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Effective field theory and the quark model
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We analyze the connections between the quark model~QM! and the description of hadrons in the low-
momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation
for the effective baryon fields, we show that the ‘‘nonrelativistic’’ constituent QM for baryon masses and
moments is completely equivalent through O(ms) to a parametrization of the relativistic field theory in a
general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks.
Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expan-
sion in effective field theory, and provides a direct connection between the field theory and the semirelativistic
models for hadrons used in successful dynamical calculations. This allows dynamical information to be incor-
porated directly into the chiral expansion. We find, for example, that the striking success of the additive QM
for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent
corrections.
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I. INTRODUCTION

The striking success of the nonrelativistic quark mo
~NRQM! in explaining the main features of baryon and m
son masses and baryon magnetic moments suggests th
success is independent of the drastic approximations
sumed in its typical formulations. To explore this point, w
have examined the connection between the quark m
~QM! approach to baryon masses and moments, and the
orous relativistic effective field theory approach used in
chiral expansion of QCD. We show here that, as noted in@1#,
the QM for the static properties of baryons is simply a p
rametrization of matrix elements in the underlying relativ
tic field theory in a general spin-flavor basis, where the fla
and spin variables can be identified with those of effect
valence quarks. This identification holds exactly through fi
order in the chiral symmetry breaking mass variablems . The
connection becomes clear when the chiral baryon fields
written in a natural form with three flavor and three sp
indices. This change of basis clarifies the structure of
theory, including the origin of approximate SU~6! relations,
and demonstrates the natural occurrence of the QM spin-
interaction terms in the baryon masses, and of effec
quark moments in the description of the baryon magn
moments@2,3#.

The change of basis also provides a direct connection
tween the effective field theory and semirelativistic mod
for hadrons@4# used in successful dynamical calculatio
@5,6#, and allows dynamical information to be incorporat
into the chiral expansion. We will show, in particular, th
the three-flavor-index notation allows a natural classificat
of the spin-flavor correlations that appear in general ma
elements into those arising from effective one-, two-, a
three-body operators. This classification corresponds dire
to the underlying dynamics when spin-dependent forces
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symmetry-breaking mass terms can be treated perturbativ
as seems to be the case. For example, the usual add
model for the baryon moments corresponds exactly to
one-body moment operator in the effective field theory. T
model is successful because the non-additive two- and th
body operators arise from spin-dependent interactions
are correspondingly small.

The ‘‘nonrelativistic’’ aspects of the QM arise becau
the baryons are heavy, not because the dynamical quark
heavy or nonrelativistic. The actual internal structure of t
hadrons is absorbed into the momentum expansion of he
baryon chiral perturbation theory@7#, and the quark degree
of freedom move with the baryons. If these are sufficien
massive, the baryons may be treated as nonrelativistic w
no recoil effects in loop diagrams, and the ‘‘quark’’ kinema
ics of the NRQM follow.

As we will show in detail in a subsequent paper@8#, the
three-flavor-index representation of the fields allows an e
analysis of loop corrections@2,3#, and shows why the re
sidual loop corrections to the baryon masses@1# and mo-
ments@9# are small. This is not the result of the smallness
individual loop corrections as such, but rather of the sm
ness of terms with new, nonadditive structures that viol
the Gell-Mann–Okubo relations for masses and the Ok
relation for moments.

The paper is organized as follows. In Sec. II we deve
considerable backgound material on the three-flavor-in
representation of the baryon fields, including calculatio
methods. In Sec. III, we rewrite the chiral expansion in th
notation, comment on its connection with dynamics, and
rive the baryon-meson couplings and the octet-decuplet m
splitting in the limit of equal quark masses. We then analy
the baryon masses and moments to O(ms) in Secs. IV and V
using the new representation and its connection with
namical models, and present concluding remarks in Sec.

II. EFFECTIVE FIELD THEORY IN A SPIN-FLAVOR
BASIS

A. Heavy baryon chiral perturbation theory

In the following sections, we will formulate heavy-baryo
chiral perturbation theory~HBChPT! in a spin-flavor basis.
©2001 The American Physical Society08-1
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This allows an easy connection of HBChPT to the unde
ing quark structure of the hadrons. We will then show th
the results for the baryon masses and magnetic mome
taken at leading order in the chiral symmetry breaking qu
mass matrix, are completely equivalent to those of the na
quark model.

It will be useful as a first step to summarize the stand
results we will need on the chiral expansion. This expans
is usually written in terms of matrix representations for t
pseudoscalar meson and octet baryon operators:

f5
1

2 (
l 51

8

l lf l

5
1

A2S 1

A2
p01

1

A6
h p1 K1

p2
2

1

A2
p01

1

A6
h K0

K2 K̄0 2
2

A6
h

D ,

~2.1!

B5
1

A2
(
l 51

8

l lBl

5S 1

A2
S01

1

A6
L S1 p

S2
2

1

A2
S01

1

A6
L n

2J2 J0
2

2

A6
L

D ,

~2.2!

where thels are the Gell-Mann matrices of SU~3!. The ma-
trices f and B transform on their first and second indic
according to the3 and 3̄ representations of SU~3! respec-
tively, that is, as octet quark-antiquark (qQ̄) combinations
with

f→
U

UfU†, B→
U

UBU†. ~2.3!

The f ’s act as the Goldstone bosons of a broken SU(L
^ SU(3)R flavor symmetry@10#.

Because the chiral expansion is a low-momentum exp
sion and the baryons are relatively massive, it is conven
in dealing with ChPT for baryonic processes to use
heavy-baryon formalism developed in Ref.@7# and extended
to the chiral context in Ref.@11#. This has been used to stud
a number of hadronic properties, for example, baryon ma
@11–15#, moments@16–18#, weak decays@11,19,20#, and
low-energy meson-baryon@11# and electromagnetic@21# in-
teractions. The key ideas in heavy-baryon perturbat
01400
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theory ~HBPT! involve the replacement of the momentu
pm of a nearly on-shell baryon by an on-shell momentu
m0vm plus a small additional momentumkm, p5m0v1k,
and the replacement of the baryon field operatorB(x) by a
velocity-dependent operatorBv(x) constructed to remove th
dependence of the Dirac equation on the large momen
m0vm,

Bv~x!5
1

2
~11v” !eim0v” vmxmB~x!, vmvm51. ~2.4!

The velocity-dependent perturbation expansion of the re
fined theory involves modified Feynman rules and an exp
sion in powers ofk/m0 @7,11#. Here m0 is an appropriate
baryonic mass,vm is an on-shell four velocity, and it is as
sumed thatk•v!m0. Velocity-dependent Rarita-Schwinge
decuplet fieldsTv

m can be defined in the same manner@11#.
We will work in the heavy baryon limit throughout the pa
per, and will henceforth drop the subscriptv on the fields
Bv ,Tv .

For later reference, we give the flavor-symmetric chi
Lagrangian for the modified fields at leading order in t
momentum expansion, retaining all chiral invariants in t
baryon fields with at most one derivative@11#:

L05 i Tr B̄~v•D!B2dmBTr B̄B12D Tr B̄Sm$Am ,B%

12F Tr B̄Sm@Am ,B#2 i T̄m~v•D!Tm1dmTT̄mTm

1C~ T̄mAmB1B̄AmTm!12HT̄mSnAnTm

1
1

4
f 2 Tr ]mS]mS. ~2.5!

Here dmB5mB2m0 and dmT5mT2m0 , Dm5]m
1@Vm ,•# is the covariant chiral derivative,Sm is the spin
operator defined in@11#, andD, F, C, andH are strong in-
teraction coupling constants. The vector and axial vector c
rents are given by

Vm5
1

2
~j]mj†1j†]mj!5 f 22~f]mf2]mff!1•••,

~2.6!

Am5
i

2
~j]mj†2j†]mj!5 f 21]mf1•••, ~2.7!

where

j5eif/ f , S5e2if/ f5j2, ~2.8!

and f '93 MeV is the pion decay constant. The currents
traceless,

Tr Vm5Tr Am50, ~2.9!

a condition that eliminates the potential invarian
(Tr B̄SmB)(Tr Am) and (TrT̄mSnTm)(Tr An).
8-2



n
i

v-
er
ex
p

re
le
le

n

on

ry

s-

i-

vo
in

on
rk

te

re
iv
te
n,
u

no
g

use

the
eral

nent
d

in
d
ted

truc-
tive
s

l
the
or-
ary

is
nd-

s

of

of

of

no

e

EFFECTIVE FIELD THEORY AND THE QUARK MODEL PHYSICAL REVIEW D64 014008
B. Effective baryon and meson fields in a spin-flavor basis

1. The octet-baryon fields

The two-index matrix representation of the octet baryo
in Eq. ~2.2! hides their three-quark structure. This makes
difficult to trace the flow of flavor through a process invol
ing baryons, or to connect the chiral picture with the und
lying quark picture. We will therefore adopt a three-ind
description of the flavor structure of the baryons. This a
pears at the outset to be more complicated, but a th
flavor-index notation is already standard for the decup
baryons. The change in the description will allow a simp
detailed analysis of the structure of loop connections i
subsequent paper@8#.

We consider, in particular, representations of the bary
constructed using the ‘‘quark’’ fieldqi

aa and its conjugate

q̄i
aa to carry the flavor, spin, and color structure of the ba

ons. Herei Pu,d,s is the flavor index, andaP1,2,3 is the
color index, anda is a Dirac spinor index. These fields tran
form under the vector or diagonal subgroup SU(3)V of the
chiral SU(3)L ^ SU(3)R as fundamental and ant
fundamental representations, respectively

qi→
U

Uii 8qi 8 and q̄i→
U

Uii 8
* q̄i 85q̄i 8Ui 8 i

† . ~2.10!

The octet baryons are easy to represent in a three-fla
index notation even though they involve flavor and sp
combinations of mixed symmetry in an SU(3)f ^ SU(2)spin
decomposition. The key observation is that there is only
color-singlet combination of three anticommuting qua
fields with total spin 1/2. This corresponds to a flavor oc
There is no flavor singlet.1 The fermionic symmetry is built
in automatically in a quark-field description. We can the
fore determine the properties of the octet baryon fields tr
ally by combining two quark fields in a singlet spin sta
multiplying by a third quark field which carries the total spi
and combining the color indices in a color singlet. The res
is an octet fieldBi jk

g

Bi jk
g 5

1

6
eabcqi

aaqj
bbqk

gc~Cg5!ab , ~2.11!

where we have used the charge conjugation matrixC
5 ig2g0 to write Bi jk

g as a spinor product.Bi jk
g transforms

under SU(3)V as

Bi jk
g U→→

U

Uii 8U j j 8Ukk8Bi 8 j 8k8
g . ~2.12!

As long as we are dealing with processes that do
involve color dynamics such as gluon emission or exchan

1The flavor-singlet and color-singlet components of3^ 3^ 3 are
completely antisymmetric, giving overall symmetry. There is
completely antisymmetric combination of three spins in2^ 2^ 2,
hence no j 51/2 flavor- and color-singlet combination of thre
quarks with the required overall antisymmetry.
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we can suppress the color factor (1/A6)eabc and the color
indices on the quark fields and treat theq’s as commuting
rather than anticommuting fields, with

Bi jk
g [

1

A6
qi

aqj
bqk

g~Cg5!ab5
1

A6
~qi

TCg5qj !qk
g . ~2.13!

The superscript T denotes a spinor transpose. We will
this compressed notation in later sections of the paper.

