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Effective field theory and the quark model
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We analyze the connections between the quark mg@#) and the description of hadrons in the low-
momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation
for the effective baryon fields, we show that the “nonrelativistic” constituent QM for baryon masses and
moments is completely equivalent throughn@Q to a parametrization of the relativistic field theory in a
general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks.
Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expan-
sion in effective field theory, and provides a direct connection between the field theory and the semirelativistic
models for hadrons used in successful dynamical calculations. This allows dynamical information to be incor-
porated directly into the chiral expansion. We find, for example, that the striking success of the additive QM
for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent
corrections.
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[. INTRODUCTION symmetry-breaking mass terms can be treated perturbatively,
as seems to be the case. For example, the usual additive
The striking success of the nonrelativistic quark modelmodel for the baryon moments corresponds exactly to the
(NRQM) in explaining the main features of baryon and me-one-body moment operator in the effective field theory. The
son masses and baryon magnetic moments suggests that fiodel is successfql because the non-addmvg two- a'nd three-
success is independent of the drastic approximations aPody operators arise from spin-dependent interactions and
sumed in its typical formulations. To explore this point, we are correspondingly small.

i . The “nonrelativistic” aspects of the QM arise because
have examined the connection between the quark mOd.?Il]e baryons are heavy, not because the dynamical quarks are

(QM) apprc_)a_ch_ to bary_on masses and moments, and Fhe rIgl'eavy or nonrelativistic. The actual internal structure of the
orous relativistic effective field theory approach used in the,,4ons is absorbed into the momentum expansion of heavy-
chiral expansion of QCD. We show here that, as notddJn  paryon chiral perturbation theofy], and the quark degrees
the QM for the static properties of baryons is simply a pa-sf freedom move with the baryons. If these are sufficiently
rametrization of matrix elements in the underlying relativis- massive, the baryons may be treated as nonrelativistic with
tic field theory ina general spin—flavor baSiS, where the ﬂaV0|ho recoil effects in |Oop diagramsy and the “quark” kinemat-
and spin variables can be identified with those of effectiveics of the NRQM follow.

valence quarks. This identification holds exactly through first  As we will show in detail in a subsequent pagpél, the
order in the chiral symmetry breaking mass variable The three-flavor-index representation of the fields allows an easy
connection becomes clear when the chiral baryon fields arenalysis of loop correctiong2,3], and shows why the re-
written in a natural form with three flavor and three spinsidual loop corrections to the baryon mas$gk and mo-
indices. This change of basis clarifies the structure of thenents[9] are small. This is not the result of the smallness of
theory, including the origin of approximate ) relations, individual loop corrections as such, but rather of the small-
and demonstrates the natural occurrence of the QM spin-spifess of terms with new, nonadditive structures that violate
interaction terms in the baryon masses, and of effectivéhe Gell-Mann—Okubo relations for masses and the Okubo

quark moments in the description of the baryon magneti¢elation for moments.
momentg2,3]. The paper is organized as follows. In Sec. Il we develop

The change of basis also provides a direct connection p&onsiderable backgound material on the three-flavor-index

tween the effective field theory and semirelativistic models’€Presentation of the baryon fields, including calculational
for hadrons[4] used in successful dynamical calculationsmethOdS' In Sec. lll, we rewrite the chiral expansion in this

[5,6], and allows dynamical information to be incorporated N°tation. comment on its connection with dynamics, and de-
into the chiral expansion. We will show, in particular, that rive the baryon-meson couplings and the octet-decuplet mass

the three-flavor-index notation allows a natural classificatio splitting in the limit of equal quark masses. We then analyze
£ th i lati that . | matri he baryon masses and moments tang)(in Secs. IV and V

of the spin-flavor correlations that appear in general matri sing the new representation and its connection with dy-

elements into those arising from effective one-, two-, an

\ oo i amical models, and present concluding remarks in Sec. VI.
three-body operators. This classification corresponds directly

to the underlying dynamics when spin-dependent forces and ||. EFFECTIVE FIELD THEORY IN A SPIN-FLAVOR
BASIS

*Electronic address: Idurand@theory2.physics.wisc.edu A. Heavy baryon chiral perturbation theory
"Electronic address: phuoc@theory1.physics.wisc.edu In the following sections, we will formulate heavy-baryon

*Electronic address: Gregory.Jaczko@mail.house.gov chiral perturbation theoryHBChPT) in a spin-flavor basis.
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This allows an easy connection of HBChPT to the underly-theory (HBPT) involve the replacement of the momentum
ing quark structure of the hadrons. We will then show thatp” of a nearly on-shell baryon by an on-shell momentum
the results for the baryon masses and magnetic moments)pv* plus a small additional momentukt, p=mgv +K,
taken at leading order in the chiral symmetry breaking quarkand the replacement of the baryon field oper&¢x) by a
mass matrix, are completely equivalent to those of the naivgelocity-dependent operat8, (x) constructed to remove the

quark model. dependence of the Dirac equation on the large momentum
It will be useful as a first step to summarize the standardamyv*,

results we will need on the chiral expansion. This expansion
is usually written in terms of matrix representations for the

1 )
pseudoscalar meson and octet baryon operators: B,(X)= 5(1+¢)9'm°””MX“B(X), vh,=1. (2.4

N| -

8
b= Zl Mol

B O+ K

The velocity-dependent perturbation expansion of the rede-
fined theory involves modified Feynman rules and an expan-
sion in powers ofk/my [7,11]. Here my is an appropriate
baryonic massy* is an on-shell four velocity, and it is as-
sumed thak-v<<mg. Velocity-dependent Rarita-Schwinger
decuplet fieldsT# can be defined in the same manfgt].
We will work in the heavy baryon limit throughout the pa-
per, and will henceforth drop the subscripton the fields
B,.T,.

For later reference, we give the flavor-symmetric chiral

Lagrangian for the modified fields at leading order in the
momentum expansion, retaining all chiral invariants in the
(2.) baryon fields with at most one derivatiy&l]:

Lo=iTrB(v-D)B— émgTrBB+2D TrBSHA,, ,B}
+2F TrBSMA,, ,B]—=iTH(v-D)T,+ mTT,,

+C(THA,B+BA,TH) +2HTHS,A'T,

1
+ ZfZTr 9,203 (2.5

2 Here omg=mg—m, and émy=my—my, D,=4d,
+[V,,-] is the covariant chiral derivatives* is the spin

V6 operator defined ifil1], andD, F, C, and’H are strong in-

(2.2)  teraction coupling constants. The vector and axial vector cur-

rents are given by
where the\s are the Gell-Mann matrices of &8). The ma-

trices ¢ and B transform on their first and second indices

1
o _= T gt —f-2 _
according to the3 and 3 representations of SB) respec- Vﬂ_z(g‘?ﬂg +89,8=1(Pdudp=0udd)+- -,

tively, that is, as octet quark-antiquartq@ combinations (2.6
with
[
u v A=5(E0,E'=E9,6)=t 0,0+, (27
¢—UapUT, B—UBUT. (2.3

The ¢'s act as the Goldstone bosons of a broken Sy(3) Where
® SU(3) flavor symmetny[10]. ot it 2

Because the chiral expansion is a low-momentum expan- g=e'?l, 3=e??=¢g, 28

sion and the baryons are relatively massive, it is convenient ) )

in dealing with ChPT for baryonic processes to use theandf~93 MeV is the pion decay constant. The currents are
heavy-baryon formalism developed in RET] and extended traceless,
to the chiral context in Ref11]. This has been used to study

a number of hadronic properties, for example, baryon masses
[11-15, moments[16—-18, weak decayq11,19,2Q, and - o )
low-energy meson-baryoi1] and electromagneti2l] in- @ condition that eliminates the potential
teractions. The key ideas in heavy-baryon perturbatio{TrBS“B)(TrA,) and (TrT#S"T,)(TrA,).

Trv,=TrA,=0, 2.9

invariants
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B. Effective baryon and meson fields in a spin-flavor basis we can suppress the color factor (/E})eabc and the color
indices on the quark fields and treat ths as commuting

_ ] ) rather than anticommuting fields, with
The two-index matrix representation of the octet baryons

in Eq. (2.2) hides their three-quark structure. This makes it 1 1

difficult to trace the flow of flavor through a process involv- B}, =—0{'afq/(Cy°),s=—=(a/Cy°qpq}. (213

ing baryons, or to connect the chiral picture with the under- G NG

lying quark picture. We will therefore adopt a three-index

description of the flavor structure of the baryons. This ap-The superscript T denotes a spinor transpose. We will use

pears at the outset to be more complicated, but a thredhis compressed notation in later sections of the paper.

flavor-index notation is already standard for the decuplet We emphasize that the transformation properties of the

baryons. The change in the description will allow a simple,duark operator above determine those of the most general

detailed analysis of the structure of loop connections in &ffective octet fieldB}, (x). As noted later in Sec. Il B3]}

subsequent papé8]. can be regarded more abstractly as the octet component
We consider, in particular, representations of the baryonéCy5)aﬁz/xﬁfy(x) of a general six-index interpolating field

constructed using the “quark” field" and its conjugate y£?(x) which can be used to calculate Green’s functions in

g to carry the flavor, spin, and color structure of the bary-the low-momentum limit of QCD. Moreover, the flavor and

ons. Herei e u,d,s is the flavor index, anée 1,2,3 is the spin correlations that appear in matrix elements calculated

color index, andx is a Dirac spinor index. These fields trans- using the quark operators determine the most general struc-

form under the vector or diagonal subgroup SU(®f the  ture of matrix elements expressed in terms of the effective

chiral SU(3)®SU(3)x as fundamental and anti- fields or B, a fact we will use extensively in later sections

