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Remarks on flavor-neutrino propagators and oscillation formulas
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We examine the general structure of the formulas of neutrino oscillations proposed by Blasone and Vitiello
~BV!. Reconstructing their formulas with the retarded propagators of the flavor-neutrino fields for the case of
many flavors, we can get easily the formulas which satisfy the suitable boundary conditions and are indepen-
dent of arbitrary mass parameters$mr%, as obtained by BV for the case of two flavors. In this two-flavor case,
our formulas reduce to those obtained by BV under aT-invariance condition. Furthermore, the reconstructed
probabilities are shown to coincide with those derived with recourse to the mass Hilbert spaceHm which is
unitarily inequivalent to the flavor Hilbert spaceHf . Such a situation is not found in the corresponding
construction in the manner of BV. Then the new factors in BV’s formulas, which modify the usual oscillation
formulas, are not the trace of the flavor Hilbert space construction, but come from Bogolyubov transformation
among the operators of spin-1

2 neutrinos with different masses.
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I. PURPOSE AND FUNDAMENTAL ASSUMPTION

The field theoretical descriptions of neutrino oscillatio
have been examined from various viewpoints@1–6#. When
we want to reformulate straightforwardly, in the framewo
of field theory, the familiar quantum-mechanical derivati
of the neutrino oscillation formula@7#, we encounter the
problem of how to define field theoretically one~an-
ti!neutrino state with a definite flavor. Giuntiet al. @2# gave a
negative answer to this problem on the basis of the obse
tion that the Hilbert space of the weak eigenstates with d
nite flavors can be constructed approximately only in
tremely relativistic case.1 In Ref. @3#, the authors asserte
that the flavor~or weak! as well as the mass Hilbert spac
Hf and Hm can be really constructed by employing th
Bogolyubov transformation among creation and annihilat
operators of the flavor and mass eigenstates of neutrinos.
unitary inequivalence between those two Hilbert spaces le
to a certain effect in the neutrino oscillation formulas, whi
is to be observed in the low-energy experiment.

In order to determine the coefficients appearing in
Bogolyubov transformation mentioned above, the masse
the electron- and muon-neutrinos~in the two-flavor case!
were taken in Ref.@3# to be the mass eigenvaluesm1 andm2,
respectively. To this prescription, the present authors ga
criticism @4#. Its essence lies in the point that the masses
flavor neutrinos are inherently arbitrary and such arbitra
ness should not remain in any observed quantities; thus,
unphysical that the oscillation formulas of neutrinos depe
on the arbitrarily chosen mass parameters.

In connection with this criticism@4#, Blasone and Vitiello
~BV! @5# have remarked that there exist some quantities le

1This assertion seems to be not so convincing, the reason
which will be explained in Appendix C.
0556-2821/2001/64~1!/013011~13!/$20.00 64 0130
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ing to the neutrino oscillation formulas, which satisfy th
necessary boundary conditions and also are independe
the mass parameters of flavor neutrinos even when we
with the theory including such arbitrary parameters.

The purpose of the present paper is to present clearly
a general basis of the field theory, the logical feature of
remark given by BV in Ref.@5#. The considerations devel
oped in the following are based on the^Setup&: The relation
of the flavor-neutrino field operatornr(x) to the neutrino
field operatorn j (x) is expressed as

nr~x!5(
j 51

Nf

zr j
1/2n j~x!, r5e,m,t, . . . ; ~1.1!

here,n j (x) satisfies the free Dirac equation with a defin
massmj ,

~]”1mj !n j~x!50, ~1.2!

and the matrixZ1/25(zr j
1/2) satisfies( j 51

Nf zr j
1/2zs j

1/2* 5drs ; Nf

5the number of flavors.
The linear combinations~1.1! are determined so as to d

agonalize the mass term in the Lagrangian.@In other words,
this is so as to diagonalize the pole part of the propaga
matrix constructed from the flavor neutrino field operato
@8#; when only the repetitions of the bilinear-mass-type
teraction are taken into account, the unitarity ofZ1/2 is ob-
tained@4#. If CP ~or T) invariance is required, we obtain th
reality of Z1/2 @8#.#

Because of the above setup, we obtain thec-number prop-
erty of the anticommutators

$nr~x!,ns
†~y!%5c number ~1.3!

and

$nr~x!,ns~y!%50. ~1.4!
or
©2001 The American Physical Society11-1
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Further, the canonical commutation relations among
flavor-neutrino field operators at an equal time are con
tently obtained

$nr~xW ,t !,ns
†~yW ,t !%5drsd~xW2yW !, $nr~xW ,t !,ns~yW ,t !%50,

~1.5!

due to the unitarity ofZ1/2 and due to Eq.~1.4!, respectively.
Therefore, from Eq.~1.1! we see that

^vacu$nr~x!,n̄s~y!%uvac& ~1.6!

does not depend on the choice of the vacuum state when
state is equally normalized as^vacuvac&51. In other words,
the expectation value

f^0~T!u$nr~x!,n̄s~y!%u0~T!& f , ~1.7!

where u0(T)& f is the vacuum state~at an arbitrary timeT)
belonging to the flavor Hilbert spaceHf specified by a set o
the mass parameters$me ,mm , . . . %5$ml%, is equal to

m^0u$nr~x!,n̄s~y!%u0&m , u0&mPHm ; ~1.8!

this equality holds irrespectively of both$ml% and the time
T, since thec number in Eq.~1.3! depends on$mj% but not
on $ml% due to the^Setup&. ~As to the definitions of the
vacuum states, see the next section.!

In the following sections, we will explain that these fac
described above provide a general field theoretical basis
understanding the implications included in the remark giv
in Ref. @5#.

In Sec. II, we summarize the essence of Ref.@5# after
giving the necessary definitions of the notation and relatio
In Sec. III we make clear, on the basis of the^Setup&, the
general implications of BV’s remark@5#. Section IV is de-
voted to a summarizing discussion. In the Appendixes,
evant mathematical details are given.

II. REFORMULATION OF BV’s WORK
AND RELATED REMARK

A. Notation and definitions

We summarize the notation and definitions of the rela
quantities in accordance with Ref.@4#.

The relation~1.1! between the flavor eigenfieldsnF and
the mass eigenfieldsnM is expressed by the transformatio
as

nF~x![S ne~x!

nm~x!

A
D 5G21~x0!S n1~x!

n2~x!

A
D G~x0!

5S ze1
1/2 ze2

1/2

zm1
1/2 zm2

1/2

�

D S n1~x!

n2~x!

