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Production processes as a tool to study parametrizations of quark confinement

S. Ahlig, R. Alkofer,* C. Fischer, M. Oettel,† H. Reinhardt, and H. Weigel
Institute for Theoretical Physics, University of Tu¨bingen, Auf der Morgenstelle 14, D-72076 Tu¨bingen, Germany

~Received 21 December 2000; published 18 May 2001!

We introduce diquarks as separable correlations in the two-quark Green’s function to facilitate the descrip-
tion of baryons as relativistic three-quark bound states. These states then emerge as solutions of Bethe-Salpeter
equations for quarks and diquarks that interact via quark exchange. When solving these equations we consider
various dressing functions for the free quark and diquark propagators that prohibit the existence of correspond-
ing asymptotic states and thus effectively parametrize confinement. We study the implications of qualitatively
different dressing functions on the model predictions for the masses of the octet baryons as well as the
electromagnetic and strong form factors of the nucleon. For different dressing functions we in particular
compare the predictions for kaon photoproduction,gp→KL, and associated strangeness production,pp
→pKL, with experimental data. This leads to conclusions on the permissibility of different dressing functions.
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I. INTRODUCTION

The complexity of quantum chromodynamics~QCD! in-
hibits the computation of hadronic properties and reacti
from first principles. As a consequence models that pot
tially imitate the essentials of the QCD dynamics have b
developed in the past to describe hadrons. A relativistic
scription of baryons as three-quark bound states is prov
by the solutions of the Bethe-Salpeter equations1 for quarks
and diquarks which interact via quark exchange@3–5#. Once
the full three-quark problem has been reduced to an effec
two-body problem, the only model ingredients are t
~di!quark propagators along with the quark-diquark vertic
It is hoped for that further progress in the study of the QC
quark propagator and two-quark correlations will eventua
justify the reduction to quarks and diquarks in this approa
to describe baryons.

Actual calculations utilize either simplifying assumptio
or phenomenological parametrizations of the respec
propagators and interaction vertices of quarks and diqua
By choosing the simplestAnsätze, i.e. free spin-1/2 and
spin-0 or spin-1 propagators for quarks and diquarks, res
tively, various spacelike nucleon form factors have been s
cessfully reproduced@6#. However, the naive use of pertu
bative~di!quark propagators leads to asymptotic states in
spectrum that carry the respective quantum numbers. He
baryons would decay into quarks unless kinematica
bound. This decay process would contradict the confinem
phenomenon. In this paper we will therefore investigate
possibility of incorporating confinement into the diqua
model by suitable modifications of the quark and diqua
propagators. Essentially these propagators are modified
multiplicative dressing functions to completely remove t

*Email address: reinhard.alkofer@uni-tuebingen.de
†Present address: CSSM, University of Adelaide, SA 5005, A

tralia.
1For further details on the application of the Bethe-Salpeter

malism to QCD we refer to reviews@1,2# and references therein.
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poles that occurred in the perturbative propagators at
~di!quark masses. This enables us to calculate the spec
not only of octet but also decuplet baryons@7#. Together with
anAnsatzfor the quark-diquark bound state wave function
the nucleon~Faddeev amplitude! such pole-free propagator
have already been used to calculate nucleon form factor
the spacelike regime@8,9#. Unfortunately in this context the
computation of the electroweak form factors is not as sim
as merely modifying the propagators. Since gauge invaria
relates off-shell propagators and vertices it is obvious t
any change in the propagators requires modifications of
effective interaction with the electroweak gauge bosons@10#.
When incorporating gauge invariance in the model with fr
propagators the nucleon isovector magnetic moments c
out too small by about 30% unless model parameters
used that do not properly reproduce the baryon spectrum@6#.
However, these unacceptable parameters result from req
ing theD isobar to be kinematically bound against its dec
into free quarks. It is hoped for that when modeling confin
ment the results on the magnetic moments will also impro
due to the modifications of the photon vertices which a
mandatory when employing dressed~di!quark propagators
A very serious disadvantage of the lack of confinemen
that hadronic reactions withtimelikemomenta of the order o
1 GeV transferred to the nucleon, e.g. meson production p
cesses, cannot be described properly. Again, the free-par
poles of quark and diquark cause unphysical threshold
these processes that are triggered by the poles in the pr
gators. An appropriate modification of these propagat
would not only remove the unphysical thresholds but a
serve as an effective description of the strong interacti
Certainly, a relativistic description of such processes wo
be very desirable. At present, the covariant diquark mo
appears to be the only relativistic one that is both, feas
and applicable at this energy scale.

As already mentioned we wish to eliminate the singula
ties associated with real timelike momenta in the~di!quark
propagators that would lead to imaginary parts in tho
S-matrix elements that are calculated from diagrams cont
ing internal quark loops. So, either these singularities

-
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S. AHLIG et al. PHYSICAL REVIEW D 64 014004
absent or their contributions cancel in some manner@2#. The
qualitative behavior described can be encoded in the foll
ing models~which are certainly not the only possibilities! for
the quark propagator in Euclidean space:

S(k)~p!5
ip”2mq

p21mq
2

f kS p2

mq
2D , k50, . . . ,3, ~1!

with

f 0~x!51 ~bare propagator!, ~2!

f 1~x!5
1

2 H x11

x112 i /d
1

x11

x111 i /dJ ,

~3!

f 2~x!512exp@2d~11x!#, ~4!

f 3~x,x* !5tanh@d~11x!~11x* !#. ~5!

The propagator~3! possesses complex conjugate poles@11#
such that corresponding virtual excitations cancel each o
in physical amplitudes. Herem represents a parameter th
would be interpreted as the quark mass if and only if
poles were on the real axis. In another scenario~4!, the dress-
ing functions are chosen such that the propagators are e
functions and nontrivial in the whole complex plane@12,9#.
If they are required to be analytic, they must possess
essential singularity, at least for infinite arguments. Third
might be helpful to approximate propagators by non-anal
functions ~5! and constrain them such that they asympto
cally behave like 1/upu2 for both, large spacelike and timelik
momenta. Since we enforce the propagators to be fre
poles, they must be non-analytic functions depending
both the particle momentump and its complex conjugatep* .
Consequently the quark-photon and quark-meson vert
are non-analytic and, even worse, translation invarianc
lost in the solutions to the nucleon Bethe-Salpeter equat
These issues will be detailed in Sec. II. The trivial dress
function f 0 corresponds to the bare propagator. We will co
sider this case only for comparison.

In Fig. 1 we showf̃ k(x)5 f k(x)/(x11) for k50, . . . ,3
for real x. Note that these dressing functions are real in t
case. We observe thatf̃ 1(x) and f̃ 3(x) change sign~as in the
case of a tree-level propagator! while the functionf̃ 2(x) in-
creases drastically. For asymptotically large spacelike m
menta the three model propagatorsS(k), (k51,2,3) match up
with the bare propagatorS(0). Our present investigation fo
cuses on the phenomenological implications of the
modified propagators.

This paper is organized as follows: In Sec. II the cov
riant diquark model for baryons is presented. The cor
sponding Bethe-Salpeter equation that describes baryon
bound states of quarks and diquarks is derived in Appen
A. The formalism of Refs.@13,6# for calculating form factors
is described for later determination of model parameters.
ing the above given scenarios for implementing the confi
ment phenomena at the level of propagators this will set
stage for the main topic of our paper: The sensitivity of t
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predicted observables on the various effective parametr
tions of confinement. These parametrizations concern
structure of the~di!quark propagators for complex moment
In Sec. III we will discuss the regime of complex momen
that is relevant for studying the baryon spectrum as well
several production processes. In Sec. IV we will describe
formalism necessary to compute various production p
cesses in the diquark-quark model. These comprise e
cially the cross sections for kaon photoproductionpg
→KL and the associated strangeness production inpp
→pKL. We will proceed by presenting our numerical r
sults in Sec. V, including the determination of the mod
parameters. In particular we will compare the predictio
that originate from the different dressing functions for t
propagators. Finally, we will conclude by formulating crit
ria for phenomenologically permissible parametrizations
the propagators. Some derivations and technical details
relegated to three Appendices.

II. THE COVARIANT DIQUARK MODEL FOR BARYONS

A. The diquark-quark Bethe-Salpeter equation

We start from the Faddeev formalism for three quarks a
impose two essential assumptions to arrive at a Be
Salpeter equation that describes baryons as bound stat
quarks and diquarks interacting via quark exchange. Th
assumptions are~i! all three-particle irreducible graphs ca
be safely omitted and~ii ! the two-quark correlations can b
approximated by separable correlations, the so-called
quarks. The actual derivation of the Bethe-Salpeter equa
for the effective baryon-diquark-quark vertex functionsfa is
presented in Appendix A. Using the definitions for total a
relative momentum given as in Fig. 2 this integral equat
reads

FIG. 1. The propagator functions,f̃ k(x)5 f k(x)/(x11) for real
x and fork50, . . . ,3; cf.Eqs. ~2!–~5!. The thick solid line corre-
sponds to the free propagator. Here we have setd51.
4-2
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f i ,a
a ~ p̄i ,P!5(

bb8
E d4 l̄

~2p!4
Ki j ,ba

ab ~ p̄i , l̄ ,P!Gj ,bb8
bb8 ~ l̄ ,P!

3f j ,b8
b8 ~ l̄ ,P!1~ j↔k!. ~6!

HereGj describes the disconnected quark-diquark propa
tor

Gj ,bb8
bb8 ~ l̄ ,P!5Sj

bb8~hP1 l̄ !Dbb8„~12h!P2 l̄ …

5Sj
bb8~ l !Dbb8~P2 l !. ~7!

Furthermore, the quark-diquark interaction kernelK contains
besides the propagator of the exchanged quark also th
quark amplitudesx i

a defined via the separability assumptio

t i~kj ,kk ;pj ,pk!5 (
a,a8

x i
a~kj ,kk!Da,a8~kj1kk!x̄ i

a8~pj ,pk!

~8!

of the quark-quarkt-matrix ~cf. Appendix A!. The kernel
explicitly reads

Ki j ,ba
ab ~ p̄, l̄ ,P!5x̄ i ,bg

a ~ l̄ 1hP,q!Sk
gg8~q!x j ,g8a

b
~q,p̄1hP!

5x̄ i ,bg
a ~ l ,q!Sk

gg8~q!x j ,g8a
b

~q,p!, ~9!

with

q5~122h!P2 p̄2 l̄ 5P2p2 l ,

since P5pi1pj1pk and l̄ 5 l 2hP. The above relations
also indicate the independence of the momentum parti
parameterh since the Jacobian of the transformationl̄ → l
equals unity for fixed total momentumP.

For the solution of the Bethe-Salpeter equation~6! we still
have to choose the appropriate quantum numbers assoc
with baryons. This will be discussed in subsection B and
will find that the quark exchange~parametrized by the kerne
Kab) generates sufficient attraction to bind quarks and
quarks to baryons. For identical quarks antisymmetrizatio
required when projecting onto baryon quantum numbe
Fortunately, this does not alter the algebraic form of
Bethe-Salpeter equation~6!. Rather, it simply implies tha
we may omit the single particle indicesi on the quark propa-
gators Si . Only when caring about the discrete quantu
numbers we have to revert to these indices since they spe
the summation orderover color, flavor and Dirac indices in
Eq. ~6!. Furthermore the functional forms of the diqua

FIG. 2. The coupled set of Bethe-Salpeter equations for
effective vertex functionsfa.
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propagatorsDaa8 and the verticesx i
a do not depend on the

quark labels. These independencies are already indicate
Eqs.~7! and ~9! as we have omitted the quark labels for t
momenta.

