, ai5
~21! i 11

i 11
z i 11 , i 51, . . . ,̀ . ~A5!

Here Ñ5NegE with gE the Euler constant,gE50.577 . . . .
Also z25p2/6, z45p4/90, z65p6/945, z85p8/9450, etc.,
while z351.2020569 . . . , z551.0369278 . . . , z7
51.0083493 . . . , etc.

Then
01400
I n~N!5
a0

n11

n11
1na0

n21a11n~n21!a0
n22a21n~n21!

3~n22!a0
n23S a1

2

2
1a3D 1n~n21!~n22!

3~n23!a0
n24~a1a21a4!1n~n21!~n22!~n23!

3~n24!a0
n25S a1

3

6
1

a2
2

2
1a1a31a5D 1••• . ~A6!

The expressions forI n have been presented up ton53 in
@2#. Here we extend this table ton57, useful through
NNNNLO expansions:
I 0~N!52 ln Ñ

I 1~N!5
1

2
ln2 Ñ1

z2

2

I 2~N!52
1

3
ln3 Ñ2z2 ln Ñ2

2

3
z3

I 3~N!5
1

4
ln4 Ñ1

3

2
z2 ln2 Ñ12z3 ln Ñ1

3

2
z41

3

4
z2

2

I 4~N!52
1

5
ln5 Ñ22z2 ln3 Ñ24z3 ln2 Ñ23 ln Ñ~z2

212z4!24S z2z31
6

5
z5D

I 5~N!5
1

6
ln6 Ñ1

5

2
z2 ln4 Ñ1

20

3
z3 ln3 Ñ1

15

2
~z2

212z4! ln2 Ñ14~5z2z316z5!ln Ñ15S z2
3

2
1

4

3
z3

213z2z414z6D
I 6~N!52

1

7
ln7 Ñ23z2 ln5 Ñ210z3 ln4 Ñ215~z2

212z4! ln3 Ñ212~6z515z2z3! ln2 Ñ215

3S 8z61z2
31

8

3
z3

216z2z4D ln Ñ260z3z42
720

7
z7272z2z5230z2

2z3

I 7~N!5
1

8
ln8 Ñ1

7

2
z2 ln6 Ñ114z3 ln5 Ñ1

105

4
~z2

212z4!ln4 Ñ14~42z5135z2z3!ln3 Ñ1
105

2

3S z2
318z61

8

3
z3

216z2z4D ln2 Ñ14S 126z2z51105z3z41180z71
105

2
z2

2z3D ln Ñ1
105

8
z2

41336z3z5

1
315

2
z4~z2

21z4!1420z2z61630z81140z2z3
2 . ~A7!
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APPENDIX B: HADRONIC CROSS SECTIONS

The double differential hadronic cross secti
d2sh1h2

/dT1dU1 is written as a convolution of parton dis
tributions with the partonic differential cross section:

S2
d2sh1h2

~S,T1 ,U1!

dT1dU1

5(
i , j

E
x1

2

1 dx1

x1
E

x2
2

1 dx2

x2
f i /h1

~x1 ,mF
2 !f j /h2

~x2 ,mF
2 !

3s2
d2ŝ i j ~s,t1 ,u1!

dt1du1
, ~B1!

where the sum is over all massless parton flavors
f i(x,mF

2) are the parton distribution functions for flavori in
hadronh at factorization scalemF . The hadronic invariants
S,T1 ,U1 are defined in analogy to their partonic counte
parts. The lower limits of the momentum fractions of t
partons in the hadrons are given byx1

252U1 /(S1T1) and
x2

252x1T1 /(x1S1U1).
By making a transformation from the variable

(T1 ,U1 ,x1 ,x2) to the variables (Y,pT
2 ,x1 ,s4), with Y andpT

the rapidity and transverse momentum, via

T15AS~pT
21m2!e2Y, U15AS~pT

21m2!eY,

x25
s42x1T1

x1S1U1
, ~B2!

we may write the differential cross section inpT andY as

d2sh1h2

dpT
2dY

5(
i j

1

SEx1
2

1 dx1

x1
E

0

x1(S1T1)1U1

3
ds4

s42x1T1
f~x1!fS s42x1T1

x1S1U1
D s2

d2ŝ i j

dt1du1
.

~B3!

Now, let us write thekth-order partonic threshold correction
in the shorthand notation

s2
d2ŝ i j

(k)~s,t1 ,u1!

dt1du1
5S as

p D kH Ai j ~s,t1 ,u1!d~s4!

