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Casimir scaling in a dual superconducting scenario of confinement
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The string tensions of flux tubes associated with static charges in various SU~3! representations are studied
within the dual Ginzburg-Landau~DGL! theory. The ratios of the string tensions between higher and funda-
mental representations,dD[sD /sF , are found to depend only on the Ginzburg-Landau~GL! parameter,k
5mx /mB , the mass ratio between monopolesmx and dual gauge bosonsmB . In the case of the Bogomol’nyi
limit ( k51), analytical values ofdD are easily obtained by adopting the manifestly Weyl invariant formulation
of the DGL theory, which are provided simply by the number of color-electric Dirac strings inside the flux
tube. A numerical investigation of the ratio for various GL-parameter cases is also performed, which suggests
that the Casimir scaling is obtained in the type-II parameter range within the intervalk55;9 for various
ratiosdD .
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The observation of Casimir scaling is an important arg
ment in any discussion of the virtues of different QC
vacuum models as far as the respective confinement me
nism is concerned. Taken literally, the Casimir scaling s
gests that the potential at intermediate distances betw
static charges in different representation is proportiona
the eigenvaluesC(2)(D) of the quadratic Casimir operato
TaTa in the respectiveD dimensional representation, suc
that FD1

(r )/FD2
(r )5C(2)(D1)/C(2)(D2) at all distances.

This property is obvious only for the one-gluon exchan
component of the static force. Although there is no asym
totically linearly rising potential for the higher represent
tions, at intermediate distances a string tension can be
fined which entersFD(r ) as a constant part. The first lattic
indications for the Casimir scaling appeared in the 19
@1,2#. At that time this observation was a challenge for t
bag model@3#. For example, the ratio of string tensions
adjoint to fundamental charges in SU~3! gauge theory, re-
spectively, would besadj/s fund59/452.25.

Recently, as a contribution to the discussion of compet
confinement mechanisms, Ref.@4# appeared where the strin
tensions of the fundamental and higher representations
been calculated in pure SU~3! lattice gauge theory, and th
ratio was obtained nearly equal to 2, already rather clos
9/4. In Ref.@5# Bali has studied the ratios of entire intera
tion potentials~including Coulomb and constant terms in a
dition to the linear term! also for quenched SU~3! gauge
theory, and in the case of adjoint and fundamental char
the ratio turned out to be very close to 9/4. All detail
~microscopic! mechanisms of confinement find it hard to e
plain the Casimir scaling, while it appears more natural fr
the point of view of the semi-phenomenological stochas
vacuum model@6#. If the confinement mechanism is de
scribed by center vortices, approximate Casimir scaling
the potential can be achieved by introducing a finite thi
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ness of the vortex, as demonstrated for the case of SU~2!
lattice gauge theory@7#, although the original center vorte
picture gives a strictly vanishing potential for pairs
charges which transform trivially under theZN center of the
gauge group.

For the dual superconductor scenario of confinem
@8,9#, practically realized in the form of the dual Ginzburg
Landau~DGL! theory@10#, one tends to believe that it woul
be difficult to accommodate Casimir scaling in this fram
work. Indeed, in the Abelian projection scheme@11# for
SU~3! gluodynamics the long range forces are transmit
only by ‘‘diagonal gluons’’ which couple to charges only v
T3 andT8. This makes it hard to understand why the Casim
scaling should hold in Abelian projected gluodynamics. F
example, for the ratio between adjoint and fundamen
forces one would naively expect the Abelian ratio equal to
As far as the derivation of the DGL theory is based on
Abelian projected gluodynamics, this seems to be unavo
able in the DGL theory, too. However, in a lattice investig
tion for SU~2! Abelian projected gluodynamics, Poulis@12#
has found the ratio between the string tensions of the adj
and fundamental representations to be somewhere betw
the Abelian and Casimir scaling. This result is encourag
for the Abelian projected models to be able to provide
Casimir scaling. The case of SU~2! gluodynamics has bee
considered in Ref.@13# in the context of an extended effec
tive theory. It is discussed there that in the London lim
Casimir scaling can be expected to hold. In this paper
examine straightforwardly the DGL theory for SU~3! gluo-
dynamics with respect to the string tensions for various
ternal charges without further modifications.