1. The octet-baryon fields

fundamental representations, respectively of the paper.
A representation similar to that in E(R.11) was used by
u v o Labrenz and Sharpg22] in their study of quenched chiral
q,—U;-q;r and qi—>Uﬁ,qi,=qi,UiT,i. (2.10 perturbation theory for baryons. However, because of the

presence of bosonic as well as fermionic quarks in their for-
The octet baryons are easy to represent in a three-flavomalism for suppressing quark loops, they found it necessary
index notation even though they involve flavor and spinto symmetrize in the last two flavor indices in EG.11) to
combinations of mixed symmetry in an SU&)SU(2)s,,  eliminate a flavor-singlet component of their fields. There is
decomposition. The key observation is that there is only on@o flavor singlet here, and our representation is correspond-
color-singlet combination of three anticommuting quarkingly simpler.
fields with total spin 1/2. This corresponds to a flavor octet. It is straightforward to show that
There is no flavor singlét.The fermionic symmetry is built
in automatically in a quark-field description. We can there- Bjik=—B/k. (2.149
fore determine the properties of the octet baryon fields trivi-
ally by combining two quark fields in a singlet spin state, so the quarks}; andg; must have different flavors. There is
multiplying by a third quark field which carries the total spin, no symmetry constraint with respect to those quarksgnd
and combining the color indices in a color singlet. The resultThe absence of any flavor- and color-singlet combination of
is an octet fieldB], three quarks with total spif=1/2 means that;; B{j =0
giving the Jacobi-type identity

1
_ a b
Bilk =g €ancdi 29l (CY°) ap (2.11 By + B +BJ;;=0. (2.19

where we have used the charge conjugation ma@ix These relations will be used extensively in later sections of
=iy?y° to write B, as a spinor producB, transforms the paper.

under SU(3y as We have normalizedj to correspond to annihilation
operators for the octet baryons with the standard choice of
u baryon phases:
Bﬂ-’kU_,—>UiirU”rUkkrBiy,j,k/. (212
1 1
As long as we are dealing with processes that do not B~ —=p, B —=n,
g g p 121 \/Ep 122 2

involve color dynamics such as gluon emission or exchange,

1 1
Bisie =27, Bogrr—=3,
The flavor-singlet and color-singlet components3af3® 3 are ot \/E \/5
completely antisymmetric, giving overall symmetry. There is no

completely antisymmetric combination of three spins2in2®2, 1 1 1 1
hence noj=1/2 flavor- and color-singlet combination of three Bogi—=—=304—=A, Bz —=3,——=A,
quarks with the required overall antisymmetry. \/E \/5 \/5 \/—
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It is easily checked that the spin operatsr o; has the
expected values-3 (1) when acting on a singleftriplet)

1, 1
Biss— T: » Bogz— ?ﬂ : _ _ _
2 2 configuration of two quarks, where; denotes the action of

- . - . . the Pauli matrixe- on g;. Thus,
The remainingB’s can be identified with the baryons using o on Gi

the relations in Eqs(2.14) and(2.15. With this normaliza-

T _ T _ T/
e =(gq)T- )=—30 -
tion, we can sum over repeated indices in subsequent equa- 71 010; (152)6;= (o) - (i7209;) G (fo2)a;

tions. Finally, the three-flavor-index tensdgy are related (2.23
to the two-index matrixB,, defined in Eq(2.2) by 0'i~O'jqiT(iUz)O'OIjE(mqi)T(iUz)ﬂ'mq;:qiT(iUz)UQj ,
(2.29
Yy—_— ¢ BY Y = ¢ B?
By \/56”' Bilic: Bili \/EE"' Bi- (@12 \here we have used the relations
The interpretation of the fieldB, can be clarified by o'(ioy)=—(ioye, (2.29

going to the Lorentz frame in which*=(1,0), that is, the
rest frame of the baryon with momentupt =mqu#. Up to
corrections of ordek/mg, the matrix elements of the Dirac
matrices betweeB'’s reduce in this frame to matrix elements
of the 2x2 Pauli matrices,

o-0=3, and gyo0,= — o with an implied sum over the
repeated indek in the last.

We will also need, more generally, the actionmf o\, on
a mixed-symmetry combinatiog)q;*. Using the expansion
in Eq. (2.20, we can rewrite this product as
1-1, =0, y*—v*y*y*—(00),

1
218 WA=506,0(a] G +(02),0(a] 0100 + (72) o0 020K)

0'0“—>O, UIJ_’fijk‘Tk-

In particular, usingCy®— —io,, we find that +(03)W(qiT o304 - (2.26
The third term on the right-hand side has the quarks in a
singlet configuration. The remaining symmetrical combina-

tions are triplets. As a consequence,

1.
%(qi iop0))ay
(2.19

where g} is now a two-component spinor with spin index

ye +3. The factor in parentheses is a standard representa- i
tion of a singlet spin configuration of the spinarsg; . where we have added and subtracted a singlet term to repro-

We can puB/, in a form that displays the structure of the dycg the original product as the first term on the right. We
SU(6) wave functions of the quark model by using the ex-find immediately that
pansion of an arbitrary 2 2 matrix over the complete set of
Pauli matrices,

1 .
Bl — — g €avdl Ol To0)ai "=~

(2.27

o o 00 = A0 — 2(02) o (0] 020K),

(1- 07 00 U0 = 2(02) o (0] 020K)

=2(i0y),a(Orioog), (229

1

5 (2.20

a relation we will need later.
Alternatively, addingq/q{" to both sides of the expression
in Eq. (2.27) and evaluating the right-hand side explicitly,

we find that the operator

to rearrange the spinors to combige and g, in a spinor
product. Choosind\,; as

Ays=a(afioy)”, (2.20 L

Pik=5

2(1+0'i'0'k)

(2.29

we obtain

exchanges the spin indices of quarkedk or, alternatively,
acts as the exchange operator for the flavor indigesvhen

1 , . .
Bll=— m[(qﬁ o20)0] + (Afio200) - (00))7], i#].
the order of the spin indices is kept fixed,

(2.22

The first term in this expression is antisymmetric in the in-

dicesi,k and has those quarks in a singlet spin state. This i o
term vanishes except for th& hyperon, wherd ke u,d. _We note f_mally_that the projection operator for a total
The second term has quarkandk in a triplet spin state, is SPiN-1/2 configuration of three quarks is

symmetric in those indices, and reproduces the expected
SU(6) structure of the remaining octet baryons when written

out in detail for a specific choice af.

Piai'ag=a/ax =aga; . (2.30

1
Pl/2:6(3_0_i. O'I_O'J Ok Oy O'i).

(2.31
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2. The decuplet-baryon fields

The decuplet baryons are represented in thg¢65lan-
guagd 23] by a fieldT
with four-vector and splnor indiceg andy, is a completely

symmetric tensor in the flavor indicégj,ke 1,2,3=u,d,s,

k’which is a Rarita-Schwinger spinor

PHYSICAL REVIEW D64 014008

1
[(aliooo a)ay?+j—k+kei]

36

acting as the annihilation operator for the"* state with

j,=+3/2. Herec™ are the usual spin raising and lowering

(2.40

and is a color singlet. In particulaF,transforms as the three- gperators,

guark combination

1
Tﬁk’=@eabc(qf’aqf’bQ&°+Q§aQFb 7+ af?afa)e)
X(C’y#)aﬁi (232
or, equivalently, as the decuplet component
> (CyM)aptiil” (2:33

P(ijk)

of the general six-index interpolating field discussed in Sec.

[IB. In particular, the transformation of;;, under SU(3)
follows from Eqgs.(2.10 and(2.32,

U

TR = Ui Ui U T (2.34)

The Rarita-Schwinger constraint, T“?=0 reduces to
v, T#7=0 in the rest frame of the baryon. As a resuit;”
—(0,T7) in that frame, where the spatial vectdt is given

by

1
TGabJ(qTai T200)) Q)+ j o k+kesi].

Tk~ 1812
(2.35

Alternatively, with color suppressed,

1 . . .
Tﬁk:ﬁ[(qr'azaﬂj)qg“‘l‘—>k+kH|], (2.36

an expression which can be written as

/ T:
The=P¥— @(qi iop00))ay . (2.37)
Here P37 is the projection operator for total spin 3/2,

1
3 (Pij T Pj+ Pui),
(2.38

P3/2=£(3+ o 0|+ 0} Ot Oy 0}) =
6 i j j k k* Vi

with Pj; the flavor permutation operator defined in Eqg.

(2.29.
The field T7,,= (T, T3,
A*T with the combination

T32) is normalized to the

1 .
a5 (T T3 (239

j,=312 \/E

*
g =

N -

(2.41

(o1*ioy).

The remaining decuplet baryons witb= + 3/2 have the
same spin structure. The replacementlof; by Tj;, in Eq.
(2.39 gives the following connections:

1 1
Ty AT, T —AT, T —AY,
111 112‘—>\/§ 122<—’\/§

1 1
T222<—>A7T113‘—’ﬁ2* T, Tiage %E* °,

1
Tz ﬁz* o T133<—>ﬁ5*0,

1
T233<—> ﬁE* 7, T333<->Qi (2.42

The remainingl’s are determined by the complete symmetry
in the flavor indices.

3. Pseudoscalar meson fields

The effective octet pseudoscalar meson fiefgls corre-
spond to quark-antiquark pairs in a singlet spin configura-
tion,

! \q8P 1 5
d’ij:% ait q 3 |qu qk 0an(Cy )aﬁ (2.43

and transform under SU(3)as

U
(ﬁinUii’U}kj’d)i’j’ (244)

The use of this representation makes the quark flow in an
interaction diagram clear. However, physical meson masses
are customarily used in loop calculations in chiral perturba-

tion theory so we will generally use the representation

+
=Uii;¢i,j/Uj,j .