We emphasize that the transformation properties of
quark operator above determine those of the most gen
effective octet fieldBi jk

g (x). As noted later in Sec. III B,Bi jk
g

can be regarded more abstractly as the octet compo
(Cg5)abc i jk

abg(x) of a general six-index interpolating fiel

c i jk
abg(x) which can be used to calculate Green’s functions

the low-momentum limit of QCD. Moreover, the flavor an
spin correlations that appear in matrix elements calcula
using the quark operators determine the most general s
ture of matrix elements expressed in terms of the effec
fields c or B, a fact we will use extensively in later section
of the paper.

A representation similar to that in Eq.~2.11! was used by
Labrenz and Sharpe@22# in their study of quenched chira
perturbation theory for baryons. However, because of
presence of bosonic as well as fermionic quarks in their f
malism for suppressing quark loops, they found it necess
to symmetrize in the last two flavor indices in Eq.~2.11! to
eliminate a flavor-singlet component of their fields. There
no flavor singlet here, and our representation is correspo
ingly simpler.

It is straightforward to show that

Bjik
g 52Bi jk

g , ~2.14!

so the quarksqi andqj must have different flavors. There i
no symmetry constraint with respect to those quarks andqk .
The absence of any flavor- and color-singlet combination
three quarks with total spinj 51/2 means thate i jkBi jk

g [0
giving the Jacobi-type identity

Bi jk
g 1Bjki

g 1Bki j
g [0. ~2.15!

These relations will be used extensively in later sections
the paper.

We have normalizedBi jk
g to correspond to annihilation

operators for the octet baryons with the standard choice
baryon phases:

B121↔
1

A2
p, B122↔

1

A2
n,

B131↔
1

A2
S1, B232↔

1

A2
S2,

B231↔
1

A2
S01

1

A6
L, B132↔

1

A2
S02

1

A6
L,
8-3
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B133↔
1

A2
J0, B233↔

1

A2
J2. ~2.16!

The remainingB’s can be identified with the baryons usin
the relations in Eqs.~2.14! and ~2.15!. With this normaliza-
tion, we can sum over repeated indices in subsequent e
tions. Finally, the three-flavor-index tensorsBi jk are related
to the two-index matrixBkl defined in Eq.~2.2! by

Bkl
g 5

1

A2
e i j l Bi jk

g , Bi jk
g 5

1

A2
e i j l Bkl

g . ~2.17!

The interpretation of the fieldsBi jk
g can be clarified by

going to the Lorentz frame in whichvm5(1,0), that is, the
rest frame of the baryon with momentumpm5m0vm. Up to
corrections of orderk/m0, the matrix elements of the Dira
matrices betweenB’s reduce in this frame to matrix elemen
of the 232 Pauli matrices,

1→1, g5→0, gm→vmgmg5→~0,s!,

s0m→0, s i j →e i jksk . ~2.18!

In particular, usingCg5→2 is2, we find that

Bi jk
g →2

1

6
eabc~qi

T ais2qj
b!qk

c,g[2
1

A6
~qi

Tis2qj !qk
g ,

~2.19!

where qk
g is now a two-component spinor with spin inde

gP6 1
2 . The factor in parentheses is a standard represe

tion of a singlet spin configuration of the spinorsqi ,qj .
We can putBi jk

g in a form that displays the structure of th
SU~6! wave functions of the quark model by using the e
pansion of an arbitrary 232 matrix over the complete set o
Pauli matrices,

Agb5
1

2
@dgb Tr A1~s!gb•Tr sA# ~2.20!

to rearrange the spinors to combineqi and qk in a spinor
product. ChoosingAgb as

Agb5qk
g~qi

Tis2!b, ~2.21!

we obtain

Bi jk
g 52

1

2A6
@~qi

Tis2qk!qj
g1~qi

Tis2sqk!•~sqj !
g#, i 5” j .

~2.22!

The first term in this expression is antisymmetric in the
dices i ,k and has those quarks in a singlet spin state. T
term vanishes except for theL hyperon, wherei ,kPu,d.
The second term has quarksi andk in a triplet spin state, is
symmetric in those indices, and reproduces the expe
SU~6! structure of the remaining octet baryons when writt
out in detail for a specific choice ofg.
01400
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It is easily checked that the spin operatorsi•sj has the
expected values23 ~1! when acting on a singlet~triplet!
configuration of two quarks, wheresi denotes the action o
the Pauli matrixs on qi . Thus,

si•sjqi
T~ is2!qj[~sqi !

T
•~ is2sqj !523qi

T~ is2!qj ,

~2.23!

si•sjqi
T~ is2!sqj[~s lqi !

T~ is2!ss lqj5qi
T~ is2!sqj ,

~2.24!

where we have used the relations

sT~ is2!52~ is2!s, ~2.25!

s•s53, and s lss l52s with an implied sum over the
repeated indexl in the last.

We will also need, more generally, the action ofsi•sk on
a mixed-symmetry combinationqk

gqi
a . Using the expansion

in Eq. ~2.20!, we can rewrite this product as

qk
gqi

a5
1

2
@dga~qi

T qk!1~s1!ga~qi
T s1qk!1~s2!ga~qi

T s2qk!

1~s3!ga~qi
T s3qk!#. ~2.26!

The third term on the right-hand side has the quarks i
singlet configuration. The remaining symmetrical combin
tions are triplets. As a consequence,

si•skqk
gqi

a5qk
gqi

a22~s2!ga~qi
T s2qk!, ~2.27!

where we have added and subtracted a singlet term to re
duce the original product as the first term on the right. W
find immediately that

~12si•sk!qk
gqi

a52~s2!ga~qi
T s2qk!

52~ is2!ga~qk
T is2qi !, ~2.28!

a relation we will need later.
Alternatively, addingqk

gqi
a to both sides of the expressio

in Eq. ~2.27! and evaluating the right-hand side explicitl
we find that the operator

Pik5
1

2
~11si•sk! ~2.29!

exchanges the spin indices of quarksi andk or, alternatively,
acts as the exchange operator for the flavor indicesi ,k when
the order of the spin indices is kept fixed,

Pikqi
aqk

g5qi
gqk

a5qk
aqi

g . ~2.30!

We note finally that the projection operator for a tot
spin-1/2 configuration of three quarks is

P1/25
1

6
~32si•sj2sj•sk2sk•si !. ~2.31!
8-4
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2. The decuplet-baryon fields

The decuplet baryons are represented in the SU~6! lan-
guage@23# by a fieldTi jk

mg which is a Rarita-Schwinger spino
with four-vector and spinor indicesm andg, is a completely
symmetric tensor in the flavor indicesi , j ,kP1,2,3[u,d,s,
and is a color singlet. In particular,T transforms as the three
quark combination

Ti jk
mg5

1

18A2
eabc~qi

aaqj
bbqk

gc1qk
aaqj

bbqi
gc1qi

aaqk
bbqj

gc!

3~Cgm!ab , ~2.32!

or, equivalently, as the decuplet component

(
P( i jk )

~Cgm!abc i jk
abg ~2.33!

of the general six-index interpolating field discussed in S
III B. In particular, the transformation ofTi jk under SU(3)V
follows from Eqs.~2.10! and ~2.32!,

Ti jk
mg→

U

Uii 8U j j 8Ukk8Ti 8 j 8k8
mg . ~2.34!

The Rarita-Schwinger constraintgmTmg50 reduces to
vmTmg50 in the rest frame of the baryon. As a result,Tmg

→(0,Tg) in that frame, where the spatial vectorTg is given
by

T i jk
g 5

1

18A2
eabc@~qi

T ais2sqj
b!qk

gc1 j↔k1k↔ i #.

~2.35!

Alternatively, with color suppressed,

T i jk
g 5

1

6A3
@~qi

Tis2sqj !qk
g1 j↔k1k↔ i #, ~2.36!

an expression which can be written as

T i jk
g 5P3/2

1

2A3
~qi

Tis2sqj !qk
g . ~2.37!

HereP3/2 is the projection operator for total spin 3/2,

P3/25
1

6
~31si•sj1sj•sk1sk•si !5

1

3
~Pi j 1Pjk1Pki!,

~2.38!

with Pi j the flavor permutation operator defined in E
~2.29!.

The field T111
g 5(T111

1,g ,T111
2,g ,T111

3,g ) is normalized to the
D11, with the combination

D j z53/2
11 5

1

A2
~T111

1,1/22 iT111
2,1/2! ~2.39!
01400
c.

.

5
1

3A6
@~qi

Tis2s2qj !qk
1/21 j↔k1k↔ i # ~2.40!

acting as the annihilation operator for theD11 state with
j z513/2. Heres6 are the usual spin raising and lowerin
operators,

s65
1

2
~s16 is2!. ~2.41!

The remaining decuplet baryons withj z513/2 have the
same spin structure. The replacement ofT111 by Ti jk in Eq.
~2.39! gives the following connections:

T111↔D11, T112↔
1

A3
D1, T122↔

1

A3
D0,

T222↔D2T113↔
1

A3
S* 1, T123↔

1

A6
S* 0,

T223↔
1

A3
S* 2, T133↔

1

A3
J* 0,

T233↔
1

A3
J* 2, T333↔V2. ~2.42!

The remainingT’s are determined by the complete symme
in the flavor indices.

3. Pseudoscalar meson fields

The effective octet pseudoscalar meson fieldsf i j corre-
spond to quark-antiquark pairs in a singlet spin configu
tion,

f i j 5
1

A6
S qi

aaq̄j
bb2

1

3
d i j qk

aaq̄k
bbD dab~Cg5!ab ~2.43!

and transform under SU(3)V as

f i j →
U

Uii 8U j j 8
* f i 8 j 85Uii 8f i 8 j 8U j 8 j

† . ~2.44!

The use of this representation makes the quark flow in
interaction diagram clear. However, physical meson mas
are customarily used in loop calculations in chiral perturb
tion theory so we will generally use the representation

f i j 5
1

2 (
l 51

8

l i j
l f l ~2.45!

instead, with

f l5(
i j

l j i
l f i j 5

1

A6
(
i j

l i j
l qi

aaq̄j
bbdab~Cg5!ab .

~2.46!
8-5
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Note that we will not include the flavor-singlet pseudosca
nominally theh8, in our later calculations.

C. Baryon and meson propagators

The momentum-space propagators forB, T, andf can be
constructed fairly easily. There is an overall factor

i /~v•k1 i e!, ~2.47!

for a heavy baryon with momentumpm5m0vm1km @7,11#,
and the usual factor

i /~k22M21 i e! ~2.48!

for a meson with momentumkm and massM. The spin and
flavor structures are easily determined in the quark repre
tation by calculating vacuum expectation values of produ
of the fields and their conjugates expressed in terms of
q’s and q̄’s. Thus, in a heavy baryon,

^0uqi 8
aaq̄i

bbu0&5
1

2
~11v” !abdabd i 8 i ~2.49!

→dabdabd i 8 i , vm→~1,0!,
~2.50!

where the quark must be taken to move with the four vel
ity vm of the baryon with

~v”21!q50. ~2.51!

The results for the propagators from an intial state w
flavors i , j ,k and spinor and Lorentz indicesg,m to a final
state with flavorsi 8, j 8,k8 and indicesg8,m8 are

B: iSB; i 8 j 8k8;k j i
g8g

~v,k!5Pi 8 j 8k8;k j i
Bg8g i

v•k1 i e
, ~2.52!

