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The electromagnetic transition form factd?g(”,)y(Qz) of the » and »" mesons are calculated within the
standard hard scattering approach and the ugugl mixing scheme using the running coupling constant
method. Power suppressed correctienQP, p=2,4, . .. tonFMy(QZ), are evaluated. On the basis of this
analysis deviations of the; and ng meson distribution amplitude®A’s) from the asymptotic form are
discussed and model DA'’s are proposed. In computations as input parameters the phenomenological values of
the octet-singlet mixing anglé= —15.4° and of the decay constarfits=0.108 GeV,fg=0.116 GeV are used.

A comparison is made with the experimental data and agreement in a range of the virtuality of the probing
photony*, 1.5 GeV¥<Q?<15 Ge\?, is found.
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I. INTRODUCTION tional mixing scheme were comput¢ti3] retaining the de-
pendence off y(x,k, ,Q?) on the quark transverse momen-
One of the important achievements of perturbative QCDium k, and using the spatial wave functiog(x,k,)
(PQCD is the predictions for certain large-momentum trans-modeled in accordance with the Brodsky-Huang-Lepage
fer exclusive processes involving hadrdfis-4]. The meson-  (BHL) prescription[17]. The numerical results show that
photon transition form factofFF) Fy,(Q?) is the simplest there still exists a gap between the data and the light-cone
such exclusive process. An analysis of Mey transition FF perturbation computation with BHL wave function.
in light-cone perturbation theory, based on light-cone quan- |n the modified HSA, in which the transverse degrees of
tization and the light-cone Fock state expansion, was carmiefleedom and the Sudakov form factor are taken into account,
out by Brodsky and Lepagdé]. As a result, within the stan- o 7y and 7' y transition FF's were calculated in RéfL4]
dard k;ard scattering approacttSA) the f_orm factor nd the valugg= —18°+ 2° was obtained. The more general
FM’/(Q.) can be. expressedzfiszthezconvolut|on of the har(ﬁ]ixing scheme with two mixing angles , g connecting the
scattering amplitudeTy(x,Q% ur . ug) and the process- decay constants,,fg of the pseudoscalar mesong , 7g

independent distribution amplitudBA) d)M(x,,uﬁ) of a cor- with the decay constantﬁp (i=1,8, p=7.7') were also

responding meson. The hard scattering amplitude . :
Tu(x,.Q% u2 ,u2) is calculable within QCD perturbation investigated[15,16. The phenomenological analysj45]

theory and is known wittD(ag) order accuracy5—7]. The based on the combined analysis of the two-photon decay

; 2 . ) .- width of the  and ' mesons;y and ' y transition form
mesons DA Sd"\".(x"‘.LF) are _unlversal func_tlon_s c_ontamlng factors allowed the authors to determine the parameters
all nonperturbative information on mesonic binding effects

. . >01,0g,f1,fg. The similar analysif16] was made by ex-
and cannot be found by tools of PQCD. Such mformatlonpressingn and' as linear combinations of stateg and 7

must be deduced either from experimental data or from non- - . .
perturbative QCD computation§]. generating by axial vector currents with the flavor structure

Recently, the CLEO experimental resul&] related with qq=(uu+dd)/\2 andss respectively. Again the values of
the 7y and #’y transition FF's appeared. To obtain thesethe parameters,, g, ,fg as well as the value of the mix-

data variousy and »' decay chain analyses, for example, ing angle of the particle states= —15.4° were found. It is
n—vy, n—31° 9 —p’y—mm"y, were fulfiled.

worth noting that work$14,15 applied the modified HSA to
These results and CELLO Collaboration dgj form the calculate theyy and "y transition FF's, and for simplicity,
basis for theoretical studies of thgy, 7' transition form the parameters related to transverse degr_ees _of freedom for
factors and they— 7' mixing problem. the mesonsy and 7' are _assumed to be identical and the