In a self-consistent approach one would calculate
t-matrix from its own Bethe-Salpeter equation~A12! @14,15#.
However, this is beyond the scope of the present invest
tion. Instead we model thet-matrix by diquark correlators
which have an analytic structure such that no particle in
pretation for the diquark exists. We will restrict ourselves
the scalar and axialvector channels as these comprise
minimal set to describe octet and decuplet baryons. Furt
more these channels are generally assumed to be the
important ones, see Refs.@1,2# and references therein. Th
corresponding separableAnsatzfor the two-quarkt-matrix
reads

tab,gd~k1 ,k2 ;p1 ,p2!5xab
5 ~ k̄,P2!D~P2!x̄gd

5 ~ p̄,P2!

1xab
m ~ k̄,P2!Dmn~P2!x̄gd

n ~ p̄,P2!.

~10!

Here we rewrite the diquark-quark verticesx5[m] as func-
tions of relative,k̄5sk12(12s)k2, and total,P25k11k2
5p11p2, momenta instead of the single quark momenta.
actual calculations, we choose for simplicity the symmet
momentum partition, i.e.s51/2. Shifting the value ofs is
possible, however, this complicates slightly the parametr
tion of diquark correlations; see the discussion below E
~17! and in Ref.@13#.

The diquark propagators in the scalar and the axial-ve
channel are modeled as

D~P!52
1

P21msc
2

f S P2

msc
2 D , ~11!

Dmn~P!52
1

P21max
2 S dmn1~12j!

PmPn

max
2 D f S P2

max
2 D .

~12!

The dressing functionf (P2/m2) is hereby chosen identical t
the one for the quark propagator, i.e., either one of the fo
~3!,~4!,~5!. Note that the choicef (P2/m2)51 andj50 cor-
responds to the free propagators of spin-0 and spin-1
ticles. As a major purpose of the present paper we will stu
various deviations from the free propagators as an avenu
mimic confinement. In general, the dressing functionsf are
different in the scalar and axial-vector channels as well
being distinct from the one for the quark propagator. F
simplicity, however, we will assume identical functions f
all propagators. As we will not consider any axial-vect
diquark loops it is sufficient for the present purpose to u
j51; see Ref.@7# where it has been shown that choosingj
51 leads to almost identical results for baryon amplitudes
j50.

If diquark poles existed in thet matrix, the diquark-quark
vertices x and xm would on-shell (P252msc[ax]

2 ) corre-
spond to diquark Bethe-Salpeter vertex functions. These
tex functions have a finite extension in momentum space

e

4-3
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S. AHLIG et al. PHYSICAL REVIEW D 64 014004
fall off fast enough to render all integrals finite. Empirical
we assume that the corresponding scale is linked to the~in-
verse! proton radius. The conjugate vertex functionsx̄ are
obtained by charge conjugation,

x̄5~p,P!5C„x5~2p,2P!…TCT, ~13!

x̄m~p,P!52C„xm~2p,2P!…TCT, ~14!

whereT denotes the transpose.
Let us now explicitly construct the vertex functions. Th

must be antisymmetric under the interchange of the
quarks. This entails

xab
5[m]~ p̄,P!52xba

5[m]~2 p̄,P!us↔(12s) . ~15!

Any two quarks within a baryon belong to the color antitri
let representation. Thus the diquark-quark vertices are
portional to the antisymmetric tensoreABD . Here A and B
are the color indices of the quarks whereasD labels the color
of the diquark. Furthermore the scalar diquark is antisy
metric while the axial-vector diquark is symmetric in flavo
We maintain only the dominant components with regard
the structure in Dirac space.2 These are the antisymmetr
matrix (g5C) for the scalar diquark and the symmetric m
trices (gmC) for the axial-vector diquark. Considering, fo
the time being, only two flavors the vertices then read3

xab
5 ~ p̄,P!us51/25xab

5 ~ p̄!5gs~g5C!abV~ p̄2!
~t2!ab

A2

eABD

A2
,

~16!

xab
m ~ p̄,P!us51/25xab

m ~ p̄!

5ga~gmC!abV~ p̄2!
~t2tk!ab

A2

eABD

A2
. ~17!

Choosing the scalar functionV to depend only on the
squared relative momentump̄2, these vertices are indeed a
tisymmetric with respect to exchange of quark labels for
partition s51/2. Otherwise a parametrization ofV would
depend on bothp̄2 and p̄•P in order to comply with anti-
symmetrization@13,48#. However, complete independenc
for observable quantities ons could only be obtained by
solving the Bethe-Salpeter equation~A12! for the two-quark
t-matrix in which case the scalar functionsV could depend

2The complete Dirac structure for the scalar diquark contain
four independent tensors can be obtained by analogy from the
for pseudoscalar mesons. The complete Dirac structure for
axial-vector diquark consists of twelve independent terms, four l
gitudinal and eight transverse ones.

3In the compact notation the indicesa and b of xab not only
contain the Dirac labels but also those for flavor and color.
01400
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on the quantity (p̄•P)2 ~for s51/2) which is symmetric
under quark exchange. In the actual calculations we will
a multipole form typeAnsatz

V~x!5Vn~x!5S ln
2

ln
21x

D n

. ~18!

The overall strength of the diquark correlations given
Eqs. ~16!,~17! is governed by the ‘‘diquark-quark couplin
constants’’gs and ga . They could be determined by eithe
imposing the canonical Bethe-Salpeter norm condition
x5[m] or by the solution to the differential Ward identity fo
the diquark-photon vertex which is sensitive to the substr
ture of the diquarks@6#. For simplicity, we will fix gs from
fitting the nucleon mass. When including axial-vector d
quarks we will assume the ratioga /gs50.2 as suggested b
the results of Ref.@6#. In this manner the baryon Bethe
Salpeter equation~6! becomes an eigenvalue problem for t
coupling constantsgs andga .

Note that by parametrizing the quark-quarkt-matrix we
do not make any reference to the nature of the relev
quark-quark interaction. For example, to quantitatively
clude pionic effects we would have to solve Dyso
Schwinger equations for the quark propagator and the Be
Salpeter equation with explicit pion degrees of freedo
Studies within the Nambu–Jona-Lasinio model usi
diquark-quark correlations either in a soliton backgrou
@16# or with explicit pion interaction between the quarks@17#
lead to a substantial gain in the binding energy. Since
determine the coupling constantgs from the nucleon mass
those studies suggest that the inclusion of pion degree
freedom would merely lead to a shift of this constant.

Equipped with the separable form of the two-quark cor
lations, see Eq.~10!, and the functional form of the scala
and axial-vector diquark correlations in Eqs.~16!,~17!, we
will set up the effective Bethe-Salpeter equation for t
nucleon.

Upon attaching quark and diquark legs to the vertex fu
tions f one obtains the Bethe-Salpeter wave functionsc.
Equation~6! can then be rewritten as a system of equatio
for wave and vertex functions as defined in Appendix
Using the notations~B1!–~B3! we obtain

E d4k

~2p!4
G21~p,k,P!S C5~k,P!

Cm8~k,P!
D 50. ~19!

Here G21(p,k,P) is the inverse of the quark-diquark fou
point function which results from the quark exchange.4 It is
the sum of the disconnected part and the interaction ke
which contains the quark exchange,

g
ne
e
-

4For convenience we have omitted the discrete labels.
4-4
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G21~p,k,P!5~2p!4d4~p2k!S21~pq!sD21~pd!2
1

2 S 2x5~p2
2!ST~q!x̄5~p1

2! A3xm8~p2
2!ST~q!x̄5~p1

2!

A3x5~p2
2!ST~q!x̄m~p1

2! xm8~p2
2!ST~q!x̄m~p1

2!
D . ~20!
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The symbol ‘‘s’’ denotes a ‘‘disconnected’’ product; se
also Eq.~A8!. The flavor and color factors have been work
out and thereforex5(p2) andxm(p2) from now on only rep-
resent the Dirac structures of the diquark-quark verti
@multiplied by the invariant functionVn(p2), cf. Eq. ~18!#.
The freedom to partition the total momentum between qu
and diquark introduces the parameterhP@0,1# with pq
5hP1p and pd5(12h)P2p. The momentum of the ex
changed quark is then given byq52p2k1(122h)P. The
relative momenta of the quarks in the diquark verticesx and
x̄ are p25p1k/22(123h)P/2 and p15p/21k2(1
23h)P/2, respectively. Invariance under~four dimensional!
translations implies that for every solutionC(p,P;h1) of the
Bethe-Salpeter equation a family of solutions exists that h
the form C„p1(h22h1)P,P;h2…. Considering the Bethe
Salpeter equation~BSE! as a linear eigenvalue problem fo
C ~or F) in the coupling constantgs , translation invariance
requires the coupling constant eigenvalue to be indepen
of h once a bound-state mass2P25M2 is fixed. This inde-
pendence is exactly what one observes in the numerica
lutions of the BSE, provided the analytic form of the dres
ing functions, Eqs. ~2!–~4!, is used. However, theh
independence is lost when substituting non-analytic propa
tors such as those parametrized by the functionf 3, Eq. ~5!.
Essentially the reason is that Cauchy’s theorem does no
ply to non-analytic functions. The difference in the eigenv
ues of the Bethe-Salpeter equation under the variation oh
can be shown to equal a contour integral in the complep
plane. This integral vanishes only if the integrand is an a
lytic function. However, when choosingd.5 in Eq. ~5!, the
propagator resembles the free propagator in a large dom
thereby mitigating theh dependence.

The structure of the equations for the octet baryons
similar to that of the nucleon~19!. However, the number o
Dirac structuresF5 and Fm increases due to the possib
different quark-diquark flavor configurations. These eq
tions are given in full detail in Refs.@7,18#. Allowing for
flavor symmetry breaking, that is induced by a differen
between the masses of strange quark and up or down qu
discriminates vertex functionsF5 andFm with different di-
quark configurations@7#. As the L hyperon presently is o
special interest, we list its three different correlations,

FL;FF1

5 , FF2

5 and FL
m . ~21!

Here,F15$d@us#2u@ds#%/A2, F25s@ud# and L5@d$us%
2u$ds%]/A2 refer to different quark-diquark flavor state
Antisymmetrized scalar diquarks are denoted by squ
brackets@ . . . # and symmetrized axial-vector diquarks b
curly brackets$ . . . %. Note that brokenSU(3)-flavor sym-
metry induces a component of the total antisymmetric fla
singlet (1/A3)†@su#d1@ud#s1@ds#u‡ into wave and vertex
functions. In non-relativistic quark models withSU(6) sym-
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metry such a component is forbidden by the Pauli princip
however, having non-vanishing lower components
the baryon bi-spinors does actually lead to such fla
singlet components. In actual calculations they turn out
be small@7#.

B. Electromagnetic form factors

To further constrain the model parameters, we calcu
the electromagnetic form factors of the nucleon. In this s
tion we provide the formalism and the corresponding res
will be given in Sec. V A. These form factors parametri
the nucleon matrix element of the current operator that
scribes the coupling of the photon to quark and diqu
within the nucleon. Gauge invariance and the proper norm
ization of the nucleon charges are ensured when the cur
operator comprises all possible couplings to the inve
quark-diquark four-point functionG21 of Eq. ~19! @13,6,18#.
The current operator is sandwiched between the Be

Salpeter wave functionsC̄ and C of the final and initial
state, respectively, according to Mandelstam’s recipe@19#. In
total, we have contributions from theimpulse approximation
which are described by the upper diagrams in Fig. 3 a
contributions from theBethe-Salpeter kernelwhich are given
by diagrams of the type given in the lower part of Fig. 3.

To calculate the form factor diagrams, we need prope
normalized Bethe-Salpeter wave functions. This normali
tion is obtained from

FIG. 3. Contributions from the impulse approximation~a! and
from the Bethe-Salpeter kernel~b! to the electromagnetic form
factors.
4-5
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MNL15
!

2E d4p

~2p!4E d4k

~2p!4
C̄~k,Pn!