T: iST; i 8 j 8k8;k j i
m8g8;mg

~v,k!5Pi 8 j 8k8;k j i
Tm8g8;mg i

v•k1 i e
, ~2.53!

f: iD j 8 j~k!5d j 8 j

i

k22M21 i e
. ~2.54!

The projection operators for the octet and decuplet bary
are

Pi 8 j 8k8;k j i
B;g8g

5P1/2
g8gPi 8 j 8k8;k j i

B , ~2.55!

Pi 8 j 8k8;k j i
T;m8g8;mg

5P3/2
m8g8;mgPi 8 j 8k8;k j i

T , ~2.56!

where P1/2 and P3/2 are the spin projection operators fo
spins 1/2 and 3/2,

P1/2
g8g5

1

2
~11v” !g8g , ~2.57!
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P3/2
m8g8;mg5F1

2
~11v” !S vm8vm2gm8m2

4

3
Sm8SmD G

g8g

~2.58!

andPB andPT are flavor projection operators

Pi 8 j 8k8;k j i
B

5
1

6
~2d i 8 id j 8 jdk8k22d i 8 jd j 8 idk8k1d i 8 id j 8kdk8 j

2d i 8 jd j 8kdk8 i1d i 8kd j 8 jdk8 i2d i 8kd j 8 idk8 j !,

~2.59!

Pi 8 j 8k8;k j i
T

5
1

6
~d i 8 id j 8 jdk8k1d i 8 jd j 8 idk8k1d i 8 id j 8kdk8 j

1d i 8 jd j 8kdk8 i1d i 8kd j 8 jdk8 i1d i 8kd j 8 idk8 j !.

~2.60!

The projection operators have the properties

Pi 8 j 8k8;k j i
Bg8g Bi jk

g8 5Bi 8 j 8k8
g8 , B̄k8 j 8 i 8

g8 Pi 8 j 8k8;k j i
Bg8g

5B̄k j i
g ,

~2.61!

Pi 8 j 8k8;k j i
Tm8g8;mgTi jk

mg5Ti 8 j 8k8
m8g8 , T̄k8 j 8 i 8

mg Pi 8 j 8k8;k j i
Tm8g8;mg

5T̄k j i
mg ,

~2.62!

where repeated indices are to be summed, both here
later. Our labeling conventions are such that

Pi 8 j 8k8;k j i
Bg8g

5^k8 j 8i 8;g8u i jk ;g&, ~2.63!

Pi 8 j 8k8;k j i
Tm8g8;mg

5^k8 j 8i 8;m8g8u i jk ;mg&. ~2.64!

The results for the propagators and projection opera
are easy to derive using either the covariant representatio
the heavy-baryon fields in Eqs.~2.11! and~2.32!, or the rest-
frame representations in Eqs.~2.19! and ~2.36! and time-
ordered perturbation theory@24#. Because the production o
baryon-antibaryon pairs (Z graphs! vanishes in the heavy
baryon limit, the propagator factor 1/v•k is equivalent to the
simple energy denominator 1/@E(m0v1k)2E(m0v)#. The
spin projection operators are given directly by sums o
intermediate spin states in the baryon rest frame, with

P1/2
g8g5dg8g , ~2.65!

P3/2
r 8g8;rg5

1

3
@d r 8rdg8g1~s rs r 8!g8g#

5d r 8rdg8g2
1

3
~s r 8s r !g8g

5d r 8rdg8g2
4

3
~Sr 8Sr !g8g , ~2.66!
8-6
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in that frame. The indicesr ,r 8 in P3/2
r 8g8;rg label the compo-

nentsTrg of the spatial vectorTg, Eq. ~2.35!. The projection
operators in Eqs.~2.57! and ~2.58! are the covariant gener
alizations of these results.

We will also need the projection operator that extracts
spin-1/2 component of a vector-spinor product. This is giv
by

P1/2
r 8g8;rg5

1

3
~s r 8s r !g8g5

4

3
~Sr 8Sr !g8g , ~2.67!

with

P1/2
r 8g8;rg1P3/2

r 8g8;rg5d r 8rdg8g . ~2.68!

These operators hold for a general vector-spinor prod
They are equivalent to the operatorsP1/2 and P3/2 in Eqs.
~2.31! and ~2.38! for products expressed in terms of qua
fields.2

III. CHIRAL INTERACTIONS IN THREE-FLAVOR-INDEX
FORM

A. The chiral effective Lagrangian

It is straightforward to rewrite the chiral Lagrangian
Eq. ~2.5! in the three-flavor-index notation. The transform
tions of the fieldsBi jk

g andTi jk
mg under generalg5 transforma-

tions implied by Eqs.~2.12! and~2.34! lead to the covarian
derivatives

DnBi jk
g 5]nBi jk

g 1Vii 8
n Bi 8 jk

g
1Vj j 8

n Bi j 8k
g

1Vkk8
n Bi jk 8

g ,
~3.1!

DnTi jk
mg5]nTi jk

mg1Vii 8
n Ti 8 jk

mg
1Vj j 8

n Ti j 8k
mg

1Vkk8
n Ti jk 8

mg ,
~3.2!

where theV’s are the components of the vector current m
trix in Eq. ~2.6!. The leading-order Lagrangian becomes

2For example,

P3/2
r 8g8;rg~qi

Tis2s rqj !qk
g5

1
3 ~qi

T is2s r 8qj !qk
g81

1
6 ~qi

T is2s rqj

1qj
T is2s rqi !~s rs r 8qk!

g8

5
1
3 @~qi

T is2s r 8qj !qk
g81~qi

T is2s r 8qk!qj
g8

1~qj
T is2s r 8qk!qi

g8#

5
1
3 ~Pi j 1Pjk1Pki!~qi

T is2s r 8qj !qk
g8

5P3/2~qi
T is2s r 8qj !qk

g8 ,
where we have used the symmetry ofqi

T is2s rqj in the first line,
and have then used the relations in Eqs.~2.27! and ~2.38! and the
antisymmetry ofqi

T is2qj to reduce the result.
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L05 i ~B̄v•DB!2dmB~B̄B!12~D1F !~B̄SmBAm!24~D

2F !~B̄SmAmB!2 i ~ T̄mv•DTm!1dmT~ T̄mTm!

12H~ T̄mSnAnTm!1A2C @~ T̄mAmB!1~B̄AmTm!#

1
1

4
f 2~]mS]mS!, ~3.3!

where the bilinear invariants in this representation are
fined in general as

~B̄GB![B̄k j i
a GabBi jk

b , ~3.4a!

~B̄GBA![B̄k8 j i
a GabAk8kBi jk

b , ~3.4b!

~B̄GAB![B̄k j i 8
a GabAi 8 iBi jk

b , ~3.4c!

~ T̄mGTm![T̄k j i
magmnGabTi jk

nb , ~3.4d!

~ T̄mGAlTm![T̄k j i 8
ma gmnGabAi 8 i

l Ti jk
nb , ~3.4e!

~B̄GAmTm![B̄k j i 8
a gmnGabAi 8 i

m Ti jk
nb , ~3.4f!

~SS![S j i S i j . ~3.4g!

Here G is an arbitrary Dirac matrix,A is a scalar or vector
operator, andgmn is the Lorentz metric tensor with signatur
22.

The couplings in Eq.~3.3! are the same as in the matr
form of L0 in Eq. ~2.5!. However, this Lagrangian could
have been written down directly, with arbitrary coefficien
as the most general allowed by chiral invariance at the le
ing order in the derivative expansion.

The expressions forL0 in Eqs. ~2.5! and ~3.3! are con-
nected through the relations3

~B̄GB!5~Tr B̄B!abGab , ~3.5a!

~B̄GBA!5~Tr B̄AB!abGab , ~3.5b!

~B̄GAB!52
1

2
~Tr B̄BA!abGab1

1

2
~Tr A!

3~Tr B̄B!abGab , ~3.5c!

~B̄GAmTm!5
1

A2
e i 8 j l B̄lk

a Ai 8 i
m Ti jk

mbGab , ~3.5d!

~SS!5Tr SS. ~3.5e!

3Labrenz and Sharpe@22# use a similar notation, but include a
extra term in their definition of the fieldBi jk which is unnecessary
in the present context. As a result their relations analogous to
~3.5b!–~3.5d! are more complicated.
8-7
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The first three relations follow from Eq.~2.17!. The spinor
indicesa andb refer toB̄ andB, and the traces on the righ
hand sides of these expressions to matrix traces withf andB
represented as in Eqs.~2.1! and~2.2!. Tr Am50 for the axial
current so the second term on the right-hand side of
~3.5c! vanishes for the invariant (B̄SmAmB).

While the Lagrangian above gives a chiral description
baryonic processes in the low-momentum limit, it is not cle
how the various terms inL0 are connected to the underlyin
dynamical theory, and in particular, what dynamical re
tions, if any, there may be among the effective couplin
We will explore aspects of this connection in the followin
sections, and will show that the strong couplingsD, F, C, and
H in fact have the familiar SU~6! ratios when the spin-spin
interactions in the dynamical theory are weak.

B. Connection with dynamical models

The quark picture used above appears at one level as
a calculational device for keeping track of the flavor and s
indices of the most general effective baryon and meson fi
Bi jk

g (x), Ti jk
mg(x), andf i j (x). However, at a deeper level, th

hadrons are dynamical quark-gluon systems with curre
and interactions defined at the quark level, including
symmetry-breaking quark mass terms

q̄i
amiqi

a ~3.6!

in the basic QCD Lagrangian. The matrix elements of qua
level operators in hadronic states involve averages over
internal structures of the hadrons, with only the spin a
flavor indices of the external particles being left at the end
label the matrix elements. This structure of the matrix e
ments is simply parametrized in HBChPT through the eff
tive interactions of point hadrons given in Eq.~3.3!, with the
couplings representing the unknown matrix elements. T
internal quark-gluon structure of the hadrons appears o
through the chiral momentum expansion.

Dynamical models provide further information which r
flects the underlying quark-gluon structure of the theory.
make this more explicit, we note that the gauge-invari
operators

C i jk
abg~xi ,xj ,xk ,x!

5Nea8b8c8qi
aa~x1!qj

bb~x2!qk
gc~x3!

3Uaa8~x1 ,x!Ubb8~x2 ,x!Ucc8~x3 ,x! ~3.7!

are possible interpolating operators for color-singlet baryo
states with spinor indicesa,b,g containing dynamical
quarks with flavorsi , j ,k. The factorsU are path-ordered
integrals of the gauge potential~Wilson lines!,

Uaa8~x1 ,x!5P expS i E
x

x1
dxmAm~x! D . ~3.8!

The x’s and the integration paths lie on a spacelike surfa
These operators, or the operatorsc i jk

abg(x) obtained by inte-
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grating the product ofC i jk
abg(xi ,xj ,xk ,x) with an appropriate

compact function over thexi on the surface, can be used
define Green’s functions for the theory and to identify t
physical states@25#. The external hadronic states are st
characterized by their spins and the flavors of the quarks

It is clear that a sufficiently low-momentum probe w
not be sensitive to the detailed structure of the hadron.
small effect on matrix elements of non-zeroxi in the inter-
polating field or the hadron wave function can be trea
perturbatively in an expansion in the probe moment
around zero, that is, as a derivative expansion. A fami
example is given by the low-momentum expansion of
electromagnetic form factors of a composite system.