1 (
l 50

2k21

al
i j ~s,t1 ,u1!F lnl~s4 /m2!

s4
G

1
J .

~B4!

By substituting the above expression for the partonic thre
old corrections in Eq.~B3!, we can write the hadronic
kth-order corrections as
01400
d

-

h-

d2sh1h2

(k)

dpT
2dY

5(
i j

S as

p D k 1

SEx1
2

1 dx1

x1
f~x1!

3E
0

x1(S1T1)1U1 ds4

s42x1T1
fS s42x1T1

x1S1U1
D

3H Ai j ~s4!d~s4!1 (
l 50

2k21

al
i j ~s4!F lnl~s4 /m2!

s4
G

1
J .

~B5!

After some rearrangements of terms and partial integratio
we can rewrite this as

d2sh1h2

(k)

dpT
2dY

5(
i j

S as

p D k1

S (
l 50

2k21

3H E
x1

2

1 dx1

x1
f~x1!E

0

x1(S1T1)1U1
ds4u~s42D!

3
1

s4
lnlS s4

m2D Fal~s4!
1

s42x1T1
fS s42x1T1

x1S1U1
D

2al~0!
1

~2x1T1!
fS 2x1T1

x1S1U1
D G

1E
x1

2

1 dx1

x1
F 1

l 11
lnl 11S x1~S1T1!1U1

m2 D al~0!

1A~0!G 1

~2x1T1!
f~x1!fS 2x1T1

x1S1U1
D J . ~B6!

The transverse momentum distributions are then given

dsh1h2

(k)

dpT
52pT

dsh1h2

(k)

dpT
2

52pTE
Y2

Y1

dY
d2sh1h2

(k)

dpT
2dY

, ~B7!

where

Y656
1

2
lnS 11bT

12bT
D ~B8!

andbT5A124(pT
21m2)/S. The total cross section can the

be retrieved by integrating Eq.~B7! overpT with lower limit

0 and upper limitAS/42m2.

APPENDIX C: NLO AND NNLO THRESHOLD
CORRECTIONS IN PIM KINEMATICS

In this appendix we present results for the NLO a
NNLO expansions of the resummed cross section in hea
quark-pair inclusive kinematics~see also Refs.@7,13,19#!.
Here the distance from threshold is measured in terms of
variablez5Q2/s, with Q2 the invariant mass squared of th
heavy quark-antiquark pair, and the corresponding ‘‘plu
distributions are of the form$@ lnk(12z)#/(12z)%1 .
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1. NLO threshold corrections

In the MS scheme the NLO-NLL corrections for theqq̄

→QQ̄ channel are

ŝqq̄→QQ̄
MS(1)

~12z,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B as~mR

2 !

p H 4CFF ln~12z!

12z G
1

1F 1

12zG
1

F2ReG822
qq̄22CF22CF lnS mF

2

s D G
1d~12z!F2

3

2
CF lnS mF

2

s D 1
b0

2
lnS mR

2

s D G J .

~C1!

We note that in thed(12z) contribution the expansion re
produces only the scale-dependent terms. The rest of
d(12z) terms can only be obtained by matching to the ex
NLO cross section in PIM kinematics@19#; this is exactly
analogous to what was presented in Sec. III for 1PI kinem
ics.

In the DIS scheme the corresponding result is

ŝqq̄→QQ̄
DIS (1)

~12z,m2,s,t1 ,u1 ,mF ,mR!

5sqq̄→QQ̄
B as~mR

2 !

p H 2CFF ln~12z!

12z G
1

1F 1

12zG
1

F2ReG822
qq̄2

CF

2
22CF lnS mF

2

s D G
1d~12z!F2

3

2
CF lnS mF

2

s D 1
b0

2
lnS mR

2

s D G J .

~C2!
01400
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For the gg→QQ̄ channel the NLO-NLL corrections in
the MS scheme are

ŝgg→QQ̄
MS(1)

~12z,m2,s,t1 ,u1 ,mF ,mR!

5sgg→QQ̄
B as~mR

2 !

p H 4CAF ln~12z!

12z G
1

22CA lnS mF
2

s D
3F 1

12zG
1

1d~12z!
b0

2
lnS mR

2

mF
2 D J

1as
3~mR

2 !KggBQEDF 1

12zG
1
H Nc~Nc

221!
~ t1

21u1
2!

s2

3F S 2CF1
CA

2 DReLb1
CA

2
lnS t1u1

m2s
D 2CFG

1
~Nc

221!

