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Evolution of the neutrino state inside the Sun
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We reexamine the conventional physical description of the neutrino evolution inside the Sun. We point out
that the traditional notion of resonance is a useful physical concept only in the limit of small values of the
neutrino mixing angle,u!1. For large values ofu, the resonance condition specifies neither the point of the
maximal violation of adiabaticity in the nonadiabatic case, nor the point where the flavor conversion occurs at
the maximal rate in the adiabatic case. The corresponding correct conditions, valid for all values ofu including
u.p/4, are presented. The adiabaticity condition valid for all values ofu is also described. The results of
accurate numerical computations of the level jumping probability in the Sun are presented. These calculations
cover a wide range ofDm2, from the vacuum oscillation region to the region where the standard exponential
approximation is good. A convenient empirical parametrization of these results in terms of elementary func-
tions is given. The matter effects in the so-called ‘‘quasivacuum oscillation regime’’ are discussed. Finally, it
is shown how the known analytical results for the exponential, 1/x, and linear matter distributions can be
simply obtained from the formula for the hyperbolic tangent profile. A new expression for the jumping
probability for the distributionNe}@coth(x/l)61# is obtained.

DOI: 10.1103/PhysRevD.64.013008 PACS number~s!: 26.65.1t, 14.60.Pq
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I. INTRODUCTION

The solar neutrino problem~SNP! is a discrepancy be
tween the measured values of the solar neutrino flux at
ferent energies@1–5# and the corresponding predictions
the standard solar model~SSM! @6#. Not only is the observed
flux suppressed, compared to the SSM predictions, but, if
data from the Homestake experiment are correct, the de
of suppression varies with energy. The leading explana
of this phenomenon is that neutrinos have small masses
the mass and flavor bases in the lepton sector are not alig
just like in the quark sector. The resulting neutrino oscil
tions convert some of the solar electron neutrinos into
other neutrino species.

Neutrino oscillation solutions to the SNP have traditio
ally been divided into the so-called Mikheyev-Smirno
Wolfenstein~MSW! solutions@7–9# and the vacuum oscilla
tion ~VO! solutions, according to the physical mechanis
responsible for the neutrino flavor conversion in each ca
In the MSW case the conversion is caused by neutrino in
actions with the solar~and Earth’s! matter, while in the VO
case it is due to long-wavelength neutrino oscillations
vacuum between the Sun and the Earth. Over time, it
become a tradition to treat the two cases completely se
rately, showing results in separate plots~see, for example
@10,11#! and using different input formulas and differe
codes.

Justifying such a complete separation, however, requir
careful analysis of the magnitude of the solar matter effe
and the degree of decoherence of vacuum oscillations.
separation assumption has been recently reexamined b
author@12# and it has been found that the solar matter effe

*Present address.
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are nonnegligible for the vacuum oscillation solutions w
Dm2*5310210 eV2. This conclusion has been subsequen
verified by other authors@13–15#, and the termquasivacuum
oscillations ~QVO! has been coined to refer to the regio
where both effects influence the neutrino survival probabi
@13#.

It must be mentioned that the experimental situation
changed since the QVO solutions were first introduced.
the time, the most preferred part of the VO solutions was
the regionDm2,10210 eV2. The latest Super-Kamiokand
spectrum data, however, disfavors a large fraction of
vacuum oscillation region, roughly 2310211 eV2,Dm2

,4310210 eV2 @16,15#. At the same time, the solution
with Dm2.4310210 eV2, i.e. the QVO solutions, remain
allowed.

Prior to@12#, the VO solutions had always been studied
the range of the neutrino mixing angle 0<u<p/4 for a fixed
sign of Dm2. When matter effects are included, howeve
this only covers a half of the full parameter space. To co
the full space, one can either~i! keepu in the range 0<u
<p/4 and consider both signs ofDm2, or ~ii ! fix the sign of
Dm2 and varyu from 0 to p/2. We advocate the secon
option as a betterphysicalchoice, because it makes manife
the continuity of physics around the maximal mixin
@17,18#.

The parametrization 0<u<p/2 requires one to reexam
ine the choice of a variable for plots, because the traditio
variable sin22u is not suitable for this purpose@17#. While
either u or sin2u would be adequate for plotting only th
QVO region, neither choice allows one to take a global vi
of the neutrino parameter space and show all solutions,
cluding the SMA and~quasi!vacuum oscillation solutions, on
the same plot@18#. A particularly convenient choice turn
out to be tan2u on the logarithmic scale, first used in@19# to
describe 3-family MSW oscillations. In addition to coverin
©2001 The American Physical Society08-1



i-

um
m

th

e
tt
th
e
in
gi
m

-

e

e
o
vy
e

e
-

io

u
ta

th
th

an
he

ar
ly
e-
ity
fo

n

fo

i
C
re
-
ir
t

on

na

es
ar
at-

ct

tial,
the
II,
that,
an
ed
tri-

ell-
In

ino
ared

u-

nd

s

ALEXANDER FRIEDLAND PHYSICAL REVIEW D 64 013008
the range 0<u<p/2, it also does not introduce any unphys
cal singularity aroundu5p/4 ~unlike the traditional sin22u,
see @17#! and makes it easy to see where in the vacu
oscillation region the evolution in the Sun becomes co
pletely nonadiabatic~points u and p/22u become equiva-
lent, so that solutions become symmetric with respect to
u5p/4 line!.

In the first part of this paper we address several conc
tual questions that arise in the analysis of the solar ma
effects and become particularly apparent for the values of
mixing angleu>p/4. To introduce these questions, it is us
ful to first summarize the basic mechanism of the neutr
evolution in the Sun. Inside the Sun, because of the chan
electron density, the eigenstates of the instantaneous Ha
tonian change along the neutrino trajectory. ForDm2/En

!1025 eV2/MeV the neutrino is produced almost com
pletely in the heavy eigenstate. If the parametersDm2/En

andu are such that the neutrino remains in the heavy eig
state as it travels to the solar surface~adiabatic evolution!,
there are no subsequent vacuum oscillations. To oscillat
vacuum, as a necessary condition, the neutrino must at s
radius in the Sun ‘‘jump’’ into the superposition of the hea
(n2) and light (n1) mass eigenstates. Conventional VO r
gime is realized when this ‘‘jumping’’ isextremely nonadia-
batic ~preserving flavor!, in which case the neutrino exits th
Sun as cosuun1&1eifsinuun2&. In the QVO regime the neu
trino still partially jumps in then1 eigenstate, but with a
smaller amplitude.

The obvious questions one would like to answer are:
~i! What determines whether or not the neutrino evolut

is adiabatic?
~ii ! In the nonadiabatic case, at what radius in the S

does the ‘‘jumping’’ between the eigenstates of the instan
neous Hamiltonian take place?