1 8
$i=5 2 N (2.49

instead, with

=2 )\}i¢ij_—2 L0 826(CY®) .
i \6 0]
(2.46
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Note that we will not include the flavor-singlet pseudoscalar, . 1 , .4,
nominally thes’, in our later calculations. Py 7= (1+d)| v* vF—g* =359
Yy
C. Baryon and meson propagators (2.58
The momentum-space propagatorsBoT, and¢ can be  andP® andPT are flavor projection operators
constructed fairly easily. There is an overall factor
1
|/(Uk+|€), (247) P|B’]’k’,kj|:6(25I'I5J']5k’k_25l’J5]’I5k'k+5I’I5]’k5k'1
for a heavy baryon with momentupt=mgqv*+k* [7,11], = 8116 1kOkri + 811k 6y Okri— 6161 k),
and the usual factor (2.59

i/(k>—=M?+ie) (2.48 L
T
. . L L~ iriOjri et O0iri Oiri et 0;1; 01 IR
for a meson with momenturk® and masdvl. The spin and Pivirkesxii 6(5' 1911 0krkct 0110 Bkt G110k
flavor structures are easily determined in the quark represen-
tation by calculating vacuum expectation values of products + 611 0jk0kri+ 8Ky Bit G B ).-
of the frilds and their conjugates expressed in terms of the (2.60
g’'s andq’s. Thus, in a heavy baryon,
The projection operators have the properties

(0lq2aPP|0) =5 (1+8)6 503, (249 By T
v 2 o Pi’}/'IZ';kjiBi}J{k:Biy’j’k” BIZ'j’i/Pi/T'IZ’;kji:BZii'
(2.61
— 855, v,—(10),
25 T ’ /; - 1o —_— T ’ r; _—
(250 Pl I T =TE T ThL L PUL =T,
where the quark must be taken to move with the four veloc- (2.62

o .
ity v* of the baryon with where repeated indices are to be summed, both here and

($—1)q=0. (2.51) later. Our labeling conventions are such that

The results for the propagators from an intial state with PiB,T:,Z,;kji:(k’j iy ijk; ), (2.63
flavorsi,j,k and spinor and Lorentz indiceg n to a final

state with flavors’,j’ k' and indicesy’,u’ are "y T
: VoK Pl =Ky ik ). (2.64
! ! I
B: isg;iy,j,k,;k“(u,k):PBV i ————, (2.52 The results for the propagators and projection operators

KK Lk . N ! . .
v-k+ie are easy to derive using either the covariant representation of

) the heavy-baryon fields in Eq&.11) and(2.32), or the rest-
T iSE YT (p k) =PIA Y ey : . (253 frame representations in Eq&.19 and (2.36 and time-

T 7KK ViTkEKi y ktie ordered perturbation theof4]. Because the production of
baryon-antibaryon pairsZ( graphs vanishes in the heavy-
baryon limit, the propagator factorudl/k is equivalent to the

(2.59 simple energy denominator[H(mgu +k)—E(mgu)]. The
spin projection operators are given directly by sums over

o intermediate spin states in the baryon rest frame, with
The projection operators for the octet and decuplet baryons

are

SN (K= 8 .
o 0= e,

PI/2YZ 57’7! (263
By _pyypB
P irgi= P12 P e i (2.59 - 1
Toul o - P57 'W:§[5r/r5y/y+(0',0'r,)y/y]
Pl i =Phia” Pl i (2.56
where P, and P3, are the spin projection operators for = 81118y §(Ur,0r)y,y

spins 1/2 and 3/2,
7'y 1 4
Pl :E(l—'—w)y’y’ (2.57) =8 0yy~ §(Sr’5r)7’7' (2.66
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in that frame. The indices,r’ in P;;g’” label the compo-  £,=i(Bv-DB)— 5mB(§B)+2(D+F)(gyBAﬂ)_MD
nentsT'” of the spatial vectoll 7, Eq. (2.35. The projection _ _ _
operators in Eqs(2.57) and (2.58 are the covariant gener- —F)(BS*A,B)—i(T#v-DT,)+ omy(T#T,)
alizations of these results. — _ _

We will also need the projection operator that extracts the +2H(THS'A, T, + \/EC[(T“AMBH(BAMTM)]
spin-1/2 component of a vector-spinor product. This is given 1
by +71%9,20"%), 3.3

oty L 4 where the bilinear invariants in this representation are de-
P12 _§(Ur"7r)y’y—§(5r’sr)y'w (2.67  fined in general as

— = p
with (BI'B)=By;il" 2Bk - (3.439
- o (BTBA)=By, ;T upAiiBL (3.4b

5./27 ,r’}/+ Pglzy Y= 5r’r8)/”}/' (2.6& . .
(BIAB)=B;; I ,5Ai /Bl , (3.40

These operators hold for a general vector-spinor product. . -
They are equivalent to the operatdps’ and P32 in Egs. (THTT ) =T 9, s i (3.40

(2.31) and (2.38 for products expressed in terms of quark
fields? (TETAMT ) =TE%g,, T AN TE (3.49
" kji’Iuvs apB™Nritijk .
IIl. CHIRAL INTERACTIONS IN THREE-FLAVOR-INDEX (§1“A“TM)E§§“]i,gWFaﬁA{‘,i e (3.4
FORM

(EE)EE“E” . (349)

A. The chiral effective Lagrangian

It is straightforward to rewrite the chiral Lagrangian in HereT is an arbitrary Dirac matrixA is a scalar or vector
Eq. (2.5 in the three-flavor-index notation. The transforma- operator, andy,,, is the Lorentz metric tensor with signature

tions of the fieldsB, and T/ under generay® transforma-  —2.
tions implied by Egs(2.12) and(2.34) lead to the covariant The couplings in Eq(3.3) are the same as in the matrix
derivatives form of Ly in Eq. (2.5. However, this Lagrangian could
have been written down directly, with arbitrary coefficients,
D'BJy= "B+ Vi, Bl + VBl + Vi Bl as the most general allowed by chiral invariance at the lead-

(3.)  ing order in the derivative expansion.

The expressions foL, in Egs. (2.5 and (3.3) are con-
, , , ) ) nected through the relatiohs
D'THY=d T{jg+vii,T{‘,jyk+vjj,T{j‘,’k+ka,T{JﬁZ, ,

3.2 (BI'B)=(TrBB)*AT (3.59

where theV's are the components of the vector current ma- (BI'BA)=(TrBAB) “Bfag, (3.5
trix in Eq. (2.6). The leading-order Lagrangian becomes

_ 1 1
(BT'AB)=— E(Tr BBA)*AT 5+ E(TrA)

2For example,

P33 (a0 = 5 (o] 107,00} + § (o] 100, X(TrBB) T g, (359
o oz o a0 BANT )= ——ey BLAL THET 35
=1l(a iy a)a) +(a] i0507,009) ( 2 2 R T (3.5
+(af io50,,0007] (33)=Trss. (3.50
:%(Pij+ij+Pki)(qria’2‘Tr’Qj)qlz,
=P¥qlio,oaal SLabrenz and Sharpg2] use a similar notation, but include an

where we have used the symmetryqﬂfiazarqj in the first line,  extra term in their definition of the fielB;; which is unnecessary
and have then used the relations in E@27) and(2.38 and the in the present context. As a result their relations analogous to Egs.
antisymmetry quiTioij to reduce the result. (3.5b—(3.5d are more complicated.
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The first three relations follow from Eq2.17). The spinor  grating the product oﬁfﬁ‘fy(xi X »Xk,X) with an appropriate

indicesa and 3 refer toB andB, and the traces on the right compact function over thg; on the surface, can be used to

hand sides of these expressions to matrix tracesgvéimdB ~ define Green’s functions for the theory and to identify the

represented as in Eq.1) and(2.2). TrA,,=0 for the axial physical state§25]. The external hadronic states are still

current so the second term on the right-hand side of Eggharacterized by their spins and the flavors of the quarks.

(3.50 vanishes for the invarianBS*A ,B) It is clear that a sufficiently low-momentum probe will
. .B).

While the Lagrangian above gives a chiral description ofot be sensitive to the detailed structure of the hadron. The
baryonic processes in the low-momentum limit, it is not clearSMall effect on matrix elements of non-zexpin the inter-
how the various terms iff, are connected to the underlying Polating field or the hadron wave function can be treated
dynamical theory, and in particular, what dynamical rela-Perturbatively in an expansion in the probe momentum
tions, if any, there may be among the effective couplings.‘”‘round zero, 'that is, as a derivative expansion. 'A familiar
We will explore aspects of this connection in the following €X@mple is given by the low-momentum expansion of the
sections, and will show that the strong couplifysF, ¢, and  €lectromagnetic form factors of a composite system.

‘H in fact have the familiar S(#) ratios when the spin-spin Brambilla, (.:O”SO“’ and Prosped] usedﬁayGreen s func-
interactions in the dynamical theory are weak. tion construction based on the operatdrg”(x; ,X; , Xi,X)
to derive an effective semi-relativistic Hamiltonian for heavy

quarks in quenched QCD. The structure of this Hamiltonian
reflects the underlying dynamics, so it will be useful to write
The quark picture used above appears at one level as jutdown in part:

a calculational device for keeping track of the flavor and spin

indices of the most general effective baryon and meson fields ag 1 1

Bk (X), THY(x), and¢;;(x). However, at a deeper level, the H=Ho+ ﬁsl (rioX pl)r_s +(rsX pl)rT

hadrons are dynamical quark-gluon systems with currents ! 12 13

and interactions defined at the quark level, including the 2

B. Connection with dynamical models

1 asg 1
symmetry-breaking quark mass terms - — S (roXpy)— 5—— 5 S;-(r13Xp3)
Yy ry gq 3m,m, rizsl 12X P2 3m,ms r??,Sl (r1zXps
CHUTH (3.6
et 38, (S i) 518
in the basic QCD Lagrangian. The matrix elements of quark- 3mym; 3, 1 !
level operators in hadronic states involve averages over the
internal structures of the hadrons, with only the spin and 2a5 8w
flavor indices of the external particles being left at the end to +3m1m2 ?é\g(rﬂ)sl' Sptee (3.9

label the matrix elements. This structure of the matrix ele-
ments is simply parametrized in HBChPT through the effecwhere rjj=x;—x;, and S= /2. Hy contains the kinetic
tive interactions of point hadrons given in E.3), with the  terms and a spin-independent but velocity-dependent interac-
couplings representing the unknown matrix elements. Théion Vg,
internal quark-gluon structure of the hadrons appears only 5
through the chiral momentum expansion.
Dynamical models provide further information which re- HO:; Vpi2+ mi2+VSl' (3.10
flects the underlying quark-gluon structure of the theory. To
make this more explicit, we note that the gauge-invarianin Eq. (3.9) we have displayed only the spin-orbit, tensor,
operators and spin-spin interactions for particle 1 associated with the
o8 exchange of gluons between pairs of quarks. The ellipses
Wi (X0 X X, X) contain additional Thomas-type spin-orbit terms associated
with the long-range part of the potential and the remaining
=Nearp a7 2(X0) a7 (%) a7 %(X3) spin-dependent terms obtained by cyclic permutations of the
, , , guark labels 1,2,3. The full expression is given[#). The
X U2 (x1,X)UPP (X5, X) U (X3,X) (3.7 kinematic masses that appear are to be interpreted as the
o ) ) . effective masses of dressed quarks while the factorsni/
are possible interpolating operators for color-singlet baryoni¢re more properly non-local energy operatork; &/ that
states with spinor indicesy,8,y containing dynamical gmear out the short-range singularities. '
quarks with flavorsi,j,k. The factorsU are path-ordered This Hamiltonian, obtained by other means and without

