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S-wave A 7w phase shift is not large
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We study the strong interactidgwave A 7 phase shift in the region of th€ mass in the framework of a
relativistic chiral unitary approach based on coupled channels. All parameters have been previously determined
in a fit to strangenesS=—1 Swave kaon-nucleon data. We find €%5,<1.1° in agreement with previous
chiral perturbation theory calculatioiier extensions therepfWe also discuss why a recent coupled channel
K-matrix calculation gives a result fa¥, that is negative and much bigger in magnitude. We argue why that
value should not be trusted.
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Direct CP violation can be measured in the dec&y here. To close the Introduction, we remark that our approach
—Am7—pmm (for a recent experiment, s¢&]). To extract can also be used to calculate thevaves. Since there is no
the CP violating phase, one has to know the strohgr S discrepancy in the corresponding predictions &gr we fo-
andP-wave phase shifts at the mass of the cascade, denot&ds here entirely on thg wave.

8, and 8,, respectively. While earlier calculatiofi,3] were ‘We briefly summarize our calculational scheme; for de-
inconclusive on the value of,, a leading order heavy talls. seg[11]. ltis base_d on the fact that unitarity, above th_e
baryon chiral perturbation theoffdBChPT) analysis led to a pertinent thresholds, 'lmplles that the inverse of a partial
vanishingSwave phase shiff4] and corrections including Wave amplitude satisfies

excitedy intermediate states were shown to give a bound of

80~ 0.5° [4,5]. Relativistic tree level calculations have also -1 _

bgen perf[orrged, leading to a somewhat larger band of values IM T (W)ij = = p(W); 9, @

for &y, but still |§y|<2° [6,7]. A more recent calculation

using also dimension-2 operatd@&] with the corresponding wherep;=gq; /(87W), W= s the center-of-mas&.m) en-
low-energy constants fixed from Il<aon-nucleon scatteflg  grgy, g is the modulus of the c.m. three-momentum and the
gave the range-3.0°< dp= +0.4° " In that paper, the effect g,pscriptsi andj refer to the physical channels. Ther

of channel coupling was also investigated, based on the olsates couple strongly to several channels. To be consistent
servation that in SB), the Aw state is coupled to the it |owest order ChPT, where all the baryons belonging to
3a, NK, X7 andEK states with strangene§s=—1 and  the same S(8B) multiplet are degenerate, one should con-
isospinl =1. A K-matrix approach was used to calculate thegiqer the whole set of state€; p (1), K (2), 7°5° (3),
channel coupling effects and a surprisingly largge=—7° 7tST(4), m 3* (5), @A (6), 7A (7), 73°(8),
was found. The authors of R¢8] have been careful to point K*E (9), K°Z° (10), where between brackets the channel
out that more refined coupled channel calculations based Humber, to be used in a matrix notation, is given for each
chiral perturbation theoryChPT) are necessary to further giaie The unitarity relation in Eq1) gives rise to a cut in
clarify this surprising result. We have recently presented qne T matrix of partial wave amplitudes which is usually
novel relativistic chiral unitary approach based on coupled.5)ied the unitarity or right-hand cut. Hence we can write

channelg11]. Dispersion relations are used to perform theyqn a dispersion relation foF~1(W), in a fairly symbolic
necessary resummation of the lowest order relativistic chiraf

. s . anguage:
Lagrangian. Within this framework, the&wave kaon-
nucleon interactions for strangeneSs- —1 were studied

and a good description of the data in tiep, 73 andwA _ s—sp [* p(s');
channelgcross sections, threshold ratios, mass distribution T’l(W)ij =— &jj [ ai(sg) + —f ds’/—']
in the region of the\ (1405)] was obtained. This method can T Jsi (s'—8)(s'—s0)
be systematically extended to higher orders, emphasizing its +Til(W)ij , )

applicability to any scenario of strong self-interactions where

the perturbative series diverges even at low energies. It is

straightforward to project out thé 7— A amplitude from  \heress; is the value of thes variable at the threshold of

our coupled channel solutions and extract in a parameter-fregyannej and7 (W), indicates other contributions coming

manner the correspondirgwave phase shift. This is done from |ocal and pole terms as well as crossed channel dynam-
ics butwithout a right-hand cut. These extra terms will be
taken directly from ChPT after requiring timeatchingof our

