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Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time
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Starting from a recently proposed Abelian topological model4iladimensions, which involve the Kalb-
Ramond two form field, we study a non-Abelian generalization of the model. An obstruction for the generali-
zation is detected. However, we show that the goal is achieved if we introduce a vectorial auxiliary field.
Consequently, a model is proposed, exhibiting a non-Abelian topological mass generation mechddism in
=3, that provides mass for the Kalb-Ramond field. The covariant quantization of this model requires ghosts
for ghosts. Therefore, in order to quantize the theory, we construct a complete set of Becchi-Rouet-Stora-
Tyutin (BRST) and anti-BRST equations using the horizontality condition.
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Antisymmetric tensor gauge fields provide a natural exwhere H,,, is the totally antisymmetric tensoH,,,,
tension of the usual vector gauge fields, appearing as a me=4,B,,+d,B,,+3,B,, .
diator of string interaction and having an important key role  The action(1) is invariant under the transformation
in supergravity. Also, they are fundamental to the well-
known topological mass generation mechanjdrinfor Abe- 0¢=0, 6B,,=d,0,, 2
lian vector bosons in four dimensions, througB& term
[2]. This term is characterized by the presence of an antisymand its equations of motion give the massive equations
metric gauge fieldB,, (Kalb-Ramond fielgl and the field 5 5
strengthF ,,. Non-Abelian extensions of models involving (0+m%d,e=0, (O+m9)H,,,=0. 3
antisymmetric gauge fields in four-dimensional space-time . ) )
were introduced first by Lahifi3,4] and later by Hwang and ~ The model described by actiofl) can be consistently
Lee[5], in the context of topological mass generation mod-obtained by dimensional reduction of a four-dimensional
els. Both procedures require the introduction of an auxiliaryB/\F model if we discard the Chern-Simons-like terfg3.
vector field, justified by the need to untie the constraint be- The purpose of this paper is to construct a non-Abelian
tween two and three form curvaturEsandH, and to the best version of the actioril). The only possibility is via an intro-
of our knowledge, that is the first approach in the literature taduction of an auxiliary vector field, as we have proved in
considering invariant non-Abelian field strength for an anti-Ref. [11], using the method of consistent deformations. We
symmetric tensor gauge field. A non-Abelian theory involv-obtain here the Becchi-Rouet-Stora-TyuBRST) and anti-
ing an antisymmetric tensor field coupled to a gauge fieldBRST equations by applying the horizontality condition, in-
appears as an alternative mechanism for generating vectotuding an auxiliary vectorial field, which allows the sought
bosons masses, similar to the theory of a heavy Higgs paron-Abelian generalization. In this way, the need to add an
ticle. It is worth mentioning a generalization to a compactauxiliary field is put in more rigorous grounds. In addition,
non-Abelian gauge group of an Abelian mechanism in theve show a non-Abelian topological mass generation mecha-
context of non-Abelian quantum hair on black holés nism for the Kalb-Ramond field in three dimensions.
Kalb-Ramond fields arise naturally in string coupled to It is interesting to remark that the introduction of a one
the area element of the two-dimensional worldsligeand a  form gauge connectio is required to go further in the
string Higgs mechanism was introduced by Rey in R&f.  non-Abelian generalization of our modél), although our
Recently, we have shown a topological mass generatioariginal Abelian action(1) does not contain this field. Note
in an Abelian three-dimensional model involving a two form that, as pointed out by Thierry-Mieg and Ne’emfd®] for
gauge fieldB,, and a scalar fields, rather than the usual the non-Abelian case, the field strength Bis!
Maxwell-Chern-Simons mode]9,10. The action for the

model just mentioned reads as H=dB+[A,B]=DB, 4
1 1 whered=dx*(d/ dx*) is the exterior derivative.
A 3 mva )
Sine= | dX| SHuwH* + 5 9,00% Resorting to Ref[12], we can define a new given by
m H=dB+[A,B]+[F,C], 5)
+ Eé”“”“BMﬁa(p) , (1)
IHere and in the rest of the paper, in order to handle BRST trans-
*Email address: carlos@fisica.ufc.br formations, we use differential forms formalism for convenience.
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where C is the one form auxiliary field required anld  B=1p Jdx*Adx’+B dx*A\dyN+B _dxﬂ/\dyﬁ
—dA+ANA. 2w o m

The obstruction to the non-Abelian generalization lies  +1B,, dyMAdyN+ByndyMAdyN+ 1BiyndyMAdyN
only on the kinetic term for the antisymmetric field, but the . .
topological term must be conveniently redefined. So the non- =B— 38— 8+ y+h+ v, (11

Abelian version of the actiofil) can be written as
and

1 1 N - _
fM Tr[EH/\*HerH/\qur >De/\*Der, (6) C=C,dx*+CydyN+CidyN=C+c+c. (12
3

Note that we identify the components in unphysical direc-

tions with new fields, namelyg, 8, andc (@, B, andc)
as anticommuting ghost&ntighosty and the commuting

where * is the Hodge star operator.
The action above is invariant under the following trans-

formations: -
! ghosts(antighost y andh (). SinceB has three degrees of
SA=—D0, So=[0,¢], SB=DA+[0,B], freedom in thrge dmensulls, the_number.of DOF described
by the set of fieldsB, B8, B, v, y, andhis 3-3-3+1+1
sC=A+[6,C], 7 +1=0. Obviously, the scalar fielgp has only one DOF.