integrals of the gauge potenti@Vilson lines, the small velocity-dependent parts\§,, was used by Carl-
§ son, Kogut, and Pandaripanfig and Capstick and IsgUi6]
Uaa,(Xl,x):Pexp(iJ ldx“A (x)). (3.9 in successful fits of the observed spectra of the low-lying
X K baryons with excitation energies up to about 1.4 GeV. We

will interpret this success as showing that the basic structure
The x’s and the integration paths lie on a spacelike surfaceof the interaction in Eq(3.9) is correct as far as its spin
These operators, or the operataﬂ{?fy(x) obtained by inte- dependence and the relative sizes of the various terms are
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concerned. In particular, the spin-dependent terms are genggerturbation expansion iaag and can be neglected. There are

ally small and can be treated as perturbations. no general theorems on the mi) changes in the baryon
To see the structure that might be expected in the chirainasses. _
expansion, it is useful to studyl in more detail starting in The results for the magnetic moments of the ground-state

the limit in which there are no symmetry-breaking quarkbaryon are similar. However, there is no analog of the
mass terms in the under]ying Lagrangian_ The effectivé:eynman'He”man.theorem, and the observation that the mo-
masses of the quarks in E@.9) must then all be equal, and Ments change to first-order only through one-body operators
the Hamiltonian is completely symmetric in the three quarksdepends on the approximate decoupling of the spatial and
The unperturbed states defined by the spin-independefiPin parts of the ground-state wave functions.
HamiltonianH, are independent of the spin structurg, is We will show in the following sections that this general

rotationally symmetric in the space variables, and the groun tructure carries over to the matrix elements parametrized n
. e chiral expansion for baryon masses and moments. This
state of the system has total spatial angular momeritum . . X . .
. structure is essentially kinematic. In particular, the three-
Slavor-index description of the baryon fields through Bie

in the coordinates and is the same for all the octet and deéndT’s gives the most general labeling of the flavor and spin

C%Jp'et bafYO”S- As a reSl_Jlt’ dynami_cal matrix glements that’:ontent of the external baryons. Since the quark or flavor
differ only in the baryons involved will be equal in the Sym- jineg are continuous, both dynamically and in the effective
metrical limit up to the known effects of the spin wave func- fie|q theory, the initial flavor indices can be followed through

tions. _ “a process to determine the final flavor indices, including any
Taken together, the octet and decuplet states defined witfects of the meson fielg.
respect taHy, hence also the fields;c andT;;,, determine The correlation of initial and final spins is more compli-

a 56 representation of the spin-flavor 8 [19].* The sym-  cated because quark spins can be flipped by dynamical inter-
metry is broken perturbatively in matrix elements by theactions, and there is no continuity requirement for the spin
changes in the space and spin structure caused by the smpibjection associated with a given flavor line. However, we
spin-dependent interactions in E@.9) or other effects of  will show that the spin structure of the transition operators in
short-distance gluon exchange. For example, the first-ordawo-baryon transitions is completely described tavQy by
change in the ground state energy associated withe action of the identity operator, single spin operaiers
the spin-dependent terms is simply proportional tothe two-body spin-spin operatore,,- o,,, and a spin-
<0|2i<jS-Sj|O>, a structure that gives an octet-decupletindependent mass operatdrt«mg. An equivalent param-
mass difference but does not remove the mass degeneracigization was introduced by Morpurg@7] without the ex-
within the multiplets> While the spin-dependent terms in the plicit connection to HBChPT, and the same kinematic ideas
Hamiltonian generate a nontrivial spin structure in the wavayere extended to larghl. QCD by Carone, Georgi, and
functions, this only affects the baryon masses and moment9sofsky in[28].
at second order in those interactidis. The addition of dynamical information allows us to
The situation changes if the quark masses are not equaharpen our conclusions. We will assume, as discussed
We will suppose thatm,=my=0 andmg#0. The Ofn)  above, that spin-dependent interactions are relatively unim-
changes in the baryon masses are related through thgortant in determining the structure of the ground-state bary-
Feynman-Hellman theorerf26] to matrix elements of the ons, and that an expansion in powetsis legitimate. In the
corresponding Qt) changes in the Hamiltonian. These are absence of spin-exchange interactions, the spin structure of
of two types. The changes associated with the kinetic termaynamical matrix elements would be determined completely
are spin independent and involve only one quark at a timepy the spins of the external baryons and the structure of the
that is, involve one-body operators. Those associated witelementary quark-level operators involved. At leading order
the “hyperfine” term =;_;S-S; are two-body operators in the derivative expansichthis structure will be just that
which involve spin couplings between two quarks. Theencompassed in the naite=0 quark model, a result which
changes in the spin-orbit couplings potentially involve allwill only be changed perturbatively by the effects of small
three quarks but again only appear at second order in thépin-dependent interactions originating in QCD, and by
quark mass effects. This suggests that effective field theory is
essentially equivalent to the QM to ordeg, an observation
we will explore in detail in the following sections. We will,
in fact, reproduce the results of the nonrelativistic QM for

a 35 of SU(6) except for the large mass difference associated withbaryon masses and momefi9] in a completely relativistic

spin effects and the role of the pseudoscalars as would-be Golgontext.
stone bosons. The potential symmetry is further broken by quark
mass differences.

®When the hyperfine-type interaction is properly smeared out spa- 6The spin-dependent interactions finlead to admixtures in the
tially as in[6] rather than being treated as a delta-function interacwave function of components withy>0,L;,.;>0 [6,2]. Because
tion, there is a noticeable shift in the octet-decuplet mass splitting irof the derivatives involved in the orbital angular momenta, the ef-
higher orders because of the different signs of the interaction for théects of these components can only appear explicitly through the
two multiplets. The overall structure is not changed. derivative expansion.

“The combination of the pseudoscalar mesghsand the vector
mesonpf = (1//6)(q7*a°— 3 8;4*ak") Sap(C¥*) s Would give
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C. Baryon masses in the symmetrical limit weak on the scale of the terms that determine the total
The mass terms in the effective baryon Lagrangian are onasses. We will therefore assume that all the spm-dependent
the standard form interactions are small and can be treated perturbatively, an
assumption consistent with the dynamical calculations in
= = 5,6] and[2].
Lom=—MaBy;iBij + MrTEGi T usij (3.1 [5.6] (2]
. . - . s D. Quark-level meson-baryon couplings
in the symmetrical limitms=0. For the semirelativistic Q y ping

Hamiltonian H in Eqg. (3.9, mg=(B|H|B) and my 1. Octet-octet-meson couplings
=(T|H|T), so these masses involve contributions from the  ag 4 first example of a calculation in the three-flavor-

kinetic and potential energies, including the spin-dependenhdex notation, we will explore the connection of the strong
terms. Treating the latter as perturbations, the first-order difcouplingsD, F, ¢, and to the axial vector interaction
ference of the energies in tHe=0 ground state is given

simply by the spin-spin term in Eq3.9), but there are gen- .CA:aiaMfA#q? (3.19

erally also higher order contributions from the other spin-, . . . .
dependent interactions. in the underlying quark-level chiral Lagrangian, whérgis

The spin-spin structure is also embedded in the chiral det-he axial culr(rent definl_ed_ in qu'z])' Vr\fe suppose thlat tlhere
scription. To see this, we write the original mass terms in th'® NO quark mass splittings so the theory Is completely sym-
effective Lagrangian as metric in the different quarks. We will use this calculation to
develop methods we will need later.
= - Because the quark flavor lines are continuous through a
Ly=—BimBy +TimT,.i; 3.1 ) T
M KT it ik 312 diagram and the effective field8}, and T} completely

where the total mass operator is given in terms of the specify the flavor and spin structure of the external baryons,
separate masses and the spin-1/2 and spin-3/2 projection ofte structure of most general spin-flavor matrix elements for

erators in Eqs(2.31) and(2.38 by two baryons coupled through, can be determined using the
explicit quark-level representations of the fields in Egs.
m=mgP¥?+ m;P3? (2.12) and (2.32 and the dynamically allowed spin struc-

tures. The simplest spin structure is that implied by Eq.

(3.16), in which the spin on a quark line changes only be-

cause of the coupling to the axial current. This structure can

(3.13 be changed in the symmetrical limit by spin-dependent inter-

' actions within the baryons as discussed in connection with

We will identify the common massng;+mg)/2 of the octet ~ the baryon magnetic moments in Sec. V. We expect the ef-

and decuplet with the mass), extracted in defining the fective two-body operators introduced by these interactions
heavy-baryon fields in Ec(2.4). With this definition,om; 0 be small, and will not consider them here.

1 1
:E(m-r'f' mB)'f‘g(mT_mB)(O'i' O'J+0'J ot oy O')i .

and dmg in Eq. (3.3 are simply = &m where sSm=(my The dynamical parts of the matrix elements can only be
—mg)/2. calculated using the underlying theory, but appear simply as
The mass ternt,, with m, removed reduces to unknown constants multiplying the independent spin-flavor

matrix elements. Again, in the symmetrical limit, these con-
(3.14 stants will be equal for all baryons up to the perturbative
effects of the spin-dependent interactions between quarks.
whereAm is the operator We will calculate the matrix elements of the quark-level
axial interaction in Eq(3.16) in the baryon rest frame where
'y“ySAM—>(0,— o-A).” Treating the quarks as non-
Am= = ém(o;- oj+ 0;- o+ 0y 0); . (3.19 interacting and suppressing the color indices, the spin-flavor
matrix element for the octet baryon-meson interaction is then
This operator has the expected form of a spin-spin interac- S, .
tion, and has the values ém in the decuplet and octet. It is (Y'KJT|(=apo App Ap) ik 7)
the only chiral invariant that contributes to the octet-decuplet _ Yy oA B\
mass difference in the symmetrical limit. =(0IB 1 (— Upo ApprAp) Briw O) Pimnki

£M=§kjiAmBijk +?'lkbjiAmT,u;ijk

The decuplet-octet mass difference is purely a QCD ef- 1 -
fect, ascribed in the semirelativistic Hamiltonian to the spin- = —<0|Bi7,.,k, —[(qu)A.Apn(qmi gza;r)
spin interaction associated with short-distance gluon ex- AN

change. The relation in Eq3.15 is purely kinematic, and

includes more than just the first-order spin-spin energy.