The traditional wisdom is that one should analyze
density profile around the so-called resonance point, i.e.,
point where the difference of the eigenvalues of the inst
taneous Hamiltonian is minimal and the local value of t
mixing angle isum5p/4 ~see, e.g.,@20–26#!. This, however,
clearly needs to be modified for large mixing angles. In p
ticular, foru.p/4 the resonance, defined in this way, simp
does not exist. We will show how this contradiction is r
solved in Sec. II B. In Sec. II C we formulate the adiabatic
condition that, unlike the standard result, remains valid
u*p/4.

In Sec. III we present the results of numerical calculatio
of the jumping probabilityPc for the neutrino propagating in
the realistic solar profile. The calculations are carried out
a wide range ofDm2 and tan2u, from the VO region to the
region where the exponential density approximation
valid. We show how the adiabaticity condition of Sec. II
applies to this case. We also give a simple empirical p
scription on how to computePc in this range of the param
eters in terms of only elementary functions. Such an emp
cal parametrization of the numerical results allows one
quickly estimate the value ofPc anywhere in the range in
question without having to solve the differential equati
each time.

In Sec. III B, we discuss what happens in the transitio
01300
-

e

p-
er
e

-
o
ng
il-

n-

in
me

-

n

n
-

e
e
-

-

r

s

r

s

-

i-
o

l

region between the adiabatic and nonadiabatic regim
~QVO!. In particular, we determine what part of the sol
electron density profile is primarily responsible for the m
ter effects in this region.

Finally, in Sec. IV we comment on the four known exa
analytical solutions for the neutrino jumping probabilityPc .
Such solutions have been found for the linear, exponen
1/r , and hyperbolic tangent matter density profiles. Using
formulation of the evolution equations introduced in Sec.
we show that these four results are not independent and
given the formula for the hyperbolic tangent profile, one c
very simply obtain the other three solutions. As an add
benefit, we obtain an exact expression for the density dis
bution Ne}@coth(x/l)61#.

II. PHYSICS OF THE NONADIABATIC NEUTRINO
EVOLUTION

A. Review of the oscillation formalism

For completeness, we begin by summarizing the w
known basic formalism for neutrino oscillations in matter.
the simplest case, when the mixing is betweenne and an-
other active neutrino species, the evolution of the neutr
state is determined by four parameters: the mass-squ
splitting between the neutrino mass eigenstatesDm2[m2

2

2m1
2, the neutrino mixing angleu, the neutrino energyEn ,

and the electron number densityNe of the medium. One has
to solve the Schro¨dinger equationidf/dt5Hf, where f
5(fe ,fm)T is the state vector made up of the electron ne
trino and the muon neutrino.1 The HamiltonianH is given by
@7#

H5const1S A2D cos 2u D sin 2u

D sin 2u D cos 2u2AD , ~2.1!

whereD[Dm2/(4En) and A[A2GFNe/2. The constant in
the Hamiltonian is irrelevant for the study of oscillations a
will be omitted from now on. The time variablet may be
replaced by the distance traveledx, since the solar neutrino
are ultrarelativistic.

For a constant electron number densityNe the Hamil-
tonian can be trivially diagonalized, H85VHV†

5diag(2Dm ,1Dm), where

Dm5A~A2D cos 2u!21~D sin 2u!2

5AA222AD cos 2u1D2. ~2.2!

In terms ofDm , the Hamiltonian~2.1! can be rewritten as

H5S 2Dmcos 2um Dmsin 2um

Dmsin 2um Dmcos 2um
D , ~2.3!

1In reality, fm here denotes a linear combination offm andft in
which fe oscillates.
8-2
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EVOLUTION OF THE NEUTRINO STATE INSIDE THE SUN PHYSICAL REVIEW D64 013008
whereum is the mixing anglein matter. The rotation matrix
V is given by

V5S cosum 2sinum

sinum cosum
D . ~2.4!

The parametersDm andum are related to the original pa
rameters in the Hamiltonian~2.1! as follows:

Dmsin 2um5D sin 2u, ~2.5!

Dmcos 2um5D cos 2u2A, ~2.6!

tan2um5
D sin 2u

D cos 2u2A
. ~2.7!

We will always label the light mass eigenstate byn1 and
the heavy one byn2. Since one can redefine the phases
ne,m and n1,2, it is easy to see that in this convention th
physical range of the mixing angle is 0<u<p/2 @18,17#.

As long asNe(x) is constant, the time evolution of th
mass eigenstates is particularly simple. Each of the two m
eigenstates evolves only by a phase:un1(t)&
5un1(0)&exp(iDmt), un2(t)&5un2(0)&exp(2iDmt). If at time
t50 the neutrino state is a linear combinationaun1(0)&
1bun2(0)&, the absolute values of the coefficientsa andb do
not change with time, i.e., the probability for the neutrino
‘‘jump’’ from one Hamiltonian eigenstate to another,Pc
[ua(t51`)u22ua(t50)u2, is trivially zero.

Consider next the case of a varying electron density
this case, in general, one can no longer diagonalize
Hamiltonian in Eq.~2.1!. However, one can still speak of th
eigenstates of the instantaneous Hamiltonian~henceforth,
‘‘the matter mass eigenstates’’!, and define the jumping
probability between these states. It turns out that if the e
tron density changes sufficiently slowly along the neutr
trajectory ~to be quantified later!, the jumping probability
vanishes, just like in the constant density case. This is kno
as theadiabaticevolution. At the same time, when the de
sity changes abruptly, the jumping probability is clearly no
zero. In particular, if the neutrino crosses a step–funct
density discontinuity, the flavor state does not have any t
to evolve, while the mass basis in matter instantaneou
rotates. It is easy to see that in this situation, known as
extreme nonadiabaticevolution, the jumping probability is
given by

Pc
NA5sin2~ubefore2uafter!. ~2.8!

In general, for a monotonically varying densityPc lies be-
tween 0 andPc

NA .
In this paper we are concerned with the evolution of so

neutrinos. The electron number density inside the Sun,Ne ,
falls off as a function of the distance from the centerr as
shown in Fig. 1@6#. In the range 0.15R(&r &0.65R( the
profile can be approximated very well by an exponen
Ne(r )}exp(2r/r0), with r 05R(/10.5456.603104 km
~shown by a straight line in the figure!. However, in the
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convective zone of the Sun, and also in the core where
neutrinos are produced, the profile deviates rather sign
cantly from exponential.

In order to study the jumping probability between th
matter mass eigenstates, it is convenient to change to
basis these states define. Substituting in the Schro¨dinger
equationf5V†c, c[(c1 ,c2), we get

i
d

dx
~V†c!5HV†c,

i
dc

dx
5VHV†c2 iV

dV†

dx
c. ~2.9!

