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The string tensions of flux tubes associated with static charges in vario(® f&gresentations are studied
within the dual Ginzburg-Landa(DGL) theory. The ratios of the string tensions between higher and funda-
mental representationdp,=o0p /o, are found to depend only on the Ginzburg-Land@lL) parameter x
=m, /mg, the mass ratio between monopotes and dual gauge bosonss . In the case of the Bogomol'nyi
limit (k=1), analytical values afl, are easily obtained by adopting the manifestly Weyl invariant formulation
of the DGL theory, which are provided simply by the number of color-electric Dirac strings inside the flux
tube. A numerical investigation of the ratio for various GL-parameter cases is also performed, which suggests
that the Casimir scaling is obtained in the type-Il parameter range within the interv&~9 for various
ratiosdp, .
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The observation of Casimir scaling is an important argu-ness of the vortex, as demonstrated for the case dR)SU
ment in any discussion of the virtues of different QCD lattice gauge theory7], although the original center vortex
vacuum models as far as the respective confinement mechgicture gives a strictly vanishing potential for pairs of
nism is concerned. Taken literally, the Casimir scaling sug<harges which transform trivially under tZg, center of the
gests that the potential at intermediate distances betweayauge group.
static charges in different representation is proportional to For the dual superconductor scenario of confinement
the eigenvalue€®) (D) of the quadratic Casimir operator [8,9], practically realized in the form of the dual Ginzburg-
T2T? in the respectiveD dimensional representation, such Landau(DGL) theory[10], one tends to believe that it would
that Fp (r)/Fp,(r)=C®(D)/C?(D,) at all distances. be difficult to accommodate Casimir scaling in this frame-

This property is obvious only for the one-gluon exchangeWork. Indeed, in the Abelian projection scherfiel] for
component of the static force. Although there is no asympSU(3) gluodynamics the long range forces are transmitted
totically linearly rising potential for the higher representa- Only by “dlagpnal 9|U0f‘5” which couple to charges only via
tions, at intermediate distances a string tension can be dd- andT®. This makes it hard to understand why the Casimir
fined which entersp(r) as a constant part. The first lattice Scaling should hold in Abelian projected gluodynamics. For
indications for the Casimir scaling appeared in the 1980§*ample, for the ratio between adjoint and fundamental
[1,2]. At that time this observation was a challenge for theforces one would naively expect the Abelian ratio equal to 3.
bag model[3]. For example, the ratio of string tensions of AS far as the derivation of the DGL theory is based on the
adjoint to fundamental charges in &) gauge theory, re- Abelian projected gluodynamics, this seems to be unavoid-
spectively, would ber g/ opyng=9/4=2.25. a}ble in the DGL thgory, too. However, in a I_att|ce investiga-
Recently, as a contribution to the discussion of competingL'O” for SU2) Abelian projected gluodynamics, Poulis2]
confinement mechanisms, RE4] appeared where the string Nas found the ratio between the string tensions of the adjoint
tensions of the fundamental and higher representations ha@hd fundamental representations to be somewhere between
been calculated in pure $8) lattice gauge theory' and the the Abelian and Casimir Scaling. This result is encouraging
ratio was obtained nearly equal to 2, already rather close tfor the Abelian projected models to be able to provide the
9/4. In Ref.[5] Bali has studied the ratios of entire interac- Casimir scaling. The case of $) gluodynamics has been
tion potentialgincluding Coulomb and constant terms in ad- considered in Ref.13] in the context of an extended effec-
dition to the linear termalso for quenched S@) gauge tive theory. It is discussed there that in the London limit
theory, and in the case of adjoint and fundamental chargeSasimir scaling can be expected to hold. In this paper we
the ratio turned out to be very close to 9/4. All detailed examine straightforwardly the DGL theory for &) gluo-
(microscopi¢ mechanisms of confinement find it hard to ex- dynamics with respect to the string tensions for various ex-
plain the Casimir scaling, while it appears more natural fromternal charges without further modifications.
the point of view of the semi-phenomenological stochastic Considering the DGL theory just at a phenomenological
vacuum model[6]. If the confinement mechanism is de- level, it might be natural to restrict its application to mesonic
scribed by center vortices, approximate Casimir scaling fof10,14,15, baryonic[15,16], glueball[17] and perhaps to
the potential can be achieved by introducing a finite thick-exotic states, and it would seem inappropriate to apply it to
the so-called gluelump bound states made of infinitely heavy
adjoint charges. However, because of the current interest in
*Email address: koma@rcnp.osaka-u.ac.jp this issue, it is interesting to discuss how this kind of string
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would be represented within the DGL theory, and then taty” of the vacuum. Like in real superconductive materials,
answer the question whether the Casimir scaling really posese properties of the vacuum might be very different depend-
a problem or not. ing on the actual value ot.