However, the dynamical calculations of Capstick and Isgur 7t is possible to carry out the calculation completely in covariant
[6] show that a treatment of the mass difference in first-ordepotation, as we have also done. However, the ostensibly noncova-
perturbation theory is at least roughly correct,&o in fact  riant treatment above is considerably simpler and and more trans-
gives a measure of the strength of the spin-spin interactioparent with respect to the operations involving projections and
and the other spin-dependent terms in E19). It is fairly =~ quark interchanges. The final result is covariant.
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+q?1\(qp|0'0'26;r)'Apm where P is the octet projection operator in E.55. To
convert this expression into an effective baryon-level opera-
—q;(qpiaazﬁ)-Ap,]|o>Pﬁ;¢gk“. (3.17  tor, we multiply on the left and right bﬁf(/:j,i, and B, ,

) respectively, sum over the indices, and use the projection
We have inserted an apparently unnecessary rest-frame oc{foperty of P given in Eq.(2.61. The resulting operator

H . By B . .
projection operatorPy /i = 6y, Pimnji for later conve-  reproduces the matrix element above when used instead of

nience. — 8 S
, . . .the quark-level operatoy, o A /q;. .° Finally, multiplying
The first term in the factor in square brackets has the spuBy the unknown dynamical matrix elemegtat the vertex

operatora ac'tmg on '.[he odd qu.ark.' with the other two nd relabeling indices, we obtain the effective baryon-level
quarks in a singlet spin state. This involves the pure octe teraction

structureBg;n,(a)M~Apn. The remaining two terms have

the paired quarks in a triplet spin state, and involve both _ 1 _

octet and decuplet contributions. These can be isolated withLggm= — BBiji U'Ak'kBijk—gﬁ(Bj'ki"‘ Bikjr) o Aj/Bijk
out calculating the final matrix element by using the projec-

tion operatorsP2 and P¥? in Egs.(2.31) and(2.38. Thus, 1

acting on the second term wifd*¥(Inp), we find that +3B(Birkjt+Bjkir) o AiriBij (3.21

1

PY(Inp) \/gai;(api tmza;r) A whereo now appears in a spinor product. The last two terms

can be combined if desired by using the symmetries of the
B’s and relabeling the summation indices.

1 1 i
:[_(1_0”'"')+5(1_0"0”) To connect Lggy to the standard matrix form of

6 HBChPT, we use the Jacobi-like identity in EQ.15 and
the identity
N 1(1 )} 1
—_ — O O, —_—
6 n p — 1—
Ve Bi'jkBiijEBi'jkBkji (3.22

Xah(Api 0a200) - Apm
1 to rewrite the last term in Eq3.21) as
=3 (Bon* Bin) (@) Apm, (318 S _ _
(Birkj+ Bjki') Bijk = — 2Bi ' jkBijk + By Bijk
Wher(_a we have _not(_ad that tlo7,- 7) annihilates the origi- _ _gi,jkBkjiJrgk”,Bijk, (3.23
nal triplet combination of the quarkg, andq,, and have
used the result in Eq.2.28 to evaluate the effects of the
remaining terms inPY%(Inp). Thus, the operator (1
— o) o,) regroupsq, andq, into the singlet combination
which appears ifB and leaves the Pauli matrix acting only . 2
on the,odd quark, that is, directly on the overall spinor index Lggv=2p| TrB{S*A, B} + §B[S/‘AM ,B]|, (3.29
of B,ﬁn,. A similar result holds for the action of (1
— 0y o).

Upon combining all terms we find that

a form to which Eqgs(3.5b and (3.5¢9 are applicable. The
next-to-last term is treated similarly. The final result is

where we have used the correspondenae- A=2S*A , to
put the expression in the standard covariant form. Comparing
L = o Egs.(3.24 and(2.5), we see that the quark-level description
(YK}~ apo Ay aprlijk y) gives the specific values
= 1, —,
== <0| Biy'j 'k'[ B)p;mlApn_" E(Bgnl—i_ BI)\np)Apm
®Had we not writterBy;; in Eq. (3.17) asB Py » the equa-
.(0_))\,)\|0>P|B;>\_y - tion analogous to EQq(3.20 Woulc_i contain only one project?on
mnckji operator rather than the two obtained when calculating matrix ele-
ments of Lggy, EQ. (3.21) below, using the general relation
(K'j"i"[BOBYijk)= P}/ OtmnsinmiPhamiji - 1t can  be
1 shown that the results are equivalent, though this is not immediately
=[— P e omApn— 2 (PR PO A obvious.
i’j’k";pmitpn g i”j’k’;pnl i7j’k’;Inp/" tpm 9 L . . =
To prove this identity, we rewrite the produd; ;B as
B Bi’jk(_Bjki__Bkij):Bi’jkBkji_Bi’ijikj b)/ using Eq.(2.19 af‘d _
~(o')>\,)\P|n’m;7kji , the symmetries of th&'s. After a relabeling of the summed indi-
ces, the last term is identical to the left-hand side up to its sign, and
(3.20 the result follows.

=\ =\
Y Bpnm+ anp)ApI

(3.19

1 - ’ . ’ ’
- B;y'\ B;y'\
+ 3(Pi’j’k’;pnm+ I:)i’j’k’;mnp)AFﬂ
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2 the remaining two terms using the spin-3/2 projection opera-
D=pg, F= 36 (3.29  tor P32 Thus, using the relation

. : . _ 1
for the couplingsD and F. These couplings automatically T7. 4+ p3/2 YT o — , 3.2
have the SU(b) ratio F/D=2/3. ki V3 a(a; o= o2)a), (329

We can also rewrit&ggy in the expected form of a sum
of one-body operators, which follows from Eq.(3.27),
Lesm=—B[Byii(- A Bik+Byiri(o-A)iriBii 1 5 —. —.
BBM o K’ ji k’kBijk Kj |( i"iPijk P3/2%[a7\n(qpl 0026?)'Apm—aﬁ(%l 0'0'2637—1)'Apl]
+Byjir (0 A)iriBiji ], (3.26

. . = V2(Thmp Api= Thor Apl) (3.29
where the single-quark spin operatcan be taken to act on
either the final or initial quark. The first alternative leads gnd we find that
directly to the expression fafgg)y in Eq. (3.21) when evalu-

frst by the symmetros of s, o e O (O[T (G Apy iy B740)
Lggw is similarly given in covariant form by — _2\/EPiT’j’k/;nm|/A|’IPIan;kji5y’yv (3.30
Lesm=2BByji(S*A,) i iBijk+ Byji( S*A,);Bijk where we have used the symmetries of the projectiqn opera-
+§kji'(5”AM)i'iBijk], (3.27 tors to combine terms. Taking a scalar product vmﬁaj,i,

on the left, multiplying on the right b)Bi’J/k, and summing

an expression that makes it clear that we are dealing with 8ver the indices using the properties of the projection opera-
relativistic effective field theory. The basic structuredgfz,,  tOrs, we obtain the baryon-level effective coupling
as a symmetrical sum of individual quark-quark-meson inter- _ _
actions is also clear here, but is not clear in the usual expres-Crgm= Zﬁﬁ’(szi,‘Ai,iBﬁkJr Byji Airi- T
sion in EQ.(3.24). This is a distinct advantage of the three- _ _
flavor-index representation for the fields. =- 2\Eﬁ/(TCj?'Aﬂ,i’iBi}j,k+ Byji AT, (3.3D
We conclude this section by noting that spin exchange

interactions within the baryons change the correlations bewhere we have inserted the unknown dynamical matrix ele-
tween the initial and final quark spins and introduce effectivement 8’ and added th& —B terms. This is of the form of
couplings in which the operatorog-A), in Eq. (3.26 is  the standard coupling given in E(B.3) with C=—-28". As
replaced by @i+ 0j) Ay, and similarly for the other discussed above, we expect tifHt= 3 up to the small cor-
terms. Matrix elements calculated with these operators haveections induced by the spin-dependent interactions between
F/D ratios different from 2/3 and therefore change the over-quarks, a result that goes beyond standard chiral symmetry
all F/D ratio, but by an amount we would expect to be small.arguments.

We can obtain the effective decuplet-decuplet-meson in-

2. Octet-decuplet and decuplet-decuplet couplings teraction by a similar calculation, but with some further

We can obtain the octet-decuplet interaction in a simiIarSUbtleties' We begin with the decuplet matrix element of the
fashion starting from the expression in B8.17. The first iuark—le;/el axial current evaluated in the baryon rest frame,
term has a pure octet structure so does not connect to findpApp ¥ dpr— (0, 0po Appqy). Inserting a factor of the

decuplet states. We can extract the decuplet components 8gcuplet projection operator of E.56 for convenience
and treating the quarks as free, we obtain

_ rl’y’ — —r
10The structure forgg ) in Eq. (3.27) can be obtained directly in <0|Ti’J’k’qpa"'A‘Pp’qlo’-rk%|0>

a standard chiral calculation at the baryon level by determining how 1
the original kinetic termB 4B for the effective fields changes when =(0 TF/’?" ,_[(a o A, duodo _T)
the effects of the Goldstone bosons are remduddl The relevant < | Tk \/§ P pn (Anoslozth
transformation property of th8's is given in Eq.(2.12), with U o _
now a spacetime-dependent transformation. A similar calcula- +q)r;(qpa'~Apmo-si o-zar)Jrqﬁ(qpo--Amasi o-za-,;)
tion determines the form of 1y in Eq. (3.37) starting from the Ton:

- T . ) . + - 10YP ok (3.32
kinetic term—iT#4T . This procedure hides the connection of the Imn;kji
results to the quark-level axial curre, , and fails forLrgy, EQ. o ] o
(3.31), since there is no mixed,B kinetic term. While the result WhereT'” is ther component ofT”. The terms in ellipsis
above is not surprising, manipulations of the type used to obtain ihave the same structure, with-m andm«|. Applying the
are needed more generally to actually evaluate matrix elements i®pin-3/2 projection operatd?®?in Eq. (2.39 to the factor in
the three-flavor-index notation. square brackets and rearranging terms, we find that

q ging
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:<0|Ti/j'k/ ﬁ[(qu'Apn) (Amosi o720 )

+a);;(am0" ApnTsi 0'26?—) +aﬁ(aﬂ~ Apnosi 0'26:1—1)

+...]|o>pTS>\?W (3.33

Imn;kji »

where the terms in ellipsis now involve the interchanges

p«—m andp«Il. This is simply the relation
—(0IT}, 0 Up0- Apprdp T 0)
= = (O[T}, i Tomi( @+ ot 07) - A, |0) PN

_ "y T\ Ts\;
- _<0Tir'j);ka;S)m|2J'Apn|0>P|n§n;[qyi ,
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Lrrw=2HT,S"A, T (3.39

The two forms are connected by the Wigner-Eckart theorem
applied to the corresponding rest-frame expressions. In par-
ticular, (S-A)y=3(J-A) for angular-momentum-3/2 states, a
result that can be checked directly but does not arise from an
obvious identity for the fields. Using this result and compar-
ing Egs.(3.37 and (3.38, we see that they are equivalent,
with H=—3p".