SinceVHV†5diag(2Dm ,1Dm) and, from Eq.~2.4!,

V
dV†

dx
5S 0 1

21 0D dum

dx
,

we obtain the desired evolution equation in the basis of
matter mass eigenstates@20#

d

dx S c1

c2
D 5S iDm 2dum /dx

dum /dx 2 iDm
D S c1

c2
D . ~2.10!

The steps outlined so far are standard in the treatmen
the MSW effect. We will next make an extra step that w
prove very helpful for the subsequent analysis, particularly
Sec. IV. Namely, we will chooseum instead ofx as an inde-
pendent variable. So long as the density varies monot
cally, such a change is one-to-one. Equation~2.10! becomes

d

dum
S c1

c2
D 5S iDm / u̇m 21

1 2 iDm / u̇m
D S c1

c2
D . ~2.11!

FIG. 1. The electron number density profile of the Sun acco
ing to the BP2000 standard solar model.
8-3
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ALEXANDER FRIEDLAND PHYSICAL REVIEW D 64 013008
HereDm andu̇m[dum /dx can both be expressed in terms
um using the following relationships:

u̇m5
sin22um

2D sin 2u

dA

dx
, ~2.12!

Dm

u̇m

5
2D2sin22u

sin32um

1

dA/dx
, ~2.13!

A5
D sin~2um22u!

sin 2um
, ~2.14!

which follow directly from Eqs.~2.5!–~2.7!. For instance, for
the infinitely extending exponential profileA(x)5A0exp
(2x/r0) the derivative isdA(x)/dx52A(x)/r 0 and so

Dm

u̇m

52
2Dr 0sin22u

sin22umsin~2um22u!
. ~2.15!

The angleum varies from its value at the production poi
u( to its vacuum valueu. For the infinite exponential profile
we haveu(→p/2. Notice that the quantityDm / u̇m in Eq.
~2.15! is singular whenum approaches either of its limiting
values, as should be expected.

The shape of the functionuDm / u̇mu for u5p/4 and D
51029 eV2/MeV for the idealized exponential profile i
shown in Fig. 2 by the solid curve. The value ofr 0 was
chosen to beR(/10.54, the slope of the best fit line in Fig.
The dashed curve in the figure shows the same quantity
the realistic BP2000 solar profile for the same values ou
and D. It is important to keep in mind that the two curve
change qualitatively differently as one changesD. While the
exponential curve just scales by an overall factor,
BP2000 curve also changes its shape, approaching the s
of the ~rescaled! solid curve for sufficiently large value
of D.

FIG. 2. The quantityuDm / u̇mu as a function ofum for the expo-
nential profileA(x)}exp(2x/r0) ~solid line! and the BP2000 sola
profile ~dashed line! for u5p/4, D51029 eV2/MeV.
01300
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B. Modification of the notion of resonance for largeu

We are ready to address the questions posed in the in
duction. A convenient starting point is the evolution equati
in the form of Eq.~2.11!. The neutrino is produced in thene
state, which corresponds to (cosu( ,sinu() in the matter
mass basis. To simplify the presentation, we shall cons
the values ofD!1025 eV2/MeV, so that at the production
point D!A( , and hence (cosu( ,sinu()→(0,1).

The evolution equation can be easily solved in the t
limiting cases. If the off-diagonal elements can be neglec
the evolution is adiabatic, i.e.,uc2(um)u2 remains constant
If, on the other hand, for almost the entire interval betwe
u( andu the diagonal terms can be neglected, the solutio

c~u!5expF E
u(

u

dumS 0 21

1 0D Gc~u(!

5S cos~u2u(! 2sin~u2u(!

sin~u2u(! cos~u2u(!
Dc~u(!. ~2.16!

This limit corresponds to the extreme nonadiabatic case.
corresponding jumping probability equalsPc5sin2(u(2u)
5cos2u, in agreement with Eq.~2.8!.

Returning for a moment to the physicalx space, we note
that no jumping between the mass eigenstates occurs e
in the solar core@7# or in vacuum. The nonadiabatic evolu
tion takes place in a localized region, with a center at
point of ‘‘the maximal violation of adiabaticity.’’ Our goa
next is to establish the location of this point.

Conventional wisdom says that the adiabaticity condit
is violated maximally at the resonance point

A5D cos 2u, ~2.17!

where the separation between the energy levels is mini
andum5p/4. This assertion can be found in the early pap
@21,22,20,27#,2 as well as in numerous subsequent revie
on the subject, e.g.@24–26#. However, in all these papers
is assumed—either explicitly or implicitly—that the vacuu
mixing angleu is small. It is easy to see that for a large val
of the mixing angle the use of the condition in Eq.~2.17!
leads to a contradiction.

For smallu, Eq. ~2.17! is satisfied in a layer in the Su
where the density isA(x).D. As the value ofu increases,
Eq. ~2.17! predicts that the resonance occurs at lower a
lower electron density until, asu approachesp/4, it moves
off to infinity. It is not obvious how to interpret the las
result, as it is physically clear that no level jumping c
occur at infinity where the neutrinos undergo ordina
vacuum oscillations. The difficulty is even more obvio
whenu.p/4, in which case the resonance simply never o
curs. At the same time, as already mentioned, in the extre

2A notable exception is Ref.@28#. We do not agree, however, with
the adiabaticity criterion proposed there~see Sec. II C!.
8-4
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EVOLUTION OF THE NEUTRINO STATE INSIDE THE SUN PHYSICAL REVIEW D64 013008
nonadiabatic regime the level jumping probability is nonze
for any value of u and variessmoothlyaroundu5p/4, Pc
5cos2u.

The resolution to this apparent paradox is very simple.
Eq. ~2.11! suggests, adiabaticity is maximally violated at t
minimum of uDm / u̇mu @20,27#. It is easy to see, however, tha
the minimum ofuDm / u̇mu in general does not reduce to th
condition of Eq.~2.17!. This can be explicitly seen on th
example of the infinite exponential density distribution. D
ferentiating Eq.~2.15!, one finds that the minimum occur
when

cot~2um22u!12cot~2um!50, ~2.18!

or

A5D
cos 2u1A81cos22u

4
. ~2.19!

Unlike Eq.~2.17!, Eq. ~2.19! states there is a nonadiabat
part of the neutrino trajectory for all physical values ofu,
including u>p/4. While both equations for smallu predict
that jumping between the local mass eigenstates oc
aroundA5D, Eq. ~2.19! states that for maximal mixing i
occurs aroundA5D/A2, not at infinity, and foru close to
p/2 it happens aroundA5D/2, all physically sensible re
sults.