A
D [Z1/2nM~x!,

~2.1!
01301
e
s-

his

or
n

s.

l-

d

where

Z1/25@zr j
1/2#, Z1/2Z1/2†5I ; ~2.2!

the concrete form ofG(x0) in the two-flavor case is given by
BV @3#. Let us expand the neutrino field in terms of helicit
momentum eigenfunctions as

na~x!5
1

AV
(
kW r

$ua~kr !aa~kr;t !eikW•xW

1va~kr !ba
†~kr;t !e2 ikW•xW%

5
1

AV
(
kW r

eikW•xW$ua~kr !aa~kr;t !

1va~2kr !ba
†~2kr;t !%, ~2.3!

where in the Kramers representation

~ ik”1ma!ua~kr !50, ~ ik”2ma!va~kr !50,

k05AkW21ma
2[va~k!,

ua* ~kr !ub~ks!5va* ~2kr !vb~2ks!5rab~k!d rs ,

~2.4!

ua* ~kr !vb~2ks!5va* ~2kr !ub~ks!5 ilab~k!d rs ,

rab~k![cosS xa2xb

2 D ,

lab~k![sinS xa2xb

2 D , cotxa5
ukW u
ma

.

@For the case thatna(x) represents the mass eigenfieldn j (x),
we writem j asmj . Note that, fora5l(5e,m, . . . ), ml is
an arbitrarily fixed parameter@4#. As to the concrete forms o
ua(kr) andva(kr), see Appendix C.# Here we use the nota
tion

aF~kr;t ![S ae~kr;t !

am~kr;t !

A
D , bF~2kr;t ![S be~2kr;t !

bm~2kr;t !

A
D ,

aM~kr;t ![S a1~kr;t !

a2~kr;t !

A
D , bM~2kr;t ![S b1~2kr;t !

b2~2kr;t !

A
D .

~2.5!

We have

S aF~kr;t !

bF
†~2kr;t ! D 5K21~ t !S aM~kr;t !

bM
† ~2kr;t ! DK~ t !

5K~k!S aM~kr;t !

bM
† ~2kr;t ! D , ~2.6!
1-2



n
a
u

e
x

on

REMARKS ON FLAVOR-NEUTRINO PROPAGATORS AND . . . PHYSICAL REVIEW D64 013011
with

K~k!5S P~k! iL~k!

iL~k! P~k!
D , K~k!K †~k!5I ,

P~k!5@P~k!r j #5@zr j
1/2rr j~k!#,

L~k!5@zr j
1/2lr j~k!#. ~2.7!

K is independent of the timet, but depends, of course, o

$ml% and @z1/2#r j other thanukW u, and we dropped such
dependence for simplicity. The relation between the vacu
statesu0(t)& fPHf andu0&mPHm is expressed with thisK(t)
as

u0~ t !& f5K~ t !21u0&m . ~2.8!

Here, these vacua are defined for;kW and r as

aF~kr;t !u0~ t !& f5bF~kr;t !u0~ t !& f50,

aM~kr;t !u0&m5bM~kr;t !u0&m50, ~2.9!

with the normalizationf^0(t)u0(t)& f5 m^0u0&m51.
From Eq. ~2.6!, we obtain the relations connecting th

creation and annihilation operators with different times, e
pressed as

S aF~kr;0!

bF
†~2kr;0!

D 5K~k!S aM~kr;0!

bM
† ~2kr;0!

D
5W~k;t !S aF~kr;t !

bF
†~2kr;t ! D , ~2.10!

with

W~k;t ![K~k!F~k;t !K †~k!

5S PfP†1Lf* L† i ~2PfL†1Lf* P†!

i ~LfP†2Pf* L†! LfL†1Pf* P† D ,

F~k;t ![S f~ t ! 0

0 f†~ t !
D , f~ t !5S eiv1t 0

eiv2t

0 �

D .

~2.11!

Therefore we obtain

K~ t !S aF~kr;0!

bF
†~2kr;0!

DK21~ t !5W~k;t !S aM~kr;t !

bM
† ~2kr;t ! D

~2.12!

or

K~0!S aF~kr;t !

bF
†~2kr;t ! DK21~0!5W†~k;t !S aM~kr;0!

bM
† ~2kr;0!

D .

~2.13!

We write the matrix elements ofW(k;t) as
01301
m

-

W~k;t !5S Wrs~k;t ! Wrs̄~k;t !

Wr̄s~k;t ! Wr̄s̄~k;t ! D . ~2.14!

From Eqs.~2.11!, we have

Wrs~k;t !* 5Ws̄r̄~k;t !,

Wrs̄~k;t !* 5Wsr̄~k;t !,

Wr̄s~k;t !* 5Ws̄r~k;t !. ~2.15!

Due to the unitarity ofZ1/2, we have

W~k;T2t !W†~k;T!5W~k;2t !5W†~k;t !, ~2.16!

in addition to the unitarity ofW(k;t),

W~k;t !W†~k;t !5I . ~2.17!

B. BV’s results

Let us review briefly the main contents of BV’s paper@5#.
For the two-flavor case, we consider that an initial electr
neutrino evolves~oscillates! in time with the two relevant
propagators~for t>0)

iGee
. ~xW ,t;yW ,0!5 f^0~0!une~xW ,t !n̄e~yW ,0!u0~0!& f ,

~2.18!

iGme
. ~xW ,t;yW ,0!5 f^0~0!unm~xW ,t !n̄e~yW ,0!u0~0!& f .

~2.19!

By employing their Fourier components

iGrs
. ~k;t ![

1

VE dxWE dyW iGrs
. ~xW ,t;yW ,0!e2 ikW (xW2yW ),

r ~and s!5e,m, ~2.20!

we define

P̃ee
r ~k;t ![ i ue

†~kr !Gee
. ~k;t !g0ue~kr !

5$ae~kr;t !,ae
†~kr;0!%, ~2.21!

Pēe
r

~k;t ![ i ve
†~2kr !Gee

. ~k;t !g0ue~kr !

5$be
†~2kr;t !,ae

†~kr;0!%, ~2.22!

P̃me
r ~k;t ![ i um

† ~kr !Gme
. ~k;t !g0ue~kr !

5$am~kr;t !,ae
†~kr;0!%, ~2.23!

P̃m̄e
r

~k;t ![ i vm
† ~2kr !Gme

. ~k;t !g0ue~kr !

5$bm
† ~2kr;t !,ae

†~kr;0!%. ~2.24!