3F Pm
]

]Pm
G21~k,p,P!G

P5Pn

C~p,Pn!, ~22!

whereMN is the nucleonic bound state mass. The conjuga

wave functionC̄ is in analogy with Eqs.~13! and~14! given
by

C̄~k,Pn!5hdCC~2k,2Pn!TCT ~23!

with hd51 andhd521 when the involved diquark is re
spectively of scalar or axial-vector type.

Furthermore we need expressions for the photon vert
that appear in the diagrams. In Ref.@13# the seagull vertices
describing the photon coupling to the diquark-quark verti
x have been derived for the scalar diquark. The coupling
the axial-vector diquark to the photon has been studied
Ref. @6#. The photon vertices with quark and diquark mu
fulfill the differential Ward identities for zero momentum
transfer to the photon

Gq
m~pq ,pq!5

]

]pq
m

S21~pq!, ~24!

G̃d
m~pd ,pd!5S Gs

m 0

0 Ga
mD 5

]

]pd
m
D̃21~pd!. ~25!

Here G̃d
m comprises both photon vertices with scalar a

axial-vector diquarks. For convenience the discrete lab
have been omitted. The Ball-Chiu construction of the lon
tudinal part of the vertices ensures that they obey both
differential Ward as well as the Ward-Takahashi identi
a
r
a

e
ar
ia
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The latter identities constrain the vertices for finiteQ. For the
dressed quark propagators of Eq.~1! the corresponding ver
tices finally read

Gq,i
m ~kq ,pq!52

i

2
gm@1/f i~kq

2/mq!11/f i~pq
2/mq!#

2
i

2
~kq1pq!m

1/f i~kq
2/mq!21/f i~pq

2/mq!

kq
22pq

2

3@~k” q1p” q!22imq#. ~26!

This construction is valid for the analytic dressing functio
f 0 , f 1 and f 2.

In the case of the non-analytic dressing functionf 3, we
must specify the derivatives in Eqs.~22!–~25! with respect to
the total bound state momentumP and the quark and diquar
momentapq andpd , respectively. We calculate form factor
in the Breit frame, i.e. the temporal component of the m
mentum transfer is zero. Consequently, the relative mome
between the initial quark,k and the final diquark,p are real.
They must be integrated over in the norm integral~22! and in
the calculation of the diagrams of Fig. 3. Let us consider
quark momenta which are defined as before:kq5hPf1k
andpq5hPi1p. We define the derivatives in Eqs.~22!, ~24!
and ~25! as follows:

]

]Pi [ f ]
5h

]

]p@k#
,

]

]pq@kq#
5

]

]p@k#
. ~27!

Of course, these are trivial identities when applied onto a
lytical functions. Derivatives with respect to the diquark m
menta are defined accordingly. The nucleon charges obta
as the form factors at zero momentum transfer are then p
erly normalized. The corresponding proof utilizes the me
ods outlined in Ref.@13#.

To comply with the Ward-Takahashi identity, the quar
photon vertex has to be modified:
Gq,3
m 52

i

2
gm

„1/f 3~kq
2/mq

2 ,kq*
2/mq

2!11/f 3~pq
2/mq

2 ,pq*
2/mq

2!…2
i

2
~kq1pq!m

3
1/f 3~kq

2/mq
2 ,pq*

2/mq
2!21/f 3~pq

2/mq
2 ,pq*

2/mq
2!

kq
22pq

2 @~k” q1p” q!22imq#2
i

2
~kq* 1pq* !m

3
1/f 3~kq

2/mq
2 ,kq*

2/mq
2!21/f 3~kq

2/mq
2 ,pq*

2/mq
2!

kq•kq* 2pq•pq*
@~k” q1p” q!22imq#. ~28!
t be

but
This vertex now depends on the four variableskq , kq* , pq

andpq* and is also non-analytic as is the corresponding qu
propagatorS(3). The photon Ball-Chiu vertices with scala
and axial-vector diquarks have to be modified using
analogous description@18#. The coupling of the photon to th
anomalous magnetic moment of the axial-vector diqu
and the vertex for photon-induced anomalous scalar–ax
rk

n

k
l-

vector diquark transitions are transversal and need no
modified @6#.

C. Strong form factors

Here we consider the strong form factorsgpNN andgKNL .
These quantities are not only interesting in themselves
4-6



e
on
ou
ne

r
s

pl
-

th
-
o
so
is

e

a
ie
e
on

ne
he
a
rt

e
ly.
i-

di-
r

the
i-
ch a
ong
iva-

nd
el-
l

mit
n of

-

-
at

or
tors

ex
and
ter

ers

u-
-

be
th

rri

PRODUCTION PROCESSES AS A TOOL TO STUDY . . . PHYSICAL REVIEW D64 014004
also enter the calculation of production processes likepg
→LK or associated strangeness productionpp→pKL.

In Fig. 4 we show the dominant contributions to th
strong form factors. Here the meson directly couples to
of the baryon constituents. Keeping only such direct c
plings while omitting those to the exchanged quark defi
the impulse approximation that we will adopt here.5 The two
diagrams shown in Fig. 4 actually correspond to a numbe
diagrams which differ by the type of the involved diquark
Let us first consider the process in which the meson cou
to the quark. ForgKNL only one possibility exists: the di
quark has to be a scalarud-diquark since this is the only
overlap between the wave function of the proton and
wave function of theL. For gpNN both scalar and axial
vector diquarks need to be taken into account. The sec
important contribution represents the coupling of the me
to the diquark. For the diquark part we do not have to d
tinguish betweengpNN andgKNL . That is, in both cases th
diquark associated with the momentap1 or p2 may be sca-
lar or axialvector.

The meson-quark vertex is the solution of a separ
Bethe-Salpeter equation which has been extensively stud
see@2# and references therein. In the chiral limit this Beth
Salpeter equation becomes formally identical to the Dys
Schwinger equation for the scalar self-energy functionB(p2)
when only the leading Dirac structure is considered, i.e.

~29!

Here f is the meson decay constant.
The structure of the meson-diquark vertices is constrai

not only by Lorentz covariance and parity but also by t
Bose statistics for the two involved diquarks. We thus p
rametrize the pseudoscalar meson axial-vector diquark ve
as

Gaa
rl52 i

kaa

2M

m

f
erlmn~p21p1!mQn. ~30!

5Contributions to the nucleon electromagnetic form factors
yond the impulse approximation that arise from the coupling to
exchanged quark have been thoroughly discussed in Refs.@6,13,18#.

FIG. 4. Dominant diagrams for the strong form factorsgpNN

andgKNL . The incoming proton carries the momentumPi while Pf

is associated with the outgoing baryon. The incoming meson ca
the momentumQ and couples to the quark~left panel! or to the
diquark ~right panel!.
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Here the superscriptsr,l denote the Lorentz indices of th
incoming and outgoing axialvector diquark, respective
The nucleon massM has been introduced to define the d
mensionless coupling constantkaa . Furthermorem is the
average of the masses of the constituent quarks in the
quarks. The correspondingAnsatzfor the scalar–axial-vecto
transition reads

Gsa
r 52ksa

m

f
Qr, ~31!

where the definitions are those of Eq.~30! andksa is again a
dimensionless constant specifying the overall strength of
vertex. The vertex~31! describes the coupling of the d
quarks to the derivative of the pseudoscalar mesons. Su
construction is suggested by the chiral structure of the str
interactions that can be written as an expansion in the der
tives of the Goldstone bosons, at least in the chiral limit.

Having collected all ingredients we may now proceed a
compute the diagrams in Fig. 4. According to the Mand
stam formalism@19# the diagram shown in the left pane
translates into an expression of the form

E d4q

~2p!4
F̄ f~qf ,Pf !S~p1!Gm~p2 ,p1!

3S~p2!FP~q,Pi !D~pd!, ~32!

where we only indicated the general structure, i.e. we o
indices that are associated to the coupling and propagatio

axial-vector diquarks. The conjugated vertex functionF̄ re-
lates to the vertex functionF as the conjugated wave func
tion ~23! to the wave function:

F̄~p,P!5hdCF~2p,2P!TCT ~33!

with hd51 andhd521 when the involved diquark is re
spectively of scalar or axial-vector type. We note th

F̄(p,P) also solves the Bethe-Salpeter equation~6!. We de-
note the loop momentum byq and introduce the momentum
partition,

p25q1hPi , p15p21Q5qf1hPf and

pd52q1~12h!Pi . ~34!

Again, hP@0,1# is the momentum partition parameter. F
the diagram in the right panel quark and diquark propaga
need to be exchanged.

III. BOUND STATE REACTIONS AND KINEMATICAL
CONDITIONS FOR COMPLEX MOMENTA

In this section we will discuss that regime in the compl
momentum plane where we need to know the quark
diquark propagators in order to solve the Bethe-Salpe
equation~19! and compare that regime to the one that ent
the computation of the production processes likepg→LK
andpp→pKL. In principle these propagators can be calc
lated using Dyson-Schwinger equations@2# and also respec

-
e

es
4-7
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tive lattice measurements should be available in the nea
ture; for preliminary results see e.g. Refs.@20,21#. Both
methods comprise the non-perturbative dynamics and sh
therefore give the basic ingredients to describe hadron
bound state of quarks. However, both approaches are se
in Euclidean space and one has to revert to extrapolat
when the propagators are demanded for timelike moment
we wanted to perform an appropriate analytic continuat
from Euclidean back to Minkowski space we would ev
require the propagators in a region of the complex mom
tum plane.6 In order to calculate amplitudes of physical pr
cesses between on-shell particles using the Euclidean Be
Salpeter formalism the temporal components of the exte
momenta must be purely imaginary. In this framework t
momenta become complex. In these calculations there
the structure of the propagators in the complex momen
plane is essential. Furthermore, it is important for the p
nomenological parametrization of confinement. As repe
edly mentioned we comprehend the confinement phen
enon as the absence of poles on the timelikeq2 axis in the
propagator of colored ‘‘particles.’’

The Bethe-Salpeter equation is most conveniently sol
in the rest frame of the bound state,P5(0W ,iM ). Here we
want to specifically discuss the kinematical domain tha
probed by the~di!quark propagators in the bound state r
frame. In Eq.~19! the loop momentum,k, relative between
quark and diquark is chosen to be real. Hence the temp
component of the quark momentumkq5hP1k becomes
complex. The values ofkq

2 that are covered when integratin
overk lie within a parabola that opens towards the space
axis, cf. Fig. 5. The intercept of the parabola with the r
axis is at~small! timelike kq

252(hM )2. Thus, solving the
Bethe-Salpeter equation mainly probes the behavior of
quark propagator for spacelike momenta. Since mainly
spacelike momenta are relevant, the propagators that ar

6In the Dyson-Schwinger approach the corresponding inte
equation should be used for this analytic continuation. Relying o
numerical solution that is only known for a finite set of Euclide
momenta is not sufficient because its analytic continuation a
from that set cannot be determined.

FIG. 5. The complexq2 plane. The interior of the parabola i
needed for the calculation of the diagram in the left panel of Fig
x is defined asx5(hM1E)2. Note that in the case of the Bethe
Salpeter equation we substitutex5h2M2.
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rametrized by the dressing function~4! approach the free
propagators in the limitd→1`. In this limit the dressing
functions~3! and ~5! approach the bare propagators, both
the spacelike and timelike regions.

