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Production processes as a tool to study parametrizations of quark confinement
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We introduce diquarks as separable correlations in the two-quark Green’s function to facilitate the descrip-
tion of baryons as relativistic three-quark bound states. These states then emerge as solutions of Bethe-Salpeter
equations for quarks and diquarks that interact via quark exchange. When solving these equations we consider
various dressing functions for the free quark and diquark propagators that prohibit the existence of correspond-
ing asymptotic states and thus effectively parametrize confinement. We study the implications of qualitatively
different dressing functions on the model predictions for the masses of the octet baryons as well as the
electromagnetic and strong form factors of the nucleon. For different dressing functions we in particular
compare the predictions for kaon photoproductigqp— KA, and associated strangeness productop,

— pKA, with experimental data. This leads to conclusions on the permissibility of different dressing functions.
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I. INTRODUCTION poles that occurred in the perturbative propagators at the
(di)quark masses. This enables us to calculate the spectrum
The complexity of quantum chromodynami@CD) in- not only of octet but also decuplet barydi§. Together with
hibits the computation of hadronic properties and reactionanAnsatzfor the quark-diquark bound state wave function of
from first principles. As a consequence models that potenthe nucleonFaddeev amplitudesuch pole-free propagators
tially imitate the essentials of the QCD dynamics have beemave already been used to calculate nucleon form factors in
developed in the past to describe hadrons. A relativistic dethe spacelike regimg3,9]. Unfortunately in this context the
scription of baryons as three-quark bound states is providedomputation of the electroweak form factors is not as simple
by the solutions of the Bethe-Salpeter equatidios quarks  as merely modifying the propagators. Since gauge invariance
and diquarks which interact via quark exchapge5|. Once relates off-shell propagators and vertices it is obvious that
the full three-quark problem has been reduced to an effectivany change in the propagators requires modifications of the
two-body problem, the only model ingredients are theeffective interaction with the electroweak gauge bodd:s.
(diyquark propagators along with the quark-diquark verticesWhen incorporating gauge invariance in the model with free
It is hoped for that further progress in the study of the QCDpropagators the nucleon isovector magnetic moments come
quark propagator and two-quark correlations will eventuallyout too small by about 30% unless model parameters are
justify the reduction to quarks and diquarks in this approactused that do not properly reproduce the baryon spectjm
to describe baryons. However, these unacceptable parameters result from requir-
Actual calculations utilize either simplifying assumptions ing the A isobar to be kinematically bound against its decay
or phenomenological parametrizations of the respectivénto free quarks. It is hoped for that when modeling confine-
propagators and interaction vertices of quarks and diquarksnent the results on the magnetic moments will also improve
By choosing the simplesfnsdze i.e. free spin-1/2 and due to the modifications of the photon vertices which are
spin-0 or spin-1 propagators for quarks and diquarks, respegnandatory when employing dressédi)quark propagators.
tively, various spacelike nucleon form factors have been sucA very serious disadvantage of the lack of confinement is
cessfully reproducef6]. However, the naive use of pertur- that hadronic reactions witimelikemomenta of the order of
bative (di)quark propagators leads to asymptotic states in tha GeV transferred to the nucleon, e.g. meson production pro-
spectrum that carry the respective quantum numbers. Heng@sses, cannot be described properly. Again, the free-particle
baryons vyould decay into quarks unless k|nem§1tlcallypo|es of quark and diquark cause unphysical thresholds in
bound. This decay process Would_ contradict the cor_\flnemeqhese processes that are triggered by the poles in the propa-
phenomenon. In this paper we will therefore investigate thegators. An appropriate modification of these propagators
possibility of incorporating confinement into the diquark yoyid not only remove the unphysical thresholds but also
model by suitable modifications of the quark and diquarkserye as an effective description of the strong interaction.

propagators. Essentially these propagators are modified Ryartainly, a relativistic description of such processes would
multiplicative dressing functions to completely remove thepq very desirable. At present, the covariant diquark model

appears to be the only relativistic one that is both, feasible

and applicable at this energy scale.

As already mentioned we wish to eliminate the singulari-

s associated with real timelike momenta in th@quark

propagators that would lead to imaginary parts in those
For further details on the application of the Bethe-Salpeter for-S-matrix elements that are calculated from diagrams contain-

malism to QCD we refer to reviewd,2] and references therein.  ing internal quark loops. So, either these singularities are

*Email address: reinhard.alkofer@uni-tuebingen.de
TPresent address: CSSM, University of Adelaide, SA 5005, Austje
tralia.

0556-2821/2001/64)/01400424)/$20.00 64 014004-1 ©2001 The American Physical Society



S. AHLIG et al. PHYSICAL REVIEW D 64 014004

absent or their contributions cancel in some maf@grThe
gualitative behavior described can be encoded in the follow-
ing models(which are certainly not the only possibilitiefr

the quark propagator in Euclidean space:

ip—m 2
sW(p)= 'Z ‘;fk<p—2), k=0,....3, (@
p+mg | my =
X
with =
fo(x)=1 (bare propagator (2
¢ _1 Xx+1 X+1
=315 1=d T xr 1 vid|”
3
fo(x)=1—exg —d(1+x)], (4)
X
fa(x,x*)=tanHd(1+x)(1+x*)]. (5)

FIG. 1. The propagator function,(x) = f(x)/(x+ 1) for real

The propagato(?)) possesses Comp|ex Conjugate p(_ﬂkﬁ x and fork=0, ...,3; cf. Eqs(2)—(5) The thick solid line corre-
such that corresponding virtual excitations cancel each otheiPonds to the free propagator. Here we havedset.

in physical amplitudes. Herm represents a parameter that

would be interpreted as the quark mass if and only if thepredicted observables on the various effective parametriza-
poles were on the real axis. In another scen@fiothe dress-  tions of confinement. These parametrizations concern the
ing functions are chosen such that the propagators are entiggrcture of thedi)quark propagators for complex momenta.
functions and nontrivial in the whole complex plaf#2,9. |4 sec. 111 we will discuss the regime of complex momenta
If they are required to be analytic, they must pPOSSess af ¢ is relevant for studying the baryon spectrum as well as

e;sential singularity, at Iegst for infinite arguments. Third, ?tseveral production processes. In Sec. IV we will describe the
might be helpful to approximate propagators by non""malyt'cformalism necessary to compute various production pro-

functions (5) and constrain them such that they asymptot|-Cesses in the diquark-quark model. These comprise espe-

cally behave like 1p|? for both, large spacelike and timelike . ) }
momenta. Since we enforce the propagators to be free chlally the cross sectp ns for kaon photoproduptlpry
poles, they must be non-analytic functions depending on~ /A and the associated strangeness productiorpn
both the particle momentumand its complex conjugate* . —>pKz_&. We wil _proce_ed by presentmg our numerical re-
Consequently the quark-photon and quark-meson vertice3Ults in Sec. V, including the determination of the model
are non-analytic and, even worse, translation invariance iarameters. In particular we will compare the predictions
lost in the solutions to the nucleon Bethe-Salpeter equatiorfhat originate from the different dressing functions for the
These issues will be detailed in Sec. Il. The trivial dressingPropagators. Finally, we will conclude by formulating crite-
function f, corresponds to the bare propagator. We will con-fia for phenomenologically permissible parametrizations of
sider this case only for comparison. the propagators. Some derivations and technical details are

In Fig. 1 we showf(x)=f(x)/(x+1) for k=0,...,3 relegated to three Appendices.
for real x. Note that these dressing functions are real in that

case. We observe thaf(x) andf,(x) change sigras in the
case of a tree-level propagaktavhile the functionf(x) in-
creases drastically. For asymptotically large spacelike mo- A. The diquark-quark Bethe-Salpeter equation

menta the three model pr(cz)eagatsff@, (k=1,2,3) match up We start from the Faddeev formalism for three quarks and
with the bare propagatd®”’. Our present investigation fo- . . . :
impose two essential assumptions to arrive at a Bethe-

cuses on the phenomenological implications of the so—S Ioet tion that d ibes b bound stat ;
modified propagators. alpeter equation that describes baryons as bound states o

This paper is organized as follows: In Sec. Il the COva_quarks qnd diqu.arks interacting via. quark.exchange. These
riant diquark model for baryons is presented. The corre@Ssumptions 'ar(a) all '{hree-partlcle Irl’educlble'graphs can
sponding Bethe-Salpeter equation that describes baryons 8§ safely omitted andi) the two-quark correlations can be
bound states of quarks and diquarks is derived in AppendifPProximated by separable correlations, the so-called di-
A. The formalism of Refs[13,6] for calculating form factors quarks. The actual derivation of the Bethe-Salpeter equation
is described for later determination of model parameters. Ugfor the effective baryon-diquark-quark vertex functiapis
ing the above given scenarios for implementing the confinepresented in Appendix A. Using the definitions for total and
ment phenomena at the level of propagators this will set theelative momentum given as in Fig. 2 this integral equation
stage for the main topic of our paper: The sensitivity of thereads

II. THE COVARIANT DIQUARK MODEL FOR BARYONS
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p=nP+p L=np+T propagatord ., and the verticegx? do not depend on the
@ quark labels. These independencies are already indicated in
K Egs.(7) and(9) as we have omitted the quark labels for the
- = - momenta.
L\ @ In a self-consistent approach one would calculate the

t-matrix from its own Bethe-Salpeter equatighil2) [14,15.
However, this is beyond the scope of the present investiga-
FIG. 2. The coupled set of Bethe-Salpeter equations for thdion. Instead we model thematrix by diquark correlators

(I-WP-p BIHI-N)P=gq (1-wP-1

effective vertex functiong®. which have an analytic structure such that no particle inter-
pretation for the diquark exists. We will restrict ourselves to
4|_ o . the scalar and axialvector channels as these comprise the
B2.(pi P)=2 4Kﬁbﬂa(pi | ,P)Gfﬁb,(l ,P) minimal set to describe octet and decuplet baryons. Further-
bb’ 21) more these channels are generally assumed to be the most
b — , important ones, see Refkl,2] and references therein. The
X¢j,ﬁ'(| P)+(j k). (6) corresponding separabkensatzfor the two-quarkt-matrix
Here G; describes the disconnected quark-diquark propagar—eads
tor aﬁ,y&(kllkZ;pl1p2):Xiﬁ(kvPZ)D(PZ);iﬁ(pvPZ)
Gy (I,P)=SP#' (nP+1)Dpy (1— 7)P—T) + x5k, P2)D#"(Po) x " 5(P.P2).
=Sf# (1) Dy (P=1). (@) (19

Here we rewrite the diquark-quark verticgs*! as func-

CHons of relative k= oki;—(1—o0)k,, and total,P,=k;+k,
=p;+p,, momenta instead of the single quark momenta. In
actual calculations, we choose for simplicity the symmetric
_, momentum partition, i.ec=1/2. Shifting the value ofr is
ti(kj Ke:pj P = 2 XP(Kj ki) Daar (K + ki) x2 (p; Py possible, however, this complicates slightly the parametriza-
aa’ ®) tion of diquark correlations; see the discussion below Eq.
(17) and in Ref.[13].