Considering the DGL theory just at a phenomenologi
level, it might be natural to restrict its application to meson
@10,14,15#, baryonic @15,16#, glueball @17# and perhaps to
exotic states, and it would seem inappropriate to apply i
the so-called gluelump bound states made of infinitely he
adjoint charges. However, because of the current interes
this issue, it is interesting to discuss how this kind of stri
©2001 The American Physical Society01-1
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would be represented within the DGL theory, and then
answer the question whether the Casimir scaling really po
a problem or not.

In this paper we compute the string tensions of flux tub
which are originating from various dimensions of repres
tation of color charge within the DGL theory. For this pu
pose we adopt the manifestly Weyl symmetric approa
@15,18#, which will turn out to be very useful for classifying
the flux tube in various representations. Finally, based
these results as a function of the mass ratio between
gauge bosons and monopoles, we would like to discuss
good the Casimir scaling can be accomplished within
DGL theory.

The DGL Lagrangian@10# is given by1

LDGL52 1
4 „~]`BW !mn1eSW mn…

21(
i 51

3

@ u~]m1 igeW i•BW m!x i u2

2l~ ux i u22v2!2#, ~1!

whereBW m andx i denote the dual gauge field with two com
ponents (Bm

3 ,Bm
8 ) and the complex scalar monopole fiel

respectively. The quark currentjWm5q̄gmHW q, where HW
5(T3 ,T8), is represented by the boundary of a nonlo
string termSW mn , which expresses the color-electric Dira
string singularity through the modified dual Bianchi ident
]n* SW mn5 jWm . Note that (]`BW )mn[]mBW n2]nBW m satisfies
]n* (]`BW )mn50. Since the diagonal component of the m
trix HW gives the weight vector of the SU~3! algebrawW j ( j

51,2,3), wherewW 15(1/2,A3/6),wW 25(21/2,A3/6),wW 35(0,
21/A3), one can define the color-electric charges of
quarks asQW j

(e)[ewW j . Here, j 51,2,3 correspond to the
color-electric charges, red (R), blue (B), and green (G).
Accordingly we can write the nonlocal term aseSW mn

5e( j 51
3 wW jS j mn

(e) . On the other hand, the root vectors of t

SU~3! algebra eW i are used to define the color-magne
charges of the monopole field asQi

(m)[geW i ( i 51,2,3),

where eW15(21/2,A3/2), eW25(21/2,2A3/2), eW35(1,0).
Both color-electric and color-magnetic charges satisfy
extended Dirac quantization conditionQW i

(m)
•QW j

(e)52pmi j

(eg54p). Heremi j is an integer following the definition

mi j 52eW i•wW j5 (
k51

3

e i jk5$0,1,21%, ~2!

where e i jk is the third-rank antisymmetric tensor. Typic
mass scales in the DGL theory are the mass of the dual g
field mB5A3gv and of the monopole fieldmx52Alv.
Their ratio, the so-called Ginzburg-Landau~GL! parameter
k[mx /mB , characterizes the type of dual ‘‘superconduct

1Throughout this paper, we use the following notation: Latin
dicesi, j express the labels 1,2,3, which are not to be summed o
unless explicitly stated. Boldface letters, which appear later, de
three-vectors.
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ity’’ of the vacuum. Like in real superconductive materia
the properties of the vacuum might be very different depe
ing on the actual value ofk.

We make the Weyl symmetry of the DGL theory~1!
manifest, with the help of an extended dual gauge fi
@15,18#, defined byBi m[geW i•BW m ( i 51,2,3). Here, a con-
straint( i 51

3 Bi m50 appears, since( i 51
3 eW i50. The DGL La-

grangian~1! is now written as

LDGL5(
i 51

3

@2 ~1/4gm
2 ! * Fi mn

2 1u~]m1 iBi m!x i u2

2l~ ux i u22v2!2#, ~3!

