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Remarks on flavor-neutrino propagators and oscillation formulas
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We examine the general structure of the formulas of neutrino oscillations proposed by Blasone and Vitiello
(BV). Reconstructing their formulas with the retarded propagators of the flavor-neutrino fields for the case of
many flavors, we can get easily the formulas which satisfy the suitable boundary conditions and are indepen-
dent of arbitrary mass parametgys,}, as obtained by BV for the case of two flavors. In this two-flavor case,
our formulas reduce to those obtained by BV unddriavariance condition. Furthermore, the reconstructed
probabilities are shown to coincide with those derived with recourse to the mass Hilbert’épaghich is
unitarily inequivalent to the flavor Hilbert spadé;. Such a situation is not found in the corresponding
construction in the manner of BV. Then the new factors in BV’s formulas, which modify the usual oscillation
formulas, are not the trace of the flavor Hilbert space construction, but come from Bogolyubov transformation
among the operators of spémeutrinos with different masses.
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I. PURPOSE AND FUNDAMENTAL ASSUMPTION ing to the neutrino oscillation formulas, which satisfy the
necessary boundary conditions and also are independent of

The field theoretical descriptions of neutrino oscillationsthe mass parameters of flavor neutrinos even when we start
have been examined from various viewpoifits-6]. When  Wwith the theory including such arbitrary parameters.
we want to reformulate straightforwardly, in the framework ~ The purpose of the present paper is to present clearly, on
of field theory, the familiar quantum-mechanical derivation@ general basis of the field theory, the logical feature of the
of the neutrino oscillation formuld7], we encounter the reémark given by BV in Ref[5]. The considerations devel-
problem of how to define field theoretically ongn- oped in the foIIowmg are based on th&etup: The relatl_on
ti)neutrino state with a definite flavor. Giumti al.[2] gave a  Of the flavor-neutrino field operator,(x) to the neutrino
negative answer to this problem on the basis of the observdi€ld operatorvj(x) is expressed as
tion that the Hilbert space of the weak eigenstates with defi- N;
nite flavors can be constructed approximately only in ex- v (X)=E 21/_21/_()()'
tremely relativistic casé.In Ref. [3], the authors asserted g s
that the flavor(or weak as well as the mass Hilbert spaces
H; and H,, can be really constructed by employing the here,v;(x) satisfies the free Dirac equation with a definite
Bogolyubov transformation among creation and annihilationMassm ,
operators of the flavor and mass eigenstates of neutrinos. The
unitary inequivalence between those two Hilbert spaces leads
to a certain effect in the neutrino oscillation formulas, whichand the matrixz?= (212 satisfiess
is to be observed in the low-energy experiment. Pl i

=the number of flavors.

In order to determine the coefficients appearing in the . L . .
Bogolyubov transformation mentioned above, the masses of The linear combinationél.1) are determined so as to di-

the electron- and muon-neutrings the two-flavor case agoqalize the mass term.in the Lagrangidn.other words,

were taken in Ref.3] to be the mass eigenvalueg andm,, this IS SO as to diagonalize the pole par_t of '.[he propagator

respectively. To this prescription, the present authors gave E;a.trlx constructed from _t_he flavor heutrino field operators

criticism [4]. Its essence lies in the point that the masses o J; when only the repetitions of the b"'!‘e?r'm?zs?"ype n-

flavor neutrinos are inherently arbitrary and such arbitrari-craction are taken Into aC(_:ount,_the un_ltarltyZd IS c.’b'

ness should not remain in any observed quantities; thus, it i§1|n§d[4]. II,ZCP (orT) invariance is required, we obtain the

unphysical that the oscillation formulas of neutrinos dependeallty of Z*"[8]] .

on the arbitrarily chosen mass parameters. Because of_the above setup, we obtaindfmimber prop-
In connection with this criticisni4], Blasone and Vitiello erty of the anticommutators

(BV) [5] have remarked that there exist some quantities lead-

P=€ U, T, ...} 1.9

N¢ _1/2_1/2% .
2125/ Zsj = Opos Ny

{v,(x),v (y)}=c number (1.3
and
This assertion seems to be not so convincing, the reason for

which will be explained in Appendix C. {v,(X),v,(y)}=0. (1.9
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Further, the canonical commutation relations among thevhere

flavor-neutrino field operators at an equal time are consis- "
tently obtained ZV2=[z7), ZzY°zV?t=; (2.2)

v v villy v VT the concrete form o6 (x°) in the two-flavor case is given by
60 6(Y. 0= 8,000 =y), - {w,(X1),v4(y,0} (10,’5) BV [3]. Let us expand the neutrino field in terms of helicity-
' momentum eigenfunctions as

due to the unitarity oZY? and due to Eq(1.4), respectively.
Therefore, from Eq(1.1) we see that V(%)= i 2 {ua(kr)aa(kr't)e”z"z
_ e '
(vad{v,(x),v,(y)}|vag (1.6

+ua(kr) Bl(kr;t)e kX
does not depend on the choice of the vacuum state when this
state is equally normalized gsadvacy=1. In other words, _ 1

ik X .
the expectation value N 2 € Xuy(kr)ay(kr;t)

kr
{0 {7, (), v,(Y)}O(T))s, 1.7 +oa(—kn)BL(—krit)}, 2.3

where|0(T)); is the vacuum statéat an arbitrary timer) ~ Where in the Kramers representation
belonging to the flavor Hilbert spadé; specified by a set of . B _ B
the mass parametefgie, i, , - . .} ={m,}, is equal to (iK+ua)ua(kr)=0, (iK—pua)va(kr)=0,

(O 2,00, (VO s [0 meHm: (1.8 ko= i+ u=wq(K),

this equality holds irrespectively of bofhu,} and the time Uz (kr)up(ks)=v3 (—kr)vp(—ks)=pap(K) ds.

