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Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time
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Starting from a recently proposed Abelian topological model in 211 dimensions, which involve the Kalb-
Ramond two form field, we study a non-Abelian generalization of the model. An obstruction for the generali-
zation is detected. However, we show that the goal is achieved if we introduce a vectorial auxiliary field.
Consequently, a model is proposed, exhibiting a non-Abelian topological mass generation mechanism inD
53, that provides mass for the Kalb-Ramond field. The covariant quantization of this model requires ghosts
for ghosts. Therefore, in order to quantize the theory, we construct a complete set of Becchi-Rouet-Stora-
Tyutin ~BRST! and anti-BRST equations using the horizontality condition.
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Antisymmetric tensor gauge fields provide a natural
tension of the usual vector gauge fields, appearing as a
diator of string interaction and having an important key ro
in supergravity. Also, they are fundamental to the we
known topological mass generation mechanism@1# for Abe-
lian vector bosons in four dimensions, through aBF term
@2#. This term is characterized by the presence of an antis
metric gauge fieldBmn ~Kalb-Ramond field! and the field
strengthFmn . Non-Abelian extensions of models involvin
antisymmetric gauge fields in four-dimensional space-ti
were introduced first by Lahiri@3,4# and later by Hwang and
Lee @5#, in the context of topological mass generation mo
els. Both procedures require the introduction of an auxili
vector field, justified by the need to untie the constraint
tween two and three form curvaturesF andH, and to the best
of our knowledge, that is the first approach in the literature
considering invariant non-Abelian field strength for an an
symmetric tensor gauge field. A non-Abelian theory invo
ing an antisymmetric tensor field coupled to a gauge fie
appears as an alternative mechanism for generating ve
bosons masses, similar to the theory of a heavy Higgs
ticle. It is worth mentioning a generalization to a compa
non-Abelian gauge group of an Abelian mechanism in
context of non-Abelian quantum hair on black holes@6#.

Kalb-Ramond fields arise naturally in string coupled
the area element of the two-dimensional worldsheet@7# and a
string Higgs mechanism was introduced by Rey in Ref.@8#.

Recently, we have shown a topological mass genera
in an Abelian three-dimensional model involving a two for
gauge fieldBmn and a scalar fieldw, rather than the usua
Maxwell-Chern-Simons model@9,10#. The action for the
model just mentioned reads as

Sinv
A 5E d3xS 1

12
HmnaHmna1

1

2
]mw]mw

1
m

2
emnaBmn]aw D , ~1!
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where Hmna is the totally antisymmetric tensorHmna
5]mBna1]aBmn1]nBam .

The action~1! is invariant under the transformation

dw50, dBmn5] [mvn] , ~2!

and its equations of motion give the massive equations

~h1m2!]mw50, ~h1m2!Hmna50. ~3!

The model described by action~1! can be consistently
obtained by dimensional reduction of a four-dimension
B`F model if we discard the Chern-Simons-like terms@9#.

The purpose of this paper is to construct a non-Abel
version of the action~1!. The only possibility is via an intro-
duction of an auxiliary vector field, as we have proved
Ref. @11#, using the method of consistent deformations. W
obtain here the Becchi-Rouet-Stora-Tyutin~BRST! and anti-
BRST equations by applying the horizontality condition, i
cluding an auxiliary vectorial field, which allows the soug
non-Abelian generalization. In this way, the need to add
auxiliary field is put in more rigorous grounds. In additio
we show a non-Abelian topological mass generation mec
nism for the Kalb-Ramond field in three dimensions.

It is interesting to remark that the introduction of a o
form gauge connectionA is required to go further in the
non-Abelian generalization of our model~1!, although our
original Abelian action~1! does not contain this field. Note
that, as pointed out by Thierry-Mieg and Ne’eman@12# for
the non-Abelian case, the field strength forB is1

H5dB1@A,B#[DB, ~4!

whered5dxm(]/]xm) is the exterior derivative.
Resorting to Ref.@12#, we can define a newH given by

H5dB1@A,B#1@F,C#, ~5!