It is known that the physicaly and 7' states consist Gaus_5|ar_1 wave function in the transvgrse part of the wave
dominantly of a flavor SL(3) octet g and singlety;, re- function is used. The resul{44,15 are in good agreement

spectively. In the usual mixing scheme we have with the_ datd(8]. ,
In this work we shall calculate thgy and »'y electro-

| 7)= cosb| ng)— sind| 7,), magnetic transition form factors within the standard HSA
and the conventional mixing scheme using the running cou-
|7")= sin6| ng)+ cosb| 7;). ) pling constant(RCC) method[18,19. Computation of the

one-loop Feynman diagrams with the running coupling con-
The mixing angled was extracted from the experimental stantag(—k?) at vertices corresponds to calculation of these
data[10,11 and was evaluated in various theoretical papersliagrams by inserting into a gluon line a chain of quark
[12-14. bubbles and allows one to estimate power suppre@dsgher
The electromagnetic transition form factors of theand  twist) corrections to a physical quantity under consideration
»' mesons in the light-cone perturbation theory and conventsee Ref[18] and references thergirin exclusive processes
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t_he coupling constankg runs not only .due. to loop integra- amplitude of the subprocesg* +y—q+q, dulx, u) is
tion, but also because of the integration in the process ampe meson distribution amplitude. In EQ) w2 and 3 rep-
plitude over the longitudinal momentum fractions of hadronesent the factorization and renormalization scales, respec-
constituent419]. Thus the exclusive processes have two in-yely.
dependent sources of power corrections to their characteris- a; the leading order the hard scattering subprocgs
tics; the loop integration and the integration over the longi-
tudinal momentum fractions of quarks and gluons. It is
important that the latter source exists even at the Ieading
order of PQCD, when the amplitude of the exclusive proces
depends omxg [19,20.
Resummation of € Bgag/4m)" corrections to the pion- T9(x,Q2)= ﬁ(EJF i) @)
photon transition FFF,.(Q?), as well as to the Brodsky- R 2\x  1-x/
Lepage evolution kerna[x,y; as(Q?)] and to a meson dis-
tribution amplitude, has been carried d@1] recently. I The normalization constantsl; and Ng for the mesons
this work the authors have also noted the existence of twg,,and g are given by the formulas
kinds of power corrections tdFm(Qz): the infrared(IR)
renormalon ambiguity arising from the loop integration and lez\/ﬁ(eﬁJr ei+e?), Ng=2(e2+e—2e?), (4
power corrections from the regions—0,x—1. In compu-
tation of the transition FF'¢§- WV(QZ) and Fnry(QZ) USing Whereeq is the Charge Of the quank
the running coupling constant method we shall restrict our-  The one-loop QCD correction to the hard scattering am-
selves by evaluating power corrections coming from the repjityde T,, generates its explicit dependence on the scafes
gionsx—0,x—1. _ and u3 [5—7]. For the factorization scalg? the natural and
This paper is structured as follows: In Sec. Il a pseUdo'traditional choice iSMF%IQz- After choosing,uﬁzQz and

scalar meson-photon electromagnetic transitiorFﬁE(Qz) : -
in the standard HSA and a meson DA are described. Thle(%e[%n% \t,cs ;;pendence ®f; on the renormalization scale
R ’

form factorFMy(QZ) within the running coupling constant K

method is considered in Sec. Ill. Our numerical results for N 1 (u2)
2 2y ’ H (0%

fche form factors=, ,(Q ),F,M(Q ) in the usuab;_— 7' mix- T(x,Q%ag)= — —{ 1+C¢ s\MR

ing scheme are presented in Sec. IV. Section V contains 2 X 47

concluding remarks.

+ ’y*>q+a is the pure electromagnetic process and
°(x,Q?) therefore does not depend on the scalés u?
nd has the following form:

2
—In| ||| +Ixo(1-%); ph—ugl.