T, since thec number in Eq(1.3) depends ofm;} but not (2.4

on {u,} due to the(Setup. (As to the definitions of the * CLer_ kg .

vacuum states, see the next secfion. Ua (knvp(—ks)=v, (=Kkr)up(ks) =iXap(k) s,
In the following sections, we will explain that these facts

described above provide a general field theoretical basis for pab(k)zcos( Xa_Xb),

understanding the implications included in the remark given 2

in Ref. [5]. .
In Sec. Il, we summarize the essence of Ré&f. after [ xa=xb K|

giving the necessary definitions of the notation and relations. Nap(K)=sin ——, COtXﬁ:E'

In Sec. Il we make clear, on the basis of t{®etup, the

general implications of BV's remarks]. Section IV is de-  [For the case that,(x) represents the mass eigenfieldx),
voted to a summarizing discussion. In the Appendixes, relye write u; asm; . Note that, fora=\(=e,u, ...), u, is

evant mathematical details are given. an arbitrarily fixed parameté#]. As to the concrete forms of
uy(kr) andv(kr), see Appendix G.Here we use the nota-
II. REFORMULATION OF BV’'s WORK tion

AND RELATED REMARK
aq(kr;t) Be(—kr;t)

A. Notation and definitions
! i ap(kr;t)y=| ayknt) |, Be(—krt)=| Bu(—krt) |,

We summarize the notation and definitions of the related
guantities in accordance with Ré#].
The relation(1.1) between the flavor eigenfields: and

the mass eigenfields,, is expressed by the transformation ey (kr;t) Bi(—kr;t)

as ap(krit)=| axkrit) |, Bu(—krt)=| Ba—kr;t)
Ve(x) . V]_(X) i . : (25)

ve(x)= V#FX) =G 1(x9 szX) G(x%) We have
212 L2 1(X) ( c:F(kr;t.) ): . t)( oTzM(kr;t.) )Kt
=| 23 73 va(X) | =2y (), Br(—krit) Bli(—krit)

. k( ap(kr;t) ) -
2 RV AE @8
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with Wkt = W, (kit) W (k;t) . 214
0 ( P(k) iA(k)) KoK (0 Woo(kit) W o(K;t)
=1. , =1,
iA(k)  P(k) From Egs.(2.11), we have
P(k)=[P(K),j1=[Z57p,(K)1, W, (Kit)* =W (k;t),
A=z, (K)T. 2.7 Wk t)* =W (k;t),
K is independent of the timg but depends, of course, on W (K t)* =W, (K;t). (2.15
{m,} and[zY?]; other than|k|, and we dropped such a o ;
dependence for simplicity. The relation between the vacuunPU€ t0 the unitarity oZZ'?, we have
Ztsatesm(t))f e H; and|0) e H,, is expressed with thik (t) Wik T— )Wk T) =Wk =) =WH(k:t), (216
10()) =K (t)~10) 2.8 in addition to the unitarity ofV(k;t),
m- .
. W(k;HW'(k;t)=1. 2.1
Here, these vacua are defined ftk andr as (kWi (219
ap(kr;)|0(t))s= Be(kr;t)|0(t));=0, B. BV's results
(Kr:0)|0Y= By (KF: )] 0)y=0 (2.9 Let us review briefly the main contents of BV's papbt.
an ) m= PMm ) m— Y, .

with the normalization;(O(t)|0(t) )= n(0|0),=1.
From Eq.(2.6), we obtain the relations connecting the

creation and annihilation operators with different times, ex-

pressed as
ap(kr;0) ap(kr;0)
(ﬁl(—kr;m):’C(k)<ﬁb(—kr;o>)
ag(kr;t)
=W(k”)</3£(—kr:t>)’ (210
with

W(k;t)=K(K)D(k;t) K T(k)
PoPT+Ap*AT

_( i(—P¢AT+A¢*PT))
li(ApPT=Pg*AT)  ApAT+Pg*PT
¢(t) eiwlt 0
) — _ i wot
q’(k’”‘( 0 ¢T<t>)’ S
2.1
Therefore we obtain
ap(kr;0) N _ ap(kr;t)
Ol gl [ HTWHY ﬂ&(—kr:t))
(2.12
or
(aF(kr;t)) PP (aM(kr;O)>
K(0) BL(—krit) K~1(0)=W'(k;t) Bl (—kr0))
(2.13

We write the matrix elements af/(k;t) as

For the two-flavor case, we consider that an initial electron

neutrino evolvegoscillates in time with the two relevant
propagatorgfor t=0)

iG oo X,1;y,00= ({0(0)| ve(X,1) ve(y,0)[0(0))s,
(2.18

iGo(X,1;Y,00= {0(0)| v, (X,1) ve(y,0)[0(0) ) .
(2.19

By employing their Fourier components

1 - - . . -
1 . _ . . 7k _
|G;,(k,t)=vJ de dyiG,(x,t;y,00e KY),

p (and o)=¢e,u, (2.20
we define
Prodkit)=i ul(kn)Gy(k;t) yue(kr)
={ae(kr;t), al(kr;0)}, (2.21)
Po(k;t)=i v (—kr)GZykit) Y ug(kr)
={BL(—kr;1),al(kr;0)}, (2.22
P eo(kit)=iul (kNG o(k;t) youe(kr)
={a,(kr;t),al(kr;0)}, (2.23
Pki)=i vl (—KNGo(kit) Youe(kr)
={Bl(—kr;t),al(kr;0)}. (2.24

