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We reexamine the conventional physical description of the neutrino evolution inside the Sun. We point out
that the traditional notion of resonance is a useful physical concept only in the limit of small values of the
neutrino mixing angleg<<1. For large values of, the resonance condition specifies neither the point of the
maximal violation of adiabaticity in the nonadiabatic case, nor the point where the flavor conversion occurs at
the maximal rate in the adiabatic case. The corresponding correct conditions, valid for all vafueslatiing
0> /4, are presented. The adiabaticity condition valid for all value® @ also described. The results of
accurate numerical computations of the level jumping probability in the Sun are presented. These calculations
cover a wide range ahm?, from the vacuum oscillation region to the region where the standard exponential
approximation is good. A convenient empirical parametrization of these results in terms of elementary func-
tions is given. The matter effects in the so-called “quasivacuum oscillation regime” are discussed. Finally, it
is shown how the known analytical results for the exponentiad, ahd linear matter distributions can be
simply obtained from the formula for the hyperbolic tangent profile. A new expression for the jumping
probability for the distributiorN [ cothf/l)£1] is obtained.
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[. INTRODUCTION are nonnegligible for the vacuum oscillation solutions with
Am?=5x10"19eV2. This conclusion has been subsequently
The solar neutrino problerSNP) is a discrepancy be- Verified by other authorsl3—15, and the ternguasivacuum
tween the measured values of the solar neutrino flux at difoscillations (QVO) has been coined to refer to the region
ferent energie$1—5] and the corresponding predictions of Where both effects influence the neutrino survival probability
the standard solar modé&SM) [6]. Not only is the observed [13]-
flux suppressed, compared to the SSM predictions, but, if the It must be mentioned that the experimental situation has
data from the Homestake experiment are correct, the degrédanged since the QVO solutions were first introduced. At
of suppression varies with energy. The leading explanatiothe time, the most preferred part of the VO solutions was in
of this phenomenon is that neutrinos have small masses afie regionAm?<10 % eV2. The latest Super-Kamiokande
the mass and flavor bases in the lepton sector are not alignegpectrum data, however, disfavors a large fraction of the
just like in the quark sector. The resulting neutrino oscilla-vacuum oscillation region, roughly 210~ eV?<Am?
tions convert some of the solar electron neutrinos into an<4x10 *° eV? [16,15. At the same time, the solutions
other neutrino species. with Am?>4x101° eV?, i.e. the QVO solutions, remain
Neutrino oscillation solutions to the SNP have tradition-allowed.
ally been divided into the so-called Mikheyev-Smirnov-  Prior to[12], the VO solutions had always been studied in
Wolfenstein(MSW) solutions[7—9] and the vacuum oscilla- the range of the neutrino mixing angle=®< /4 for a fixed
tion (VO) solutions, according to the physical mechanismsign of Am?. When matter effects are included, however,
responsible for the neutrino flavor conversion in each casghis only covers a half of the full parameter space. To cover
In the MSW case the conversion is caused by neutrino intetthe full space, one can eithén keep 6 in the range 66
actions with the solafand Earth’s matter, while in the VO  </4 and consider both signs afm?, or (ii) fix the sign of
case it is due to long-wavelength neutrino oscillations inAm? and vary § from 0 to 7/2. We advocate the second
vacuum between the Sun and the Earth. Over time, it hagption as a bettgphysicalchoice, because it makes manifest
become a tradition to treat the two cases completely sepdhe continuity of physics around the maximal mixing
rately, showing results in separate plésee, for example, [17,18.
[10,11)) and using different input formulas and different  The parametrization € 6</2 requires one to reexam-
codes. ine the choice of a variable for plots, because the traditional
Justifying such a complete separation, however, requires ariable si26 is not suitable for this purposgl7]. While
careful analysis of the magnitude of the solar matter effectgither ¢ or sirfé would be adequate for plotting only the
and the degree of decoherence of vacuum oscillations. Th@VO region, neither choice allows one to take a global view
separation assumption has been recently reexamined by tloé the neutrino parameter space and show all solutions, in-
author[12] and it has been found that the solar matter effectzluding the SMA andquasjvacuum oscillation solutions, on
the same plof18]. A particularly convenient choice turns
out to be tahd on the logarithmic scale, first used [ih9] to
*Present address. describe 3-family MSW oscillations. In addition to covering
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the range 6= < /2, it also does not introduce any unphysi- region between the adiabatic and nonadiabatic regimes
cal singularity around)= 7/4 (unlike the traditional sife¢, ~ (QVO). In particular, we determine what part of the solar
see[17]) and makes it easy to see where in the vacuunelectron density profile is primarily responsible for the mat-
oscillation region the evolution in the Sun becomes comder effects in this region.

pletely nonadiabati¢points # and =/2— 6 become equiva- Finally, in Sec. IV we comment on the four known exact
lent, so that solutions become symmetric with respect to thanalytical solutions for the neutrino jumping probabilRy.
0= /4 line). Such solutions have been found for the linear, exponential,

In the first part of this paper we address several concept/r, and hyperbolic tangent matter density profiles. Using the
tual questions that arise in the analysis of the solar matteformulation of the evolution equations introduced in Sec. Il
effects and become particularly apparent for the values of theve show that these four results are not independent and that,
mixing angled= x/4. To introduce these questions, it is use-given the formula for the hyperbolic tangent profile, one can
ful to first summarize the basic mechanism of the neutrinovery simply obtain the other three solutions. As an added
evolution in the Sun. Inside the Sun, because of the changinigenefit, we obtain an exact expression for the density distri-
electron density, the eigenstates of the instantaneous Hamipution N[ cothf/l) = 1].
tonian change along the neutrino trajectory. Pom?/E,

<10_5 eV2/MeV the neutrino is produced almost com- II. PHYSICS OF THE NONADIABATIC NEUTRINO
pletely in the heavy eigenstate. If the paramet&rs?/E, EVOLUTION

and @ are such that the neutrino remains in the heavy eigen-

state as it travels to the solar surfa@aliabatic evolution, A. Review of the oscillation formalism

there are no subsequent vacuum oscillations. To oscillate in For completeness, we begin by summarizing the well-

vacuum, as a necessary condition, the neutrino must at song@own basic formalism for neutrino oscillations in matter. In
radius in the Sun “jump” into the SUperpOSition of the heaVy the Simp|est case, when the mixing is betwe%nand an-
(v2) and light (v;) mass eigenstates. Conventional VO re-other active neutrino species, the evolution of the neutrino
gime is realized when this “jumping” i€xtremely nonadia-  state is determined by four parameters: the mass-squared
batic (preserving flavar, in which case the neutrino exits the gpjitting between the neutrino mass eigenstates?=m3
Sun as codr,)+€%indv,). In the QVO regime the neu- —m?, the neutrino mixing angl®, the neutrino energg, ,
trino still partially jumps in thev, eigenstate, but with & gn4'the electron number denshty, of the medium. One has
smaller amplitude. _ to solve the Schidinger equatiorid ¢/dt=H ¢, where ¢

