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hg and h8g transition form factors within the running coupling constant method
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The electromagnetic transition form factorsFh(h8)g(Q2) of the h andh8 mesons are calculated within the
standard hard scattering approach and the usualh-h8 mixing scheme using the running coupling constant
method. Power suppressed corrections;1/Qp, p52,4, . . . toQ2FMg(Q2), are evaluated. On the basis of this
analysis deviations of theh1 and h8 meson distribution amplitudes~DA’s! from the asymptotic form are
discussed and model DA’s are proposed. In computations as input parameters the phenomenological values of
the octet-singlet mixing angleu5215.4° and of the decay constantsf 1.0.108 GeV,f 8.0.116 GeV are used.
A comparison is made with the experimental data and agreement in a range of the virtuality of the probing
photong* , 1.5 GeV2<Q2<15 GeV2, is found.
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I. INTRODUCTION

One of the important achievements of perturbative Q
~PQCD! is the predictions for certain large-momentum tran
fer exclusive processes involving hadrons@1–4#. The meson-
photon transition form factor~FF! FMg(Q2) is the simplest
such exclusive process. An analysis of theMg transition FF
in light-cone perturbation theory, based on light-cone qu
tization and the light-cone Fock state expansion, was car
out by Brodsky and Lepage@1#. As a result, within the stan
dard hard scattering approach~HSA! the form factor
FMg(Q2) can be expressed as the convolution of the h
scattering amplitudeTH(x,Q2;mF

2 ,mR
2) and the process

independent distribution amplitude~DA! fM(x,mF
2) of a cor-

responding meson. The hard scattering amplitu
TH(x,Q2;mF

2 ,mR
2) is calculable within QCD perturbation

theory and is known withO(aS) order accuracy@5–7#. The
mesons DA’sfM(x,mF

2) are universal functions containin
all nonperturbative information on mesonic binding effe
and cannot be found by tools of PQCD. Such informat
must be deduced either from experimental data or from n
perturbative QCD computations@3#.

Recently, the CLEO experimental results@8# related with
the hg and h8g transition FF’s appeared. To obtain the
data varioush and h8 decay chain analyses, for examp
h→gg, h→3p0, h8→r0g→p1p2g, were fulfilled.
These results and CELLO Collaboration data@9# form the
basis for theoretical studies of thehg, h8g transition form
factors and theh2h8 mixing problem.

It is known that the physicalh and h8 states consis
dominantly of a flavor SUf(3) octeth8 and singleth1, re-
spectively. In the usual mixing scheme we have

uh&5 cosuuh8&2 sinuuh1&,

uh8&5 sinuuh8&1 cosuuh1&. ~1!

The mixing angleu was extracted from the experiment
data@10,11# and was evaluated in various theoretical pap
@12–16#.

The electromagnetic transition form factors of theh and
h8 mesons in the light-cone perturbation theory and conv
0556-2821/2001/64~1!/014007~10!/$20.00 64 0140
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tional mixing scheme were computed@13# retaining the de-
pendence ofTH(x,k' ,Q2) on the quark transverse mome
tum k' and using the spatial wave functionc(x,k')
modeled in accordance with the Brodsky-Huang-Lepa
~BHL! prescription @17#. The numerical results show tha
there still exists a gap between the data and the light-c
perturbation computation with BHL wave function.

In the modified HSA, in which the transverse degrees
freedom and the Sudakov form factor are taken into acco
the hg andh8g transition FF’s were calculated in Ref.@14#
and the valueu5218°62° was obtained. The more gener
mixing scheme with two mixing anglesu1 ,u8 connecting the
decay constantsf 1 , f 8 of the pseudoscalar mesonsh1 ,h8

with the decay constantsf p
i ( i 51,8, p5h,h8) were also

investigated@15,16#. The phenomenological analysis@15#
based on the combined analysis of the two-photon de
width of theh andh8 mesons,hg andh8g transition form
factors allowed the authors to determine the parame
u1 ,u8 , f 1 , f 8. The similar analysis@16# was made by ex-
pressingh andh8 as linear combinations of stateshq andhs
generating by axial vector currents with the flavor structu
qq̄5(uū1dd̄)/A2 andss̄, respectively. Again the values o
the parametersu1 ,u8 , f 1 , f 8 as well as the value of the mix
ing angle of the particle statesu5215.4° were found. It is
worth noting that works@14,15# applied the modified HSA to
calculate thehg andh8g transition FF’s, and for simplicity,
the parameters related to transverse degrees of freedom
the mesonsh and h8 are assumed to be identical and t
Gaussian wave function in the transverse part of the w
function is used. The results@14,15# are in good agreemen
with the data@8#.