Then the quantities defined by

P (KD =Pee ki) 2+ | Po(kit)]?,
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P, ., (k;t)E|¢Le(k;t)|2+|7~>L (k)2 (2.25 reason why the al_)ove consequences are obtained. With this
e ne aim, we first rewrite the above consequences in the many-
flavor case, which is given in the next subsection, and will
consider in Sec. Il the structure of the retarded propagators
Bt flavor-neutrino fields.
Before entering the next subsection, it may be worthwhile
to make a remark on the quantities appearing in E21)—

Py (Kit=0)= 5, > Py, (K)=1, (226  (2.24. The definitions ofPq(k;t) and P_(k;t) employed
P by BV [5] seem to be somewhat misleading. These quantities
and also are shown to beu independent.” Therefore, the &€ introduced only for convenience, and should not be un-

special choice of the mass parameters in R&f. w.=m; derstood as representing transitions such as neutrino-
and . ,=m,, is justified and free from the criticism of Ref antineutrino transitions to occur in the neutrino oscillation
I ! .

are seen to be interpreted as the observable oscillation pro
abilities in the sense that these quantities satisfy the nece
sary boundary conditions as

[4]. process. It is helpful for us to note that each of
The resultant formulas of the probabilities are {a,(kr;t),al(kr;0)} and{B](—kr;t),af(kr;0)} has only a
nonvanishing term proportional t({)aP(kr;O),af,(kr;O)}.
P, (kit)=1-siP(20) o2 (K)sir? wz(k);wl(k) t) [Conczetely, see Eq$2.35).] Further we note that we obtain
IG;(r(X!tlyvo)E f<0(o)| vp(xvt)v(r(y10)|0(o)>fzo
k) + k 2.3
+)\§2(k)sin2(w2( )2w1( )t”, . . ) (2.32
due to{a,(gs;t),B,(—kr;0)}={B,(—as;t),B,(—kr;0)}

Ppew#(k;t)=1— Pyeﬂe(k;t)- (2.27 =0 obtained from Eq(1.4) or (2.10.

) o ) C. Rewriting BV’s formulas in the many-flavor case
[ 6 is the mixing angle in the two flavor case; see E;40.]
In the framework of Ref[5], the new factorg?,=1—\%,
appearing in the above oscillation formulas are thought to b

In order to study the general structures of BV’s results, let
JIS define the quantity, in the many-flavor case,

a result of the unitary inequivalence betwekn and H,,. N v TP C N O

It is pointed out further by B\{5] that the quantities in IgP“(X’t’y’o)_e(t)f<0(0)|V”(X’t)v"(y’o)|0(0)>f’
Eq. (2.27 coincide with the expectation values of the charge p (and o)=e,u,7, ... . (2.33
operators o

[iG,,(X,0)y,0)=lim_ ,0iG,,(X,t;y,0).] One can extract
Qo_(t:O)EE [aZ(kr;O)ag(kr;O) the component with the momentuknfrom this quantity as
K,r

. > kt =E d—» d»_ > —)t.—)o —iIZ()Z—);)
= Bi(—Kkr;0)B,(—kr;0)], 1G,,(k)=5 | dx| dyig  (xty,0e
o=e,u, (2.28 = ¢9(t)f<0(0)|2r [{a,(kr;t),al(kr;0)}
on the electron-neutrino state at a time

m T _er- t .
[ve(krit))=ae(kr;t)|0(t))s; (2.29 XU KBk, ar(kri0))

xUp(—kr)uU(kr)]|0(0))f. (2.39
From Eq.(2.10, we obtain

we have

<Ve(kr;t)|Qa(0)|Ve(kr;t)>

—[{a,(kr;0),al(kr;t)}|2 {a,,(kr;t),al(kr:o)}=§ {IW! (k;t),(kr;0)
+1{B1(—kr;0),al(kr;t)}|? + W' ki) BI(—kr;0)], el (kr;0)}
— PVeHV(r(k;t)’ (2.30 ZWZU(k;t) :ng(k;t)*,

#0(1)|Q,(0)[0(t))¢=0,
(ve(kr;1)[[Qe(0) +Q,(0)]we(kr;t))=1. (2.31)

Those consequences of R€hk| summarized above are
confirmed by straightforward calculations with the use of the =W (kt) =W, (k;t)*. (2.35
concrete form ofw(k;t) in the two-flavor case. It seems, P 7
however, necessary for us to make clear a sifipigeneral Thusg;,(k;t) is given by

{BY(—kr;1),al(kr;0)} =2 {[W., (k;t)a,(kr;0)

+W(kit) BH(—kr;0)],af (kr;0)}

013011-4
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The propagator which is constructed &fy, correspond-

G 51 =0(1) 2 [Woy(K;)* U, (kr)ug(kr) ing to Eq.(2.33 may be
+ W, (k;t)* v, (—kru,(kn].  (2.36 iS,,(x,X%y,y0) = 0(x°—y°) (0] v,(X) v,(¥)| O}
With this quantity, we can define, fae=0, _2 S22 0(x°—y°)

2pj Zaj

Hy(kt)——Tr[Q (kDG (k)]

pa

X w0l () (YD), (2.42

_ . -2
_|{%(kr*t)’“o(kr'o)}| which is a part of the Feynman propagato®g,,(x—Y)

+|{,8£(—kr;t),al(kr;0)}|2 =m<O|T(vp(x)7U(y))|0>m. By employing the quantity, in
the same way as the case of the previous section,
=W, (k;i)* >+ W, (k) * %, (2.37)

which is equal to Eq(2.27) for the two-flavor case(Here, |S> (k;t)= _f dxf dy|S (x,t,y 0)e~ ik(x— y)
“Tr” means to take the trace with respect to the indices of