Furthermore, the quark-diquark interaction kerildetontains
besides the propagator of the exchanged quark also the
quark amplitudes? defined via the separability assumption

of the quark-quarki-matrix (cf. Appendix A. The kernel The diquark propagators in the scalar and the axial-vector
explicitly reads channel are modeled as

2 (- ' Py 1 P2

K85a(P1P) =X, (1 + 7P ) SL ()X, (AP + 7P) D(P)=— ——f| |, 11
_ . P2+mZ, | mZ
=xia/ (LS ()], ,(a,P), 9
D#*(P) - (5W+(1 £) PMPV) f( PZ)
with R — _ -
P2, ax |\ i

=(1-2n9p)P—p—1=P—p—I,

The dressing functioh(P?/m?) is hereby chosen identical to
since P=p;+p;+p, and [=1—yP. The above relations the one for the quark propagator, i.e., either one of the forms
also indicate the independence of the momentum partitioq3),(4),(5). Note that the cho|cé(P2/m2) 1 andé=0 cor-
parameteryn since the Jacobian of the transformatibrn: | responds to the free propagators of spin-0 and spin-1 par-
equals unity for fixed total momentum ticles. As a major purpose of the present paper we will study

For the solution of the Bethe-Salpeter equati®nwe still  various deviations from the free propagators as an avenue to
have to choose the appropriate quantum numbers associatedmic confinement. In general, the dressing functibrase
with baryons. This will be discussed in subsection B and welifferent in the scalar and axial-vector channels as well as
will find that the quark exchangg@arametrized by the kernel being distinct from the one for the quark propagator. For
KaP) generates sufficient attraction to bind quarks and disimplicity, however, we will assume identical functions for
quarks to baryons. For identical quarks antisymmetrization igll propagators. As we will not consider any axial-vector
required when projecting onto baryon quantum numbersdiquark loops it is sufficient for the present purpose to use
Fortunately, this does not alter the algebraic form of the¢=1; see Ref[7] where it has been shown that choosihg
Bethe-Salpeter equatiof®). Rather, it simply implies that =1 leads to almost identical results for baryon amplitudes as
we may omit the single particle indicé®sn the quark propa- £=0.
gators S,. Only when caring about the discrete quantum If diquark poles existed in thematrix, the diquark-quark
numbers we have to revert to these indices since they specifiertices y and x* would on-shell P2=— mﬁc[axl) corre-
the summation ordeover color, flavor and Dirac indices in spond to diquark Bethe-Salpeter vertex functions. These ver-
Eq. (6). Furthermore the functional forms of the diquark tex functions have a finite extension in momentum space and

014004-3



S. AHLIG et al. PHYSICAL REVIEW D 64 014004

fall off fast enough to render all integrals finite. Empirically on the quantity p-P)? (for o=1/2) which is symmetric
we assume that the corresponding scale is linked tdithe ynder quark exchange. In the actual calculations we will use
versg proton radius. The conjugate vertex functiopsare  a multipole form typeAnsatz

obtained by charge conjugation,

_ A\
X°(p.P)=C(x*(—p,~P)'CT, (13 V) =Va(x)= ( )\2_:)() : (18
n
X*(p,P)==C(x*(—p,~P))'CT, (14)
The overall strength of the diquark correlations given in
whereT denotes the transpose. Egs. (16),(17) is governed by the “diquark-quark coupling

must be antisymmetric under the interchange of the twQmposing the canonical Bethe-Salpeter norm condition on

quarks. This entails x># or by the solution to the differential Ward identity for
_ _ the diquark-photon vertex which is sensitive to the substruc-
)(‘Z[[é‘](p.P)= —Xsﬁ[tf](— P.P)oei—0) - (15  ture of the diquark$6]. For simplicity, we will fix g5 from

fitting the nucleon mass. When including axial-vector di-
Any two quarks within a baryon belong to the color antitrip- quarks we will assume the rat@,/gs=0.2 as suggested by
let representation. Thus the diquark-quark vertices are prathe results of Ref[6]. In this manner the baryon Bethe-
portional to the antisymmetric tensepgp. Here A andB  Salpeter equatiof6) becomes an eigenvalue problem for the
are the color indices of the quarks wher@&abels the color coupling constantgs andg, .
of the diquark. Furthermore the scalar diquark is antisym- Note that by parametrizing the quark-quarknatrix we
metric while the axial-vector diquark is symmetric in flavor. do not make any reference to the nature of the relevant
We maintain only the dominant components with regard toquark-quark interaction. For example, to quantitatively in-
the structure in Dirac spadeThese are the antisymmetric clude pionic effects we would have to solve Dyson-
matrix (y°C) for the scalar diquark and the symmetric ma- Schwinger equations for the quark propagator and the Bethe-
trices (y*C) for the axial-vector diquark. Considering, for Salpeter equation with explicit pion degrees of freedom.
the time being, only two flavors the vertices then read Studies within the Nambu-Jona-Lasinio model using
diquark-quark correlations either in a soliton background
. — . — — (T2)ab €ABD [16] or with explicit pion interaction between the quafis]
Xap(P:P) | o=12=X25(P) =0l ¥°C) 5V (P?) , lead to a substantial gain in the binding energy. Since we
V22 determine the coupling constags from the nucleon mass,
(16) those studies suggest that the inclusion of pion degrees of
_ _ freedom would merely lead to a shift of this constant.
X4p(PsP)| o=12= X45(P) Equipped with the separable form of the two-quark corre-
lations, see Eq(10), and the functional form of the scalar
—g.(7“C) V(—Z)(TZTk)ab €ABD 17) and axial-vector diquark correlations in Eq46),(17), we
Gal ¥ =) apViP will set up the effective Bethe-Salpeter equation for the

V2 N2
nucleon.

Choosing the scalar functioV to depend only on the Upon attaching quark and diquark legs to the vertex func-

squared relative momentupt, these vertices are indeed an- tions ¢ one obtains the Bethe-Salpeter wave functigns
tisymmetric with respect to exchange of quark labels for th
partition o=1/2. Otherwise a parametrization ®f would
depend on botlp? and p- P in order to comply with anti-
symmetrization[13,48. However, complete independence

Equation(6) can then be rewritten as a system of equations
Sor wave and vertex functions as defined in Appendix B.
Using the notation$B1)—(B3) we obtain

for observable quantities oo could only be obtained by 2 W5k, P)
solving the Bethe-Salpeter equatiohl?2) for the two-quark f Gl(p,k’p)< o ):0, (19
t-matrix in which case the scalar functiolscould depend (2m)* vH (k,P)

_1 . . .
°The complete Dirac structure for the scalar diquark containingHeree (p.k,P) is the inverse of the quark-diquark four-

four independent tensors can be obtained by analogy from the orf@2iNt function which results from the quark_exchar‘l_gms
for pseudoscalar mesons. The complete Dirac structure for thie sum of the disconnected part and the interaction kernel

axial-vector diquark consists of twelve independent terms, four lonWhich contains the quark exchange,
gitudinal and eight transverse ones.

3In the compact notation the indices and 3 of Xop NOt ONly
contain the Dirac labels but also those for flavor and color. 4For convenience we have omitted the discrete labels.
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1/ = xS (@x%(pD)  V3x* (p2)ST(a)x°(p?)

= _ , — (20)
2\ Bx®(p3)ST(@x“(pd)  x* (p3)ST(a)x*(p?)

G Y(p.k,P)=(2m)*8* (p—K)S *(pe) OD *(pa) —

The symbol “O” denotes a “disconnected” product; see metry such a component is forbidden by the Pauli principle,
also Eq.(A8). The flavor and color factors have been workedhowever, having non-vanishing lower components in
out and thereforg>(p?) and x*(p?) from now on only rep- the baryon bi-spinors does actually lead to such flavor
resent the Dirac structures of the diquark-quark verticesinglet components. In actual calculations they turn out to
[multiplied by the invariant function/,(p?), cf. Eq. (18)]. be small[7].

The freedom to partition the total momentum between quark

and diquark introduces the parametgr[0,1] with p, B. Electromagnetic form factors
=nP+p andpy=(1—»)P—p. The momentum of the ex- .
changed quark is then given loy= —p—k+ (1—2%)P. The To further constrain the model parameters, we calculate

relative momenta of the quarks in the diquark vertigesnd ~ the electromagnetic form factors of the nucleon. In this sec-
Y are p,=p+ki2—(1-37)P/2 and p,=p/2+k—(1 tion we p.rowd.e the formalism and the corresponding re;ults
—37)P/2, respectively. Invariance undéour dimensional will be given in Sec. V A. These form factors parametrize
translations implies that for every solutidn(p, P; 7,) of the  the nucleon matrix element of the current operator that de-
Bethe-Salpeter equation a family of solutions exists that hav&cribes the coupling of the photon to quark and diquark
the form W (p+ (7,— 5,)P,P; 5,). Considering the Bethe- Wlthln the nucleon. Gauge invariance and the proper normal-
Salpeter equatiofBSE) as a linear eigenvalue problem for ization of the nu_cleon chargeg are ensu_red when the_ current
¥ (or ) in the coupling constargs, translation invariance operatqr comprises {:\II poss'lble couplings to the inverse
requires the coupling constant eigenvalue to be independefitiark-diquark four-point functio ~* of Eq. (19) [13,6,18.

of » once a bound-state massP?=M?2 is fixed. This inde- The current operator is sandwiched between the Bethe-
pendence is exactly what one observes in the numerical s&alpeter wave function® and ¥ of the final and initial
lutions of the BSE, provided the analytic form of the dress-state, respectively, according to Mandelstam’s refif@. In

ing functions, Egs.(2)—(4), is used. However, thep  total, we have contributions from thmpulse approximation
independence is lost when substituting non-analytic propagawhich are described by the upper diagrams in Fig. 3 and
tors such as those parametrized by the funcfignEq. (5). contributions from théBethe-Salpeter kernalhich are given
Essentially the reason is that Cauchy’s theorem does not appy diagrams of the type given in the lower part of Fig. 3.

ply to non-analytic functions. The difference in the eigenval- To calculate the form factor diagrams, we need properly
ues of the Bethe-Salpeter equation under the variation of normalized Bethe-Salpeter wave functions. This normaliza-
can be shown to equal a contour integral in the complex tion is obtained from

plane. This integral vanishes only if the integrand is an ana-

lytic function. However, when choosirdj>5 in Eq. (5), the a)

propagator resembles the free propagator in a large domai
thereby mitigating they dependence.