The situation is illustrated in Fig. 3, which shows th
probability of finding the neutrino in the heavy mass staten2
as a function of the distancex. The parameters of the expo
nential were taken from the fit line in Fig. 1 andDm2/En

51029 eV2/MeV. Three large values of the mixing ang
(u5p/6, p/4, andp/3) and one small value (u5p/60)
were chosen. The dashed lines and dots mark the po
where adiabaticity is maximally violated, as predicted by E
~2.19!. One can see that the partial jumping into the lig
mass eigenstate in all four cases indeed occurs around
marked points.

FIG. 3. Neutrino state evolution in the case of the infinite exp
nential density profile forDm2/En51029 eV2/MeV. The plot
shows the probability of finding the neutrino in the heavy mat
mass eigenstaten2 as a function of positionx, for four different
values of the vacuum mixing angle. The points of the maxim
violation of adiabaticity, as predicted by Eq.~2.19!, are marked.
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It is instructive to analyze each of the factorsDm and 1/u̇m
separately. The first one indeed has a minimum at the tr
tional resonance pointum5p/4 @corresponding to Eq.~2.17!#
or, if u.p/4, at the endpointum5u. The second one, how
ever, has a minimum at a point which is, in general,different
from the resonance. This minimum exists for all values ofu,
includingu.p/4. In the case of the exponential profile, it
located at

um5p/41u/2, ~2.20!

or halfway betweenu and u(5p/2. The corresponding
value of the density at that point is

A5D. ~2.21!

This coincides with the resonance condition foru!1 and
that is why the standard resonance description works v
well in this limit. In general, however, the minimum of th
product function lies somewhere betweenp/4 and p/4
1u/2 ~or u andp/41u/2, if u.p/4).3

It is also worth mentioning that Eqs.~2.20! and ~2.21!
represent an important condition in the case of the adiab
evolution. Namely, they specify a point where the rate
rotation of the mass basis with respect to the flavor basi
maximal, which in the adiabatic case can be interpreted
point where the flavor composition of the neutrino sta
changes at the fastest rate. This shows that for largeu Eq.
~2.17! not only does not describe the point of the maxim
violation of adiabaticity in the nonadiabatic regime, but al
does not specify the point where the flavor conversion occ
at the maximal rate in the adiabatic regime.

To summarize, Eq.~2.17! can only be used in the sma
angle limit. Even in that case one should be careful apply
it for certain purposes. Note, for example, that Eqs.~2.17!
and ~2.19! have different Taylor series expansion aroundu
50,

A.D~122u2/3! for Eq. ~2.19!,

A.D~122u2! for Eq. ~2.17!.

Thus, even at smallu, Eq. ~2.17! fails to predict how the
point of maximal nonadiabaticityshiftsas a function ofu.

The belief that jumping between the matter mass eig
states occurs at the resonance for all values ofu might have
been one of the reasons for the tradition to treat separa
the cases ofu,p/4 and u.p/4, obscuring the fact tha
physics is completely continuous acrossu5p/4. Over the
years, it has caused some unfortunate confusions, as e
plified by the flawed criticism of the results of@12# in @29#. It
was probably the principal reason why the correct express
for the electron neutrino survival probability in theu.p/4
part of the QVO region was not given until recently@17,12#
†cf. Eq. ~6! in @19#‡.

3It is even possible for certain density profiles and certain val
of D andu to have more than one minima.
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ALEXANDER FRIEDLAND PHYSICAL REVIEW D 64 013008
One important application of Eq.~2.19! is the determina-
tion of the phase of vacuum oscillations on the Earth@30,31#.
If jumping between matter mass eigenstates indeed occu
at the resonance~2.17!, one would expect that in the canon
cal vacuum oscillation formula

P512sin22u sin2S 1.27
Dm2L

E
1d resD , ~2.22!

the residual phased res would be minimized when the dis
tanceL was measured from the resonance in the Sun. Re
ence@31# indeed begins with this assumption, but after p
senting the resulting formulas notes that the residual pha
much smaller ifL is instead measured from the layer whe
A5D, not A5D cos 2u. It is unfortunate that this importan
observation has not received proper attention and was
further developed in the subsequent literature. The prece
discussion shows that this result is not just a mathema
coincidence, but has a simple physical explanation.

Finally, it is important to discuss at what density the ad
baticity is maximally violated in the case of the realistic so
profile. Qualitatively, it is not difficult to anticipate th
changes to Eq.~2.19! in this case.

For sufficiently largeD, the adiabaticity is maximally vio-
lated in the radiative zone, entirely within the exponent
part of the profile, so that Eq.~2.19! directly applies.4

For smallD, the nonadiabatic part of the trajectory lie
close to the surface of the Sun where the profile falls
rather rapidly. While for smallu the minimum ofDm / u̇m
should still, of course, occur atA5D, for large angles it is
shifted to values ofA somewhat lower than those predicte
by Eq. ~2.19!. The evolution in the latter case will be dis
cussed in more detail in Sec. III B.

For D in the intermediate range, the jumping occurs n
the bottom of the convective zone where the density falls
somewhat slower than in the exponential part. There
value of the ratioA/D at largeu should increase compared
Eq. ~2.19!.

These qualitative expectations are supported by the re
of numerical calculations presented in Fig. 4, where the r
A/D at the point of minimalDm / u̇m is plotted as function of
u. The three curves shown correspond to the values ofD in
the three different regimes:D5231026 eV2/MeV ~curve
1!, D5731028 eV2/MeV ~curve 2!, and D5131028

eV2/MeV ~curve 3!. The numerical studies of the BP200
solar profile are presented in Sec. III.

C. Adiabaticity condition for large u

We now turn to formulating the adiabaticity condition th
is valid for all, and not just small, values of the mixing ang
u. At first sight it appears that for the evolution to be ad
batic it is simply enough to require that the diagonal e
ments in Eq.~2.11! be larger than the off-diagonal ones. Th

4As we shall see in Sec. III, in this range ofD the nonadiabatic
evolution only occurs foru!1, in which case Eq.~2.19! reduces to
A5D.
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condition becomes most critical at the point where the ad
baticity is maximally violated. Since traditionally this poin
has been identified with the resonance, a commonly c
condition is@20#

uDm / u̇muum5p/4@1. ~2.23!

Since we have shown that the point of the maximal v
lation of adiabaticity in general does not coincide with t
resonance, Eq.~2.23! clearly needs to be modified for larg
mixing angles. The first obvious modification is to evalua
the left hand side at a value ofum close to the true point of
the maximal violation of adiabaticity. In the case of the e
ponential profile, this point would be given by the solution
Eq. ~2.18!. As an estimate, we can approximate it by t
point halfway betweenu andp/2 @see Eq.~2.20!#,

uDm / u̇muum;p/41u/2@1. ~2.24!