The obvious questions one would like to answer are: =(¢e,¢M)T is the state vector made up of the electron neu-

(i) What determines whether or not the neutrino evolutionin4 and the muon neutrinbThe HamiltoniarH is given by
is adiabatic? P]

(ii) In the nonadiabatic case, at what radius in the Su
does the “jumping” between the eigenstates of the instanta- .
neous Hamiltonian take place? H = const+ A-Acos®  Asin2f (2.1)
The traditional wisdom is that one should analyze the Asin20  Acos29—A)’ ’
density profile around the so-called resonance point, i.e., the
point where the difference of the eigenvalues of the instan-

_ 2 — H
taneous Hamiltonian is minimal and the local value of theWhereA=Am/(4E,) and A= V2GeNg/2. The constant in

mixing angle isf,,= /4 (see, e.9.[20—26). This, however the Hamiltonian is irrelevant for the study of oscillations and
m ] Yb . [l ) . . . .

clearly needs to be modified for large mixing angles. In par\Vill be omitted from now on. The time variablemay be

ticular, for 8> /4 the resonance, defined in this way, simply replaced by t.he (_Jllstance travelgdsince the solar neutrinos

does not exist. We will show how this contradiction is re- &€ ultrarelativistic. _

solved in Sec. Il B. In Sec. Il C we formulate the adiabaticity T ©F & constant electron number denshy th,e_HamLIr-

condition that, unlike the standard result, remains valid fotPnian — can  be  trivially  diagonalized, H'=VHV

0= /4. =diag(—A,,+A,,), where
In Sec. Il we present the results of numerical calculations
of the ju_m_ping probab_ilit)PC for the nel_Jtrino propagating in A= (A=A cos 29)2+ (A sin 26)2
the realistic solar profile. The calculations are carried out for
a wide range oAm? and tadé, from the VO region to the =JA?—2AA cos 20+ AZ. (2.2

region where the exponential density approximation is

valid. We show how the adiabaticity condition of Sec. IIC  Interms ofA,,, the Hamiltonian(2.1) can be rewritten as

applies to this case. We also give a simple empirical pre-

scription on how to comput®, in this range of the param- —Ac0s20, A,Sin26,

eters in terms of only elementary functions. Such an empiri- H= , 2.3
. . mSin26,, A.cos20,,

cal parametrization of the numerical results allows one to

quickly estimate the value d?, anywhere in the range in

qguestion without having to solve the differential equation

each time. 1n reality, ¢, here denotes a linear combinationg®f and ¢ in

In Sec. Il B, we discuss what happens in the transitionalvhich ¢, oscillates.
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where 6, is the mixing anglan matter The rotation matrix 4 1 . R R LR L e e EEREE EaE e
V is given by b ]
% log(n,/N,) vs. RIR®
(Cosﬁm —sin Gm) 2.4 2 BP2000 ]
sind,, cosb,/ ' 1 ]
. . E
The parameterd ,, and 4,, are related to the original pa- % o Neun .
rameters in the Hamiltonia(®.1) as follows: et pf“)’d’lj’c'gon
region
A,sin 26,,,= A sin 26, (2.5 2f
g Radiative Convective
_al zone zone
A,COS 20,,=A cos 20— A, (2.6) : 35‘ ;’5‘
Il 1 Il 1 %ﬁl
A . 20 _40 01 02 03 04 05 06 07 08 09 1
sin R/IR
tan2,= ————. 2. 0]
™ Acos2—-A 2.7

FIG. 1. The electron number density profile of the Sun accord-

We will always label the light mass eigenstate iyand "9 t© the BP2000 standard solar model.

the heavy one by,. Since one can redefine the phases of
ve, andvy,, it is easy to see that in this convention the convective zone of the Sun, and also in the core where the
physical range of the mixing angle iss¥< /2 [18,17. neutrinos are produced, the profile deviates rather signifi-
As long asN(x) is constant, the time evolution of the cantly from exponential.
mass eigenstates is particularly simple. Each of the two mass In order to study the jumping probability between the
eigenstates evolves On|y by a phasel:yl(t)> mat.ter mass elgenstatgs, It Is Conve.nler-lt to Change to the
=[v1(0))exp(Ant), |v2(t))=|v2(0))exp(=iA). If at time baS|s_these states define. Substituting in the Sithger
t=0 the neutrino state is a linear combinatiahw;(0))  €quationd=V'y, y=(y,¢), we get
+b|v,(0)), the absolute values of the coefficieatandb do
not change with time, i.e., the probability for the neutrino to d
“jump” from one Hamiltonian eigenstate to anothel, id—(VTz,//)zHVTz,b,
=|a(t=+=)|2—|a(t=0)|?, is trivially zero. X
Consider next the case of a varying electron density. In
this case, in general, one can no longer diagonalize the dy _dvt
Hamiltonian in Eq(2.1). However, one can still speak of the IRZVHVW—'VW& 29
eigenstates of the instantaneous Hamiltonienceforth,
“the matter mass eigenstates”and define the jumping
probability between these states. It turns out that if the elecSinceVHV'=diag(— A, +A,,) and, from Eq.(2.4),
tron density changes sufficiently slowly along the neutrino
trajectory (to be quantified latgr the jumping probability
vanishes, just like in the constant density case. This is known —_—
as theadiabaticevolution. At the same time, when the den- dx
sity changes abruptly, the jumping probability is clearly non-
zero. In particular, if the neutrino crosses a step—functionye gptain the desired evolution equation in the basis of the
density dlscon_tlnwty, the flavor state does not have any time, ~tter mass eigenstatiz0]
to evolve, while the mass basis in matter instantaneously
rotates. It is easy to see that in this situation, known as the
extreme nonadiabatievolution, the jumping probability is d (‘/’1)

given by dx\ g,

dvi [ 0 1\dé,
-1 0/ dx’

( A —dem/dx)<z,//1

de,/dx  —iA, zpz)' 2.19

PLA = sir?( gherore— pafer), (2.8 , ,
The steps outlined so far are standard in the treatment of
In general, for a monotonically varying densi®; lies be- the MSW effect. We will next make an extra step_that W'I.I
tween 0 andPNA prove very helpful for the subsequent analysis, particularly in
N Isec. IV. Namely, we will choosé,, instead ofx as an inde-
pendent variable. So long as the density varies monotoni-
cally, such a change is one-to-one. Equati®ri0) becomes