The structure of the equations for the octet baryons is
similar to that of the nucleoil9). However, the number of
Dirac structuresb® and ®# increases due to the possible
different quark-diquark flavor configurations. These equa-
tions are given in full detail in Refd.7,18]. Allowing for
flavor symmetry breaking, that is induced by a difference
between the masses of strange quark and up or down quarl b)
discriminates vertex function®® and ®# with different di-
quark configuration$7]. As the A hyperon presently is of
special interest, we list its three different correlations,

O\~dp, P and O, (21)

Here, F,={d[us]—u[ds]}/y2, F,=s[ud] andL=[d{us}
—u{ds!]/ V2 refer to different quark-diquark flavor states.
Antisymmetrized scalar diquarks are denoted by square
brackets[ ...] and symmetrized axial-vector diquarks by
curly brackets{...}. Note that brokerSU(3)-flavor sym-
metry induces a component of the total antisymmetric flavor FIG. 3. Contributions from the impulse approximatim and
singlet (1/J§)[[8u]d+[ud]s+[ds]u] into wave and vertex from the Bethe-Salpeter kernéb) to the electromagnetic form
functions. In non-relativistic quark models wiglU(6) sym-  factors.
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! d*p dk — The latter identities constrain the vertices for fir@eFor the
MyA ™= _J W (k,P,) dressed quark propagators of Efj) the corresponding ver-
(2m)*) (2m)* tices finally read
J i
X P“EG’l(k,p,P) V(p,P,), (22) Fa‘,i(kq,pq)=—§v”[1/fi(k§/mq)+1/fi(p§/mq)]
P=P,
[ 1/f;(kg/mg) — 1/f;(p5/mg)

whereM is thE nucleonic bound state mass. The conjugated - E(kq+ Pg)” 2 o2
wave function¥ is in analogy with Eqs(13) and(14) given a~ P
by X[ (Kqt Bg) —2img]. (26)

U _ 1 _p\TT This construction is valid for the analytic dressing functions

W(k,Py)=nC¥(—-k,—P,) C (23 fo, f,andf,. - |
with 74=1 and 74=—1 when the involved diquark is re-  In the case of the non-analytic dressing functign we
spectively of scalar or axial-vector type. must specify the derivatives in E(22)—(25) with respect to

Furthermore we need expressions for the photon vertice§'® total bound state momentufrand the quark and diquark

that appear in the diagrams. In REE3] the seagull vertices MOMentapg andpy, respectively. We calculate form factors

describing the photon coupling to the diquark-quark verticeé.n the Breit frame, i.e. the temporal component of the mo-

: . . entum transfer is zero. Consequently, the relative momenta
x have been derived for the scalar diquark. The coupling O’E‘etween the initial quarks and the final diquarkp are real.

the axial-vector diquark to the photon has been studied i hey must be integrated over in the norm inte28 and in
Ref. [6]. The photon vertices with quark and diquark mus'tthe calculation of the diagrams of Fig. 3. Let us consider the

I;J;frl]llsfterletodg]fgrgﬂg?énWard identities for zero momentum quark momenta which are defined as befdig= nP;+k
andpq= 7P;+ p. We define the derivatives in Eq22), (24)
and(25) as follows:

Jd
T4(Pg.Pg) = @S‘l(pq), (24) 5 P 5 P
q = y = . 2
L Pun TRk pgkg) aprkl 27
Fé‘(pd ,pd):( S ) = if)*l(pd). (25) Of course, these are trivial identities when applied onto ana-
0 Iy oapf lytical functions. Derivatives with respect to the diquark mo-

_ menta are defined accordingly. The nucleon charges obtained
Here I'f comprises both photon vertices with scalar andas the form factors at zero momentum transfer are then prop-
axial-vector diquarks. For convenience the discrete labelerly normalized. The corresponding proof utilizes the meth-
have been omitted. The Ball-Chiu construction of the longi-ods outlined in Ref[13].
tudinal part of the vertices ensures that they obey both the To comply with the Ward-Takahashi identity, the quark-
differential Ward as well as the Ward-Takahashi identity.photon vertex has to be modified:

i i
[ = = 5 v“(Ufa(kgmg kG 2/mQ) + 1 5(pg/mg., pg */mg)) — 5 (Kq+pg)*

1/f5(K2/m2 ,pE2Im?2) — 1/f 3(p2/m2 , p* ?/m?2) _ [
X e Ez_pz (kg + pg) — 2img] = 5 (kG + py)*
q q

1/f (kG K5 2/mG) — 1f 5(K5/mG , ps 2/mj)
X

Kq-Kg —Pg- Pg

[(Kgt+BDg) —2img]. (28

This vertex now depends on the four variablgs ki, p,  vector diquark transitions are transversal and need not be
andp and is also non-analytic as is the corresponding quarknodified[6].
propagatorS®®). The photon Ball-Chiu vertices with scalar

and axial-vector diquarks have to be modified using an
analogous descriptidri8]. The coupling of the photon to the

anomalous magnetic moment of the axial-vector diquark Here we consider the strong form factorsyy andggna -

and the vertex for photon-induced anomalous scalar—axialFhese quantities are not only interesting in themselves but

C. Strong form factors
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Here the superscripis,\ denote the Lorentz indices of the

incoming and outgoing axialvector diquark, respectively.

The nucleon masM has been introduced to define the di-

mensionless coupling constart,. Furthermorem is the

average of the masses of the constituent quarks in the di-
FIG. 4. Dominant diagrams for the strong form factorsyy quarks. The correspondignsatzfor the scalar—axial-vector

andggn, - The incoming proton carries the momentéywhile P transition reads

is associated with the outgoing baryon. The incoming meson carries

the momentumQ and couples to the quarlteft pane) or to the m

diquark (right pane). Ia=— Ksaq Q*, (3D

also enter the calculation of production processes fike ~Where the definitions are those of E§0) and«s, is again a
— AK or associated strangeness produciigr-pKA . dimensionless constant specifying the overall strength of the
In Fig. 4 we show the dominant contributions to the Vertex. The vertex31) describes the coupling of the di-
strong form factors. Here the meson directly couples to onduarks to the derivative of the pseudoscalar mesons. Such a
of the baryon constituents. Keeping only such direct coufonstruction is suggested by the chiral structure of the strong
plings while omitting those to the exchanged quark definedlteractions that can be written as an expansion in the deriva-
the impulse approximation that we will adopt hérhe two ~ UVES of the Goldstone bosons, at least in the chiral limit.
diagrams shown in Fig. 4 actually correspond to a number of Having collected all ingredients we may now proceed and
diagrams which differ by the type of the involved diquarks. COMPUte the diagrams in Fig. 4. According to the Mandel-
Let us first consider the process in which the meson couple&iam formalism[19] the diagram shown in the left panel
to the quark. Forgy, only one possibility exists: the di- (ranslates into an expression of the form

qguark has to be a scalard-diquark since this is the only d*q
overlap bet_ween the wave function of the proton an_d the J' y (9, POS(POT (P ps)
wave function of theA. For g, gy both scalar and axial- (27)

vector diquarks need to be taken into account. The second
important contribution represents the coupling of the meson XS(p-)®p(q,P)D(pa), (32)

to th(_e diquark. For the diquark part we (.jo not have to dIS'Where we only indicated the general structure, i.e. we omit
tinguish betweemy .y andggna - That is, in both cases the

. . . indices that are associated to the coupling and propagation of
diquark associated with the momemta or p_ may be sca- i ] ) piing propag
lar or axialvector. axial-vector diquarks. The conjugated vertex functibrre-

The meson-quark vertex is the solution of a separatédtes to the vertex functio® as the conjugated wave func-
Bethe-Salpeter equation which has been extensively studiefon (23) to the wave function:
see[2] and references therein. In the chiral limit this Bethe- —
Salpeter equation becomes formally identical to the Dyson- ®(p,P)=74CP(—p,—P)'CT (33
Schwinger equation for the scalar self-energy funcBgp?)

when only the leading Dirac structure is considered, i.e. with 74=1 and 74=—1 when the involved diquark is re-

spectively of scalar or axial-vector type. We note that
Q! ®(p,P) also solves the Bethe-Salpeter equation We de-

'@.. _ _ 1 5 note the loop momentum by and introduce the momentum
7. pr =lmlp-p4)= 257 {B(})+Br.)} - partition,
(29 p-=q+7Pi, p,=p-+Q=0q;+7P; and
Heref is the meson decay constant. Pg=—q+(1-7)P;. (34)

The structure of the meson-diquark vertices is constraineg\gain 7<[0,1] is the momentum partition parameter. For
not only by_Lorentz covariance and parity but also by thethe diagram in the right panel quark and diquark propagators
Bose statistics for the two involved diquarks. We thus P& 0ed to be exchanged
rametrize the pseudoscalar meson axial-vector diquark vertex '

as
Ill. BOUND STATE REACTIONS AND KINEMATICAL

CONDITIONS FOR COMPLEX MOMENTA

Fgg: —i Kaa Tep““’(p_ +p. QY. (30) In this section we will discuss that regime in the complex
2M f momentum plane where we need to know the quark and
diquark propagators in order to solve the Bethe-Salpeter
equation(19) and compare that regime to the one that enters
SContributions to the nucleon electromagnetic form factors bethe computation of the production processes lke— AK
yond the impulse approximation that arise from the coupling to theandpp— pKA.. In principle these propagators can be calcu-
exchanged quark have been thoroughly discussed in FetS8,18. lated using Dyson-Schwinger equatidr2 and also respec-
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Im(q%)
L2z
Re(q®)
/ FIG. 6. Left panel: Main contribution to kaon photoproduction
- py—KA; right panel: handbag diagram contributing to the reaction
pp—pKA as a subprocess. The incoming pion couples to the
“spectating” proton.

FIG. 5. The complexy? plane. The interior of the parabola is rametrized by the dressing functic(n_) approach the free
needed for the calculation of the diagram in the left panel of Fig. 62roPagators in the limitd— +c. In this limit the dressing
x is defined asc= (M +E)2 Note that in the case of the Bethe- functions(3) and(5) approach the bare propagators, both in
Salpeter equation we substitute= 7°M?. the spacelike and timelike regions.

Next we will explore theg? regime relevant for produc-
tive lattice measurements should be available in the near fuion processes like kaon photoproduction. The contribution
ture; for preliminary results see e.g. Refg0,21. Both  to the reactiorpy— AK that involves a quark loop is shown
methods comprise the non-perturbative dynamics and shoulf the left panel of Fig. 6. It turns out that it suffices to
therefore give the basic ingredients to describe hadrons @®nsider a parabola shaped region of the compfeplane
bound state of quarks. However, both approaches are set €. it is sufficient to consider only this momentum and ig-
in Euclidean space and one has to revert to extrapolatiorf2ore the otheps This can be understood in at least two ways:
when the propagators are demanded for timelike momenta. We could use the wave functions rather than the vertex func-
we wanted to perform an appropriate ana|ytic Continua’[ior‘tions for the calculation of the diagram. In this case the
from Euclidean back to Minkowski space we would evenpropagators that depend @, kq andpy are included in
require the propagators in a region of the complex momenme wave functions and there would be no necessity to treat
tum plan€® In order to calculate amplitudes of physical pro- them separately. Nevertheless, considering the propagators
cesses between on-shell particles using the Euclidean Beth&(Pg), S(d), S(k,) and D(pgy) separately we find that
Salpeter formalism the temporal components of the extern@@mong all the internal momenta in the diagram itishat
momenta must be purely imaginary. In this framework thereaches farthest in the timelike regime. Thus the following
momenta become complex. In these calculations thereforanalysis forp, andk, would yield less restrictive conditions.
the structure of the propagators in the complex momentum From the momentum routing shown in the left panel of
plane is essential. Furthermore, it is important for the pheFig. 6 we have
nomenological parametrization of confinement. As repeat-
edly mentioned we comprehend the confinement phenom- 9=p-+p,=nP+l+p, (39
enon as the absence of poles on the timetjkeaxis in the where 7 is the momentum partition parametgp = 7P

propagator of colored “particles.” , +1,p4=(1—77)P—1] while | refers to the loop momentum.
The Bethe-Salpeter equation is most conveniently solvegye choose the loop momentum to be real which implies that
in the rest frame of the bound state=(0,iM). Here we the external momenta like andp, must have an imaginary
want to SpeCIfIC.ally discuss the klngmatlcal domain that |&empora| Component in order to Correspond to physica| par-
probed by the(di)quark propagators in the bound state restticles. For the following kinematical considerations we

frame. In Eq.(19) the loop momentumk, relative between choose the proton rest frame and take the photon to propa-
quark and diquark is chosen to be real. Hence the temporgfate along the axis,

component of the quark momentuky=7P+k becomes
complex. The values dfg that are covered when integrating P=(0,iM), p,=(0E,QjE), I=(T,1,). (36)
overk lie within a parabola that opens towards the spacelike

axis, cf. Fig. 5. The intercept of the parabola with the realHence the momentum entering the quark propagator be-
axis is at(smal) timelike kgz—(nM)z. Thus, solving the COMEs