In this paper we compute the string tensions of flux tubes We make the Weyl symmetry of the DGL theof({)
which are originating from various dimensions of represen-manifest, with the help of an extended dual gauge field
tation of color charge within the DGL theory. For this pur- [15 18, defined byB; Fggi.gﬂ (i=1,2,3). Here, a con-
pose we qdopt. the manifestly Weyl symmetric appr.oad‘étraintE?:lBi =0 appears, sincE?:12i=0. The DGL La-
[15,18, which will turn out to be very useful for classifying ian(1) isﬂnow written as
the flux tube in various representations. Finally, based Orgrangmn(
these results as a function of the mass ratio between dual 3
gauge bosons and monopoles, we would like to discuss how £, = 2 [— (1/49%) * Fizﬂﬂ' |(,9M+i|3i #)Xi|2
good the Casimir scaling can be accomplished within the =1

DGL theory. B 12 202
The DGL Lagrangiari10] is given by Mlxil*=0971, &)
3
3
- - . *E = . 3 (8)
Loo==#(9/\B),,+e%,,+ 3 [1(9,+ige B,)xil” i = (018t 27 2 MiX (5, @
=Nxil*=v??], (1) where the dual gauge couplings scaled ag,= 3 g. The

R factor 27 in front of the Dirac string term is derived from the
whereB,, and; denote the dual gauge field with two com- Dirac quantization condition. Clearly, the expressi@ is
ponents Bi,Bi) and the complex scalar monopole field, manifestly Weyl symmetric since all indicésand j are
respectively. The quark currenf,=qy,Hq, where H  summed over. Apparently the dual gauge symmetry is ex-
=(T3,Tg), is represented by the boundary of a nonlocaltended to[U(1)]°, achieved by a set of transformatiogs
string termY ,,,, which expresses the color-electric Dirac —xie'"l, xF —xie ", B%—B{%—a,f; (i=1,2,3). How-
string singularity through the modified dual Bianchi identity €Ver, the number of gauge degrees of freedom is not enlarged
%3 .,=],. Note that ¢/\B),,=d,B,-d,B, satisfies PECAuUse of the constraib’_;B; ,=0.

= . . In what follows we investigate the flux-tube solutions re-
123 —
9"*(8/\B),,=0. Since the diagonal component of the Ma|ated to a separated quark and antiquark pair and related to

trix H gives the weight vector of the 3B) a'QGb@VT’j (' analogous statesvith higher representation chargasithin
=1,2,3), wherew; = (1/2,\/3/6) w,=(—1/2,J/3/6) w3=(0,  the DGL theory. In order to find such solutions it is useful to
—1/\/3), one can define the color-electric charges of thedispose the behavior of the dual gauge field, which can be
quarks asQJ(e)EeJ\Ij- Here, j=1,2,3 correspond to the achieved by the decomposition of the dual gauge field into
color-electric charges, redR}, blue B), and green G). WO parts, the regulano Dirac string part and the singular

; L ’ 3 (Dirac string part [18], B, ,=BlfI+=3 .m; B (i
Accordingly we can write the nonlocal term &, ’ b Zip s =171

jm
N =1,23),where the singular part is determined so as to define
=ex? ,w;3(% . On the other hand, the root vectors of the 3) gularp

e)

NGNS ) __ the color-electric charge densig;,, as
SU(3) algebrae; are used to define the color-magnetic '
charges of the monopole field R™=ge (i=1,2,3), (9/\B"),,,+272(%) =27C%), (j=1.2,9. (5)

where €,=(—1/2/3/2), e,=(—1/2,—/3/2), €3=(1,0).