In this paper we are concerned with the evolution of sola
neutrinos. The electron number density inside the $iy,
falls off as a function of the distance from the centeas
shown in Fig. 1[6]. In the range 0.18,<r=<0.65Ry the
profile can be approximated very well by an exponential d (1//1 (iAm/'gm -1 ) ¥
Ne(r)<exp(=rirg), with ry=R/10.54=6.60x10" km — ): . ( ) (2.1)
(shown by a straight line in the figureHowever, in the dbm | 42 1 — 1A/ O/ \ Y2
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B. Modification of the notion of resonance for large @

We are ready to address the questions posed in the intro-
duction. A convenient starting point is the evolution equation
in the form of Eqg.(2.11). The neutrino is produced in the,
state, which corresponds to (c@s,sinfy) in the matter
mass basis. To simplify the presentation, we shall consider
the values ofA<10 ° eV?/MeV, so that at the production
point A<Ag, and hence (cdk,,sinfy)—(0,1).

The evolution equation can be easily solved in the two
limiting cases. If the off-diagonal elements can be neglected,
'. the evolution is adiabatic, i.eli»(6,,)|? remains constant.

o e e s If, on the other hand, for almost the entire interval between
0.8 0.9 1 11 12 13 14 1.5 6o and @ the diagonal terms can be neglected, the solution is

Exponential

BP2000

. 0 0 -1
FIG. 2. The quantityA,,/6,| as a function ofg,, for the expo- W 0)=ex;{f dﬁm( ) #(6o)
o}

nential profileA(x)xexp(—x/ro) (solid line) and the BP2000 solar 1 0
profile (dashed lingfor 6= m/4, A=10° eV?/MeV.

B ( cog0—0y) —sin(0—0y)

HereA , and6,,=d#@,,/dx can both be expressed in terms of
0, using the following relationships:

This limit corresponds to the extreme nonadiabatic case. The
sinf26,, dA corresponding jumping probability equal,= sir’(6,— 6)
Om= 5Asin26 dx’ (212 _¢o2g, in agreement with E¢(2.8).
Returning for a moment to the physicakpace, we note
). that no jumping between the mass eigenstates occurs either
Ap_ 2A%irP26 1 (2.13 I the solar cord7] or in vacuum. The nonadiabatic evolu-
pm_ sinf26,, dA/dx’ ' tion takes place in a localized region, with a center at the
point of “the maximal violation of adiabaticity.” Our goal
. next is to establish the location of this point.
— A sin(26,—26) (2.14 Conventional wisdom says that the adiabaticity condition
sin26p, ' is violated maximally at the resonance point

which follow directly from Eqs(2.5—(2.7). For instance, for
the infinitely extending exponential profil&(x)=Aqexp
(—=xIrp) the derivative idA(x)/dx=—A(x)/rq and so

A=A cos 209, (2.17)

where the separation between the energy levels is minimal
A 2Ar,Sinf26 and #,,= 7/4. This assertion can be found in the early papers

m
= : : (2195  [21,22,20,272 as well as in numerous subsequent reviews
Om SIF2 0Sin(2 0 —26) on the subject, e.J24—26. However, in all these papers it
is assumed—either explicitly or implicitly—that the vacuum

The angled, varies from its value at the production point mixing angled is small. It is easy to see that for a large value
0 to its vacuum valug. For the infinite exponential profile of the mixing angle the use of the condition in E§.17
we havef,— 7/2. Notice that the quantitp /6, in Eq.  leads to a contradiction.
(2.19 is singular whend,,, approaches either of its limiting For small ¢, Eq. (2.17) is satisfied in a layer in the Sun
values, as should be expected. where the density i#\(x)=A. As the value off increases,

The shape of the functiomm/€m| for 0=m/4 and A Eq. (2.17) predicts that thg resonance occurs gt lower and
=109 eV?/MeV for the idealized exponential profile is lower (_ale'ct.ron dgnsﬂy untll,. a8 approach¢37/4, it moves
shown in Fig. 2 by the solid curve. The value of was off to |nf|n!ty_. It is not obvious how to mterp_ret the last
chosen to bé&k/10.54, the slope of the best fit line in Fig. 1. result, as tis physically clear tha’g no level jJumping can
The dashed curve in the figure shows the same quantity fdfccur at infinity where the neutrinos undergo ordinary
the realistic BP2000 solar profile for the same valuesd of vacuum oscnl.auon.s. The difficulty is even _more obvious
and A. It is important to keep in mind that the two curves When#é=>m/4, in which case the resonance simply never oc-
change qualitatively differently as one chandesWhile the ~ CU'S: At the same time, as already mentioned, in the extreme
exponential curve just scales by an overall factor, the
BP2000 curve also changes its shape, approaching the shape
of the (rescaled solid curve for sufficiently large values 2A notable exception is Ref28]. We do not agree, however, with
of A. the adiabaticity criterion proposed thesee Sec. Il €
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FIG. 3. Neutrino state evolution in the case of the infinite expo-
nential density profile forAm?/E,=10"° eV?/MeV. The plot

shows the probability of finding the neutrino in the heavy matter

mass eigenstate, as a function of positiorx, for four different
values of the vacuum mixing angle. The points of the maximal
violation of adiabaticity, as predicted by E@.19, are marked.

PHYSICAL REVIEW [®4 013008

It is instructive to analyze each of the factdrg and 1l9m
separately. The first one indeed has a minimum at the tradi-
tional resonance poir#t,,= /4 [corresponding to Eq2.17)]
or, if 8> /4, at the endpoin®,,= 6. The second one, how-
ever, has a minimum at a point which is, in genedéferent
from the resonance. This minimum exists for all value® of
including 6> /4. In the case of the exponential profile, it is
located at

Om= 4+ 612, (2.20
or halfway betweend and 6o=m/2. The corresponding
value of the density at that point is
A=A. (2.21
This coincides with the resonance condition &1 and
that is why the standard resonance description works very
well in this limit. In general, however, the minimum of the
product function lies somewhere betweerl4 and =/4

nonadiabatic regime the level jumping probability is nonzero+ 6/2 (or 6 and w/4+ 612, if 6> w/4) 2

for any value of # and variessmoothlyaround = =/4, P,
=cos4.