Then the quantities defined by

Pne→ne
~k;t ![uP̃ee

r ~k;t !u21uP̃ēe
r

~k;t !u2,
1-3
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Pne→nm
~k;t ![uP̃me

r ~k;t !u21uP̃m̄e
r

~k;t !u2 ~2.25!

are seen to be interpreted as the observable oscillation p
abilities in the sense that these quantities satisfy the ne
sary boundary conditions as

Pne→nr
~k;t50!5der , (

r
Pne→nr

~k;t !51, ~2.26!

and also are shown to be ‘‘ml independent.’’ Therefore, the
special choice of the mass parameters in Ref.@5#, me5m1
andmm5m2, is justified and free from the criticism of Re
@4#.

The resultant formulas of the probabilities are

Pne→ne
~k;t !512sin2~2u!Fr12

2 ~k!sin2S v2~k!2v1~k!

2
t D

1l12
2 ~k!sin2S v2~k!1v1~k!

2
t D G ,

Pne→nm
~k;t !512Pne→ne

~k;t !. ~2.27!

@u is the mixing angle in the two flavor case; see Eq.~2.40!.#
In the framework of Ref.@5#, the new factorsr12

2 512l12
2

appearing in the above oscillation formulas are thought to
a result of the unitary inequivalence betweenHf andHm .

It is pointed out further by BV@5# that the quantities in
Eq. ~2.27! coincide with the expectation values of the char
operators

Qs~ t50![(
kW ,r

@as
†~kr;0!as~kr;0!

2bs
†~2kr;0!bs~2kr;0!],

s5e,m, ~2.28!

on the electron-neutrino state at a timet:

une~kr;t !&[ae
†~kr;t !u0~ t !& f ; ~2.29!

we have

^ne~kr;t !uQs~0!une~kr;t !&

5u$as~kr;0!,ae
†~kr;t !%u2

1u$bs
†~2kr;0!,ae

†~kr;t !%u2

5Pne→ns
~k;t !, ~2.30!

f^0~ t !uQs~0!u0~ t !& f50,

^ne~kr;t !u@Qe~0!1Qm~0!#une~kr;t !&51. ~2.31!

Those consequences of Ref.@5# summarized above ar
confirmed by straightforward calculations with the use of
concrete form ofW(k;t) in the two-flavor case. It seems
however, necessary for us to make clear a simple~or general!
01301
b-
s-

e

e

reason why the above consequences are obtained. With
aim, we first rewrite the above consequences in the ma
flavor case, which is given in the next subsection, and w
consider in Sec. III the structure of the retarded propaga
of flavor-neutrino fields.

Before entering the next subsection, it may be worthwh
to make a remark on the quantities appearing in Eqs.~2.21!–
~2.24!. The definitions ofP̃re

r (k;t) and P̃r̄e
r (k;t) employed

by BV @5# seem to be somewhat misleading. These quanti
are introduced only for convenience, and should not be
derstood as representing transitions such as neutr
antineutrino transitions to occur in the neutrino oscillati
process. It is helpful for us to note that each
$ar(kr;t),ae

†(kr;0)% and$br
†(2kr;t),ae

†(kr;0)% has only a
nonvanishing term proportional to$ar(kr;0),as

†(kr;0)%.
@Concretely, see Eqs.~2.35!.# Further we note that we obtai

iḠrs
. ~xW ,t;yW ,0![ f^0~0!unr~xW ,t !ns~yW ,0!u0~0!& f50

~2.32!

due to $ar(qs;t),bs
†(2kr;0)%5$br

†(2qs;t),bs
†(2kr;0)%

50 obtained from Eq.~1.4! or ~2.10!.

C. Rewriting BV’s formulas in the many-flavor case

In order to study the general structures of BV’s results,
us define the quantity, in the many-flavor case,

iG rs
. ~xW ,t;yW ,0![u~ t ! f^0~0!unr~xW ,t !n̄s~yW ,0!u0~0!& f ,

r ~and s!5e,m,t, . . . . ~2.33!

@ iG rs
. (xW ,0;yW ,0)[ limt→10iG rs

. (xW ,t;yW ,0).# One can extract

the component with the momentumkW from this quantity as

iG rs
. ~k;t ![

1

VE dxWE dyW iG rs
. ~xW ,t;yW ,0!e2 ikW (xW2yW )

5u~ t ! f^0~0!u(
r

@$ar~kr;t !,as
†~kr;0!%

3ur~kr !ūs~kr !1$br
†~2kr;t !,as

†~kr;0!%

3vr~2kr !ūs~kr !#u0~0!& f . ~2.34!

From Eq.~2.10!, we obtain

$ar~kr;t !,as
†~kr;0!%5(

k
$@Wrk

† ~k;t !ak~kr;0!

1Wrk̄
†

~k;t !bk
†~2kr;0!#,as

†~kr;0!%

5Wrs
† ~k;t !5Wsr~k;t !* ,

br
†~2kr;t !,as

†~kr;0!%5(
k

$@Wr̄k
†

~k;t !ak~kr;0!

1Wr̄ k̄
†

~k;t !bk
†~2kr;0!#,as

†~kr;0!%

5Wr̄s
†

~k;t !5Wsr̄~k;t !* . ~2.35!

ThusG rs
. (k;t) is given by
1-4



o
n
ti

za

im

de

al

se

op

at
a

nal

s-

y of

de-

REMARKS ON FLAVOR-NEUTRINO PROPAGATORS AND . . . PHYSICAL REVIEW D64 013011
iG rs
. ~k;t !5u~ t !(

r
@Wsr~k;t !* ur~kr !ūs~kr !

1Wsr̄~k;t !* vr~2kr !ūs~kr !#. ~2.36!

With this quantity, we can define, fort>0,

Pns→nr

. ~k;t ![
1

2
Tr@G rs

. ~k;t !G rs
.†~k;t !#

5u$ar~kr;t !,as
†~kr;0!%u2

1u$br
†~2kr;t !,as

†~kr;0!%u2

5uWsr~k;t !* u21uWsr̄~k;t !* u2, ~2.37!

which is equal to Eq.~2.27! for the two-flavor case.~Here,
‘‘Tr’’ means to take the trace with respect to the indices
Dirac spinors.! Along the same line as BV’s which has bee
described in the previous subsection, let us call this quan
the probability, since it satisfies automatically the normali
tion as

(
r

Pns→nr

. ~k;t !51 ~2.38!

due to the unitarity ofW(k;t) ~or Z1/2) and the boundary
conditions as

Pns→nr

. ~k;t50!5drs ~2.39!

due to the canonical communication relation at an equal t
or the property ofW(k;t50)5I .

We cannot see straightforwardly that the right-hand si
~RHS’s! of Eq. ~2.37! are independent of$ml%. Such inde-
pendence in the many-flavor case is shown under the re
condition onZ1/25@zr j

1/2#. This condition is implicitly used in
Ref. @4#, where the two-flavor case is examined; in this ca

Z1/25S cosu sinu

2sinu cosu D . ~2.40!