In this work we shall calculate thehg and h8g electro-
magnetic transition form factors within the standard HS
and the conventional mixing scheme using the running c
pling constant~RCC! method @18,19#. Computation of the
one-loop Feynman diagrams with the running coupling c
stantaS(2k2) at vertices corresponds to calculation of the
diagrams by inserting into a gluon line a chain of qua
bubbles and allows one to estimate power suppressed~higher
twist! corrections to a physical quantity under considerat
~see Ref.@18# and references therein!. In exclusive processe
©2001 The American Physical Society07-1
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SHAHIN S. AGAEV PHYSICAL REVIEW D 64 014007
the coupling constantaS runs not only due to loop integra
tion, but also because of the integration in the process
plitude over the longitudinal momentum fractions of hadr
constituents@19#. Thus the exclusive processes have two
dependent sources of power corrections to their charact
tics; the loop integration and the integration over the lon
tudinal momentum fractions of quarks and gluons. It
important that the latter source exists even at the lead
order of PQCD, when the amplitude of the exclusive proc
depends onaS @19,20#.

Resummation of (2b0aS/4p)n corrections to the pion-
photon transition FFFpg(Q2), as well as to the Brodsky
Lepage evolution kernelV@x,y;aS(Q2)# and to a meson dis
tribution amplitude, has been carried out@21# recently. In
this work the authors have also noted the existence of
kinds of power corrections toFpg(Q2): the infrared~IR!
renormalon ambiguity arising from the loop integration a
power corrections from the regionsx→0,x→1. In compu-
tation of the transition FF’sFhg(Q2) and Fh8g(Q2) using
the running coupling constant method we shall restrict o
selves by evaluating power corrections coming from the
gionsx→0,x→1.

This paper is structured as follows: In Sec. II a pseu
scalar meson-photon electromagnetic transition FFFMg(Q2)
in the standard HSA and a meson DA are described.
form factor FMg(Q2) within the running coupling constan
method is considered in Sec. III. Our numerical results
the form factorsFhg(Q2),Fh8g(Q2) in the usualh2h8 mix-
ing scheme are presented in Sec. IV. Section V conta
concluding remarks.

II. PSEUDOSCALAR MESON-PHOTON
ELECTROMAGNETIC TRANSITION FORM FACTOR

In this section we consider the SUf(3) singlet h1 and
octet h8 mesons electromagnetic transition FF’s and th
DA’s in QCD perturbation theory. Unlike theh8 meson, the
SUf(3) singleth1 contains a two-gluon valence Fock sta
@22#. This gluonic state at the leading order does not cont
ute to the form factorFh1g(Q2), but affects the higher-orde

corrections toFh1g(Q2). Owing to the quark-gluon mixing
the gluonic component of the meson DA has an influe
also on the evolution of the quark component of the dis
bution amplitude. But the phenomenological analysis de
onstrated@14# that the gluonic admixture to theh1 meson is
small. Therefore in this work we neglect the gluonic part
the mesonh1 distribution amplitude, treating theh1 andh8
mesons on the same footing, i.e., as the mesons consi
only on quark valence Fock states.

In the framework of the standard HSA the pseudosca
meson-photon electromagnetic transition form fac
FMg(Q2) is given by the expression@1#

FMg~Q2!5E
0

1

dx fM~x,mF
2 !TH~x,Q2;mF

2 ,mR
2 !, ~2!

whereQ252q2.0 andq is the four-momentum of the vir
tual photon. HereTH(x,Q2;mF

2 ,mR
2) is the hard scattering
01400
-

-
is-
-

g
s

o

r-
-

-

e

r

s

ir

-

e
-
-

f

ing

r
r

amplitude of the subprocessg* 1g→q1q̄, fM(x,mF
2) is

the meson distribution amplitude. In Eq.~2! mF
2 andmR

2 rep-
resent the factorization and renormalization scales, res
tively.

At the leading order the hard scattering subprocessg*
1g→q1q̄ is the pure electromagnetic process a
TH

0 (x,Q2) therefore does not depend on the scalesmF
2 ,mR

2

and has the following form:

T H
0 ~x,Q2!5

N

Q2 S 1

x
1

1

12xD . ~3!

The normalization constantsN1 and N8 for the mesons
h1andh8 are given by the formulas

N152A2~eu
21ed

21es
2!, N852~eu

21ed
222es

2!, ~4!

whereeq is the charge of the quarkq.
The one-loop QCD correction to the hard scattering a

plitudeTH generates its explicit dependence on the scalesmF
2

andmR
2 @5–7#. For the factorization scalemF

2 the natural and
traditional choice ismF

25Q2. After choosingmF
25Q2 and

keeping the dependence ofTH on the renormalization scal
mR

2 @6,7# we get

TH~x,Q2,aS!5
N

Q2

1

x H 11CF

aS~mR
2 !