If spin-spin interactions are small as in the dynamical
models discussed in Sec. Il B~ B’ ~ B in the symmetri-

cal limit, extra two-body contributions of the type discussed
in Sec. V are also small, and the results in E§27), (3.31),

and (3.37) reproduce the complete set of @)Y coupling
ratios for £y, Eq. (3.3),

2
F=3D, C=-2D, H=-3D. (3.39

wherel is the total angular momentum operator of the spin-

3/2 system taken to act R, TJ=(JT).

HereD = B is the common dynamical matrix element. Given

We can evaluate this expression explicitly by using thethe smallness of the spin-dependent interactions, the validity

relation o-Aos=Astiesg:0sA; and combining the last
two terms in Eq(3.33. The singlet pieces proportional £
cancel with the result that, including the permutations,

- <O|Tir',jy'/k’apo" App’qp’ﬁmm PITrrsl)r;Lﬁ
= (O[T}, Tomi [(0)an - Apndss
+i€sgtO 1 Apnl|0) P i
=P (0 Apadsrst i €ss AL PN
(3.39
The effective interaction

_ =ty : t ry
ETTM_ B Tk’ji (G'Apngr’r—’_lErr’tAk/kgy’y)y"yTijk

(3.35
= —,3”T_k'ji '(‘T'Ak’k)Tijk+iT_k’ji A X Tk
I_ﬁ"ﬂ/ji'(ZJ'A)k'kTijk (3.39

gives the same kinematic structure, wjighi~ 8 the dynami-

cal matrix element. The action dfon a vector-spinor opera-

tor has the standard definition S+ ex whereS=1¢ acts
only on the spinor index.
In covariant form,

Lyrn=—2B"T,J"A,T#

=—28'T,S'A,TH=ie™ ™, T,A,T,. (337

of the SU6) coupling ratios for the ground-state baryons
becomes a dynamical prediction rather than an input assump-
tion. The dynamical matrix elemenig, B’, and 8" will
actually differ somewhat because of the small differences in
the octet and decuplet wave functions induced by the spin-
spin interactions, an effect which exists even in the sym-
metrical limit of QCD, and will also change in @) be-
cause of symmetry-breaking quark mass effects. The
coupling ratios will be further upset by the small contribu-
tions of two- and three-body operators. We will not consider
these changes here.

IV. CHIRAL SYMMETRY BREAKING: BARYON MASSES
AT O(My)

A. One-body operators: Q(mg) mass insertions
At the quark level, the symmetry-breaking mass terms in
the chiral Lagrangian are of the one-body form

Ln=—Mm@QHM "+ M %) a5, (4.9

where repeated indices are to be summed. The flavor matri-
cesM ™ are defined as

e _ 1ot
M =5 (EME Mg, 4.2

whereM is the diagonal matrix
M =diag(0,0,1). 4.3

The matrix elements of° vanish in the heavy-baryon limit,

We can also obtain this result directly from standard chiraland they® term in Eq.(4.1) can therefore be dropped.

field theory arguments with th&'’s treated as elementary

fields with the transformation properties in E@®.34), but

In the absence of spin-dependent interactions, we can
again use the explicit free-quark representations of the fields

with the loss of the simple connection to dynamical modelsin Egs.(2.11) and(2.32 to determine the most general spin-
The decuplet-decuplet-meson coupling is usually stated iflavor matrix element for baryons coupled through. We

terms if S’A, instead ofJ”A, as in Eq.(3.3),

treat the meson fields in the factofsand ¢™ as elementary.
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Thus, suppressing the color indices, the spin-flavor matri¥urthermore, from the connection to dynamical models, we

element for the octet baryons is expect the octet and decuplet matrix elementsand «;, to
o o be equal in the symmetrical liming=0 except for small
—ms<O|Bi7,j,k,qu ;p,qp,Blei|0> spin effects. We will henceforth assume this equality.
o o The situation is much less clear if we rewrite the octet
= —ms<o||3i7,j,k,qp/\/1 ;p,qp,B§m||o>Pﬁ];¢1;iji operator in Eq.(4.5 in the standard matrix form using the
) definitions in Eq.(2.17) or the relations in Eqs3.5b and
=— mS(PF’;jy’k));n'mlM ;,nplfm;vkji (3.50. This gives
+ P ot M P+ PE e M Planii) L£B=—a, TrB[M*,B]— am(Tr M *)(TrBB).
(4.4 “.0

where we have inserted an extra octet projection operatofN® Simple connection to the one-body structure is lost.
PB, Eq. (2.55, in the initial matrix element for symmetry. COmparing this result with the most generaln@f mass

o ) — corrections to the heavy-baryon Lagrangjdd,12,
Multiplying as before on the left and right b@k,j,i, and

Biix , respectively, summing over the indices, and using theﬁ —2be TrBIM - Ve

- . : . = rB ,B}+2b:TrB ,B
projection property ofP® given in Eq.(2.61), we obtain an Ms D M ' F (M I
effective operator that reproduces the matrix element above

, fix el +2¢TFM " T, +20(Tr M )(TrBB) + 20 TH(M *)
when used instead of the quark-level operafo¥1,,,q; : o
X(THET ), (4.9
Y + Y +
Eﬁw:_“m(Blz'jiMk'kB%k+B|Zj'iMj'jBiyjk _ , _ .
_ . we see that the one-body mass insertions give a specific octet
+Bgi M Bl (4.5  structure with an F-type mass term withh2=—a,, a re-
lated o-type term with 2r= — «,,, and no D-type contribu-
Here a,, is the unknown dynamical matrix element, with the i5, The decuplet terms havec2 3a/.~3ay,, ando=0.
fgctor of mg absorbed. This effective interaction has an Ob'The use of the quark-level picture with its connection to
vious one-body structure.
After a similar calculation, we find the effective @()
one-body mass operator for the decuplet baryons:

dynamics provides extra information. Any further contribu-
tions to £ms must come from two- or three-body operators.

B. Two-body operators: O(m) spin-spin interactions

L= ap(TE MG T+ Tl M T The only two-body operators of order, are of the spin-
spin type as suggested by the semirelativistic dynamical
model in Sec. IlIB. In a chiral theory in the heavy baryon

THY + Ty
T M T limit, the only quark-level spin-spin operator has the form

kjir /v

- I TRY oy 1 — —
Sam T M wiik- 4.6 Ou=52 (oM gy Gp) (drog):  (49)
p#r

We could, of course, have written these operators dowin the baryon rest frame, where, from E8.18), the o, o,
directly as possible fs) baryon-level chiral invariants structure can arise from either axial vector or Pauli cou-
without the calculations above. However, the structure obplings, (y“'y5)n('yﬂy5)| or (6"")n(o ) - We treat the
these operators follows directly from the the structure of thegquark fields as normal-ordered to eliminate effective one-
quark-level chiral mass term in E#.1 and the continuity body operators.
of flavor lines through the actual dynamical process, assum- The matrix elements of this scalar operator do not connect
ing no spin exchange. The invariants above are in fact thectet and decuplet states. They reduce in octet baryon states,
only O(mg) mass invariants with the one-body structure.expressed in terms of the baryon fields, to

(0l Biyfj 'klossglzjilc» =(0| Biyfj 'k'[gﬁmpap’ (Ont oq) M ;I_}'gaplap‘ (on+ o) M ;m
J’_E};;mlo'p'(o'l_"‘rm)M ;n]|0>PIBn:1}F1?/kji' (4.10

The last term vanishes because qudrBadm are in a singlet spin state. We can determine the action of the remaining spin

operators orB by using their connection to the permutation opera®@gsgiven in Eq.(2.29, o,- 0, =2Ps—1. With this
identification,
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<0|B|J’k’ SSBk]||0> 2<O|B|]’k’[(Bpmn+B)r;pm mp)MpI (I‘_)m)|0>lenkJ|

B;y'\ B;y'\
:_2<0|B|]’k’[(4Bnmp 2Bpmn)-/\/lpI|O>PImnle 2(4P Y —2Py Y pmn)MpIPImnka

i"j’k”;nmp i"jrk’;
(4.11
|
where we have used the antlsymmetrpr,fm, and len Kji ever, by addlng and subtracting operators. o,
in I,m and a relabeling of the summation indices to combine+ o)) - oM « Of the type considered above, we obtain as
terms. the only new structure
The baryon-level effective interaction that yields this ma-
trix element is ald oy oj+ 0y o+ oy o) M ;/k+ e, (418
B _ .
ﬁss—_zass(“Bku’M iBijk— ZB, Jle iBijk) The spin factor has the value 3 (+3) on the octet(de-
N cuple) states, leaving just the structure of a one-body quark
= _Zass(4Bku’M iBijk — Bk’JiM kkBijk) mass correction. Thus, including both contributions and tak-

(412  ing ags the same for the decuplet and octet, a reasonable
approximation, the only effect of the ;- oy M :,k term is
where we have used the relation in £E8.22 and a relabel- to change the effective values @f, and«/, in Egs.(4.5 and

ing of indices in writing the second linexg is the Ofns)  (4.6), and of ags and el in Eq. (4.12 and (4.19 to
dynamical matrix element. In this form, we can use the rela-

tions in Egs.(3.5b and (3.50 to write L‘SBS in matrix form,

ay— A= am+3al., a—a =al —3al., (4.17
with the result m— &m™ &m ss1 Im— A=y ss
o= [ - BJ * @s Hass Ass™ ags, aés_)aés: aés_ ags- (4.18
Los=3assTrB{M "B} — ass TrB[M ,B]
—das(Tr M +)(Tr§B). (4.13 C. Baryon masses and the quark model