Next we will explore theq2 regime relevant for produc
tion processes like kaon photoproduction. The contribut
to the reactionpg→LK that involves a quark loop is show
in the left panel of Fig. 6. It turns out that it suffices
consider a parabola shaped region of the complexq2 plane
~i.e. it is sufficient to consider only this momentum and i
nore the others!. This can be understood in at least two way
We could use the wave functions rather than the vertex fu
tions for the calculation of the diagram. In this case t
propagators that depend onpq , kq and pd are included in
the wave functions and there would be no necessity to t
them separately. Nevertheless, considering the propaga
S(pq), S(q), S(kq) and D(pd) separately we find tha
among all the internal momenta in the diagram it isq that
reaches farthest in the timelike regime. Thus the followi
analysis forpq andkq would yield less restrictive conditions

From the momentum routing shown in the left panel
Fig. 6 we have

q5p21pg5hP1 l 1pg ~35!

where h is the momentum partition parameter@p25hP
1 l ,pd5(12h)P2 l # while l refers to the loop momentum
We choose the loop momentum to be real which implies t
the external momenta likeP andpg must have an imaginary
temporal component in order to correspond to physical p
ticles. For the following kinematical considerations w
choose the proton rest frame and take the photon to pro
gate along they axis,

P5~0W ,iM !, pg5~0,E,0,iE !, l 5~ lW,l 4!. ~36!

Hence the momentum entering the quark propagator
comes

q25~2h2M21 l 222hME12Ely!1 i ~2hM12E!l 4 ,
~37!

where the real and imaginary parts ofq2 have been sepa
rated. This shows that we need to know the propagatorS(q2)
at complexq2 in order to be able to compute the handb
diagram shown in the left panel of Fig. 6. The set of valu
of q2 that occur has already been shown in Fig. 5. The s
ation seems to be completely parallel to what we found
the Bethe-Salpeter equation; in both cases we need to k

al
a

y

;

FIG. 6. Left panel: Main contribution to kaon photoproductio
pg→KL; right panel: handbag diagram contributing to the react
pp→pKL as a subprocess. The incoming pion couples to
‘‘spectating’’ proton.
4-8
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PRODUCTION PROCESSES AS A TOOL TO STUDY . . . PHYSICAL REVIEW D64 014004
the propagators in a parabola shaped region of the com
plane. The intercept with the imaginary axis is in both ca
minus two times the intercept with the real axis. Howev
there is one important difference. For the production p
cesses the intercept with the real axis does depend on
photon energyE, more precisely:2x52(hM1E)2. Thus
for E50 the computation of the handbag diagram shown
Fig. 6 uses the same region of the complex plane tha
necessary to solve the Bethe-Salpeter equation. Howeve
E.0 the parabola is shifted in the direction of the negat
real axis.

The threshold for kaon photoproduction is atE slightly
less than 1 GeV and the cross section has been meas
@22# up toE'2 GeV. This implies that the handbag diagra
‘‘probes’’ the quark propagatormuch farther into the time-
like region than the Bethe-Salpeter equation.

The second production process we are especially in
ested in is associated strangeness production,pp→pKL.
This reaction can be described similarly to the standard
ture of the nucleon-nucleon interaction by one-boson
change. That is, one of the incoming protons acts as a m
source and the emitted off-shell meson couples to one of
constituents of the baryon; the corresponding subproces
shown diagrammatically in Fig. 6.

The analogous kinematical analysis for strangeness
duction exhibits the same qualitative features. That proc
as well ‘‘probes’’ a parabola shaped subset of the comp
plane, whereby the parabola is somewhat broader than
one in Fig. 5. However, there again is an important diff
ence: the parabola does extend only up to moderateq2 into
the timelike region. That is, the reactionpp→pKL
‘‘probes’’ the propagators in essentially the same region
the Bethe-Salpeter equation does. It is therefore not as
sitive as kaon photoproduction to the behavior of the pro
gator in the timelike region.

The main conclusion of the above discussion is that c
tain production processes may be significantly more sens
to the structure of the~di!quark propagators than the Beth
Salpeter equation and thus the baryon spectrum. Hence
study of such processes should provide important inform
tion about these propagators.

FIG. 7. Main contributions to kaon photoproductionpg→LK.
The incoming proton and the outgoingL carry the momentaP and
PL , respectively. The lower part of the figure shows the tree le
diagram that models the exchange of a virtual kaon.
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IV. PRODUCTION PROCESSES IN THE
DIQUARK-QUARK MODEL

In this section we present the key issues of the formal
to compute the cross sections for kaon photoproduction,gp
→LK and the associated strangeness production,pp
→pKL. In the diquark-quark model relatively few diagram
contribute to these processes and therefore we may ana
these reactions in detail. For further details on the definit
of the involved observables and the relevant kinematics
refer the reader to Appendix C.

As already indicated in the discussion of the strong fo
factors we consider the pseudoscalar mesons as addit
model degrees of freedom. This does not imply any dou
counting because the model interaction~diquark exchange!
does not lead to bound~would-be! Goldstone bosons. Thu
we also include intermediate pseudoscalar mesons at
level when computing the above mentioned observables.
relevant diagrams are shown in Figs. 7 and 8. As a gen
remark we note that these diagrams need to be compute
any covariant diquark-quark model. However, the propa
tors that are essential components of these diagrams are
cific to our model, cf. Eqs.~2!–~5!. Furthermore, the covari
ant wave or vertex functions that also enter these diagr
are obtained as solutions of the Bethe-Salpeter equa
Since this equation is subject to the model propagators t
enter the calculation not only explicitly but also implicitly.

l

FIG. 8. Main contributions to associated strangeness produc
pp→pKL. The momenta of the initial protons are given byPi ,i
51,2. The momenta of the final proton andL are denoted byPf

andPL , respectively.pK refers to the momentum of the final kaon
The diquark content of the diagrams is listed in Table I.
4-9
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A. Kaon photoproduction

In this subsection we will discuss kaon photoproduct
pg→LK within our covariant diquark-quark model. Som
more details and technicalities of the calculation are given
Appendix C 1.

We show the dominant diagrams in Fig. 7. The inter
momenta of the~uncrossed! ‘‘handbag diagram’’ are defined
according to

p25p1hpP, pd52p1~12hp!P, q5p21pg ,

p15q2pK , PL5P1pg2pK ,

pf5p1~12hp!P2~12hL!PL . ~38!

Herehp andhL are the momentum partition parameters
the proton and theL, respectively. Both,hp andhL can be
chosen independently in the range 0<hp ,hL<1.

The two ‘‘handbag diagrams’’ model the coupling to o
of the constituents. They are calculated within the Mand
stam formalism. This yields

A15 i E d4p

~2p!4
$F̄L~pf ,PL!S~p1!GK~q,p1!S~q!%

3$Gg~p2 ,q!S~p2!FP~p,P!D~pd!% ~39!

for the amplitude of the uncrossed handbag diagram. H

F̄L and Fp are respectively the vertex functions of theL
and the proton as discussed in Sec. II. FurthermoreGK is the
meson-quark vertex that has been discussed in the prece
subsection. The photon-quark coupling,Gg is described by
the Ball-Chiu vertex@23# or its generalization to the case o
non-analytic propagators; see Sec. II. The Ball-Chiu ver
has been constructed to satisfy the Ward identity. It redu
to the bare vertex in the limit that both momentap andq are
large. The Ward identity constrains only the longitudinal p
of the vertex. VariousAnsätze for the transversal part of th
vertex have been proposed~cf. Ref. @2# and references
therein!. While thoseAnsätzesolve problems related to mu
tiplicative renormalizability and gauge invariance, the tra
versal part is generally assumed to be of minor influence
the resulting cross sections. Thus we will henceforth neg
the transversal part of the quark-photon vertex. Although
form of this vertex is not model specific, it contains the se
energy functions and thus it implicitly depends on the mo
propagators. The expression for the crossed handbag
gram can be easily inferred. The tree level diagram mod
the exchange of a virtual kaon and is expected to yiel
non-negligible contribution for large photon energies. F
the photon-meson coupling we use a bare vertex multip
with the kaon electromagnetic form factor~see Appendix
C 1! while the meson-baryon vertex is proportional
gKNL(Q2) that has been discussed in Sec. II C.

The ‘‘handbag diagrams’’ shown in Fig. 7 probe th
propagators not only for spacelike momenta but also
comparably large timelike momenta, as we have emphas
in Sec. III. This sensitivity to the behavior of the propagato
01400
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for timelike momenta distinguishes the reactionpg→LK
from most other production processes.

B. Associated strangeness production

Here we apply the covariant diquark-quark model to
sociated strangeness production,pp→pKL. Again, some
technicalities are relegated to Appendix C 2. We describe
reactionpp→pKL as a sum over one-boson exchange c
tributions for which we consider the exchange of pions a
kaons. The main contributions are shown in Fig. 8. Oth
diagrams like planar kaon exchange or crossed pion
change with couplings to the quark are excluded by the
vor algebra. We neglect diagrams in which the exchan
particle and the emitted kaon couple to different constitue
because they imply a large relative momentum at the bar
vertex which is strongly suppressed. In addition we omit
direct coupling of the pion to the emitted kaon.

Similar to the calculation ofgKNL in Sec. II C, the flavor
content of theL prohibits an axial-vector diquark in the pio
exchange diagram no. 1. However, this does not apply to
kaon exchange diagram no. 2 as the diquark mediates
tween two protons. Due to parity conservation we only ha
to consider scalar–axial-vector and axial-vector–axial-vec
diquark transitions at any meson-diquark vertex. Flavor
gebra also shows that the axial-vector diquark component
the incoming proton cannot contribute in diagram no. 4. T
diquark content of the diagrams shown in Fig. 8 is listed
Table I. Counting the diquark combinations in Table I w
arrive at 15 diagrams. This number is actually doubled
cause all diagrams have to be antisymmetrized with res
to the two incoming protons.

As an example, we outline the calculation of one of t
two planar pion exchange diagrams. The calculation of
other diagrams is very similar. The amplitude of diagram
1 can be factorized according to

M5LS i

Q21mp
2 DH, ~40!

whereL denotes the form factor part andH denotes the loop
part of the diagram. The mass and the momentum of
intermediate pion are denoted bymp and Q, respectively.
The factorL essentially equalsgpNN ,

Ls,s85ūs8~Pf !ig5gpNN~Q2!us~P2!, ~41!

with spinor indicess and s8. In the remaining ‘‘handbag
part’’ H the conventions for the loop momenta can be e
tracted from diagram no. 1 of Fig. 8. Essentially they a

TABLE I. The diquark content of the diagrams shown in Fig.
with the numbers referring to the specific diagram. Here ‘‘s’’ a
‘‘a’’ indicate scalar and axial-vector diquark respectively. A s
quence with three entries runs clockwise and starts at the incom
proton.

diagram no. 1 2 3,5 4
diquark content s s,a asa, aas, aaa, sas, saa sas
4-10
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TABLE II. The six parameter sets of the model investigated here and the respective results f
nucleon magnetic moments and the octet masses. Calculations using the first four sets involve onl
diquarks, whereas the sets V and VI also include axial-vector diquarks. The parameterz determines the
diquark mass parameter~scalar and axial-vector!, md5z(ma1mb), with the mass parametersma,b of its
constituent quarks. The parameterl determines the width of the diquark amplitudes; see Eq.~18!. For set I
the corresponding shape of the amplitudes was chosen to be a quadrupole (n54); for the other sets we fixed
it to be a dipole (n52).

I II III IV V VI Expt.
diquark: only scalar scalar and

axial vector
f i 2 1 1 3 1 3
d 2.0 8.0 4.0 6.0 4.0 6.0
mu5md @GeV# 0.40 0.45 0.45 0.52 0.45 0.52
ms @GeV# 0.64 0.70 0.69 0.75 0.67 0.72
z 0.70 0.95 0.92 0.97 0.92 0.97
l2 @GeV2# 0.25 0.1 0.1 0.1 0.1 0.1
mp 2.83 2.47 2.64 2.32 2.70 2.33 2.79
mn 22.37 22.15 22.32 22.08 22.08 21.82 21.91

octet masses,MN50.939 GeV fixed
L @GeV# 1.13 1.12 1.12 1.12 1.13 1.12 1.12
S @GeV# 1.30 1.27 1.29 1.30 1.22 1.21 1.19
J @GeV# 1.37 1.37 1.39 1.36 1.37 1.33 1.32
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given in Eq.~38! with the substitutionpg→Q and similarly
for the baryons. The ‘‘handbag part’’ of the pion exchan
diagram can then be written as

H5 i E d4p

~2p!4
$F̄L~pf ,PL!S~p1!GK~p1 ,q!S~q!%

3$Gp~q,p2!S~p2!D~pd!FP~p1 ,P1!%, ~42!

where isospin as well as Lorentz indices have been omi
for simplicity.