Under the condition of realZ1/2, Pns→nr

. (k;t) is also equal

to the expectation value of the number operator:

^Ns ;kr;t&r2 f[ f^0~ t !uar~kr;t !Ns~ t50!ar
†~kr;t !u0~ t !& f .

~2.41!

Hereafter we use the notationNs(t) instead ofQs(t).
Detailed proofs of the$ml% independence of Eq.~2.37!

and the equality of the expectation value of the number
erator toPns→nr

. (k;t) are given in Appendixes A and B.

D. Corresponding propagator onHm

It may be useful to note that the corresponding propag
defined on Hm does not have the same properties
iG rs

. (xW ,t;yW ,0).
01301
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The propagator which is constructed onHm correspond-
ing to Eq.~2.33! may be

iSrs
. ~xW ,x0;yW ,y0![u~x02y0!m^0unr~x!n̄s~y!u0&m

5(
j

zr j
1/2zs j

1/2* u~x02y0!

3m^0u„n j~x!n̄ j~y!…u0&m , ~2.42!

which is a part of the Feynman propagator,iSFrs(x2y)
5m^0uT„nr(x) n̄s(y)…u0&m . By employing the quantity, in
the same way as the case of the previous section,

iSrs
. ~k;t ![

1

VE dxWE dyW iSrs
. ~xW ,t;yW ,0!e2 ikW (xW2yW ),

~2.43!

with iSrs
. (k;t50)[ limt→10iSrs

. (k;t), we obtain, fort>0,

Pns→nr

. ~k;t ![
1

2
TruSrs

. ~k;t !Srs
.†~k;t !u

5(
i , j

zr j
1/2zs j

1/2* zr i
1/2* zs i

1/2r j i
2 ei (v i2v j )t.

~2.44!

Note that this formula does not include the term proportio
to e6 i (v i1v j )t. Although (rPne→nr

. (k;t)51 is satisfied,

Pne→nr

. (k;t) does not satisfy the initial conditions as is ea

ily seen in the two-flavor case,2

Pne→ne

. ~k;t ! →
t→10

12
1

2
sin2~2u!l12

2 Þ1,

Pne→nm

. ~k;t ! →
t→101

2
sin2~2u!l12

2 Þ0, ~2.45!

and then is different fromPne→nr

. (k;t) given in Sec. II C.

One may say that this difference means the necessit
the flavor Hilbert space,Hf . We will examine in the next
section whether it is true or not.

III. RETARDED KERNEL AND AMPLITUDE

Let us consider two types of the retarded propagators
fined onHf andHm , respectively, as

iG rs
(ret)~xW ,t;yW ,0![u~ t ! f^0~0!u$nr~xW ,t !,n̄s~yW ,0!%u0~0!& f ,

~3.1!

2Similar discussions can be found in Ref.@6#.
1-5
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iS rs
(ret)~xW ,t;yW ,0![u~ t !m^0u$nr~xW ,t !,n̄s~yW ,0!%u0&m ,

~3.2!

where these quantities at the timet50 are defined by

lim
t→10

iG rs
(ret)~xW ,t;yW ,0!, lim

t→10
iS rs

(ret)~xW ,t;yW ,0!. ~3.3!

As a result of thec-number property of the anticommutato
thekW components of these quantities are equal to each ot3

as

igrs
(ret)~kW ,t !5 isrs

(ret)~kW ,t !; ~3.4!

therefore, one obtains the oscillation formula, which is ind
pendent of$ml%, as will be seen concretely in the following

A. Case of iG rs
„ret…

„x¢ ,t…

The kW components ofiG rs
(ret)(xW2yW ,t) defined as

igrs
(ret)~k;t ![

1

VE dxWE dyW iG rs
(ret)~xW ,t;yW ,0!e2 ikWxWeikWyW

~3.5!

become

igrs
(ret)~k;t !5u~ t !(

r
@$ar~kr;t !,as

†~kr;0!%ur~kr !ūs~kr !

1$br
†~2kr;t !,as

†~kr;0!%vr~2kr !ūs~kr !

1$ar~kr;t !,bs~2kr;0!%ur~kr !v̄s~2kr !

1$br
†~2kr;t !,bs~2kr;0!%

3vr~2kr !v̄s~2kr !#. ~3.6!

With this quantity, we can define

Pns→nr

(ret) ~k;t ![
1

4
Tr@grs

(ret)~k;t !grs
(ret)†~k;t !#, ~3.7!

and call it the probability on the basis of its properties, sim
lar to Eqs.~2.38! and ~2.39!, as explained below. Fort>0,
we obtain

3We obtain not only forT50 but also for an arbitrary timeT:

f^0~T!u$nr~xW,t!,n̄s~yW,0!%u0~T!& f5m^0u$nr~xW ,t !,n̄s~yW ,0!%u0&m ,

where the vacuum statesu0(T)& f and u0&m are equally normalized
Thus, the quantity

G sr
(ret)~xW ,t;yW ,0;T![ f^0~T!u$nr~xW ,t !,n̄s~yW ,0!%u0~T!& f

does not depend onT.
01301
r
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-

Pns→nr

(ret) ~k;t !5
1

4 (
r

@ u$ar~kr;t !,as
†~kr;0!%u2

1u$br
†~2kr;t !,as

†~kr;0!%u2

1u$ar~kr;t !,bs~2kr;0!%u2

1u$br
†~2kr;t !,bs~2kr;0!%u2#

5
1

2
@ uWsr~k;t !u21uWsr̄~k;t !u21uWs̄r~k;t !u2

1uWs̄r̄~k;t !u2#, ~3.8!

due to Eq.~2.10! @or due to Eqs.~A5! and~A6!#. Clearly we
can confirm the following properties of this quantity:

~1! Fundamentally due to the canonical commutation
lation ~1.5!,

Pns→nr

(ret) ~k;t50!5drs ; ~3.9!

~2! due to the unitarity ofZ1/2 @or W(k;t)],

(
r

Pns→nr

(ret) ~k;t !51; ~3.10!

~3! from Eq. ~2.15!,

Pns→nr

(ret) ~k;t !5Pnr→ns

(ret) ~k;t !; ~3.11!

~4! under the condition of realZ1/2 @i.e., due to Eqs.~A8!#

Pns→nr

(ret) ~k;t !5@ uWsr~k;t !u21uWsr̄~k;t !u2#5Pns→nr

. ~k;t !.

~3.12!