It is also worth mentioning that Eq$2.20 and (2.21)
represent an important condition in the case of the adiabatic

The resolution to this apparent paradox is very simple. Avolution. Namely, they specify a point where the rate of

Eqg. (2.11) suggests, adiabaticity is maximally violated at the
minimum of |A,/ 6,,| [20,27. It is easy to see, however, that

the minimum oflAm/€m| in general does not reduce to the
condition of Eq.(2.17). This can be explicitly seen on the
example of the infinite exponential density distribution. Dif-
ferentiating Eqg.(2.19, one finds that the minimum occurs
when

cot(26,,—26)+2co(26,,) =0, (2.18
or
cos 20+ /8+cos26
= 7 . (2.19

Unlike Eq.(2.17), Eq.(2.19 states there is a nonadiabatic
part of the neutrino trajectory for all physical values @&f
including 6= mr/4. While both equations for sma#l predict

rotation of the mass basis with respect to the flavor basis is
maximal, which in the adiabatic case can be interpreted as a
point where the flavor composition of the neutrino state
changes at the fastest rate. This shows that for |ards.
(2.17 not only does not describe the point of the maximal
violation of adiabaticity in the nonadiabatic regime, but also
does not specify the point where the flavor conversion occurs
at the maximal rate in the adiabatic regime.

To summarize, Eq(2.17) can only be used in the small
angle limit. Even in that case one should be careful applying
it for certain purposes. Note, for example, that E@s17)
and (2.19 have different Taylor series expansion arouhd
:0,

A=A(1-26%3) for Eq. (2.19,

A=A(1-26%) for Eq. (2.17.

Thus, even at smalb, Eq. (2.17) fails to predict how the

aroundA=A, Eq. (2.19 states that for maximal mixing it
occurs aroundd=A/,/2, not at infinity, and foré close to
/2 it happens around=A/2, all physically sensible re-
sults.

The situation is illustrated in Fig. 3, which shows the
probability of finding the neutrino in the heavy mass state
as a function of the distance The parameters of the expo-
nential were taken from the fit line in Fig. 1 antm?/E,
=10° eV?/MeV. Three large values of the mixing angle
(0= =l6, wl4, andm/3) and one small value 6& 7/60)

The belief that jumping between the matter mass eigen-
states occurs at the resonance for all values ofight have
been one of the reasons for the tradition to treat separately
the cases ofd<w/4 and 6> x/4, obscuring the fact that
physics is completely continuous acro@s m/4. Over the
years, it has caused some unfortunate confusions, as exem-
plified by the flawed criticism of the results pf2] in [29]. It
was probably the principal reason why the correct expression
for the electron neutrino survival probability in the> /4
part of the QVO region was not given until recenfly7,12]

were chosen. The dashed lines and dots mark the point§f: Ed- (6) in [19]].
where adiabaticity is maximally violated, as predicted by Eq.

(2.19. One can see that the partial jumping into the light

mass eigenstate in all four cases indeed occurs around théit is even possible for certain density profiles and certain values

marked points.

of A and # to have more than one minima.
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One important application of E@2.19 is the determina- 1
tion of the phase of vacuum oscillations on the E§B8H,31]. o @
If jumping between matter mass eigenstates indeed occurre ~; o.s
at the resonanc@.17), one would expect that in the canoni- j ¢
cal vacuum oscillation formula 2 06
E
) ) Am?L =
P=1—sm2295m2(1.27T+5res), (2.22 4 04 \
O
the residual phasé,.s would be minimized when the dis- = 02
tancel was measured from the resonance in the Sun. Refer @
ence[31] indeed begins with this assumption, but after pre- 0
senting the resulting formulas notes that the residual phase i 0 0.25 0.5 0.75 1 1.25 1.5
much smaller ifL is instead measured from the layer where Om

A=A, notA=A cos X. It is unfortunate that this important

b tion h i ved ttenti d t FIG. 4. The value of the ratiA(x)/A at the minimum of
observation has not received proper attention and was n%mlém computed for the realistic solar density profi@P2000.

further developed in the subsequent literature. The precedi e curves correspond tA=2x10° evZ/MeV (curve 1
discussion shows that this result is not just a mathematicgfl?)(lofg eVZMeV (curve 2, and A=1x 108 eVZIMe\;
coincidence, but has a simple physical explanation. (curve 3. '

Finally, it is important to discuss at what density the adia-
baticity is maximally violated in the case of the realistic solar . ngition becomes most critical at the point where the adia-

profile. Qualitatively, it is not difficult to anticipate the paicity is maximally violated. Since traditionally this point

changes to Eq2.19 in this case. _ _ has been identified with the resonance, a commonly cited
For sufficiently larged, the adiabaticity is maximally vio- - ¢ondition is[20]

lated in the radiative zone, entirely within the exponential

part of the profile, so that Eq2.19 directly applies. | A/ Ol 5 — mia>1. (2.23
For smallA, the nonadiabatic part of the trajectory lies m

close to the surface of the Sun where the profile falls off ;.o /e have shown that the point of the maximal vio-

rather rapidly. While for smalb the minimum ofAn, /6, |ation of adiabaticity in general does not coincide with the
should still, of course, occur a#=A, for large angles it is resonance, Eq2.23 clearly needs to be modified for large
shifted to values oA somewhat lower than those predicted mixing angles. The first obvious modification is to evaluate
by Eqg.(2.19. The evolution in the latter case will be dis- the |eft hand side at a value @, close to the true point of
cussed in more detail in Sec. Il B. the maximal violation of adiabaticity. In the case of the ex-
For A in the intermediate range, the jumping occurs neamonential profile, this point would be given by the solution of
the bottom of the convective zone where the density falls ofiEq. (2.18. As an estimate, we can approximate it by the

somewhat slower than in the exponential part. There th@oint halfway betweerd and /2 [see Eq(2.20)],
value of the raticA/A at larged should increase compared to
Eq. (2.19. Al B >1. 2.2

These qualitative expectations are supported by the results [Am/ O O i+ 012 (229
of numerical calculations presented in Fig. 4, where the ratio
A/A at the point of minimalA .,/ 6, is plotted as function of
6. The three curves shown correspond to the values of analyze the problem more carefully

. . _ _6 2 -

the three different regimes\ =2x10"" eV*/MeV (curve The key is to express the information contained in the

1)’2 A=7x10"° eV?/MeV (curve 2, and A=1x10"°  gystem of two evolution equations in a single equation. Such
eV*/MeV (curve 3. The numerical studies of the BP2000 4,y equation can be easily written for the raties i, /.

solar profile are presented in Sec. llI. From Eq.(2.1)) it follows that s obeys the following first
order equation

This condition, however, still turns out to be inadequate
for large values of). To obtain the correct condition, one has