1. PSEUDOSCALAR MESON-PHOTON MR

ELECTROMAGNETIC TRANSITION FORM FACTOR

5
In this section we consider the $3) singlet »; and
octet 73 mesons electromagnetic transition FF’s and theinf we take in Eq.(5) ﬂgzﬁngz we obtain the Braaten’s
DA’s in QCD perturbation theory. Unlike thgg meson, the  result(3.12 from Ref.[6] (there one has to equal the factor-
SU(3) singletn, contains a two-gluon valence Fock state ization scalew to Q and takes=1).
[22]. This gluonic state at thze leading order doe's not contrib-  The proper choice of the renormalization sc;a@;%) is
ute to the form factoF, ,(Q7), but affects the higher-order ,ne of the important problems in the QCD perturbation
corrections toF , ,(Q?). Owing to the quark-gluon mixing, theory[23]. The good choice ofi2 is one that minimizes the
the gluonic component of the meson DA has an influencéiigher-order corrections to a physical quantity under ques-
also on the evolution of the quark component of the distri-tion. For physical quantities, which at the leading order of
bution amplitude. But the phenomenological analysis demPQCD depend oraxs(,u,ﬁ), this procedure is quite transpar-
onstrated 14] that the gluonic admixture to the; meson is  ent. Let us clarify this point considering, as an example, the
small. Therefore in this work we neglect the gluonic part ofpion electromagnetic form factdf(Q?). This FF at the
the mesony; distribution amplitude, treating the; andzg  next-to-leading order contains terms proportional faff1
mesons on the same footing, i.e., as the mesons consistingx)(1—y)/u%] and taking the renormalization scale a
only on quark valence Fock states. =Q?(1—x)(1-y) [19], or as u>=Q?(1—x)/2 [20], one
In the framework of the standard HSA the pseudoscalagan eliminate at least a part of such terms. But crucial for our
meson-photon electromagnetic_ transition form factorpurposes is the observation that the sqaﬁe= Q3(1-x)(1
Fu,(Q?) is given by the expressidi] —y) (orxy@) is equal to the absolute value of the square of
. the four-momentum of the virtual hard gluon at the leading-
2y 2 2.2 2 order Feynman diagrams fory [23]. In the case of the
Fuy(Q )_fo dX u (X nR) THX Q% uE 1R) (2 meson-photon transition form factoq a2) order corrections
to Ty, are not known. But we can take (or ;ﬁ depending
whereQ?=—g%>0 andq is the four-momentum of the vir- on the Feynman diagram under consideratiequal to the
tual photon. HereTH(x,QZ;,uE ,Mﬁ) is the hard scattering absolute value of the square of the four-momentum of the
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virtual quark in the corresponding lowest-order Feynmanll. THE FORM FACTOR Fy,,(Q? IN THE FRAMEWORK

diagram forTy . Then it is easy to see that OF THE RCC METHOD
2 o To compute the meson-photon electromagnetic transition
Hr=QX, ur=Q%(1-Xx). (6)  form factor Fy,(Q? we have to perform the integration

overxin Eq. (2). But having inserted explicit expressions of
the hard scattering amplitudg, (x,Q?, as) from Eq.(5) and
%f the meson DA from Eq(9) into Eg. (2), one encounters
ith divergencies in the regions—1 andx— 0, because the
funning coupling constantrs(Q?x) (and ag Q*(1-x)1)

Such choice of the renormalization scaje% and w2 meets
also another requirement important for the hard scatterin
amplitudeT, . Namely, it remains symmetric und&r (1

—X) in the context of the RCC method, which leads togethe X X < -
with the symmetry of the mesoM (M= 7,,7s) DA to suffers from infrared singularity ik—0 (andx—1) limit.

equal contributions t&,,.(Q2) coming from the two terms Hencze t_he form factor can be_ found after regula_lriza_ltion of

in Eq. (5). 4 as(uR) in these epd—pomt regions. Such regu'lan;anon can
The next ingredient to be chosen in Eg) is the meson be cgrrled out with the aid of the renormallzgnon-grogp

DA ¢y (x,Q?). In general, the meson DA can be expandedequat'O”' that ?Ilqws one to exprzess the running coupling

over Gegenbauer ponnomia{@ﬁ’z(Zx—l)} which are the constantc_vs()§Q ) in terms of_aS(Q ). The solution of the

eigenfunctions of the evolution equation for mesgasg] ~ 'enormalization-group equation,

and has the following form:

Jag(NQ?
. %= —f—;[as(sz)]z— l'g;z[as(sz)]sy
Su4Q%) = BagyX) 2, bn(QA)CHA2x-1), (10
obtained by keeping the leadingx{In\)X and next-to-
ag(Q?)] 70 P0 leadingag(asIn \)*" powers of In\ is [25]
bu(QA)=by — 5| | (@)
as(1o) as a?B; In[1+In\/t]

(11)

2y _
. . *sM)= Tt A7y [1+ InN/t]?
where ¢,5,(X) is the meson asymptotic DA
In Egs.(10) and(11) t=47/Boas(Q?), andas= ag(Q?) is
basy(X)=3fyx(1—X). (8)  the one-loop QCD coupling constant a@gl, 3, are the QCD
beta-function one- and two-loop coefficients, respectively,
In Eqg. (7) the anomalous dimensioly,} determine the
evolution of ¢y, (x,Q?) on the factorization scal®?, w3 is 5 41
the normalization point at which the values of the coeffi- as(u®)= m Bo=11=3ny,
cients{b%} can be obtained using, for example, the QCD o TR A
sum-rules methodl3]. For both 7, and g mesons, due to 38
C-invariance the sum in Eq(7) runs over evenn B1=102— —nq, (12
=0,2, ... . Inother words, they; and »g mesons DA'’s are 3
symmetric undex«— (1—x) replacement. ] )
For our purposes it is convenient to rewrite the distribu-Whereny is the number of quark flavors, is the QCD scale

tion amplitude in the form paramete\=0.2 GeV.
Having inserted Eq(11) into Eq. (5) and after that, Eqgs.