B. Case ofiS rs
„ret…

„x¢ ,t…

The kW components ofiS rs
(ret)(xW2yW ,t) defined as

isrs
(ret)~k;t ![

1

VE dxWE dyW iS rs
(ret)~xW ,t;yW ,0!e2 ikWxWeikWyW

~3.13!

become

isrs
(ret)~k;t !5u~ t !(

j ,r
zr j

1/2zs j
1/2* @$a j~kr;t !,a j

†~kr;0!%

3uj~kr !ū j~kr !1$b j
†~2kr;t !,b j~2kr;0!%

3v j~2kr !v̄ j~2kr !#. ~3.14!

With this quantity we can define

Pns→nr

(ret) ~k;t ![
1

4
Tr@srs

(ret)~k;t !srs
(ret)†~k;t !#, ~3.15!

and call it the probability due to the same reasoning as
fore. Fort>0, we obtain
1-6
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Pns→nr

(ret) ~k;t ![
1

4 (
j ,i ,r

zr j
1/2zs j

1/2* zr i
1/2* zs i

1/2Tr$@uj~kr !uj
†~kr !e2 iv j t1v j~2kr !v j

†~2kr !eiv j t#

3@ui~kr !ui
†~kr !eiv i t1v i~2kr !v i

†~2kr !e2 iv i t#%

5
1

2 (
j ,i

zr j
1/2zs j

1/2* zr i
1/2* zs i

1/2@r i j
2 ~k!~e2 i (v j 2v i )t1c.c.!1l i j

2 ~k!~e2 i (v j 1v i )t1c.c.!#

5drs22(
j ,i

zr j
1/2zs j

1/2* zr i
1/2* zs i

1/2Fr i j
2 ~k!sin2S v j2v i

2
t D1l i j

2 ~k!sin2S v j1v i

2
t D G5Pns→nr

(ret) ~k;t !, ~3.16!
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and this is equal to Eq.~2.27! in the two-flavor case. Further
more, we have the properties of this quantity,

~1! Pns→nr

(ret) ~k;t50!5drs , ~3.17!

~2! (
r

Pns→nr

(ret) ~k;t !51, ~3.18!

~3! Pns→nr

(ret) ~k;t !5Pnr→ns

(ret) ~k;t !, ~3.19!

due to essentially the same reasons mentioned for deri
Eqs.~3.9!, ~3.10!, and~3.11!. As expected,

~4! Pns→nr

(ret) ~k;t !→Pns→nr

. ~k;t ! for the real Z1/2,

given explicitly by Eq.~A12!.

IV. DISCUSSION AND FINAL REMARKS

We have generalized BV’s formulas~2.27!, Pne→nr
(k;t),

to Pns→nr

. (k;t) of the many-flavor case; as a result of t

unitarity of Z1/2, thesePns→nr

. (k;t) satisfy the boundary con

ditions which are required for the probability interpretatio
but are$ml% dependent generally. With those formulas,
has been shown that they are$ml% independent and equal t
the expectation values of the number operators for the
Z1/2, which is of course the case of BV, i.e., the two-flav
case. At the same time, we have shown that the corresp
ing quantitiesPns→nr

. (k;t) constructed onHm cannot satisfy

the boundary conditions.
On the other hand, we could construct the other quanti

Pns→nr

(ret) (k;t) by employing the anticommutator

$nr(xW ,x0),ns
†(yW ,y0)%; thesePns→nr

(ret) (k;t) satisfy the bound-

ary conditions stated above, due to the unitarity ofZ1/2. They
are automatically $ml% independent because of th
$ml%-independentc-number property of the anticommutato
and are equal to the corresponding quantitiesPns→nr

(ret) (k;t)

constructed onHm .
Those quantitiesPns→nr

(ret) (k;t) reduce toPns→nr

. (k;t) for

the realZ1/2 and to BV’s formulasPne→nr
(k;t) for the two-

flavor case. Then we conclude that the$ml% independence o
the ‘‘oscillation formulas’’ asserted by BV@5# is essentially
01301
ng

,

al

d-

s

based on thêSetup&, and that the new factors in the BV’
formulas, which are different from the usual oscillation fo
mulas, are not the trace of the flavor Hilbert space constr
tion, but come from the field theoretical treatment of mixin
fields using Bogolyubov transformation. In the present ca
the coefficients of the new factors are fixed by the spin1

2

property of neutrino.
The interrelationship among the relevant quantities

summarized in Fig. 1.
Let us make some remarks as follows. Concerning

construction ofHf , we remark in Appendix C that we
cannot necessarily eliminate the possibility to constructHf
within the extent of the paper by Giuntiet al. @2#. According
to the context of the present paper, the construction ofHf is
not always excluded, since there are some quantities, suc

^0(0)u$nr(x),n̄s(y)%u0(0)&, which are obtained on the bas
of Hm and equal to ones obtained on the basis ofHf . For the
quantities constructed onHf , $ml% independence seems t
suggest that there is no difference of those quantities fr
the ones constructed onHm . It is a future task to make
clearer the field theoretical basis of such an anticipation.

In the present paper, we examined only the contributio
from the propagator by extracting a part of neutrino prop
gation from the full transition amplitudes corresponding
various neutrino experiments. The relation between the
cillation probability discussed above and the full transiti
probability is not clear yet, and we cannot decide whi
propagator one should use to calculate the oscillation pr
ability. It may be a meaningful fact thatPns→nr

(ret) (k;t) satis-

fies the boundary conditions whilePns→nr

. (k;t) does not.

We give a comment here on the relationship between
Eq. ~3.16! and the usual oscillation probability@9#. We get
Eq. ~2.44! @Eq. ~2.37!# by dropping the contribution ofn̄snr

from Eq. ~3.2! @Eq. ~3.1!#. By settingr i j 51 obtained in the
extremely relativistic limit and replacing the timet with the
distance traveled by the neutrino, Eq.~2.44! @Eq. ~2.37! or
~A11!# goes to the usual oscillation probability. Furthe
there is an interesting difference between our framework
the usual oscillation probability concerningCP violation.
The equalities~3.11! and ~3.19! are obtained irrespective o
T invariance. This means that the difference betwe
Prob(nr→ns) and Prob(ns→nr) as aCP-violation effect
cannot be observed in the neutrino oscillation in the pres
framework. Thus, if this difference is confirmed in the e
1-7
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periments to be nonzero, the present approach, in which
the neutrino propagation part is taken into consideration,
comes excluded.