C. Adiabaticity condition for large @

We now turn to formulating the adiabaticity condition that
is valid for all, and not just small, values of the mixing angle
0. At first sight it appears that for the evolution to be adia-

batic it. is simply enough to require that_ the diagonal elle— It is easy to see that by neglecting appropriate terms on
ments in Eq(2.11) be larger than the off-diagonal ones. This the right hand side one obtains both the adiabatic and nona-
diabatic limits. The adiabatic limit corresponds to neglecting
the terms in parentheses, while the extreme nonadiabatic
“4As we shall see in Sec. IIl, in this range Afthe nonadiabatic  limit is obtained if one neglects the first term on the right. In
evolution only occurs fos<1, in which case Eq2.19 reduces to  the second case the solution gs-cot(d,). Thus, the self
A=A, consistent condition to have the extreme nonadiabatic solu-

ds —2'Am 241 2.2
dem—|€s(s ). (2.25

m
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tion is 2An/Opns|<(s?+1), with s=cot(b,), 6n=7/4 o
+ 6/2. In the opposite limit, the evolution is adiabatic. Thus,
we obtain the adiabaticity condition

L ITHHJ_

1 | N

Bq. (2.27)
| A/ Ol 6~ mias 2> [taN w4+ 612) + cot w/A+ 6/2)]/2,
(2.26)

" Adtiabatic

T |I|\II\|
1 IIIIIKI}

or, upon simplification,

Am?/E,, (eV?/MeV)

10-° N

COSH|Am/"9m| Oy lA+ 012> 1. (2.27

v
Nonadiabatic
\

~/~

T llllllll
H I}IIIHl

Notice, that all three conditions, EqR.23, (2.24), and Eq (223)
(2.27) agree in the small angle limit. For large angles, how- ;-
ever, especially fo¥= /4, they give very different predic-
tions and only Eq(2.27) is the correct one.

Let us demonstrate this on the example of the infinite
exponential profile. In this case the exact analytical solution L
is known[sz,sa (See a|sd:34]), 1o O vl vl v
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(2.28

e’—1 FIG. 5. The boundary between the adiabatic and nonadiabatic
regions in the case of the exponential profile, as predicted by Eq.

Equation(2.28 has two regimes. Fof<1, y>1 the for- (2.23, Eg. (2.24, and Eqg.(2.27. The dashed curves shqw the
mula reduces toPc=exp(—ysin20), so the evolution is contours of cpn;tar?c. For large angles only, Eq2.27) provides
nonadiabatic wheny6?=4mroA62<1. By contrast, forg & 9000 description of the boundary.
= /4 andy>1 the numerator is always much smaller than
the denominator. The transition between the adiabatic anll- CALCULATIONS FOR THE REALISTIC SOLAR
nonadiabatic regimes occurs wher 1, with a weak depen- PROFILE
dence oné. A. Numerical calculations of the jumping probability

Let us see if Eq(2.27) correctly captures this behavior.
Using Eq.(2.15 we obtain

Pc

In this section we present the results of numerical compu-
tation of the jumping probabilityP. with the realistic
AT (SIP6> 1. (2.29 (BP2000 solar density profile. In practice, ultimately, one

would like to compute expected event rates at various experi-

Figure 5 shows the contour ofA8 ,sir?6=1 computed for ments, and for that one needs to know the solar neutrino

Fo=R5/10.54 (solid line). For comparison, the dash-dotted SUTvival probability P(ve—wve). It is, however, quite
curves shows the corresponding predictions of E823 straightforward to show that, for a given neutrino energy, the

and (2.24. The dashed curves are the contours of constantt"vival probability is given by

P. computed using Eq2.28. It is clear from the Figure that _ L(1— 20 B AP
the description of Eq(2.27) is correct not only for smalb, P(ve— ve)=P10088+ (1= Py)si = JPo(1-Pe)

but also ford= /4. The transition from adiabaticity to nona- Am?
diabaticity for = /4 occurs forAm?/E ,~10"° eV?/MeV, X cos 20sin 26 COE{ 2-54? L+ 5) ,
precisely wherey~1.

The true usefulness of ER.27 is not so much in being (3.1

able to explain the physics behind the known analytical so-

lution as it is in being able to make predictions for a varietywhere P;= P.sinffo+(1—P)cosé, [18]. Thus, the prob-

of new density profiles, provided those profiles are suffi-lem of finding P(v.— v,) reduces to finding the jumping
ciently smooth. Such an analysis, however, would be beyongrobability P .

the scope of this paper. Here we will only address what Eq. The quantityP. can be found analytically in several lim-
(2.27 predicts for the realistic solar density profile. It turns iting regimes. FoAm?/E, =10’ eV?/MeV the condition of

out that for large mixing angles and the valuesfofthat  Eq.(2.19 is satisfied well inside the Sun where the profile is
yield nonadiabatic evolution the nonadiabatic jumping takeexponential withry,=R5/10.54. Hence, in this case the
place mostly in the convective zone, where the density projumping probability should be adequately described by Eq.
file deviates from the exponential, and so one can no longei2.28).

rely on Eq.(2.28 to get the shape of the boundary between The second regime i§<1, in which case the standard
the adiabatic and nonadiabatic regions. Equati@r27) resonance description applies and, importantly, the reso-
nonetheless works quite well. The corresponding numericahance is very narrow. As a result, the jumping probability
results are presented next. can be adequately described by the analytical formula for a
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SRR R U PR T I A For practical calculations it is convenient to have a simple
expression involving only elementary functions that provides
a satisfactory means of estimatirfg, without having to
solve the differential equation each time. We can construct
such a purely empirical fit function by taking E@®.28 as a
starting point. Since for both large and small values of
Am?/E, one can use E¢2.28 with the appropriate values
of rg, we can modify Eq(2.28 by makingr, a function of
Am?/E,, smoothly interpolating betweeiR,/10.54 and
R»/18.4,

107

T T TTTT

1 LJ_LLLLLL 5 lllllll

T \VIH!Il

ro(Am?/E,)

_ Ro o 7d Larctai- 108+ 8)]+ | + 1
= 1054 % ;arcalﬁ— (a+8)] >

R.=0.9 -1

10-10 )

—— Numerical BP2000

(3.2

T WWIIIHI

- === Empirical fit

where a=log,{ (Am?/E,)/(eV?/MeV)]. This provides an

adequate fit for bothAm?/E,<5x10 ° eV?/MeV and

Am?/E, =10 ' eV?/MeV. By making additional modifica-

tions to the function it is possible to obtain a reasonable fit
FIG. 6. Contours of constant level jumping probabiRy. The @ISO to the contours in the intermediate region,

solid line represent the result of numerical calculations using the fit 9

BP2000 solar profile. The dashed lines illustrate a possible empiri- ro(Am7/E,)

cal fit using only elementary functioi&qg. (3.2)].