V. NUMERICAL RESULTS

After having outlined the model calculation we are no
prepared to present the numerical results. Here we focu
studying the effects of the different model propagators~2!–
~5! on the calculation of and the predictions for the abo
mentioned processes.7 As mentioned earlier, this is the mai
purpose of the present study. Numerical results for the fo
factors obtained with the tree level propagators~2! can be
found in Ref.@6#.

A. Parameter fixing: Masses and electromagnetic form factors

We fix the model parameters, see Table II, from the oc
baryon masses and the nucleon magnetic moments. The
merical details for solving the octet baryon Bethe-Salpe
equations and the computation of the form factors are th
oughly discussed in Ref.@18#.

7A few selected numerical results using other forms of dres
model propagators have been published in Ref.@24#.
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Within the required numerical accuracy we have assu
the above described independence of the octet masses o
momentum partition parameterh when analytical propaga
tors are used. As argued before, this invariance does not
for non-analytic propagators. In these cases we choseh to be
close to its non-relativistic valuemq /(mq1md) where mq
and md denote quark and diquark mass parameters of
flavor channel associated with the considered baryon. T
choice is natural since other ones yield larger eigenvalue
the Bethe-Salpeter equation. We take the physical nucl
mass to fix the scalar diquark couplinggs and theL mass to
determine the strange quark mass parameterms . By repro-
ducing the phenomenological dipole fit for the proton ele
tric form factor,GE we essentially fix the diquark widthl.
Subsequently we are enabled to compute the proton and
tron magnetic moments,mp andmn as well as the masses o
theS andJ baryons. For that calculation we assume isos
symmetry,mu5md .

In Table II we list the six parameter sets that we w
employ to compute the strong form factors and observab
of production processes later on. The first four sets are
stricted to the dominant scalar diquark correlations. In s
we consider the pole-free exponential dressing function,f 2,
while the sets II and III are associated with dressing fu
tions of the Stingl type,f 1. These two sets differ by the valu
of d that characterizes the separation of the complex co
gated poles. Finally set IV assumes the non-analytic po
free dressing function,f 3. As already indicated the dressin
of the propagators increase the predicted proton magn
moment when all other model parameters remain unchan
Using the parameters of set II but free propagators yie
mp52.27 while the Stingl-type propagators result inmp
52.46 andmp52.64 for d58.0 andd54.0, respectively.
The magnetic moment of the proton falls a little short for t
d

4-11



S. AHLIG et al. PHYSICAL REVIEW D 64 014004
FIG. 9. Left panel: Proton electric form factor normalized to the dipole fit. The experimental data are taken from Ref.@25#. Right panel:
The ratio (mpGE)/GM for the proton with the experimental data published in Ref.@26#.
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sets II and IV. The overall picture emerges that the rest
tion to only scalar diquark correlations produces too la
ratios umn /mpu and rather large mass splittings between
octet baryons, especially betweenS andL.

As shown in Fig. 9 all sets reasonably well reproduce
electric form factor,GE . Our results are confined within
region that is characterized by less than approximately 1
deviation from the dipole fit. This deviation, although rec
fiable by refining the time-consuming parameter search, i
no significance for the conclusions that we will draw fro
our results for the production processes. This will beco
clear from the discussions in Sec. V D.

The calculations with the parameters sets V and VI
clude a moderate admixture of axial-vector diquarks,ga /gs
50.2. For simplicity the axial-vector diquark masses a
chosen identical to the scalar ones. Here we particularly c
sider the Stingl form,f 1 ~set V! and the non-analytic form
f 3 ~set VI! since later we will find that the exponential form
f 2 produces unacceptable results for the production p
cesses. Upon inclusion of the axial-vector diquark the go
description of GE remains unchanged while the rat
umn /mpu and the mass splitting betweenS andL even im-
prove. For set VI the predicted octet masses are almos
distinguishable from their experimental values. As alrea
observed in Ref.@6# and as is exhibited in the right panel o
Fig. 9, the ratioGE /GM calculated with axial-vector di-
quarks included comes considerably closer to the experim
tal values than in a calculation that omits these degree
freedom~sets I–IV!. As explained in Ref.@6#, increasing the
strength of axial-vector correlations in the proton forces
ratio GE /GM to bend to lower values. This also suggests t
in order to precisely reproduce the empirical result we wo
need an even slightly larger axial-vector coupling than
assumedga /gs50.2.

All sets predict the maximum of the neutron electric for
factor to lie between 0.025 and 0.04. This is only about h
the value extracted from recent experiments@27,28#. This
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form factor is a result of delicate cancellations between
contributions from the individual diagrams shown in Fig.
Hence it is quite sensitive to small changes in the parame
Within this model approach improved descriptions for th
form factor can be found in Refs.@13,6#.

In a previous study@6# that employed free quark and d
quark propagators we were unable to reproduce the nuc
magnetic moments and theD mass simultaneously. The ki
nematical binding of theD required a large constituent quar
mass,mq50.43 GeV, which in turn decreased the magne
moments~in magnitude!. Furthermore the use of free propa
gators enforced moderate axial-vector diquark contributi
~about 25%! to properly describe the ratioGE /GM of electric
and magnetic form factors forQ2 up to 2 GeV2. In contrast,
the introduction of dressing functions for the quark-phot
vertex ~26!,~28! allows us to choose rather largeup quark
mass parameters aroundmu50.45 GeV and still obtain a
proton magnetic moment that agrees with experiment rea
ably well.

Let us briefly reflect on the accuracy of our calculation
Due to the Monte Carlo integration of the diagrams given
part~b! of Fig. 3 ~with 7.53105 grid points for sets I–IV and
43105 grid points for sets V and VI! the absolute numerica
error formp is 0.02 and formn it is 0.03. The statistical erro
for the electric form factor is below 0.002 up to momentu
transfers of 1.7 GeV2. For the sets IV and VI a systemati
relative error in the electromagnetic form factors is fou
that increases slowly to about 5% atQ251.7 GeV2. Further-
more, we used an expansion in Chebyshev polynomials
wave and vertex functions because this expansion can
unambiguously continued to complex arguments. Upon e
ploying analytical propagators we have obtained identi
results when using the approaches wherein either the w
functions C or the vertex functionsF must be continued
analytically @13#. For non-analytic propagators, the corr
sponding solutions of the Bethe-Salpeter equation are n
analytic as well. Thus the analytic continuation produces
4-12
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FIG. 10. The model prediction for the strong form factorsgpNN andgKNL . The parameter sets~I–VI ! are defined in Table II. ForgKNL

the results in the regionQ2,LBF
2 are obtained from a rational fit~see text!.
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rors which can be estimated by comparing the calculati
using wave functions or vertex functions. In order to restr
the resulting discrepancy to below 5%, we have to cho
d.5 and rather large quark and diquark mass parame
This then leads to nucleon solutions of the Bethe-Salp
equation that resemble an analytic function in the kinem
domain needed for the ongoing computation.

B. Strong form factors

Above we have utilized baryon properties to determ
the model parameters that enter the Bethe-Salpeter prob
Furthermore the meson-quark vertex is governed by the
propriate Ward-Takahashi identity. Finally the meso
diquark coupling constantsksa andkaa in Eqs.~30! and~31!
have already been determined in Ref.@6#. Thus we are now
completely prepared to compute the loop integrals like t
in Eq. ~32! and that appear in Fig. 4. Subsequently we m
extractgpNN andgKNL .

There have been numerous experimental efforts to de
mine the strong form factors. An extended discussion of
phenomenological value ofgpNN and a comprehensive list o
related references is provided in Ref.@29#. Mainly the quoted
discrepancies are subject to different analysis of availa
data. For the purpose of the present work it is sufficient
know that the quoted data are of the ordergpNN'14. Unfor-
tunately the measurements ofgKNL have not yet reached
satisfactory accuracy. The authors of@30# have extracted
ugKNL(Q252MK

2 )u513.760.9 from the LEAR data; but
other analysis have partially yielded quite different resu
@31,32#.

In Fig. 10 we display the numerical results for th
gpNN(Q2) andgKNL(Q2). Both form factors have been ca
culated in the Breit frame. This frame is peculiar because
different masses of the initial and final baryons a numerica
save treatment induces a lower bound (Q2>LBF

2 5ML
2

2MN
2 '0.4 GeV2) for the momentum,Q, of the coupling
01400
s
t
e

rs.
er
ic

e
m.
p-
-

t
y

r-
e

le
o

s

r
y

meson. In the case ofgKNL we have fitted the compute
form factor to rational functions and extrapolated those fu
tions toQ2→0. The resulting coupling constants are show
in Table III. For the special caseQ250 we have verified that
this treatment yields the same result as a calculation in
lab frame.

For both form factors we observe a qualitative differen
between calculations with or without axial-vector diquar
included. Whereas for all parameter sets with only sca
diquarks the computed pion-nucleon form factor very w
reproduces the experimental data, we find that for those
that include axial-vector diquarks the computed form fac
overestimates the data. This could be due to the omissio
subdominant amplitudes in the meson-quark vertex@44–47#.
We performed a rough estimate of the influence of the fi
subleading amplitude by using a simple parametrization
indeed found negative corrections to the pion-nucleon fo
factor of about 30%. Future calculations should include th

TABLE III. Numerical results for the absolute values of th
couplingsgpNN and gKNL at zero squared momentum and for th
best rational fits to the curves. The parameter sets are define
Table II. The entries ‘‘exponent’’ and ‘‘scale’’ refer to the variable
r andL in the fit ~43!.

I II III IV V VI Expt.
diquark: scalar scalar and

axial vector
propagator 2 1 1 3 1 3
type (f i)
gpNN 14.0 13.4 14.3 14.0 18.2 17.5 13.4
exponent 7.8 5.1 5.1 5.2 1.4 1.6
scale@MeV# 1327 1106 1132 1252 650 778
gKNL 7.98 7.39 8.25 8.12 11.97 10.23
exponent 10.6 5.9 5.8 6.4 1.3 2.0
scale@MeV# 1786 1368 1391 1554 642 950
4-13
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FIG. 11. The distinct contributions to the form factorsgpNN andgKNL calculated using parameter set V.
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all
contributions in a self-consistent way. On the other hand
each of the subsets~I–IV ! and~V–VI !, the absolute value o
the couplings atQ250 and the respective slope are almo
independent of the parameter sets and even of the propa
type. To further analyze the structure of the form factors
have disentangled the various contributions in Fig. 11. T
figure shows that at small positiveQ2 the contribution from
the coupling of the meson to the scalar quark is clearly do
nating, whereas for larger momenta the diquark contributi
take over.

As the form factors serve as input for later calculations
have conveniently fitted our numerical results to ratio
functions allowing, however, for a non-integer exponent,

gfBB8~Q2!5gfBB8~LBF
2 !S L21LBF

2

L21Q2 D r

. ~43!

The results of this procedure are summarized in Table III.
compare with results of other model calculations we ha
additionally fitted our results to monopole form factors. Th
has yielded scalesL between 200–300 MeV for the param
eter sets with only scalar diquarks and scales around
MeV for the sets including axial-vector diquarks. As can
seen from Fig. 11 the additional contributions fall substa
tially slower than the scalar diquark one and become do
nant for largeQ2. This effect can be interpreted as ‘‘harde
ing’’ of the form factor. In agreement with the results fro
Ref. @8# our form factors are much softer than those usua
substituted in one-boson-exchange potential models for
duction processes. Those empirical scales for the mono
form are larger than 1300 MeV@33#. However, other theo-
retical approaches, e.g. lattice measurements or QCD–
rule calculations indicate a monopole behavior with mu
smaller scales, cf. Ref.@34# and references therein.