4p F ln 2 x2
x ln x

12x
29

2 lnS Q2

mR
2 D G J 1@x↔~12x!; mR

2→m̄R
2 #.

~5!

If we take in Eq.~5! mR
2[m̄R

25Q2 we obtain the Braaten’s
result~3.12! from Ref.@6# ~there one has to equal the facto
ization scalem to Q and taked51).

The proper choice of the renormalization scalemR
2(m̄R

2) is
one of the important problems in the QCD perturbati
theory@23#. The good choice ofmR

2 is one that minimizes the
higher-order corrections to a physical quantity under qu
tion. For physical quantities, which at the leading order
PQCD depend onaS(mR

2), this procedure is quite transpa
ent. Let us clarify this point considering, as an example,
pion electromagnetic form factorFp(Q2). This FF at the
next-to-leading order contains terms proportional to ln@Q2(1
2x)(12y)/mR

2# and taking the renormalization scale asmR
2

5Q2(12x)(12y) @19#, or as m25Q2(12x)/2 @20#, one
can eliminate at least a part of such terms. But crucial for
purposes is the observation that the scalemR

25Q2(12x)(1
2y) ~or xyQ2) is equal to the absolute value of the square
the four-momentum of the virtual hard gluon at the leadin
order Feynman diagrams forTH @23#. In the case of the
meson-photon transition form factorO(aS

2) order corrections

to TH are not known. But we can takemR
2 ~or m̄R

2 depending
on the Feynman diagram under consideration! equal to the
absolute value of the square of the four-momentum of
7-2
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virtual quark in the corresponding lowest-order Feynm
diagram forTH . Then it is easy to see that

mR
25Q2x, m̄R

25Q2~12x!. ~6!

Such choice of the renormalization scalesmR
2 and m̄R

2 meets
also another requirement important for the hard scatte
amplitudeTH . Namely, it remains symmetric underx↔(1
2x) in the context of the RCC method, which leads toget
with the symmetry of the mesonM (M5h1 ,h8) DA to
equal contributions toFMg(Q2) coming from the two terms
in Eq. ~5!.

The next ingredient to be chosen in Eq.~2! is the meson
DA fM(x,Q2). In general, the meson DA can be expand
over Gegenbauer polynomials$Cn

3/2(2x21)% which are the
eigenfunctions of the evolution equation for mesons@1,3#
and has the following form:

fM~x,Q2!5fasy~x! (
n50

`

bn~Q2!Cn
3/2~2x21!,

bn~Q2!5bn
0FaS~Q2!

aS~m0
2!

G gn /b0

, ~7!

wherefasy(x) is the meson asymptotic DA

fasy~x!5A3 f Mx~12x!. ~8!

In Eq. ~7! the anomalous dimensions$gn% determine the
evolution offM(x,Q2) on the factorization scaleQ2, m0

2 is
the normalization point at which the values of the coe
cients $bn

0% can be obtained using, for example, the QC
sum-rules method@3#. For bothh1 and h8 mesons, due to
C-invariance the sum in Eq.~7! runs over evenn
50,2, . . . . Inother words, theh1 andh8 mesons DA’s are
symmetric underx↔(12x) replacement.

For our purposes it is convenient to rewrite the distrib
tion amplitude in the form

fM~x,Q2!5fasy~x! (
n50

`

Knxn. ~9!

The new coefficientsKn in Eq. ~9! can be found using Eq
~7! and known expressions for$Cn

l(j)% @24#.
Unlike the pion, kaon,rL meson there is some informa

tion concerning theh1,h8 mesons distribution amplitudes i
the literature. Therefore our goal in this paper is twofold; n
only to explain the experimental data on thehg and h8g
transition form factors by taking into account power corre
tions;1/Qp, p52,4, . . . toQ2Fh(h8)g(Q2), but also to es-
timate within this scheme values of the coefficientsbn

0 . In
numerical calculations we shall use the asymptotic DA a
DA’s with small admixture of the Gegenbauer polynom
C2

3/2(2x21) and shall fix the value ofb2
0.
01400
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III. THE FORM FACTOR F M g„Q
2
… IN THE FRAMEWORK

OF THE RCC METHOD

To compute the meson-photon electromagnetic transi
form factor FMg(Q2) we have to perform the integratio
overx in Eq. ~2!. But having inserted explicit expressions
the hard scattering amplitudeTH(x,Q2,aS) from Eq.~5! and
of the meson DA from Eq.~9! into Eq. ~2!, one encounters
with divergencies in the regionsx→1 andx→0, because the
running coupling constantaS(Q2x) „and aS@Q2(12x)#…
suffers from infrared singularity inx→0 ~and x→1) limit.
Hence the form factor can be found after regularization
aS(mR

2) in these end-point regions. Such regularization c
be carried out with the aid of the renormalization-gro
equation, that allows one to express the running coup
constantaS(lQ2) in terms ofaS(Q2). The solution of the
renormalization-group equation,

]aS~lQ2!