Brambilla, Consoli, and Prosperi@4# used a Green’s func
tion construction based on the operatorsC i jk

abg(xi ,xj ,xk ,x)
to derive an effective semi-relativistic Hamiltonian for hea
quarks in quenched QCD. The structure of this Hamilton
reflects the underlying dynamics, so it will be useful to wr
it down in part:

H5H01
as

3m1
2

S1•F ~r123p1!
1

r 12
3

1~r133p1!
1

r 13
3 G

2
2as

3m1m2

1

r 12
3

S1•~r123p2!2
2as

3m1m3

1

r 13
3

S1•~r133p3!

1•••1
2as

3m1m2

1

r 12
3 @3~S1• r̂ 12!~S2• r̂ 12!2S1•S2#

1
2as

3m1m2

8p

3
d3~r12!S1•S21•••, ~3.9!

where r i j 5xi2xj , and Si5si /2. H0 contains the kinetic
terms and a spin-independent but velocity-dependent inte
tion VSI ,

H05(
i 51

3

Api
21mi

21VSI . ~3.10!

In Eq. ~3.9! we have displayed only the spin-orbit, tenso
and spin-spin interactions for particle 1 associated with
exchange of gluons between pairs of quarks. The ellip
contain additional Thomas-type spin-orbit terms associa
with the long-range part of the potential and the remain
spin-dependent terms obtained by cyclic permutations of
quark labels 1,2,3. The full expression is given in@4#. The
kinematic masses that appear are to be interpreted as
effective masses of dressed quarks while the factors 1/mimj
are more properly non-local energy operators 1/EiEj that
smear out the short-range singularities.

This Hamiltonian, obtained by other means and witho
the small velocity-dependent parts ofVSI , was used by Carl-
son, Kogut, and Pandaripande@5# and Capstick and Isgur@6#
in successful fits of the observed spectra of the low-ly
baryons with excitation energies up to about 1.4 GeV. W
will interpret this success as showing that the basic struc
of the interaction in Eq.~3.9! is correct as far as its spin
dependence and the relative sizes of the various terms
8-8
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concerned. In particular, the spin-dependent terms are ge
ally small and can be treated as perturbations.

To see the structure that might be expected in the ch
expansion, it is useful to studyH in more detail starting in
the limit in which there are no symmetry-breaking qua
mass terms in the underlying Lagrangian. The effect
masses of the quarks in Eq.~3.9! must then all be equal, an
the Hamiltonian is completely symmetric in the three quar
The unperturbed states defined by the spin-indepen
HamiltonianH0 are independent of the spin structure.H0 is
rotationally symmetric in the space variables, and the gro
state of the system has total spatial angular momentumL
50 and a spatial wave function that is completely symme
in the coordinates and is the same for all the octet and
cuplet baryons. As a result, dynamical matrix elements
differ only in the baryons involved will be equal in the sym
metrical limit up to the known effects of the spin wave fun
tions.

Taken together, the octet and decuplet states defined
respect toH0, hence also the fieldsBi jk andTi jk , determine
a 56 representation of the spin-flavor SU~6! @19#.4 The sym-
metry is broken perturbatively in matrix elements by t
changes in the space and spin structure caused by the
spin-dependent interactions in Eq.~3.9! or other effects of
short-distance gluon exchange. For example, the first-o
change in the ground state energy associated w
the spin-dependent terms is simply proportional
,0u( i , jSi•Sj u0., a structure that gives an octet-decup
mass difference but does not remove the mass degener
within the multiplets.5 While the spin-dependent terms in th
Hamiltonian generate a nontrivial spin structure in the wa
functions, this only affects the baryon masses and mom
at second order in those interactions@2#.

The situation changes if the quark masses are not eq
We will suppose thatmu5md50 and ms5” 0. The O(ms)
changes in the baryon masses are related through
Feynman-Hellman theorem@26# to matrix elements of the
corresponding O(ms) changes in the Hamiltonian. These a
of two types. The changes associated with the kinetic te
are spin independent and involve only one quark at a ti
that is, involve one-body operators. Those associated
the ‘‘hyperfine’’ term ( i , jSi•Sj are two-body operators
which involve spin couplings between two quarks. T
changes in the spin-orbit couplings potentially involve
three quarks but again only appear at second order in

4The combination of the pseudoscalar mesonsf i j and the vector

mesonr i j
m5(1/A6)(qi

aaq̄j
bb2

1
3 d i j qk

aaq̄k
bb)dab(Cgm)ab would give

a 35 of SU~6! except for the large mass difference associated w
spin effects and the role of the pseudoscalars as would-be G
stone bosons. The potential symmetry is further broken by qu
mass differences.

5When the hyperfine-type interaction is properly smeared out s
tially as in @6# rather than being treated as a delta-function inter
tion, there is a noticeable shift in the octet-decuplet mass splittin
higher orders because of the different signs of the interaction for
two multiplets. The overall structure is not changed.
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perturbation expansion inas and can be neglected. There a
no general theorems on the O(ms

2) changes in the baryon
masses.

The results for the magnetic moments of the ground-s
baryon are similar. However, there is no analog of t
Feynman-Hellman theorem, and the observation that the
ments change to first-order only through one-body opera
depends on the approximate decoupling of the spatial
spin parts of the ground-state wave functions.

We will show in the following sections that this gener
structure carries over to the matrix elements parametrize
the chiral expansion for baryon masses and moments.
structure is essentially kinematic. In particular, the thre
flavor-index description of the baryon fields through theB’s
andT’s gives the most general labeling of the flavor and s
content of the external baryons. Since the quark or fla
lines are continuous, both dynamically and in the effect
field theory, the initial flavor indices can be followed throug
a process to determine the final flavor indices, including a
effects of the meson fieldf.

The correlation of initial and final spins is more comp
cated because quark spins can be flipped by dynamical in
actions, and there is no continuity requirement for the s
projection associated with a given flavor line. However,
will show that the spin structure of the transition operators
two-baryon transitions is completely described to O(ms) by
the action of the identity operator, single spin operatorss,
the two-body spin-spin operatorssm•sn , and a spin-
independent mass operatorM}ms . An equivalent param-
etrization was introduced by Morpurgo@27# without the ex-
plicit connection to HBChPT, and the same kinematic ide
were extended to largeNc QCD by Carone, Georgi, and
Osofsky in@28#.

The addition of dynamical information allows us t
sharpen our conclusions. We will assume, as discus
above, that spin-dependent interactions are relatively un
portant in determining the structure of the ground-state ba
ons, and that an expansion in powersms is legitimate. In the
absence of spin-exchange interactions, the spin structur
dynamical matrix elements would be determined complet
by the spins of the external baryons and the structure of
elementary quark-level operators involved. At leading ord
in the derivative expansion,6 this structure will be just that
encompassed in the naiveL50 quark model, a result which
will only be changed perturbatively by the effects of sm
spin-dependent interactions originating in QCD, and
quark mass effects. This suggests that effective field theo
essentially equivalent to the QM to orderms , an observation
we will explore in detail in the following sections. We will
in fact, reproduce the results of the nonrelativistic QM f
baryon masses and moments@29# in a completely relativistic
context.

h
ld-
rk

a-
-
in
e

6The spin-dependent interactions inH lead to admixtures in the
wave function of components withLik.0,Lik; j.0 @6,2#. Because
of the derivatives involved in the orbital angular momenta, the
fects of these components can only appear explicitly through
derivative expansion.
8-9
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C. Baryon masses in the symmetrical limit

The mass terms in the effective baryon Lagrangian are
the standard form

L0,M52mBB̄k jiBi jk1mTT̄k ji
m Tm; i jk ~3.11!

in the symmetrical limit ms50. For the semirelativistic
Hamiltonian H in Eq. ~3.9!, mB5^BuHuB& and mT
5^TuHuT&, so these masses involve contributions from
kinetic and potential energies, including the spin-depend
terms. Treating the latter as perturbations, the first-order
ference of the energies in theL50 ground state is given
simply by the spin-spin term in Eq.~3.9!, but there are gen
erally also higher order contributions from the other sp
dependent interactions.

The spin-spin structure is also embedded in the chiral
scription. To see this, we write the original mass terms in
effective Lagrangian as

LM52B̄k j imBi jk1T̄k j i
m mTm; i jk ~3.12!

where the total mass operatorm is given in terms of the
separate masses and the spin-1/2 and spin-3/2 projection
erators in Eqs.~2.31! and ~2.38! by

m5mBP1/21mTP3/2

5
1

2
~mT1mB!1

1

6
~mT2mB!~si•sj1sj•sk1sk•s! i .

~3.13!

We will identify the common mass (mT1mB)/2 of the octet
and decuplet with the massm0 extracted in defining the
heavy-baryon fields in Eq.~2.4!. With this definition,dmT
and dmB in Eq. ~3.3! are simply 6dm where dm5(mT
2mB)/2.

The mass termLM with m0 removed reduces to

LM5B̄k j iDmBi jk1T̄k j i
m DmTm; i jk ~3.14!

whereDm is the operator

Dm5
1

3
dm~si•sj1sj•sk1sk•s! i . ~3.15!

This operator has the expected form of a spin-spin inte
tion, and has the values6dm in the decuplet and octet. It i
the only chiral invariant that contributes to the octet-decup
mass difference in the symmetrical limit.

The decuplet-octet mass difference is purely a QCD
fect, ascribed in the semirelativistic Hamiltonian to the sp
spin interaction associated with short-distance gluon
change. The relation in Eq.~3.15! is purely kinematic, and
includes more than just the first-order spin-spin ener
However, the dynamical calculations of Capstick and Is
@6# show that a treatment of the mass difference in first-or
perturbation theory is at least roughly correct, sodm in fact
gives a measure of the strength of the spin-spin interac
and the other spin-dependent terms in Eq.~3.9!. It is fairly
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weak on the scale of the terms that determine the t
masses. We will therefore assume that all the spin-depen
interactions are small and can be treated perturbatively
assumption consistent with the dynamical calculations
@5,6# and @2#.

D. Quark-level meson-baryon couplings

1. Octet-octet-meson couplings

As a first example of a calculation in the three-flavo
index notation, we will explore the connection of the stro
couplingsD, F, C, andH to the axial vector interaction

LA5q̄i
ag” mg5Amqi

a ~3.16!

in the underlying quark-level chiral Lagrangian, whereAm is
the axial current defined in Eq.~2.7!. We suppose that ther
are no quark mass splittings so the theory is completely s
metric in the different quarks. We will use this calculation
develop methods we will need later.

Because the quark flavor lines are continuous throug
diagram and the effective fieldsBi jk

g and Ti jk
mg completely

specify the flavor and spin structure of the external baryo
the structure of most general spin-flavor matrix elements
two baryons coupled throughLA can be determined using th
explicit quark-level representations of the fields in Eq
~2.11! and ~2.32! and the dynamically allowed spin struc
tures. The simplest spin structure is that implied by E
~3.16!, in which the spin on a quark line changes only b
cause of the coupling to the axial current. This structure
be changed in the symmetrical limit by spin-dependent in
actions within the baryons as discussed in connection w
the baryon magnetic moments in Sec. V. We expect the
fective two-body operators introduced by these interacti
to be small, and will not consider them here.