Here it seems worthy to remark on the treatment of lo
energy weak processes with accompanying neutrinos, s
as p1→ l r

1nr , m1→e1nen̄m , and n→pene . In the
lowest-order calculation with respect to the weak interacti
each participating flavor neutrino has been treated as
asymptotic field with a definite mass nearly equal to ze
and we have obtained important information on the struct
of the weak interactions. As an illustration, we examine
decay probabilities ofp1→ l r

1nr , r5m,e. By employing
the usualV2A weak interaction, we have the decay pro
abilities for p1→ l r

1nr :

P~p1→ l r
1nr!5

f p
2 Gb

2

8p
mr

2S 11
mr

2

mr
2

2
~mr

22mr
2!2

mp
2 mr

2 D mp

FIG. 1. Without the reality of Z1/2, Pns→nr

. (k;t)

Þ^Ns ;kr;t&r2 f , and both Pns→nr

. (k;t) and ^Ns ;kr;t&r2 f are

$ml% dependent forNf>3.
01301
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3F S 12
~mr1mr!2

mp
2 D

3S 12
~mr2mr!2

mp
2 D G 1/2

; ~4.1!

here, f p is the pion decay constant defined b
^0uAa(0)up1(p)&5 i f ppa , Aa(x)5 the weak axial vector

current such asi d̄(x)gag5u(x), ( f p)exp.131 MeV; Gb

.(1025/M p
2) is the weak Fermi coupling constant~includ-

ing the Cabbibo-Kobayashi-Maskawa angle!; mr andmr are
the masses ofl r andnr , respectively. Formr50, Eq. ~4.1!
reduces to

P~p1→ l r
1nr!5

f p
2 Gb

2

8p
mr

2mpS 12
mr

2

mp
2 D 2

; ~4.2!

then, we obtain numerical values which are in good agr
ment with the experimental ones.

The calculation above is based on the existence
asymptotic flavor neutrino fields with definite masses. B
we cannot regard the flavor neutrino fieldsnr(x)’s to define
the asymptotic fields, leading to time-independent creat
and annihilation operators with definite four-momenta, sin
in accordance witĥ Setup& with mass differences amon
mj ’s, each ar(kr;t) and br

†(2kr;t) in the expansion of
nr(x) does not have a simple time dependence, si
ar(kr;t)5( j$K(k)r ja j (kr;t)1K(k)r j̄b j

†(2kr;t)%. Con-
trarily, each ofa j (kr;t) andb j

†(2kr;t) in the expansion of
n j (x) has a simple time dependence as exp„7 iv j (k)t… with

v j (k)5(kW21mj
2)1/2; thus we can construct the Hilbe

space Hm , independently of the time, by employin
the operators a j

†(kr)[a j
†(kr;t)e2 iv j (k)t and b j

†(2kr)
[b j

†(2kr;t)e2 iv j (k)t. The probabilitiesP(p1→ l r
1nr) are

given by

P~p1→ l r
1nr!

5
f p

2 Gb
2

8p
mr

2mp(
j

8 uzr j
1/2u2S 11

mj
2

mr
2

2
~mr

22mj
2!2

mp
2 mr

2 D
3H S 12

~mr1mj !
2

mp
2 D S 12

~mr2mj !
2

mp
2 D J 1/2

, ~4.3!

where the summation( j8 is performed overj ’s which are
allowed under four-momentum conservation. We see t
Eq. ~4.3! reduces to Eq.~4.2!, when ~1! the masses of the
relevant neutrinos are negligibly small, and even if a ne
trino has a non-negligible mass, the corresponding mix
1-8
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angleuzr j
1/2u is very small, and~2! ( j8uzr j

1/2u251 holds almost
precisely.

Though Eqs.~4.1! and ~4.3! give the same formula~4.2!
in the limit of massless neutrinos, one should adopt the w
defined formula~4.3!. It is necessary for us to examin
whether all experimental data are consistent or not with th
conditions as noted above.

The oscillation formulas usually employed are possi
modified due to various reasons, e.g., due to certain eff
coming from a more detailed quantum-mechanical or fi
theoretical description@1# reflecting real experimenta
situations,4 or due to the mixing of the known left-hande
neutrinos with some right-handed neutrinos which m
propagate in the bulk space including some extra dimens
@11#. Anyhow, it may be necessary to investigate the n
trino oscillation by applying the field theory in accordan
with respective experimental situations.
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APPENDIX A: µl INDEPENDENCE OF Pns\nr

Ì

UNDER THE CP-INVARIANCE CONDITION

As an example to see theml independence of Eq.~2.37!,
we can derive the equality

u$ar~kr;t !,as
†~kr;0!%u21u$br

†~kr;t !,as
†~kr;0!%u2

5u$ar
BV~kr;t !,as

BV†~kr;0!%u2

1u$br
BV~kr;t !,as

BV†~kr;0!%u2 ~A1!

under the reality condition ofZ. Herear
BV andbr

BV are the
operators employed in Ref.@4#,

S aF~kr;t !

bF
†~2kr;t ! D 5S rF~k! ilF~k!

ilF~k! rF~k!
D S aF

BV~kr;t !

bF
BV†~2kr;t !

D ,

~A2!

whererF(k) andlF(k) areNf3Nf diagonal matrices:

rF~k!5S re1~k! 0

rm2~k!

0 �

D ,

4Recently, along this line, a possible approach has been don
one of the present authors~T.Y.! and Ishikawa@10#.
01301
ll-
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lF~k!5S le1~k! 0

lm2~k!

0 �

D . ~A3!

For simplicity, we use the shortcut notations as

ar~kr;t !→ar~ t !,

br~kr;t !→br~ t !. ~A4!

Then,

$ar~ t !,as
†~0!%5H(

j
@zr j

1/2rr ja j~ t !

1 izr j
1/2lr jb j

†~ t !#,(
l

@zs l
1/2* rs la l

†~0!

2 izs l
1/2* ls lb l~0!#J

5(
j

zr j
1/2zs j

1/2* ~rr jrs je
2 iv j t1lr jls je

iv j t!

5Wsr~k;t !* ~A5!

and

$br
†~ t !,bs~0!%5(

j
zr j

1/2zs j
1/2* ~lr jls je

2 iv j t1rr jrs je
iv j t!

5Ws̄r̄~k;t !* ,

$br
†~ t !,as

†~0!%5(
j

zr j
1/2zs j

1/2* i ~lr jrs je
2 iv j t2rr jls je

iv j t!

5Wsr̄~k;t !* , ~A6!

$ar~ t !,bs~0!%5(
j

zr j
1/2zs j

1/2* i ~2rr jls je
2 iv j t

1lr jrs je
iv j t!5Ws̄r~k;t !* .