% (5) and(9) into Eq. (2), we obtain the integral which is still
Q2)= K X", 9 divergent, but has now the form suitable for calculation. Us-
Pm(x.Q%) ¢>a3¢x)n§0 X © ing the method described in details in our wdtQ], this
integral may be found as a perturbative seriesQ?):

The new coefficient,, in Eq. (9) can be found using Eq. "
(7) and known expressions f§Ch (&)} [24]. 0%, (QY)=A+B as(Q?)
Unlike the pion, kaonp_ meson there is some informa- My B n=1\ 4w
tion concerning they, 73 mesons distribution amplitudes in
the literature. Therefore our goal in this paper is twofold; notwhereA,B are constants. The coefficier@g of the series in
only to explain the experimental data on they and »'y  Eq. (13) demonstrate factorial growti,,~(n—1)! indicat-
transition form factors by taking into account power correc-ing on the IR renormalon nature of divergences in the inte-
tions~1/QP, p=2,4, ... t0Q%F,,,(Q%), butalso to es- gral (2) and in the corresponding series in E43). The
timate within this scheme values of the coefficiebfs In  convergence radius of such series is zero and its summation
numerical calculations we shall use the asymptotic DA andhould be performed using the Borel integral techniques, i.e.,
DA’s with small admixture of the Gegenbauer polynomial one has to find the Borel transfoan[QzFMy](u) of the
C3%(2x—1) and shall fix the value d9. series[26],

n

By 'C,, (13
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NTUNE In(t+ >
B[QZFMy](u)zzlmu_—l)!Cn, (14 :t(+z)22) =f0 exd —u(t+2)](1—-C—Inu)udu, (16

. 2 . wherel’(z) is the Euler gamma functioil;=0.577216 is the
then invertB[Q“Fy,](u) to obtain the resummed expres- g jor_Mascheroni constant, ang= Inx [or z= In(1—x)].

sion for Q®Fy,(Q?). This approach is straightforward but Then for ag(AQ?) we get
tedious. These intermediate steps can be bypassed by intro-

ducing the inverse Laplace transforfi&y], 2 f‘” —u
NQ9)=adgt [ exp(—ut)\""R(u,t)du,
as(AQ%)=as . p(—ut) (u,t)

1 1 (=
—_— = —u(t+ =1 du, Rer>0,
(t+2)" IYWJ;qu u(t+z)Ju boRey Rum)=1—ééw1—c—lnt—MU) (17
(15) Bo
After integration in Eq(2) overx employing Egs(5) and
and (17) we find

oo

[Q%Fy,(Q?)]e5= @Nfﬂf >

n=0 n

K, 8 (= .
3+ 3_,30J0 exq—ut)R(u,t)nZO Kn(B(2,1+n—u)

X{[P(1+n—u)—(3+n—u)?+ ¢ (1+n—u)— ' (3+n—u)+ H(1+n—u)

—#(3+n—u)—9}—B(1,2+n—u)[y(2+n—u)— H(3+ n—u)])du}, (18

whereB(x,y)=T'(x)I'(y)/T'(x+y) is the Beta function and Then after simple manipulations, for instance, figr 0, we
y(z2)=dInT'(2/dz The second term in Eq18) is the in- get

verse Borel transformation, the integrand in ELB) without

the exponential factor exp{ut) is the Borel transform 2 _
B[Q?Fw,](u) of the series in Eq(13). In deriving of the BLQ™Fm,J(Wln-o=R(u)
expression(18) we take into account that because of the

symmetry of then; and g mesons DA’'s andl, under 2 9

replacemenk« 1—x, the second term in E@5) after inte- + (2—u)? N TEEIE (21)
gration overx leads to the same contribution as the first term.