Both color-electric and color-magnetic charges satisfy th

extended Dirac quantization conditio{™-Q{®=2mm;; 1

(eg=4m). Herem;; is an integer following the definition cl® (x)= Fj d%y
’7T

eThe explicit form oijeW is given by

1
Ix—y|?

* (@AY 6)

J v
3
m;j =22i'VT/j=k§_:l €ijx=10,1-1}, (2 wherej(®)=5"*3(%) . Note that if there is no quark source,
- we do not need to have a singular pBit)?. Thus, the dual
where e, is the third-rank antisymmetric tensor. Typical field strength tensor is rewritten as

mass scales in the DGL theory are the mass of the dual gauge 3
field mg=+3gv and of the monopole fieldn,=2\v. YE. —(a/\BE 4+ ~(®)
Their ratio, the so-called Ginzburg-Land4BL) parameter Fil = (0/\B) 277;21 MG )

k=m, /mg, characterizes the type of dual “superconductiv- -
In the staticg-q system,C{®), turns out to be the Coulombic
color-electric field originating from the color-electric charge.

Throughout this paper, we use the following notation: Latin in- L€t us now consider an idealized system, an infinitely
dicesi, j express the labels 1,2,3, which are not to be summed oveng flux tube with cylindrical and translational symmetry. In
unless explicitly stated. Boldface letters, which appear later, denotihis case, the terms related @fe;,, can be neglected since
three-vectors. they are relevant only for short separations of quark and
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TABLE |. Classification of the color-electric charges and the 3

winding numbers of flux tubes for various dimensions of the repre-

sentations of the S@3) group.D denotes the dimension of repre- 25

sentation, p,q) the weight factorsQ is the color-electric charge of

the Q-Q flux-tube system, where the number of the color-electric S 2

Dirac strings attached to the charQéas n}e) . The number of strings

in the dual gauge field within the Weyl symmetric representation is 15

given byn{™=3% ,m;n(¥ wherem;;=2¢-w; .

D (p,Q) p+q Q r.](1e) n(Ze) r](3e) rl(1m) r.](Zm) n%m) 0 2 4 6 8 10

3 1,0 1 R 1 0 0 o -1 1
B 0 1 0 1 0 -1
G 0 0 1 -1 1 0

25

8 1) 2 REE 1 -1 0 -1 -1 2
BG O
GR -1 0 1 -1 2 -1

[EEY
I
[EnY
N
I
[N
I
[N
d6
o

15

6 (2,0 2 RR 2 0 0 0o -2 2
BB 0 2 0 2 0 -2 s " p . . 0
GG 0 0 2 -2 2 0 (b) K
15a (2,1 3 RRE 2 -1 0 -1 -2 3 FIG. 1. The ratio of the string tensidn) for the octet represen-
_ tationdg= og/o3 [the dotted line marks the ratio of quadratic Ca-
BEG O 1 3 -1 -2 8= 0sl03 4

s 2 simir chargesC(?)(8)/C(?)(3)=2.25] and(b) for the sextet repre-

GGR -1 0 2 -2 3 -1 sentationdg= o5/ o3 [ C?)(6)/C?)(3)=2.5]. The weight factor is

RRG 2 o -1 1 -3 2 p+qg=2. Casimir scaling for the values d anddg is observed at

BBR -1 2 0 2 1 -3 K5

Ges 9 vtz 3 2 ! where ¢;(r) is the modulus of the monopole fielg;

10 (30 3 RRR 3 0 0 -3 3 = ¢;exp(n), and ¢ denotes the azimuthal angle. Note that

BBB 0 0 3 0 -3 the phase of the monopole field is now assumed to be regular

GGG O 0 3 -3 3 0 [d,,d,]17=0, which is absorbed into the regular part of the
2 0
0

— dual gauge field by the replacemeB{*+d,7 —B*9. If

27 (22 4  RREBB [3,,9,]m+0, this produces the closed color-electric Dirac
BBGG 2 -2 4 -2 -2 gtring singularity[17]. Putting the quark at=—o and an-
GGRR -2 0 2 -2 4 =2 tiquark atz=oo (this leads to the factor minus &), the

2% G 4 —~ 3 -1 0 -1 -3 a solution of Eqg. (5) is easily found to be B9

’ RRRE =—(n{™/r)e,. Heren{™ is an integer corresponding to the

BBBG 0 3 -1 4 -1 -3 number of color-electric Dirac strings in the dual gauge field