* Fi mn[~]`Bi !mn12p(
j 51

3

mi j S j mn
(e) , ~4!

where the dual gauge couplingg is scaled asgm[A3
2 g. The

factor 2p in front of the Dirac string term is derived from th
Dirac quantization condition. Clearly, the expression~3! is
manifestly Weyl symmetric since all indicesi and j are
summed over. Apparently the dual gauge symmetry is
tended to@U~1!# 3, achieved by a set of transformationsx i

→x ie
i f i, x i* →x i* e2 i f i, Bi m

reg→Bi m
reg2]m f i ( i 51,2,3). How-

ever, the number of gauge degrees of freedom is not enla
because of the constraint( i 51

3 Bi m50.
In what follows we investigate the flux-tube solutions r

lated to a separated quark and antiquark pair and relate
analogous states~with higher representation charges! within
the DGL theory. In order to find such solutions it is useful
dispose the behavior of the dual gauge field, which can
achieved by the decomposition of the dual gauge field i
two parts, the regular~no Dirac string! part and the singular
~Dirac string! part @18#, Bi m[Bi m

reg1( j 51
3 mi j Bj m

sing ( i
51,2,3),where the singular part is determined so as to de
the color-electric charge densityCj mn

(e) as

~]`Bj
sing!mn12pS j mn

(e) 52pCj mn
(e) ~ j 51,2,3!. ~5!

The explicit form ofCj mn
(e) is given by

Cj mn
(e) ~x!5

1

4p2E d4y
1

ux2yu2
* „]` j j

(e)~y!…mn , ~6!

where j j m
(e) 5]n* S j mn

(e) . Note that if there is no quark source
we do not need to have a singular partBj m

sing. Thus, the dual
field strength tensor is rewritten as

* Fi mn5~]`Bi
reg!mn12p(

j 51

3

mi j Cj mn
(e) . ~7!

In the staticq-q̄ system,Cj mn
(e) turns out to be the Coulombic

color-electric field originating from the color-electric charg
Let us now consider an idealized system, an infinite

long flux tube with cylindrical and translational symmetry.
this case, the terms related toCj mn

(e) can be neglected sinc
they are relevant only for short separations of quark a

er
te
1-2
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antiquark. One finds that the integration of the square
Cj mn

(e) gives the Coulomb energy including the self-energy
the color-electric charge. Correspondingly, now we only p
attention to the energy per length~string tension! of the flux
tube which has the terminating charges at infinity. In orde
classify the types of the flux tube, we use a notation ana
gous to theq-q̄ system. The fields depend only on the rad
coordinater as f i5f i(r ), Bi

reg5Bi
reg(r )ew[@B̃i

reg(r )/r #ew ,

TABLE I. Classification of the color-electric charges and t
winding numbers of flux tubes for various dimensions of the rep
sentations of the SU~3! group.D denotes the dimension of repre
sentation, (p,q) the weight factors.Q is the color-electric charge o

the Q-Q̄ flux-tube system, where the number of the color-elec
Dirac strings attached to the chargeQ is nj

(e) . The number of strings
in the dual gauge field within the Weyl symmetric representatio

given byni
(m)5( j 51

3 mi j nj
(e) , wheremi j 52eW i•wW j .

D (p,q) p1q Q n1
(e) n2

(e) n3
(e) n1

(m) n2
(m) n3

(m)

3 ~1,0! 1 R 1 0 0 0 21 1
B 0 1 0 1 0 21
G 0 0 1 21 1 0

8 ~1,1! 2 RB̄ 1 21 0 21 21 2

BḠ 0 1 21 2 21 21

GR̄ 21 0 1 21 2 21

6 ~2,0! 2 RR 2 0 0 0 22 2
BB 0 2 0 2 0 22
GG 0 0 2 22 2 0

15a ~2,1! 3 RRB̄ 2 21 0 21 22 3

BBḠ 0 2 21 3 21 22

GGR̄ 21 0 2 22 3 21

RRḠ 2 0 21 1 23 2

BBR̄ 21 2 0 2 1 23

GGB̄ 0 21 2 23 2 1

10 ~3,0! 3 RRR 3 0 0 0 23 3
BBB 0 3 0 3 0 23
GGG 0 0 3 23 3 0

27 ~2,2! 4 RRB̄B̄ 2 22 0 22 22 4

BBḠḠ 0 2 22 4 22 22

GGR̄R̄ 22 0 2 22 4 22

24 ~3,1! 4 RRRB̄ 3 21 0 21 23 4

BBBḠ 0 3 21 4 21 23

GGGR̄ 21 0 3 23 4 21

RRRḠ 3 0 21 1 24 3

BBBR̄ 21 3 0 3 1 24

GGGB̄ 0 21 3 24 3 1

15s ~4,0! 4 RRRR 4 0 0 0 24 4
BBBB 0 4 0 4 0 24
GGGG 0 0 4 24 4 0
01150
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where f i(r ) is the modulus of the monopole fieldx i