Our prediction forgKNL(Q250) is comparable to thos
found of QCD–sum rule or Skyrme model calculations b
somewhat smaller than the chiral bag model result, cf. R
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@35# and references therein. Extrapolating ourgKNL(Q2) to
the kaon mass shellQ252MK

2 yields values in the range
16.3<gKNL<19.3. This is slightly above the ballpark of th
numbers extracted from experiment@30#.

The comparison betweengpNN and gKNL suggests three
different scenarios ofSU(3)-flavor symmetry breaking tha
are illustrated in Fig. 12. The most obvious symmetry bre
ing stems from different quark mass parametersmuÞms .
Secondly, due to the flavor algebra the process in which
axial-vector diquark acts as a spectator, only contributes
gpNN . Finally there are different decay constantsf KÞ f p that
factorize in the meson-quark vertices. These three effe
causegKNL(Q2),gpNN(Q2) independently from the type o
the propagator or adopted model parameters. We see
Fig. 12 that at moderate and largeQ2 the different decay
constants dominate the symmetry breaking effects. For sm
Q2 the mass differences are essential.

FIG. 12. Analysis of flavor symmetry breaking ingKNL .
4-14
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FIG. 13. Total and differential cross section of the processpp→pKL. The differential cross section~right panel! is considered at an
excess energy of 138 MeV.
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C. Associated strangeness production

The COSY-TOF Collaboration has measured the cr
section and the polarization forpp→pKL at 55 MeV and
138 MeV above threshold@36#. In addition there are also
data for the depolarization tensorDNN from the DISTO Col-
laboration at SATURNE II at an excess energy ofE5431
MeV @37#. This tensor is an especially interesting obse
able. EventuallyDNN might provide further information on
the spin structure of the nucleon because it describes
transport of spin from the initial to the final states~cf. Ap-
pendix for appropriate definitions!.

Our numerical results for associated strangeness pro
tion are shown in Fig. 13. The comparison with the empiri
data clearly shows that the propagator with an exponen
dressing function~set I! yields unacceptable results. As di
cussed in Sec. III the mechanism is that by increasing
beam momentum larger timelike momenta appear in the l
propagators and hence the cross sections suffer an expo
tial enhancement. This effect is most strongly pronounce
forward and backward angles in the differential cross s
tion.

All propagators that do not involve the exponential dre
ing function underestimate the cross section forpp→pKL
considerably. Only the parameter set VI can be considere
be at the right order of magnitude. Generally we find that
inclusion of axial-vector diquarks improves the agreem
with the data. This is not only the case for the total cro
sections but also for the shape of the differential ones.
huge dip that arises for the parameter sets I–IV at directi
perpendicular to the beam axis is considerably damped
the axial-vector diquark contributions although it is still to
deep.

The two distinct contributions to the cross section that c
be characterized as being associated with pion or kaon
change~cf. Fig. 8! lead to significant interference cancell
tions for the depolarization tensorDNN . The kaon exchange
processes generate the outgoingL in the form factor part of
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the diagrams. Here theg5 structure of the kaon vertex lead
to a spin flip from the incoming proton to theL because of
parity conservation. Therefore kaon exchange diagrams
vide negative contributions to the polarization tensor. In
pion exchange diagrams, however, the outgoingL is gener-
ated by the handbag part of the diagram. If both mesons w
on-shell a spin flip of the quarks at each vertex would res
in parallel spins of the incoming proton and the outgoingL.
This would be a positive contribution toDNN . Due to the
off-shellness of the exchanged meson some small nega
contributions arise. The actual magnitude depends on
particular kinematical situation considered. In essence,
depolarization tensor is controlled by the size of pion a
kaon exchange contributions and in particular by the pha

FIG. 14. The depolarization tensorDNN as a function of the
Feynman variablexF which measures the ratio of the actual m
mentum of theL projected onto beam direction divided by th
greatest possible one. The error bars on our numerical results
resent the statistical error of the Monte Carlo integration.
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FIG. 15. The total cross section for kaon photoproduction as a function of the incident photon momentumE ~left panel! and the
differential cross section for kaon photoproduction averaged in the energy bin@1.2,1.3# GeV. The parameter sets~I–VI ! are defined in Table
II. The experimental data are taken from Ref.@22#.
d
d

d
is

ha
r-

in

ar
a
ng
th

ee
lc

es
r

re
lc
d

F
is

be
ce
ons

two
ro-
ge-
ing
ta.
hile
ig-
the
ng
ith

like
oes.
nge
rder
ec-
ark
n-
n-

in

the
l-
in-

ted.

one
re-
of the diagrams. These phases are completely controlle
the kinematics of the process. We note that in other mo
calculations these phases were either adjusted@38# or inter-
ference terms were completely omitted@39#.

For large negative values of the Feynman parameterxF

the outgoingL is dominantly produced by the unpolarize
target proton. This causes the depolarization tensor to van
According to Fig. 14 our model calculations reproduce t
feature. ForxF.0 we obtain a sizable and positive depola
ization tensor. This results from the fact that the lead
contribution to the process stems form the diagram no. 1
Fig. 8. Here the pion couples to the quark while the diqu
acts as spectator. As discussed above such diagrams m
produceL spins that are parallel to the spin of the incomi
proton. On the contrary the experimental results suggest
the main contribution should stem from kaon exchange@37#.
We note, however, that this obvious discrepancy betw
theory and experiment has been found in other model ca
lations as well, cf. Refs.@39,40#.

D. Kaon photoproduction

Here we will discuss our numerical results for the proc
gp→KL. The technical details that enter this calculation a
given in Appendix C.

In Fig. 15 we display the total cross sections(gp
→KL) as a function of the photon energyE. We observe that
the parameter sets~II–IV ! predict cross sections that a
comparable with the experimental data. These model ca
lations do not include axial-vector diquarks. Once these
grees of freedom are taken into account~sets V and VI!, the
cross section is overestimated by about a factor of four.
the five sets II–VI we find that the total cross section
strongly dominated by the kaon-exchange diagram~cf. Fig.
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7! while the handbag-type diagrams can almost
neglected.8 As only a single diagram contributes interferen
does not occur and it is obvious that the model calculati
do not reproduce the dip in the energy region 1.1 GeV<E
<1.4 GeV. Tuning the model propagators such that the
diagrams are of equal importance this dip could be rep
duced@24#. As it has been the case for the associated stran
ness production we find that utilizing an exponential dress
function ~set I! widely overestimates the experimental da
In this case actually the handbag diagrams dominate w
the kaon exchange contributions are comparatively tiny. F
ure 15 clearly shows that the large disagreement of
model results with the data certainly is not a fine-tuni
problem. Rather we must conclude that the comparison w
data rules out propagators that strongly rise in the time
region as the one dressed by an exponential function d
Contrary to the case considered above the kaon excha
diagram exceeds the handbag diagram by almost one o
of magnitude for the parameter sets II–IV. Possible corr
tions from subleading meson amplitudes in the kaon-qu
vertex might decrease the strength of the kaon-nucleoL
form factor in a similar fashion as they do for the pio
nucleon form factor.

In Fig. 15 we also present the differential cross section
the energy interval 1.2 GeV<E<1.3 GeV as a function of
the angle between the momenta of the initial proton and
final kaon in the center of mass frame, cf. Appendix C. A
though the model calculations reproduce the empirical
crease of the differential cross section as cosucm goes from
minus to plus unity, the increase appears to be overestima

8It is interesting to note that even for the handbag diagram al
results obtained with a Ball-Chiu or bare photon quark vertex,
spectively, differ by at most a few percent.
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PRODUCTION PROCESSES AS A TOOL TO STUDY . . . PHYSICAL REVIEW D64 014004
For those parameter sets~II–VI ! for which the resulting
cross sections are dominated by the kaon exchange diag
the predicted differential cross sections turn out too smal
the backward scattering region while they are too big in
opposite direction. As a result the total cross section ag
with the empirical data reasonably well. Again, the expon
tial type propagators yield differential cross sections that
way off the data and we repeatedly conclude that this typ
propagator is ruled out.

We have also computed the asymmetries that are defi
in Eqs.~C14!–~C16!. We find that they essentially vanish fo
the model propagators that we consider reasonable, i.e.
II–VI. Although the model calculation correctly predicts th
the polarized photon asymmetryS, see Eq.~C16!, is positive
for cosucm,0 and negative otherwise, the absolute valu
are off by several orders of magnitude. Only when substi
ing propagators that are characterized by the expone
dressing function the predicted asymmetries roughly ag
with the empirical data. However, we have discarded alre
that propagator for other reasons given above.

VI. CONCLUSIONS

In this paper we have considered baryons as fully rela
istic bound states of quarks and separable quark-quark
relations, i.e., diquarks. The main purpose of this study
been to utilize empirical information in order to restrict th
structure of the propagators that model confined quarks
diquarks. These propagators enter the four-dimensio
Bethe-Salpeter equations from which we have computed
mass eigenvalues and wave functions that are associated
physical baryons.

The full covariance of the model wave functions allow
us to unambiguously calculate form factors up to moment
transfers of several GeV. For spacelike momenta the em
cal form factors can be very well reproduced with tree-le
quark and diquark propagators@6#. On the other hand the
description of processes involving timelike momenta is o
scured by the presence of quark thresholds in the tree-l
propagators. Of course, these thresholds are unphysica
reflect the absence of confinement. It is thus appropriat
modify these tree-level propagators in order to implem
the confinement phenomenon. In this framework we h
considered three qualitatively different cases: In the fi
case, the tree-level poles at timelike realp2 have been traded
for a pair of complex-conjugate poles. In this case the ima
nary parts~and therefore thresholds! cancel. In the second
scenario, the pole on the timelike realp2 axis has been
screened at the expense of an essential singularity for infi
timelike momenta. In the third case, we have emphasized
issue that the propagators should equal the tree-level one
all complex values ofp2 asup2u→`. Together with the con-
dition that no poles occur this property enforces a n
analytic form. We have then investigated the phenome
logical implications of either of these forms rather th
attempting to precisely reproduce the experimental data.
viously, those processes are most interesting whose com
tation involves timelike momenta of the order of one Ge
entering the model propagators. In diquark models the fla
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algebra alleviates the calculation of processes with aL hy-
peron in the final channel. We have therefore focused
kaon photoproduction and associated strangeness produ
with the photoproduction being, at least in principle, mo
sensitive to timelike momentum transfers.

The model parameters have been fixed by fitting
baryon spectrum and the nucleon electromagnetic form
tors. Both the results for the magnetic moments of
nucleon and those for the ratioGE /GM show that it is im-
portant to include contributions from the axial-vector d
quark. The strong form factorsgpNN(Q2) andgKNL(Q2) for
spacelike momentaQ2.0 depend on the amount of admix
ture of axial-vector diquarks in the baryon wave function
Our numerical result forgpNN(0) using both, scalar and
axial-vector diquarks, overestimates the empirically det
mined value by approximately 30%. A possible reason
this discrepancy is the omission of subleading amplitude
the pion-quark vertex. Future calculations should theref
include these contributions and the ones from the kao
quark vertex as well. In any event, all these observables
almost insensitive to the specific structure of the propagat
Therefore they do not provide an adequate tool to distingu
between different parametrizations of the confinement p
nomenon.