Dirac spinors. Along the same line as BV’s which has been (2.43
described in the previous subsection, let us call this quantity

the probability, since it satisfies automatically the normaliza-with IS S(k;t= 0)—I|mH+0|S ,(k;t), we obtain, fort=0,
tion as

1
2 Py (kiD= (2.38 I, ., (ki)=3TrlS,, (k) S,/ (kit)]

_ 1/ 1/2 1/2 1/2 2 W~ ;
due to the unitarity ofW(k;t) (or Z¥?) and the boundary _iEj Zoi 2oy 2y 2y py et
conditions as '
(2.44
(k;it=0)=96,, (2.39

I/‘)V

Note that this formula does not include the term proportional

due to the canonical communication relation at an equal tim& €~ eitet Although 1T, _, (k;it)=1 is satisfied,

or the property oW(k;t=0)=1. ij (k;t) does not satisfy the |n|t|al conditions as is eas-
We cannot see straightforwardly that the right-hand sideqy seen in the two-flavor case,

(RHS’s) of Eq. (2.37) are independent dfu,}. Such inde-

pendence in the many-flavor case is shown under the reality

condition onz*?=[z%?]. This condition is implicitly used in

V—?V

t—+0

1
- (kt) — 1—§sin2(2a)>\§2¢1,

Ref.[4], where the two-flavor case is examined; in this case, Ve Ve
cosf sind
12_ _ . (2.40 t—+01
—sing  cosd M, (ki) — 5sif(20)\3#0, (2.45

Under the condition of reaf'?, P> _ (k;t) is also equal

VHV

to the expectation value of the number operator: and then is different frO”Pfﬂ (k;t) given in Sec. IIC.
One may say that this d|fference means the necessity of
(N,,;kr;t>p,fzf<0(t)|ap(kr;t)Ng(t=0)a;(kr;t)|0(t)>f. the flavor Hilbert spaceH;. We will examine in the next

(2.4) section whether it is true or not.

Hereafter we use the notatidi,(t) instead ofQ,(t). Ill. RETARDED KERNEL AND AMPLITUDE
Detailed proofs of thg «,} independence of Eq2.37) _
and the equality of the expectation value of the number op- Let us consider two types of the retarded propagators de-

erator toP,, v (kit) are given in Appendixes A and B. fined onH; andH,,, respectively, as
1G0E0(X,6Y,0= 0(1)1(0(0) [{,(X,1), »,(¥,0)}|0(0))
D. Corresponding propagator onH,, ? ( ¥:0) ()f< ( )H p( hrely )H ( )>(f3_1)

It may be useful to note that the corresponding propagator
defined onH, does not have the same properties as

ig,ir(i,t;i,o)- ZSimilar discussions can be found in RES].

013011-5
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iSUEY(X,1;y,0)= (1) ( Ol{ v, (X, 1), (V.0 H O,

where these quantities at the tirre 0 are defined by

lim iGUY(x,t;y,0),

po
t—+0

lim isUe9(x,t;y,0. (3.9

t—+0

As a result of thec-number property of the anticommutator,
thek components of these quantities are equal to each®ther

as

|g§,’et)(k,t)=isglft)(lz,t); (3.9

PHYSICAL REVIEW D 64 013011

P, ()= 4 3 Tl (kri0), a(kr;0)}

+{BI(—kr;t), el (kr;0)}
+[{a,(kr;t),B,(—kr;0)}?
+{BI(—kr;1), B,(—kr;0)}|]

1 2 2 — 2
= S LWo (KD |24 [Wo (ki) 2+ [ Wi (i)

+ W (kit)]2], 3.9

due to Eq.(2.10 [or due to Eqs(A5) and(A6)]. Clearly we
can confirm the following properties of this quantity:
(1) Fundamentally due to the canonical commutation re-

therefore, one obtains the oscillation formula, which is inde4ation (1.5),

pendent of ., }, as will be seen concretely in the following.

A. Case ofiG E0(x,1)

Thek components ofG*%(x—y,t) defined as

(ret)(k t)__J dXJ dylg(ret)(x t: Y, 0)e—|kx |ky
(3.5

become

ig(e(k;t)= ot 2[{a (kr;t),af(kr;0)bu,(kr)u,(kr)

+H{BI(—kr;t),al(kr;0)}v,(—kr)u,(kr)
+{a,(kr;1),B,(—kr;0)}u,(kr)v(—kr)
H{BH( k1), B,(—kr;0)}

X v ,(—Krv,(—kr)]. (3.6

With this quantity, we can define

P(ret)

VﬁV

(k;t)= Tr[g“e‘)(kt)g“*“’T k)], (3.7

and call it the probability on the basis of its properties, simi-
lar to Egs.(2.38 and(2.39, as explained below. Fde=0,

we obtain

3We obtain not only foff=0 but also for an arbitrary tim&:

KO, 0, 76,00 HO(T)) ¢ = m{ O[{ ¥, (X,1), (Y, 0)}|O)

where the vacuum stat¢8(T)); and|0),, are equally normalized.

Thus, the quantity

GU(x,1;y,0:T)=(O(T)[{v,(X,1), v, (y, 0} O(T))
does not depend on.