The dynamical parts of the matrix elements can only
calculated using the underlying theory, but appear simply
unknown constants multiplying the independent spin-fla
matrix elements. Again, in the symmetrical limit, these co
stants will be equal for all baryons up to the perturbat
effects of the spin-dependent interactions between quark

We will calculate the matrix elements of the quark-lev
axial interaction in Eq.~3.16! in the baryon rest frame wher
gmg5Am→(0,2s•A).7 Treating the quarks as non
interacting and suppressing the color indices, the spin-fla
matrix element for the octet baryon-meson interaction is th

^g8k8 j 8i 8u~2q̄ps•App8qp8!u i jkg&

5^0uBi 8 j 8k8
g8 ~2q̄ps•App8qp8!B̄nml

l u0&Plmn;k j i
B;lg

52^0uBi 8 j 8k8
g8 1

A6
@~ q̄ps!l

•Apn~ q̄mis2q̄l
T!

7It is possible to carry out the calculation completely in covaria
notation, as we have also done. However, the ostensibly nonc
riant treatment above is considerably simpler and and more tr
parent with respect to the operations involving projections a
quark interchanges. The final result is covariant.
8-10
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1q̄n
l~ q̄pi ss2q̄l

T!•Apm

2q̄n
l~ q̄pi ss2q̄m

T !•Apl#u0&Plmn;k j i
B;lg . ~3.17!

We have inserted an apparently unnecessary rest-frame
projection operatorPlmn;k j i

B;lg 5dlgPlmn;k j i
B for later conve-

nience.
The first term in the factor in square brackets has the s

operator s acting on the odd quark, with the other tw
quarks in a singlet spin state. This involves the pure o

structureB̄pml
g8 (s)g8l•Apn . The remaining two terms hav

the paired quarks in a triplet spin state, and involve b
octet and decuplet contributions. These can be isolated w
out calculating the final matrix element by using the proje
tion operatorsP1/2 andP3/2 in Eqs.~2.31! and ~2.38!. Thus,
acting on the second term withP1/2( lnp), we find that

P1/2~ lnp!
1

A6
q̄n

l~ q̄pi ss2q̄l
T!•A lm

5F1

6
~12sp•sl !1

1

6
~12sl•sn!

1
1

6
~12sn•sp!G 1

A6

3q̄n
l~ q̄pi ss2q̄l

T!•Apm

5
1

3
~B̄pnl

l8 1B̄lnp
l8 !~s!l8l•Apm , ~3.18!

where we have noted that (12sp•sl) annihilates the origi-
nal triplet combination of the quarksqp and ql , and have
used the result in Eq.~2.28! to evaluate the effects of th
remaining terms in P1/2( lnp). Thus, the operator (1
2sl•sn) regroupsql and qn into the singlet combination
which appears inB and leaves the Pauli matrixs acting only
on the odd quark, that is, directly on the overall spinor ind

of Bpnl
l8 . A similar result holds for the action of (1

2sn•sp).
Upon combining all terms we find that

^g8k8 j 8i 8u2q̄ps•App8qp8u i jkg&

52^0uBi 8 j 8k8
g8 F B̄pml

l8 Apn1
1

3
~B̄pnl

l8 1B̄lnp
l8 !Apm

2
1

3
~B̄pnm

l8 1B̄mnp
l8 !AplG•~s!l8lu0&Plmn;k j i

B;lg

~3.19!

5F2Pi 8 j 8k8;pml
B;g8l8 Apn2

1

3
~Pi 8 j 8k8;pnl

B;g8l8 1Pi 8 j 8k8; lnp
B;g8l8 !Apm

1
1

3
~Pi 8 j 8k8;pnm

B;g8l8 1Pi 8 j 8k8;mnp
B;g8l8 !AplG•~s!l8lPlmn;k j i

B;lg ,

~3.20!
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wherePB is the octet projection operator in Eq.~2.55!. To
convert this expression into an effective baryon-level ope

tor, we multiply on the left and right byB̄k8 j 8 i 8
g8 and Bi jk

g ,
respectively, sum over the indices, and use the projec
property of PB given in Eq. ~2.61!. The resulting operator
reproduces the matrix element above when used instea
the quark-level operatorq̄ls•A l l 8ql 8 .8 Finally, multiplying
by the unknown dynamical matrix elementb at the vertex
and relabeling indices, we obtain the effective baryon-le
interaction

LBBM52bB̄k8 j i s•Ak8kBi jk2
1

3
b~B̄j 8ki1B̄ik j 8!s•A j 8 jBi jk

1
1

3
b~B̄i 8k j1B̄jki 8!s•A i 8 iBi jk ~3.21!

wheres now appears in a spinor product. The last two ter
can be combined if desired by using the symmetries of
B’s and relabeling the summation indices.

To connect LBBM to the standard matrix form o
HBChPT, we use the Jacobi-like identity in Eq.~2.15! and
the identity9

B̄i 8 jkBi jk5
1

2
B̄i 8 jkBk ji ~3.22!

to rewrite the last term in Eq.~3.21! as

~B̄i 8k j1B̄jki 8!Bi jk522B̄i 8 jkBi jk1B̄k j i 8Bi jk

52B̄i 8 jkBk ji1B̄k j i 8Bi jk , ~3.23!

a form to which Eqs.~3.5b! and ~3.5c! are applicable. The
next-to-last term is treated similarly. The final result is

LBBM52bFTr B̄$SmAm ,B%1
2

3
B̄@SmAm ,B#G , ~3.24!

where we have used the correspondence2s•A[2SmAm to
put the expression in the standard covariant form. Compa
Eqs.~3.24! and~2.5!, we see that the quark-level descriptio
gives the specific values

8Had we not writtenB̄k j i in Eq. ~3.17! asB̄nmlPlmn;k j i
B , the equa-

tion analogous to Eq.~3.20! would contain only one projection
operator rather than the two obtained when calculating matrix
ments of LBBM , Eq. ~3.21! below, using the general relatio

^k8 j 8i 8uB̄OBu i jk &5Pi 8 j 8k8;n8m8 l 8
B Ol 8m8n8;nmlPlmn;k j i

B . It can be
shown that the results are equivalent, though this is not immedia
obvious.

9To prove this identity, we rewrite the productB̄i 8 jkBi jk as

B̄i 8 jk(2Bjki2Bki j )5B̄i 8 jkBk ji2B̄i 8k jBik j by using Eq.~2.15! and
the symmetries of theB’s. After a relabeling of the summed indi
ces, the last term is identical to the left-hand side up to its sign,
the result follows.
8-11
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D5b, F5
2

3
b, ~3.25!

for the couplingsD and F. These couplings automaticall
have the SU~6! ratio F/D52/3.

We can also rewriteLBBM in the expected form of a sum
of one-body operators,

LBBM52b@B̄k8 j i ~s•A!k8kBi jk1B̄k j8 i~s•A! j 8 jBi jk

1B̄k j i 8~s•A! i 8 iBi jk #, ~3.26!

where the single-quark spin operators can be taken to act on
either the final or initial quark. The first alternative lea
directly to the expression forLBBM in Eq. ~3.21! when evalu-
ated as above. The second gives an expression related t
first by the symmetries of theB’s.

LBBM is similarly given in covariant form by10

LBBM52b@B̄k8 j i ~SmAm!k8kBi jk1B̄k j8 i~SmAm! j 8 jBi jk

1B̄k j i 8~SmAm! i 8 iBi jk #, ~3.27!

an expression that makes it clear that we are dealing wi
relativistic effective field theory. The basic structure ofLBBM
as a symmetrical sum of individual quark-quark-meson in
actions is also clear here, but is not clear in the usual exp
sion in Eq.~3.24!. This is a distinct advantage of the thre
flavor-index representation for the fields.

We conclude this section by noting that spin exchan
interactions within the baryons change the correlations
tween the initial and final quark spins and introduce effect
couplings in which the operator (sk•A)k8k in Eq. ~3.26! is
replaced by (si1sj )•Ak8k , and similarly for the other
terms. Matrix elements calculated with these operators h
F/D ratios different from 2/3 and therefore change the ov
all F/D ratio, but by an amount we would expect to be sm

2. Octet-decuplet and decuplet-decuplet couplings

We can obtain the octet-decuplet interaction in a sim
fashion starting from the expression in Eq.~3.17!. The first
term has a pure octet structure so does not connect to
decuplet states. We can extract the decuplet componen

10The structure forLBBM in Eq. ~3.27! can be obtained directly in
a standard chiral calculation at the baryon level by determining h

the original kinetic termiB̄]”B for the effective fields changes whe
the effects of the Goldstone bosons are removed@10#. The relevant
transformation property of theB’s is given in Eq.~2.12!, with U
now a spacetime-dependentg5 transformation. A similar calcula-
tion determines the form ofLTTM in Eq. ~3.37! starting from the

kinetic term2 i T̄m]”Tm . This procedure hides the connection of t
results to the quark-level axial currentAm , and fails forLTBM , Eq.
~3.31!, since there is no mixedT,B kinetic term. While the result
above is not surprising, manipulations of the type used to obta
are needed more generally to actually evaluate matrix elemen
the three-flavor-index notation.
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the remaining two terms using the spin-3/2 projection ope
tor P3/2. Thus, using the relation

T̄k j i
g 1P3/2

1

2A3
q̄k

g~qj
Ts~2s2!qi !, ~3.28!

which follows from Eq.~3.27!,

P3/2
1

A6
@ q̄n

l~ q̄pi ss2q̄l
T!•Apm2q̄n

l~ q̄pi ss2q̄m
T !•Apl#

5A2~Tnmp
l

•Apl2Tnpl
l

•Apl! ~3.29!

and we find that

^0uT̄k8 j 8 i 8
g8 ~2q̄ps•App8qp8!Bi jk

g u0&

522A2Pi 8 j 8k8;nml8
T A l 8 l Plmn;k j i

B dg8g , ~3.30!

where we have used the symmetries of the projection op

tors to combine terms. Taking a scalar product withT̄k8 j 8 i 8
g8

on the left, multiplying on the right byBi jk
g , and summing

over the indices using the properties of the projection ope
tors, we obtain the baryon-level effective coupling

LTBM52A2b8~ T̄k j i 8
g

•A i 8 iBi jk
g 1B̄k j i 8

g A i 8 i•T i jk
g !

522A2b8~ T̄k j i 8
mg Am,i 8 iBi jk

g 1B̄k j i 8
g Am; i 8 iTi jk

mg!, ~3.31!

where we have inserted the unknown dynamical matrix e
mentb8 and added theT→B terms. This is of the form of
the standard coupling given in Eq.~3.3! with C522b8. As
discussed above, we expect thatb85b up to the small cor-
rections induced by the spin-dependent interactions betw
quarks, a result that goes beyond standard chiral symm
arguments.

We can obtain the effective decuplet-decuplet-meson
teraction by a similar calculation, but with some furth
subtleties. We begin with the decuplet matrix element of
quark-level axial current evaluated in the baryon rest fram
q̄pA” pp8g

5qp8→(0,2q̄ps•App8qp8). Inserting a factor of the
decuplet projection operator of Eq.~2.56! for convenience
and treating the quarks as free, we obtain

2^0uTi 8 j 8k8
r 8g8 q̄ps•App8qp8T̄k j i

rg u0&

5^0uTi 8 j 8k8
r 8g8 1

6A3
@~ q̄ps•Apn!

l~ q̄mssis2q̄l
T!

1q̄n
l~ q̄ps•Apmssis2q̄l

T!1q̄n
l~ q̄ps•Aplssis2q̄m

T !