The curvatures 2 forrk and 3 form7 in the fiber-bundle

whered and A are zero and one form transformation param-SPace are
eters, respectively. =

Here we shall use a formalism developed by Thierry- F=dA+ANA, (13
Mieg et al. [12,13 in order to obtain the BRST and anti- d
BRST transformation rules. In general lines, we closely fol-a"
low the treatment of Ref12] or [5], since the new object e ~ ~
introduced here, namely, the scalar field, does not modify the H=dB+[A,B]+[F.C], (14)
approach. ~ — . N .

The presence of a scalar field in topological invariants isVhere d_=d+_s+ s. The exterior derivatives in the gauge
not so uncommon. A three-dimensional Yang-Mills topo-group directions are denoted bg=dy"(d/d9y") and s

logical action was proposed by Baulieu and Grossiia®)  =dyN(a/ayN).
for magnetic monopoles by gauge fixing the following topo- It is important to remark here that since we are focusing a
logical invariant: mass generation mechanism or, in other words, the action

(6), the extra symmetries that appear in the pure topological
model have no room in the present discussion.

Stop= stTr{F/\D‘P}' (®) The horizontality condition, or equivalently, the Maurer-
Cartan equation for the field strengt can be written as

In the work of Thierry-Mieg and Ne’emafl2], a geo-
metrical BRST quantization scheme was developed where
the base space is extended to a second fiber-bundle SPace 80, ¢ the three form is
that it contains unphysicdfiber-gauge orbjtdirections and
physical(space-timgdirections. Using a double fiber-bundle
structure, Quiroset al. [15] extended the principal fiber-
bundle formalism in order to include anti-BRST symmetry.
Basically the procedure consists in extending the space-timgn
to take into account a pair of scalar anticommuting coordi-

F=dA+ANA=F, (15)

H=dB+[A B]+[E,C]1=H. (16)

Also we can impose the horizontality condition for the
e formD ¢, which may be written as

nates denoted byand; which correspond to coordinates in Do=de+[A ¢]=De. (17)
the directions of the gauge group of the principal fiber ’
bundle. Then the so-called “horizontality condition” is im- By expanding both sides of E¢L5) over the pairs of two

posed. This condition enforces the curvature componentgrms, one can obtain the following transformation rules:
containing verticalfiber) directions to vanish. Only the hori-

zontal components of physical curvature in the extended SA =D a. SA.=D a.
space survive. meoom mok
Let us define the following form fields in the extended

space and valued in the Lie algelffaof the gauge group: sa=—al\a, sa=-—al\a, (18)

~ a+sa=—a/\a.

_ L . In order to close the algebra, we introduce an extra scalar
AEAde"+ANdyN+AﬁdyNEA+ a+a, (10 commuting field,b valued in the Lie algebrg, such that
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sa=b, (19 st,=—[a,t,]-[D,a,y]-D,0—[B,,1],

and consequently sn=—[a,n]—[c,b]+w,

§a=—b—;/\a, gbZ—;/\b, sb=0. (20) ;w:_[;w]_[aa;]_[a ;]—[h b]

On the other hand, expanding EHd.6) over the basis of

three forms yields sw=—[a,0]-[v,b].
sB,,=—[a,B,,] = DBy +[Fuu.cl, The nilpotency of thes and's operators was used to obtain
_ _ _ _ the last eight relations.
sB,,=—[a,B,,]=D(.B,;—[FL..Cls Finally, by expanding Eq(17), we obtain
$B,=—[@.B,]+D,y, sB,=—[a.B,] se=[a,¢],s¢=[a,¢]. (25
+ DM;, Therefore, a complete set of BRST and anti-BRST equa-
tions, namely, Egs(18)—(20), (23)—(25), and (21), associ-
SE#+;ﬂM=_[aaﬁﬂ]_[zﬂu]+DMh1 (21 ated with the classical symmetry defined by E@), was
obtained.
sy=—[a,y], sy=-[a,y], It is important to point out the difference between the
fields that do not belong to the principal fiber-bundle expan-
sy+sh=—[a,h]-[a,y], Sy+sh=—[a,h] sion of the “physical” fields p,t, ,n,», andw) (introduced
B in order to complete the BRST and anti-BRST algelanad
—[a,y]. the auxiliary one form fieldC introduced in order to over-

come the obstruction to the non-Abelian generalization. Note
Note that when we treat two odd forms, thel must be  that here the priori introduction of the auxiliary field was

reading as an anticommutator. necessary in order to fix the BRST and anti-BRST transfor-
The action ofs ands uponc, ¢, andC is not defined in  mation rules. Furthermore, the obstruction to non-Abelian
Egs.(21). However, condition(16) leads us to generalization of the four-dimensional BF model, namely,
o the existence of the constraiff,*H]=0, appears in the
B+DC=B+DC. (22)  context of our model agF,*H—me]=0, as can be seen