PeY (kit=0)=35,, (3.9

VHV

(2) due to the unitarity oZ*? [or W(k;t)],

> P‘JQQV (kit)=1; (3.10

P

(3) from Eq.(2.15,
PO, (ki) =PUY, (kit); (3.11

(4) under the condition of re&*?[i.e., due to Eqs(A8)]

P(ret)

V—’V

(KD =[W, (Kit) |2+ [ W (k1)1 = P

V—*V

(k;t).
(3.12

B. Case ofiS{E9(x,1)

The k components of SU*%(x—y,t) defined as

is{e(k;t ——f dxf dyiS{EV(x,t;y,00e” ikxgiky
(3.13

become

isTV(k;t)=0(t) >, 2Y22Y%* [{a;(kr;t), o] (kr;0)}
J,r

pj Zoj
xuj(knuj(kn) +{B](—kr;t), B;(—kr;0)}
Xv;(—kr)v;(—kr)]. (3.14

With this quantity we can define

{0, (k)= Tr[s“et)(k st (kit)],

V*)V

(3.19

and call it the probability due to the same reasoning as be-
fore. Fort=0, we obtain

013011-6
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1 . A
i, (k=7 > 77z, 2 22 Tr{[uj(kn)uf (kr)e i+ oj(—kr)of(—kr)e'!']

1 1
Vv T pj “oj p T

X [ui(knul(kne'+vi(—knu](—kre™ ]}

1

_ - 1/2_,1/2% ,1/2% _1/; 2 —i(w;— o)t 2 —i(w; + o)t
=3 2 iz 2 zalpf (06T i ee) (k) (e )]

2

=58,,—2>, zi?zi’f*zzfz*zi’f[pmk)sinZ( t +xﬁ-<k>sin2(“” “)'tﬂzp“ef’ (kit), (3.19
jil p

2 VU_—> 14

and this is equal to Eq2.27) in the two-flavor case. Further- pased on théSetup, and that the new factors in the BV'’s
more, we have the properties of this quantity, formulas, which are different from the usual oscillation for-
mulas, are not the trace of the flavor Hilbert space construc-
tion, but come from the field theoretical treatment of mixing
fields using Bogolyubov transformation. In the present case,
(2) 2 e (kt)=1, (3.18 the coefficients (_)f the new factors are fixed by the spin-
Vo Vp property of neutrino.
The interrelationship among the relevant quantities is

(3) 11V (k;t)=T1%Y  (k;t), (3.19  summarized in Fig. 1.
oo b Let us make some remarks as follows. Concerning the

due to essentially the same reasons mentioned for derivingPnstruction of 7y, we remark in Appendix C that we

(1) 1, (kit=0)=35,,, (3.17

—
VU' 14

p

Egs.(3.9), (3.10, and(3.11. As expected cannot necessarily eliminate the possibility to constfd¢t
' ' ' within the extent of the paper by Giuret al.[2]. According
(4) 1100 (k;t)—P> _ (k:t) for the real Y2 to the context of the present paper, the constructioiofs
o o not always excluded, since there are some quantities, such as
given explicitly by Eq.(A12). (0(0)[{¥,(x),¥4(y)}|0(0)), which are obtained on the basis

of H,, and equal to ones obtained on the basig{pf For the
quantities constructed oH;, {u,} independence seems to
suggest that there is no difference of those quantities from
We have generalized BV's formuldg.27), Pye_,Vp(k;t), the ones constructed oK,,. It is a future task to make

IV. DISCUSSION AND FINAL REMARKS

to P> __ (k:t) of the many-flavor case; as a result of the clearer the field theoretical basis of such an anticipation.
e ) In the present paper, we examined only the contributions
12 > . ,
unitarity of 2=, thesepwﬁvp(k't) satisfy the boundary con- from the propagator by extracting a part of neutrino propa-

ditions which are required for the probability interpretation, gation from the full transition amplitudes corresponding to
but are{u,} dependent generally. With those formulas, it various neutrino experiments. The relation between the os-
has been shown that they dre, } independent and equal to cillation probability discussed above and the full transition
the expectation values of the number operators for the regrobability is not clear yet, and we cannot decide which
Z'2 which is of course the case of BV, i.e., the two-flavor propagator one should use to calculate the oscillation prob-
case. At the same time, we have shown that the correspongpility. It may be a meaningful fact thﬂ(vfegv (k;t) satis-

ing quantitiesﬂfﬁ ,,P(k;t) constructed ofH,,, cannot satisfy oo

the boundary conditions.

... We give a comment here on the relationship between our
(rg)n the other hand, we cogld construct the.other quantmeﬁq_ (3.16 and the usual oscillation probabilif@]. We get
P (k;t) by employing the anticommutators -

Yo Vp ~ Eq. (2.44) [Eq. (2.37)] by dropping the contribution of, v,
{r,(6X0), vl (Y. YO} thesep(yrfﬂyp(k:t) satisfy the bound-  from Eg.(3.2) [Eq. (3.1)]. By settingp;;=1 obtained in the
ary conditions stated above, due to the unitaritg8f. They ~ extremely relativistic limit and replacing the timewith the
are automatically {u,} independent because of the distance traveled by the neutrino, BQ-44) [Eq. (2.37) or
{ wx}-independene-number property of the anticommutators (A11)] goes to the usual oscillation probability. Further,
and are equal to the corresponding quantiiB&®? , (k;t) there is an interesting difference between our framework and

aor the usual oscillation probability concerningP violation.
The equalitieq3.11) and(3.19 are obtained irrespective of
T invariance. This means that the difference between
the realz*? and to BV's formulask, ., (kit) for the two-  prop(,—»,) and Probg,—v,) as aCP-violation effect
flavor case. Then we conclude that fhe } independence of cannot be observed in the neutrino oscillation in the present
the “oscillation formulas” asserted by BY5] is essentially  framework. Thus, if this difference is confirmed in the ex-

fies the boundary conditions whild p(k;t) does not.