1•••#u0&Plmn;k j i
Tsl;rg , ~3.32!

whereTrg is the r component ofTg. The terms in ellipsis
have the same structure, withn↔m andm↔ l . Applying the
spin-3/2 projection operatorP3/2 in Eq. ~2.38! to the factor in
square brackets and rearranging terms, we find that

w

it
in
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2^0uTi 8 j 8k8
r 8g8 q̄ps•App8qp8T̄k j i

rg u0&

5^0uTi 8 j 8k8
r 8g8 1

6A3
@~ q̄ps•Apn!

l~ q̄mssis2q̄l
T!

1q̄p
l~ q̄ms•Apnssis2q̄l

T!1q̄p
l~ q̄ls•Apnssis2q̄m

T !

1•••#u0&Plmn;k j i
Tsl;rg , ~3.33!

where the terms in ellipsis now involve the interchang
p↔m andp↔ l . This is simply the relation

2^0uTi 8 j 8k8
r 8g8 q̄ps•App8qp8T̄k j i

rg u0&

52^0uTi 8 j 8k8
r 8g8 T̄pml

sl ~sp1sm1sl !•Apnu0&Plmn;k j i
Tsl;rg

52^0Ti 8 j 8k8
r 8g8 T̄pml

sl 2J•Apnu0&Plmn;k j i
Tsl;rg ,

whereJ is the total angular momentum operator of the sp
3/2 system taken to act onT̄,T̄J[(JT).

We can evaluate this expression explicitly by using
relation s•Ass5As1 i ess8tss8At and combining the las
two terms in Eq.~3.33!. The singlet pieces proportional toAs
cancel with the result that, including the permutations,

2^0uTi 8 j 8k8
r 8g8 q̄ps•App8qp8T̄k j i

rg u0&Plmn;k j i
Tsl;rg

52^0uTi 8 j 8k8
r 8g8 T̄pml

s8l8@~s!l8l•Apnds8s

1 i ess8tdl8lApn
t #u0&Plmn;k j i

Tsl;rg

52Pi 8 j 8k8;pml
Tr8g8;s8l8~s•Apnds8s1 i ess8tApn

t !Plmn;k j i
Tsl;rg .

~3.34!

The effective interaction

LTTM52b9T̄k8 j i
r 8g8~s•Apnd r 8r1 i e rr 8tAk8k

t dg8g!g8gTi jk
rg

~3.35!

52b9T̄k8 j i •~s•Ak8k!T i jk1 i T̄k8 j i •Ak8k3T i jk

52b9T̄k8 j i •~2J"A!k8kT i jk ~3.36!

gives the same kinematic structure, withb9'b the dynami-
cal matrix element. The action ofJ on a vector-spinor opera
tor has the standard definitionê•S1 ê3 whereS5 1

2 s acts
only on the spinor index.

In covariant form,

LTTM522b9T̄mJnAnTm

522b9T̄mSnAnTm2 i esmnlvsT̄mAnTl . ~3.37!

We can also obtain this result directly from standard ch
field theory arguments with theT’s treated as elementar
fields with the transformation properties in Eq.~2.34!, but
with the loss of the simple connection to dynamical mode

The decuplet-decuplet-meson coupling is usually state
terms if SnAn instead ofJnAn as in Eq.~3.3!,
01400
s

-

e

l

.
in

LTTM52HT̄mSnAnTm. ~3.38!

The two forms are connected by the Wigner-Eckart theor
applied to the corresponding rest-frame expressions. In
ticular, ^S•A&5 1

3 ^J•A& for angular-momentum-3/2 states,
result that can be checked directly but does not arise from
obvious identity for the fields. Using this result and comp
ing Eqs.~3.37! and ~3.38!, we see that they are equivalen
with H523b9.

If spin-spin interactions are small as in the dynamic
models discussed in Sec. III B,b9'b8'b in the symmetri-
cal limit, extra two-body contributions of the type discuss
in Sec. V are also small, and the results in Eqs.~3.27!, ~3.31!,
and ~3.37! reproduce the complete set of SU~6! coupling
ratios forL0, Eq. ~3.3!,

F5
2

3
D, C522D, H523D. ~3.39!

HereD5b is the common dynamical matrix element. Give
the smallness of the spin-dependent interactions, the vali
of the SU~6! coupling ratios for the ground-state baryo
becomes a dynamical prediction rather than an input assu
tion. The dynamical matrix elementsb, b8, and b9 will
actually differ somewhat because of the small differences
the octet and decuplet wave functions induced by the s
spin interactions, an effect which exists even in the sy
metrical limit of QCD, and will also change in O(ms) be-
cause of symmetry-breaking quark mass effects. T
coupling ratios will be further upset by the small contrib
tions of two- and three-body operators. We will not consid
these changes here.

IV. CHIRAL SYMMETRY BREAKING: BARYON MASSES
AT O „M S…

A. One-body operators: O„ms… mass insertions

At the quark level, the symmetry-breaking mass terms
the chiral Lagrangian are of the one-body form

Lm52msq̄l
a~M 11M 2g5! l l 8ql 8

a , ~4.1!

where repeated indices are to be summed. The flavor m
cesM 6 are defined as

Ml l 8
6

5
1

2
~j†Mj†6jMj! l l 8 , ~4.2!

whereM is the diagonal matrix

M5diag~0,0,1!. ~4.3!

The matrix elements ofg5 vanish in the heavy-baryon limit
and theg5 term in Eq.~4.1! can therefore be dropped.

In the absence of spin-dependent interactions, we
again use the explicit free-quark representations of the fie
in Eqs.~2.11! and~2.32! to determine the most general spi
flavor matrix element for baryons coupled throughLm . We
treat the meson fields in the factorsj andj† as elementary.
8-13
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Thus, suppressing the color indices, the spin-flavor ma
element for the octet baryons is

2ms^0uBi 8 j 8k8
g8 q̄pM pp8

1 qp8B̄k j i
g u0&

52ms^0uBi 8 j 8k8
g8 q̄pM pp8

1 qp8B̄nml
l u0&Plmn;k j i

B;lg

52ms~Pi 8 j 8k8;n8ml
B;g8l M n8n

1 Plmn;k j i
B;lg

1Pi 8 j 8k8;nm8 l
B;g8l M l 8 l

1 Plmn;k j i
B;lg 1Pi 8 j 8k8;nml8

B;g8l M l 8 l
1 Plmn;k j i

B;lg !,

~4.4!

where we have inserted an extra octet projection oper
PB, Eq. ~2.55!, in the initial matrix element for symmetry

Multiplying as before on the left and right byB̄k8 j 8 i 8
g8 and

Bi jk
g , respectively, summing over the indices, and using

projection property ofPB given in Eq.~2.61!, we obtain an
effective operator that reproduces the matrix element ab
when used instead of the quark-level operatorq̄lM l l 8

1 ql 8 :

L m
B52am~B̄k8 j i

g M k8k
1 Bi jk

g 1B̄k j8 i
g M j 8 j

1 Bi jk
g

1B̄k j i 8
g M i 8 i

1 Bi jk
g !. ~4.5!

Heream is the unknown dynamical matrix element, with th
factor of ms absorbed. This effective interaction has an o
vious one-body structure.

After a similar calculation, we find the effective O(ms)
one-body mass operator for the decuplet baryons:

L m
T 5am8 ~ T̄k8 j i

mg M k8k
1 Tm; i jk

g 1T̄k j8 i
mg M j 8 j

1 Tm; i jk
g

1T̄k j i 8
mg M i 8 i

1 Tm; i jk
g !

53am8 T̄k8 j i
mg M k8k

1 Tm; i jk
g . ~4.6!

We could, of course, have written these operators do
directly as possible O(ms) baryon-level chiral invariants
without the calculations above. However, the structure
these operators follows directly from the the structure of
quark-level chiral mass term in Eq.~4.1! and the continuity
of flavor lines through the actual dynamical process, ass
ing no spin exchange. The invariants above are in fact
only O(ms) mass invariants with the one-body structu
01400
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Furthermore, from the connection to dynamical models,
expect the octet and decuplet matrix elementsam andam8 to
be equal in the symmetrical limitms50 except for small
spin effects. We will henceforth assume this equality.

The situation is much less clear if we rewrite the oc
operator in Eq.~4.5! in the standard matrix form using th
definitions in Eq.~2.17! or the relations in Eqs.~3.5b! and
~3.5c!. This gives

L m
B52am Tr B̄@M 1,B#2am~Tr M 1!~Tr B̄B!.

~4.7!

The simple connection to the one-body structure is lo
Comparing this result with the most general O(ms) mass
corrections to the heavy-baryon Lagrangian@11,12#,

Lms
52bD Tr B̄$M 1,B%12bF Tr B̄@M 1,B#

12cT̄mM 1Tm12s~Tr M 1!~Tr B̄B!12s̃ Tr~M 1!

3~ T̄mTm!, ~4.8!

we see that the one-body mass insertions give a specific o
structure with an F-type mass term with 2bF52am , a re-
lateds-type term with 2s52am , and no D-type contribu-
tion. The decuplet terms have 2c53am8 '3am , and s̃50.
The use of the quark-level picture with its connection
dynamics provides extra information. Any further contrib
tions toLms

must come from two- or three-body operators

B. Two-body operators: O„ms… spin-spin interactions

The only two-body operators of orderms are of the spin-
spin type as suggested by the semirelativistic dynam
model in Sec. III B. In a chiral theory in the heavy baryo
limit, the only quark-level spin-spin operator has the form

Oss5
1

2(
p5” r

:~ q̄psM pp8
1 qp8!•~ q̄rsqr !: ~4.9!

in the baryon rest frame, where, from Eq.~2.18!, the sn•sl
structure can arise from either axial vector or Pauli co
plings, (gmg5)n(gmg5) l or (smn)n(smn) l . We treat the
quark fields as normal-ordered to eliminate effective o
body operators.

The matrix elements of this scalar operator do not conn
octet and decuplet states. They reduce in octet baryon st
expressed in terms of the baryon fields, to
spin
^0uBi 8 j 8k8
g8 OssB̄k ji

g u0&5^0uBi 8 j 8k8
g8 @B̄nmp

l sp•~sm1sn!M pl
11B̄npl

l sp•~sn1sl !M pm
1

1B̄pml
l sp•~sl1sm!M pn

1 #u0&Plmn;k j i
B;lg . ~4.10!

The last term vanishes because quarksl andm are in a singlet spin state. We can determine the action of the remaining
operators onB̄ by using their connection to the permutation operatorsPnl given in Eq.~2.29!, sp•sr52Prs21. With this
identification,
8-14
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^0uBi 8 j 8k8
g8 OssB̄k ji

g u0&52^0uBi 8 j 8k8
g8 @~B̄pmn

l 1B̄npm
l 2B̄nmp

l !M pl
12~ l↔m!u0&Plmn;k j i

B;lg

522^0uBi 8 j 8k8
g8 @~4B̄nmp

l 22B̄pmn
l !M pl

1 u0&Plmn;k j i
B;lg 522~4Pi 8 j 8k8;nmp

B;g8l
22Pi 8 j 8k8;pmn

B;g8l
!M pl

1Plmn;k j i
B;lg ,

~4.11!
in
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where we have used the antisymmetry ofB̄nml and Plmn;k j i
B

in l ,m and a relabeling of the summation indices to comb
terms.