GGGR -1 0 3 -3 4 -1 within the Weyl symmetric representation, which is ex-

RRRG 3 O -1 1 -4 3 pressed by the relation

BBBR —1 3 0 3 1 -4 8

GeeB 0 -1 3 -4 3 1 ni(m)Ej21 mj;ni®. 8

15s (4,0 4 RRRR 4 0 0 0 -4 4 (e) (e)
BBBE 0 4 0 4 0 -4 Heren;” is the modulo Zr of E] .v» the number of-type

color-electric charges attached to both ends of the flux tube.
GGGG 0 0 4 -4 4 0 Various dimensions of the representation of charges 85U
group and corresponding winding numbers are classified in
Table I. For instance, the fundamental representation (
antiguark. One finds that the integration of the square ot3) has three different chargé® B, andG. These charges
CJ("ZV gives the Coulomb energy including the self-energy ofhave the numbersn{® ,n{® n{®)=(1,0,0), (0,1,0), and
the color-electric charge. Correspondingly, now we only pay(0,0,1), which are also written by using Ed8) as
attention to the energy per lengtbtring tensioh of the flux (n(lm) ,n(zm) ,ngm))=(0,—1,1), (1,0-1), and Eq. ¢1,1,0),
tube which has the terminating charges at infinity. In order tarespectively. These rules hold similarly for the higher dimen-
classify the types of the flux tube, we use a notation analosjon of the representation. However one should take into

gous to theg-q system. The fields depend only on the radialaccount the relation®B=G, BG=R, GR=B and RBG
coordinater as ¢;= ¢;(r), B®=B{*Yr)e,=[B*(r)/r]le,, =0 following the definition of the fundamental color-electric
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FIG. 2. Similar ratios as in Fig. 1,(a dispz=015/03 °

[C)(158/CP)(3)=4] and (b) dio=0o/0o5 [CP(10)/CP)(3)
=4.5]. The weight factor ip+q=3. Casimir scaling for the val-
ues ofd,g, andd,g is observed ak~7.

d_15s

charge with the weight vectors of the &) algebra. Making

use of these, some of the charges classified in the higher
dimension of the representation are reduced into that of the
lower ones.

Then, the field equations are the following: o 2 4 p . 10
(© k
d’B{* 1 dB[* FIG. 3. Simiar ratios as in Fig. 1,@ dy=oplc
_ ' 9n2(BreI_ n(m)y 12 _ s D 27=027/03
dr2 1 dr 20n(BH-n") #7=0, O [c™2DIC(3)=6], () dpy= 24l o5 [ CP(24)/CP(3)=6.25),

and(c) dys= 045/ 03 [CP(159/C3)(3) = 7]. The weight factor is
~ 2 p+qg=4. Casimir scaling for the values af,;, d,,, andd;g is
d’¢i  1d¢ Bi*9—n{™ bi— 2\ (2 v?) =0 observed ak~9.
dr2 r dr r : A '
(10 3 8 ru
. o ] op=2mv2, |ni(m)|+2772 rdr
The string tension is the energy of the flux tube per unit =1 i=1Jo
length,

~ 2

3 = reg) 2 5 1 [1dB

o 1 1dBI g d¢| x _(_ t92(¢2_02)

= R _ 2 m\ #i
op 27721 0rdl’ zgﬁq(r ar ) +( dl’) 292\ 1 dr
~ do; - o 2 1
Brea_ n(m) 2 i reg_ (MY L) 4 T oy g2 ( h2—1)2)2
+ ! . ! ¢)|2+}\(¢|2_02)2 . (11) + dr t(BI nI ) r +2(2)\ gm)(¢| v ) .