Bethe-Salpeter equation mainly probes the behavior of the , 2012, 12 .

quark progagatorqfor spacelikeyrrrl)omenta. Since mainly the q°=(= "M+ _277ME+2EIV)+I(277M+2E)|4(’37)
spacelike momenta are relevant, the propagators that are pa-

where the real and imaginary parts @f have been sepa-
rated. This shows that we need to know the propagstqf)
®In the Dyson-Schwinger approach the corresponding integrafl complexg? in order to be able to compute the handbag
equation should be used for this analytic continuation. Relying on &liagram shown in the left panel of Fig. 6. The set of values
numerical solution that is only known for a finite set of Euclidean Of g? that occur has already been shown in Fig. 5. The situ-
momenta is not sufficient because its analytic continuation awaytion seems to be completely parallel to what we found for
from that set cannot be determined. the Bethe-Salpeter equation; in both cases we need to know
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= 9KNA = Py
P

2 RS

9KNA

FIG. 7. Main contributions to kaon photoproductipny— AK.
The incoming proton and the outgoirdg carry the moment® and
P, , respectively. The lower part of the figure shows the tree level
diagram that models the exchange of a virtual kaon.

the propagators in a parabola shaped region of the complex
plane. The intercept with the imaginary axis is in both cases
minus two times the intercept with the real axis. However,
there is one important difference. For the production pro-
cesses the intercept with the real axis does depend on the
photon energyE, more precisely—x=—(7M +E)?. Thus
for E=0 the computation of the handbag diagram shown in
Fig. 6 uses the same region of the complex plane that is
necessary to solve the Bethe_SaJpeter equation_ However, for FIG. 8. Main contributions to associated strangeness production
E>0 the parabola is shifted in the direction of the negativePP—PKA. The momenta of the initial protons are given By,i
real axis. =1,2. The momenta of the final proton andare denoted by

The threshold for kaon photoproduction is Btslightly and PA_, respectivelypg refer; to the momentu_m of the final kaon.
less than 1 GeV and the cross section has been measurlg€ diquark content of the diagrams is listed in Table I.
[22] up toE~2 GeV. This implies that the handbag diagram
“probes” the quark propagatomuchfarther into the time- IV. PRODUCTION PROCESSES IN THE
like region than the Bethe-Salpeter equation. DIQUARK-QUARK MODEL

The second production process we are especially inter-

ested in is associated strangeness productign,spKA. In this section we present the key issues of the formalism
This reaction can be described similarly to the standard picl® compute the cross sections for kaon photoproductjgn,

ture of the nucleon-nucleon interaction by one-boson ex—AK and the associated strangeness productipp,
change. That is, one of the incoming protons acts as a mesort PKA. In the diquark-quark model relatively few diagrams
source and the emitted off-shell meson couples to one of theontribute to these processes and therefore we may analyze
constituents of the baryon; the corresponding subprocess iBese reactions in detail. For further details on the definition
shown diagrammatically in Fig. 6. of the involved observables and the relevant kinematics we
The analogous kinematical analysis for strangeness praefer the reader to Appendix C.
duction exhibits the same qualitative features. That process As already indicated in the discussion of the strong form
as well “probes” a parabola shaped subset of the compleXactors we consider the pseudoscalar mesons as additional
plane, whereby the parabola is somewhat broader than thmodel degrees of freedom. This does not imply any double
one in Fig. 5. However, there again is an important differ-counting because the model interacti@hquark exchange
ence: the parabola does extend only up to modayat@to  does not lead to boun@vould-be Goldstone bosons. Thus
the timelike region. That is, the reactiopp—pKA  we also include intermediate pseudoscalar mesons at tree
“probes” the propagators in essentially the same region asevel when computing the above mentioned observables. The
the Bethe-Salpeter equation does. It is therefore not as serelevant diagrams are shown in Figs. 7 and 8. As a general
sitive as kaon photoproduction to the behavior of the proparemark we note that these diagrams need to be computed in
gator in the timelike region. any covariant diquark-quark model. However, the propaga-
The main conclusion of the above discussion is that certors that are essential components of these diagrams are spe-
tain production processes may be significantly more sensitiveific to our model, cf. Eqs(2)—(5). Furthermore, the covari-
to the structure of thédi)quark propagators than the Bethe- ant wave or vertex functions that also enter these diagrams
Salpeter equation and thus the baryon spectrum. Hence tlage obtained as solutions of the Bethe-Salpeter equation.
study of such processes should provide important informaSince this equation is subject to the model propagators they
tion about these propagators. enter the calculation not only explicitly but also implicitly.
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A. Kaon photoproduction TABLE I. The diquark content of the diagrams shown in Fig. 8

In this subsection we will discuss kaon photoproductionWith the numbers referring to the specific diagram. Here “s” and
“a” indicate scalar and axial-vector diquark respectively. A se-

py—AK V.Vlthm our Coya”.aim diquark-quark .mOdeI' S.0me. guence with three entries runs clockwise and starts at the incoming

more details and technicalities of the calculation are given 'rbroton.

Appendix C 1.
We show the dominant diagrams in Fig. 7. The internalyiagram no. 1 2 35 4

momenta of théuncrossefl*handbag diagram” are defined diquark content

according to

s s,a asa, aas, aaa, sas, saa  sas, saa

p-=p+tnP, pg=—p+(1-ny)P, q=p_+p,, for timelike momenta distinguishes the reactipy— AK
from most other production processes.
P+=0— Pk, Pa=P+p,—pk,

B. Associated strangeness production

=p+(1—7n,)P—(1- Pa. 38
Pr=pH(1=mp)P=(1=70)Py 38 Here we apply the covariant diquark-quark model to as-

sociated strangeness productigpp— pKA. Again, some
technicalities are relegated to Appendix C 2. We describe the
reactionpp— pKA as a sum over one-boson exchange con-
tributions for which we consider the exchange of pions and
kaons. The main contributions are shown in Fig. 8. Other
diagrams like planar kaon exchange or crossed pion ex-
change with couplings to the quark are excluded by the fla-
d'p vor algebra. We neglect diagrams in which the exchanged
i T particle and the emitted kaon couple to different constituents,
A If (277)4{(1)A(pf POSPIT(A:p)S(@) because they imply a large relative momentum at the baryon
vertex which is strongly suppressed. In addition we omit the
X{T'y(p— ,ad)S(p-)Pp(p,P)D(pg)} (39 direct coupling of the pion to the emitted kaon.
Similar to the calculation ofjxy, in Sec. Il C, the flavor
for the amplitude of the uncrossed handbag diagram. Hergontent of theA prohibits an axial-vector diquark in the pion
@, and ®, are respectively the vertex functions of the ~ exchange diagram no. 1. However, this does not apply to the
and the proton as discussed in Sec. Il. Furthernigrés the ~ kaon exchange diagram no. 2 as the diquark mediates be-
meson-quark vertex that has been discussed in the precedifigeen two protons. Due to parity conservation we only have
subsection. The photon-quark couplifg, is described by to consider scalar—axial-vector and axial-vector—axial-vector
the Ball-Chiu verte23] or its generalization to the case of diquark transitions at any meson-diquark vertex. Flavor al-
non-analytic propagators; see Sec. Il. The Ball-Chiu vertex@ebra also shows that the axial-vector diquark components of
has been constructed to satisfy the Ward identity. It reducefie incoming proton cannot contribute in diagram no. 4. The
to the bare vertex in the limit that both momeptandq are ~ diquark content of the diagrams shown in Fig. 8 is listed in
large. The Ward identity constrains only the longitudinal partTable I. Counting the diquark combinations in Table | we
of the vertex. Variou#Ansazefor the transversal part of the arrive at 15 diagrams. This number is actually doubled be-
vertex have been propose@f. Ref. [2] and references cause all diagrams have to be antisymmetrized with respect
therein. While thoseAnsazesolve problems related to mul- to the two incoming protons.
tiplicative renormalizability and gauge invariance, the trans- As an example, we outline the calculation of one of the
versal part is generally assumed to be of minor influence ofwo planar pion exchange diagrams. The calculation of the
the resulting cross sections. Thus we will henceforth neglectther diagrams is very similar. The amplitude of diagram no.
the transversal part of the quark-photon vertex. Although thd can be factorized according to
form of this vertex is not model specific, it contains the self-
energy functions and thus it implicitly depends on the model
propagators. The expression for the crossed handbag dia-
gram can be easily inferred. The tree level diagram models
the exchange of a virtual kaon and is expected to yield avhere£ denotes the form factor part afttl denotes the loop
non-negligible contribution for large photon energies. Forpart of the diagram. The mass and the momentum of the
the photon-meson coupling we use a bare vertex multiplie¢htermediate pion are denoted Iny, and Q, respectively.
with the kaon electromagnetic form fact¢see Appendix The factor£ essentially equalg, yy.
C1) while the meson-baryon vertex is proportional to
gkna(Q?) that has been discussed in Sec. Il C. Ls s =Ug (P)i Y59 -nn(Q?)Ug(Py), (41)
The “handbag diagrams” shown in Fig. 7 probe the
propagators not only for spacelike momenta but also fowith spinor indicess and s’. In the remaining “handbag
comparably large timelike momenta, as we have emphasizgghrt” H the conventions for the loop momenta can be ex-
in Sec. lll. This sensitivity to the behavior of the propagatorstracted from diagram no. 1 of Fig. 8. Essentially they are

Here 5, and n, are the momentum partition parameters of
the proton and the\, respectively. Bothy, and », can be
chosen independently in the ranges@,, 7, <1.

The two “handbag diagrams” model the coupling to one
of the constituents. They are calculated within the Mandel
stam formalism. This yields

M=L H, (40)

2 2
Q°+m
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TABLE Il. The six parameter sets of the model investigated here and the respective results for the
nucleon magnetic moments and the octet masses. Calculations using the first four sets involve only scalar
diquarks, whereas the sets V and VI also include axial-vector diquarks. The pardfragégrmines the
diquark mass parametéscalar and axial-vectprmy={(m,+m,), with the mass parameters, ,, of its
constituent quarks. The parametedetermines the width of the diquark amplitudes; see(E§). For set |
the corresponding shape of the amplitudes was chosen to be a quadnupdlg; for the other sets we fixed
it to be a dipole 6=2).