INote that the parameters obtained[8] need to be taken with ~general result to the ChPT expressions. Notice also that the
some care since the importaptchannels were not considered, as negative of the quantity in the curly brackets, denajés);
stressed if10]. from here on, is the familiar scalar loop integral
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g(s)iZIJ 2m* (@?P=MZ+ie)(P—q)2—mi+ie) ® 20 [
mi2 Miz—mi2+5 Mi2 :
Iﬁ‘ai(ﬂ)"'logﬁ_'—Tlogm_iz ? i

of
lo
Vs gmi2+ M2—s+24/sq

i P+ MP-s-2\sq
g, m s \/Eq] .

where M; and m; are, respectively, the meson and baryon 0 p=
masses in the stateNotice that in order to calculag(s);,
we are using the physical masses both for mesons and bary -5 |
ons since the unitarity result in E(L) is exact. In the usual i
chiral power countingg(s); is O(p) because the baryon -1
propagator scales &(p~1). Let us note that the important i
point here is to proceed systematically, guaranteeing tha -15 |-
T is free of the right-hand cut and matching simultaneously L

1 i i i - Lol b b b Lo b Vo by Lua
with the ChPT expressions. We can further simplify the no-  -20 = e e e ™ 1575 1200 1325 1450 1375 1500

tation by employing a matrix formalism. We introduce the Er(MeV)
matricesg(s)=diad g(s);], T and7, the latter defined in
terms of the matrix elemenf§; and7j; . In this way, from
Eqg. (2), the T matrix can be written as

FIG. 1. TheA = phase shift in degrees versus the c.m. energy,
W=E, . The various lines are explained in the text.

TW)=[1+T(W)g(s)] 1T(W). (4)  sets of parameters, set | describing the best fit and set Il
using the so-called natural valuéas discussed in that pa-
In this paper, we are considering the lowest ordeze level ~ pen. The pertinent numbers are, for set Ing
ChPT amplitudes as input. Hence, expanding the previous 1.286 GeV, Fo=74.1 MeV, a(u)=—2.23 and, for set

equation, our final expression for the matrix, taking as I, my=1.151 GeV, F,=86.4 MeV, a(u)=—2 at the
input the lowest order ChPT results, has the form scale =630 MeV. Of course, physical observables are
scale independent. It is now straightforward to extract the

T(W)=[1+T(W)g(s)] ™' Ty(W). (5  Aw phase shift as shown in Fig. 1 by the solid lifset |)

) ) ] and the dashed lingset Il). The corresponding phases at the
For more details on this formalism, we refer the reader tqyass of the=° and the=~ are

Refs.[11,12. We only want to remark that this approach is

not just a unitarization scheme, like e.g. tkematrix ap- setl: 8,(mM=z0)=0.10°, &o(mz-)=0.16°,
proach. The latter is, however, included as one particular
approximation as discussed below. setll:  8y(Mz0)=0.92°, &y(mz-)=1.11°,

Using the lowest order relativistigtree leve] ChPT am- (6)

plitudes for¢;B,— ¢;By, as input, wherap; (B,) denotes a

member of the Goldstone bos@ground state barygroctet,  consistent with earlier ChPT findingist—8]. We should
one obtains a very good description of the scattering data fotress that set | gives the better fit in théN sector and
Kip—>Kip,K0n,7T+27,7Tiz+,A’770,20770 (for kaon labo- should be preferred_

ratory momenta below 250 Mgythe so-called threshold |t js important to understand the large result obtained in
ratios y, R. and R, the K™ p scattering length and the the K-matrix formalism[8]. The K-matrix approach is one

73" event distribution in the region of tha(1405) in  particular approximation to our scheme in that ones sets
terms of three parametefsising fixed axial couplingsD