To make the energy of the system finite, we have to postulatE™m this expression we find that in the Bogomol'nyi limit
the boundary conditions: (18,19,

5 0 (ni™M=+0) g2=2\, or 3g’=4\, (13)
B*=0, ¢= (m) as r—0,
v (nf7=0) . . _—
which corresponds ta=m, /mg=1, a considerable simpli-
~B{eg=ni(m), $i=v asr—ow, (12) fication occurs. The vacuum is separated into two types at
this Bogomol'nyi point, type-l £<<1) and type-ll >1) in
For an analytical evaluation of the string tension, it is usefulanalogy to the superconducting material. In the Bogomol'nyi
to rewrite the expressiofll) in the form[18] limit one gets the saturated string tension,
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8 Cc®(D)/ICP(F=3)=2.25, 2.5, 4, 45, 6, 6.25, 7 for the
0'D=2770221 In{™]. (14 dimensionsD=8, 6, 15a 10, 27, 24, 155 respectively. Of
“

course, atk=1 the analytical result§l?7) are realized, and
One finds that the string tension for the fundamental repre2!l ratios increase monotonously with the GL parameeit
sentation becomess=4mv? since 33 |n(m)|_2 In this 'S interesting to note that the Casimir scaling is accomplished
= =i 7 =2, ; ; B ;
special case, the profiles of the dual gauge field and th nly in the type-ll region, fork=5~9, depending on the

monopole field are determined by the first-order differential asimir ratio_ fo_r a particular representation. It seems that .the
b y DGL theory in its present shape cannot describe the Casimir

equations, ; ; . i :
scaling for all representations simultaneously, with a unique
r-1dBYdr + g3 (pi—v?)=0, (15  value of x. Some additional terms will be necessary to
slightly modify the influence ok on the energy of the flux
di/dr +(B®9—n{™)4,/r =0. (16)  tube solutions corresponding to various external charges.

We have studied the string tension of flux tubes associ-

These field equations reproduce the second-order differentiated with static charges in higher &) representations
equations(9) and (10) when the relation(13) is fulfilled. within the dual Ginzburg-Landau theory in a manifestly
Note that the procedure to find the Bogomol'nyi limit is an Weyl symmetric approach. We have found that the ratio of
extension of the method used for theé1l Abelian Higgs the string tension between higher and fundamental represen-
model[20,2]] to the U(1)< U(1) DGL theory corresponding tations,dp=o0p /0, depends only on the ratio between the
to SU3) gluodynamics in Abelian projection. monopole massn, and the mass of the dual gauge boson

Finally, let us compute the ratio of the string tension be-mg, the Ginzburg-Landau parameter~m, /mg. We have
tween the higher and fundamental representations. In thgointed out that the ratio$, have a simple form in the case
Bogomol'nyi limit, this can be done easily by using the ex- of the Bogomol'nyi limit in terms of the number of color-
pression(14). For the ratio betweeD =8 andD =3, we get  electric Dirac strings inside the flux tube. We have numeri-
dg=0g/0o3=(2mv2X4)/(2mv?X2)=2. In general, one cally determined the ratios in the typek<1) and type-Il

can recognize a simple rule: (k>1) parameter ranges and found them monotonically ris-
_ _ ing with «. In principle, such deviation of the ratio from the
dp= op/oz=p+a. 17 number of color-electric Dirac string can be understood as

Here p+q is the sum of weight factors in the $8) repre- the effect of the flux-tube interaction. In the type-Il param-

sentation, which physically corresponds to the number of th&ter range, in the intervat=>5~9, the Casimir scaling is

color-electric Dirac strings inside the flux tube in the frame_f’approxmately reproduced for all representatiéhstudied

work of the DGL theory. In the type-IK<1) or type-Il in the present paper. This shows that it was premature to say

(k>1) parameter range, we have to calculate the expressiotHat the the duql s_uperqonducting 'sc'enario. of confinement is
(11) by solving the field equation®) and (10) numerically. In plain contradiction with the Casimir scaling.

The corresponding numerical results are shown in Figs. 1-3. The authors acknowledge fruitful discussions with M.
In Fig. 1 we show the values afg anddg corresponding to  Takayama. E.-M.I. is grateful for the support by the Ministry
p+q=2 as a function of the GL parameter. Similarly, in of Education, Culture and Science of Jagkionbu-Kagaku-
Figs. 2 and 3, the ratiodp classified in the representation shg. T. S. acknowledges the financial support from JSPS
p+q=3 andp+q=4 are shown, respectively. The dotted Grant-in Aid for Scientific ResearctB) No. 10440073 and
line denotes the ratio of the quadratic Casimir chargesNo. 11695029.
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