1Here and in the rest of the paper, in order to handle BRST tra
formations, we use differential forms formalism for convenience
©2001 The American Physical Society02-1
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where C is the one form auxiliary field required andF
5dA1A`A.

The obstruction to the non-Abelian generalization l
only on the kinetic term for the antisymmetric field, but th
topological term must be conveniently redefined. So the n
Abelian version of the action~1! can be written as

E
M3

TrH 1

2
H`* H1mH`w1

1

2
Dw`* DwJ , ~6!

where * is the Hodge star operator.
The action above is invariant under the following tran

formations:

dA52Du, dw5@u,w#, dB5DL1@u,B#,

dC5L1@u,C#, ~7!

whereu andL are zero and one form transformation para
eters, respectively.

Here we shall use a formalism developed by Thier
Mieg et al. @12,13# in order to obtain the BRST and ant
BRST transformation rules. In general lines, we closely f
low the treatment of Ref.@12# or @5#, since the new objec
introduced here, namely, the scalar field, does not modify
approach.

The presence of a scalar field in topological invariants
not so uncommon. A three-dimensional Yang-Mills top
logical action was proposed by Baulieu and Grossman@14#
for magnetic monopoles by gauge fixing the following top
logical invariant:

Stop5E
M3

Tr$F`Dw%. ~8!

In the work of Thierry-Mieg and Ne’eman@12#, a geo-
metrical BRST quantization scheme was developed wh
the base space is extended to a second fiber-bundle spa
that it contains unphysical~fiber-gauge orbit! directions and
physical~space-time! directions. Using a double fiber-bund
structure, Quiroset al. @15# extended the principal fiber
bundle formalism in order to include anti-BRST symmet
Basically the procedure consists in extending the space-
to take into account a pair of scalar anticommuting coor
nates denoted byy andȳ, which correspond to coordinates
the directions of the gauge group of the principal fib
bundle. Then the so-called ‘‘horizontality condition’’ is im
posed. This condition enforces the curvature compone
containing vertical~fiber! directions to vanish. Only the hori
zontal components of physical curvature in the exten
space survive.

Let us define the following form fields in the extende
space and valued in the Lie algebraG of the gauge group:

w̃5w, ~9!

Ã[Amdxm1ANdyN1AN̄dȳN̄[A1a1ā, ~10!
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B̃[ 1
2 Bmndxm`dxn1BmNdxm`dyN1BmN̄dxm`dȳN̄

1 1
2 BMNdyM`dyN1BMN̄dyM`dȳN̄1 1

2 BM̄N̄dȳM̄`dȳN̄

[B2b2b̄1g1h1ḡ, ~11!

and

C̃[Cmdxm1CNdyN1CN̄dȳN̄[C1c1 c̄. ~12!

Note that we identify the components in unphysical dire
tions with new fields, namely,a, b, andc (ā, b̄, and c̄)
as anticommuting ghosts~antighosts! and the commuting
ghosts~antighost! g andh (ḡ). SinceB has three degrees o
freedom in three dimensions, the number of DOF descri
by the set of fieldsB, b, b̄, g, ḡ, and h is 3-3-31111
1150. Obviously, the scalar fieldw has only one DOF.

The curvatures 2 formF̃ and 3 formH̃ in the fiber-bundle
space are

F̃[d̃Ã1Ã`Ã, ~13!

and

H̃[d̃B̃1@Ã,B̃#1@ F̃,C̃#, ~14!

where d̃5d1s1 s̄. The exterior derivatives in the gaug
group directions are denoted bys5dyN(]/]yN) and s̄

5dȳN̄(]/] ȳN̄).
It is important to remark here that since we are focusin

mass generation mechanism or, in other words, the ac
~6!, the extra symmetries that appear in the pure topolog
model have no room in the present discussion.

The horizontality condition, or equivalently, the Maure
Cartan equation for the field strengthF, can be written as

F̃[d̃Ã1Ã`Ã5F, ~15!

and for the three formH is

H̃[d̃B̃1@Ã,B̃#1@ F̃,C̃#5H. ~16!