For the realZ1/2, there are some relations among these a
commutators as

$br
†~ t !,bs~0!%5$ar

†~ t !,as~0!%,

$ar~ t !,bs~0!%52$br~ t !,as~0!%,
~A7!

i.e.,

Ws̄r̄~k;t !* 5Wsr~k;t !, Ws̄r~k;t !* 52Wsr̄~k;t !.
~A8!

@These relations~A8! are also confirmed directly from Eqs
~2.11! by noting P†5(zr j

1/2rr j )
†5PT and L†5(zr j

1/2lr j )
†

5LT for real Z1/2.# By taking (e,1), (m,2),(t,3), . . . for
(r, j ) and (s,l ),

by
1-9
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LHS of Eq.~A1!5u$rr jar
BV~ t !1 ilr jbr

BV†~ t !,rs las
BV†~0!2 ils lbs

BV~0!%u2

1u$ ilr jar
BV~ t !1rr jbr

BV†~ t !,rs las
BV†~0!2 ils lbs

BV~0!%u2

5rs l
2 u$ar

BV~ t !,as
BV†~0!%u21ls l

2 u$br
BV†~ t !,bs

BV~0!%u21ls l
2 u$ar

BV~ t !,bs
BV~0!%u2

1rs l
2 u$br

BV†~ t !,as
BV†~0!%u21 irs lls l$ar

BV~ t !,as
BV†~0!%$ar

BV†~ t !,bs
BV†~0!%1H.c.

1 irs lls l$br
BV†~ t !,as

BV†~0!%$br
BV~ t !,bs

BV†~0!%1H.c. ~A9!

Employing Eqs.~A7!,

~A9 !5u$ar
BV~kr;t !,as

BV†~kr;0!%u21u$br
BV†~kr;t !,as

BV†~kr;0!%u2, ~A10!

leading to Eq.~A1!. It is needless to note thatPns→nr

(ret) (k;t) given by Eq.~3.8! is shown to be equal to that calculated for t

special choice ofml’s as above without requiring the reality ofZ1/2.
On the other hand, we obtain

the last side of Eq.~2.37!5(
i , j

@Ks jf jKr j* 1Ks j̄f j* Kr j̄
* #@Kr if i* Ks i* 1Kr ī f iKs ī

* #1(
i , j

@Ks jf jKr̄ j
* 1Ks j̄f j* Kr̄ j̄

* #@Kr̄ if i* Ks i*

1Kr̄ ī f iKs ī
* #

5(
i , j

zs j
1/2zr j

1/2* zr i
1/2zs i

1/2* @rs jrs ir j i f jf i* 1ls jls ir j i f j* f i1rs jls il j i f jf i2ls jrs il j i f j* f i* #.

~A11!

For the case of realZ1/2,

Eq. ~A11!5(
i , j

zs j
1/2zr j

1/2zr i
1/2zs i

1/2@r j i
2 ~f jf i* 1f j* f i !1l j i

2 ~f jf i1f j* f i* !#/2

5dsr22(
i , j

zs j
1/2zr j

1/2zr i
1/2zs i

1/2Fr j i
2 sin2S Dv j i

2
t D1l j i

2 sin2S v j1v i

2
t D G , ~A12!

and then we get aml-independent quantity explicitly.

APPENDIX B: NUMBER OPERATOR

Let us define the expectation values of the number operator of neutrinos,

^Ns ;kr;t&r2 f[ f^0~ t !uar~kr;t !Ns~ t50!ar
†~kr;t !u0~ t !& f , ~B1!

where

Ns~ t ![(
qW ,s

@ns~qs;t !2n̄s~2qs;t !#,

ns~qs;t ![as
†~qs;t !as~qs;t !,

n̄s~2qs;t ![bs
†~2qs;t !bs~2qs;t !, ~B2!

^ns~qs;0!;kr;t&r2 f[ f^0~ t !uar~kr;t !ns~qs;0!ar
†~kr;t !u0~ t !& f ,

^n̄s~2qs;0!;kr;t&r2 f[ f^0~ t !uar~kr;t !n̄s~2qs;0!ar
†~kr;t !u0~ t !& f .

From Eq.~2.10!,

ns~qs;0!5(
l,k

$Wsl~q;t !* al
†~qs;t !1Wsl̄~q;t !* bl~2qs;t !%$Wsk~q;t !ak~qs;t !1Wsk̄~q;t !bk

†~2qs;t !%,
013011-10
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^ns~qs;0!;kr;t&r2 f5uWsr~k;t !u2d rsd~kW ,qW !1(
l

uWsl̄~q;t !u2, ~B3!

n̄s~2qs;0!5(
l,k

$Ws̄l~q;t !al~qs;t !1Ws̄l̄~q;t !bl
†~2qs;t !%$Ws̄k~q;t !* ak

†~qs;t !1Ws̄k̄~q;t !* bk~2qs;t !%,

^n̄s~2qs;0!;kr;t&r2 f5(
l

uWs̄l~q;t !u22uWs̄r~k;t !u2d rsd~kW ,qW !. ~B4!

We have

^Ns ;kr;t&r2 f5uWsr~k;t !u21uWs̄r~k;t !u212(
qW ,l

@ uWsl̄~q;t !u22uWs̄l~q;t !u2#; ~B5!

then, fort>0,

^Ns ;kr;t&r2 f5Pns→nr

. ~k;t !1uWs̄r~k;t !u22uWsr̄~k;t !u212(
qW ,l

@ uWsl̄~q;t !u22uWs̄l~q;t !u2#, ~B6!
u
V

il

or
it

r-

f
-

from which we obtain, under the reality condition ofZ1/2 @or
Eq. ~A8!#,

^Ns ;kr;t&r2 f5Pns→nr

. ~k;t !, ~B7!

(
s

^Ns ;kr;t&r2 f51. ~B8!

Thus we see that, in order to derive the oscillation form
las forNf flavors as the generalization of those given by B
@5#, we have to assume the reality ofZ1/2, supported byT ~or
CP) invariance@8#.

APPENDIX C: Hf CONSTRUCTION

We make a remark on the construction of the flavor H
bert spaceHf in connection with the work of Giuntiet al.
@2#. In Ref. @2#, the Majorana neutrino field is considered f
simplicity, but we consider the Dirac one in accordance w
the representations as explained in Sec. II.

First of all, we consider the expansion of the flavo
neutrino fieldnr(x) as Eq.~1.1!:

nr~x!5(
j 51

Nf

zr j
1/2n j~x!

5
1

AV
(
j 51

Nf

zr j
1/2(

kW r

eikW•xW$uj~kr !a j~kr;t !