| Il 1 \YJ V VI Expt.
diquark: only scalar scalar and
axial vector

f; 2 1 1 3 1 3

d 2.0 8.0 4.0 6.0 4.0 6.0

m,=my [GeV] 0.40 0.45 0.45 0.52 0.45 0.52

m, [GeV] 0.64 0.70 0.69 0.75 0.67 0.72

I4 0.70 0.95 0.92 0.97 0.92 0.97

N2 [GeV?] 0.25 0.1 0.1 0.1 0.1 0.1

Hp 2.83 2.47 2.64 2.32 2.70 2.33 2.79

M —-2.37 —-2.15 —-2.32 —2.08 —2.08 —-1.82 —-1.91

octet massedyly=0.939 GeV fixed

A [GeV] 1.13 1.12 1.12 1.12 1.13 1.12 1.12

3 [GeV] 1.30 1.27 1.29 1.30 1.22 1.21 1.19

E [GeV] 1.37 1.37 1.39 1.36 1.37 1.33 1.32
given in Eq.(38) with the substitutiorp,— Q and similarly Within the required numerical accuracy we have assured
for the baryons. The “handbag part” of the pion exchangethe above described independence of the octet masses of the
diagram can then be written as momentum partition parameter when analytical propaga-

tors are used. As argued before, this invariance does not hold

. b — for non-analytic propagators. In these cases we clyasebe

H:'f 5 AP AP, PAS(P )T k(P4 ,a)S(a)} close to its non-relativistic valuen,/(my+my) wherem,
(2m) and my denote quark and diquark mass parameters of the
X{T'.(q,p-)S(p_)D(pg)®p(p1,P1)}, (42) flavor channel associated with the considered baryon. This

choice is natural since other ones yield larger eigenvalues of
where isospin as well as Lorentz indices have been omittethe Bethe-Salpeter equation. We take the physical nucleon
for simplicity. mass to fix the scalar diquark coupligg and theA mass to
determine the strange quark mass parameier By repro-
ducing the phenomenological dipole fit for the proton elec-
tric form factor, Gg we essentially fix the diquark widtk.
After having outlined the model calculation we are now Subsequently we are enabled to compute the proton and neu-
prepared to present the numerical results. Here we focus dnon magnetic momentg;, and u, as well as the masses of
studying the effects of the different model propagai@s- theX andZE baryons. For that calculation we assume isospin
(5) on the calculation of and the predictions for the abovesymmetry,m,=m;.
mentioned processésAs mentioned earlier, this is the main In Table 1l we list the six parameter sets that we will
purpose of the present study. Numerical results for the fornemploy to compute the strong form factors and observables
factors obtained with the tree level propagat@@s can be of production processes later on. The first four sets are re-
found in Ref.[6]. stricted to the dominant scalar diquark correlations. In set |
we consider the pole-free exponential dressing functfgn,
while the sets Il and Ill are associated with dressing func-
) tions of the Stingl typef . These two sets differ by the value
We fix the model parameters, see Table Il, from the octely g that characterizes the separation of the complex conju-
baryon masses and the nucleon magnetic moments. The Naieq poles. Finally set IV assumes the non-analytic pole-
merical details for solving the octet baryon Bethe-Salpetefreq gressing functionis. As already indicated the dressing
equations and the_ computation of the form factors are thorgs he propagators increase the predicted proton magnetic
oughly discussed in Ref18]. moment when all other model parameters remain unchanged.
Using the parameters of set Il but free propagators yields
mp=2.27 while the Stingl-type propagators result jr,
A few selected numerical results using other forms of dressed=2.46 andu,=2.64 for d=8.0 andd=4.0, respectively.
model propagators have been published in ReA]. The magnetic moment of the proton falls a little short for the

V. NUMERICAL RESULTS

A. Parameter fixing: Masses and electromagnetic form factors
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Proton Electric Form Factor The Ratio G/ G,,

normalized to the dipole fit, G .,.=1/[1+Q%/ (0.71 GeV) I proton
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FIG. 9. Left panel: Proton electric form factor normalized to the dipole fit. The experimental data are taken fr¢@5R&ight panel:
The ratio (4,Gg)/Gy for the proton with the experimental data published in RR28].

sets Il and IV. The overall picture emerges that the restricform factor is a result of delicate cancellations between the
tion to only scalar diquark correlations produces too largecontributions from the individual diagrams shown in Fig. 3.
ratios|,un/,up| and rather large mass splittings between theHence it is quite sensitive to small changes in the parameters.
octet baryons, especially betweEBnand A. Within this model approach improved descriptions for this

As shown in Fig. 9 all sets reasonably well reproduce thdorm factor can be found in Reff13,6].
electric form factor,Gg. Our results are confined within a In a previous study6] that employed free quark and di-
region that is characterized by less than approximately 15%uark propagators we were unable to reproduce the nucleon
deviation from the dipole fit. This deviation, although recti- magnetic moments and the mass simultaneously. The ki-
fiable by refining the time-consuming parameter search, is ofiematical binding of tha required a large constituent quark
no significance for the conclusions that we will draw from mass,my=0.43 GeV, which in turn decreased the magnetic
our results for the production processes. This will becomenoments(in magnitude. Furthermore the use of free propa-
clear from the discussions in Sec. V D. gators enforced moderate axial-vector diquark contributions

The calculations with the parameters sets V and VI in-(about 25% to properly describe the rati®g /Gy, of electric
clude a moderate admixture of axial-vector diquarksigs  and magnetic form factors fa@? up to 2 Ge\f. In contrast,
=0.2. For simplicity the axial-vector diquark masses arethe introduction of dressing functions for the quark-photon
chosen identical to the scalar ones. Here we particularly convertex (26),(28) allows us to choose rather largg quark
sider the Stingl formf; (set V) and the non-analytic form, mass parameters aroumd,=0.45 GeV and still obtain a
f3 (set VI) since later we will find that the exponential form, proton magnetic moment that agrees with experiment reason-
f, produces unacceptable results for the production proably well.
cesses. Upon inclusion of the axial-vector diquark the good Let us briefly reflect on the accuracy of our calculations.
description of Gg remains unchanged while the ratio Due to the Monte Carlo integration of the diagrams given in
|,un/,up| and the mass splitting betwe@and A even im-  part(b) of Fig. 3 (with 7.5x 10° grid points for sets |-V and
prove. For set VI the predicted octet masses are almost it x 10° grid points for sets V and Vithe absolute numerical
distinguishable from their experimental values. As alreadyerror for w, is 0.02 and foi, it is 0.03. The statistical error
observed in Ref[6] and as is exhibited in the right panel of for the electric form factor is below 0.002 up to momentum
Fig. 9, the ratioGg/Gy calculated with axial-vector di- transfers of 1.7 Ge¥ For the sets IV and VI a systematic
quarks included comes considerably closer to the experimemelative error in the electromagnetic form factors is found
tal values than in a calculation that omits these degrees dhat increases slowly to about 5%Q@f= 1.7 Ge\*. Further-
freedom(sets I-1\). As explained in Ref[6], increasing the more, we used an expansion in Chebyshev polynomials for
strength of axial-vector correlations in the proton forces thevave and vertex functions because this expansion can be
ratio Gg /Gy, to bend to lower values. This also suggests thauinambiguously continued to complex arguments. Upon em-
in order to precisely reproduce the empirical result we wouldploying analytical propagators we have obtained identical
need an even slightly larger axial-vector coupling than theesults when using the approaches wherein either the wave
assumedy,/gs=0.2. functions ¥ or the vertex functionsb must be continued

All sets predict the maximum of the neutron electric form analytically [13]. For non-analytic propagators, the corre-
factor to lie between 0.025 and 0.04. This is only about halfsponding solutions of the Bethe-Salpeter equation are non-
the value extracted from recent experimef2§,28. This  analytic as well. Thus the analytic continuation produces er-
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Pion Nucleon Form Factor Kaon Nucleon A Form Factor
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FIG. 10. The model prediction for the strong form factgrs,y andggna - The parameter sets—VI) are defined in Table II. Fagyya
the results in the regio@?< A3 are obtained from a rational fisee text

rors which can be estimated by comparing the calculationsneson. In the case ajxy, we have fitted the computed
using wave functions or vertex functions. In order to restrictform factor to rational functions and extrapolated those func-
the resulting discrepancy to below 5%, we have to chooséons toQ?— 0. The resulting coupling constants are shown
d>5 and rather large quark and diquark mass parameter Table Ill. For the special cag@?=0 we have verified that
This then leads to nucleon solutions of the Bethe-Salpetetis treatment yields the same result as a calculation in the
equation that resemble an analytic function in the kinematidab frame.

domain needed for the ongoing computation. For both form factors we observe a qualitative difference
between calculations with or without axial-vector diquarks
B. Strong form factors included. Whereas for all parameter sets with only scalar

Above we have utilized baryon properties to determinedlquarks the computed pion-nucleon form factor very well

the model parameters that enter the Bethe-Salpeter proble reproduces the experimental data, we find that for those sets

Furthermore the meson-quark vertex is aoverned by the a%‘at include axial-vector diquarks the computed form factor
. quar ) 9 y Rverestimates the data. This could be due to the omission of
propriate Ward-Takahashi identity. Finally the meson-

diquark coupling constante,, andx,. in Egs.(30) and(31) subdominant amplitudes in the meson-quark veftek47.

have already been determined in Rl Thus we are now We performed a rough estimate of the influence of the first
ave aiready been dete € - hus we are no ubleading amplitude by using a simple parametrization and
_completely prepared to compute the loop integrals like thafndeed found negative corrections to the pion-nucleon form
in Eq. (32) and that appear in Fig. 4. Subsequently we MaY%actor of about 30%. Future calculations should include these
extractg,.yn @andgxna -
‘There have been numerous experimental efforts to deter- tagig 111, Numerical results for the absolute values of the

phenomenological value of,yy and a comprehensive list of pest rational fits to the curves. The parameter sets are defined in
related references is provided in REZ9]. Mainly the quoted  Table I1. The entries “exponent” and “scale” refer to the variables
discrepancies are subject to different analysis of availablg and A in the fit (43).

data. For the purpose of the present work it is sufficient ta

know that the quoted data are of the ordefy~14. Unfor- [ Il M v \% VI Expt.
tunately the measurements @\, have not yet reached a diquark: scalar scalar and
satisfactory accuracy. The authors [#0] have extracted axial vector

lgkna(Q%=—MZ)|=13.7+0.9 from the LEAR data; but propagator 2 1 1 3 1 3
other analysis have partially yielded quite different resultstype (f;)

[31,32. J-NN 140 134 143 140 182 175 134
In Fig. 10 we display the numerical results for the exponent 78 51 51 5.2 1.4 1.6
9-nn(Q?) andgyna(Q?). Both form factors have been cal- scale[Mev] 1327 1106 1132 1252 650 778
culated in the Breit frame. This frame is peculiar because fog, 798 7.39 825 812 11.97 1023
different masses of the initial and final baryons a numericallyeprnent 106 59 58 64 13 20

. 2 2
save treatment induces a lower boun@EAg=M3{  scale[Mev] 1786 1368 1391 1554 642 950
—M§~0.4 GeV?) for the momentum@, of the coupling
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Pion Nucleon Form Factor Kaon Nucleon A Form Factor

20 T 15 T T

g KNA

FIG. 11. The distinct contributions to the form factaysyy andgyna calculated using parameter set V.

contributions in a self-consistent way. On the other hand irf35] and references therein. Extrapolating o, (Q?) to
each of the subset$-IV) and(V—-VI), the absolute value of the kaon mass sheld)?= —Mﬁ yields values in the range
the couplings aQ?=0 and the respective slope are almost16.3<g,,,<19.3. This is slightly above the ballpark of the
independent of the parameter sets and even of the propagat@limbers extracted from experimdB0].

type. Tp further analyze th_e structurg of.the f_orm_ factors WE  The comparison between,y and gyn, SUggests three
have disentangled the various contributions in Fig. 11. Thigjitterent scenarios 08 U(3)-flavor symmetry breaking that

. . 2 . .
figure ShQWS that at small positi@” the contrl_butlon from .are illustrated in Fig. 12. The most obvious symmetry break-
the coupling of the meson to the scalar quark is clearly domis:

. . 2 27" Iing stems from different quark mass parameters* ms.
nating, whereas for larger momenta the diquark contrlbutlon%econdIy due to the flavor algebra the process in which the
take over. '

As the form factors serve as input for later calculations Weamal-veg:tor diquark acts_ as a spectator, only contributes to
n- Finally there are different decay constahts f , that

have conveniently fitted our numerical results to rationald NN FIN: X
functions allowing, however, for a non-integer exponent, factorize in the meson-quark vertices. These three effects

causeguna (Q%) <g.nn(Q?) independently from the type of
the propagator or adopted model parameters. We see from
A2+Aé}= p Fig. 12 that at moderate and larg¥ the different decay
g¢BB,(Q2) =g¢BB,(A§F) — (43 constants dominate the symmetry breaking effects. For small
AT+Q Q? the mass differences are essential.
The results of this procedure are summarized in Table Ill. To
compare with results of other model calculations we have
additionally fitted our results to monopole form factors. This
has yielded scaled between 200—300 MeV for the param-
eter sets with only scalar diquarks and scales around 500 — Yuw
MeV for the sets including axial-vector diquarks. As can be
seen from Fig. 11 the additional contributions fall substan- 15
tially slower than the scalar diquark one and become domi-
nant for largeQ?. This effect can be interpreted as “harden-
ing” of the form factor. In agreement with the results from
Ref.[8] our form factors are much softer than those usually
substituted in one-boson-exchange potential models for pro-
duction processes. Those empirical scales for the monopole
form are larger than 1300 Me}B3]. However, other theo-
retical approaches, e.g. lattice measurements or QCD—sum
rule calculations indicate a monopole behavior with much
smaller scales, cf. Ref34] and references therein. 0 :
Our prediction forgen,(Q?=0) is comparable to those
found of QCD-sum rule or Skyrme model calculations but
somewhat smaller than the chiral bag model result, cf. Ref.  FIG. 12. Analysis of flavor symmetry breaking @y -

Flavor Symmetry Breaking

decay constant vs. strange quark mass (set VI)

S 105
4
o

02[G1ev2]
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Total Cross Section pp —> pKA Differential Cross Section pp —> pKA
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FIG. 13. Total and differential cross section of the progeps- pKA. The differential cross sectiofright panel is considered at an
excess energy of 138 MeV.