Also we can impose the horizontality condition for th
one formDw, which may be written as

D̃w̃5d̃w1@Ã,w#5Dw. ~17!

By expanding both sides of Eq.~15! over the pairs of two
forms, one can obtain the following transformation rules:

sAm5Dma, s̄Am5Dmā,

sa52a`a, s̄ā52ā`ā, ~18!

sā1 s̄a52a`ā.

In order to close the algebra, we introduce an extra sc
commuting field,b valued in the Lie algebraG, such that
2-2



r-

,
s

in

ua-

he
n-

ote

or-
ian
ly,

on-

d-

r

the
stab-
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sā5b, ~19!

and consequently

s̄a52b2ā`a, s̄b52ā`b, sb50. ~20!

On the other hand, expanding Eq.~16! over the basis of
three forms yields

sBmn52@a,Bmn#2D [mbn]1@Fmn ,c#,

s̄Bmn52@ā,Bmn#2D [mb̄n]2@Fmn ,c̄#,

sbm52@a,bm#1Dmg, s̄b̄m52@ā,b̄m#

1Dmḡ,

sb̄m1 s̄bm52@a,b̄m#2@ā,bm#1Dmh, ~21!

sg52@a,g#, s̄ḡ52@ā,ḡ #,

s̄g1sh52@a,h#2@ā,g#, sḡ1 s̄h52@ā,h#

2@a,ḡ #.

Note that when we treat two odd forms, the@ ,# must be
reading as an anticommutator.

The action ofs and s̄ uponc, c̄, andC is not defined in
Eqs.~21!. However, condition~16! leads us to

B̃1D̃C̃5B1DC. ~22!

Condition ~22! yields the BRST and anti-BRST transfo
mations for the auxiliary fieldC and its ghostsc and c̄:

sCm52@a,Cm#1Dmc1bm ,

s̄Cm52@ā,Cm#1Dmc̄1b̄m ,

sc52@a,c#2g, s̄c̄52@ā,c̄#2ḡ, ~23!

sc̄1 s̄c52@ā,c#2@a,c̄#2h.

However, as usual, the action ofs ands̄ on the ghosts and
antighosts is not completely specified by Eqs.~21! and~23!.
Therefore, a set of additional fields is required, namely
commuting vector fieldtm , two anticommuting scalar field
v and v̄, and a commuting scalar fieldn. These fields are
used to solve Eqs.~21!. Then, we get

sb̄m5tm , s̄bm52tm2@a,b̄m#2@ā,bm#1Dmh,

sh5v, s̄g52v2@a,h#2@ā,g#,

sḡ5v̄, s̄h52v̄2@a,ḡ #2@ā,h#,

sc̄5n, s̄c52n2@a,c̄#2@ā,c#2h, ~24!

stm5sv5sv̄5sn50,
12770
a

s̄tm52@ā,tm#2@Dma,ḡ #2Dmv̄2@b̄m ,t#,

s̄n52@ā,n#2@ c̄,b#1v̄,

s̄v52@ā,v#2@aa,ḡ #2@a,v̄#2@h,b#,

s̄v̄52@ā,v̄#2@ ḡ,b#.

The nilpotency of thes and s̄ operators was used to obta
the last eight relations.

Finally, by expanding Eq.~17!, we obtain

sw5@a,w#,s̄w5@ā,w#. ~25!

Therefore, a complete set of BRST and anti-BRST eq
tions, namely, Eqs.~18!–~20!, ~23!–~25!, and ~21!, associ-
ated with the classical symmetry defined by Eq.~7!, was
obtained.

It is important to point out the difference between t
fields that do not belong to the principal fiber-bundle expa
sion of the ‘‘physical’’ fields (b,tm ,n,v, andv̄) ~introduced
in order to complete the BRST and anti-BRST algebra! and
the auxiliary one form fieldC introduced in order to over-
come the obstruction to the non-Abelian generalization. N
that here thea priori introduction of the auxiliary fieldC was
necessary in order to fix the BRST and anti-BRST transf
mation rules. Furthermore, the obstruction to non-Abel
generalization of the four-dimensional BF model, name
the existence of the constraint@F,* H#50, appears in the
context of our model as@F,* H2mw#50, as can be seen
from the equations of motion of the action~6!, considered in
the absence of the auxiliary field.