Nc
~CF2CA!ReLb2~Nc

221!lnS t1u1

m2s
D

1CF

~Nc
221!

Nc
1

Nc
2

2
~Nc

221!lnS u1

t1
D ~ t1

22u1
2!

s2 J .

~C3!

2. NNLO threshold corrections

We now present the NNLO corrections in PIM kinema
ics. We give explicit results at NLL accuracy. As noted
Sec. III, to reach NNLL accuracy we need to derive matc
ing terms in PIM kinematics@19#. The only other difference
between the expansions in the two different kinematics is
the extra terms involving ln(t1u1 /m4) for the 1PI fixed-order
expansions relative to the PIM expansions.

In the MS scheme, the NNLO-NLL corrections forqq̄

→QQ̄ are
nd
s.
ŝqq̄→QQ̄
MS (2)

~12z,m2,s,t1 ,u1 ,mF ,mR!5sqq̄→QQ̄
B S as~mR

2 !

p D 2S 8CF
2F ln3~12z!

12z G
1

1F ln2~12z!

12z G
1

3H 2b0CF112CFFReG822
qq̄2CF2CF lnS mF

2

s D G J 1F ln~12z!

12z G
1

3H CF lnS mF
2

s D F28ReG822
qq̄12CF14CF lnS mF

2

s D G13CFb0 lnS mR
2

s D J
1F 1

12zG
1

FCFS 3CF1
b0

4 D ln2S mF
2

s D 2
3

2
CFb0 lnS mR

2

s D lnS mF
2

s D G D . ~C4!

We note that, at NLL accuracy, in the@ ln(12z)/(12z)#1 coefficient we derive only the terms involving the factorization a
renormalization scales, and in the@1/(12z)#1 coefficient we can only determine quadratic terms in the scale logarithm

In the DIS scheme the corresponding corrections are
9-19
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ŝqq̄→QQ̄
DIS (2)

~12z,m2,s,t1 ,u1 ,mF ,mR!5sqq̄→QQ̄
B S as~mR

2 !

p D 2S 2CF
2F ln3~12z!

12z G
1

1F ln2~12z!

12z G
1

3H 2
3b0

4
CF16CFFReG822

qq̄2
CF

4
2CF lnS mF

2

s D G J 1F ln~12z!

12z G
1

3H CF lnS mF
2

s D F28ReG822
qq̄2CF14CF lnS mF

2

s D G1
3

2
CFb0 lnS mR

2

s D J
1F 1

12zG
1

FCFS 3CF1
b0

4 D ln2S mF
2

s D 2
3

2
CFb0 lnS mR

2

s D lnS mF
2

s D G D . ~C5!

In the MS scheme for thegg→QQ̄ channel the NNLO-NLL corrections are

ŝgg→QQ̄
MS (2)

~12z,m2,s,t1 ,u1 ,mF ,mR!5sgg→QQ̄
B S as~mR

2 !

p D 2H 8CA
2F ln3~12z!

12z G
1

1F2b0CA212CA
2 lnS mF

2

s D GF ln2~12z!

12z G
1
J

1
as

4~mR
2 !

p
KggBQEDF ln2~12z!

12z G
1

CA 3~Nc
221!H ~ t1

21u1
2!

s2 FNc
2 lnS t1u1

m2s
D

22NcS CF2
CA

2 DReLb22NcCFG12
CF

Nc
12 lnS sm2

t1u1
D12

1

Nc
~CF2CA! ReLb

1Nc
2
~ t1

22u1
2!

s2
lnS u1

t1
D J 1sgg→QQ̄

B S as~mR
2 !

p D 2F ln~12z!

12z G
1

S lnS mF
2

s DCA

3H 22b014CAF lnS sm2

t1u1
D111 lnS mF

2

s D G J 13CAb0 lnS mR
2

s D D
1

as
4~mR

2 !

p
KggBQEDF ln~12z!

12z G
1

lnS mF
2

s DCA2~Nc
221!H Nc

2 lnS u1

t1
D ~u1

22t1
2!

s2

12NcS CF2
CA

2 D ~ReLb11!
~ t1

21u1
2!

s2
1 lnS t1u1

sm2D 1S 22
2CF

Nc
D ~ReLb11!21J

1sgg→QQ̄
B S as~mR

2 !

p D 2F 1

12zG
1

F5

4
CAb0 ln2S mF

2

s D 2
3

2
CAb0 lnS mR

2

s D lnS mF
2

s D G . ~C6!
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