VeV,

constructed ort,,.
Those quantitie®(®"  (k:t) reduce toP> _ (k;t) for
3 p

VU*?V I/U_*)V
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<Setup> >
m

a

" (1— (M, +p,)?

=Y, 2 (@) = e .

2
(Mp— )
m2

m

where (8 + mj)v;(z) =0, V2242 = T X ( 1- ; 4.1)

{p(2). vi(y)} :c-number,
= here, f, is the pion decay constant defined by
satistying {v,(& 1), v} (7.£)} = 8,0 8(Z - 9) (0|AL(0)| 7" (p))=if zpa, Au(X)= the weak axial vector
current such asd(x) YaVsU(X), (fr)exp=131 MeV; Gg
=(10" 5/Mp) is the weak Fermi coupling constatihclud-
ing the Cabbibo-Kobayashi-Maskawa angie, and ., are
the masses df, andv,, respectively. Fop,=0, Eq.(4.1)

= z'g},?”(f,t; 7,0) on Hy = iS;(,ZEt)(fA,t; 7,0} on H,,

reduces to
= zgpge”(k t) = zs(mt (k:t)
I‘ZG2 m2\ 2
re. Te + + P [ .
P, (kit) =TI, (kst); P(m" =l v,)= . m m,| 1— poy i (4.2
aa

=1 (i) =bspat t=0, . . . .
7 then, we obtain numerical values which are in good agree-

(1) (the sum with respect to p ) =1, ment with the experimental ones.

The calculation above is based on the existence of
asymptotic flavor neutrino fields with definite masses. But
| reality of Z1/2 we cannot regard the flavor neutrino fields(x)’s to define

(13¢) {pa}-independent.

the asymptotic fields, leading to time-independent creation
I, (k;t); S . .. .
P (kt) v and annihilation operators with definite four-momenta, since
T in accordance with{Setup with mass differences among
| two flavor| 7| m;’s, each a,(kr;t) and BT( kr;t) in the expansion of
(i) #bgpat t=0,
Py, (k1) BY ) v,(X) does not have a S|mple time dependence, since
(1) (the sum with respect to p ) = 1. p(kl' t)=2, {IC(k)p]aJ(kr t) +/C(k)p1,3] (—kr;t)}. Con-

trarily, each ofa;(kr;t) and,BJ( kr;t) in the expansion of
FIG. 1. Without the reality of Z'2 wa(k;t) v;(X) hasaS|mpIe time dependence as(&xjw;(k)t) with
#(Nikr;t),—¢, and both Py _, (kit) and (N, kr; 0, s are wj(k)=(kK*+m?)Y2 thus we can construct the Hilbert
{m} dependent foN;=3. space H,,, independently of the time, by employing
the operators o (kr)=a](kr;t)e '“i®" and ,8]( kr)
periments to be nonzero, the present approach, in which onlyég (—kr;t)e” ij(k)t The probabilitiesP (7 * _>| v,) are
the neutrino propagation part is taken into consideration, begwen by
comes excluded.
Here it seems worthy to remark on the treatment of low-
energy weak processes W|th accompanying neutrinos, suqh(ﬂ _>| v,)

as "=l v,, u"—e’vr,, and n—pev,. In the

lowest-order Ealcula‘uon with respect to the weak interaction, ~ f G2 1212 mj2 (mi— mj2)2

each participating flavor neutrino has been treated as an m m E |Z m2 m2m?
asymptotic field with a definite mass nearly equal to zero, p mr

and we have obtained important information on the structure (m,+m;)2 (m, —m;)? 172

of the weak interactions. As an illustration, we examine the X ( £ > ! £ > ' , (4.3
decay probabilities ofn*—»lp ,» P=Mm,€. By employing M m;

the usualV—A weak interaction, we have the decay prob-

abilities for 7" —1 v, _ _ _ .
where the summatiox| is performed ovelj’s which are

allowed under four-momentum conservation. We see that

2

262 P (m —u 2)2 Eqg. (4.3 reduces to Eq(4.2), when (1) the masses of the
P(m"—1 v,)= g ﬁmi I+ =S ——5——|m, relevant neutrinos are negligibly small, and even if a neu-
™ my, m'n'mp trino has a non-negligible mass, the corresponding mixing
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angle|z7 is very small, and2) =/|z5%?=1 holds almost Nes(K) 0
precisely. _

Though Egs(4.1) and (4.3 give the same formulé.2) Me(k)= M u2(K) ' (A3)
in the limit of massless neutrinos, one should adopt the well- 0 ’

defined formula(4.3). It is necessary for us to examine o .
whether all experimental data are consistent or not with thosEOT Simplicity, we use the shortcut notations as
conditions as noted above. )
The oscillation formulas usually employed are possibly ap(Krit) — a, (1),
modified due to various reasons, e.g., due to certain effects )
coming from a more detailed quantum-mechanical or field Bo(krit)— B,(1). (A4)
theoretical description[1] reflecting real experimental Then
situations? or due to the mixing of the known left-handed '
neutrinos with some right-handed neutrinos which may
propagate in the bulk space including some extra dimensions{ap(t),af,(O)}z [ E [Z%prj a;(t)
[11]. Anyhow, it may be necessary to investigate the neu- J
trino oscillation by applying the field theory in accordance
with respective experimental situations. +i2$§2)\pj,8;r(t)],§|: [z po1a (0)
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APPENDIX A: i, INDEPENDENCE OF P} _, . O 12 1 it ot
UNDER THE CP-INVARIANCE CONDITION {ﬁp(t)'ﬂo(o)}_; ZyiZsi (NpjNgj€ It pyip g €1“T)
As an example to see the, independence of E¢2.37), =W (kit)*,
we can derive the equality 7
T T — 1/_ 1/_2*' ) o loit_ . aloit
{a,(krit), el (kr;0)H2+[{Bl(kr;t), el (kr; 00} {By(1). s (0)} 2 2201 1(0Npipi€ = pyikai )
= [{a5V(kr;t), a3V (kr;0)}|? =W, (k;t)*, (A6)