The simplest scenario to study mass generation is to c
sider the equations of motion of the action~6!. For conve-
nience, we define a new one form field asK[Dw. There-
fore, the equations of motion can be written as

D* H5mK, D* K52mH. ~26!

Equations~26! can be combined into the following secon
order equations:

~D* D* 1m2!H50, ~D* D* 1m2!K50. ~27!

Considering only linear terms for the fields, we get

~d* d* 1m2!H50, ~d* d* 1m2!dw50, ~28!

which are similar to Eqs.~3!, and exhibit mass generation fo
H andw.

On the other hand, by looking to the pole structures of
propagators of the model, mass generation can also be e
lished. In order to obtain them, we use the action~6! added
with convenient gauge fixing terms, namely,

ST5E
M3

TrH 1

2
H`* H1mH`w1

1

2
Dw`* Dw1J`* B1 j

`* w1J`* M1Jp`* p1p`* dM1M`* dBJ , ~29!
2-3
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whereJ, J, Jp , andj are currents related to the fieldsB, M,
p, and w, respectively, which generate propagators in
path-integral formulation. The Lagrange multiplier fieldsM
andp are introduced in order to implement the Landau gau
fixing.

Therefore, the tree-level effective propagators for
Kalb-Ramond and scalar fields are

^ww&a,b52
dab

p22m2
~30!

and

^BB&amn,brs5
dab

p22m2 Fgm[rgs]n2
gm[rps]pn

p2

1
gn[rps]pm

p2 G , ~31!

where a and b are group indices, andm,n,r, and s are
space-time indices. It is interesting to note that, here,
gauge fieldB absorbs the scalar field~not a Higgs field,
however! and acquires a longitudinal degree of freedom a
a mass. The inverse process is possible too.

In this paper we have succeeded in extending a tridim
sional Abelian topological model to the non-Abelian ca
The model considered here couples a second-rank antis
metric tensor field and a scalar field in a topological way. W
introduce two new fields in the model in order to obtain t
pursued non-Abelian version. One field is a one form ga
connection~A! which allows us to define a Yang-Mills co
variant derivative. The other auxiliary field~C! is a vectorial
one, which is required in order to resolve the constraint t
prevents the correct non-Abelianization.

A formal framework to consider the introduction of the
fields and the consequent new symmetries is furnished
s.
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BRST and anti-BRST transformation rules, which are o
tained using the horizontality condition. Although quite sim
lar to other topological models, it is worth mentioning tha
in this case, we have constructed transformation rules for
Kalb-Ramond field, for two one form fields and for a sca
field.

Here it is worthwhile to mention that a similar mass ge
eration model was presented by Jackiw and Pi in Ref.@16#,
where a non-Abelian version of the mixed Chern-Simo
term was considered. However, a one form field was
clared to carry odd parity, so preserving the parity of t
model. Besides, due to the parity constraint, the Jackiw
model has less gauge symmetries than ours, and in these
features reside the essential difference between the mo
considered. Furthermore, once Jackiw and Pi change the
form field by a one form field, they do not have the obstru
tion to non-Abelianization of the kinetic term detected
Lahiri ~four-dimensional case! and us ~three-dimensional
case!.

Finally, the topological mass generation mechanism
an Abelian model found in a previous paper was exten
for the non-Abelian case, and we end up with an effect
theory describing massive Kalb-Ramond gauge fields inD
53 space-time.

We conclude by mentioning the possible relevance of
present discussion to string theory. Indeed, the Kalb-Ram
field couples directly to the worldsheet of strings, a
bosonic string condensation into the vacuum realize
Higgs mechanism to the Kalb-Ramond gauge field@8#.
Therefore, an alternative scenario to give mass to the K
Ramond field in the context of strings may be an interest
continuation of our present results.
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