C. Associated strangeness production the diagrams. Here thes structure of the kaon vertex leads

The COSY-TOF Collaboration has measured the crosf® @ SPin flip from the incoming proton to the because of
section and the polarization fqrp— pKA at 55 MeV and parity conservation. Therefore kaon exchange diagrams pro-
138 MeV above threshol@36]. In addition there are also vide negative contributions to the polarization tensor. In the
data for the depolarization tensby from the DISTO Col- pion exchange diagrams, howev_er, the outgoings gener-
laboration at SATURNE I at an excess energyEof 431 ated by the hgnd_bag part of the diagram. If both mesons were
MeV [37]. This tensor is an especially interesting observ-.on'She” aspm flip of the ququs at each vertex would result
able. EventuallyD yy might provide further information on mhparallelk;s%lns of thgfmcomw;gbprtqtongnd thg OUtth’itﬂg
the spin structure of the nucleon because it describes th-E IS wou € a positive contribution DOy . Due o the
transport of spin from the initial to the final statés. Ap- off-shellness of the exchanged meson some small negative
pendix for appropriate definitions contributions arise. The actual magnitude depends on the

Our numerical results for associated strangeness produE’-artiCUlar kinematical situation considered. In essence, the
tion are shown in Fig. 13. The comparison with the empiricaldepm"irlzatlon tensor Is _controlled_ by th_e size of pion and
data clearly shows that the propagator with an exponentizifaon exchange contributions and in particular by the phases
dressing functior(set ) yields unacceptable results. As dis- Depolarisation Tensor Dy,
cussed in Sec. Il the mechanism is that by increasing the
beam momentum larger timelike momenta appear in the loop 1

propagators and hence the cross sections suffer an exponen- ﬁqﬁé’ﬂ%%i
tial enhancement. This effect is most strongly pronounced at = Eﬁﬁ?ﬁﬁﬁ
forward and backward angles in the differential cross sec- 05 | Z§
tion. o

All propagators that do not involve the exponential dress- %

ing function underestimate the cross section fgr— pKA
considerably. Only the parameter set VI can be considered to
be at the right order of magnitude. Generally we find that the

inclusion of axial-vector diquarks improves the agreement f::: :{'/ T

with the data. This is not only the case for the total cross 05 OsetV s i
sections but also for the shape of the differential ones. The e setVl

huge dip that arises for the parameter sets |-IV at directions ¥ DISTO

perpendicular to the beam axis is considerably damped by _ . ‘ ‘

the axial-vector diquark contributions although it is still too - -05 X‘:: 05 !
deep.

The two distinct contributions to the cross section that can g 14. The depolarization tens@yy as a function of the
be characterized as being associated with pion or kaon efeynman variable: which measures the ratio of the actual mo-
change(cf. Fig. 8 lead to significant interference cancella- mentum of theA projected onto beam direction divided by the
tions for the depolarization tens@ryy. The kaon exchange greatest possible one. The error bars on our numerical results rep-
processes generate the outgoitidn the form factor part of resent the statistical error of the Monte Carlo integration.
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FIG. 15. The total cross section for kaon photoproduction as a function of the incident photon monteitkefnpane) and the
differential cross section for kaon photoproduction averaged in the enerd§.Bid.3 GeV. The parameter sefls-VI) are defined in Table
Il. The experimental data are taken from ReX2].

of the diagrams. These phases are completely controlled bg) while the handbag-type diagrams can almost be
the kinematics of the process. We note that in other modeteglected As only a single diagram contributes interference
calculations these phases were either adjusi8fior inter-  does not occur and it is obvious that the model calculations
ference terms were completely omittg2B]. do not reproduce the dip in the energy region 1.1 &&/

For large negative values of the Feynman parameter <1.4 GeV. Tuning the model propagators such that the two
the outgoingA is dominantly produced by the unpolarized diagrams are of equal importance this dip could be repro-
target proton. This causes the depolarization tensor to vanisduced[24]. As it has been the case for the associated strange-
According to Fig. 14 our model calculations reproduce thatess production we find that utilizing an exponential dressing
feature. Foixg>0 we obtain a sizable and positive depolar-function (set |) widely overestimates the experimental data.
ization tensor. This results from the fact that the leadingin this case actually the handbag diagrams dominate while
contribution to the process stems form the diagram no. 1 ithe kaon exchange contributions are comparatively tiny. Fig-
Fig. 8. Here the pion couples to the quark while the diquarkure 15 clearly shows that the large disagreement of the
acts as spectator. As discussed above such diagrams maimhodel results with the data certainly is not a fine-tuning
produceA spins that are parallel to the spin of the incoming problem. Rather we must conclude that the comparison with
proton. On the contrary the experimental results suggest thatata rules out propagators that strongly rise in the timelike
the main contribution should stem from kaon exchaf®8.  region as the one dressed by an exponential function does.
We note, however, that this obvious discrepancy betweefontrary to the case considered above the kaon exchange
theory and experiment has been found in other model calcudiagram exceeds the handbag diagram by almost one order
lations as well, cf. Refd.39,40Q. of magnitude for the parameter sets I1-1V. Possible correc-
tions from subleading meson amplitudes in the kaon-quark
vertex might decrease the strength of the kaon-nucleon-
form factor in a similar fashion as they do for the pion-
nucleon form factor.

Here we will discuss our numerical results for the process In Fig. 15 we also present the differential cross section in
yp— KA. The technical details that enter this calculation arethe energy interval 1.2 Ge¥E<1.3 GeV as a function of
given in Appendix C. the angle between the momenta of the initial proton and the

In Fig. 15 we display the total cross sectian(yp  final kaon in the center of mass frame, cf. Appendix C. Al-
—KA) as a function of the photon ener§y We observe that though the model calculations reproduce the empirical in-
the parameter setdl—IV) predict cross sections that are crease of the differential cross section as €gsgoes from
comparable with the experimental data. These model calcuninus to plus unity, the increase appears to be overestimated.
lations do not include axial-vector diquarks. Once these de-
grees of freedom are taken into acco(sgts V and V), the
cross section is overestimated by about a factor of four. For 8t is interesting to note that even for the handbag diagram alone
the five sets II-VI we find that the total cross section isresults obtained with a Ball-Chiu or bare photon quark vertex, re-
strongly dominated by the kaon-exchange diagfamFig.  spectively, differ by at most a few percent.

D. Kaon photoproduction
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For those parameter sefi—VI) for which the resulting algebra alleviates the calculation of processes with hy-
cross sections are dominated by the kaon exchange diagramsron in the final channel. We have therefore focused on
the predicted differential cross sections turn out too small irkaon photoproduction and associated strangeness production
the backward scattering region while they are too big in thewith the photoproduction being, at least in principle, more
opposite direction. As a result the total cross section agreesensitive to timelike momentum transfers.
with the empirical data reasonably well. Again, the exponen- The model parameters have been fixed by fitting the
tial type propagators yield differential cross sections that aréaryon spectrum and the nucleon electromagnetic form fac-
way off the data and we repeatedly conclude that this type ofors. Both the results for the magnetic moments of the
propagator is ruled out. nucleon and those for the rat®g/G,, show that it is im-
We have also computed the asymmetries that are defingebrtant to include contributions from the axial-vector di-
in Egs.(C14—(C16). We find that they essentially vanish for quark. The strong form factoggs,yn(Q?) andgyn, (Q?) for
the model propagators that we consider reasonable, i.e. setpacelike moment®?>0 depend on the amount of admix-
[1-VI. Although the model calculation correctly predicts that ture of axial-vector diquarks in the baryon wave functions.
the polarized photon asymmetty, see Eq(C16), is positive  Our numerical result forg,\n(0) using both, scalar and
for cosf.,<0 and negative otherwise, the absolute valuesaxial-vector diquarks, overestimates the empirically deter-
are off by several orders of magnitude. Only when substitutmined value by approximately 30%. A possible reason for
ing propagators that are characterized by the exponentighis discrepancy is the omission of subleading amplitudes in

dressing function the predicted asymmetries roughly agregye pion-quark vertex. Future calculations should therefore
with the empirical data. However, we have discarded already,c|jude these contributions and the ones from the kaon—

that propagator for other reasons given above. quark vertex as well. In any event, all these observables are

almost insensitive to the specific structure of the propagators.
VI. CONCLUSIONS Therefore they do not provide an adequate tool to distinguish

In this paper we have considered baryons as fu”y re|ativbetween different parametrizations of the confinement phe-
istic bound states of quarks and separable quark-quark coftomenon.
relations, i.e., diquarks. The main purpose of this study has The production processes, on the other hand, strongly de-
been to utilize empirical information in order to restrict the pend on the form of the propagators in the timelike region. In
structure of the propagators that model confined quarks angarticular we have observed that the class of propagators that
diquarks. These propagators enter the four-dimensiona$ characterized by an exponential growth for large timelike
Bethe-Salpeter equations from which we have computed thmomenta overestimates the cross sections by orders of mag-
mass eigenvalues and wave functions that are associated wititude. We have associated this failure to the dominance of
physical baryons. the handbag-type diagram. Apparently any quark propagator

The full covariance of the model wave functions allowsthat for timelike momenta is significantly more enhanced
us to unambiguously calculate form factors up to momentumhan the tree-level one immediately implies the dominance of
transfers of several GeV. For spacelike momenta the empiriig diagram. The obvious conclusion is that those propaga-
cal form factors can be very well reproduced with tree-levekgrs should be discarded. The other two forms of the propa-

quark and diquark propagatof6]. On the other hand the gaiors have the potential to describe the data reasonably
description of processes involving timelike momenta is ob-