5f iexp(ihi), andw denotes the azimuthal angle. Note th
the phase of the monopole field is now assumed to be reg
@]m ,]n#h i50, which is absorbed into the regular part of th
dual gauge field by the replacementBi

reg1]mh i→Bi
reg. If

@]m ,]n#h iÞ0, this produces the closed color-electric Dir
string singularity@17#. Putting the quark atz52` and an-
tiquark atz5` ~this leads to the factor minus inBi

sing), the
solution of Eq. ~5! is easily found to be Bi

sing

52 (ni
(m)/r )ew . Hereni

(m) is an integer corresponding to th
number of color-electric Dirac strings in the dual gauge fie
within the Weyl symmetric representation, which is e
pressed by the relation

ni
(m)[(

j 51

3

mi j nj
(e) . ~8!

Here nj
(e) is the modulo 2p of S j mn

(e) , the number ofj-type
color-electric charges attached to both ends of the flux tu
Various dimensions of the representation of charges in SU~3!
group and corresponding winding numbers are classified
Table I. For instance, the fundamental representationD
53) has three different chargesR, B, andG. These charges
have the numbers (n1

(e) ,n2
(e) ,n3

(e))5(1,0,0), (0,1,0), and
(0,0,1), which are also written by using Eq.~8! as
(n1

(m) ,n2
(m) ,n3

(m))5(0,21,1), (1,0,21), and Eq. (21,1,0),
respectively. These rules hold similarly for the higher dime
sion of the representation. However one should take i
account the relationsRB5Ḡ, BG5R̄, GR5B̄ and RBG
50 following the definition of the fundamental color-electr

-

s

FIG. 1. The ratio of the string tension~a! for the octet represen
tation d85s8 /s3 @the dotted line marks the ratio of quadratic C
simir chargesC(2)(8)/C(2)(3)52.25] and~b! for the sextet repre-
sentationd65s6 /s3 @C(2)(6)/C(2)(3)52.5#. The weight factor is
p1q52. Casimir scaling for the values ofd8 andd6 is observed at
k'5.
1-3
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charge with the weight vectors of the SU~3! algebra. Making
use of these, some of the charges classified in the hig
dimension of the representation are reduced into that of
lower ones.

Then, the field equations are the following:

d2B̃i
reg

dr2
2

1

r

dB̃i
reg

dr
22gm

2 ~B̃i
reg2ni

(m)!f i
250, ~9!

d2f i

dr2
1

1

r

df i

dr
2S B̃i

reg2ni
(m)

r
D 2

f i22lf i~f i
22v2!50.

~10!

The string tension is the energy of the flux tube per u
length,

sD52p(
i 51

3 E
0

`

rdr F 1

2gm
2 S 1

r

dB̃i
reg

dr
D 2

1S df i

dr D 2

1S B̃i
reg2ni

(m)

r
D 2

f i
21l~f i

22v2!2G . ~11!

To make the energy of the system finite, we have to postu
the boundary conditions:

B̃i
reg50, f i5H 0 ~ni

(m)Þ0!

v ~ni
(m)50!

as r→0,

B̃i
reg5ni

(m) , f i5v as r→`. ~12!

For an analytical evaluation of the string tension, it is use
to rewrite the expression~11! in the form @18#

FIG. 2. Similar ratios as in Fig. 1,~a! d15a5s15a /s3

@C(2)(15a)/C(2)(3)54# and ~b! d105s10/s3 @C(2)(10)/C(2)(3)
54.5#. The weight factor isp1q53. Casimir scaling for the val-
ues ofd15a andd10 is observed atk'7.
01150
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sD52pv2(
i 51

3

uni
(m)u12p(

i 51

3 E
0

`

rdr

3F 1

2gm
2 S 1

r

dB̃i
reg

dr
6gm

2 ~f i
22v2! D 2

1S df i

dr
6~B̃i

reg2ni
(m)!

f i

r D 2

1
1

2
~2l2gm

2 !~f i
22v2!2G .