. i _ The complete expression for the baryon mass Lagrangian
The first two terms have the standard form in E48), with obtained by combining the terms in Secs. IlIC, IVA, and
2bp=3ag and b= —ag. The final term is again @ IVB is

term with a specified coefficient.
The contributions of the two-body spin-spin interaction to L= ﬁ +£T (4.19
the decuplet mass operator are relatively simple. Each of the
quark pairs is in a triplet spin configuration with - 6s=1,  where, to leading order in the derivative expansion of
and the fieldsT,,, are completely symmetric in the indices HBChPT and to Of,),
[,m,n. As a result, following the structure in E¢.11),

B oD ~
RV EM—5mBkjiBijk—am(Bkr Mk’kBIJk+Bk] .M iBiik

(0|TI j,k,OSSTkJ,|0> 2<O|TI ],k,T mp/\/lp|+(|<—>m) —

+(| n)|0> +BkJI’M Bljk) 2a'ss(4BkJ|,M Bljk

<
_RY +
GPTr v sk IPTS}\;W (4 14) Bk’jiMk’kBﬁk) (4-2@
pl* Imn;kji - '

i’j’k’;nm

= —_ P + - + BI — -
The corresponding effective interaction is [om=(amt4asg) TEM T JTrBB = (am

+as) TrB[M *,B]+3asTrB{M *,B} (4.2
‘C-srs:6ass k’]le kTIJk 6“53 k’J|Mk’kT,u ijk

(4.15 and
Wg expeqt thatv;;f agg, @ r(_alatio_n t_hat Wogld be an eq_ualj ng = 5mT/|:jiTM;ijk+3('5,r’n_ ZESS)T’;,X.M S A
ity in leading order in the spin-spin interactions, but which is (4.22

only approximate when higher-order effects are incluidgd

The only three- body spin-spin interactions have the struc- \we note that the term proportional to ¥t * in the ma-
tures of ag o a,/\/lk,k and its permutations. These terms trix expression in Eq(4.21) has the form of an octet mass
arise from changes in thgj spin-spin matrix element caused term when taken to leading order in the meson fields so that
by a non-zero mass correction for the third quarkdow-  TrM " —1. While this contribution can be eliminated by
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redefiningm, and 6m in Eq. (3.13,'! as has been done im- but off-shell, quarks used in the description of fh&s and
plicitly in making numerical fits to hadron masses, for ex-T's act in effect like nonrelativistic constituent quarks with
ample, in[1], that procedure hides the simple connection ofsmall momenta inside the heavy baryon. However, we would
our results to the underlying quark structure. reemphasize that we are actually dealing with a relativistic
Comparing our expressions fﬁrﬁ, and[i{,I with the form  effective field theory in the heavy-baryon limit. The three-
of the O(m) mass terms given in Eq4.9) [11,17, we see flavor-index “quark” representation of the baryons describes
that the two forms are completely equivalent, with all the possible spin and flavor correlations in the relativistic
matrix elements. The internal momentum structure of the

2bp=—apm— ass= — Am— ass— 2ang baryons only appears explicitly with higher terms in the mo-
mentum expansion. The spin correlations can be connected
2bp=30e=3(ass— al), directly to the underlying dynamics when spin-dependent
forces are weak, an important point for interpretation and
2¢=3(%m— 2aes= 30— 6oL~ 3al,, applications as we will show in a subsequent paper on meson

loop corrections.

20=—(am+4as)=—(ap+4as— asg,
V. BARYON MAGNETIC MOMENTS AT O (Myg)

20=0. (4.23 To complete our discussion of the connection between
o relativistic HBChPT and the quark model, we will sketch the
However, the quark description has the advantage that thearametrization of the baryon magnetic moments. The rel-

various contributions have direct physical interpretations ineyant calculational procedures have all been developed
terms of the underlying dynamics. In particular, e and  gpgve.

o mass terms arise entirely from spin-spin interactions or
correlations, while théog and ¢ terms also involve direct
guark mass corrections to the main, spin-independent part of
the energy. The interaction Lagrangian for a quark magnetic moment
To see that this interpretation is reasonable as far as thie an external electromagnetic field is proportional to the
sizes of the terms are concerned, we can evaluate the parawmperator
eters using the results of a direct fit to the baryon masses.
Assuming that the relationg/,~ a,, and ai~ ass can be 1 oF, 0 5.1)
treated as equalities, we find th@m=146.5 MeV, a, 2% A ppr G '
=a,=178.4 MeV, as=ai~17.1 MeV, and ag
=—2.9 MeV, with a mean deviation of the fit from the ex- where Q is the diagonal quark charge matrixQ
perimental masses of 3.1 MeV. The spin-independent mass diag(2/3;- 1/3,—1/3). We can determine the matrix ele-
corrections have the sign and general magnitude expected fatents of this operator in the absence of multibody spin-
the replacement of a light quark by a strange quark. Thelependent interactions using the results of Sec. 1l D. Thus,
main two-body spin-spin terdm has a similar magnitude, working in the baryon rest frame wheger"'F, ,—(0,— o
and the sign corresponding to the expected color spin-spinB) with B is the magnetic field, we find the same structure
interaction, repulsive in the decuplet states. The mass correas in Sec. Il D 1 with the axial curre& replaced byQB.
tion ags to the spin-spin term is substantially smaller as isWe therefore find from Eq(3.21) that the one-body octet
expected for a short-range QCD interaction of the type in Egqmoment interactions are given by the effective Lagrangian
(3.9, has the expected sign, and are also larger than the
three-body termay,. These smaller terms are sensitive nu- 0 _ 1 _— _
merically to the validity of the approximatioa,= a/,, but E,L,BB:M[Bk/ink'kUBijk—g(Bj/kiJr Bikj)QjrjoBijk
the relative magnitudes are stable. The individual contribu-
tions can only be separated completely using further dynami-
cal input.
The structure of these results is exactly that assumed in
the nonrelativistic constituent quark mode&9]. The free,

A. One-body operators

1_— _
+ §(Bi’kj+Bjki')Qi’i0'Bijk} ‘B

5— 2
:Ml(§Bk'ink'k0'Bijk—§Bkj'in'jO'Bijk) -B.

(5.2
M general, we can incorporate the vacuum expectation value of

o ) . .
TrM ™ with respect to the meson fields intas, redefinemy and The dynamical matrix elemenpi; is changed in first order

om as ~ by the symmetry-breaking mass of the interacting quark
My—Mo+ 3 (am+4a2)(0[Tr M *|0), through a second one-body operator
dm— dm— 3 (am+4al)(0|Tr M *|0), L
and replace TM * in Eq. (4.20 by TrM ™ —(0|TrM *|0), a a4 ohVE M) 53
form that is O?) in the meson field. 2q' o F L (QM)irid 5.3
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where M =diag(0,0,1). SinceMQ=QM, the operators in  , _ _o >TY " BY yBY , . T%)-B
Egs.(5.1) and(5.3) are the only one-body operators. These *'° V2T B+ B an T
have the same spin structure and combine in the total matrix = \/E(TZ;kjwl’«i'iBfkar BZji'/J’i’iTZ;ijk)EVU)\pFa-)\Upa
element to give the effective interaction
(5.10

L, ss=m B= 3Bk ik kOBijk — 3Byjrinj joBijc | - B. whereu; andu, have the same values as in E5.8) except
(5.4) for spin-dependent effects that can be parametrized explic-
' itly. Finally, we obtain the decuplet moment interaction

Here v is the matrix

u=pn1Q+ uQM, (5.9

and u is the effective baryon magnetic moment operator cor- _ _
responding to the interaction Hamiltonid, gg=— pu- B. where, againu, and w, have the same values as in Eq.
This structure generalizes in an arbitrary Lorentz frame to (5.9).

L,77=Tiji- (23-B) i Tiji

:3?a;k’jiMk’ksvevm\pFlr)\UpTiC}k (5.11

S5— " 1 B. Two- and three-body operators
LM,BB:_(EBk’ji/Lk’kU)\ Bijk—gBkj'iMj'jff”Bijk)ny- _ .y p .
(5.6 The usual counting of the chiral invariants for the octet

’ magnetic moments gives nine structures to first order in the

We can put thisC, gg in matrix form by using the rela- quark massef20,16, namely

i in Egs.(5. . . ith th I — — — — —
tions in Egs.(5.5), (3.5b and(3.50, with the result TrBOB, TrBBQ, TrBOMB, TrBBQM, TrBOBM,

5 _ 1 — - _ _ _
‘CM,BB:(gTrBMU}\VB"_ gTrBU”BM TrBMBQ, TrM TrBQB, TrM TrBBQ, TrMQ TrBB,
(5.12
1 _
— gTr,u Tr Bo"”B) Fy, (5.7 where we have suppressed the faaidt'F,, acting on the

field B. In dealing with the gne-body operators, we encoun-

5 _ 1 _ tered only the invariants BQB and TrBQMB. We will
=M1(€TrBQa"”B+gTrBo”BQ)FM show here that the remaining seven invariants, and a tenth
invariant that distinguishes octet and decuplet moments,

5 _ 1 _ arise naturally when we consider two- and three-body opera-
gTr BM Qo-”BvLETr Bo"BMQ tors at the quark level. Our discussion will also suggest the

relative importance of the new invariants.
_ It will be useful to adopt a compressed notation in which

g IrMQTr BUAVB) Favs (5.8 we show the structure of the matrix elements in a form that
can be used for either the octet or the decuplet. Thus, corre-

where we have used Q=0. The line in this equation with SPonding to the structure in E5.1), the basic one-body

the prefactoru, has the same form as the octet-octet-mesornoment operator will be denoted by
coupling in Sec. lID1 and can be identified with the

+uo

Coleman-Glashow form for the moment operdi8@] > Qo (5.13
[
e _ _
ﬁccfm(#o TrB{Q,o""B}+ ug TrB[Q,0""B])F,, whereQ, and ;=07 B are taken to act on quatkin diag-

(5.9 onal or mixed matrix elements betweBis andT’s with all
indices contracted. Any flavor index that is not attached to a

for the SU6)-symmetric choice of parameters/2my)up  Qor M is accompanied by an implied unit mattixThus, for
=y, (el2m\) we=2u4/3, or ug/up=2/3. The remaining the octet,
terms give the quark-mass corrections to the one-body mo-
ment operator. The complete expression in Eq7) is ex- 5
actly that obtained in the simple additive quark mof&l El Qi1 —Byrjrir(Qirioilyrjlirt -+ )Bij . (5.19
Two- and three-body effects lead to small deviations from
this result as we will show later. Upon evaluating the spin matrix element of ths, we ob-

We can also obtain the one-body contributions to thetain the effective moment operator in E§.2). Multiparticle
decuplet-octet transition moments and the decuplet magnetiperators are to be evaluated similarly by applying the indi-
moments from the results in Sec. Il D. Thus, following the cated operations right-to-left on the fields in the effective
calculations that lead to E¢3.31, we obtain the magnetic operators, with matrix products assumed when the same fla-
transition operator vor index appears in a product suchMgQ; .
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The invariants we will consider are given in this notation caused by the spin-spin interaction in the Hamiltonian. In the
by equal-mass limit, these corrections, expected to be quite
small, distinguish the effective octet and decuplet moments.
They contribute further terms with the same structures as
(@) z| Qo (5.153 above for unequal masses. With this backgound, we can in-
terpret the contributions to the baryon moments in Egs.