1v j~2kr !b j
†~2kr;t !%, ~C1!

wherer5e,m,t, . . . . With the two-component spinors o
spin eigenstatesw(k↑), the momentum-helicity eigensolu
tions are given as
01301
-

-

h

uj~k↑ !5S cj

sj
D ^ w~k↑ !, uj~k↓ !5S sj

cj
D ^ w~k↓ !,

v j~k↑ !5S 2sj

cj
D ^ w~k↓ !, v j~k↓ !5S cj

2sj
D ^ w~k↑ !,

~C2!

where

w~k↑ ![S a~kW !

b~kW !
D , w~k↓ ![S 2b* ~kW !

a* ~kW !
D , ~C3!

sW kW

ukW u
w~k,r !5H 11

21J w~k,r ! for5H ↑
↓J ; ~C4!

a(kW )5cos(q/2)e2 iw/2, b(kW )5sin(q/2)eiw/2 for kz
5k cos(q), kx1 iky5k sin(q)eiw; cj5cos(xj/2), sj5sin(xj/
2) with cot(xj)5ukWu/mj . By noting a(2kW )52 ib* (kW ) and
b(2kW )5 ia* (kW ), we have

v j~2k↑ !5S 2sj

cj
D ^ iw~k↑ !,

v j~2k↓ !5S cj

2sj
D ^ iw~k↓ !. ~C5!

Following the notation employed in Ref.@2#, cj and sj are
written ask j 1 andk j 2 , respectively;

k j 65Av j~k!6ukW u
2v j~k!

. ~C6!

Thus Eq.~C1! is expressed as
1-11



m

he
ical

m-
a-

KANJI FUJII, CHIKAGE HABE, AND TETSUO YABUKI PHYSICAL REVIEW D 64 013011
nr~x!5
1

AV
(

j
zr j

1/2(
kW

eikW•xWFa j~k↑;t !S k j 1

k j 2
D ^ w~k↑ !

1a j~k↓;t !S k j 2

k j 1
D ^ w~k↓ !1 ib j

†~2k↑;t !S 2k j 2

k j 1
D

^ w~k↑ !1 ib j
†~2k↓;t !S k j 1

2k j 2
D ^ w~k↓ !G . ~C7!

By defining further

Ar6~kr;t ![(
j

zr j
1/2a j~kr;t !k j 6 ,

Br6
† ~2kr;t ![6 i(

j
zr j

1/2b j
†~2kr;t !k j 6 , ~C8!

Eq. ~C7! is rewritten as

nr~x!5
1

AV
(

kW
eikW•xWF S Ar1~k↑;t !

Ar2~k↑;t ! D ^ w~k↑ !

1S Ar2~k↓;t !

Ar1~k↓;t ! D ^ w~k↓ !1S Br2
† ~2k↑;t !

Br1
† ~2k↑;t !

D ^ w~k↑ !

1S Br1
† ~2k↓;t !

Br2
† ~2k↓;t !

D ^ w~k↓ !G . ~C9!

From the canonical commutation relations at equal ti
amonga j , a j

† , b j , andb j
† , we obtain

$As6~kr;t !,Ar6
† ~qs;t !%5$Br6~kr;t !,Bs6

† ~qs;t !%

5(
j

zs j
1/2zr j

1/2*
v j~k!6ukW u

2v j~k!
d rsd~kW ,qW !,

$As6~kr;t !,Ar7
† ~qs;t !%5$Br6~kr;t !,Bs7

† ~qs;t !%

5(
j

zs j
1/2zr j

1/2*
umj u

2v j~k!
d rsd~kW ,qW !,

~C10!

others50,

but these are not the canonical commutation relations
equal time amongAs6 , As6

† , Bs6 , and Bs6
† , and we

cannot construct the flavor Hilbert spaceHf with these op-
erators.

In the extremely relativistic limit, Eq.~C10! reduces to

$As1~kr;t !,Ar1
† ~qs;t !%→dsrd rsd~kW ,qW !,

$Bs1~kr;t !,Br1
† ~qs;t !%→dsrd rsd~kW ,qW !,

~C11!

others50.
01301
e

at

Then the high-momentum part of the RHS of Eq.~C9! be-
comes

nr~x!→ 1

AV
(

kW
eikW•xWH S Ar1~k↑;t !

Br1
† ~2k↑;t ! D ^ w~k↑ !

1S Br1
† ~2k↓;t !

Ar1~k↓;t !
D ^ w~k↓ !J , ~C12!

with

Ar1~kr;t !5(
j

zr j
1/2a j~kr;t !,

Br1
† ~2kr;t !5(

j
zr j

1/2b j
†~2kr;t !. ~C13!

If we follow the assertion in Ref.@2#, we can construct the
Hilbert spaceHf only in the extremely relativistic limit. This
assertion, however, is self-evident, since in this limit t
mass differences among neutrinos do not play any phys
role. Further, the transformation~C8! is not canonical, and
the number of operators„Ar6(kr;t),Br6

† (2kr;t)… is twice
larger than that of„a j (kr;t),b j

†(2kr;t)…. Thus, the assertion
against theHf construction seems not appropriate.

Here we show an example which has the canonical co
mutation relations and the possibility of constructing the fl
vor Hilbert spaceHf .

We define a kind of Bogolyubov transformation by

Ãr~kr;t ![(
j

zr j
1/2@a j~kr;t !k j 12 ib j

†~2kr;t !k j 2#,

B̃r
†~2kr;t ![(

j
zr j

1/2@2 ia j~kr;t !k j 21b j
†~2kr;t !k j 1#.

~C14!

We have canonical communication relations as

$Ãr~kr;t !,Ãr
†~qs;t !%5d rsd~kW ,qW !

5$B̃r~2kr;t !,B̃r
†~2qs;t !%,

others50, ~C15!

and in this case the neutrino field is expanded as

nr~x!5
1

AV
(

kW
eikW•xWH F Ãr~k↑;t !S 1

0D 1 iB̃r
†~2k↑;t !S 0

1D G
^ w~k↑ !1F Ãr~k↓;t !S 0

1D 1 iB̃r
†~2k↓;t !S 1

0D G
^ w~k↓ !J , ~C16!
1-12
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which corresponds to the plane-wave expansion withml

50. Then physical quantities, which should be$ml% inde-
pendent, are allowed to be calculated by employing the
pansion ~C16! with Eq. ~C14!; the quantities such a
D

01301
x-

rs j (k)5cos@(xs2xj)/2# and ls j (k)5sin@(xs2xj)/2# are
now replaced by cos(xj/2)5cj and sin(2xj/2)52sj ; thus
the matrices@P(k)r j # and @L(k)r j # appearing inK(k) are
replaced by@zr j

1/2r j (k)# and @2zr j
1/2l j (k)#.
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