This condition, however, still turns out to be inadequa
for large values ofu. To obtain the correct condition, one ha
to analyze the problem more carefully.

The key is to express the information contained in t
system of two evolution equations in a single equation. S
an equation can be easily written for the ratios[c1 /c2.
From Eq. ~2.11! it follows that s obeys the following first
order equation

ds

dum
52i

Dm

u̇m

s2~s211!. ~2.25!

It is easy to see that by neglecting appropriate terms
the right hand side one obtains both the adiabatic and no
diabatic limits. The adiabatic limit corresponds to neglecti
the terms in parentheses, while the extreme nonadiab
limit is obtained if one neglects the first term on the right.
the second case the solution iss5cot(um). Thus, the self
consistent condition to have the extreme nonadiabatic s

FIG. 4. The value of the ratioA(x)/D at the minimum of

Dm / u̇m computed for the realistic solar density profile~BP2000!.
The curves correspond toD5231026 eV2/MeV ~curve 1!,
D5731028 eV2/MeV ~curve 2!, and D5131028 eV2/MeV
~curve 3!.
8-6
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EVOLUTION OF THE NEUTRINO STATE INSIDE THE SUN PHYSICAL REVIEW D64 013008
tion is 2uDm / u̇msu!(s211), with s5cot(um), um5p/4
1u/2. In the opposite limit, the evolution is adiabatic. Thu
we obtain the adiabaticity condition

uDm / u̇muum;p/41u/2@@ tan~p/41u/2!1cot~p/41u/2!#/2,
~2.26!

or, upon simplification,

cosuuDm / u̇muum;p/41u/2@1. ~2.27!

Notice, that all three conditions, Eqs.~2.23!, ~2.24!, and
~2.27! agree in the small angle limit. For large angles, ho
ever, especially foru*p/4, they give very different predic
tions and only Eq.~2.27! is the correct one.

Let us demonstrate this on the example of the infin
exponential profile. In this case the exact analytical solut
is known @32,33# ~see also@34#!,

Pc5
eg cos2u21

eg21
. ~2.28!

Equation~2.28! has two regimes. Foru!1, g@1 the for-
mula reduces toPc5exp(2g sin2u), so the evolution is
nonadiabatic whengu254pr 0Du2!1. By contrast, foru
*p/4 andg@1 the numerator is always much smaller th
the denominator. The transition between the adiabatic
nonadiabatic regimes occurs wheng;1, with a weak depen-
dence onu.

Let us see if Eq.~2.27! correctly captures this behavio
Using Eq.~2.15! we obtain

8Dr 0sin2u@1. ~2.29!

Figure 5 shows the contour of 8Dr 0sin2u51 computed for
r 05R(/10.54 ~solid line!. For comparison, the dash-dotte
curves shows the corresponding predictions of Eqs.~2.23!
and ~2.24!. The dashed curves are the contours of cons
Pc computed using Eq.~2.28!. It is clear from the Figure tha
the description of Eq.~2.27! is correct not only for smallu,
but also foru*p/4. The transition from adiabaticity to nona
diabaticity foru*p/4 occurs forDm2/En;1029 eV2/MeV,
precisely whereg;1.

The true usefulness of Eq.~2.27! is not so much in being
able to explain the physics behind the known analytical
lution as it is in being able to make predictions for a varie
of new density profiles, provided those profiles are su
ciently smooth. Such an analysis, however, would be bey
the scope of this paper. Here we will only address what
~2.27! predicts for the realistic solar density profile. It turn
out that for large mixing angles and the values ofD that
yield nonadiabatic evolution the nonadiabatic jumping ta
place mostly in the convective zone, where the density p
file deviates from the exponential, and so one can no lon
rely on Eq.~2.28! to get the shape of the boundary betwe
the adiabatic and nonadiabatic regions. Equation~2.27!
nonetheless works quite well. The corresponding numer
results are presented next.
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III. CALCULATIONS FOR THE REALISTIC SOLAR
PROFILE

A. Numerical calculations of the jumping probability

In this section we present the results of numerical com
tation of the jumping probabilityPc with the realistic
~BP2000! solar density profile. In practice, ultimately, on
would like to compute expected event rates at various exp
ments, and for that one needs to know the solar neut
survival probability P(ne→ne). It is, however, quite
straightforward to show that, for a given neutrino energy,
survival probability is given by

P~ne→ne!5P1cos2u1~12P1!sin2u2APc~12Pc!

3cos 2u(sin 2u cosS 2.54
Dm2

E
L1d D ,

~3.1!

where P15Pcsin2u(1(12Pc)cos2u( @18#. Thus, the prob-
lem of finding P(ne→ne) reduces to finding the jumping
probability Pc .

The quantityPc can be found analytically in several lim
iting regimes. ForDm2/En*1027 eV2/MeV the condition of
Eq. ~2.19! is satisfied well inside the Sun where the profile
exponential with r 05R(/10.54. Hence, in this case th
jumping probability should be adequately described by E
~2.28!.

The second regime isu!1, in which case the standar
resonance description applies and, importantly, the re
nance is very narrow. As a result, the jumping probabil
can be adequately described by the analytical formula fo

FIG. 5. The boundary between the adiabatic and nonadiab
regions in the case of the exponential profile, as predicted by
~2.23!, Eq. ~2.24!, and Eq.~2.27!. The dashed curves show th
contours of constantPc . For large angles only, Eq.~2.27! provides
a good description of the boundary.
8-7
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ALEXANDER FRIEDLAND PHYSICAL REVIEW D 64 013008
linear density profile,Pc5exp(2pD2sin22uudA(x)/dxuA5D
21 )

@Eq. ~4.1! of Sec. IV#. The contours of constantPc in this
regime are expected to follow the behavior of the chang
slope of the BP2000 density profile shown in Fig. 1.

The third regime is the region of smallD and largeu. As
already discussed, forD→0 the evolution becomes ex
tremely nonadiabatic, i.e.,Pc→cos2u. For Dm2/En;1029

eV2/MeV we have the so-called quasivacuum oscillation
gion. It was shown in@12# that for Dm2/En&531029

eV2/MeV Eq. ~2.28! provides a good fit to numerical calcu
lations, provided one takesr 05R(/18.4. This region will be
discussed in more detail in Sec. III B.

We next present numerical results forPc that cover the
entire range between these regimes. We numerically s
Eq. ~2.25! on a grid of points in the range 1023,tan2u
,10, 10211eV2/MeV,Dm2/En,231027eV2/MeV. No-
tice that, while the same result would be obtained by solv
the system of equations in Eq.~2.10!, Eq. ~2.25! requires
significantly less computer time. Indeed, Eq.~2.10! contains
four real functions~real and imaginary parts ofc1 andc2),
but only two of them are independent, sinceuc1u21uc2u2
51 and the overall phase has no physical meaning.