(5.159—(5.15) dynamically.

(b) EI: (QM),0y, (5.15h The invariant(a) gives the baryon moments in the sym-
metrical limit in the absence of spin-dependent forces as al-
ready discussed. The second one-body tésrcorrects for

(c) (Mi+Mj+Mk)2 Q|a|+2 Qio(Mj+M;+My), the dependence of the dynamical matrix element on the
! ! symmetry-breaking mass of the quark in question, that is, the
(5.159 change of(1/E;) with m; in the model. The invariantc)
includes the indirect first-order corrections from the effects
(@) (Q+Qy+Qu(oi+oj+ o), (5.159 of the other quark masses on the matrix element, and begins
(&) (QM+QM;+ QM) (0i+0+ay), (5.158 to introduce a dependence of the effective moment of the
quark on its environment. We expect these corrections to be
(f) (Qj+QWM;oi+M;a;(Q;+ Q)+ permutations, smaller than the d_irect correctiom)(. _
(5.15f The term(d) arises from the Thomas terms in the sym-
metrical limit, and is independent d. It corresponds at the
(9) (QjMy+QM))ao;+permutations, (5.159 quark level to the two-body interaction

(h) (M;+My) ;- o0;Q; + permutations, (5.15h (@ Qu-q1/)(gpo- Bay). (5.16

(i) [(Q+Qu(Mj+M)+(M;+M)(Qj+ QW ]a;- oya; We can evaluate matrix elements of this operator directly as
) in Sec. Il D and convert the results to effective baryon-level
*+permutations, (5.15)  gperators. Alternatively, a simpler calculation based on Eq.
(5.15d and the observation that + o; + oy is the total spin
operator, so acts only on the spinor indexBadr T, gives the
structure

(J) {oi-oj+ 0y o+ oy 7y ), (5.15)

where- in (j) is any of the invariantsg)—(Q).

It is useful in interpreting these invariants to recall that the
baryon moments obtained in dynamical models such as that 17
of Brambillaet al.[4] appear as sums of single-particle mo-

mentsu;~(eQ/2E;) whereE; is the kinetic energy of quark for the effective octet operator. The result f@ has the

i, plus a set of Thomas precession tefig]. This is shown  same structure witl/Q—QM, reflecting the corrections to

in detail in[2] in a quenched approximation to QCD. The the Thomas terms associated with the mass of the quark that
existence of the Thomas terms follows in the context of thecouples directly to the magnetic field.

semirelativistic Hamiltonian in Eq(3.9) from the replace- Converting the expression in E(.17 and its analog for

ment ofp; in by p;—eQA, with A the vector potential for Q— QM to matrix form, we obtain the purE-type interac-
the static magnetic fiel&. The diagonal Thomas precession tions

terms are associated with the spin-same-orbit interaction in
Eqg. (3.9, and give a multiplicative correction tg;. The TrB[Q,B], TrB[QM,B]. (5.19
two-body spin-other-orbit terms introduce new, nonadditive
structure, and are important in improving the simple quark-While F-type invariants already appear in the additive or
model fits to the momen{®]. These terms are proportional one-body octet quark moments in E§.8), they are accom-
to the short-distance spin-dependent part of the potential qfanied by specifi®-type and double-trace terms. As a re-
order a divided by E|E;, so are expected to be small. sult, the pureF-type contributions from(d) and (e) depart

In the presence of symmetry-breaking mass terms, th&rom the additive model. The off-diagonal parts (@ and
dynamical matrix elements in the, differ from those in the (e) are two-body rather than one-body operators, so additiv-
symmetrical limit. There is a direct change associated witlity is lost.
the change in H;~1/m; with the effective mass of quaiik The two-body invarian{f) and the three-body invariant
There are also indirect changes associated with the effects ¢f) in Eqgs. (5.15f) and (5.159 give additional quark-mass
the quark masses on the baryon wave functions. The Thoma®rrections to the Thomas termd) from the direct mass
terms are changed similarly, with new two-body componentgorrection for the quark whose spin is involved in the inter-
associated with changes in the factoE;H; with respect to  action, and(g) from the indirect effect of the third quark on
the massesn; and m;, and a three-body component that the matrix elementsth) and (i) describe the effects of the
reflects the dependence of the matrix element on the mass ofass-dependent parts of the spin-spin interactions given in
the third quark. Finally, all of the preceding matrix elementsEq. (4.9) on the matrix elements for the leadii@ and (d)
are modified by the changes in the baryon wave functionserms, taken to first order iM. We have dropped further

(gk’ink’ko'Bijk+§kj’in’ja'Bijk+§kji’Qi’iUBijk)&SB
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terms which involve {(M;+Mj)ai-0;,Qioi}, {(M; and O?) in the masses if the effects of spin-spin correla-
+Mj)oi- oy, (Q;+Qy)ai}, and permutations in writingh) tions or interactions are neglected. The (6Urelations are
and (). These terms, while present, reduce to the previousroken by spin-spin interactions which introduce, among
structures. Because the leading moment matrix elements imther effects, a decuplet-octet mass splitting. They persist
volve averages over the entire baryon, while the spin-spirmpproximately for real baryons because the spin-dependent
terms are weak and of short range, we explecand(i) to be interactions are short-ranged and perturbatively weak as seen
unimportant. in successful dynamical mod€l4,6,5. The simple connec-
The last invariant, j(), represents the effect of the sym- tion of the three-flavor-index form of the chiral expansion to
metrical part of the spin-spin interaction on the moment mathe underlying dynamics is the key to this interpretation. It is
trix elements through changes in the baryon wave functionsabscured in the usual matrix representation of the octet
This invariant induces an overall multiplicative change in thefields, in which the approximate validity of $8) relations
decuplet matrix elements relative to the octet matrix ele4n the chiral expansion appears to be accidental.
ments, the operatas;- o+ o;- o+ oy o7 having the value We found also that the terms in the new chiral expansion
+3 on decupletocted fields. This affect should again be for the baryon masses have a structure identical to that as-
quite small, and is irrelevant in the absence of precision measumed in the NRQM even though we are dealing with a
surements of the decuplet moments. relativistic effective field theory. This correspondence, which
It is possible to put all of the octet effective operators inholds through Ofy), is essentially kinematical. We are
matrix form, but the results are cumbersome and not espaiealing with the most general description of the spin and
cially illuminating. We note only thatg)—(e) already in- flavor correlations in the chiral matrix elements, and this
volve all the standard structures in E.12), but not with  structure is the same as that modeled in the NRQM. The
completely independent coefficients. That independence isonnection goes somewhat further. The internal structure of
provided by ¢)—(i). the baryon is averaged out in matrix elements at leading
We conclude by noting that the remarkable success of therder in the momentum expansion. The residual quark de-
additive quark model in describing the octet baryon momentgrees of freedom move with the heavy, nonrelativistic
follows directly from the relative weakness of the spin-spinbaryon in HBChPT, hence appear as ‘“nonrelativistic” con-
interactions seen in dynamical models. Our results here argituent quarks.
independent of the detailed dynamics as far as the structure In the case of the baryon moments, we understand the
of the moments in relativistic effective field theory is con- striking success of the additive quark model as resulting
cerned. However, dynamical information is clearly very use-from the dominance of the one-body operators in our expan-
ful in anticipating the importance of different chiral struc- sion over the nonadditive two- and three-body operators. The
tures, and in interpreting those structures in a way that i¢atter are again proportional perturbatively to the relatively

obscured in the usual matrix representations. weak spin-spin interactions. The separation of one- and
more-body operators is also the key to understanding the
VI. CONCLUSIONS detailed structure of loop corrections in the chiral expansion

S [2,3,8. We believe this method should be quite useful in the

Our objective in this paper was to demonstrate the advangnalysis of HBChPT in more general situations, and provide
tages of using the three-flavor-index representati®f)sand  physical interpretations of the terms which appear through
T{i¢ for the octet and decuplet baryon fields in HBChPT. Wethe connection with dynamical models. Some obvious appli-
have considered only the leading terms in the momenturgations include the analyses of the strong baryon-meson cou-
expansion and the first-order corrections in the symmetryplings beyond the symmetrical limit, of the structure of the
breaking quark masgs,. We will extend the analysis to loop weak currents, and of low-energy scattering amplitudes.
corrections in a separate paper, where we will show that their
apparently small effect on fits to baryon masses and mo-
ments in HBChPT is a consequence of the structure of the
theory[2,3]. However, we have already obtained a number This work was supported in part by the U.S. Department
of useful results which we think demonstrate the advantagesf Energy under Grant No. DE-FG02-95ER40896, and in
of the method despite its lack of familiarity and the some-part by the University of Wisconsin Graduate School with
what more complex calculations involved. funds granted by the Wisconsin Alumni Research Founda-

We find, for example, that the 36) relations for meson- tion. One of the author@..D.) would like to thank the Aspen
baryon couplings and baryon masses and moments appe@enter for Physics for its hospitality while parts of this work
automatically at leading order in the momentum expansionere done.
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