] ln l
52

b0

4p
@aS~lQ2!#22

b1

16p2
@aS~lQ2!#3,

~10!

obtained by keeping the leading (aS ln l)k and next-to-
leadingaS(aS ln l)k21 powers of lnl is @25#

aS~lQ2!.
aS

11 ln l/t
2

aS
2b1

4pb0

ln@11 ln l/t#

@11 ln l/t#2
. ~11!

In Eqs.~10! and~11! t54p/b0aS(Q2), andaS[aS(Q2) is
the one-loop QCD coupling constant andb0 ,b1 are the QCD
beta-function one- and two-loop coefficients, respectively

aS~m2!5
4p

b0 ln~m2/L2!
, b05112

2

3
nf ,

b151022
38

3
nf , ~12!

wherenf is the number of quark flavors,L is the QCD scale
parameterL50.2 GeV.

Having inserted Eq.~11! into Eq. ~5! and after that, Eqs
~5! and ~9! into Eq. ~2!, we obtain the integral which is stil
divergent, but has now the form suitable for calculation. U
ing the method described in details in our work@19#, this
integral may be found as a perturbative series inaS(Q2):

Q2FMg~Q2!5A1B(
n51

` S aS~Q2!

4p D n

b0
n21Cn , ~13!

whereA,B are constants. The coefficientsCn of the series in
Eq. ~13! demonstrate factorial growthCn;(n21)! indicat-
ing on the IR renormalon nature of divergences in the in
gral ~2! and in the corresponding series in Eq.~13!. The
convergence radius of such series is zero and its summa
should be performed using the Borel integral techniques,
one has to find the Borel transformB@Q2FMg#(u) of the
series@26#,
7-3
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B@Q2FMg#~u!5 (
n51

`
un21

~n21!!
Cn , ~14!

then invertB@Q2FMg#(u) to obtain the resummed expre
sion for Q2FMg(Q2). This approach is straightforward bu
tedious. These intermediate steps can be bypassed by i
ducing the inverse Laplace transforms@27#,

1

~ t1z!n
5

1

G~n!
E

0

`

exp@2u~ t1z!#un21 du, Ren.0,

~15!

and
he

m

l-

n
nd

-

01400
ro-

ln~ t1z!

~ t1z!2
5E

0

`

exp@2u~ t1z!#~12C2 ln u!u du, ~16!

whereG(z) is the Euler gamma function,C.0.577216 is the
Euler-Mascheroni constant, andz5 ln x @or z5 ln(12x)].
Then foraS(lQ2) we get

aS~lQ2!5aStE
0

`

exp~2ut!l2uR~u,t !du,

R~u,t !512
b1

b0
2

u~12C2 ln t2 ln u!. ~17!

After integration in Eq.~2! overx employing Eqs.~5! and
~17! we find
@Q2FMg~Q2!# res5A3N fpH (
n50

`
Kn

n11
1

8

3b0
E

0

`

exp~2ut!R~u,t ! (
n50

`

Kn„B~2,11n2u!

3$@c~11n2u!2c~31n2u!#21c8~11n2u!2c8~31n2u!1c~11n2u!

2c~31n2u!29%2B~1,21n2u!@c~21n2u!2c~31n2u!#…duJ , ~18!
el
nd

ion
has

in
he
lue
ch
tor

n
-

whereB(x,y)5G(x)G(y)/G(x1y) is the Beta function and
c(z)5d ln G(z)/dz. The second term in Eq.~18! is the in-
verse Borel transformation, the integrand in Eq.~18! without
the exponential factor exp(2ut) is the Borel transform
B@Q2FMg#(u) of the series in Eq.~13!. In deriving of the
expression~18! we take into account that because of t
symmetry of theh1 and h8 mesons DA’s andTH under
replacementx↔12x, the second term in Eq.~5! after inte-
gration overx leads to the same contribution as the first ter

The obtained result~18! is valid for all DA’s of the me-
sonsh1 ,h8. But we are going to use in our numerical ca
culations only two terms (b0 ,b2Þ0) from Eq.~7!, therefore
in Eq. ~18! n50,1,2 and the coefficientsKn in Eq. ~9! are

K05116b2~Q2!, K15230b2~Q2!, K2530b2~Q2!.
~19!