The production processes, on the other hand, strongly
pend on the form of the propagators in the timelike region
particular we have observed that the class of propagators
is characterized by an exponential growth for large timel
momenta overestimates the cross sections by orders of m
nitude. We have associated this failure to the dominance
the handbag-type diagram. Apparently any quark propag
that for timelike momenta is significantly more enhanc
than the tree-level one immediately implies the dominance
this diagram. The obvious conclusion is that those propa
tors should be discarded. The other two forms of the pro
gators have the potential to describe the data reason
well. As mentioned, we have omitted the so far undet
mined subleading contributions in the kaon exchange d
gram that dominates the kaon photoproduction amplitu
From the discussion of the pion form factor we have su
cient reason to believe that the inclusion of such contri
tions will favor parameter sets that contain axial-vector
quarks. Although the non-analytic form for the propaga
could not be ruled out by quantitative arguments we nev
theless think it should be discarded, because it poses se
fundamental problems related with gauge and translatio
invariance which we have detailed in the text. Therefo
propagators that are characterized by pairs of complex c
jugated poles seem to be best suited for further studies.
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APPENDIX A: FROM THE RELATIVISTIC
THREE-QUARK PROBLEM

TO THE DIQUARK-QUARK MODEL

The six-point function

G~xi ,yi !5^0uT) i 51
3 q~xi !q̄~yi !u0&

represents the starting point for our study of the relativis
three-quark problem. Here the variablesxi and yi not only
represent the space-time coordinates but also include the
crete labels color, spin, and flavor. The six-point functi
obeys the Dyson equation

G5G01G0^ K ^ G. ~A1!

The entries of the Dyson equation~A1! are the disconnecte
six-point functionG0 that describes the free propagation
three quarks and the three-quark scattering kernelK that con-
tains all two- and three-particle irreducible diagrams. T
symbol ‘‘^ ’’ in Eq. ~A1! denotes summation or integratio
over all independent internal coordinates and labels. Un
explicitly stated otherwise we will henceforth work in mo
mentum space with Euclidean metric. It is thus not necess
to introduce different symbols for momentum and coordin
space objects.

A three-particle bound state with massM manifests itself
as a pole in the six-point function at2P25M2 where P
5p11p21p3 is the total four-momentum of the three-qua
system. We may thus parametrize the six-point function
the vicinity of the pole as

G~ki ,pi !;
c~k1 ,k2 ,k3!c̄~p1 ,p2 ,p3!

P21M2
, ~A2!

wherec denotes the bound state wave function. Substitut
this parametrization into the Dyson equation~A1! and iden-
tifying residua, we find the homogeneous bound state eq
tion

c5G0^ K ^ c⇔G21
^ c50. ~A3!

Despite its simple appearance this equation is infeasibl
neither all two- and three-particle graphs,K, nor the fully
dressed quark propagator, that is contained inG0, are known.
We will have to resort to approximations that render t
problem tractable anda posteriorivalidate these approxima
tions from the resulting bound state properties.

The problem greatly simplifies when discarding all thre
particle irreducible graphs from the interaction kernelK. The
kernel may then be written as the sum of three two-qu
interaction kernels,

K5K11K21K3 . ~A4!

We adopt the notation that the subscript ofKi refers to the
spectator quarkqi . The respective interacting quark pair
(qj ,qk) with the three labels (i , j ,k) being a cyclic permuta-
tion of (1,2,3). These two-quark interaction kernels gove
the Dyson equation for the two-quark correlation functio
gi :
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gi5G01G0^ Ki ^ gi . ~A5!

As the appearance of the free six-point functionG0 suggests
we have defined bothgi and Ki in the three-quark space
This is easily accomplished by attaching the propagator9 Si

of the spectator quark togi and its inverseSi
21 to Ki . Ex-

pressing Eq.~A5! asG0^ Ki512G0^ gi
21 allows us to re-

place any of the three operatorsG0^ Ki in the bound state
equation~A3!,

c5~12G0^ gi
21! ^ c1G0^ ~K j1Kk! ^ c⇔

c5gi ^ ~K j1Kk! ^ c. ~A6!

To further elaborate this form of the bound state equation
define the matrixt̂ i via

gi5G01G0^ t̂ i ^ G0 . ~A7!

This reflects the amputation of the external quark legs fr
gi after having separated the non-interacting contribution.
already mentioned we carry along factors of the quark pro
gators and its inverse to formulate the problem in the thr
quark space. For later convenience we therefore define

t i5 t̂ isSi ~A8!

with the additional factor removed. We have introduced
symbol ‘‘s ’’ to denote simple multiplications without any
contractions because the so-combined operators act on
ferent quarks. Finally we introduce the Faddeev compone
c i by

c i5G0^ Ki ^ c. ~A9!

Upon rewriting the definition~A7! for t̂ i as gi ^ G0
2151

1G0^ t̂ i we find the bound state equationc5c j1ck1G0

^ t̂ i ^ (c j1ck) and thus

c i5G0^ t̂ i ^ ~c j1ck!5~SjsSk! ^ t i ^ ~c j1ck!.
~A10!

These are the famous Faddeev bound state equations re
the Faddeev componentc i to c j andck . The graphical rep-
resentation of these equations is shown in Fig. 16. Th
equations embody the full two-quark correlation functiont i
instead of the kernelK. The relativistic Faddeev equation
are a set of coupled four-dimensional integral equations
represent a considerable simplification over the origi
eight-dimensional integral equation problem defined in E
~A3!. Unfortunately the Faddeev componentsc i still depend
on the two relative momenta between the three quarks.

9In the framework of these integral equations we factorize
momentum conservation̂pi uSi upi8&5(2p)4S(pi)d

4(pi82pi). Here
S(p) is the ordinary Dirac propagator whileSi refers to an operator
in functional space. We adopt analogous conventions for the o
operators.
4-18
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panding these components in Dirac space@41# yields an in-
tractable number of coupled integral equations. We there
further simplify the bound state problem. Denoting the
coming and outgoing momenta by respectivelyki andpj we
assume that the two-quark correlationst i do not depend on
any of the scalar productski•pj that connect momenta of th
incoming and outgoing channels. This assumption allows
to expandt i in terms of separable correlations in the tw
quark subspace that is characterized byj ,kÞ i and j Þk,

t i~kj ,kk ;pj ,pk!5 (
a,a8

x i
a~kj ,kk!Da,a8~kj1kk!x̄ i

a8~pj ,pk!.

~A11!

We call these separable correlations ‘‘diquarks’’ and co
prise the various types together with their discrete quan
numbers within the labela. Note that the propagato
Da,a8(kj1kk) is diagonal in the discrete quantum numbera
and a8 except for the Lorentz indices for the axial-vect
diquark. Furthermorexa represents the vertex function o
two quarks with a diquark. Correspondinglyx̄a denotes the
conjugate vertex function. The expansion~A11! is pictured
in Fig. 17.

In a full solution to the Faddeev problem thet i will have
to be determined from the Dyson equation fort̂ i ,

t̂ i5Ki1Ki ^ G0^ t̂ i , ~A12!

that follows from Eq.~A5! and involves the kernel compo
nents Ki . Rather than determining these vertices and
diquark propagators from that Dyson equation we will ad
phenomenologically motivated parametrizations for th
quantities.

Upon the separability assumption for the two-quark c
relations we continue to formulate a relativistic descripti
of baryons based on the Faddeev equations~A10!. In this
approach it is advantageous to introduce an effective ve
function,f i

a , for the interaction of the baryon with the qua
and the diquark. This vertex function depends only on
momentum of the spectator quark,pi , and the momentum
pj1pk of the diquark quasiparticle. Eventually this can
reexpressed as a dependence on the relative momentum
tween quark and diquark,p̄i as well as the total momentum

FIG. 16. The Faddeev bound state equation for the compo
c1. The equations forc2 and c3 follow by cyclic permutation of
the particle indices.

FIG. 17. The separable matrixt1. Also indicated is the amputa
tion of the external legs in the quark propagators.
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P: f i
a5f i

a( p̄i ,P). These dependencies are further detai
in Refs. @42,43#. In contrast to the non-relativistic formula
tion we have some freedom in the definition of the relat
momentum. We may write

p̄i5pi2hP5~12h!pi2h~pj1pk!, ~A13!

where the parameterh parametrizes the partition of this mo
mentum among the constituents. Of course, physical obs
ables like the mass of the bound state or form factors do
depend on this parameter~up to numerical uncertainties!.
The superscript inf i

a selects a diquark content,a, that builds
a baryon together with the quark of speciesqi . A suitable
ansatzfor the Faddeev componentsc i then reads

c i
abg5Si

aa8Sj
bb8Sk

gg8(
aa8

x i ,b8g8
a Daa8f i ,a8

a8 , ~A14!

where we have made the quark labels explicit. As usual,
sum over doubly appearing indices. The quark labeli fixes
the diquark indices (jk). The momentum routing follows
these indices as well as the diquark labelsa and a8. For
further guidance we have visualized thisAnsatzin Fig. 18.
Noting that G05SisSjsSk we find the coupled integra
equations for the effective vertex functions

f i ,a
a 5(

bb8
@ x̄ i ,bg

a Sk
gg8x j ,g8a

b
#@Dbb8Sj

bb8f j ,b8
b8 #1~ j↔k!,

~A15!

when inserting theAnsatz~A14! together with the diquark
parametrization~A11! into the Faddeev equations~A10!. In
deriving Eq.~A15! we have utilized that the quark-diquar
vertex functions are antisymmetric under the exchange of
quark labels,x i ,bg

a 52x i ,gb
a . This feature is a consequenc

of the Pauli exclusion principle. We have arranged the ter
in Eq. ~A15! such as to exhibit the similarity with the struc
ture of Bethe-Salpeter equations. The first term in squ
brackets represents a six-point function for quarks tha
governed by the exchange of a single quark between a q
and a diquark. By coupling to the vertex function via th
propagators for quarks and diquarks it serves as the inte
tion kernel that generates the Bethe-Salpeter equation f
bound state of quarks and diquarks. Thus the Bethe-Salp
equation sums the ladder-type quark exchange diagrams

nt

FIG. 18. TheAnsatz~A14! for the Faddeev componentc1 of the
bound state wave functionc using effective baryon-quark-diquar
vertex functionsf1

a .
4-19
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tween quarks and diquarks. Using the above definitions
total and relative momentum one arrives now at the Bet
Salpeter equation~6!.

APPENDIX B: DECOMPOSITION
OF THE DIQUARK-QUARK

BETHE-SALPETER AMPLITUDE

Here we will make explicit the full structure of the verte
functionsf i

a for the case of the nucleon-quark-diquark ve
tex. For identical quarks the nucleon-quark-diquark ver
functionsf i

a do not depend on the quark labeli. The vertex
functions consist of a spinor in the case of a scalar diqu
(a55) and a vector-spinor in the case of an axial-vec
diquark (a[m51 . . . 4).Using positive energy spinorsu(P)
with P being the nucleon momentum, we define matr

valued vertex functionsF5(Fm
F5

) via

fa~p,P!5F~p,P!u~P!. ~B1!

Upon attaching quark and diquark legs toF we obtain the

matrix-valued Bethe-Salpeter wave functionsC5(Cm
C5

),

D̃~pd!:5S D~pd! 0

0 Dmn~pd!
D , ~B2!

C~p,P!5@S~pq!sD̃~pd!#F~p,P!. ~B3!

We demand that the nucleon Faddeev amplitude
~A14! has positive parity and describes positive-ene
states. The latter condition enforces that wave and ve
functions are eigenfunctions of the positive-energy projec
L15 1

2 (12 iP” /M ), i.e.,

F5FL1 and C5CL1. ~B4!

Using these constraints, the most general structure ofF con-
tains two amplitudes ~scalar functions! S1(p,P) and
S2(p,P) coupling to the scalar correlations and six amp
tudes A1(p,P), . . . ,A6(p,P) for the axial-vector correla-
tions within the nucleon. Explicitly,

F5~p,P!5(
i 51

2

Si~p2,p•P!Si~p,P!,

Fm~p,P!5(
i 51

6

Ai~p2,p•P!g5A i
m~p,P!. ~B5!