The obtained resultl8) is valid for all DA's of the me-  The analysis fulfilled by taking into account also=1,2
sons7;,7g. But we are going to use in our numerical cal- terms in Eq.(18) allows us to state that the inverse Borel
culations only two termskfy,b,# 0) from Eq.(7), therefore  transformation has a finite number of the triple, double, and
in Eq. (18) n=0,1,2 and the coefficients, in Eq.(9) are  single poles located at positive integars=1,2,3,4 in the

Borel plane. In other words, the inverse Borel transformation

Ko=1+6b,(Q%), K;=—30b,(Q%), K,=30b,(Q%. contains the infrared renormalon poles and some method has

(19 to be applied to remove them from E(L8). The possible
) ) ) ) ) prescriptions include deforming the integration contour in

It is evident that the divergence of the integral in E2).  £q (18) into the complex plane so that it runs above the
manifests itself as the divergence in the inverse Borel transr-)o|eS or below the poles. We adopt here the principal value
formation (18). To reveal the nature of this divergence andyrescription. The inverse Borel transformation after such
outline a way for its regularization it is convenient to sim- regularization becomes the resummed form factor
plify the Borel transfornB[QzFMy](u) using the following [QZFMy(QZ)]res_

formulas([24]: The expression[Q?Fy,(Q?) ] takes into account

2
(1-u? (2-uw?® (1-uw?

-1 power suppressed correctionsl/QP, p=2,4,6... to the
B _ form factor, which are implicitly contained in E¢418). To
F(A+2)=21(2), §(z+n)= ¢(Z)+k§0 k+z’ clarify this point let us calculate th®(ag) correction to the
form factor Q?Fy,(Q? applying the infrared matching
-1y scheme [28]. For simplicity, let us choose a meson
Y (z+n)=y'(2)— 2, 5 (200  asymptotic DA(8). Then the correction is given by the for-
k=0 (k+2z) mula
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3NCefy (1
(—;M f as(Q%)

[QZFM‘y(QZ)]l: 2

0

5 xInx
In“ X————9+ Inx

X
1-x

(1—x)dx,

(22

which can be expressed in terms of moment integhgQ)
defined as

p (@ _
fo(Q)= &fo dk K~ tag(k?). (23
Indeed, for the simplest term in ER2) we have
1 1
Fp(Q)= fo as(Q%X)(1=x)dx=f(Q)— 514(Q).
(24)

PHYSICAL REVIEW D 64 014007

contribution toF,(Q) from the infrared region is a power
correction of order 1YP, p=2,4.

After truncating the series like E¢R5) at somen=N and
employing Eq(24) one can separate ti@ «ag) correction to
the transition form factoQ?F,(Q?) into two parts; power
suppressed corrections1/QP and a perturbative contribu-
tion. In other words, the infrared matching scheme allows us
to estimate power corrections t%),\,]y(Qz) by explicitly di-
viding them from the full expression and introducing mo-
ment integralsf,(«) as new nonperturbative parameters.
The values of the parametefrig(«) have to be deduced from
experimental data. In the framework of the running coupling
constant method we estimate the same power suppressed cor-
rections to the form factoFMy(Qz), but here we do not
need additional information ofy,(w). In our previous work
[29] we compared results for the pion electromagnetic FF
F..(Q?) obtained using these two methods with each other.
They practically coincide, except for a region of sn@fl. In
this paper we do not bring calculation Bf, y(QZ) by means
of the infrared matching scheme to numerical results, mainly

After some manipulations, i.e., after changing in the integraPwing to the lack of phenomenological information on
the variablex—1—y, expanding In(ty) as a power series fp(x), p>2. It is worth noting that values of nonperturba-

in y and returning again to the variabteaftery—1—x, we
get

flaS(sz)(l—x)ln X dx
0

(_1)|+1

Tclnﬂfz(lﬂ)(Q), (25

whereC!l, , are the Newton binomial coefficients. Similar

expressions can also be found for other terms in(Eg).

tive parameterd () calculated by means of the running
coupling constant method

NI li (\P"?) ’ _Pvfxdt -
p(M)_pEW1 i(x)=P. ot (28)
wherex=pu?/A%, p=2,4,6 ..., arecomparable with ones

extracted from experimental data, when experimental values
of f,(u) are availablg29].

The principal-value prescription adopted in this paper to
regularize the integral in Eq(18) generates power sup-

Now using the infrared matching scheme one can find théressed (higzher twis) ambiguities ~(A2/Q2)q<bq(Qz),
moment integrals ,(Q) as a sum of a nonperturbative and Where®4(Q”) are calculable functions completely fixed by

perturbative parts. For example, for the intedga) we have

2
falpe)

u?