It is evident that the divergence of the integral in Eq.~2!
manifests itself as the divergence in the inverse Borel tra
formation ~18!. To reveal the nature of this divergence a
outline a way for its regularization it is convenient to sim
plify the Borel transformB@Q2FMg#(u) using the following
formulas@24#:

G~11z!5zG~z!, c~z1n!5c~z!1 (
k50

n21
1

k1z
,

c8~z1n!5c8~z!2 (
k50

n21
1

~k1z!2
. ~20!
.

s-

Then after simple manipulations, for instance, forn50, we
get

B@Q2FMg#~u!un505R~u,t !F 2

~12u!3
2

2

~22u!3
2

1

~12u!2

1
2

~22u!2
2

9

~12u!~22u!G . ~21!

The analysis fulfilled by taking into account alson51,2
terms in Eq.~18! allows us to state that the inverse Bor
transformation has a finite number of the triple, double, a
single poles located at positive integersu051,2,3,4 in the
Borel plane. In other words, the inverse Borel transformat
contains the infrared renormalon poles and some method
to be applied to remove them from Eq.~18!. The possible
prescriptions include deforming the integration contour
Eq. ~18! into the complex plane so that it runs above t
poles or below the poles. We adopt here the principal va
prescription. The inverse Borel transformation after su
regularization becomes the resummed form fac
@Q2FMg(Q2)# res.

The expression@Q2FMg(Q2)# res takes into account
power suppressed corrections;1/Qp, p52,4,6, . . . to the
form factor, which are implicitly contained in Eq.~18!. To
clarify this point let us calculate theO(aS) correction to the
form factor Q2FMg(Q2) applying the infrared matching
scheme @28#. For simplicity, let us choose a meso
asymptotic DA~8!. Then the correction is given by the for
mula
7-4
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@Q2FMg~Q2!#15
A3NCFf M

2p E
0

1

aS~Q2x!

3F ln2 x2
x ln x

12x
291 ln xG~12x!dx,

~22!

which can be expressed in terms of moment integralsf p(Q)
defined as

f p~Q!5
p

QpE0

Q

dk kp21aS~k2!. ~23!

Indeed, for the simplest term in Eq.~22! we have

Fp~Q!5E
0

1

aS~Q2x!~12x!dx5 f 2~Q!2
1

2
f 4~Q!.

~24!

After some manipulations, i.e., after changing in the integ
the variablex→12y, expanding ln(12y) as a power series
in y and returning again to the variablex after y→12x, we
get

E
0

1

aS~Q2x!~12x!ln x dx

5 (
n51

`
1

n (
l 50

n11
~21! l 11

l 11
Cn11

l f 2(l 11)~Q!, ~25!

where Cn11
l are the Newton binomial coefficients. Simila

expressions can also be found for other terms in Eq.~22!.
Now using the infrared matching scheme one can find

moment integralsf p(Q) as a sum of a nonperturbative an
perturbative parts. For example, for the integral~24! we have

E
0

1

aS~Q2x!~12x!dx5
m2

Q2
f 2~m!2

1

2 S m2

Q2D 2

f 4~m!

1
aS

2
@122G~1,2z!1G~1,4z!#

1
aS

2b0

16p
@324G~2,2z!1G~2,4z!#

1 . . . . ~26!

Here, aS[aS(Q2), m is the infrared matching scale
z5 ln(Q/m), and G(n11,z) is the incomplete gamma
function,

G~n11,z!5E
z

`

e2ttn dt. ~27!

All the nonperturbative information is contained in th
parametersf 2(m) and f 4(m), which represent weighted av
erages ofaS over the infrared region 0,k,m. The resulting
01400
l

e

contribution toFp(Q) from the infrared region is a powe
correction of order 1/Qp, p52,4.

After truncating the series like Eq.~25! at somen5N and
employing Eq.~24! one can separate theO(aS) correction to
the transition form factorQ2FMg(Q2) into two parts; power
suppressed corrections;1/Qp and a perturbative contribu
tion. In other words, the infrared matching scheme allows
to estimate power corrections toFMg(Q2) by explicitly di-
viding them from the full expression and introducing m
ment integralsf p(m) as new nonperturbative paramete
The values of the parametersf p(m) have to be deduced from
experimental data. In the framework of the running coupli
constant method we estimate the same power suppressed
rections to the form factorFMg(Q2), but here we do not
need additional information onf p(m). In our previous work
@29# we compared results for the pion electromagnetic
Fp(Q2) obtained using these two methods with each oth
They practically coincide, except for a region of smallQ2. In
this paper we do not bring calculation ofFMg(Q2) by means
of the infrared matching scheme to numerical results, ma
owing to the lack of phenomenological information o
f p(m), p.2. It is worth noting that values of nonperturba
tive parametersf p(m) calculated by means of the runnin
coupling constant method

f p~m!5p
2p

b0

l i ~lp/2!

lp/2
, l i ~x!5P.V.E

0

x dt

ln t
, ~28!

wherel5m2/L2, p52,4,6, . . . , arecomparable with ones
extracted from experimental data, when experimental val
of f p(m) are available@29#.