10-1 Ll Lol

(

0.01 0.1 1 10

tan? 0

_ R fo7d 2 10(a+7.95 +0.9] + ~
=105 * ;arctarﬁ— 0(a+7.95+0. ]+§

linear density profile, P,=exp( wAZsir?26|dAX)/dX2 )
[Eq. (4.1) of Sec. IV]. The contours of constarR, in this p( (a+ 7_7)2>
regime are expected to follow the behavior of the changing —0.3exp — “o0Z 1
slope of the BP2000 density profile shown in Fig. 1. 0.

The third regime is the region of small and larged. As  \yhereh = Jog, { tarf6]. It is important to emphasize that this
already discussed, foA—0 the evolution becomes ex- gquation should only be viewed as a purely empirical fit to
tremely nonadiabatic, i.eP.—cosd. For Am”/E,~10"°  the numerical results, intended to facilitate practical compu-
eV2/MeV we have the so-called quasivacuum oscillation re+ations of the solar neutrino survival probability.
gion. It was shown in[12] that for Am?/E,<5x10° The contours of consta™ computed with Eq(3.3) are
eV?/MeV Eq.(2.28 provides a good fit to numerical calcu- shown by dashed lines in Fig. 6. The discrepancy between
lations, provided one takegs=R/18.4. This region will be  the numerical results an@™ is |P™— PEP2099 < 0,022,
discussed in more detail in Sec. Il B.

We next present numerical results B that cover the B. Matter effects in the QVO region

entire range between these regimes. We numerically solve ) ) ) )
Eq. (2.29 on a grid of points in the range 18<tarf6 In this subsection we discuss the matter effects in the

<10. 10 YeV2/MeV<Am/E <2x10 7eV¥MeV. No- QVO regime. This region, characterized Ayn?/E ,~10"°

2 PR
tice that, while the same result would be obtained by solvinggV /M?Vtandt Iarg(te \\;\?Ll'jlesl qf thg r|n|X|rt1rg1] angg?e(t:i)eierveg a
the system of equations in E§R.10, Eq. (2.25 requires eparate treatment. € lying below the adiabatic region as

S . . determined by the criterion of Eq2.27) (see Fig. 8, it is
significantly Ie_ss computer t_|me. .Indeed, £8.10 contains nonetheless characterized by a significant deviation from ex-
four real functiongreal and imaginary parts af; and ),

. i 5 5 treme nonadiabaticity. In fact, as discussed in the last sec-
but only two of them are independent, sinjag,|*+|4| tion, for Am%/E,<5x 10" ° eV¥/MeV the jumping probabil-

=1 and the F’VEfa” phase has no physical meaning. ity in this region can be described quite well by Eg.28

The resulting contours of constaRt are shown in Fig. 6 it r —R_/18.4. Thus, the neutrino evolution in this re-
by solid curves. All the features anticipated in the d|scussmrbion is partially adiabatic and our task next is to sketch a
above are clearly present. . . - .. simple physical picture of this phenomenon.

We can now test the validity of the adiabaticity criterion First, notice that the conditioA=A in the QVO region is
introduced in the previous sectig&qg. (2._27)]. The shaded satisﬁezj very close to the Sun’s edgéx=6.6x 10° km for
region in Fig. 1 corresponds t0 cl8/0ulg —mara2=1.  AmYE,=10° eV¥MeV), where the profile falls off very
As one can see by comparing its shape with that of the corrapidly. This of course does not mean that the evolution is
tours of constanP,, the criterion in question indeed de- extremely nonadiabatic. As discussed previously, the slope
scribes the adiabatic region quite well, even §o¢ /4. of the profile at the poinA=A can only be used to find the

-1
: (3.3
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jumping probability in the case of small mixing angles. For
large mixing angles, the nonadiabatic segment of the neu 15
trino trajectory is large, and roughly the first half of this
segment lies withirk<0.92R,=6.35<10° km, where the
density is equal to or greater than that of the fitted exponen:
tial profile. :
This suggests that the evolution of the solar neutrino in
the QVO regime can be modeled as the evolution in the
exponential profile truncated near the point of the maximal

Exponential

AN

[4ha

rcsin

. . . .. . . . BP2000
violation of adiabaticity. Let us investigate the basic features A
of this model. o
First, consider a partially adiabatic evolution ‘
(cos¢9|Am/'6m|(7)m~,7,4+ s2~1) in case of the infinite exponen- ~ ** | ‘ Exponential .
tial profile. As the neutrino traverses the Sun, its state vector g o /

although not completely “attached” to the heavy mass |

— 0.08

eigenstate, rotates away from the puteflavor state. This £
rotation occurs both before and after the point of the maxi- % 006 /4
mal violation of adiabaticity. Furthermore, an important role %

is played by the parts of the trajectory whefg is close to oot BP2000
either 7/2 or 6, where the quantith .,/ 8,, is large(see Fig. 0.02
2).
Now truncate the profile close to the point of the maximal 0
violation of adiabaticity. This decreases the amount of rota- 08 1 12 14

tion of the state with respect to the flavor basis decreases Om

roughly by a factor of two. Actually, because the function in £y 7. The comparison of the neutrino state evolution in the
Eq. (2.15 has adoublepole atf,=/2, and asinglepole  jxfinite exponential profildashedl and the realistic solar profile

around 6,= 0, the factor can be expected to be somewhaccording to the BP2000 solar modeblid), plotted as a function
less than two. The numerical calculations of the last sectioRs the mixing angle in matterd,,. The values Sm%E,

indeed show that for the BP2000 profile the parameter =10"° ev¥MeV and 6=m/4 were chosen. The bottom figure
changes fronR/10.54 toR/18.4. shows the deviation of the evolution in both cases from extreme

To illustrate this more quantitatively, let us see how nonadiabatic.
|45(0,)| deviates from its extreme nonadiabatic behavior
| #2(6:) | = sin 6, in the QVO regime. Figure(A) shows the only been given fox(i) the linear density distributior\(x)
probability of finding the neutrino in the heavy mass eigen-= — Cyx [22,23,°
state, forAm%E,=10"° eV¥/MeV, ¢§=m/4, as a function o
of the mixing angle in matteé,,. Results for both the infi- (Pe) iny = €XP(— A%(Co) ~ 'sir?26), (4.1
nite exponential profile and the BP2000 profile are shown. . o
Figure 7B) shows the graph of 6,,=arcsifyu(6,)|— 6, as (1) the distributionA(x) =Bo/x [35],

a function ofé,,. The main contribution ta 6,,, comes from _
the region 1.4 6,,<w/2, where the profile is close to the exp(4mBocos') — 1
exponential.