+ {83 (krit), a5 (kr;0)}? (A1) |
p {ay(0).B0} =2 271 (— pyiksie "

; " BV BV
under the reality condition of. Herea," andg," are the

operators employed in Ref4], X i Pgi€ 1Y) = W, (Ki)*.
By For the realz'?, there are some relations among these anti-
( ap(kr:t) ) ( pe(K) i)\p(k)>( ag’(kr;t) ) commutators as
t L BVt N
—kr;t iNg(k k —kr;t
Br( ) r(K) pr(k) S BET( ) w2 {B)(1),B,(0)}={al(t),a,(0)},
_ _ {a,(1),8,(0)}=—{B,(1),a,(0)},
wherepg(k) and\ (k) areN¢Xx N; diagonal matrices: (A7)
ie.,
pe1(K) 0
pr(k)= )|, W (KD =W (KiD), Wiy (ki) = =W (i),
. (A8)
0
[These relation$A8) are also confirmed directly from Eqgs.
(2.13) by notinlg,zp*:(z;fppjﬂ: PT and AT=(z! )"
“4Recently, along this line, a possible approach has been done by A" for real Z*<] By taking (e,1), («.2),(r,3),... for
one of the present autho($.Y.) and Ishikawg 10]. (p,j) and (@,1),
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LHS of Eq.(A1)={p,ap () +iX,i B3V (1), p1 T (0) N1 85V(0)}
+{iN eV () +p, BV (1), pp1a5 (0)—iN ;1 B5(0)}]2
=p2{al¥(1),aB (0} 2+ N2 {8V (1), BV (0) 2+ N2 [{ap (1), 85V(0)}?
+p2 B2V (1,25 (02 +iph mfef (1), a3V (0)Hal (1), 85V1(0)} +H.c.
+ipaha{B (1), a2 (0B (1), 85V (0)} +H.c. (A9)
Employing Eqs.(A7),
(A9)=[{aBV(kr;t), a2V (kr;0)}2+ [{ B2V (kr;1), a2V (kr; 0)}2, (A10)

leading to Eq(ALl). It is needless to note thﬁi‘re‘) (k t) given by Eq.(3.8) is shown to be equal to that calculated for the

special choice ofx,’s as above without requmng the reality @f/2.
On the other hand, we obtain

the last side of Eq.2.37)=i2j [Koj b/ + Kol AL b7 /c3i+/cp,¢/cm]+2 [KCoj $/C5; + Koyl KK b7 I
+ KoK
—2 2117/12 ,%12* 1/221/2*[901'Poipji¢j¢i*+)\aj)\aipji¢j* it PN aiNji DD~ NoipoiNji b S 1.

(A11)

For the case of reat'?,

Eq. (All)= Zj 202222 2 (i bF + BT i) FNA (b bi+ BT B2

+w|
t

2
+\F - sir? >

12,1/2,1/2,1/
:5"P_2i2,- 22z 2z o smz( (A12)

and then we get &, -independent quantity explicitly.

APPENDIX B: NUMBER OPERATOR

Let us define the expectation values of the number operator of neutrinos,
<NU;kr;t>p_fzf<0(t)|ap(kr;t)N(,(t=O)a;(kr;t)|0(t))f, (B1)

where

N, (D=2 [N, (gs;t)—n,(—gs;t)],

q,s

n(qst=al(ast)a,(gst),
n(—ast)=BL(—asit) B,(—asit), (B2)
(n,(gs;0);kr;t), 1= (O(t)] a,(kr;t)n,(gs;0) e (kr;t)|O(t))s,
(No(—0s;0);Kr;t), 1= 0(1)] e, (KT;t)N,(—S;0) (kT3 1) [O(1))s
From Eq.(2.10,

ng(qs;0)=;K (W (050)% @l (a5;1) + W () * Br(— AS; ) HW, (i) @, (4S; 1) + W, (q; ) BL(— gsi )},

013011-10
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<ng<qs;o>;kr;t>pff:|W0p<k;t)|26rsa<12,ﬁ)+§ W, (a;t)[2, (B3)

FU<—qs;0>=§K (W (D) an (95 +Worn(a;t) BL(— s ) W (0;0)* @l (gs;t) + Wy (a;0)* B (—as;t)},

<E<—qs;o>;kr;t>p,f=; [ W (050)[2— | Wiy, (ki 1) |2 8,5 8(K, G). (B4)
We have
(Ng K38 - 1= (Wi (ki) [P+ [ W, (ki) 24+ 22 [IWo( ;)| > [ Wi (a;) 2] (BS)
q,\

then, fort=0,

(Noskrit),— g =Py ., (K1) +|W,, (KD 2= W, (ki) [2+ 22 [[W,a(a:t)|2= W (a;0)]2], (B6)
q,\

from which we obtain, under the reality condition 22 [or

Ci S
Eq. (AB)], ukD)=| Jewkn), ukh)=| |ew(kl),
] J
v,—(kT)=< o JewkD), vj<kl>=(_s_ aw(k1),
J ]
Cc2
2 (Ngikrit),—¢=1. (B8) €3
7 where
Thus we see that, in order to derive the oscillation formu- a(k) —b*(K)
las for N flavors as the generalization of those given by BV W(kT)E< . ) , W(kl)z( . ) , (C3)
[5], we have to assume the reality 22, supported byl (or b(k) a* (k)
CP) invariance[8].
ok +1 1
—W(k ry= w(k,r) for= ; (C4
APPENDIX C: ‘H; CONSTRUCTION K| -1 !