Q

1 2 1
f as(Q?X)(1—x)dx= %fz(#)— >

0
ag

+ 5 [1-2I(1,22)+T(1,42)]

a3B

167

+o (26)

n [3—4T(2,22)+T1'(2,42)]

Here, as=ag(Q?), u is the infrared matching scale

the residues of the Borel transfor[QzFMy](u) at ug
=q, q=1,2,3,4. These ambiguities are canceled by ultravio-
let renormalon ambiguities in the higher twist contributions
to FMY(QZ). The crucial assumptiofthe ultraviolet domi-
nance assumptigns that not only the ambiguity, but the
whole higher twist contribution is proportional tbq(Qz).
Hence Eq(18) takes the form

[Q*Fumy(Q)]**=[Q%Fu,(Q*)]™®°

q

D4(Q%),

2

& (29

4
+ Nq(
g=1

» whereN,, are arbitrary constants. The constaNtsand their

z=In(Q/p), and I'(n+12) is the incomplete gamma gjgn have to be fixed from experimental data.

function,

I'(n+1z2)= Jxe"t“ dt. (27

z

IV. » AND ' MESONS ELECTROMAGNETIC
TRANSITION FORM FACTORS

In this section we calculate the and »' mesons transi-

All the nonperturbative information is contained in the tion FF's FW(QZ) and Fn,y(Qz) within the ordinary »
parameterd,(u) andf,(u«), which represent weighted av- — ' mixing scheme using the result fét, y(QZ) obtained

erages ofxg over the infrared region€@k<u. The resulting

in Sec. lll. It is easy to demonstrate that in the ordinary
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—7' mixing scheme the relations between &) basis
statesn, , 7g and the physical ones, »’ [Eq.(1)] lead to the
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has been adopted and on the basis of the theoretical and
phenomenological analyses two parameter sets have been

similar relations between the physical transition form factorg’roposed16]:

and 7y, ngy form factors

2\ H 2
F,/(Q%)= cosaF,m— smaF,]ly(Q ),

. (30
F,(Q% = singF ngyt COSOF ,m(QZ).

In the literature[10—16 the different values fo® were

Theory,

(1) f,=1.15_=0.106 GeV, fg=1.28_=0.118 GeV,

612_2.70, 68:_21'00; (37)

phenomenology,

predicted. Thus from the phenomenological analysis of vari- () f,=1.17%_~0.108 GeV, fg=1.26/ .~0.116 GeV,

ous decay processes and of p scatteringf=—20° was
found [10], whereas a similar consideration fulfilled by in-
cluding constituent quark mass effe¢tsl| gave 6= —14°

0,=—9.2°, 0g=—21.2°.

(39

+2°. At the leading order in the chiral perturbation theory For these parameters tiF— o limits (33) of the form fac-

(ChPT) by diagonalizing they and " mass matrix the value
6=—10° was obtained. Th®(p*) order correctiong12]

considerably change the lowest-order ChPT result and yield
0= —20°. In this work we rely on the recent phenomeno-

logical analysis carried out in RgfL6] and use in numerical
calculations the following values df,, fg, and6:

f,=1.17 ,~0.108 GeV, fz=1.26( ,~0.116 GeV,

6=—15.4°, (30
wheref =0.0923 GeV is the pion decay constant.

The expression$30) determine also the asymptotic be-
havior of theny and ' y transition form factors. Since, for
Q?—, any distribution amplitude(7) evolves into the

asymptotic one,

P (x,Q%)—3fux(1—x),

the model-independent limits of the form factors are

(32

Q*F (QZ)—>4\ﬁf1 v 2y (33
7(n')y 3 7(n') \/§ 7(n') "

The decay constanfé](n,) , 1=1,8in the usual flavor octet-
singlet mixing scheme read

f8=fgcos, fi=—f;sing,

fi,=f85in0, ff],=flcose. (34
Then, using the values of the parametgrsfg, andé from
Eq. (31), we obtain

Q%F,,(Q%)|g2.»=0.223 GeV,

Q%F,(Q%)]q2_..=0.304 GeV. (35

In Refs.[15] and[16] the new and general parametriza-
tion, i.e., the two-angle mixing scheme

1_ _

fS=fgcosdg, fy

fisin6y,

t8 =fgsings, f,,=1;cos;, (36

tors are

() Q%F,,(Q9)]q2..=0.141 GeV,
Q%F,(Q%)]g2_..=0.297 GeV,

(I Q% ,(Q%]g2..=0.182 GeV,

Q%F, (Q%)]q2_..=0.30 GeV. (39

The ny and ' y transition form factors calculated em-
ploying the %, and g mesons asymptotic DA’s and the
different parameter sets from Ed81), (37), (38) are shown
in Fig. 1. For they’y transition form factor all three sets
give approximately the same results. But the transition
form factors obtained using | and Il parameter sets are in
conflict with the data. The disagreement is dramatic for the |
set, arising from the too low value of the mixing angtg|.