Figure 8 shows the same evolution in the physigal . .
space. One can see that most of the contribution &, and (iii) the hyperbolic tangent distribution36] A(x)
comes from the part of the profile betweenR.7and R, . =Ao[ 1—tanh@/))2,

This confirms that it would be incorrect to try to estimate _ _
A 6y, by computing the slope around the pokt A, since (Pe) (tanhy= costmlAg) — cosh(r (A~ 4)) .
for large 6 the entire regiox=0.7R, is important. cosH(ml (A, +A))—cosHml (A, —A)) @3

(Po)am= exp4nBg) -1 4.2

IV. ALL KNOWN ANALYTICAL SOLUTIONS
CAN BE DERIVED FROM THE ONE
FOR THE tanh PROFILE. ®Notice that Eq(4.1) is often written in a form containing a factor

. . . ) ~ of 1/cos @. This is done to expressgl in terms of the logarithmic
The formulation of the evolution equations introduced in gerivative of the density at the resonance. In that form, it may

Sec. Il A, with 6, as an independent variable, makes it pos-syperficially appear tha®,, has a singularity ag= /4. Of course,
sible to uncover a simple relationship between the knowrpnce the derivative is computed, the factors of cés@ncel out. As
analytical solutions. Such solutions have been obtained for @e have discussed in this paper, the conventional definition of the
very limited set of profiles. In addition to the exponential resonance has little physical meaning for large angles, so there is no
density distribution, explicit formulas in the literature have good reason for introducing the factor of 1/cak 2
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By inspecting Eqs(2.15, (4.4), (4.5, and(4.6) one can
clearly see the common origin of all four solutions. For the
hyperbolic tangent distribution A, /6,,)@™ has three
simple poles inf,, on (0,7/2], thus representing the most
general case of all four. The exponential case is obtained
when two of the polesf,, and 7/2, merge in one double
pole, and the X case is obtained when the polésand 6.,
merge. Finally, if all three poles merge in one triple pole at 0
(7r/2), one obtains the linear case. Thus, given the result for
the hyperbolic tangent distribution, it should be possible to
recover the answers for the other three distributions by sim-
ply taking appropriate limits.

We first show how the exponential result can be obtained
from the one for the hyperbolic tangent. By comparing Egs.
(2.28 and(4.3) we see that we need a largg limit of Eq.
(4.3), since in this caed,.— w/2, and also a substitution
—2rg:

arcsin |1

Exponential

L \
\
\\
1.1 / !
L \
\
\
\
\

1 BP2000

0.9 [ M

012 //_,,; o ®)

01 Exponential

0.08

arcsin || — O

\ exp( I Ag)/2— exp(mrl (A, — A))/2

/" BP2000 (PC)(ta”h)_)exp(wI(AerA))IZ—exp(wl(AOC—A))IZ

_exp(ml[Ag— (A~ A)]—1

B exp(ml (2A))—1
exdml (Ag—Ao[1—(A/Ag)cos 20]+A)]—1

exp(wl (2A))—1

B exp(mlA(1+cos20))—1

- exp(wl(24))—-1
exp(4mroA cosh)—1

exp4mroA)—1 :(Pc)exp- (4.7)

0.04

0.02

0.2 04 0.6 0.8 1.0 1.2 1.4
z, x10% km
—

FIG. 8. Same as Fig. 7, but as a function of the distance from the
center of the Sum.

In the last equation ., is the value ofA ,, deep inside matter,
A =limy_ A= JA5—2A0A cos H+A2

What do these distributions have in common that makes
them exactly solvable? One important feature that unites
them is that the corresponding differential equations can all
be put in the hypergeometric forf87]. We next show more Above we used the fact that for largeAoAn,
directly that Eqs(2.28, (4.1), (4.2, and(4.3) are all related = VAG—2A0A cos 2+A%—Af 1—(A/A)cos 2]. The physi-
to each other and that the first three can be easily obtaineefl interpretation of this result is the following. For a fixad
from the last one. andA,— « the part of the neutrino trajectory where adiaba-

To make this relationship clear, it is useful to show theticity is maximally violated occurs at large whereAg[ 1
analogs of Eq(2.15 for the other three distributions in ques- +tanh§/1)]/2— Aqexp(—2x/l)=Agexp(—x/ro). Notice, that
tion. A straightforward calculation yields A, dropped out and the derivation is valid for alland 6.

To obtain the expression f&. for the linear profile from

A 2A%sir20 that for the exponential, in Eq2.15 we take the limitr,,
‘-9_ - Cosint26 (4.4 —o, §#—0, such that the productAr ;sir’26 approaches a
m ”n) OSI m 2 . ~ . . .
( constant value, 2{?%/Cp)sir26. In this limit
for the linear distribution, exp(4mryA cosd)>1 and sik26—4 sirfé, so that
A 2Bgsirf26 exp(4mr A cosh) — 1
omb 4. Po) oxs= exp(— 47 oA sinf o
( om) wo SN 20,SIP(26,—26) @9 (Poer™ gamroa) -1 SH 4o )
for the 1k distribution, and —exp(— m(A2/Co)sin26) = (P¢)jin (4.9

Aglsin 26 sin 26,

Am)
(gm (tanh) sin 260,,SiN(26,,,—26)sin(26,—26.,)

for the hyperbolic tangent distributiord is the value ofg,,

deep inside matter, so that sif.2=A sin 20/A.,).

(4.9

At last, we will show how the result for the Ldistribu-
tion follows from that for the hyperbolic tangent distribution.

®Notice that the producysin 26, in the limit of large A, ap-
proaches a constant valdesin 26.
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The logic is similar to what was done before: E4.5 can This difficulty can be easily resolved and the result in
be obtained from Eq4.6) by sendingd..— 6, and relabel- question can be obtained from Eg.3) by appropriate sub-
ing Agl —2A,; the result for the X profile should then be stitutions. The key observation is that in the case of the hy-
read off from the solution of the differential equation with perbolic tangent the differential equation is uniquely speci-
the profile(4.6). A complication arises because in this casefied by therelative positions of the three poles of E(.6)

one needs to know the solution of the differential equatiorand the factor in the numerator. By shifting the poles such
betweens/2 and .., while the known result, Eq4.3) de-  that6—0, we can reduce the problem of finding the solution
scribes the solution betweeh), and 6. The rangq .., 7/2] on[#.,m/2] to the solved casgéd’,d.] and use Eq(4.3.