The baryon-level effective interaction that yields this m
trix element is

L ss
B 522ass~4B̄k j i 8M i 8 i

1 Bi jk22B̄i 8 jkM i 8 i
1 Bi jk !

522ass~4B̄k j i 8M i 8 i
1 Bi jk2B̄k8 j i M k8k

1 Bi jk !,

~4.12!

where we have used the relation in Eq.~3.22! and a relabel-
ing of indices in writing the second line.ass is the O(ms)
dynamical matrix element. In this form, we can use the re
tions in Eqs.~3.5b! and ~3.5c! to write L ss

B in matrix form,
with the result

L ss
B 53assTr B̄$M 1,B%2assTr B̄@M 1,B#

24ass~Tr M 1!~Tr B̄B!. ~4.13!

The first two terms have the standard form in Eq.~4.8!, with
2bD53ass and 2bF52ass. The final term is again as
term with a specified coefficient.

The contributions of the two-body spin-spin interaction
the decuplet mass operator are relatively simple. Each of
quark pairs is in a triplet spin configuration withsr•ss51,
and the fieldsTlmn are completely symmetric in the indice
l ,m,n. As a result, following the structure in Eq.~4.11!,

^0uTi 8 j 8k8
r 8g8 OssT̄k j i

r ,gu0&52^0uTi 8 j 8k8
r 8g8 T̄nmp

sl Mpl1~ l↔m!

1~ l↔n!u0&

56Pi 8 j 8k8;nmp
Tr8g8;sl M plPlmn;k j i

Tsl;rg . ~4.14!

The corresponding effective interaction is

L ss
T 56ass8 T̄k8 j i

r Mk8kTi jk
r 526ass8 T̄k8 j i

m Mk8kTm; i jk .
~4.15!

We expect thatass8 'ass, a relation that would be an equa
ity in leading order in the spin-spin interactions, but which
only approximate when higher-order effects are included@6#.

The only three-body spin-spin interactions have the str
tures of ass9 si•sjM k8k

1 and its permutations. These term
arise from changes in thei , j spin-spin matrix element cause
by a non-zero mass correction for the third quarkk. How-
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ever, by adding and subtracting operatorsass9 (si

1sj )•skM k8k
1 of the type considered above, we obtain

the only new structure

ass9 ~si•sj1sj•sk1sk•si !M k8k
1

1•••. ~4.16!

The spin factor has the value23 (13) on the octet~de-
cuplet! states, leaving just the structure of a one-body qu
mass correction. Thus, including both contributions and t
ing ass9 the same for the decuplet and octet, a reasona
approximation, the only effect of theass9 si•sjM k8k

1 term is
to change the effective values ofam andam8 in Eqs.~4.5! and
~4.6!, and ofass andass8 in Eq. ~4.12! and ~4.15! to

am→ãm5am13ass9 , am8 →ãm8 5am8 23ass9 , ~4.17!

ass→ãss5ass2ass9 , ass8 →ãss8 5ass8 2ass9 . ~4.18!

C. Baryon masses and the quark model

The complete expression for the baryon mass Lagrang
obtained by combining the terms in Secs. III C, IV A, an
IV B is

LM5L M
B 1L M

T ~4.19!

where, to leading order in the derivative expansion
HBChPT and to O(ms),

L M
B 5dmB̄k jiBi jk2ãm~B̄k8 j i

g M k8k
1 Bi jk

g 1B̄k j8 i
g M j 8 j

1 Bi jk
g

1B̄k j i 8
g M i 8 i

1 Bi jk
g !22ãss~4B̄k j i 8

g M i 8 i
1 Bi jk

g

2B̄k8 j i
g M k8k

1 Bi jk
g ! ~4.20!

5@dm2~ ãm14ãss! TrM 1#Tr B̄B2~ ãm

1ãss! Tr B̄@M 1,B#13ãssTr B̄$M 1,B% ~4.21!

and

L M
T 5dmT̄k ji

m Tm; i jk13~ ãm8 22ãss8 !T̄k8 j i
mg M k8k

1 Tm; i jk
g .

~4.22!

We note that the term proportional to TrM 1 in the ma-
trix expression in Eq.~4.21! has the form of an octet mas
term when taken to leading order in the meson fields so
TrM 1→1. While this contribution can be eliminated b
8-15
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redefiningm0 anddm in Eq. ~3.13!,11 as has been done im
plicitly in making numerical fits to hadron masses, for e
ample, in@1#, that procedure hides the simple connection
our results to the underlying quark structure.

Comparing our expressions forL M
B andL M

T with the form
of the O(ms) mass terms given in Eq.~4.8! @11,12#, we see
that the two forms are completely equivalent, with

2bF52ãm2ãss52am2ass22ass9 ,

2bD53ãss53~ass2ass9 !,

2c53~ ãm22ãss53am8 26ass8 23ass9 ,

2s52~ ãm14ãss!52~am14ass2ass9 !,

2s̃50. ~4.23!

However, the quark description has the advantage that
various contributions have direct physical interpretations
terms of the underlying dynamics. In particular, thebD and
s mass terms arise entirely from spin-spin interactions
correlations, while thebF and c terms also involve direc
quark mass corrections to the main, spin-independent pa
the energy.

To see that this interpretation is reasonable as far as
sizes of the terms are concerned, we can evaluate the pa
eters using the results of a direct fit to the baryon mas
Assuming that the relationsam8 'am and ass8 'ass can be
treated as equalities, we find thatdm5146.5 MeV, am

5am8 5178.4 MeV, ass5ass8 517.1 MeV, and ass9
522.9 MeV, with a mean deviation of the fit from the e
perimental masses of 3.1 MeV. The spin-independent m
corrections have the sign and general magnitude expecte
the replacement of a light quark by a strange quark. T
main two-body spin-spin termdm has a similar magnitude
and the sign corresponding to the expected color spin-
interaction, repulsive in the decuplet states. The mass co
tion ass to the spin-spin term is substantially smaller as
expected for a short-range QCD interaction of the type in
~3.9!, has the expected sign, and are also larger than
three-body termass9 . These smaller terms are sensitive n
merically to the validity of the approximationam5am8 , but
the relative magnitudes are stable. The individual contri
tions can only be separated completely using further dyna
cal input.

The structure of these results is exactly that assume
the nonrelativistic constituent quark model@29#. The free,

11In general, we can incorporate the vacuum expectation valu
TrM 1 with respect to the meson fields intomB , redefinem0 and
dm as

m0→m01
1
2 ~am14ãss9 !^0uTr M 1u0&,

dm→dm2
1
2 ~am14ãss9 !^0uTr M 1u0&,

and replace TrM 1 in Eq. ~4.20! by TrM 12^0uTr M 1u0&, a
form that is O(f2) in the meson field.
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but off-shell, quarks used in the description of theB’s and
T’s act in effect like nonrelativistic constituent quarks wi
small momenta inside the heavy baryon. However, we wo
reemphasize that we are actually dealing with a relativis
effective field theory in the heavy-baryon limit. The thre
flavor-index ‘‘quark’’ representation of the baryons describ
all the possible spin and flavor correlations in the relativis
matrix elements. The internal momentum structure of
baryons only appears explicitly with higher terms in the m
mentum expansion. The spin correlations can be conne
directly to the underlying dynamics when spin-depend
forces are weak, an important point for interpretation a
applications as we will show in a subsequent paper on me
loop corrections.

V. BARYON MAGNETIC MOMENTS AT O „M S…

To complete our discussion of the connection betwe
relativistic HBChPT and the quark model, we will sketch t
parametrization of the baryon magnetic moments. The
evant calculational procedures have all been develo
above.

A. One-body operators

The interaction Lagrangian for a quark magnetic mom
in an external electromagnetic field is proportional to t
operator

1

2
q̄pslnFlnQpp8qp8 , ~5.1!

where Q is the diagonal quark charge matrix,Q
5diag(2/3,21/3,21/3). We can determine the matrix ele
ments of this operator in the absence of multibody sp
dependent interactions using the results of Sec. III D. Th
working in the baryon rest frame where12 slnFln→(0,2s
•B) with B is the magnetic field, we find the same structu
as in Sec. III D 1 with the axial currentA replaced byQB.
We therefore find from Eq.~3.21! that the one-body octe
moment interactions are given by the effective Lagrangia

L m,BB
0 5m1F B̄k8 j i Qk8ksBi jk2

1

3
~B̄j 8ki1B̄ik j 8!Qj 8 jsBi jk

1
1

3
~B̄i 8k j1B̄jki 8!Qi 8 isBi jk G•B

5m1S 5

3
B̄k8 j i Qk8ksBi jk2

2

3
B̄k j8 iQj 8 jsBi jk D •B.

~5.2!

The dynamical matrix elementm1 is changed in first order
by the symmetry-breaking mass of the interacting qu
through a second one-body operator

1

2
q̄i 8s

mnFmn~QM! i 8 iqi , ~5.3!

of
8-16
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where M5diag(0,0,1). SinceMQ5QM, the operators in
Eqs. ~5.1! and ~5.3! are the only one-body operators. The
have the same spin structure and combine in the total ma
element to give the effective interaction

Lm,BB5m•B5S 5

3
B̄k8 j i mk8ksBi jk2

2

3
B̄k j8 im j 8 jsBi jk D •B.

~5.4!

Herem is the matrix

m5m1Q1m2QM, ~5.5!

andm is the effective baryon magnetic moment operator c
responding to the interaction HamiltonianHm,BB52m•B.
This structure generalizes in an arbitrary Lorentz frame t

Lm,BB52S 5

6
B̄k8 j i mk8ks

lnBi jk2
1

3
B̄k j8 im j 8 js

lnBi jk DFln .

~5.6!

We can put thisLm,BB in matrix form by using the rela-
tions in Eqs.~5.5!, ~3.5b! and ~3.5c!, with the result

Lm,BB5S 5

6
Tr B̄mslnB1

1

6
Tr B̄slnBm

2
1

6
Tr m Tr B̄slnBDFln ~5.7!

5m1S 5

6
Tr B̄QslnB1

1

6
Tr B̄slnBQDFln

1m2S 5

6
Tr B̄MQslnB1

1

6
Tr B̄slnBMQ

2
1

6
Tr MQ Tr B̄slnBDFln , ~5.8!

where we have used TrQ50. The line in this equation with
the prefactorm1 has the same form as the octet-octet-me
coupling in Sec. III D 1 and can be identified with th
Coleman-Glashow form for the moment operator@30#

LCG5
e

4mN
~mD Tr B̄$Q,slnB%1mF Tr B̄@Q,slnB# !Fln

~5.9!

for the SU~6!-symmetric choice of parameters (e/2mN)mD
5m1 , (e/2mN)mF52m1/3, or mF /mD52/3. The remaining
terms give the quark-mass corrections to the one-body
ment operator. The complete expression in Eq.~5.7! is ex-
actly that obtained in the simple additive quark model@9#.
Two- and three-body effects lead to small deviations fr
this result as we will show later.

We can also obtain the one-body contributions to
decuplet-octet transition moments and the decuplet magn
moments from the results in Sec. III D. Thus, following th
calculations that lead to Eq.~3.31!, we obtain the magnetic
transition operator
01400
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Lm,TB52A2~ T̄k j i 8
g m i 8 iBi jk

g 1B̄k j i 8
g m i 8 i•T i jk

g !•B

52A2~ T̄n;k j i 8
g m i 8 iBi jk

g 1B̄k j i 8
g m i 8 iTn; i jk

g !enslrFslvr ,

~5.10!

wherem1 andm2 have the same values as in Eq.~5.8! except
for spin-dependent effects that can be parametrized exp
itly. Finally, we obtain the decuplet moment interaction

Lm,TT5T̄k8 j i •~2J"B!mk8kT i jk

53T̄a;k8 j i mk8kSnenslrFslvrTi jk
a ~5.11!

where, again,m1 and m2 have the same values as in E
~5.8!.