The principal-value prescription adopted in this paper
regularize the integral in Eq.~18! generates power sup
pressed ~higher twist! ambiguities ;(L2/Q2)qFq(Q2),
whereFq(Q2) are calculable functions completely fixed b
the residues of the Borel transformB@Q2FMg#(u) at u0
5q, q51,2,3,4. These ambiguities are canceled by ultrav
let renormalon ambiguities in the higher twist contributio
to FMg(Q2). The crucial assumption~the ultraviolet domi-
nance assumption! is that not only the ambiguity, but the
whole higher twist contribution is proportional toFq(Q2).
Hence Eq.~18! takes the form

@Q2FMg~Q2!# res⇒@Q2FMg~Q2!# res

1 (
q51

4

NqS L2

Q2D q

Fq~Q2!, ~29!

whereNq are arbitrary constants. The constantsNq and their
sign have to be fixed from experimental data.

IV. h AND h8 MESONS ELECTROMAGNETIC
TRANSITION FORM FACTORS

In this section we calculate theh andh8 mesons transi-
tion FF’s Fhg(Q2) and Fh8g(Q2) within the ordinaryh
2h8 mixing scheme using the result forFMg(Q2) obtained
in Sec. III. It is easy to demonstrate that in the ordinaryh
7-5
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2h8 mixing scheme the relations between SUf(3) basis
statesh1 ,h8 and the physical onesh,h8 @Eq. ~1!# lead to the
similar relations between the physical transition form fact
andh1g,h8g form factors

Fhg~Q2!5 cosuFh8g2 sinuFh1g~Q2!,

~30!
Fh8g~Q2!5 sinuFh8g1 cosuFh1g~Q2!.

In the literature@10–16# the different values foru were
predicted. Thus from the phenomenological analysis of v
ous decay processes and ofp2p scatteringu.220° was
found @10#, whereas a similar consideration fulfilled by in
cluding constituent quark mass effects@11# gaveu5214°
62°. At the leading order in the chiral perturbation theo
~ChPT! by diagonalizing theh andh8 mass matrix the value
u5210° was obtained. TheO(p4) order corrections@12#
considerably change the lowest-order ChPT result and y
u5220°. In this work we rely on the recent phenomen
logical analysis carried out in Ref.@16# and use in numerica
calculations the following values off 1 , f 8, andu:

f 151.17f p.0.108 GeV, f 851.26f p.0.116 GeV,

u5215.4°, ~31!

where f p50.0923 GeV is the pion decay constant.
The expressions~30! determine also the asymptotic b

havior of thehg andh8g transition form factors. Since, fo
Q2→`, any distribution amplitude~7! evolves into the
asymptotic one,

fM~x,Q2!→A3 f Mx~12x!, ~32!

the model-independent limits of the form factors are

Q2Fh(h8)g~Q2!→4A2

3
f h(h8)

1
1

2

A3
f h(h8)

8 . ~33!

The decay constantsf h(h8)
i , i 51,8 in the usual flavor octet

singlet mixing scheme read

f h
85 f 8 cosu, f h

152 f 1 sinu,

f h8
8

5 f 8 sinu, f h8
1

5 f 1 cosu. ~34!

Then, using the values of the parametersf 1 , f 8, andu from
Eq. ~31!, we obtain

Q2Fhg~Q2!uQ2→`.0.223 GeV,

Q2Fh8g~Q2!uQ2→`.0.304 GeV. ~35!

In Refs. @15# and @16# the new and general parametriz
tion, i.e., the two-angle mixing scheme

f h
85 f 8 cosu8 , f h

152 f 1 sinu1 ,

f h8
8

5 f 8 sinu8 , f h8
1

5 f 1 cosu1 , ~36!
01400
s

i-

ld
-

has been adopted and on the basis of the theoretical
phenomenological analyses two parameter sets have
proposed@16#:
Theory,

~ I! f 151.15f p.0.106 GeV, f 851.28f p.0.118 GeV,

u1522.7°, u85221.0°; ~37!

phenomenology,

~ II ! f 151.17f p.0.108 GeV, f 851.26f p.0.116 GeV,

u1529.2°, u85221.2°. ~38!

For these parameters theQ2→` limits ~33! of the form fac-
tors are

~ I! Q2Fhg~Q2!uQ2→`.0.141 GeV,

Q2Fh8g~Q2!uQ2→`.0.297 GeV,

~ II ! Q2Fhg~Q2!uQ2→`.0.182 GeV,

Q2Fh8g~Q2!uQ2→`.0.30 GeV. ~39!