(and alsd 0,0]) correspond to a different matter distribution,  The details of this procedure can be found in Appendix A.
A(X)=Ag[ 1+ 1/tanh/)]/2 (see Appendix A After a straightforward calculation one finds that

sin 26,, sin 26
cosh mlAg—=——5—=|—cosh 7lAg| =—5+—5+—1

ol sin(26..—20) sin(260..—26)
c A sin 260 1 A sin 260 1
cosh mAo| Sin20,—20) )| ~COS ™Po Sin20.—20)
B cosh{mrlA)—cosHwl (A, —Ap)) 4G
~coshml (AL +Ag))—coshml (A.—Ag)) 4.9
|

From the first form of the expression it is easy to see that the P.=exp — mA246°By/A?)=exp(—4mw6°B,).
formula satisfies the necessary nonadiabatic limit;_ligi . (4.1)

=cosh. From the second form it is easy to take the limit
which reproduces the formula for thexlprofile. We can The slope at the resonance point changes exactly in such a
achieved..— 6 by makingA large while keepingd, fixed. ~ way as to compensate for the changeAi The solar neu-
Once again, in this limiA,,— A —A cos 2 and so trino fits would be qualitatively different, were the solar den-
sity profile close to X instead of the exponential.
exp(mlA)—exp(wl (A, —Ap))

PI

™ exp(ml (A +Ag))—exp(ml (A~ Ag)) V. CONCLUSIONS
exp(ml (A—AL+Ag))—1 In this paper we have discussed several aspects of the
exp2mlAy) —1 neutrino evolution in matter, emphasizing the case of the
large values of the mixing angle, including values greater
exp2m Agcos'6) — 1 (410 thanm/4. We have pointed out how some of the results origi-
exp2mlAg) —1 ' nally derived for small mixing angles can be modified to be

applicable to all values of. Such results include the adia-

Upon relabelingAql — 2B, we recover Eq(4.2). baticity condition and the role played by the resonance in

The last result deserves a few comments. It is quite redetermining where the nonadiabatic jumping between the
markable that the dependence of the jumping probability orstates takes place. We have formulated analytical criteria for
the mass-squared splitting and energy completely droppeghe case of the exponential matter distribution and com-
out at the end. The #/profile thus represents a rather unique mented on how these criteria apply to case of the realistic
case when the adiabaticity is entirely determined by the dersolar profile. Although the focus of our analysis was on solar
sity profile and the mixing angle. This could have been, ofneutrinos, the results are useful for understanding the physics
course, anticipated already on the basis of the dimensionalf neutrino oscillations in matter in general.

analysis. Indeed, the parameRy is dimensionlesand thus, We have presented the results of accurate numerical cal-
together with#, completely determines the jumping prob- culations, showing how the jumping probabiliB interpo-
ability. lates between the QVO and the standard MSW regimes in

It is instructive to see how the cancellation happens foithe case of the realistic solar profile. An empirical prescrip-
small ¢ and By>1. Equation (4.2) then becomesP;  tion on how to estimat®, anywhere in this range with only
= exp(—4mB,yfP). But we can also compute this differently: elementary functions was given. The matter effects in the
since for small angles the resonance is narrow, we can usecuasivacuum regime were discussed.
linear formulaP .= exp(— mA%|dA(X)/dX.2si26). Since for Finally, we have shown that the known analytical solu-
A(x)=By/x we havedA(x)/dx=—A(x)%/B, and at the tions for the linear, exponential, andxldensity distributions
point of resonancé\(x)=A, the quantityA cancels out of can be easily obtained from the result for the hyperbolic
the final result: tangent distribution. It was especially easy to see this using
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0., as an independent variable. In the process of the proof we Clearly for any x in the distribution A(x)=Aq[1
also obtained an answer for a fifth distributiolN,  +tanh{/1)]/2 the angled,, is constrained betweeandé., .
o[ cothf/I)+1]. The range of,, [ 6.., /2] corresponds to a different density
profile, which everywhere satisfi@gx) >A,. This new pro-
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APPENDIX A: DERIVATION OF THE EXPRESSION B I | C . ~ il A2
FOR P, FOR THE DENSITY DISTRIBUTION X= o\ 9 a =gy I T o (A2)
A(x)ec[coth(x/1)=1]

As mentioned in Sec. IV, one of the four matter distribu- Substituting this in the equation fdx(x) we find
tions for which exact expressions fBr, have been obtained
is the profileA(x) = Ag[1+tanh/)]J/2. The answer is given  A(X)=Ao[1+tanh(X/l +im/2)]/2=A[ 1+ Litankx/1)]/2.
by Eq.(4.3) and represents the result of solving the differen- (A3)
tial equation(2.11) on the interval[ 6,6..], with A./6,
given by Eq.(4.6). In this appendix we show how this result  To obtain the expression fd?. for the distribution(A3),
can be used to obtain the solution to the same differentiahs a first step in Eq4.3) we express the quantitigs,, and
equation on the intervdld,, ,m/2]. A, in terms of the angleg and 6,,,,

sin 260,,—sin 260
sin(26.,,—26) )

sin 20.,+sin 26 sin20,,—sin 26\
m) —COS"( WIAOW)

cosimlAg) — Cosl'< wlAg

(Po) (tanh)= (A4)

cos)’( wlAg

Next we shift 6,,— 6,,— 6 in Eq. (4.6) such that the pole a# moves to 0. This reduces the problem to solving the
differential equation(4.6) betweend.,=m/2— 60 and §'=0,,— 6. To complete the change to the primed variables, in the
numerator of Eq(4.6) we substituteAysin 20sin 26, by Agsin 26'sin 26.,, whereAj= Agsin 26,./sin(26.,—26). We then find

sin 20, —sin 26’
cosh{mlAg) —cosh mlAg————
b sin(20,—260")
¢ sin 2. +sin 26’ sin 26, —sin 26’
cosh wlAj————— | —cosh nlIAj——————
sin(26.,—26") sin(20,,—26")

A sin 26., A sin 20 1
CoSh mRogin 26, —26)) €O TR0\ Sin26. - 26)

= r{ ( sin 20 )) r{ ( sin 20 )) (AS)
cosh wlAg —sir1(20x—2¢9)+1 —cosh mlAg —sin(zax—ZB)_l

This is the answer that is needed in Sec. IV.

One may be interested in the expressionRgrfor a distributionA(x) = Ag[ 1/tanh§/l)—1]/2, which has the property that
it vanishes in the limit of large. This can be found by redefining the vacuum values of the neutrino oscillation parameters to
be A, andé, . Equation(A5) can then be rewritten as

B cosh{mrlA)—cosHl (A, —Ap))
Pe= cosi(ml(A,+Ag))—cosHal (A, —Ap))’

(A6)

whereA = A3+ 2AyA..cos X, + A~
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