: well. As mentioned, we have omitted the so far undeter-
scured by the presence of quark thresholds in the tree-level. o g subleading contributions in the kaon exchange dia-

prgpa??rforstf cours]:e, thfgse thretsr:?l'dstk?re unphyspa;l "’}[ am that dominates the kaon photoproduction amplitude.
refiect the absence of confinement. 1L IS Tus appropriate 2, ., e discussion of the pion form factor we have suffi-

tmhgdlcfg n}?neesri et;?e[;Leg/r?é rﬁ;?]%?]galtr(])rtshi? f(r)er\(rjrfervxjg rl'(mvsgengg\?cient reason to believe that the inclusion of such contribu-
considered three qualitatively different cases: In the firs lons will favor parameter sets that contain axial-vector di-

case, the tree-level poles at timelike rpalhave been traded quarks. Although the non-analytic form for the propagator

for a pair of complex-conjugate poles. In this case the imagi€oU!d not be ruled out by quantitative arguments we never-

nary parts(and therefore thresholggancel. In the second theless think it should be discardt_ad, because it poses sgveral
scenario, the pole on the timelike rep? axis has been funda_tmental problems related wlth gauge and translational
screened at the expense of an essential singularity for infinitgvariance which we have detailed in the text. Therefore
timelike momenta. In the third case, we have emphasized thefopagators that are characterized by pairs of complex con-
issue that the propagators should equal the tree-level ones fbtdated poles seem to be best suited for further studies.

all complex values op? as|p?|—o. Together with the con-

dition that no poles occur this property enforces a non-

analytic form. We have then investigated the phenomeno- ACKNOWLEDGMENTS

logical implications of either of these forms rather than

attempting to precisely reproduce the experimental data. Ob- We thank C. D. Roberts, S. M. Schmidt and L. von
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APPENDIX A: FROM THE RELATIVISTIC 9= Go+ Go®K,®; . (A5)
THREE-QUARK PROBLEM
TO THE DIQUARK-QUARK MODEL As the appearance of the free six-point funct®g suggests

we have defined botly; and K; in the three-quark space.
This is easily accomplished by attaching thle propadapr
v — 3 Nary of the spectator quark tg; and its inverses; ~ to K;. Ex-

Gxiy)=(0ITIE= ,0(x)a(y1)10) pressing Eq(A5) asGy@K;=1—Gy®g; * allows us to re-

represents the starting point for our study of the relativisticolace any of the three operatdB®K; in the bound state

three-quark problem. Here the variabbesandy; not only  equation(A3),

represent the space-time coordinates but also include the dis- 1

crete labels color, spin, and flavor. The six-point function Pp=(1-Go®g; )@ ¢+ Go@(Kj+K® ¢y

obeys the Dyson equation

The six-point function

p=0i®(K;+K)® . (AB)
G=Gy+GyoK®G. (A1)

To further elaborate this form of the bound state equation we
The entries of the Dyson equati¢Al) are the disconnected {efine the matriﬁi via
six-point functionG, that describes the free propagation of
three quarks and the three-quark scattering kefrtbiat con- 9i=Go+ Go®fi ®Gy. (A7)
tains all two- and three-particle irreducible diagrams. The
symbol “®" in Eq. (Al) denotes summation or integration This reflects the amputation of the external quark legs from
over all independent internal coordinates and labels. Unlesg, after having separated the non-interacting contribution. As
explicitly stated otherwise we will henceforth work in mo- already mentioned we carry along factors of the quark propa-
mentum space with Euclidean metric. It is thus not necessanyators and its inverse to formulate the problem in the three-

to introduce different symbols for momentum and coordinatequark space. For later convenience we therefore define
space objects.

A three-particle bound state with malssmanifests itself ti:fio S (A8)
as a pole in the six-point function at P?=M? where P
=p,+p,o+ p3 is the total four-momentum of the three-quark with the additional factor removed. We have introduced the
system. We may thus parametrize the six-point function insymbol “O” to denote simple multiplications without any

the vicinity of the pole as contractions because the so-combined operators act on dif-
_ ferent quarks. Finally we introduce the Faddeev components
Ky Kz, K3) (P1,P2,P3) b
G(ki,pi)~ 52 M2 ; (A2) Vi
hi=Go®K;® ¢ (A9)

wherey denotes the bound state wave function. Substitutingb - o - .
this parametrization into the Dyson equatigkl) and iden- ~Upon rewriting the definition(A7) for t; as gi®G, =1
tifying residua, we find the homogeneous bound state equat+ Go®t; we find the bound state equatigh= ¢+ 4+ Gy

tion ®1;® (;+ ) and thus
_ g R
y=CooKe oG oy=0. (A3 I/Ii:Go®ti®(¢j+1//k):(3j051<)®ti®(l//j+¢k)-(A

Despite its simple appearance this equation is infeasible as 10

neither all two- and three-partiple graphs, nor the fully These are the famous Faddeev bound state equations relating
dressed quark propagator, that is containe@gjnare known. the Faddeev componer to y; and . The graphical rep-

We will have to resort to a_pp_roxi_mations that rend_er theresentation of these equations is shown in Fig. 16. These
problem tractable and posteriorivalidate these approxima- equations embody the full two-quark correlation function

tlonTshfrom g;e resulUHg b_our;_c:_ statehprog_ertlez._ Il th instead of the kerneK. The relativistic Faddeev equations
€ probiem greatly Simpiifies when discarding all thre€-5 e 5 get of coupled four-dimensional integral equations and

particle irreducible graphs from the interaction kerkielThe represent a considerable simplification over the original

}(Eirnel tmaykthenlbe written as the sum of three tV\’O'qu""%ight-dimensional integral equation problem defined in Eq.
Interaction kernets, (A3). Unfortunately the Faddeev componeisstill depend
K=K;+K,+Ks. (A4)  On the two relative momenta between the three quarks. Ex-

We adopt the notation that the subscriptkafrefers to the

spectator quarky; . The respective interacting quark pair is 9y the framework of these integral equations we factorize the
(_qJ' ,0x) with the three labelsi(j,k) .bemg a cyclic permuta-  momentum conservatiofpi|S|p; )= (27)*S(p;) 5*(p; — p;). Here

tion of (1,2,3). These two-quark interaction kernels governs(p) is the ordinary Dirac propagator whi refers to an operator
the Dyson equation for the two-quark correlation functions,in functional space. We adopt analogous conventions for the other
Oi: operators.
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FIG. 16. The Faddeev bound state equation for the component 3 3 ) —
1. The equations fois, and ¢4 follow by cyclic permutation of D
the particle indices. aa’

. N . . FIG. 18. TheAnsatz(A14) for the Faddeev componett; of the
panding these components in Dirac Spﬁd;la_] yields anin-  ponq state wave functiogr using effective baryon-quark-diquark
tractable number of coupled integral equations. We thereforggiex functionse? .

further simplify the bound state problem. Denoting the in-
coming and outgoing momenta by respectivielandp; we
assume that the two-quark correlatianslo not depend on
any of the scalar products- p; that connect momenta of the
incoming and outgoing channels. This assumption allows u
to expandt; in terms of separable correlations in the two-
qguark subspace that is characterizedj i andj#K,

—
—

—

P: ¢?=¢%(p;i,P). These dependencies are further detailed
in Refs.[42,43. In contrast to the non-relativistic formula-
gon we have some freedom in the definition of the relative
momentum. We may write

pi=pi—7P=(1—n)pi— 7(p;+ Pk, (AL13)

. _ a a’
ki ki 'pk)_z, Xi(Kj ki) Daar (Kt kidxi (PP e the parametej parametrizes the partition of this mo-
’ (A11) mentum among the constituents. Of course, physical observ-
ables like the mass of the bound state or form factors do not
We call these separable correlations “diquarks” and com-depend on this parametéup to numerical uncertaintigs
prise the various types together with their discrete quantunThe superscript i selects a diquark contera, that builds
numbers within the labela. Note that the propagator a baryon together with the quark of specigs A suitable
Da,ar(kj+ky) is diagonal in the discrete quantum numbers ansatzfor the Faddeev componenis then reads
and a’ except for the Lorentz indices for the axial-vector
diquark. Furthermorey® represents the vertex function of o, )
two quarks with a diquark. Correspondinglj denotes the =5 S Y Xy Daw b (AL4)
conjugate vertex function. The expansiohll) is pictured aa’
in Fig. 17. o
In a full solution to the Faddeev problem thewill have where we have made the_ qu_ark_ labels explicit. As_ u_sual, we
sum over doubly appearing indices. The quark labies

the diquark indices jk). The momentum routing follows:
these indices as well as the diquark labelsand a’. For
further guidance we have visualized tissatzin Fig. 18.

. Noting that Go=S50S0S, we find the coupled integral
that follows from Eq.(A5) and involves the kernel compo- equations for the effective vertex functions

nentsK;. Rather than determining these vertices and the
diguark propagators from that Dyson equation we will adopt
phenqr_nenologmally motivated parametrizations for these ¢ﬁa=2 [Xia,ﬁySZy ij,yra][Dbb'SjBB ¢]‘b’[;r]+(j<_)k)y
quantities. bb’

Upon the separability assumption for the two-quark cor- (A15)
relations we continue to formulate a relativistic description
of baryons based on the Faddeev equatiokk0). In this  when inserting theAnsatz(A14) together with the diquark
approach it is advantageous to introduce an effective vertegarametrizatior(A11) into the Faddeev equatioria10). In
function, ¢?, for the interaction of the baryon with the quark deriving Eq.(A15) we have utilized that the quark-diquark
and the diquark. This vertex function depends only on thevertex functions are antisymmetric under the exchange of the
momentum of the spectator quart,, and the momentum, quark Iabels;(ﬁﬁy: —Xﬁyﬁ. This feature is a consequence
pj+ px of the diquark quasiparticle. Eventually this can beof the Pauli exclusion principle. We have arranged the terms
reexpressed as a dependence on the relative momentum be-Eq. (A15) such as to exhibit the similarity with the struc-

tween quark and diquarﬁ as well as the total momentum ture of Bethe-Salpeter equations. The first term in square
brackets represents a six-point function for quarks that is

ky —4] 4y ky » governed by the exchange of a single quark between a quark
e —4] t .= E & and a diquark. By coupling to the vertex function via the

s B 5 D, . bs propagators for quarks and diquarks it serves as the interac-
a.a tion kernel that generates the Bethe-Salpeter equation for a

FIG. 17. The separable matrix. Also indicated is the amputa- bound state of quarks and diquarks. Thus the Bethe-Salpeter
tion of the external legs in the quark propagators. equation sums the ladder-type quark exchange diagrams be-

to be determined from the Dyson equation far

ti=K,+K,@Got;, (A12)
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tween quarks and diquarks. Using the above definitions for TABLE IV. Basic Dirac components of the nucleon vertex func-
total and relative momentum one arrives now at the Bethetion. The hat denotes normalized four-vectapss p/|p|. For the

Salpeter equatiof6). complex on-shell nucleon momentum, we defife P/iM. The
subscript ‘T” denotes the transversal component of a vector with
APPENDIX B: DECOMPOSITION respect to the nucleon momenti®ne.g.,pr=p—(p-P)P.
OF THE DIQUARK-QUARK
BETHE-SALPETER AMPLITUDE S1 AT
i +
Here we will make explicit the full structure of the vertex SZH _A”éT/i
functions ¢? for the case of the nucleon-quark-diquark ver-Al 'f”{\
tex. For identical quarks the nucleon-quark-diquark vertexA2 —iPHprAT
functions ¢ do not depend on the quark lakielThe vertex B
functions consist of a spinor in the case of a scalar diquarl=<43 ﬁﬁfv
(a=5) and a vector-spinor in the case of an axial-vector .
diquark @=un=1...4).Using positive energy spinots P) AL o sBAt
with P being the nucleon momentum, we define matrix- \/§7T T
valued vertex function§>=($i) via Ag NECT
¢a(p,P):CD(p,P)U(P) (Bl) g I\/g(p#‘—%y#le)A+

Upon attaching quark and diquark legsfowe obtain the s waves in the axial-vector channel. There also is a sahall

5
matrix-valued Bethe-Salpeter wave functiofis=(y,.). wave component in the nucleon parametrized\gyAll am-
plitudes with even labels are relativisiiower) components
D(pa) 0 associated with the above described amplitudes that have an
0 D**(pg)]’ odd label, and these flavor components are absent in a non-
relativistic description.