B. Two- and three-body operators

The usual counting of the chiral invariants for the oc
magnetic moments gives nine structures to first order in
quark masses@20,16#, namely

Tr B̄QB, Tr B̄BQ, Tr B̄QMB, Tr B̄BQM, Tr B̄QBM,

Tr B̄MBQ, Tr M Tr B̄QB, Tr M Tr B̄BQ, Tr MQ Tr B̄B,
~5.12!

where we have suppressed the factorsmnFmn acting on the
field B. In dealing with the one-body operators, we encou
tered only the invariants TrB̄QB and TrB̄QMB. We will
show here that the remaining seven invariants, and a te
invariant that distinguishes octet and decuplet mome
arise naturally when we consider two- and three-body ope
tors at the quark level. Our discussion will also suggest
relative importance of the new invariants.

It will be useful to adopt a compressed notation in whi
we show the structure of the matrix elements in a form t
can be used for either the octet or the decuplet. Thus, co
sponding to the structure in Eq.~5.1!, the basic one-body
moment operator will be denoted by

(
l

Qls l ~5.13!

whereQl ands l[sl•B are taken to act on quarkl in diag-
onal or mixed matrix elements betweenB’s andT’s with all
indices contracted. Any flavor index that is not attached t
Q or M is accompanied by an implied unit matrix1. Thus, for
the octet,

(
l

Qls l→B̄k8 j 8 i 8~Qi 8 is i1j 8 j1k8k1••• !Bi jk . ~5.14!

Upon evaluating the spin matrix element of thes ’s, we ob-
tain the effective moment operator in Eq.~5.2!. Multiparticle
operators are to be evaluated similarly by applying the in
cated operations right-to-left on the fields in the effecti
operators, with matrix products assumed when the same
vor index appears in a product such asMiQi .
8-17
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The invariants we will consider are given in this notati
by

~a! (
l

Qls l , ~5.15a!

~b! (
l

~QM! ls l , ~5.15b!

~c! ~Mi1M j1Mk!(
l

Qls l1(
l

Qls l~Mi1M j1Mk!,

~5.15c!

~d! ~Qi1Qj1Qk!~s i1s j1sk!, ~5.15d!

~e! ~QiMi1QjM j1QkMk!~s i1s j1sk!, ~5.15e!

~ f ! ~Qj1Qk!Mis i1Mis i~Qj1Qk!1permutations,
~5.15f!

~g! ~QjMk1QkM j !s i1permutations, ~5.15g!

~h! ~M j1Mk!sj•sks iQi1permutations, ~5.15h!

~ i ! @~Qj1Qk!~M j1Mk!1~M j1Mk!~Qj1Qk!#sj•sks i

1permutations, ~5.15i!

~ j ! $si•sj1sj•sk1sk•si ,"%, ~5.15j!

where" in ~j! is any of the invariants (a) –(g).
It is useful in interpreting these invariants to recall that t

baryon moments obtained in dynamical models such as
of Brambilla et al. @4# appear as sums of single-particle m
mentsm i'^eQi /2Ei& whereEi is the kinetic energy of quark
i, plus a set of Thomas precession terms@31#. This is shown
in detail in @2# in a quenched approximation to QCD. Th
existence of the Thomas terms follows in the context of
semirelativistic Hamiltonian in Eq.~3.9! from the replace-
ment of pi in by pi2eQiA, with A the vector potential for
the static magnetic fieldB. The diagonal Thomas precessio
terms are associated with the spin-same-orbit interactio
Eq. ~3.9!, and give a multiplicative correction tom i . The
two-body spin-other-orbit terms introduce new, nonaddit
structure, and are important in improving the simple qua
model fits to the moments@9#. These terms are proportiona
to the short-distance spin-dependent part of the potentia
orderas divided byEiEj , so are expected to be small.

In the presence of symmetry-breaking mass terms,
dynamical matrix elements in them i differ from those in the
symmetrical limit. There is a direct change associated w
the change in 1/Ei'1/mi with the effective mass of quarki.
There are also indirect changes associated with the effec
the quark masses on the baryon wave functions. The Tho
terms are changed similarly, with new two-body compone
associated with changes in the factor 1/EiEj with respect to
the massesmi and mj , and a three-body component th
reflects the dependence of the matrix element on the ma
the third quark. Finally, all of the preceding matrix elemen
are modified by the changes in the baryon wave functi
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caused by the spin-spin interaction in the Hamiltonian. In
equal-mass limit, these corrections, expected to be q
small, distinguish the effective octet and decuplet mome
They contribute further terms with the same structures
above for unequal masses. With this backgound, we can
terpret the contributions to the baryon moments in E
~5.15a!–~5.15j! dynamically.

The invariant~a! gives the baryon moments in the sym
metrical limit in the absence of spin-dependent forces as
ready discussed. The second one-body term~b! corrects for
the dependence of the dynamical matrix element on
symmetry-breaking mass of the quark in question, that is,
change of^1/Ei& with mi in the model. The invariant~c!
includes the indirect first-order corrections from the effe
of the other quark masses on the matrix element, and be
to introduce a dependence of the effective moment of
quark on its environment. We expect these corrections to
smaller than the direct correction (b).

The term~d! arises from the Thomas terms in the sym
metrical limit, and is independent ofM. It corresponds at the
quark level to the two-body interaction

~ q̄lQll 8ql 8!~ q̄ps•Bqp8!. ~5.16!

We can evaluate matrix elements of this operator directly
in Sec. III D and convert the results to effective baryon-lev
operators. Alternatively, a simpler calculation based on
~5.15d! and the observation thatsi1sj1sk is the total spin
operator, so acts only on the spinor index ofB or T, gives the
structure

~B̄k8 j i Qk8ksBi jk1B̄k j8 iQj 8 jsBi jk1B̄k j i 8Qi 8 isBi jk !•B
~5.17!

for the effective octet operator. The result for~e! has the
same structure withQ→QM, reflecting the corrections to
the Thomas terms associated with the mass of the quark
couples directly to the magnetic field.

Converting the expression in Eq.~5.17! and its analog for
Q→QM to matrix form, we obtain the pureF-type interac-
tions

Tr B̄@Q,B#, Tr B̄@QM,B#. ~5.18!

While F-type invariants already appear in the additive
one-body octet quark moments in Eq.~5.8!, they are accom-
panied by specificD-type and double-trace terms. As a r
sult, the pureF-type contributions from~d! and ~e! depart
from the additive model. The off-diagonal parts of~d! and
~e! are two-body rather than one-body operators, so add
ity is lost.

The two-body invariant~f! and the three-body invarian
~g! in Eqs. ~5.15f! and ~5.15g! give additional quark-mass
corrections to the Thomas terms,~f! from the direct mass
correction for the quark whose spin is involved in the inte
action, and~g! from the indirect effect of the third quark o
the matrix elements.~h! and ~i! describe the effects of the
mass-dependent parts of the spin-spin interactions give
Eq. ~4.9! on the matrix elements for the leading~a! and ~d!
terms, taken to first order inM. We have dropped furthe
8-18
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EFFECTIVE FIELD THEORY AND THE QUARK MODEL PHYSICAL REVIEW D64 014008
terms which involve $(Mi1M j )si•sj ,Qis i%, $(Mi
1M j )si•sj , (Qj1Qk)s i%, and permutations in writing~h!
and (i ). These terms, while present, reduce to the previ
structures. Because the leading moment matrix element
volve averages over the entire baryon, while the spin-s
terms are weak and of short range, we expect~h! and~i! to be
unimportant.

The last invariant, (j ), represents the effect of the sym
metrical part of the spin-spin interaction on the moment m
trix elements through changes in the baryon wave functio
This invariant induces an overall multiplicative change in t
decuplet matrix elements relative to the octet matrix e
ments, the operatorsi•sj1sj•sk1sk•si having the value
63 on decuplet~octet! fields. This affect should again b
quite small, and is irrelevant in the absence of precision m
surements of the decuplet moments.

It is possible to put all of the octet effective operators
matrix form, but the results are cumbersome and not es
cially illuminating. We note only that (a) –(e) already in-
volve all the standard structures in Eq.~5.12!, but not with
completely independent coefficients. That independenc
provided by (f ) –(i ).

We conclude by noting that the remarkable success of
additive quark model in describing the octet baryon mome
follows directly from the relative weakness of the spin-sp
interactions seen in dynamical models. Our results here
independent of the detailed dynamics as far as the struc
of the moments in relativistic effective field theory is co
cerned. However, dynamical information is clearly very u
ful in anticipating the importance of different chiral stru
tures, and in interpreting those structures in a way tha
obscured in the usual matrix representations.

VI. CONCLUSIONS

Our objective in this paper was to demonstrate the adv
tages of using the three-flavor-index representationsBi jk

g and
Ti jk

mg for the octet and decuplet baryon fields in HBChPT. W
have considered only the leading terms in the momen
expansion and the first-order corrections in the symme
breaking quark massms . We will extend the analysis to loop
corrections in a separate paper, where we will show that t
apparently small effect on fits to baryon masses and
ments in HBChPT is a consequence of the structure of
theory @2,3#. However, we have already obtained a numb
of useful results which we think demonstrate the advanta
of the method despite its lack of familiarity and the som
what more complex calculations involved.

We find, for example, that the SU~6! relations for meson-
baryon couplings and baryon masses and moments ap
automatically at leading order in the momentum expans
n

in-
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and O(ms
0) in the masses if the effects of spin-spin corre

tions or interactions are neglected. The SU~6! relations are
broken by spin-spin interactions which introduce, amo
other effects, a decuplet-octet mass splitting. They per
approximately for real baryons because the spin-depen
interactions are short-ranged and perturbatively weak as
in successful dynamical models@4,6,5#. The simple connec-
tion of the three-flavor-index form of the chiral expansion
the underlying dynamics is the key to this interpretation. It
obscured in the usual matrix representation of the o
fields, in which the approximate validity of SU~6! relations
in the chiral expansion appears to be accidental.

We found also that the terms in the new chiral expans
for the baryon masses have a structure identical to that
sumed in the NRQM even though we are dealing with
relativistic effective field theory. This correspondence, wh
holds through O(ms), is essentially kinematical. We ar
dealing with the most general description of the spin a
flavor correlations in the chiral matrix elements, and th
structure is the same as that modeled in the NRQM. T
connection goes somewhat further. The internal structure
the baryon is averaged out in matrix elements at lead
order in the momentum expansion. The residual quark
grees of freedom move with the heavy, nonrelativis
baryon in HBChPT, hence appear as ‘‘nonrelativistic’’ co
stituent quarks.

In the case of the baryon moments, we understand
striking success of the additive quark model as result
from the dominance of the one-body operators in our exp
sion over the nonadditive two- and three-body operators.
latter are again proportional perturbatively to the relative
weak spin-spin interactions. The separation of one- a
more-body operators is also the key to understanding
detailed structure of loop corrections in the chiral expans
@2,3,8#. We believe this method should be quite useful in t
analysis of HBChPT in more general situations, and prov
physical interpretations of the terms which appear throu
the connection with dynamical models. Some obvious ap
cations include the analyses of the strong baryon-meson
plings beyond the symmetrical limit, of the structure of t
weak currents, and of low-energy scattering amplitudes.
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