The two-angle mixing scheme and the corresponding param-
eter set applied for calculation of thgy and 7' y transition

form factors in the context of the modified HSA led to good
description of the experimental dafa5]. But this scheme
and the parameter sets | and |l seem not acceptable in our
case. Within the RCC method the reliable parameter set is
one from Eq.(31). In what follows we use the usual octet-
singlet mixing scheme and this set of parameters.

It is interesting to clarify the dependence of the form fac-
tors (at fixedf,fg) on the valued. The 5, and g mesons
asymptotic DA’s(8) with the decay constanty, fg, and 6
from Eq. (31) give the vy form factor that may be consid-
ered as describing the ddfig. 2a)] andQ?F,,.(Q?) lying
below the corresponding daférig. 2(b)] excluding some
points. By varying the value of at fixedf,,fg we observe
that atd smaller thard= —15.4° the situation withr W(Qz)
becomes better, WhereEs,,,,/(Qz) decreases with decreas-
ing of 4. At 6 larger thanf= —15.4° we find the opposing
picture (it is not shown in Fig. 2

To make the quantitative conclusions concerning the form
factors at various values @?,6,b, it is convenient to in-
troduce the ratio

FMy(QZ! 01b2) - FMy(QZ!’é!B2)
FM'y(QZ! 01b2)

Rw(Q? 6,bz) = . (40

014007-6
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FIG. 1. Thenvy (a) and %’y (b) electromagnetic transition form
factors vsQ?. In calculations they; and 7g mesons asymptotic FIG. 2. Theny (a) and "y (b) electromagnetic transition form
DA's are used. The solid curves correspond to the parameter s€ctors vsQ®. All curves are obtained employing the asymptotic
(31), the dashed curves to the parameter s&7), the dot-dashed DA'’s for both the 7, and g mesons. The solid curves correspond
curves to the parameter set(88). The upper dashed lines demon- t0 the octet-singlet mixing anglé=—15.4°, the dashed curves to
strate the model-independent limits of the corresponding form facf= —20°, the dot-dashed curves &&= —22°.

tors (35). The data are taken from R¢B8].

Then atbd=b9=0 and = —20°,§=—15.4° we get

R, (2,23 GeV,—20°)=0.096,
R,(10 GeV?, —20°)=0.096,
R,(20 GeV?, —20°)=0.097,
and for = —22° 9= —15.4° we find
R, (2,23 GeV},—22°)=0.098,
R,(10 GeV?,—22°)=0.13,
R,(20 Ge\?,—22°)=0.13.

In the case of the;” meson we have
(i) b9=b3=0 and#=—20°,§= —15.4°,

R,(2,23 GeVf,—20°)=—0.066,

R, (10 Ge\?,—20°)=—0.067,
R,/ (20 Ge\?,—20°)=—0.065,
(i) 6= —22°,6=—15.4°,
R, (2,23 GeVf,—22°)~—0.098,
R,/ (10 Ge\?,—22°)=—0.1,
R,/ (20 Ge\?,—22°)~—0.098.

As is seen, the rati® is stable in all cases, but thgy form
factor is more sensitive t6 than they’y one.

The small admixture of the Gegenbauer polynomial
C3%2x—1) in the DA of the; meson and they; meson
asymptotic DA leads to better agreement with the data than
two asymptotic DA’s. In Fig. 3 theyy and ' y form factors
calculated using theyg meson asymptotic and thg, meson
model DA’s are shown. For bothy and ' y FF's the dif-
ference between curves with varidofsis mild in the domain

014007-7
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QFQ £
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T

0,1

10
Q(GeV?)

L
%

QFQ)

L
o

FIG. 3. Theny (@) and ' y (b) transition form factors as func-
tions of Q2. The octet-singlet mixing angle ig=—15.4°. All
curves are calculated using the asymptotic DA for #iemeson.
The correspondence between the curves and DA ofjthmeson is:
the solid curvesb3=0.05, the dashed curvess=0.1, the dot-
dashed curveb)=0.15.

of smallQ? and becomes significant at lar@. Indeed, for
the ratioR,, at Q*=6.56 Ge\f we have