=0.80 and==0.46[13]). These are the baryon octet mass in i g )

the chiral limit, my, the chiral limit value of the three-flavor 9(8)i=—g-w= 1P )

meson decay constahtF, and the subtraction constant

a(p); cf. Eq. (3). Note that it was shown if11] that it Notice that—p(s);, above the threshold of chanrigis the

suffices to take only one subtraction constant dtirchan- imaginary part ofg(s); : cf. Eq. (2). In order to see the im-

nels; thus the subscripti" appearing in Eq.(3)_for these portance of keeping the wholg(s); function, compare the

constants will be dropped. In RdfL1], we considered two gashed and dot-dashed lines in Fig. 1. The latter is obtained
for set Il by making use of E(5) but using the approxima-
tion given in Eq.(7) to the g(s); function. The differences

2We remark that there are some indications that the order paran@re huge and for the second case the results are similar to the
eter of chiral symmetry breaking,,, decreases sizably when going findings of Ref[8]. In fact, we can reproduce the results for
from the two- to three-flavor sector; see €.14]. their K-matrix calculation by means of E¢b) by consider-
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ing only the dominant nonrelativistic seaguNVeinberg- Replyto the note added in proof of R€f8]: We would
Tomozawa term to the tree level meson-baryon scatteringlike to emphasize here again a fundamental property not ac-
and theK-matrix representation of thg(s); function. Thisis  counted for in the note added in proof by the authors of Ref.
given by the dotted line in Fig. 1. All these large differences[8]: The most simple version of a K-matrix parametrization,
nicely show that it is not sufficient to account only for the as the one used in Ref. [8], does not account for the real
imaginary part of the scalar loop functions via unitarity but Parts of the unitarity loopsin our work, however, the latter
that a proper treatment of the real part by an appropriat@ave been included by using dispersion relations in terms of
dispersion relation is of equal importance. Consequently, thi® known imaginary part. Thus an improved calculation of
large and negative value faf,=—7° of Ref.[8] can be the coupled channel dynamics relevant for thevave mA

ruled out and is just a result of the simple representation oggzt:]egglge tt?) tgﬁéveftr?aet[-?gelsrgé\llenérgso? {ﬁ:udt’]igﬁtha}gg <
the functiong(s); used in that reference. This is, by far, not P y 100p

sufficiently accurate for this case and the full relativistic ex_turn out to be so important that they simply spoil all the
pression forg(s); [cf. Eq. (3)] has to be used. Furthermore consequences that could be derived by ignoring them as in

. ' Ref. [8]. In particular we have demonstrated that unitarity
the phases are sensitiveRg andm,. We conclude from our  effects'in coupled channetio not enhancehe elasticrA

approach that indeed, is narrowly bounded, Swave phase shift by themselves. In addition, we have given
R R a very conservative estimate of the errors. In Réd], we
0°<dp=<1.1°, (8) ; . . ! .
have performed a variety of fits not discussed in detail and
never found any solution which would give a larger phase
A than set II; thus we can confidentially repeat that the

In summary, we have used a relativistic chiral unitaryprewously found small values for the phase should be cor-

approach based on coupled channels to investigate the stroft (L. The sgemmgly large .factor of 10 difference between
Swave A phase shift in the region of the. All param- séts | and Il is simply an artifact caused by the almost zero of

eters have been previously determined from a good descriﬁhe Ehaselciat the mtz)';\ss of t%e F_urther |mp(;ovhementlsdto our
tion of the kaon-nucleon dafd 1] and thus we arrive at a work would come Dy considering crossed channel dynamics

: . and higher order local chiral corrections as discussed in Ref.
small band of values fow,; cf. Eq. (8). This number is . .
consistent with earlier fir?dings ?n (C)hPTor extensions [11]. That would also allow a better discussion of the theo-

thereoj [4—8]. We have also shown why th€-matrix ap- retical uncertainties.

and that the large value found in tHematrix approach
should not be used.
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