The resulting contours of constantPc are shown in Fig. 6
by solid curves. All the features anticipated in the discuss
above are clearly present.

We can now test the validity of the adiabaticity criterio
introduced in the previous section@Eq. ~2.27!#. The shaded
region in Fig. 1 corresponds to cosuuDm/u̇muum5p/41u/2>1.
As one can see by comparing its shape with that of the c
tours of constantPc , the criterion in question indeed de
scribes the adiabatic region quite well, even foru.p/4.

FIG. 6. Contours of constant level jumping probabilityPc . The
solid line represent the result of numerical calculations using
BP2000 solar profile. The dashed lines illustrate a possible em
cal fit using only elementary functions@Eq. ~3.2!#.
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For practical calculations it is convenient to have a sim
expression involving only elementary functions that provid
a satisfactory means of estimatingPc without having to
solve the differential equation each time. We can constr
such a purely empirical fit function by taking Eq.~2.28! as a
starting point. Since for both large and small values
Dm2/En one can use Eq.~2.28! with the appropriate values
of r 0, we can modify Eq.~2.28! by makingr 0 a function of
Dm2/En , smoothly interpolating betweenR(/10.54 and
R(/18.4,

r 0~Dm2/En!

5
R(

10.54F0.75S 1

p
arctan@210~a18!#1

1

2D11G21

,

~3.2!

where a5 log10@(Dm2/En)/(eV2/MeV)#. This provides an
adequate fit for bothDm2/En&531029 eV2/MeV and
Dm2/En*1027 eV2/MeV. By making additional modifica-
tions to the function it is possible to obtain a reasonable
also to the contours in the intermediate region,

r 0
fit~Dm2/En!

5
R(

10.54F0.75S 1

p
arctan@210~a17.95!10.9b#1

1

2D
20.3 expS 2

~a17.7!2

0.52 D 11G21

, ~3.3!

whereb5 log10@ tan2u#. It is important to emphasize that thi
equation should only be viewed as a purely empirical fit
the numerical results, intended to facilitate practical com
tations of the solar neutrino survival probability.

The contours of constantPc
fit computed with Eq.~3.3! are

shown by dashed lines in Fig. 6. The discrepancy betw
the numerical results andPc

fit is uPc
fit2Pc

BP2000u,0.022.

B. Matter effects in the QVO region

In this subsection we discuss the matter effects in
QVO regime. This region, characterized byDm2/En;1029

eV2/MeV and large values of the mixing angleu deserves a
separate treatment. While lying below the adiabatic region
determined by the criterion of Eq.~2.27! ~see Fig. 6!, it is
nonetheless characterized by a significant deviation from
treme nonadiabaticity. In fact, as discussed in the last s
tion, for Dm2/En&531029 eV2/MeV the jumping probabil-
ity in this region can be described quite well by Eq.~2.28!
with r 05R(/18.4. Thus, the neutrino evolution in this re
gion is partially adiabatic, and our task next is to sketch
simple physical picture of this phenomenon.

First, notice that the conditionA.D in the QVO region is
satisfied very close to the Sun’s edge~at x56.63105 km for
Dm2/En51029 eV2/MeV), where the profile falls off very
rapidly. This of course does not mean that the evolution
extremely nonadiabatic. As discussed previously, the sl
of the profile at the pointA5D can only be used to find the

e
ri-
8-8
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EVOLUTION OF THE NEUTRINO STATE INSIDE THE SUN PHYSICAL REVIEW D64 013008
jumping probability in the case of small mixing angles. F
large mixing angles, the nonadiabatic segment of the n
trino trajectory is large, and roughly the first half of th
segment lies withinx&0.92R(56.353105 km, where the
density is equal to or greater than that of the fitted expon
tial profile.

This suggests that the evolution of the solar neutrino
the QVO regime can be modeled as the evolution in
exponential profile truncated near the point of the maxim
violation of adiabaticity. Let us investigate the basic featu
of this model.

First, consider a partially adiabatic evolutio

(cosuuDm/u̇muum;p/41u/2;1) in case of the infinite exponen

tial profile. As the neutrino traverses the Sun, its state vec
although not completely ‘‘attached’’ to the heavy ma
eigenstate, rotates away from the purene flavor state. This
rotation occurs both before and after the point of the ma
mal violation of adiabaticity. Furthermore, an important ro
is played by the parts of the trajectory whereum is close to
eitherp/2 or u, where the quantityDm / u̇m is large~see Fig.
2!.

Now truncate the profile close to the point of the maxim
violation of adiabaticity. This decreases the amount of ro
tion of the state with respect to the flavor basis decrea
roughly by a factor of two. Actually, because the function
Eq. ~2.15! has adoublepole atum5p/2, and asingle pole
aroundum5u, the factor can be expected to be somew
less than two. The numerical calculations of the last sec
indeed show that for the BP2000 profile the parameterr 0
changes fromR(/10.54 toR(/18.4.

To illustrate this more quantitatively, let us see ho
uc2(um)u deviates from its extreme nonadiabatic behav
uc2(um)u5sinum in the QVO regime. Figure 7~A! shows the
probability of finding the neutrino in the heavy mass eige
state, forDm2/En51029 eV2/MeV, u5p/4, as a function
of the mixing angle in matterum . Results for both the infi-
nite exponential profile and the BP2000 profile are show
Figure 7~B! shows the graph ofDum[arcsinuc2(um)u2um as
a function ofum . The main contribution toDum comes from
the region 1.4&um,p/2, where the profile is close to th
exponential.

Figure 8 shows the same evolution in the physicax
space. One can see that most of the contribution toDum
comes from the part of the profile between 0.7R( andR( .
This confirms that it would be incorrect to try to estima
Dum by computing the slope around the pointA5D, since
for largeu the entire regionx*0.7R( is important.

IV. ALL KNOWN ANALYTICAL SOLUTIONS
CAN BE DERIVED FROM THE ONE

FOR THE tanh PROFILE.

The formulation of the evolution equations introduced
Sec. II A, with um as an independent variable, makes it po
sible to uncover a simple relationship between the kno
analytical solutions. Such solutions have been obtained f
very limited set of profiles. In addition to the exponent
density distribution, explicit formulas in the literature ha
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only been given for~i! the linear density distributionA(x)
52C0x @22,23#,5

~Pc!(lin)5exp„2pD2~C0!21sin22u…, ~4.1!

~ii ! the distributionA(x)5B0 /x @35#,

~Pc!(1/x)5
exp~4pB0cos2u!21

exp~4pB0!21
, ~4.2!

and ~iii ! the hyperbolic tangent distribution@36# A(x)
5A0@12tanh(x/l)#/2,

~Pc!(tanh)5
cosh~p lA0!2cosh„p l ~D`2D!…

cosh„p l ~D`1D!…2cosh„p l ~D`2D!…
.