5<pd>:=( (B2)

¥(p,P)=[S(pg) OD(py) 1P (p,P). (B3)
APPENDIX C: TECHNICAL DETAILS FOR
We demand that the nucleon Faddeev amplitude Eq. CALCULATING PRODUCTION PROCESSES
(Al14) has positive parity and describes positive-energy
states. The latter condition enforces that wave and vertex
functions are eigenfunctions of the positive-energy projector In this appendix we detail the calculation of the diagrams

1. Kaon photoproduction py—AK

AT=3(1-iRP/M), i.e., shown in Fig. 7. They provide the main contributions to the
photoproduction procegsy— AK.
O=PAT and ¥=VA". (B4) We have performed the calculations in both the rest frame

] ) of the proton and in the center of momentum systerm.s).
Using these constraints, the most general structu 0bn-  £or the following discussion we choose the c.m.s. for defi-

tains two amplitudes(scalar functions Sy(p,P) and pjteness. The momenta are defined according to Fig. 19, that
S,(p,P) coupling to the scalar correlations and six ampli- jg

tudes A(p,P), ... ,A¢(p,P) for the axial-vector correla-
tions within the nucleon. Explicitly, P=(—-E,0,0iEp), p,=(E0,0iE)

2

=(|p Dk|sin6,0iE )
(I)S P)= 3 2, -P)S(p,P), Pk (|pK|COSH!|pK|SIn01 A=K/
(p.P)=2, S(p?p-P)S(P,P)

. P,=(—|pk|cosé,—|pk|sin6,0iE ) (C1)
®(p,P)=2, Ai(P?%p-P)ysAL(P,P).  (BS) Px
The Dirac componentssy, ... .4 that obey the positive /\1 y
energy condition are listed in Table IV. Also, these compo- Py ~~te— L P z
nents have positive parity. We remark that the wave function
¥ can be analogously expanded because it must obey the
same constraints a® does. In the nucleon rest frame the P
A

individual components o are eigenfunctions of the three-
quark spin and orbital angular momentum operators, respec- F|G. 19. Kinematics for kaon photoproductipry— AK in the
tively, when the Faddeev amplitude is expanded within theenter of momentum frame. The incoming proton and photon carry
basis(B5) [7]. Thus, the amplitud&, describes the strength the moment# andp,, respectively. The outgoing kaon ardare

of answave in the scalar channel whife, andA; represent labeled by the momentax andP, .
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with such that the phenomenological value of the kaon radius,
(ré.)=(0.34+0.05) fn?, is reproduced:Fy-(Q?)=1/[1
+Q?/(0.84 GeVy].

In Sec. lll we have already reflected on the Bethe-Salpeter
formalism in Euclidean space. We choose the loop momen-
> [EN2_m2 =2+ M2 tum p to be regl, thus the temporal components of the exter-
[Pl = V(B =Mic,  Ex=Vpi"+ M3 €2 nal momenta in Eqs(C1) are purely imaginary. Hence the
Léflative momentunp; as given in Eq(38) is complex. Since

1
= M5 +E?, EKZM«EJF Ep)*—Mi+M)

The on-shell conditions and momentum conservation leav e solution of the Bethe-Salpeter equation brovides the ver-
only two kinematical variables undetermined. These are us P d P
ex function® , only for real relative momentp;, we have

ally chosen to be the enerdy of the incoming photon and
the angled between the spatial momenta of the photon an({.o extrapolateb, to complex momenta. We fit rational func-

ions to the vertex functions that are knownhtreal mesh
Epomts These rational functions can then easily be analyti-
_cally continued. For real momenta a comparison of the fitted
parametrization to the known results allows us to estimate
the reliability of this treatment.

the outgoing kaon.

The three diagrams in Fig. 7 show the contributions to th
transition amplitudes that we will discuss here. The un-
crossed “handbag diagram” translates into

d*p The differential cross section depends only on the energy
A, =i J' ® \(ps,P, I'(q,p.)S E of the incoming photon and the angldoetween the spatial
! (277)4{ AP PAS(POT(A.p)S(@)) photon and kaon momenta. That is illustrated in Fig. 19. The
differential cross section is defined with respect to the solid
X{T(p—, @) S(p-)®(p,P)D(Py)} (€3 angle elementd Q= 2md(cosé) of the outgoing kaon:
with the momentum routing described in E&8); see also do
Fig. 7. The crossed “handbag diagram” corresponds to the W(Eﬁ)_ E dQ (E 0) (C8)
expression K S-St MREK
with
[ dp
A2=|f oel® @A (pr,PA ISP IT,(0,p)S(A)} o
( a0, ——(E,0)= 4MPMA|A1+A2+A3|2 (C9)
X{FK(pf A)S(p-)®(p,P)D(pa)}- (C4

We average, respectively sum over the spins; of the

The definitions forg andp.,. have changed as compared to initial and final states. The phase space factors denoted by

the momentum routing for the amplitud®, given in Eg.

(38). In Eq. (C4) we have instead are given as
1 |p«l?| dlp
q=p-—px and p.=q+p,, (CH) a=g 5 ||EpKE| d(E|E)rKI|E ) (C10
My BEKEA K A
with all other momentum definitions unchanged. The ampli- .
. . L with
tude corresponding to the tree level diagram arising from
kaon exchange is given by d|5K| |PK| DK' |5A -
GEx+Ev| | Ex  Ey (c1D

1
As= ry C6
a=(u A[gKNA%]u") q’+M ( €). (€6 Note that the right-hand side of E¢C11) remains positive

given thatm,>My . In the CMS the expressiqi€10 for «
Here gxna represents the strong form factor that has beersimplifies to
discussed in Sec. Il C and is the kaon mass. The photon

polarization is denoted by, while I'” refers to kaon-photon o= | pk| } (C12
vertex containing the electromagnetic kaon form |5y| s’
factor

wheres=(P+p,)?=(px+P,)? denotes the total center of

P _Tv — (¥ v N2 mass energy squared. In obtaining the phase space factors
=T (q,p) - (q +p )FK+((p Q) ) ) (C10 we adopted the one particle normalization conditions

(for Minkowski spacg

(plp"Vg=2p°%(2m)%8%(p—p’) and
0

(PIp Y= (27 6B ), €13

(C7)

For the purpose of the present investigation it is sufficient to
parametrize the kaon charge form factor with a monopole

014004-21



S. AHLIG et al. PHYSICAL REVIEW D 64 014004

P,=(—|p| cog 6,),—|p| sin(6,),0jE),
K= (Ky.|K| sin( i) cos i) | K] sin( 6i)sin( i) i Eo),
A=(A,,0,0iE,), P;=(P;,iEp), (C19

whereE denotes the center of momentum energy. We have
furthermore introduced

Ep=2E—E,—Ex, A=\E{—M3,
|K|=VEZ—MZ, Pi=—K-A

FIG. 20. Kinematical variables for the reactipp— pKA in the E%— Eﬁ—A)Z(-F Mﬁ— M,2D
center of momentum system. Ky= 2A )
X
for bosons(B) and fermions F). These conventions also 2
enter the calculation of the transition amplitudés,i Sin(6)=\/1— &) (€20
=1,2,3 and the normalization of the Bethe-Salpeter wave IK| '
functions.

We obtain the various asymmetries by restricting the sunwhere all the momenta are Euclidean. There are now four
in Eq. (C8) over the spins to two of the three non-scalarindependent variables lef&,, Ex, 6, and ¢x. As for

particles. We thus obtain th&-polarization asymmetry py—KA we find the vertex functiod’, for complex argu-
ments by analyticly continuing a fitted rational function.
1 sa=1]-[sx= i ' ion is ai
PED=C S [ A_T] [ A_l] (14 The differential cross section is given by
4sp,sy [SA_T]_"[SA_l] do 1
- = 2
the polarized target asymmetry da, 4 SS,Er o f 02| Mg r,ro|* where
1 [Sp:T]_[sp:l] 3
T(E,0)=5 C1 1 MpM
(E.9) ZSAE,sy[sp=T]+[sp=l] (€19 dEz—S#dEKdEAd¢K, (C21
1287 |pemlE
and thepolarized photon asymmetry )
with dQ ,=2md cos(#,). The masses of the proton and the
S (E.0)= 1 3 [s,=11-[s,=1] 16 A are denoted b » andM , while (p.m,iE) represents the
(E.6)= 2505, [s,= 11+ [s,= 11" four vector of the total momentum in the c.m.s. The ampli-

tude Mg s, + for the reactioppy— KA depends on the spin
where we used the shorthand notation orientation of the incoming and outgoing patrticles. In Eq.
(C21) we average, respectively sum over the spin projections
of the incoming and outgoing particles. The integrations over
etc. (C17  the kaon andA energies are constrained by the available
Sp=1 energy, which is E.
For each diagram in Fig. 8 and for each specific diquark
ntent(cf. Table ) one has a contribution of the form

do
[SA:T]:WK

Furthermore we denote the spins of the photon, the protog0
and theA bys,, s, ands,, respectively.

The total cross section is finally obtained from EGS) i
via
Q2+m2¢ H (C22
T do
o(E)= fo sin edam(E'g)- (C18 {0 the amplitudeM. Herem,, refers to the mass of the in-
termediate pseudoscalar meson, ig,=M ;. or m,=My.
_ ) The “meson matrix element” is given by
2. Associated strangeness productiopp—pKA
Again we calculate the cross section for the production Lss=Ug(P2)i ys9n(Q%)Us(Py)  or
processpp— pKA in the center of momentum frame. The o
kinematical setup is depicted in Fig. 20 and amounts to the L =Ug (P2)i 59kna(QH)Us(P ), (C23

momentum routing
R R depending on whether the intermediate meson is a pion or a
P,=(p| cog 8,),|p| sin(8,),0,E), kaon. The “handbag part’+ has the general structure
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The depolarization tensor is defined as

[ dp —
=i | i PAPLPOSOT(P, @)

DNN(XF):aT

<8}
(on

(C24) (C25

X{T' 2(d,p-)S(p-)D(pg) Pp(pi,Pi)}-
Here the Bethe-Salpeter amplitudés, and ®, for the A
and the proton as well as tlidi)quark propagator§ andD
enter. The meson-quark vertic€s, and 'y are defined in
Eq. (29).

The calculation of the amplitudes involves four dimen-
sional loop integrations. All the momenta are Euclidean and
therefore we use hyperspherical coordinates. For the inner
loop of the handbag diagrams we use a Gauss-Legendre rofor the cross sections with different spin projections. Here
tine, whereas the phase space integration is performed wittienotes the real momentum of thescaled by the maximum
Monte Carlo methods. Due to the considerable effort it takesalue allowed by the kinematics:
to integrate eight integrals numerically the calculation could

with the shorthand notation

do do
a= g (TeTat Lpla) - and b= (TplatLpla)
(C26

only be performed to an overall accuracy of 5% to 15%. +|&|
However, we consider that sufficient for a comparison with Xp=— (27
data. | Ajmax
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