The hg and h8g transition form factors calculated em
ploying the h1 and h8 mesons asymptotic DA’s and th
different parameter sets from Eqs.~31!, ~37!, ~38! are shown
in Fig. 1. For theh8g transition form factor all three set
give approximately the same results. But thehg transition
form factors obtained using I and II parameter sets are
conflict with the data. The disagreement is dramatic for th
set, arising from the too low value of the mixing angleuu1u.
The two-angle mixing scheme and the corresponding par
eter set applied for calculation of thehg andh8g transition
form factors in the context of the modified HSA led to goo
description of the experimental data@15#. But this scheme
and the parameter sets I and II seem not acceptable in
case. Within the RCC method the reliable parameter se
one from Eq.~31!. In what follows we use the usual octe
singlet mixing scheme and this set of parameters.

It is interesting to clarify the dependence of the form fa
tors ~at fixed f 1 , f 8) on the valueu. Theh1 andh8 mesons
asymptotic DA’s~8! with the decay constantsf 1 , f 8, andu
from Eq. ~31! give thehg form factor that may be consid
ered as describing the data@Fig. 2~a!# andQ2Fh8g(Q2) lying
below the corresponding data@Fig. 2~b!# excluding some
points. By varying the value ofu at fixed f 1 , f 8 we observe
that atu smaller thanu5215.4° the situation withFhg(Q2)
becomes better, whereasFh8g(Q2) decreases with decreas
ing of u. At u larger thanu5215.4° we find the opposing
picture ~it is not shown in Fig. 2!.

To make the quantitative conclusions concerning the fo
factors at various values ofQ2,u,b2 it is convenient to in-
troduce the ratio

RM~Q2,u,b2!5
FMg~Q2,u,b2!2FMg~Q2,ũ,b̃2!

FMg~Q2,u,b2!
. ~40!
7-6
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Then atb2
05b̃2

0[0 andu5220°,ũ5215.4° we get

Rh~2,23 GeV2,220°!.0.096,

Rh~10 GeV2,220°!.0.096,

Rh~20 GeV2,220°!.0.097,

and foru5222°,ũ5215.4° we find

Rh~2,23 GeV2,222°!.0.098,

Rh~10 GeV2,222°!.0.13,

Rh~20 GeV2,222°!.0.13.

In the case of theh8 meson we have
~i! b2

05b̃2
0[0 andu5220°,ũ5215.4°,

Rh8~2,23 GeV2,220°!.20.066,

FIG. 1. Thehg ~a! andh8g ~b! electromagnetic transition form
factors vsQ2. In calculations theh1 and h8 mesons asymptotic
DA’s are used. The solid curves correspond to the paramete
~31!, the dashed curves to the parameter set I~37!, the dot-dashed
curves to the parameter set II~38!. The upper dashed lines demo
strate the model-independent limits of the corresponding form
tors ~35!. The data are taken from Ref.@8#.
01400
Rh8~10 GeV2,220°!.20.067,

Rh8~20 GeV2,220°!.20.065,

~ii ! u5222°,ũ5215.4°,

Rh8~2,23 GeV2,222°!.20.098,

Rh8~10 GeV2,222°!.20.1,

Rh8~20 GeV2,222°!.20.098.

As is seen, the ratioR is stable in all cases, but thehg form
factor is more sensitive tou than theh8g one.

The small admixture of the Gegenbauer polynom
C2

3/2(2x21) in the DA of theh1 meson and theh8 meson
asymptotic DA leads to better agreement with the data t
two asymptotic DA’s. In Fig. 3 thehg andh8g form factors
calculated using theh8 meson asymptotic and theh1 meson
model DA’s are shown. For bothhg andh8g FF’s the dif-
ference between curves with variousb2

0 is mild in the domain

et

c-

FIG. 2. Thehg ~a! andh8g ~b! electromagnetic transition form
factors vsQ2. All curves are obtained employing the asympto
DA’s for both theh1 andh8 mesons. The solid curves correspon
to the octet-singlet mixing angleu5215.4°, the dashed curves t
u5220°, the dot-dashed curves tou5222°.
7-7
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of smallQ2 and becomes significant at largeQ2. Indeed, for
the ratioRh at Q256.56 GeV2 we have

Rh~6.56 GeV2,b2
050.05!

5
Fhg~6.56 GeV2,0.05!2Fhg~6.56 GeV2,0!

Fhg~6.56 GeV2,0.05!