~4.3!

5Notice that Eq.~4.1! is often written in a form containing a facto
of 1/cos 2u. This is done to expressC0

21 in terms of the logarithmic
derivative of the density at the resonance. In that form, it m
superficially appear thatPc has a singularity atu5p/4. Of course,
once the derivative is computed, the factors of cos 2u cancel out. As
we have discussed in this paper, the conventional definition of
resonance has little physical meaning for large angles, so there
good reason for introducing the factor of 1/cos 2u.

FIG. 7. The comparison of the neutrino state evolution in
infinite exponential profile~dashed! and the realistic solar profile
according to the BP2000 solar model~solid!, plotted as a function
of the mixing angle in matterum . The values dm2/En

51029 eV2/MeV and u5p/4 were chosen. The bottom figur
shows the deviation of the evolution in both cases from extre
nonadiabatic.
8-9
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ALEXANDER FRIEDLAND PHYSICAL REVIEW D 64 013008
In the last equationD` is the value ofDm deep inside matter
D`[ limx→`Dm5AA0

222A0D cos 2u1D2.
What do these distributions have in common that ma

them exactly solvable? One important feature that un
them is that the corresponding differential equations can
be put in the hypergeometric form@37#. We next show more
directly that Eqs.~2.28!, ~4.1!, ~4.2!, and~4.3! are all related
to each other and that the first three can be easily obta
from the last one.

To make this relationship clear, it is useful to show t
analogs of Eq.~2.15! for the other three distributions in que
tion. A straightforward calculation yields

S Dm

u̇m
D

(lin)

52
2D2sin22u

C0sin32um

~4.4!

for the linear distribution,

S Dm

u̇m
D

(1/x)

52
2B0sin22u

sin 2umsin2~2um22u!
~4.5!

for the 1/x distribution, and

S Dm

u̇m
D

(tanh)

5
A0lsin 2u sin 2u`

sin 2umsin~2um22u!sin~2um22u`!

~4.6!

for the hyperbolic tangent distribution (u` is the value ofum
deep inside matter, so that sin 2u`5D sin 2u/D`).

FIG. 8. Same as Fig. 7, but as a function of the distance from
center of the Sunx.
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By inspecting Eqs.~2.15!, ~4.4!, ~4.5!, and ~4.6! one can
clearly see the common origin of all four solutions. For t
hyperbolic tangent distribution (Dm / u̇m)(tanh) has three
simple poles inum on (0,p/2#, thus representing the mos
general case of all four. The exponential case is obtai
when two of the poles,u` and p/2, merge in one double
pole, and the 1/x case is obtained when the polesu andu`

merge. Finally, if all three poles merge in one triple pole a
(p/2), one obtains the linear case. Thus, given the result
the hyperbolic tangent distribution, it should be possible
recover the answers for the other three distributions by s
ply taking appropriate limits.

We first show how the exponential result can be obtain
from the one for the hyperbolic tangent. By comparing E
~2.28! and~4.3! we see that we need a largeA0 limit of Eq.
~4.3!, since in this case6 u`→p/2, and also a substitutionl
→2r0:

~Pc!(tanh)→
exp~p lA0!/22exp„p l ~D`2D!…/2

exp„p l ~D`1D!…/22exp„p l ~D`2D!…/2

5
exp„p l @A02~D`2D!#…21

exp„p l ~2D!…21

→exp†p l „A02A0@12~D/A0!cos 2u#1D…‡21

exp„p l ~2D!…21

5
exp„p lD~11cos 2u!…21

exp„p l ~2D!…21

→ exp~4pr 0D cos2u!21

exp~4pr 0D!21
5~Pc!exp. ~4.7!

Above we used the fact that for largeA0 Dm

5AA0
222A0D cos 2u1D2→A0@12(D/A0)cos 2u#. The physi-

cal interpretation of this result is the following. For a fixedD
andA0→` the part of the neutrino trajectory where adiab
ticity is maximally violated occurs at largex, whereA0@1
1tanh(x/l)#/2→A0exp(22x/l)5A0exp(2x/r0). Notice, that
A0 dropped out and the derivation is valid for allD andu.

To obtain the expression forPc for the linear profile from
that for the exponential, in Eq.~2.15! we take the limitr 0
→`, u→0, such that the product 2Dr 0sin22u approaches a
constant value, 2(D̃2/C0)sin22ũ. In this limit
exp(4pr0D cos2u)@1 and sin22u→4 sin2u, so that

~Pc!exp5
exp~4pr 0D cos2u!21

exp~4pr 0D!21
→exp~24pr 0D sin2u!

→exp„2p~D̃2/C0!sin22ũ…5~Pc! lin . ~4.8!

At last, we will show how the result for the 1/x distribu-
tion follows from that for the hyperbolic tangent distributio

6Notice that the productA0sin 2u` in the limit of large A0 ap-
proaches a constant valueD sin 2u.

e
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The logic is similar to what was done before: Eq.~4.5! can
be obtained from Eq.~4.6! by sendingu`→um and relabel-
ing A0l→2A0; the result for the 1/x profile should then be
read off from the solution of the differential equation wi
the profile~4.6!. A complication arises because in this ca
one needs to know the solution of the differential equat
betweenp/2 andu` , while the known result, Eq.~4.3! de-
scribes the solution betweenu` andu. The range@u` ,p/2#
~and also@0,u#) correspond to a different matter distributio
A(x)5A0@111/tanh(x/l)#/2 ~see Appendix A!.
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This difficulty can be easily resolved and the result
question can be obtained from Eq.~4.3! by appropriate sub-
stitutions. The key observation is that in the case of the
perbolic tangent the differential equation is uniquely spe
fied by therelative positions of the three poles of Eq.~4.6!
and the factor in the numerator. By shifting the poles su
thatu→0, we can reduce the problem of finding the soluti
on @u` ,p/2# to the solved case@u8,u 8̀ # and use Eq.~4.3!.

The details of this procedure can be found in Appendix
After a straightforward calculation one finds that
Pc85

coshS p lA0

sin 2u`

sin~2u`22u! D2coshS p lA0S sin 2u

sin~2u`22u!
21D D

coshS p lA0S sin 2u

sin~2u`22u!
11D D2coshS p lA0S sin 2u

sin~2u`22u!
21D D

5
cosh~p lD!2cosh„p l ~D`2A0!…

cosh„p l ~D`1A0!…2cosh„p l ~D`2A0!…
. ~4.9!
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From the first form of the expression it is easy to see that
formula satisfies the necessary nonadiabatic limit: liml→0Pc8
5cos2u. From the second form it is easy to take the lim
which reproduces the formula for the 1/x profile. We can
achieveu`→u by makingD large while keepingA0 fixed.
Once again, in this limitD`→D2A cos 2u and so

Pc8→
exp~p lD!2exp„p l ~D`2A0!…

exp„p l ~D`1A0!…2exp„p l ~D`2A0!…

→exp„p l ~D2D`1A0!…21

exp~2p lA0!21

→exp~2p lA0cos2u!21

exp~2p lA0!21
. ~4.10!