R,(6.56 GeVf,bJ=0.05

F,,(6.56 Ge\£,0.09 —F, (6.56 GeV},0)
F,,(6.56 Ge\£,0.05

=0.017,

and atQ*=20 GeV? R,(20 GeV?,b3=0.05)=0.023. The
same ratio for thesn'y form factor is R, /(5 Ge\?,
b3=0.05)=0.036R,, (20 GeV?,bJ=0.05)=0.06. Increas-
ing bS in the z; meson DA we increase thgy and 7y
form factors. Thus R,(6.56 GeVf,b3=0.15)=0.047,
R, (20 Ge\?,bJ=0.15)~0.067 andR,,(5 Ge\?,b3=0.15)
=0.1R,(20 GeV?,b3=0.15)=0.16. As is seen, the consid-
ering effect is impressive for the'y form factor. This is
understandable, because thé dominantly consists of the

PHYSICAL REVIEW D 64 014007
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FIG. 4. Theny (8 and ' v (b) transition form factors at fixed
0= —15.4°. The correspondence between the curves and the pa-
rameters of they,; and »g mesons model DA’s is: the solid curves
b3(7,)=0.05p3(7g)=0.1; the dashed curves b3(7,)
=0.1p%(7g)=0.1; the dot-dashed curvelsd(7;)=0.15h5(7g)
=0.15.

choosing the model DA's t(g# 0) for the g meson and
asymptotic DA for », and have found that the'y form
factor is less sensitive tb) than in the first case.

In Fig. 4 the form factors obtained using the model DA'’s
with bga&O for both n,and g mesons are plotted. Again the
agreement with the data is better for the form factor than
for the ' y one. Nevertheless, we can state that theand
ng model DA’s with b2= 0.1-0.15 describe the experimental
data on thepvy, »' v transition form factors.

In Figs. 3 and 4 the form factors found by neglecting the
evolution of the meson distribution amplitudg,(x,Q?) on
the scaleQ? [ ¢y (x,Q%) = ¢u(x,13)] are depicted. The ef-
fect of the evolution of theyp,, ng mesons DA’s on theyy
and 5’ y transition form factors does not exceed 2%t
=5 GeV? and 5% atQ?=20 Ge\? (Fig. 5, curves 1 In
these computations the normalization pojmg has been
taken equal to 1 GeV and the anomalous dimensiof,is
=50/9.

The higher twist corrections to the form factors are shown

71 meson. We have also studied transition form factorsn Fig. 6. Since the constantd, and their sign are free

014007-8
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FIG. 6. Higher twist contributions to they (a) and 'y (b)
transition form factors. In computations thg, and g mesons
asymptotic DA’s are employed. The solid curves are the form fac-
factors obtained using thg, and 7, mesons model DA's with the tors within the RCC methodl8). The upper dashed curves corre-
parameters bg(n1)=b2(7;8)=0.15 (curves 1 and bg(m) spond toN;=N,=1, the lower ones td&N;=N,=—1 [see Eq.
=0.05h3(75) =0.1(curves 2. The solid(dashedicurves are found (9]
by neglectingby taking into accountthe evolution of the DA’s on
the factorization scal@?.

Q’(GeV?)

FIG. 5. Results for thepy (@) and 'y (b) transition form

=0.1-0.15 for both#; and g mesons, but even the
parameters, in the simple case of the asymptotic DA’s weasymptotic DA’s are not in evident conflict with the data. We
have examined two possibilitied;=N,=1 andN;=N;  have also examined within the RCC method the two-angle
= —1. These corrections do not exceed5% of the corre-  mixing scheme[15,16 and found that the parameter sets

sponding form factors. proposed in Ref[16] do not describe the data on thgy
transition form factor, mainly due to a small value of the
V. CONCLUSIONS mixing angle|6,|.

We have taken into account the evolution of the model

In this work we have calculated thgy and 7' y electro-  DA'’s on the factorization scal®? and found that its effect
magnetic transition form factors in the standard HSA andon the form factors in the considering range@f is small
usual mixing scheme applying the running coupling constan{5% at Q?=20 Ge\?). The higher twist corrections to
method. We have demonstrated that the conventional mixinggZFn(n,)y(Q2) estimated applying the ultraviolet dominance
scheme with SK(3) octet-singlet mixing anglé=—15.4°  assumption do not exceed15% of the corresponding form
and »4, 7g mesons model DA'’s including the small admix- factors.
ture of the Gegenbauer polynomiaf?(2x—1) lead to the In our investigations 0Q2F ,,,(Q?) the intrinsic gluon
77y and 5’y electromagnetic transition form factors, which and charm components of thg and ' mesons have been
are in agreement with the experimental data in a range of theeglected. It is quite possible that their consideration will
virtuality of the probing photon, 15Q?<15 Ge\>. We  improve an agreement of our results with the experimental
have estimated the coefficienﬂsg in Eq. (7) as bg data. But these problems require further studies.
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