. . . from the equations of motion of the acti®®), considered in
Condition (22) yields the BRST and anti-BRST transfor- o apsence of the auxiliary field.
mations for the auxiliary fiel€C and its ghostg andc: The simplest scenario to study mass generation is to con-
_ sider the equations of motion of the acti8). For conve-
sC,=—[a,C,]+D,c+B,, nience, we define a new one form field lds=D¢. There-

T Y fore, the equations of motion can be written as
sC,=—[a,C,]1+D,c+B,,

_ - D*H=mK, D*K=-mH. (26)
sc=—[a,c]—vy, sc=-[a,c]—7, (23
o . o Equations(26) can be combined into the following second-
sctsc=—[a,c]—[a,c]—h. order equations:
However, as usual, the action ®ands on the ghosts and (D*D*+m?)H=0, (D*D*+m?*K=0. (27)

antighosts is not completely specified by E(&l) and(23). — . .
Therefore, a set of additional fields is required, namely, aConS|der|ng only linear terms for the fields, we get

commuting vector field,,, two anticommuting scalar fields (d*d* +m?)H=0, (d*d*+m?)de=0, (28)

o and w, and a commuting scalar field These fields are

used to solve Eqg21). Then, we get which are similar to Eq9.3), and exhibit mass generation for

. o o . H and ¢.
sB,=t,, sB,=—t,—[a,8,]-[a,8,]+D,h, On the other hand, by looking to the pole structures of the
o o propagators of the model, mass generation can also be estab-
sh=w, sy=—w—-[a,h]—[a,vy], lished. In order to obtain them, we use the acti6nadded
with convenient gauge fixing terms, namely,

Sy=w, sh=—-w—[a,y]-[a,h],
_ _ Si= Tr

1 1
_ “HA*H+mHA e+ =D/ \*Do+ T \*B+]j
sc=n, sc=-n—[a,c]—[a,c]—h, (24) Mg (2 2

st,=sw=sw=sn=0, A* o+ IN*M+I,/\*p+p/A*dM+MA*dB, (29
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where, J, J,, andj are currents related to the fiel@s M, BRST and anti-BRST transformation rules, which are ob-
p, and ¢, respectively, which generate propagators in thetained using the horizontality condition. Although quite simi-
path-integral formulation. The Lagrange multiplier fielsls  lar to other topological models, it is worth mentioning that,
andp are introduced in order to implement the Landau gaugén this case, we have constructed transformation rules for the

fixing. Kalb-Ramond field, for two one form fields and for a scalar
Therefore, the tree-level effective propagators for thefie|q.
Kalb-Ramond and scalar fields are Here it is worthwhile to mention that a similar mass gen-

eration model was presented by Jackiw and Pi in [RES],
_ Sab where a non-Abelian version of the mixed Chern-Simons
(¢@)ap R (30) ; .
p“—m term was considered. However, a one form field was de-
clared to carry odd parity, so preserving the parity of the
and model. Besides, due to the parity constraint, the Jackiw-Pi
model has less gauge symmetries than ours, and in these two
_ YulpPaPy features reside the essential difference between the models
wlpSaly p? considered. Furthermore, once Jackiw and Pi change the two
form field by a one form field, they do not have the obstruc-
tion to non-Abelianization of the kinetic term detected by
Lahiri (four-dimensional cageand us (three-dimensional
case.
where a and b are group indices, ang,v,p, and o are Finally, the topological mass generation mechanism for
space-time indices. It is interesting to note that, here, thegn Abelian model found in a previous paper was extended
gauge fieldB absorbs the scalar fielthot a Higgs field, for the non-Abelian case, and we end up with an effective

howevey and acquires a longitudinal degree of freedom andneory describing massive Kalb-Ramond gauge field® in
a mass. The inverse process is possible too. =3 space-time.

In this paper we have succeeded in extending a tridimen-
sional Abelian topological model to the non-Abelian case.
The model considered here couples a second-rank antisy
metric tensor field and a scalar field in a topological way. Web
introduce two new fields in the model in order to obtain the
pursued non-Abelian version. One field is a one form gaug
connection(A) which allows us to define a Yang-Mills co-
variant derivative. The other auxiliary fiel€) is a vectorial
one, which is required in order to resolve the constraint tha
prevents the correct non-Abelianization. This work was supported in part by Conselho Nacional

A formal framework to consider the introduction of these de Desenvolvimento Ciefico e Tecnolgico-CNPq and
fields and the consequent new symmetries is furnished bffunda@o Cearense de AmparoResquisa-FUNCAP.
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<B B>a,uv,bpo':m g

gv[ppo] pM
p2

+ , (31

We conclude by mentioning the possible relevance of the
resent discussion to string theory. Indeed, the Kalb-Ramond
eld couples directly to the worldsheet of strings, and
osonic string condensation into the vacuum realize the
Higgs mechanism to the Kalb-Ramond gauge fig&].
el'herefore, an alternative scenario to give mass to the Kalb-
Ramond field in the context of strings may be an interesting
%:ontinuation of our present results.
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