Upon relabelingA0l→2B0 we recover Eq.~4.2!.
The last result deserves a few comments. It is quite

markable that the dependence of the jumping probability
the mass-squared splitting and energy completely drop
out at the end. The 1/x profile thus represents a rather uniq
case when the adiabaticity is entirely determined by the d
sity profile and the mixing angle. This could have been,
course, anticipated already on the basis of the dimensi
analysis. Indeed, the parameterB0 is dimensionlessand thus,
together withu, completely determines the jumping pro
ability.

It is instructive to see how the cancellation happens
small u and B0@1. Equation ~4.2! then becomesPc
5exp(24pB0u

2). But we can also compute this differently
since for small angles the resonance is narrow, we can u
linear formulaPc5exp(2pD2udA(x)/dxures

21sin22u). Since for
A(x)5B0 /x we have dA(x)/dx52A(x)2/B0 and at the
point of resonanceA(x)5D, the quantityD cancels out of
the final result:
e
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Pc5exp~2pD24u2B0 /D2!5exp~24pu2B0!.
~4.11!

The slope at the resonance point changes exactly in su
way as to compensate for the change inD2. The solar neu-
trino fits would be qualitatively different, were the solar de
sity profile close to 1/x instead of the exponential.

V. CONCLUSIONS

In this paper we have discussed several aspects of
neutrino evolution in matter, emphasizing the case of
large values of the mixing angle, including values grea
thanp/4. We have pointed out how some of the results ori
nally derived for small mixing angles can be modified to
applicable to all values ofu. Such results include the adia
baticity condition and the role played by the resonance
determining where the nonadiabatic jumping between
states takes place. We have formulated analytical criteria
the case of the exponential matter distribution and co
mented on how these criteria apply to case of the reali
solar profile. Although the focus of our analysis was on so
neutrinos, the results are useful for understanding the phy
of neutrino oscillations in matter in general.

We have presented the results of accurate numerical
culations, showing how the jumping probabilityPc interpo-
lates between the QVO and the standard MSW regime
the case of the realistic solar profile. An empirical prescr
tion on how to estimatePc anywhere in this range with only
elementary functions was given. The matter effects in
quasivacuum regime were discussed.

Finally, we have shown that the known analytical so
tions for the linear, exponential, and 1/x density distributions
can be easily obtained from the result for the hyperbo
tangent distribution. It was especially easy to see this us
8-11
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um as an independent variable. In the process of the proo
also obtained an answer for a fifth distribution,Ne
}@coth(x/l)61#.
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APPENDIX A: DERIVATION OF THE EXPRESSION
FOR Pc FOR THE DENSITY DISTRIBUTION

A„x…Ê†coth„xÕl…Á1‡

As mentioned in Sec. IV, one of the four matter distrib
tions for which exact expressions forPc have been obtained
is the profileA(x)5A0@11tanh(x/l)#/2. The answer is given
by Eq.~4.3! and represents the result of solving the differe
tial equation ~2.11! on the interval@u,u`#, with Dm / u̇m
given by Eq.~4.6!. In this appendix we show how this resu
can be used to obtain the solution to the same differen
equation on the interval@u` ,p/2#.
01300
e

t
al
-
s
f-
,

f

-

al

Clearly for any x in the distribution A(x)5A0@1
1tanh(x/l)#/2 the angleum is constrained betweenu andu` .
The range ofum @u` ,p/2# corresponds to a different densit
profile, which everywhere satisfiesA(x).A0. This new pro-
file can be found by simple analytical continuation. In t
original profile the value of the densityA(x)5C occurs at

x5
l

2
log

C

A02C
. ~A1!

WhenC.A0 the argument of the logarithm becomes neg
tive. Using the analytical continuation of the logarithm,
can be interpreted as

x5
l

2 S log
C

uA02Cu
1 ip D5 x̃1

ip l

2
. ~A2!

Substituting this in the equation forA(x) we find

Ã~ x̃!5A0@11tanh~ x̃/ l 1 ip/2!#/25A0@111/tanh~ x̃/ l !#/2.
~A3!

To obtain the expression forPc for the distribution~A3!,
as a first step in Eq.~4.3! we express the quantitiesD` and
Dm in terms of the anglesu andum ,
he
the

t
ers to
~Pc!(tanh)5

cosh~p lA0!2coshS p lA0

sin 2u`2sin 2u

sin~2u`22u! D
coshS p lA0

sin 2u`1sin 2u

sin~2u`22u! D2coshS p lA0

sin 2u`2sin 2u

sin~2u`22u! D . ~A4!

Next we shift um→um2u in Eq. ~4.6! such that the pole atu moves to 0. This reduces the problem to solving t
differential equation~4.6! betweenu 8̀ [p/22u and u8[u`2u. To complete the change to the primed variables, in
numerator of Eq.~4.6! we substituteA0sin 2u sin 2u` by A08sin 2u8sin 2u8̀ , whereA085A0sin 2u` /sin(2u`22u). We then find

Pc85

cosh~p lA08!2coshS p lA08
sin 2u 8̀ 2sin 2u8

sin~2u 8̀ 22u8!
D

coshS p lA08
sin 2u 8̀ 1sin 2u8

sin~2u 8̀ 22u8!
D 2coshS p lA08

sin 2u 8̀ 2sin 2u8

sin~2u 8̀ 22u8!
D

5

coshS p lA0

sin 2u`

sin~2u`22u! D2coshS p lA0S sin 2u

sin~2u`22u!
21D D

coshS p lA0S sin 2u

sin~2u`22u!
11D D2coshS p lA0S sin 2u

sin~2u`22u!
21D D . ~A5!

This is the answer that is needed in Sec. IV.
One may be interested in the expression forPc for a distributionA(x)5A0@1/tanh(x/l)21#/2, which has the property tha

it vanishes in the limit of largex. This can be found by redefining the vacuum values of the neutrino oscillation paramet
be D` andu` . Equation~A5! can then be rewritten as

Pc85
cosh~p lD!2cosh„p l ~D`2A0!…

cosh„p l ~D`1A0!…2cosh„p l ~D`2A0!…
, ~A6!

whereD5AA0
212A0D`cos 2u`1D`

2.
8-12
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