The Dirac componentsS1 , . . . ,A6 that obey the positive
energy condition are listed in Table IV. Also, these comp
nents have positive parity. We remark that the wave funct
C can be analogously expanded because it must obey
same constraints asF does. In the nucleon rest frame th
individual components ofC are eigenfunctions of the three
quark spin and orbital angular momentum operators, res
tively, when the Faddeev amplitude is expanded within
basis~B5! @7#. Thus, the amplitudeS1 describes the strengt
of ans wave in the scalar channel whileA1 andA3 represent
01400
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s waves in the axial-vector channel. There also is a smad
wave component in the nucleon parametrized byA5. All am-
plitudes with even labels are relativistic~lower! components
associated with the above described amplitudes that hav
odd label, and these flavor components are absent in a
relativistic description.

APPENDIX C: TECHNICAL DETAILS FOR
CALCULATING PRODUCTION PROCESSES

1. Kaon photoproduction pg\LK

In this appendix we detail the calculation of the diagra
shown in Fig. 7. They provide the main contributions to t
photoproduction processpg→LK.

We have performed the calculations in both the rest fra
of the proton and in the center of momentum system~c.m.s.!.
For the following discussion we choose the c.m.s. for de
niteness. The momenta are defined according to Fig. 19,
is

P5~2E,0,0,iEP!, pg5~E,0,0,iE !

pK5~ upW Kucosu,upW Kusinu,0,iEK!,

PL5~2upW Kucosu,2upW Kusinu,0,iEL! ~C1!

TABLE IV. Basic Dirac components of the nucleon vertex fun

tion. The hat denotes normalized four-vectors,p̂5p/upu. For the

complex on-shell nucleon momentum, we defineP̂5P/ iM . The
subscript ‘‘T’’ denotes the transversal component of a vector w

respect to the nucleon momentumP, e.g.,pT5p2(p• P̂) P̂.

S1 L1

S2 2 ip”̂ TL1

A 1
m

P̂mL1

A 2
m

2 i P̂mp”̂ TL1

A 3
m 1

A3
gT

mL1

A 4
m i

A3
gT

mp”̂ TL1

A 5
m A 3

2 ( p̂T
mp”̂ T2

1
3 gT

m)L1

A 6
m

iA 3
2 ( p̂T

m2
1
3 gT

mp”̂ T)L1

FIG. 19. Kinematics for kaon photoproductionpg→LK in the
center of momentum frame. The incoming proton and photon ca
the momentaP andpg respectively. The outgoing kaon andL are
labeled by the momentapK andPL .
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with

EP5AM P
2 1E2, EK5

1

2~E1EP!
„~E1EP!22ML

2 1MK
2
…

upW Ku5A~EK!22MK
2 , EL5ApW K

21ML
2 . ~C2!

The on-shell conditions and momentum conservation le
only two kinematical variables undetermined. These are u
ally chosen to be the energyE of the incoming photon and
the angleu between the spatial momenta of the photon a
the outgoing kaon.

The three diagrams in Fig. 7 show the contributions to
transition amplitudes that we will discuss here. The u
crossed ‘‘handbag diagram’’ translates into

A15 i E d4p

~2p!4
$F̄L~pf ,PL!S~p1!GK~q,p1!S~q!%

3$Gg~p2 ,q!S~p2!F~p,P!D~pd!% ~C3!

with the momentum routing described in Eq.~38!; see also
Fig. 7. The crossed ‘‘handbag diagram’’ corresponds to
expression

A25 i E d4p

~2p!4
$F̄L~pf ,PL ,!S~p1!Gg~q,p1!S~q!%

3$GK~p2 ,q!S~p2!F~p,P!D~pd!%. ~C4!

The definitions forq and p1 have changed as compared
the momentum routing for the amplitudeA1 given in Eq.
~38!. In Eq. ~C4! we have instead

q5p22pK and p15q1pg , ~C5!

with all other momentum definitions unchanged. The am
tude corresponding to the tree level diagram arising fr
kaon exchange is given by

A35~ ūL@gKNLg5#up!
1

q21MK
2 ~Gnen!. ~C6!

Here gKNL represents the strong form factor that has be
discussed in Sec. II C andMK is the kaon mass. The photo
polarization is denoted byen while Gn refers to kaon-photon
vertex containing the electromagnetic kaon fo
factor

~C7!

For the purpose of the present investigation it is sufficien
parametrize the kaon charge form factor with a monop
01400
e
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d

e
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e
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n

o
e

such that the phenomenological value of the kaon rad
^r K1

2 &5(0.3460.05) fm2, is reproduced:FK1(Q2)51/@1
1Q2/(0.84 GeV)2].

In Sec. III we have already reflected on the Bethe-Salpe
formalism in Euclidean space. We choose the loop mom
tum p to be real, thus the temporal components of the ex
nal momenta in Eqs.~C1! are purely imaginary. Hence th
relative momentumpf as given in Eq.~38! is complex. Since
the solution of the Bethe-Salpeter equation provides the
tex functionFL only for real relative momentapf , we have
to extrapolateFL to complex momenta. We fit rational func
tions to the vertex functions that are known atN real mesh
points. These rational functions can then easily be ana
cally continued. For real momenta a comparison of the fit
parametrization to the known results allows us to estim
the reliability of this treatment.

The differential cross section depends only on the ene
E of the incoming photon and the angleu between the spatia
photon and kaon momenta. That is illustrated in Fig. 19. T
differential cross section is defined with respect to the so
angle elementdVK52pd(cosu) of the outgoing kaon:

ds

dVK
~E,u!5

1

4 (
si ,sf

d̃s

dVK
~E,u! ~C8!

with

d̃s

dVK
~E,u!5

a

64p2
4M PMLuA11A21A3u2. ~C9!

We average, respectively sum over the spinssi ,sf of the
initial and final states. The phase space factors denoted ba
are given as

a5
1

P•pg

upW Ku2

EKEL
U dupW Ku
d~EK1EL!

U ~C10!

with

U dupW Ku
d~EK1EL!

U5S upW Ku
EK

2
p̂K•PW L

EL
D 21

. ~C11!

Note that the right-hand side of Eq.~C11! remains positive
given thatmL.MK . In the CMS the expression~C10! for a
simplifies to

a5
upW Ku

upW gu

1

s
, ~C12!

wheres5(P1pg)25(pK1PL)2 denotes the total center o
mass energy squared. In obtaining the phase space fa
~C10! we adopted the one particle normalization conditio
~for Minkowski space!

^pup8&B52p0~2p!3d3~pW 2pW 8! and

^pup8&F5
p0

m
~2p!3d3~pW 2pW 8!, ~C13!
4-21
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for bosons~B! and fermions (F). These conventions als
enter the calculation of the transition amplitudesAi ,i
51,2,3 and the normalization of the Bethe-Salpeter w
functions.

We obtain the various asymmetries by restricting the s
in Eq. ~C8! over the spins to two of the three non-sca
particles. We thus obtain theL-polarization asymmetry

P~E,u!5
1

4 (
sp ,sg

@sL5↑#2@sL5↓#

@sL5↑#1@sL5↓#
~C14!

the polarized target asymmetry

T~E,u!5
1

2 (
sL ,sg

@sp5↑#2@sp5↓#

@sp5↑#1@sp5↓#
~C15!

and thepolarized photon asymmetry

S~E,u!5
1

2 (
sL ,sp

@sg5↑#2@sg5↓#

@sg5↑#1@sg5↓#
, ~C16!

where we used the shorthand notation

@sL5↑#5
d̃s

dVK
U

sL5↑
etc. ~C17!

Furthermore we denote the spins of the photon, the pro
and theL by sg , sp andsL , respectively.

The total cross section is finally obtained from Eq.~C8!
via

s~E!5E
0

p

sinudu
ds

dVK
~E,u!. ~C18!

2. Associated strangeness productionpp\pKL

Again we calculate the cross section for the product
processpp→pKL in the center of momentum frame. Th
kinematical setup is depicted in Fig. 20 and amounts to
momentum routing

P15„upW u cos~uL!,upW u sin~uL!,0,iE…,

FIG. 20. Kinematical variables for the reactionpp→pKL in the
center of momentum system.
01400
e

r
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e

P25„2upW u cos~uL!,2upW u sin~uL!,0,iE…,

K5„Kx ,uKW u sin~uK!cos~fK!,uKW u sin~uK!sin~fK!,iEK…,

L5~Lx,0,0,iEL!, Pf5~PW f ,iEP!, ~C19!

whereE denotes the center of momentum energy. We h
furthermore introduced

EP52E2EL2EK, Lx5AEL
2 2ML

2 ,

uKW u5AEK
2 2MK

2 , PW f52KW 2LW

Kx5
EP

2 2EK
2 2Lx

21MK
2 2M P

2

2Lx
,

sin~uK!5A12S Kx

uKW u
D 2

, ~C20!

where all the momenta are Euclidean. There are now f
independent variables left:EL , EK , uL and fK . As for
pg→KL we find the vertex functionGL for complex argu-
ments by analyticly continuing a fitted rational function.

The differential cross section is given by

ds

dVL
5

1

4 (
s,s8,r ,r 8

E dSuMs,s8,r ,r 8u
2, where

dS5
1

128p5

M P
3 ML

upW cmuE
dEKdELdfK , ~C21!

with dVL52pd cos(uL). The masses of the proton and th
L are denoted byM P andML while (pW cm ,iE) represents the
four vector of the total momentum in the c.m.s. The amp
tudeMs,s8,r ,r 8 for the reactionpg→KL depends on the spin
orientation of the incoming and outgoing particles. In E
~C21! we average, respectively sum over the spin projecti
of the incoming and outgoing particles. The integrations o
the kaon andL energies are constrained by the availab
energy, which is 2E.

For each diagram in Fig. 8 and for each specific diqu
content~cf. Table I! one has a contribution of the form

LS i

Q21mf
2 DH ~C22!

to the amplitudeM. Heremf refers to the mass of the in
termediate pseudoscalar meson, i.e.mf5Mp or mf5MK .
The ‘‘meson matrix element’’ is given by

Ls,s85ūs8~P2!ig5gpNN~Q2!us~Pf ! or

Ls,s85ūs8~P2!ig5gKNL~Q2!us~PL!, ~C23!

depending on whether the intermediate meson is a pion
kaon. The ‘‘handbag part’’H has the general structure
4-22



n-
n
n
r
w
ke
ul
%
ith

PRODUCTION PROCESSES AS A TOOL TO STUDY . . . PHYSICAL REVIEW D64 014004
H5 i E d4p

~2p!4
$F̄L~pf ,Pf !S~p1!GK~p1 ,q!S~q!%

3$Gp~q,p2!S~p2!D~pd!FP~pi ,Pi !%. ~C24!

Here the Bethe-Salpeter amplitudesF̄L and FP for the L
and the proton as well as the~di!quark propagatorsS andD
enter. The meson-quark verticesGp and GK are defined in
Eq. ~29!.

The calculation of the amplitudes involves four dime
sional loop integrations. All the momenta are Euclidean a
therefore we use hyperspherical coordinates. For the in
loop of the handbag diagrams we use a Gauss-Legendre
tine, whereas the phase space integration is performed
Monte Carlo methods. Due to the considerable effort it ta
to integrate eight integrals numerically the calculation co
only be performed to an overall accuracy of 5% to 15
However, we consider that sufficient for a comparison w
data.
ys
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The depolarization tensor is defined as

DNN~xF!5
a2b

a1b
~C25!

with the shorthand notation

a5
ds

dxF
~↑p↑L1↓p↓L! and b5

ds

dxF
~↑p↓L1↓p↑L!

~C26!

for the cross sections with different spin projections. HerexF
denotes the real momentum of theL scaled by the maximum
value allowed by the kinematics:

xF5
6uL¢ iu

uL¢ imaxu
. ~C27!
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