We make a remark on the construction of the flavor Hil- iol2 {2
bert spaceH; in connection with the work of Giuntgt al. a(k)=cos(/2)e"'¢ b(k)¢ sin(9/2)e'® for Kk,
[2]. In Ref.[2], the Majorana neutrino field is considered for — =kcos(d), ketik —ksm(ﬁ)e‘ CJ_COS(XJ/Z) 5= S'n(Xl
simplicity, but we consider the Dirac one in accordance with?) With cot(y;) |k|/m By noting a(—k)=—ib*(k) and
the representations as explained in Sec. II. b(—k)=ia*(k), we have

First of all, we consider the expansion of the flavor-

neutrino fieldv,(x) as Eq.(1.1): —-Sj| .
. vi(—kT)= ¢ ®iw(kT),
v,(X) = E Z57v;(X) c
uj(—kl)z( L eiw(k]). (C5)
Ny ~Si
— 1/2 K-
= \/_V & 2 e X{“ (kr)a;(kr;t) Following the notation employed in Ref2], ¢; ands; are
written ask;, andk;_, respectively;
+ui(—knBJ(—kr;n}, (C1

B IR -
wherep=e,u,r, ... . With the two-component spinors of I= 20i(k) -

spin eigenstatesv(kT), the momentum-helicity eigensolu-
tions are given as Thus Eq.(C1) is expressed as
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N K;
(X)_Nz 1’22 %X a;(k;t) Kj aw(kT)
- , K-
+ (Kl t)( ®w<k1>+|ﬁj*<—m;t>( )
Kj+ Kj+

KJ'+

®W(kT)+iBjT(—kl;t)(_

| @w(ku} (C7)
j—
By defining further

A, (kr;t)= E 2220 (Kri K

B;i(—kr;t)sii; 2B (—kr;t) k-, (C9

Eq. (C7) is rewritten as

vp<x>=%2E g 2Z+E§;3)®W('(T)
A,-(kL;t) By (—kT;t)
LAk t)) Wikl +(BZ+(—kT;t)>®W(kT)
B (—klit)
+ BT (~k:1) ow(k])|. (C9)

PHYSICAL REVIEW D 64 013011

Then the high-momentum part of the RHS of EG9) be-
comes

N B!, (—ki;t)

BL(—kl;t))
A ki [TV

@w(kT)

+ (C12

with

A, (krt)= E z2a;(kr;t),

B;+(—kr;t)=; 2Bl (—kr;t). (C13

If we follow the assertion in Ref.2], we can construct the
Hilbert spaceH; only in the extremely relativistic limit. This
assertion, however, is self-evident, since in this limit the
mass differences among neutrinos do not play any physical
role. Further, the transformatio(C8) |s not canonical, and
the number of operatoréA, (kr t),B! p+(—Kr;t)) is twice
larger than that ofe; (kr;t), BJ( kr; t)) Thus, the assertion
against theH; construction seems not appropriate.

Here we show an example which has the canonical com-
mutation relations and the possibility of constructing the fla-
vor Hilbert spaceH; .

From the canonical commutation relations at equal time We define a kind of Bogolyubov transformation by

amonge;, «], Bj, andp], we obtain
{A,«(kr;t), Al (gsit)}={B,.(kr;t),B.(qs;1)}
-3 U 1/2*wj(k)i|IZ| >
_; oﬁp] 20;(K) ors6(k,q),
{Ag = (kr;t), A (gsit)}={B,-(kr;t), B! _(gs;t)}
|| - -
_2 <1r/12 /%12* (]k) Ors0(k,q),
(C10
others=0,

but these are not the canonical commutation relations at
equal time amongA,., A, , B,., andB!., and we
cannot construct the flavor Hilbert spatg with these op-

erators.
In the extremely relativistic limit, Eq(C10 reduces to

{A,+(kr;t), Al (gsit)}— 8,,8,56(K,9),

{B,.+(kr;1),B! (gsit)}— 8,,,8,50(K,q),
(C1))

others=0.

A (kr;t)= 2 i aj(kr;t) i —i Bl (—krit) k-],

—kr;)=2 2 —iaj(kr;t)kj_+ B (—krit) ;..
J
(C14)

We have canonical communication relations as

{A,(kr;t) Al(gsit)} = 8s8(k,q)
={B,(—kr;t),Bl(—asn)},
others=0,

(C15

and in this case the neutrino field is expanded as

v,(X)= 2 eiz X[

- 0
A, (KT;t) +iB;(—kT;t)(1”

0 . 1
1 +iB,(—kl;t) 0

(C16

w(kT)+|A,(k|;t)

W(kl)},
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which corresponds to the plane-wave expansion with  p,;(k)=cog(x,—x;)/2] and \.;(k)=sin(x,—x;)/2] are
=0. Then physical quantities, which should pe,} inde-  now replaced by cogf/2)=c; and sin¢x;/2)=—s;; thus
pendent, are allowed to be calculated by employing the exthe matriceq P(k) ;] and[A(k)ﬂ-] appearing inC(k) are
pansion (C16) with Eq. (C14); the quantiies such as replaced byz}p;(k)] and[ —zq\;(K)].
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