.0.017,

and at Q2520 GeV2 Rh(20 GeV2,b2
050.05).0.023. The

same ratio for theh8g form factor is Rh8(5 GeV2,
b2

050.05).0.036,Rh8(20 GeV2,b2
050.05).0.06. Increas-

ing b2
0 in the h1 meson DA we increase thehg and h8g

form factors. Thus Rh(6.56 GeV2,b2
050.15).0.047,

Rh(20 GeV2,b2
050.15).0.067 andRh8(5 GeV2,b2

050.15)
.0.1,Rh8(20 GeV2,b2

050.15).0.16. As is seen, the consid
ering effect is impressive for theh8g form factor. This is
understandable, because theh8 dominantly consists of the
h1 meson. We have also studied transition form fact

FIG. 3. Thehg ~a! andh8g ~b! transition form factors as func
tions of Q2. The octet-singlet mixing angle isu5215.4°. All
curves are calculated using the asymptotic DA for theh8 meson.
The correspondence between the curves and DA of theh1 meson is:
the solid curvesb2

050.05, the dashed curvesb2
050.1, the dot-

dashed curvesb2
050.15.
01400
s

choosing the model DA’s (b2
0Þ0) for the h8 meson and

asymptotic DA forh1 and have found that theh8g form
factor is less sensitive tob2

0 than in the first case.
In Fig. 4 the form factors obtained using the model DA

with b2
0Þ0 for bothh1andh8 mesons are plotted. Again th

agreement with the data is better for thehg form factor than
for the h8g one. Nevertheless, we can state that theh1 and
h8 model DA’s withb2

050.1–0.15 describe the experiment
data on thehg,h8g transition form factors.

In Figs. 3 and 4 the form factors found by neglecting t
evolution of the meson distribution amplitudefM(x,Q2) on
the scaleQ2 @fM(x,Q2)5fM(x,m0

2)# are depicted. The ef-
fect of the evolution of theh1,h8 mesons DA’s on thehg
and h8g transition form factors does not exceed 2% atQ2

55 GeV2 and 5% atQ2520 GeV2 ~Fig. 5, curves 1!. In
these computations the normalization pointm0 has been
taken equal to 1 GeV and the anomalous dimension isg2
550/9.

The higher twist corrections to the form factors are sho
in Fig. 6. Since the constantsNq and their sign are free

FIG. 4. Thehg ~a! andh8g ~b! transition form factors at fixed
u5215.4°. The correspondence between the curves and the
rameters of theh1 andh8 mesons model DA’s is: the solid curve
b2

0(h1)50.05,b2
0(h8)50.1; the dashed curves b2

0(h1)
50.1,b2

0(h8)50.1; the dot-dashed curvesb2
0(h1)50.15,b2

0(h8)
50.15.
7-8
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parameters, in the simple case of the asymptotic DA’s
have examined two possibilities:N15N251 and N15N2
521. These corrections do not exceed615% of the corre-
sponding form factors.

V. CONCLUSIONS

In this work we have calculated thehg andh8g electro-
magnetic transition form factors in the standard HSA a
usual mixing scheme applying the running coupling const
method. We have demonstrated that the conventional mix
scheme with SUf(3) octet-singlet mixing angleu5215.4°
and h1,h8 mesons model DA’s including the small admi
ture of the Gegenbauer polynomialC2

3/2(2x21) lead to the
hg and h8g electromagnetic transition form factors, whic
are in agreement with the experimental data in a range of
virtuality of the probing photon, 1.5<Q2<15 GeV2. We
have estimated the coefficientsb2

0 in Eq. ~7! as b2
0

FIG. 5. Results for thehg ~a! and h8g ~b! transition form
factors obtained using theh1 andh8 mesons model DA’s with the
parameters b2

0(h1)5b2
0(h8)50.15 ~curves 1! and b2

0(h1)
50.05,b2

0(h8)50.1 ~curves 2!. The solid~dashed! curves are found
by neglecting~by taking into account! the evolution of the DA’s on
the factorization scaleQ2.
01400
e

d
t
g

e

50.1–0.15 for bothh1 and h8 mesons, but even the
asymptotic DA’s are not in evident conflict with the data. W
have also examined within the RCC method the two-an
mixing scheme@15,16# and found that the parameter se
proposed in Ref.@16# do not describe the data on thehg
transition form factor, mainly due to a small value of th
mixing angleuu1u.

We have taken into account the evolution of the mo
DA’s on the factorization scaleQ2 and found that its effect
on the form factors in the considering range ofQ2 is small
(5% at Q2520 GeV2). The higher twist corrections to
Q2Fh(h8)g(Q2) estimated applying the ultraviolet dominanc
assumption do not exceed615% of the corresponding form
factors.

In our investigations ofQ2Fh(h8)g(Q2) the intrinsic gluon
and charm components of theh and h8 mesons have bee
neglected. It is quite possible that their consideration w
improve an agreement of our results with the experimen
data. But these problems require further studies.

FIG. 6. Higher twist contributions to thehg ~a! and h8g ~b!
transition form factors. In computations theh1 and h8 mesons
asymptotic DA’s are employed. The solid curves are the form f
tors within the RCC method~18!. The upper dashed curves corr
spond toN15N251, the lower ones toN15N2521 @see Eq.
~29!#.
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