From this expression we find that in the Bogomol’nyi lim
@18,19#,

gm
2 52l, or 3g254l, ~13!

which corresponds tok5mx /mB51, a considerable simpli-
fication occurs. The vacuum is separated into two types
this Bogomol’nyi point, type-I (k,1) and type-II (k.1) in
analogy to the superconducting material. In the Bogomol’
limit one gets the saturated string tension,

FIG. 3. Similar ratios as in Fig. 1,~a! d275s27/s3

@C(2)(27)/C(2)(3)56#, ~b! d245s24/s3 @C(2)(24)/C(2)(3)56.25#,
and~c! d15s5s15s /s3 @C(2)(15s)/C(2)(3)57#. The weight factor is
p1q54. Casimir scaling for the values ofd27, d24, and d15s is
observed atk'9.
1-4
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sD52pv2(
i 51

3

uni
(m)u. ~14!

One finds that the string tension for the fundamental rep
sentation becomess354pv2 since ( i 51

3 uni
(m)u52. In this

special case, the profiles of the dual gauge field and
monopole field are determined by the first-order differen
equations,

r 21 dB̃i
reg/dr 6gm

2 ~f i
22v2!50, ~15!

df i /dr 6~B̃i
reg2ni

(m)!f i /r 50. ~16!

These field equations reproduce the second-order differe
equations~9! and ~10! when the relation~13! is fulfilled.
Note that the procedure to find the Bogomol’nyi limit is a
extension of the method used for the U~1! Abelian Higgs
model@20,21# to the U(1)3U(1) DGL theory corresponding
to SU~3! gluodynamics in Abelian projection.

Finally, let us compute the ratio of the string tension b
tween the higher and fundamental representations. In
Bogomol’nyi limit, this can be done easily by using the e
pression~14!. For the ratio betweenD58 andD53, we get
d8[s8 /s35(2pv234)/(2pv232)52. In general, one
can recognize a simple rule:

dD[ sD/s3 5p1q. ~17!

Here p1q is the sum of weight factors in the SU~3! repre-
sentation, which physically corresponds to the number of
color-electric Dirac strings inside the flux tube in the fram
work of the DGL theory. In the type-I (k,1) or type-II
(k.1) parameter range, we have to calculate the expres
~11! by solving the field equations~9! and~10! numerically.
The corresponding numerical results are shown in Figs. 1
In Fig. 1 we show the values ofd8 andd6 corresponding to
p1q52 as a function of the GL parameter. Similarly,
Figs. 2 and 3, the ratiosdD classified in the representatio
p1q53 andp1q54 are shown, respectively. The dotte
line denotes the ratio of the quadratic Casimir charg
01150
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C(2)(D)/C(2)(F53)52.25, 2.5, 4, 4.5, 6, 6.25, 7 for th
dimensionsD58, 6, 15a, 10, 27, 24, 15s, respectively. Of
course, atk51 the analytical results~17! are realized, and
all ratios increase monotonously with the GL parameterk. It
is interesting to note that the Casimir scaling is accomplis
only in the type-II region, fork55;9, depending on the
Casimir ratio for a particular representation. It seems that
DGL theory in its present shape cannot describe the Cas
scaling for all representations simultaneously, with a uniq
value of k. Some additional terms will be necessary
slightly modify the influence ofk on the energy of the flux
tube solutions corresponding to various external charges

We have studied the string tension of flux tubes asso
ated with static charges in higher SU~3! representations
within the dual Ginzburg-Landau theory in a manifes
Weyl symmetric approach. We have found that the ratio
the string tension between higher and fundamental repre
tations,dD[sD /sF , depends only on the ratio between t
monopole massmx and the mass of the dual gauge bos
mB , the Ginzburg-Landau parameterk5mx /mB . We have
pointed out that the ratiosdD have a simple form in the cas
of the Bogomol’nyi limit in terms of the number of color
electric Dirac strings inside the flux tube. We have nume
cally determined the ratios in the type-I (k,1) and type-II
(k.1) parameter ranges and found them monotonically
ing with k. In principle, such deviation of the ratio from th
number of color-electric Dirac string can be understood
the effect of the flux-tube interaction. In the type-II param
eter range, in the intervalk55;9, the Casimir scaling is
approximately reproduced for all representationsD studied
in the present paper. This shows that it was premature to
that the the dual superconducting scenario of confinemen
in plain contradiction with the Casimir scaling.
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